WO2013002279A1 - 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 - Google Patents
電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2013002279A1 WO2013002279A1 PCT/JP2012/066421 JP2012066421W WO2013002279A1 WO 2013002279 A1 WO2013002279 A1 WO 2013002279A1 JP 2012066421 W JP2012066421 W JP 2012066421W WO 2013002279 A1 WO2013002279 A1 WO 2013002279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- electrolytic copper
- ppm
- hour
- heating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0452—Electrochemical coating; Electrochemical impregnation from solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector, and a nonaqueous electrolyte, for example, a lithium ion secondary battery, and
- the present invention relates to an electrolytic copper foil particularly excellent for constituting a current collector of a battery negative electrode.
- next-generation negative electrode active materials having charge / discharge capacities far exceeding the theoretical capacity of carbon materials has been promoted as negative electrode active materials for lithium ion secondary batteries.
- a material containing a metal that can be alloyed with lithium (Li) such as silicon (Si) or tin (Sn) is expected.
- These active materials such as Si and Sn have poor electron conductivity. If the conductivity of the negative electrode is poor, the internal resistance of the electrode increases, and the cycle characteristics deteriorate. Therefore, it is common to add a carbon material such as graphite or carbon black to the active material layer as a conductive material. However, it has been found that even when a carbon material is used as the conductive material, the resistance is no longer lowered when the amount exceeds a certain amount.
- these materials when Si, Sn, or the like is used as an active material, these materials have a large volume change due to insertion / extraction of Li during charge / discharge, and thus maintain a good adhesion state between the current collector and the active material. It is difficult. In addition, these materials have a very large volume change rate due to the insertion and desorption of Li, and the expansion and contraction are repeated by the charge / discharge cycle, and the active material particles are pulverized or desorbed. Has the disadvantage of being large.
- Patent Document 1 The copper foil disclosed in Patent Document 1 (Patent No. 4583149) was developed for a flexible printed wiring board (FPC) to be laminated with a film (polymer material). Withstands heat treatment for hours and has high tensile strength.
- a copper foil for FPC usually needs to withstand heat treatment of 350 ° C. ⁇ 1 hour as a battery current collector, and when the copper foil is exposed to such a temperature, the crystal becomes coarse, Since the tensile strength after heating cannot be maintained at 300 MPa or more, such a copper foil cannot be employed as a current collector for a secondary battery.
- an active material composition prepared by adding a solvent to a mixture of an active material, a conductive material and a binder to a surface of a current collector for a lithium ion secondary battery is applied, and after a drying process, lithium This is because the negative electrode of the ion secondary battery is usually subjected to heat treatment at 350 ° C. for 1 hour in the drying step.
- the copper foil for FPC is used as it is, the crystal of the copper foil is coarsened, and the tensile strength after heating cannot be maintained at 300 MPa or more, so it cannot withstand expansion and contraction due to the charge / discharge cycle of the active material, The copper foil may break.
- Patent Document 2 Patent Publication No. 2004-79523 discloses an active material using a pitch coke material.
- the active material disclosed here has a smaller volume change associated with insertion and extraction of Li during charge and discharge than that of the Si or Sn alloy system.
- the surface roughness of the copper foil is extremely low and smooth, when such a copper foil is applied to an active material using a pitch coke material, the copper foil accompanying the insertion / desorption of Li during charging and discharging is used. Since the volume change is larger than that of the coke material, peeling of the copper foil and the active material occurs, and the contact area with the active material may be reduced, and charging / discharging may not be possible.
- the copper foil disclosed in Patent Document 3 Japanese Patent Publication No. 2010-282959
- Patent Document 3 Japanese Patent Publication No. 2010-282959
- the copper foil disclosed in Patent Document 3 is prepared by roughening both sides of the copper foil in order to improve the adhesion between the active material and the copper foil.
- the problem of peeling off the active material and the copper foil can be solved.
- the difference in roughness between the front and back surfaces of the copper foil is not taken into consideration, and especially the active material of Si or Sn alloy has a very small particle size.
- the expansion and contraction of the active material due to charging / discharging may deform the copper foil, causing wrinkles and the like, and making it unusable as a battery.
- Non-Patent Document 1 (Lakshmanan et al., “Effect of Chlorine Ion in Copper Electrowinning”, Journal of Applied Electrochemistry, 7 (1977) 81-90) discloses that the surface state of copper foil depends on the current density. That is, it is disclosed that a smooth surface can be obtained by suppressing to a lower current density with 0 ppm chlorine ions in the foil-making process.
