WO2016111346A1 - RFeB系焼結磁石の製造方法 - Google Patents

RFeB系焼結磁石の製造方法 Download PDF

Info

Publication number
WO2016111346A1
WO2016111346A1 PCT/JP2016/050443 JP2016050443W WO2016111346A1 WO 2016111346 A1 WO2016111346 A1 WO 2016111346A1 JP 2016050443 W JP2016050443 W JP 2016050443W WO 2016111346 A1 WO2016111346 A1 WO 2016111346A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfeb
raw material
alloy
producing
rare earth
Prior art date
Application number
PCT/JP2016/050443
Other languages
English (en)
French (fr)
Inventor
眞人 佐川
康裕 宇根
博一 久保
諭 杉本
昌志 松浦
通秀 中村
Original Assignee
インターメタリックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターメタリックス株式会社 filed Critical インターメタリックス株式会社
Priority to US15/539,585 priority Critical patent/US20180012701A1/en
Priority to JP2016568752A priority patent/JP6205511B2/ja
Priority to EP16735085.9A priority patent/EP3244426A1/en
Priority to CN201680005275.1A priority patent/CN107112125A/zh
Publication of WO2016111346A1 publication Critical patent/WO2016111346A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for producing an RFeB-based sintered magnet mainly containing rare earth elements (R) containing Y, iron (Fe), and boron (B).
  • the RFeB-based sintered magnet is a permanent magnet manufactured by orienting and sintering RFeB-based alloy powder.
  • RFeB magnets were discovered by Sagawa et al. In 1982 and have high magnetic properties far surpassing conventional permanent magnets, and are manufactured from relatively abundant and inexpensive raw materials such as rare earths, iron and boron. It has the feature that it can be.
  • RFeB sintered magnets are expected to increase in the future, such as permanent magnets for motors for automobiles used in hybrid vehicles, electric vehicles, fuel cell vehicles, etc. Since the motor for automobiles rises from room temperature to about 180 ° C. during use, the RFeB-based sintered magnet used for automobile motors must be guaranteed to operate in this temperature range. For this purpose, there is a demand for an RFeB-based sintered magnet having a high coercive force over the entire temperature range.
  • the coercive force is an index indicating the strength of a magnetic field in which the magnetization becomes zero when a magnetic field opposite to the magnetization direction is applied to the magnet.
  • the larger the coercive force value the more resistant to the reverse magnetic field. high.
  • the coercive force generally has a temperature characteristic that it decreases as the temperature rises, and the higher the coercive force at normal temperature (room temperature), the higher the coercive force at high temperature. For this reason, conventionally, contrivances have been made to increase the value using the coercive force at normal temperature as an index.
  • coercive force it means a coercive force at room temperature.
  • Non-patent document 1 One way to improve the coercivity of NdFeB sintered magnets without using RH is to reduce the grain size of the main phase (R 2 Fe 14 B) inside the NdFeB sintered magnet. It is well known that the coercive force of any ferromagnetic material (or ferrimagnetic material) is increased by reducing the grain size of the internal crystal grains.
  • HDR processing is known.
  • HDDR treatment is performed by heating R 2 Fe 14 B raw material alloy lump or coarse powder (hereinafter collectively referred to as “raw material alloy lump”) in a hydrogen atmosphere at 700 to 1000 ° C. (Hydrogenation).
  • Decomposition of R 2 Fe 14 B compound into three phases of RH 2 , Fe 2 B, and Fe (decomposition), while maintaining the temperature, switch the atmosphere from hydrogen to vacuum to release hydrogen from the RH 2 phase ( This causes a recombination reaction to the R 2 Fe 14 B compound.
  • crystal grains which are phases of the R 2 Fe 14 B compound having an average diameter of 1 ⁇ m or less and a narrow particle size distribution are formed inside the raw material alloy lump.
  • Patent Document 1 discloses a sintered magnet made of powder obtained by pulverizing a raw material alloy lump after the HDDR treatment (hereinafter referred to as a “post-HDDR raw material alloy lump”) with a jet mill using nitrogen gas. Manufacturing is described. However, since the jet mill using nitrogen gas cannot be sufficiently pulverized as described above, the particle diameter of the raw material alloy powder obtained by pulverizing the material alloy lump after HDDR is larger than the conventional one. Despite being small, the particle size of the particle itself is only as large as the conventional one. Thus, in the method of Patent Document 1, since the raw material alloy powder particles include a plurality of crystal grains, even if a magnetic field is applied to the raw material alloy powder particles in the orientation step, the individual crystal grains are oriented. The residual magnetic flux density is reduced.
  • the present inventor uses a helium gas instead of nitrogen gas to process the alloy lump with a jet mill (helium jet mill method), so that the raw material alloy lump has an average particle size of 1 ⁇ m or less (submicron size).
  • a jet mill helium jet mill method
  • this pulverization method was applied to the raw alloy mass after HDDR (Patent Document 2).
  • the raw material alloy powder thus obtained has a high content of particles consisting of only one crystal grain. Therefore, by orienting this raw material alloy powder in a magnetic field, individual crystal grains can be easily oriented, and the residual magnetic flux density can be increased. And, as described above, the coercive force can be increased by reducing the crystal grain size.
  • Patent Document 3 describes that Nd and Bd alloy masses after HDDR processing are crushed so that the average particle size is about 100 ⁇ m, Nd and Mixing fine powder of alloy containing Cu, applying a magnetic field to this mixture, then heating to 700 ° C with a hot press machine and heating at 2 ton / cm 2 pressure to produce a compact of NdFeB magnet It is described to do.
  • an envelope layer made of Nd and Cu is formed around the Nd 2 Fe 14 B type crystal grains, and magnetic interaction between adjacent crystal grains is blocked by the envelope layer, thereby improving the coercive force.
  • this method is not a sintering method and uses a magnet raw material having a particle size about two orders of magnitude larger than that of the sintering method, the residual magnetic flux density cannot be increased.
  • the method of Patent Document 2 is excellent in that both the coercive force and the residual magnetic flux density can be improved.
  • the present inventor has found that the width of a two-grain boundary, which is a grain boundary sandwiched between two adjacent crystal grains. It was found that the distance between crystal grains (hereinafter referred to as “grain boundary width”) is narrower than that of a conventional RFeB-based sintered magnet. If the grain boundary width of the two grain boundaries is narrow, a magnetic interaction called exchange coupling occurs between adjacent crystal grains, and a magnetic domain in which magnetization is reversed is easily formed.
  • the present inventor further considered the reason why the grain boundary width of some of the two grain boundaries is narrowed by the method described in Patent Document 2.
  • a rare earth-rich phase having a higher content of rare earth R than R 2 Fe 14 B between the particles of the raw material alloy powder in the stage immediately before sintering. It is desirable to exist as uniformly as possible. The reason will be explained.
  • the rare earth-rich phase Since the rare earth-rich phase has a lower melting point than R 2 Fe 14 B, the rare earth-rich phase is melted by heating for sintering and penetrates between the particles of the raw material alloy powder. As described above, in the method described in Patent Document 2, since the particles of the raw material alloy powder are composed of only one crystal grain at a high rate, if a state in which the rare earth-rich phase exists uniformly between the particles can be realized, In an RFeB-based sintered magnet obtained by sintering such raw material alloy powder, a rare earth-rich phase extends over the two grain boundaries of the crystal grains, and the grain boundary width of the two grain boundaries becomes wide.
  • the raw material alloy lump before the HDDR treatment is typically produced by a strip casting method.
  • a thin plate-like rare earth-rich phase is formed at intervals of 3 to 5 ⁇ m (lamellar). Called the structure), the rare earth-rich phase does not sufficiently penetrate all of the RFeB-based crystal grains formed between the rare earth-rich phases forming the lamellar structure, and the uneven distribution of the rare earth-rich phase It can be seen. It is difficult to uniformly disperse the rare earth-rich phase even by a method other than the strip casting method.
  • the distribution of the rare earth-rich phase becomes non-uniform.
  • the rare earth-rich phase does not reach the grain boundaries uniformly, so a two-grain grain boundary with a wide grain boundary width is not formed, and the coercive force decreases. Resulting in.
  • the problem to be solved by the present invention is that the average grain size of the crystal grains is 1 ⁇ m or less and the rare earth-rich phase is evenly distributed over the grain boundaries, so that the two-grain grain boundaries having a wide grain boundary width are uniform. It is to provide a method of manufacturing an RFeB-based sintered magnet having a high coercive force by being formed.
  • the present invention made to solve the above problems is a method for producing an RFeB-based sintered magnet mainly composed of rare earth elements R, Fe and B, a) An HDDR that heats an RFeB alloy ingot with a rare earth element R content of 26.5 to 29.5% by weight in a hydrogen atmosphere at a temperature of 700 to 1000 ° C and then maintains the temperature at 750 to 900 ° C to create a vacuum
  • a process for producing a raw material alloy post-HDDR composed of a polycrystalline body of crystal grains having an average grain diameter of 1 ⁇ m or less with an equivalent circle diameter determined from an electron microscope image; b) Heating to a temperature of 700 to 950 ° C.
  • a process of producing a high-content raw material alloy lump (rare earth grain boundary infiltration process); c) producing a raw material alloy powder by pulverizing the rare earth-rich raw material alloy ingot so that the average particle size is 1 ⁇ m or less; d) storing the raw material alloy powder in a mold and applying a magnetic field to the raw material alloy powder without performing compression molding; and e) a sintering step of heating the raw material alloy powder after the orientation step to a temperature of 850 to 1050 ° C.
  • an HDDR-treated raw material alloy lump made of a polycrystal of fine crystal grains having an average value of the particle size distribution due to the equivalent circle diameter of 1 ⁇ m or less is produced by the HDDR treatment, and then contains R more than the RFeB-based alloy.
  • a contact made of a second alloy having a high rate is heated to a temperature of 700 to 950 ° C. in a contact state.
  • the second alloy melts and uniformly penetrates into the grain boundaries in the raw material alloy block after the HDDR treatment.
  • individual crystal grains are in contact with the second alloy.
  • the second alloy is present on the surface of each particle composed of only one crystal grain at a high rate as described above.
  • the second alloy (rare earth-rich phase) melts and reaches the two-grain grain boundary, so that the composition and grain of the two-grain grain boundary
  • An RFeB-based sintered magnet with a uniform field width can be obtained.
  • the RFeB-based sintered magnet manufactured according to the present invention has a high coercive force due to a two-grain grain boundary having a small average grain size of 1 ⁇ m or less and a wide grain boundary width.
  • the content of the rare earth element R in the raw RFeB alloy ingot is lower than 26.5% by weight, the rare earth element R in the crystal grains of the manufactured RFeB sintered magnet will be insufficient. Further, if the content of the rare earth element R in the RFeB-based alloy ingot is higher than 29.5% by weight, the residual magnetic flux density of the RFeB-based sintered magnet is lowered. Therefore, in the present invention, the content of the rare earth element R in the RFeB-based alloy ingot is 26.5 to 29.5% by weight.
  • the second alloy is not particularly limited as long as it melts at the heating temperature in the rare earth grain boundary infiltration treatment step, and the components other than the rare earth element R are not particularly limited.
  • the raw material RFeB alloy ingot should be made by a strip cast method that can increase the uniformity of the rare earth-rich phase dispersion compared to other methods (although there is a problem due to the lamellar structure described above). Is desirable.
  • the average grain size of the crystal grains is 1 ⁇ m or less, and the rare earth-rich phase is uniformly distributed at the grain boundaries, so that a two-grain grain boundary having a wide grain boundary width is formed uniformly.
  • an RFeB-based sintered magnet having a high coercive force can be produced.
  • the figure (a) which shows the flow of the process in the Example of the manufacturing method of the RFeB type sintered magnet concerning this invention, and the figure (b) which shows the flow of the process of a comparative example.
  • the graph which shows the temperature history and gas atmosphere at the time of the HDRD process in a present Example.
  • Reflected electron image of the rare earth-rich raw material alloy lump (a) produced in the course of the manufacturing method of the RFeB-based sintered magnet of Example 2 and the pre-HDDR raw material alloy lump (b), which was the previous stage, observed with an electron microscope .
  • the backscattered electron images of the post-HDDR raw material alloy ingot produced in the process of manufacturing the RFeB sintered magnet of the comparative example were observed with an electron microscope.
  • (A) is a comparative example 1
  • (b) is a comparative example. Two things.
  • Example 1 [Method for producing RFeB-based sintered magnet of Example 1]
  • the HDRR process (Step S1), rare earth particles
  • An RFeB-based sintered magnet was manufactured by five processes: a field penetration treatment process (step S2), a raw material alloy powder production process (step S3), an orientation process (step S4), and a sintering process (step S5).
  • “TRE” in Table 1 indicates the total content of all rare earth elements (Nd and Pr in Example 1) contained in the RFeB alloy ingot.
  • the HDDR process will be described with reference to the graph of FIG.
  • an RFeB alloy ingot with an equivalent circle diameter of 100 ⁇ m to 20 mm prepared by a strip casting method is prepared.
  • the RFeB alloy ingot is fully occluded with hydrogen at room temperature and then heated in a hydrogen atmosphere at 950 ° C and 100 kPa for 60 minutes to convert the Nd 2 Fe 14 B compound (main phase) in the raw alloy alloy after HDDR to NdH Decomposition into two phases, Fe 2 B phase and Fe phase (“HD process” in FIG. 2).