- Non-Patent Document 2 (Anderson et al., “Tensile Properties of Acid Electrodeposited Copper”, Journal of Applied Electrochemistry, 15 (1985) 631-637), as disclosed in FIG. 7, describes chlorine in a copper sulfate plating bath. It is disclosed that when the ion concentration is 0 ppm, the initial maximum tensile strength is high, but the elongation is low, and when the chlorine ion concentration is 5 ppm, the initial maximum tensile strength is remarkably lowered, and the elongation is remarkably increased in inverse proportion to the maximum tensile strength. Yes. Further, it is suggested that when the chlorine ion concentration is added to 10 ppm or more, the maximum tensile strength and the elongation rate show a gradual change while being inversely proportional.
- Charging / discharging cycle life means repeated charging / discharging causes the contact between the current collector (copper foil) and the active material due to stress due to expansion and contraction, etc., resulting in electrical conductivity that some active materials cannot be used for charging / discharging. This is the lifetime that leads to deterioration of capacity.
- the overcharge characteristic is required to prevent the current collector (copper foil) from cracking or breaking due to deterioration over time when overcharge is performed.
- the copper foil with a roughened copper foil surface having a surface roughness Rz of 1.5 to 20 ⁇ m has a thick and uniform slurry containing Si or Sn alloy-based active material, particularly for producing a negative electrode of a battery.
- the copper foil may not be able to be applied and may cause cracks, wrinkles, deformation, etc. in the copper foil.
- a copper foil that is particularly excellent in elongation characteristics after heat treatment at 350 ° C. for 1 hour is required.
- the present invention performs a roughening process on the glossy surface of the copper foil, and has a surface area ratio (actual surface area / geometric area) of 1.6 to 2.2 on both sides of the copper foil (S surface, M surface).
- An object of the present invention is to provide an electrolytic copper foil having a tensile strength of 300 MPa or more and an elongation of 3.0% or more after heat treatment at 350 ° C. for 1 hour. It is also a well-known technique to control the surface area ratio by roughening both sides of the electrolytic copper foil, but by applying a roughening treatment to the mat surface (rough surface) side, the weight of the copper foil increases and the battery energy is increased. There is a disadvantage that the density decreases.
- the glossy surface of the electrolytic copper foil becomes a replica of a titanium rotating drum used for the cathode, and is therefore smooth and has poor adhesion to the active material unless roughening is applied.
- the surface roughness and shape of the matte surface (rough surface) are determined by the additive of the electrolytic solution.
- the surface of the present invention is characterized by controlling the surface area, Sm, Rz, and Ra of the mat surface (rough surface) by controlling the additive components, concentration, liquid temperature, and electric density in the electrolyte solution, and roughening the mat surface side. It is to provide a copper foil excellent in battery characteristics by making the treatment unnecessary and performing the roughening treatment only on the S surface side.
- the present invention is such that the current collector (copper foil) breaks while maintaining the adhesion between the current collector (copper foil) and the active material against the large expansion and contraction of the Si or Sn alloy active material. It aims at providing the copper foil which does not carry out, and also aims at providing the lithium ion secondary battery which uses the electrolytic copper foil as a collector.
- the electrolytic copper foil of the present invention is an electrolytic copper foil having a rough gloss surface, and the tensile strength after heating the copper foil at 350 ° C. for 1 hour is 300 MPa or more, and the elongation after heating at 350 ° C. for 1 hour.
- the electrolytic copper foil has a rate of 3.0% or more and a surface area ratio (actual surface area / geometric area) of both sides of the copper foil (M surface, S surface) is 1.6 to 2.2.
- the electrolytic copper foil of the present invention preferably has a tensile strength in a normal state (normal temperature and normal pressure state) of 500 MPa or more.
- the lithium ion secondary battery of the present invention is characterized in that the negative electrode current collector constituting the lithium ion secondary battery is the electrolytic copper foil of the present invention.
- the method for producing an electrolytic copper foil of the present invention is a method for producing an electrolytic copper foil having a tensile strength after heating at 350 ° C. for 1 hour of 300 MPa or more and an elongation after heating at 350 ° C. for 1 hour of 3.0% or more.
- the electrolytic solution for forming the electrolytic copper foil is 1 to 20 ppm as an organic additive of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N or a thiourea compound, It is characterized by being a copper sulfate electrolyte containing chlorine ions added at 10 ppm to 80 ppm.