  • the temperature was lowered to 800 ° C.
  • the resulting alloy material after HDDR was coarsely pulverized with a Wonder Blender (Osaka Chemical Co., Ltd.) to an equivalent circle diameter of 100 ⁇ m or less. It is included in the raw material alloy block after HDDR in the invention.
  • the coarsely pulverized raw material alloy after HDDR and the second alloy powder previously pulverized to a mean particle size of 4 ⁇ m by a jet mill using nitrogen gas were mixed at a weight ratio of 95: 5, and 700
  • a rare earth-rich raw material alloy ingot was produced by heating at a temperature of 10 ° C. for 10 minutes.
  • the rare earth-rich raw material alloy lump is embrittled by maintaining it in a hydrogen atmosphere at a temperature of 200 ° C. for 5 hours, and then the average particle size is reduced to 1 ⁇ m or less by the helium jet mill method.
  • the raw material alloy powder was produced by pulverizing.
  • an organic lubricant was mixed with the raw material alloy powder, and the mold was filled at a filling density of 3.5 g / cm 3 , and a pulse magnetic field of about 5 T was applied without performing compression molding.
  • the raw material alloy powder filled in the mold was sintered by heating at a temperature of 940 ° C. for 1 hour in vacuum without performing compression molding.
  • heat treatment was performed in an argon atmosphere for 10 minutes at a temperature between 500 ° C. and 660 ° C. with the highest coercive force.
  • a cylindrical RFeB sintered magnet having a diameter of 9.8 mm and a length of 7.0 mm was produced.
  • Example 2 [Method for producing RFeB-based sintered magnet of Example 2]
  • an RFeB-based alloy ingot having the composition shown in Table 2 below and the powder of the second alloy were used as materials, and an RFeB-based sintered magnet was basically produced by the same method as in Example 1. .
  • Example 1 the differences from Example 1 other than the composition of the materials are listed.
  • the powder of the 2nd alloy was produced using the wonder blender instead of the jet mill using nitrogen gas. Therefore, the average particle diameter of the second alloy powder is larger than that of the first embodiment.
  • the mixing ratio of the raw alloy alloy mass after HDDR and the powder of the second alloy was 94: 6 by weight, and the heating time was 30 minutes (heating temperature is 700 ° C. as in Example 1). . -The sintering temperature in the sintering process was 860 ° C.
  • Example 3 [Methods for producing RFeB-based sintered magnets of Examples 3 to 7]
  • the same composition (different from Examples 1 and 2) is used for the RFeB alloy ingot, and the powder of the second alloy has a different composition Was used.
  • the composition of the powder of the second alloy of Example 3 is the same as that of Examples 1 and 2.
  • the differences from Example 1 are as follows. In the rare earth grain boundary infiltration treatment process, the mixing ratio of the raw alloy alloy mass after HDDR and the powder of the second alloy was 95: 5 by weight, and the heating time was 60 minutes (heating temperature is 700 ° C. same as in Example 1). .
  • the sintering temperature in the sintering process was 890 ° C. in Examples 3 and 4, and 880 ° C. in Examples 5-7.
  • the raw alloy alloy mass after HDDR is maintained in a hydrogen atmosphere at a temperature of 200 ° C. for 5 hours in the raw alloy powder production step.
  • a raw material alloy powder was produced by pulverizing so as to have an average particle diameter of 1 ⁇ m or less by a helium jet mill method.
  • the raw material alloy powder thus obtained was subjected to the same orientation step and sintering step as in Examples 1 and 2, thereby obtaining a RFeB sintered magnet of a comparative example.
  • Table 4 shows the results of measuring the composition at the stage of the raw material alloy powder (considered to be close to the composition of the obtained RFeB-based sintered magnet) in Examples 1 and 2 and Comparative Examples 1 and 2. Paying attention to the value of TRE, both the examples and comparative examples are higher than the TRE value of the main phase of 26 to 27% by weight (when the rare earth element R is Nd, Pr), and the raw material alloy powder as a whole is higher than the main phase. The content of the rare earth element R is high.
  • the composition of the RFeB-based alloy ingot and the mixing ratio of the RFeB-based alloy ingot and the second alloy powder are the same as those in Examples 3 and 4, and the second alloy powder contains Ga. This is different from the third and fourth embodiments. Thus, it became clear that both high saturation magnetization and high coercive force can be obtained by containing Ga in the powder of the second alloy.
  • FIG. 3 (a) shows a rare earth-rich raw material alloy ingot of Example 2
  • FIG. 3 (b) shows a post-HDDR raw material alloy ingot of Example 2
  • FIG. 4 (a) shows a post-HDDR raw material alloy ingot of Comparative Example 1
  • FIG. 4 (b) shows an electron micrograph of the post-HDDR raw material alloy ingot of Comparative Example 2. Comparing the photographs of the alloy lumps just before the raw material alloy powder production process, that is, comparing FIG. 3 (a) and FIGS. 4 (a) and (b), the gray particles in FIG. In contrast, in FIGS. 4 (a) and 4 (b), which are comparative examples, white portions can be seen in the form of dots in a wide gray area.
  • Example 2 the rare earth-rich phase composed of the second alloy spreads uniformly at the grain boundaries of the crystal grains (gray particles) in the rare earth-rich raw material alloy ingot, whereas in the comparative example, the rare earth This means that the rich phase is not distributed uniformly at the grain boundary but is localized at the point-like portion. Therefore, in the raw material alloy powder obtained by pulverizing the rare earth-rich raw material alloy lump of Example 2, the rare earth rich phase is uniformly distributed between the particles, and in the RFeB sintered magnet obtained by sintering the raw material alloy powder, the rare earth rich phase is crystallized.
  • a two-grain grain boundary with a wide grain boundary width is formed because it is uniformly distributed between grains, whereas the rare earth-rich phase is uniform between grains in the raw alloy powder obtained by grinding the raw alloy mass after HDDR of the comparative example. Even in the RFeB sintered magnet obtained by sintering the raw material alloy powder, the rare earth-rich phase does not spread uniformly between the crystal grains, so that a two-grain grain boundary with a wide grain boundary width is not formed. Conceivable.
  • Example 2 In the electron micrograph of the raw material alloy post-HDDR in Example 2 shown in FIG. 3 (b), a white portion is hardly seen. This is because the TRE value of the post-HDDR raw material alloy lump (and the pre-stage raw material alloy lump) in Example 2 is close to the TRE value in the main phase and has almost no rare earth-rich phase. As shown in FIG. 3 (a), the rare earth-rich phase is made of crystal grains as shown in FIG. A rare earth-rich raw material alloy ingot that reaches the boundary is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 本発明に係るRFeB系焼結磁石製造方法は、希土類元素Rの含有率が26.5~29.5重量%であるRFeB系合金塊を700~1000℃の温度の水素雰囲気中で加熱した後に、750~900℃の温度に維持しつつ真空にするHDDR処理を行うことにより、電子顕微鏡画像から求められた円相当径による平均粒径が1μm以下である結晶粒の多結晶体から成るHDDR後原料合金塊を作製する工程S1と、HDDR後原料合金塊に、RFeB系合金よりも希土類元素Rの含有率が高い第2合金から成る接触物を接触させた状態で700~950℃の温度に加熱することにより、希土類高含有原料合金塊を作製する工程S2と、希土類高含有原料合金塊を、平均粒径が1μm以下になるように微粉砕することにより原料合金粉末を作製する工程S3と、原料合金粉末をモールドに収容し、圧縮成形を行うことなく該原料合金粉末に磁界を印加する配向工程S4と、配向工程後の原料合金粉末を850~1050℃の温度に加熱する焼結工程S5とを有する。