- the present invention can provide an electrolytic copper foil having a tensile strength of 300 MPa or more and an elongation of 3.0% or more after heat treatment at 350 ° C. for 1 hour, and as a result, a large expansion of the Si or Sn alloy active material, An electrolytic copper foil that does not break the current collector (copper foil) can be provided while maintaining the adhesion between the current collector (copper foil) and the active material against the shrinkage. Moreover, this invention can provide the outstanding lithium ion secondary battery by making this electrolytic copper foil into a negative electrode collector.
- FIG. 1 is a partial front view for explaining a lithium ion secondary battery.
- a non-aqueous electrolyte secondary battery for example, a lithium ion secondary battery, includes a positive electrode 3 formed by applying a positive electrode active material 2 to a positive electrode current collector 1 and a negative electrode current collector 4 with a negative electrode. It is comprised from the negative electrode 6 formed by apply
- FIG. 1 a positive electrode 3, a separator 7, a negative electrode 6, and a separator 7 are laminated in this order to form a laminated electrode body, and the upper and lower sides of a spiral electrode body formed by winding this laminated electrode body many times. In the state where the insulators 8 and 9 are arranged, the battery can 10 is housed.
- the negative electrode 6 constituting the lithium ion secondary battery is constituted by applying an active material 5 to a current collector 4 made of copper foil and drying.
- the electrolytic copper foil for the negative electrode current collector 4 of the present invention is an electrolytic copper foil having a tensile strength of 300 MPa or more after heating at 350 ° C. for 1 hour and an elongation of 3.0% or more after heating at 350 ° C. for 1 hour. .
- the electrolytic copper foil constituting the negative electrode current collector 4 of the lithium ion secondary battery is usually required to withstand heat treatment at 350 ° C. for 1 hour. That is, the surface of the negative electrode current collector 6 for a lithium ion secondary battery is coated with an active material composition prepared in the form of a paste by adding a solvent to a mixture of an active material, a conductive material and a binder, and undergoes a drying process. Although it is set as the negative electrode 6 of a lithium ion secondary battery, the heat processing of 350 degreeC x 1 hour are normally required in the drying process.
- the tensile strength after heating at 350 ° C. for 1 hour is 300 MPa or more, preferably 500 MPa or more, and the elongation rate
- the electrolytic copper foil needs to be 3.0% or more.
- the surface area ratio (actual surface area / geometric area) of both sides of the copper foil is set to 1.6 to 2.2.
- the electrolytic copper foil satisfying the above conditions is made as follows. That is, the method for producing an electrolytic copper foil having a tensile strength after heating at 350 ° C. for 1 hour of 300 MPa or more and an elongation after heating at 350 ° C. for 1 hour of 3.0% or more is an electrolysis method for producing the electrolytic copper foil.
- the liquid contains 3 to 20 ppm as an organic additive of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing nitrogen (N) or a thiourea compound, and 0 to hydroxyethyl cellulose or low molecular weight glue. This is a copper sulfate electrolyte solution to which -12 ppm and chlorine ions are added at 10 ppm to 80 ppm.
- the reason why the amount of the organic additive added to the electrolytic solution is 3 to 20 ppm is that if it is less than 3 ppm, the initial strength of the copper foil and the strength after heating cannot obtain target values. On the other hand, when the amount of the organic additive is 20 ppm or more, the strength of the copper foil is remarkably improved, but it becomes brittle and the elongation becomes 3.0% or less, which is not preferable.
- the amount of chlorine added to the electrolyte is 10 to 80 ppm. According to the contents disclosed in Non-Patent Document 2 (Anderson's paper), if the chlorine ion is 10 ppm or more, the maximum tensile strength decreases as the amount of chlorine ion added increases, and the elongation increases gradually. Disclosure has been made. In the following Examples and Comparative Examples, chlorine was added at 10 ppm or less, 30 ppm, and 80 ppm. When chlorine ions are added at 10 ppm or less, the tensile strength after heating at 350 ° C. for 1 hour is 300 MPa or less, and when chlorine ions are added at 80 ppm, the surface roughness increases and the battery characteristics after 100 cycles are deteriorated. Although it tends to be, up to 80 ppm was in a range that does not hinder the copper foil for batteries. Accordingly, it is preferable to add chlorine ions in an amount not exceeding 10 to 80 ppm, preferably not exceeding 80 ppm.