Description

RFeB系焼結磁石の製造方法
 本発明は、Yを含む希土類元素(R)、鉄(Fe)及び硼素(B)を主成分とするRFeB系焼結磁石の製造方法に関する。
 RFeB系焼結磁石は、RFeB系合金の粉末を配向させ、焼結させることにより製造される永久磁石である。RFeB系磁石は1982年に佐川らによって見出されたものであり、それまでの永久磁石をはるかに凌駕する高い磁気特性を有し、希土類、鉄及び硼素という比較的豊富で廉価な原料から製造することができるという特長を有する。
 RFeB系焼結磁石は、ハイブリッド自動車、電気自動車、燃料電池自動車等に用いる自動車用モータ向けの永久磁石など、今後ますます需要が拡大することが予想されている。自動車用モータは使用中に温度が常温から180℃程度まで上昇するため、自動車用モータに使用するRFeB系焼結磁石は当該温度範囲における動作が保証されなければならない。そのためには、当該温度範囲全体に亘って高い保磁力を有するRFeB系焼結磁石が求められている。
 保磁力とは、磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が0になる磁界の強さを示す指標であり、保磁力の値が大きいほど逆磁界への耐性が高い。保磁力は一般に、温度の上昇に伴って低下するという温度特性を有し、常温(室温)における保磁力が高いほど高温における保磁力も高くなる。そのため、従来より、常温における保磁力を指標として、その値を高めるための工夫がなされてきた。以下では、単に「保磁力」と呼ぶ場合には、常温の保磁力を指すものとする。
 希土類RがNdであるNdFeB系焼結磁石では、保磁力を向上させるために、これまで、磁石に含まれるNdの一部をDy又は/及びTb(以下、RHとする)で置換するという方法が採用されていた。しかし、RHは希少であるうえに、産出される地域が集中しており、産出国の意向によって供給が途絶えたり、価格が上昇したりすることがあるため、安定した供給が難しい。更に、NdをRHで置換することにより、磁化(磁力)の大きさを表す指標である残留磁束密度が低下するという問題もある。
 RHを用いることなくNdFeB系焼結磁石の保磁力を向上させる方法の1つに、NdFeB系焼結磁石の内部で主相(R2Fe14B)となる結晶粒の粒径を小さくするという方法がある(非特許文献1)。どのような強磁性体材料でも(あるいはフェリ磁性体でも)、内部の結晶粒の粒径を小さくすることにより、保磁力が増大することはよく知られている。
 RFeB系焼結磁石内部の結晶粒の粒径を小さくするために、従来、RFeB系焼結磁石の原料となる合金の粉末の粒径を小さくすることが行われていた。しかし、合金粉末の作製に一般的に用いられている窒素ガスを用いたジェットミル粉砕では、平均粒径を3μmより小さくすることが困難である。
 結晶粒の微細化の手段の一つとして、HDDR処理が知られている。HDDR処理は、R2Fe14B原料合金の塊又は粗粉(以下、これらをまとめて「原料合金塊」と呼ぶ)を700~1000℃の水素雰囲気中で加熱する(Hydrogenation)ことにより、このR2Fe14B化合物をRH2、Fe2B、Feの3相に分解(Decomposition)し、その温度を維持したまま、雰囲気を水素から真空に切り替えることにより、RH2相から水素を放出(Desorption)させ、これによりR2Fe14B化合物への再結合反応(Recombination)を生じさせるというものである。これにより、原料合金塊の内部に平均径が1μm以下で粒度分布の幅の狭いR2Fe14B化合物の相である結晶粒が形成される。
 特許文献1には、HDDR処理後の原料合金塊(以下、「HDDR後原料合金塊」と呼ぶ)を、窒素ガスを用いたジェットミルで粉砕することにより得られる粉末を用いて焼結磁石を製造することが記載されている。しかし、上述のように窒素ガスを用いたジェットミルでは十分に粉砕することができないため、HDDR後原料合金塊を粉砕した原料合金粉末の粒子では、それに含まれる結晶粒の粒径は従来よりも小さくなるにも関わらず、当該粒子自体の粒径は従来と同程度の大きさにしかならない。これにより、特許文献1の方法では原料合金粉末の粒子には複数個の結晶粒が含まれることとなるため、配向工程において原料合金粉末の粒子に磁界を印加しても個々の結晶粒を配向させることができず、それにより残留磁束密度が低下してしまう。
 本発明者は、窒素ガスの代わりにヘリウムガスを用いて合金塊をジェットミルで処理すること(ヘリウムジェットミル法)により、平均粒径が1μm以下(サブミクロンサイズ)になるように原料合金塊を粉砕することができることを見出し、HDDR後原料合金塊にこの粉砕方法を適用した(特許文献2)。これにより得られる原料合金粉末は、1個の結晶粒のみから成る粒子の含有率が高くなる。そのため、この原料合金粉末を磁界中で配向することにより、個々の結晶粒が配向し易くなり、残留磁束密度を高くすることができる。そして、結晶粒の粒径が小さくなることにより、上述のように保磁力を高くすることができる。
 HDDR処理を用いて保磁力を向上させる方法の他の例として、特許文献3には、HDDR処理後のNdFeB系合金塊を平均粒径が100μm程度になるように粉砕した磁石原料に、Nd及びCuを含有する合金の微粉を混合し、この混合物に磁界を印加した後に、ホットプレス機で700℃に加熱しながら2トン/cm2の圧力で加熱することによりNdFeB系磁石の成形体を作製することが記載されている。この方法により、Nd2Fe14B型結晶粒の周囲にNd及びCuから成る包囲層が形成され、隣接する結晶粒同士の磁気的相互作用が当該包囲層によって遮断されるため、保磁力が向上する。しかし、この方法は焼結法ではなく、焼結法よりも2桁程度粒径が大きい磁石原料を用いるため、残留磁束密度を高くすることができない。
特開2010-219499号公報 国際公開WO2014/142137号 特開2014-057075号公報
宇根康裕、佐川眞人、「結晶粒微細化によるNdFeB焼結磁石の高保磁力化」、日本金属学会誌、第76巻、第1号(2012)12-16、特集「永久磁石材料の現状と将来展望」
 従来の上記3種の方法のうち特許文献2の方法は、保磁力及び残留磁束密度を共に向上させることができるという点において優れている。しかしながら、RHを添加することなくRFeB系焼結磁石を自動車用モータに使用するためには、保磁力をより高くする必要がある。本発明者は、特許文献2に記載の方法により作製されたRFeB系焼結磁石の微細構造を調べた結果、隣接する2個の結晶粒で挟まれた粒界である二粒子粒界の幅(結晶粒間の距離。以下、「粒界幅」と呼ぶ。)が従来のRFeB系焼結磁石よりも狭いことを見出した。二粒子粒界の粒界幅が狭いと、隣接する結晶粒間に交換結合と呼ばれる磁気的な相互作用が生じ、磁化が反転する磁区が形成され易くなるため、保磁力が低下すると考えられる。
 本発明者は更に、特許文献2に記載の方法によって一部の二粒子粒界の粒界幅が狭くなる理由を考察した。粒界幅の広い二粒子粒界が形成されるためには、焼結の直前の段階において、原料合金粉末の粒子間に、R2Fe14Bよりも希土類Rの含有率が高い希土類リッチ相ができるだけ均一に存在することが望ましい。その理由を説明する。
 希土類リッチ相はR2Fe14Bよりも融点が低いため、焼結のために加熱することによって希土類リッチ相が溶融し、原料合金粉末の粒子間に浸透してゆく。前述のように特許文献2に記載の方法では原料合金粉末の粒子が高率で1個の結晶粒のみから成ることから、仮に当該粒子間に希土類リッチ相が均一に存在する状態を実現できれば、そのような原料合金粉末を焼結することにより得られるRFeB系焼結磁石では結晶粒の二粒子粒界に希土類リッチ相が行き亘り、二粒子粒界の粒界幅が広くなる。しかしながら、従来は以下の理由により、原料合金粉末に希土類リッチ相が均一に存在する状態を実現することは困難であった。HDDR処理を行う前の原料合金塊は典型的にはストリップキャスト法により作製されるが、当該方法で作製された原料合金塊では、薄板状の希土類リッチ相が3~5μm間隔で形成され(ラメラ構造と呼ぶ)、それらラメラ構造を形成している希土類リッチ相の間に生成されるRFeB系結晶粒間の全てには希土類リッチ相が十分に浸透せず、希土類リッチ相の不均一な分布が見られる。ストリップキャスト法以外の方法でも、希土類リッチ相を均一に分散させることは困難である。このような原料合金塊にHDDR処理を行ったHDDR後原料合金塊をヘリウムジェットミルで粉砕した原料合金粉末においても、希土類リッチ相の分布が不均一になる。このような原料合金粉末を焼結したRFeB系焼結磁石では、粒界に希土類リッチ相が均一に行き亘らなくなるため、粒界幅の広い二粒子粒界が形成されず、保磁力が低下してしまう。
 本発明が解決しようとする課題は、結晶粒の平均粒径が1μm以下であって且つ粒界に希土類リッチ相が均一に行き亘っていることで粒界幅の広い二粒子粒界が均一に形成されていることにより、高い保磁力を有するRFeB系焼結磁石を製造する方法を提供することである。
 上記課題を解決するために成された本発明は、希土類元素R、Fe及びBを主成分とするRFeB系焼結磁石の製造方法であって、
 a) 希土類元素Rの含有率が26.5~29.5重量%であるRFeB系合金塊を700~1000℃の温度の水素雰囲気中で加熱した後に、750~900℃の温度に維持しつつ真空にするHDDR処理を行うことにより、電子顕微鏡画像から求められた円相当径による平均粒径が1μm以下である結晶粒の多結晶体から成るHDDR後原料合金塊を作製する工程と、
 b) 前記HDDR後原料合金塊に、前記RFeB系合金よりも希土類元素Rの含有率が高い第2合金から成る接触物を接触させた状態で700~950℃の温度に加熱することにより、希土類高含有原料合金塊を作製する工程(希土類粒界浸透処理工程)と、
 c) 前記希土類高含有原料合金塊を、平均粒径が1μm以下になるように微粉砕することにより原料合金粉末を作製する工程と、
 d) 前記原料合金粉末をモールドに収容し、圧縮成形を行うことなく該原料合金粉末に磁界を印加する配向工程と、
 e) 該配向工程後の原料合金粉末を850~1050℃の温度に加熱する焼結工程と
を有することを特徴とする。
 本発明では、HDDR処理によって、円相当径による粒度分布の平均値が1μm以下という微細な結晶粒の多結晶体から成るHDDR処理後原料合金塊を作製した後に、RFeB系合金よりもRの含有率が高い第2合金から成る接触物を接触させた状態で700~950℃の温度に加熱する。これにより、第2合金が溶融して、HDDR処理後原料合金塊内の粒界に均一に浸透する。こうして得られた希土類高含有原料合金塊では個々の結晶粒が第2合金に接触しているため、この希土類高含有原料合金塊を、平均粒径が1μm以下になるように微粉砕することにより得られる原料合金粉末では、上述のように高率で1個の結晶粒のみから成る個々の粒子の表面に第2合金が存在することとなる。この原料合金粉末を焼結工程において900~1000℃の温度に加熱することで第2合金(希土類リッチ相)が溶融して二粒子粒界に行き亘ることにより、二粒子粒界の組成及び粒界幅が均一なRFeB系焼結磁石が得られる。こうして、本発明により製造されるRFeB系焼結磁石は、結晶粒の平均粒径が1μm以下と小さく、且つ粒界幅の広い二粒子粒界によって保磁力が高くなる。
 原料のRFeB系合金塊における希土類元素Rの含有率が26.5重量%よりも低いと、製造されるRFeB系焼結磁石の結晶粒における希土類元素Rが不足してしまう。また、RFeB系合金塊における希土類元素Rの含有率が29.5重量%よりも高いと、RFeB系焼結磁石の残留磁束密度が低下してしまう。そのため、本発明では、RFeB系合金塊における希土類元素Rの含有率は26.5~29.5重量%とする。第2合金は、希土類粒界浸透処理工程での加熱温度において溶融するものであればよく、希土類元素R以外の成分は特に限定されない。
 原料のRFeB系合金塊には、(上述のラメラ構造による問題があるものの)他の方法よりは希土類リッチ相の分散の均一性を高くすることができるストリップキャスト法により作製されたものを用いることが望ましい。
 第2合金から成る接触物には、HDDR処理後原料合金塊に接触し易くするために、粉末状のものを用いることが望ましい。
 前記希土類高含有粗粉を平均粒径が1μm以下になるように微粉砕するためには、ヘリウムガスを用いたジェットミル法を用いることが望ましい。
 本発明により、結晶粒の平均粒径が1μm以下であって且つ粒界に希土類リッチ相が均一に行き亘っていることで粒界幅の広い二粒子粒界が均一に形成されていることにより、高い保磁力を有するRFeB系焼結磁石を製造することができる。
 本発明ではこのように高い保磁力を実現することができるため、高価且つ希少なRHを使用しなくてもよい。あるいは、希土類元素Rの一部又は全部にRHを使用することにより、更に高い保磁力を有するRFeB系焼結磁石を得ることもできる。
本発明に係るRFeB系焼結磁石の製造方法の実施例における工程の流れを示す図(a)及び比較例の工程の流れを示す図(b)。 本実施例におけるHDDR処理時の温度履歴及びガス雰囲気を示すグラフ。 実施例2のRFeB系焼結磁石の製造方法の過程で作製した希土類高含有原料合金塊(a)、及びその前段階であるHDDR後原料合金塊(b)を電子顕微鏡で観察した反射電子像。 比較例のRFeB系焼結磁石の製造方法の過程で作製したHDDR後原料合金塊を電子顕微鏡で観察した反射電子像であって、(a)は比較例1のもの、(b)は比較例2のもの。
 以下、本発明に係るRFeB系焼結磁石製造方法の実施例について、図面を参照して説明する。なお、本発明は以下の実施例に限定されるものではない。
[実施例1のRFeB系焼結磁石製造方法]
 実施例1では、下掲の表1に示す組成を有するRFeB系合金塊及び第2合金の粉末を材料として用いて、図1(a)に示すように、HDDR工程(ステップS1)、希土類粒界浸透処理工程(ステップS2)、原料合金粉末作製工程(ステップS3)、配向工程(ステップS4)及び焼結工程(ステップS5)の5つの工程によりRFeB系焼結磁石を製造した。なお、表1中の「TRE」は、RFeB系合金塊が含有する全ての希土類元素(実施例1ではNd及びPr)を合わせた含有率を示している。
Figure JPOXMLDOC01-appb-T000001
 HDDR工程について、図2のグラフを参照しつつ説明する。まず、ストリップキャスト法で作製された、円相当径が100μm~20mmであるRFeB系合金塊を用意する。RFeB系合金塊に室温で十分水素吸蔵させたうえで、950℃、100kPaの水素雰囲気中で60分間加熱することにより、HDDR後原料合金塊内のNd2Fe14B化合物(主相)をNdH2相、Fe2B相、Fe相の3相に分解(Decomposition)した(図2中の「HDプロセス」)。次に、水素雰囲気のままで温度を800℃まで降下させた後、温度を800℃に維持した状態で10分間Arガスを流すことにより、RFeB系合金塊の周囲の水素ガスを除去した。その後、真空雰囲気にして800℃で60分間維持することにより、RFeB系合金塊内のNdH2相から水素原子をガスとして放出(Desorption)させ、Fe2B相及びFe相と再結合反応(Recombination)を生じさせた(図2中の「DRプロセス」)。その後、炉冷により温度を室温まで低下させた。これにより、HDDR後原料合金塊を作製した。なお、このHDDR工程では、HDプロセスからDRプロセスに移る際に、温度を950℃から800℃まで低下させたが、これは、DRプロセスにより形成される結晶粒が同プロセス中に粒成長することを防ぐためである。本実施例では、得られたHDDR後原料合金塊をワンダーブレンダー(大阪ケミカル(株)製)で機械的に、円相当径で100μm以下に粗粉砕したが、この粗粉砕後の粗粉も本発明におけるHDDR後原料合金塊に含まれる。
 希土類粒界浸透処理工程では、粗粉砕したHDDR後原料合金塊と、予め窒素ガスを用いたジェットミルにより平均粒径4μmに粉砕した第2合金の粉末を重量比95:5で混合し、700℃の温度で10分間加熱することにより、希土類高含有原料合金塊を作製した。