- the electrolytic copper foil has a current density of 40 to 55 A / dm 2 , a liquid temperature of 45 to 60, using the copper sulfate solution shown in Example 1 as an electrolyte, noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. Foil is produced by electrolytic treatment under the condition of ° C.
- a roughening process is performed on the S surface.
- the roughening conditions applied to the S surface are such that the surface roughness of the M surface approximates the surface roughness of the S surface after roughening.
- surface roughness (Rz), (Sm), and surface area ratio are the same as M surface by roughening S surface under the conditions of current density of 40 to 55 A / dm 2 and bath temperature of 45 to 60 ° C. Can be improved.
- Examples 1 to 15 and Comparative Examples 1 to 6> One or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N in the amount shown in Table 1 in the following copper sulfate electrolytic bath, or a thiourea compound, and hydroxyethyl cellulose (HEC) or a low molecular weight glue ( A titanium drum was set in an electrolytic solution having a composition to which (PBF) was added, and an electrolytic copper foil was formed under the following electrolytic conditions.
- PPF hydroxyethyl cellulose
- Copper sulfate electrolytic bath composition Copper (Cu) 70g / l Sulfuric acid (H 2 SO 4 ) 50 g / l Chloride ion 30ppm Electrolysis conditions; Current density 40A / dm 2 Temperature 45 ° C
- Roughening process (A) Roughening burn plating: As shown in Table 2, 0.1 to 2000 mg of metal elements such as Mo, Fe, Ni, Co, Ti, Bi, and W are contained in an electrolytic solution mainly composed of copper 30 g / dm 3 and sulfuric acid 150 g / dm 3. The cathode was electrolyzed under the conditions for obtaining a predetermined surface shape by appropriately selecting an electrolysis time within a current density range of 10 to 20 A / dm 2 without heating in an electrolytic bath containing 1 l.
- the reason why the bright surface is burnt-plated in the electrolytic bath containing the metal element described above is to make the roughened particles uniform and prevent the roughened particles from falling off, and the electrolytic bath containing the metal element is burnt-plated. This is to prevent a decrease in the strength of the roughened particles after heating, and to reduce the difference in hardness from the untreated precipitation surface (mat surface).
- the particle size of the roughened particles after the roughening treatment of (A) and (B) should be about 0.1 to 2.0 ⁇ m. Is preferred. If it is smaller than 0.1 ⁇ m, the anchor effect with the active material becomes weak, and the cycle characteristics of the battery are not good. Conversely, if the particle size of the roughened particles exceeds 2.0 ⁇ m, the active material does not enter the depth of the roughened particles, and voids are generated at the interface between the copper foil and the active material. This is to make it easier to get worse. For this reason, the particle size of the roughened particles is preferably in the range of 0.1 to 2.0 ⁇ m.
- the thickness of the roughened particle layer deposited on the glossy surface side is preferably 0.3 to 2.0 ⁇ m. If it is less than 0.3 ⁇ m, it is difficult to control the surface area by roughening, and if it exceeds 2.0 ⁇ m, there is almost no difference in the effect of roughening, and conversely, the weight of the roughened particles increases. This is because the energy density per weight of the battery is lowered.
- the electrolytic copper foil subjected to foil production and roughening treatment in this way was subjected to rust prevention treatment under the following conditions.
- the untreated electrolytic copper foil was immersed in a CrO 3 ; 1 g / l aqueous solution for 5 seconds, subjected to chromate treatment, washed with water and dried.
- the chromate treatment is performed here, it goes without saying that the silane coupling agent treatment may be performed after the benzotriazole-based treatment, the silane coupling agent treatment, or the chromate treatment.
- An electrolytic copper foil was prepared with the electrolytic solution composition and electrolytic conditions shown in Table 3. The untreated copper foil thus foil-treated was subjected to the same surface treatment as in Example 1.
- the electrolytic copper foil obtained in each example and comparative example was subjected to roughening treatment on the glossy surface (S surface) under the combination of roughening conditions shown in Tables 2 and 4, and the surface area, Sm and mat of the roughened surface were processed.
- the surface roughness Rz, Ra, Ry, Sm of the surface was measured, and the surface area ratio of the S surface and the M surface to the geometric surface was calculated.
- a 50 ⁇ m ⁇ 50 ⁇ m (2500 ⁇ m 2 ) visual field was observed with a laser microscope (VK-8700 / 9700 manufactured by KEYENCE), and the surface area ratio was defined as 1 if the measurement result was 2500 ⁇ m 2 .