 原料合金粉末作製工程では、希土類高含有原料合金塊を200℃の温度の水素雰囲気中で5時間維持することによって脆化させた後、ヘリウムジェットミル法により、平均粒径が1μm以下になるように粉砕することにより、原料合金粉末を作製した。
 配向工程では、原料合金粉末に有機潤滑剤を混合したうえで3.5g/cm3の充填密度でモールドに充填し、圧縮成形を行うことなく約5Tのパルス磁界を印加した。その後の焼結工程において、モールドに充填されたままの原料合金粉末を、圧縮成形を行うことなく真空中において940℃の温度で1時間加熱することにより焼結した。焼結工程後、500℃から660℃の間で最も保磁力の高い温度において、アルゴン雰囲気中で10分間熱処理を行った。得られた焼結体を機械加工することにより、直径9.8mm、長さ7.0mmの円柱状のRFeB系焼結磁石を作製した。
[実施例2のRFeB系焼結磁石製造方法]
 実施例2では、下掲の表2に示す組成を有するRFeB系合金塊及び第2合金の粉末を材料として用い、基本的には実施例1と同様の方法でRFeB系焼結磁石を作製した。以下では、材料の組成以外の実施例1との相違点を列挙する。
・第2合金の粉末は、窒素ガスを用いたジェットミルの代わりにワンダーブレンダーを用いて作製した。そのため、第2合金の粉末の平均粒径は第1実施例よりも大きい。
・希土類粒界浸透処理工程におけるHDDR後原料合金塊と第2合金の粉末の混合比は重量比で94:6とし、加熱時間は30分間とした(加熱温度は実施例1と同じ700℃)。
・焼結工程における焼結温度は860℃とした。
Figure JPOXMLDOC01-appb-T000002
[実施例3~7のRFeB系焼結磁石製造方法]
 実施例3~7では、下掲の表3に示すように、RFeB系合金塊には同じ組成の(実施例1及び2とは異なる)ものを用い、第2合金の粉末では異なる組成のものを用いた。なお、実施例3の第2合金の粉末の組成は、実施例1及び2と同じである。材料の組成以外の条件につき、実施例1との相違点は以下の通りである。
・希土類粒界浸透処理工程におけるHDDR後原料合金塊と第2合金の粉末の混合比は重量比で95:5とし、加熱時間は60分間とした(加熱温度は実施例1と同じ700℃)。
・焼結工程における焼結温度は、実施例3及び4では890℃、実施例5~7では880℃とした。
Figure JPOXMLDOC01-appb-T000003
[比較例のRFeB系焼結磁石製造方法]
 比較例では、下掲の表3に示す組成を有する2種類のRFeB系合金塊を用いて、図1(b)に示すHDDR工程(ステップS91)、原料合金粉末作製工程(ステップS93)、配向工程(ステップS94)及び焼結工程(ステップS95)の4つの工程によりRFeB系焼結磁石を製造した。HDDR工程では、RFeB系合金塊に対して実施例1及び2と同じHDDR処理を行うことにより、HDDR後原料合金塊を作製した。次いで、実施例1及び2における希土類粒界浸透処理工程に相当する工程を行うことなく、原料合金粉末作製工程において、HDDR後原料合金塊を200℃の温度の水素雰囲気中で5時間維持することによって脆化させた後、ヘリウムジェットミル法により、平均粒径が1μm以下になるように粉砕することにより、原料合金粉末を作製した。こうして得られた原料合金粉末に対して、実施例1及び2と同様の配向工程及び焼結工程を行うことにより、比較例のRFeB系焼結磁石が得られた。
Figure JPOXMLDOC01-appb-T000004
[実施例及び比較例における原料合金粉末の組成]
 実施例1及び2、並びに比較例1及び2において、(得られたRFeB系焼結磁石の組成に近いと考えられる)原料合金粉末の段階における組成を測定した結果を表4に示す。TREの値に注目すると、実施例、比較例共に、主相のTRE値である26~27重量%(希土類元素RがNd, Prの場合)よりも高く、原料合金粉末全体では主相よりも希土類元素Rの含有率が高い状態となっている。
Figure JPOXMLDOC01-appb-T000005
[実施例及び比較例で得られたRFeB系焼結磁石の保磁力]
 実施例及び比較例で得られたRFeB系焼結磁石の保磁力を測定したところ、下掲の表6の通りとなった。実施例3~7については、飽和磁化も測定した。この表に示すように、希土類粒界浸透処理工程の有無を除いてほぼ同じ条件で作製したにも関わらず、比較例よりも実施例の方が、保磁力が高くなった。また、実施例5~7は、実施例3及び4よりも飽和磁化が高く、保磁力は他の実施例と同程度に高い。これら実施例5~7は、RFeB系合金塊の組成やRFeB系合金塊と第2合金の粉末の混合比が実施例3及び4と同じであり、第2合金の粉末にGaが含まれている点で実施例3及び4と相違している。このように、第2合金の粉末にGaを含有させることにより、高い飽和磁化と高い保磁力の両方が得られることが明らかになった。
Figure JPOXMLDOC01-appb-T000006
 HDDR工程を行わない通常の方法で作製されたRFeB系焼結磁石では、TRE値が高いほど、希土類リッチ相の体積が大きくなることで希土類リッチ相の分散性が向上し、粒界幅が広い二粒子粒界が形成され易くなるため、保磁力が向上する。しかし、比較例の結果より、HDDR工程を経て作製されたRFeB系焼結磁石では、単純にTRE値を高くしても保磁力の向上に寄与しないことがわかる。これは、TRE値を高くしても、HDDR工程後に希土類リッチ相のラメラ構造が残存し、希土類リッチ相で挟まれた主相粒子間に希土類リッチ相が浸透せず、不均一な組織になるためである。
[実施例及び比較例における原料合金粉末作製工程の直前の合金塊等の電子顕微鏡写真]
 上記のように保磁力の相違が生じる理由を確かめるために、実施例2、並びに比較例1及び2における原料合金粉末作製工程の直前の合金塊の電子顕微鏡写真を撮影した。原料合金粉末作製工程の直前の合金塊は、実施例2では希土類高含有原料合金塊であり、比較例1及び2ではHDDR後原料合金塊である。実施例2に関しては、HDDR後原料合金塊についても電子顕微鏡写真を撮影した。
 図3(a)に実施例2の希土類高含有原料合金塊、図3(b)に実施例2のHDDR後原料合金塊、図4(a)に比較例1のHDDR後原料合金塊、図4(b)に比較例2のHDDR後原料合金塊、の電子顕微鏡写真を示す。原料合金粉末作製工程の直前の合金塊の写真を比較、すなわち図3(a)、並びに図4(a)及び(b)を比較すると、実施例2である図3(a)では灰色の粒子の間に白い線状の部分が明確に見られるのに対して、比較例である図4(a)及び(b)では広く拡がる灰色の領域内に白い部分が点状に見られる。このことは、実施例2では希土類高含有原料合金塊における結晶粒(灰色の粒子)の粒界に第2合金から成る希土類リッチ相が均一に行き亘っているのに対して、比較例では希土類リッチ相が粒界に均一に行き亘らずに点状の部分に局在していることを意味している。従って、実施例2の希土類高含有原料合金塊を粉砕した原料合金粉末では希土類リッチ相が粒子間に均一に行き亘り、その原料合金粉末を焼結したRFeB系焼結磁石では希土類リッチ相が結晶粒間に均一に行き亘るため粒界幅が広い二粒子粒界が形成されるのに対して、比較例のHDDR後原料合金塊、を粉砕した原料合金粉末では希土類リッチ相が粒子間に均一に行き亘らず、その原料合金粉末を焼結したRFeB系焼結磁石においても希土類リッチ相が結晶粒間に均一に行き亘らないため粒界幅が広い二粒子粒界が形成されない、と考えられる。
 図3(b)に示した実施例2におけるHDDR後原料合金塊の電子顕微鏡写真には、白い部分がほとんど見られない。これは、実施例2におけるHDDR後原料合金塊(及びその前段階である原料合金塊)のTRE値が主相におけるTRE値に近く、ほとんど希土類リッチ相を有しないことによる。このようにほとんど希土類リッチ相を有しないHDDR後原料合金塊に対して希土類粒界浸透処理工程における処理を施すことにより、図3(a)に示したように、希土類リッチ相が結晶粒の粒界に行き亘った希土類高含有原料合金塊が得られる。

Claims (5)

  1.  希土類元素R、Fe及びBを主成分とするRFeB系焼結磁石の製造方法であって、
     a) 希土類元素Rの含有率が26.5~29.5重量%であるRFeB系合金塊を700~1000℃の温度の水素雰囲気中で加熱した後に、750~900℃の温度に維持しつつ真空にするHDDR処理を行うことにより、電子顕微鏡画像から求められた円相当径による平均粒径が1μm以下である結晶粒の多結晶体から成るHDDR後原料合金塊を作製する工程と、
     b) 前記HDDR後原料合金塊に、前記RFeB系合金よりも希土類元素Rの含有率が高い第2合金から成る接触物を接触させた状態で700~950℃の温度に加熱することにより、希土類高含有原料合金塊を作製する工程と、
     c) 前記希土類高含有原料合金塊を、平均粒径が1μm以下になるように微粉砕することにより原料合金粉末を作製する工程と、
     d) 前記原料合金粉末をモールドに収容し、圧縮成形を行うことなく該原料合金粉末に磁界を印加する配向工程と、
     e) 該配向工程後の原料合金粉末を850~1050℃の温度に加熱する焼結工程と
    を有することを特徴とするRFeB系焼結磁石製造方法。
  2.  前記RFeB系合金塊がストリップキャスト法により作製されたものであることを特徴とする請求項1に記載のRFeB系焼結磁石製造方法。
  3.  前記接触物が粉末状であることを特徴とする請求項1又は2に記載のRFeB系焼結磁石製造方法。
  4.  前記微粉砕を、ヘリウムガスを用いたジェットミル法により行うことを特徴とする請求項1~3のいずれかに記載のRFeB系焼結磁石製造方法。
  5.  前記第2合金がGaを含有することを特徴とする請求項1~4のいずれかに記載のRFeB系焼結磁石製造方法。
PCT/JP2016/050443 2015-01-09 2016-01-08 RFeB系焼結磁石の製造方法 WO2016111346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/539,585 US20180012701A1 (en) 2015-01-09 2016-01-08 METHOD FOR PRODUCING RFeB SYSTEM SINTERED MAGNET
JP2016568752A JP6205511B2 (ja) 2015-01-09 2016-01-08 RFeB系焼結磁石の製造方法
EP16735085.9A EP3244426A1 (en) 2015-01-09 2016-01-08 PROCESS FOR PRODUCING RFeB-BASED SINTERED MAGNET
CN201680005275.1A CN107112125A (zh) 2015-01-09 2016-01-08 RFeB系烧结磁体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003650 2015-01-09
JP2015-003650 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016111346A1 true WO2016111346A1 (ja) 2016-07-14