- the addition amount of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N contained in the electrolyte solution or a thiourea compound is 1 to 20 ppm. Therefore, the tensile strength of the produced electrolytic copper foil was 300 MPa or more and the elongation was 3% or more, which cleared the expected value.
- the addition amount of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N or a thiourea compound was outside the range of 3 to 20 ppm. The rate was 3% or less, and the expected value could not be cleared.
- a negative electrode for a lithium secondary battery was prepared as follows using the copper foil prepared in each Example and Comparative Example as a current collector.
- a powdery Si alloy-based active material (average particle size of 0.1 ⁇ m to 10 ⁇ m) was used.
- a negative electrode mixture was prepared by mixing 90% by weight of the Si alloy active material and 10% by weight of a polyimide binder as a binder.
- this negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to form a slurry.
- This slurry was apply
- This strip-shaped negative electrode was formed such that the negative electrode mixture after molding had the same thickness of 90 ⁇ m on both sides, the width was 55.6 mm, and the length was 551.5 mm.
- the positive electrode 3 was produced as follows.
- the positive electrode active material (LiCoO 2 ) was mixed with 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate, and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2.
- a positive electrode mixture was prepared by mixing 91% by weight of this positive electrode active material (LiCoO 2 ), 6% by weight of graphite as a conductive agent, and 3% by weight of polyvinylidene fluoride as a binder. Dispersed in methyl-2pyrrolidone to form a slurry.
- this slurry was uniformly applied to both surfaces of a positive electrode current collector 1 made of strip-shaped aluminum having a thickness of 20 ⁇ m, dried, and then compression-molded with a roller press to obtain a strip-shaped positive electrode having a thickness of 160 ⁇ m.
- the belt-like positive electrode was formed such that the thickness of the positive electrode mixture after molding was 70 ⁇ m on the surface, the width was 53.6 mm, and the length was 523.5 mm.
- the laminated positive electrode and the negative electrode produced in this manner were laminated with a separator 7 made of a microporous polypropylene film having a thickness of 25 ⁇ m and a width of 58.1 mm to obtain a laminated electrode body.
- This laminated electrode body was wound many times in a spiral shape along the length direction with the negative electrode 6 inside, and the final end of the outermost separator was fixed with tape to form a spiral electrode body.
- the hollow part of the spiral electrode body has an inner diameter of 3.5 mm and an outer shape of 17 mm.
- the spiral electrode body produced as described above was housed in a nickel-plated iron battery can with insulating plates installed on both upper and lower surfaces.
- the positive electrode lead made of aluminum is led out from the thirteen positive electrode current collector 1 and connected to the battery lid 11, and the negative electrode lead made of nickel is led out from the negative electrode current collector 4.
- Connected to the battery can. To the battery can containing the spiral electrode body, 5.0 g of a non-aqueous electrolyte solution in which LiPF6 was dissolved at a ratio of 1 mol / l in a solvent in which equal volumes of propylene carbonate and diethyl carbonate were mixed was injected.
- the battery can was caulked through the insulating sealing gasket 12 whose surface was coated with asphalt to fix the battery lid 11, and the airtightness in the battery can was maintained.
- a cylindrical non-aqueous electrolyte (lithium ion) secondary battery having a diameter of 18 mm and a height of 65 mm is manufactured, and the negative electrode in this non-aqueous electrolyte (lithium ion) secondary battery is evaluated by the following method. At a temperature of 25 ° C.
- the electrode using this electrolytic copper foil as a negative electrode current collector material is shown in Table 1 after 100 cycles of charge and discharge, with a discharge capacity retention rate of 30% or more as “good” and “other” as bad.
- the discharge capacity retention after 100 cycles is shown by the following equation.
- Examples 1 to 15 are selected from compounds having a structure in which an SH group is bonded to a heterocyclic ring containing N in a copper sulfate electrolyte solution for forming an electrolytic copper foil or a thiourea compound.
- the addition amount of one or more compounds is 3 to 20 ppm, the addition of 0 to 12 ppm of hydroxyethyl cellulose or low molecular weight glue, and the addition of 30 ppm of chlorine ions, the tensile strength after heating at 350 ° C. for 1 hour is 300 MPa or more,
- an electrolytic copper foil having an elongation of 3.0% or more after heating at 350 ° C. for 1 hour By producing an electrolytic copper foil having an elongation of 3.0% or more after heating at 350 ° C. for 1 hour, a lithium ion secondary battery using this copper foil as a current collector also exhibited high performance.
- Comparative Examples 1 to 6 the addition amount of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N or a thiourea compound was outside the range of 3 to 20 ppm. The rate was 3% or less, and the expected value could not be cleared. As described above, Comparative Examples 1 to 6 did not show satisfactory results as a current collector of a lithium ion secondary battery because the tensile strength and elongation after heating could not clear the expected values.
- the present invention provides 3 to 20 ppm as an organic additive of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N in a copper sulfate electrolyte, or a thiourea compound.
- Lithium ion secondary having 0 to 12 ppm of molecular weight glue and a tensile strength after heat treatment at 350 ° C. for 1 hour of 300 MPa or more, or an elongation rate of 3.0% or more after heating at 350 ° C. for 1 hour
- An electrolytic copper foil that is particularly preferable as a battery current collector could be provided.
- Positive electrode current collector 2 Positive electrode active material 3: Positive electrode 4: Negative electrode current collector 5: Negative electrode active material 6: Negative electrode 7: Separator 8, 9: Insulator 10: Battery can 11: Battery lid 12: Gasket 13: Positive lead
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
これらのSiやSnなどの活物質は電子伝導性が悪い。負極の導電性が悪いと、電極の内部抵抗が上がるため、サイクル特性が劣化する。そのため、導電材として黒鉛やカーボンブラック等の炭素材を活物質層に添加するのが一般的である。しかし、導電材として炭素材を用いても、ある程度の添加量超えると最早抵抗が下がらなくなることが分かってきた。
料)とラミネートするフレキシブルプリント配線板(FPC)用に開発されたもので、フィルムとラミネートに必要な180℃×1時間の熱処理には耐え、高い引張強さを有する。しかしながら、そのようなFPC用銅箔は、電池用集電体としては通常350℃×1時間の熱処理に耐える必要性があり、該銅箔をこのような温度に曝すと結晶が粗大化して、加熱後引張強さを300MPa以上に維持できなくなるため、かかる銅箔を二次電池用集電体として採用することはできない。その理由は、リチウムイオン二次電池用集電体表面には活物質、導電材とバインダの混合物に溶剤などを加えてペースト状に調製した活物質組成物が塗布され、乾燥工程を経て、リチウムイオン二次電池の負極となるが、その乾燥工程において、通常350℃×1時間の熱処理が必要となるためである。前記FPC用銅箔をそのままで使用すると、銅箔の結晶が粗大化して、加熱後の引張強さが300MPa以上を維持できなくなるため、活物質の充放電サイクルによる膨張、収縮に耐えられず、銅箔が破断してしまう可能性がある。
充放電サイクル寿命とは充放電を繰り返すと膨張収縮によるストレスなどによって集電体(銅箔)と活物質との接触が悪くなり、一部の活物質が充放電に利用できない電気伝導度になって容量の劣化を引き起こすに至る寿命である。
過充電特性とは、過充電が行われた際、集電体(銅箔)の経時的劣化による亀裂や破断が発生しないことを要求するものである。
結晶組織を微細化し、表面粗さを小さくした前記特許文献1、特許文献2の公報に記載の電解銅箔は、特にSi又はSn合金系活物質に対して銅箔と活物質の剥離が発生して、充放電サイクル寿命、過充電特性の面で市場の要求に対して十分とはいえない状況にある。
充放電サイクル寿命および過充電特性に影響する銅箔の特性としては、特に350℃×1時間熱処理後の伸び特性が優れる銅箔が求められている。
また、本発明は、該電解銅箔を負極集電体とすることで、優れたリチウ
ムイオン二次電池を提供することができる。
そして、このリチウムイオン二次電池は、正極3、セパレータ7、負極6、セパレータ7をこの順に積層して積層電極体とし、この積層電極体を多数回巻回されてなる渦巻式電極体の上下に絶縁体8、9を配置した状態で電池缶10に収納してなるものである。
本発明の負極集電体4用電解銅箔は、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率3.0%以上の電解銅箔である。
即ち、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸びが3.0%以上の電解銅箔の製造方法は、該電解銅箔を製箔する電解液は、窒素(N)を含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppm、ヒドロキシエチルセルロース若しくは低分子量膠を0~12ppm、塩素イオンを10