Family

ID=56356031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050443 WO2016111346A1 (ja) 2015-01-09 2016-01-08 RFeB系焼結磁石の製造方法

Country Status (5)

Country Link
US (1) US20180012701A1 (ja)
EP (1) EP3244426A1 (ja)
JP (1) JP6205511B2 (ja)
CN (1) CN107112125A (ja)
WO (1) WO2016111346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152526A (ja) * 2017-03-15 2018-09-27 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
CN109148133A (zh) * 2017-06-16 2019-01-04 中国科学院宁波材料技术与工程研究所 一种稀土永磁体及其制备方法
WO2023046005A1 (zh) * 2021-09-22 2023-03-30 烟台正海磁性材料股份有限公司 一种高剩磁钕铁硼磁体及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013992B2 (ja) 2018-03-26 2022-02-01 東京電力ホールディングス株式会社 架線の撤去方法及び架線撤去用具
CN108922765B (zh) * 2018-07-11 2021-02-09 江西开源自动化设备有限公司 一种稀土烧结永磁体的制造方法
US11232890B2 (en) * 2018-11-06 2022-01-25 Daido Steel Co., Ltd. RFeB sintered magnet and method for producing same
CN110444385A (zh) * 2019-08-09 2019-11-12 浙江英洛华磁业有限公司 一种提升Nd-Fe-B磁体矫顽力的工艺
KR102632582B1 (ko) * 2019-10-07 2024-01-31 주식회사 엘지화학 소결 자석의 제조 방법
CN115472408A (zh) * 2021-06-10 2022-12-13 赣州市东磁稀土有限公司 钕铁硼磁体及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
JP2014099594A (ja) * 2012-10-17 2014-05-29 Shin Etsu Chem Co Ltd 希土類焼結磁石の製造方法及び希土類焼結磁石

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056393B2 (en) * 2001-05-30 2006-06-06 Neomax, Co., Ltd. Method of making sintered compact for rare earth magnet
US6955729B2 (en) * 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
JP5057111B2 (ja) * 2009-07-01 2012-10-24 信越化学工業株式会社 希土類磁石の製造方法
JP2011216720A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP5757394B2 (ja) * 2010-07-30 2015-07-29 日立金属株式会社 希土類永久磁石の製造方法
CN105206372A (zh) * 2011-12-27 2015-12-30 因太金属株式会社 NdFeB系烧结磁体
EP2975619A4 (en) * 2013-03-12 2016-03-09 Intermetallics Co Ltd PROCESS FOR PRODUCING RFEB SINTERED MAGNET AND RFEB SINTERED MAGNET PRODUCED THEREBY
CN105431915B (zh) * 2013-08-09 2018-05-08 Tdk株式会社 R-t-b系烧结磁铁以及电机
CN103745823A (zh) * 2014-01-24 2014-04-23 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
JP2014099594A (ja) * 2012-10-17 2014-05-29 Shin Etsu Chem Co Ltd 希土類焼結磁石の製造方法及び希土類焼結磁石

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152526A (ja) * 2017-03-15 2018-09-27 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
JP7052201B2 (ja) 2017-03-15 2022-04-12 大同特殊鋼株式会社 RFeB系焼結磁石の製造方法
CN109148133A (zh) * 2017-06-16 2019-01-04 中国科学院宁波材料技术与工程研究所 一种稀土永磁体及其制备方法
CN109148133B (zh) * 2017-06-16 2020-11-06 中国科学院宁波材料技术与工程研究所 一种稀土永磁体及其制备方法
WO2023046005A1 (zh) * 2021-09-22 2023-03-30 烟台正海磁性材料股份有限公司 一种高剩磁钕铁硼磁体及其制备方法和应用

Also Published As

Publication number Publication date
JP6205511B2 (ja) 2017-09-27
JPWO2016111346A1 (ja) 2017-10-19
CN107112125A (zh) 2017-08-29
EP3244426A1 (en) 2017-11-15
US20180012701A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6205511B2 (ja) RFeB系焼結磁石の製造方法
TWI575081B (zh) 稀土經燒結之磁石及製造方法
JP6177877B2 (ja) RFeB系焼結磁石の製造方法及びそれにより製造されるRFeB系焼結磁石
JP5856953B2 (ja) 希土類永久磁石の製造方法および希土類永久磁石
JP5120710B2 (ja) RL−RH−T−Mn−B系焼結磁石
JP2014132628A (ja) R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法
JP6221233B2 (ja) R−t−b系焼結磁石およびその製造方法
CN109997203B (zh) R-Fe-B系烧结磁铁及其制造方法
KR101966785B1 (ko) Nd-Fe-B계 자석의 제조방법
US20220189688A1 (en) Preparation method for a neodymium-iron-boron magnet
WO2012043139A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
JP5757394B2 (ja) 希土類永久磁石の製造方法
US20210005380A1 (en) Method for manufacturing rare earth permanent magnet
CN109754970B (zh) 一种稀土磁体及其制备方法
JPH10289813A (ja) 希土類磁石
WO2012029527A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2014112624A (ja) R−t−b系焼結磁石およびその製造方法
WO2009125671A1 (ja) R-t-b系合金及びr-t-b系合金の製造方法、r-t-b系希土類永久磁石用微粉、r-t-b系希土類永久磁石、r-t-b系希土類永久磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539585

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016568752

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016735085

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE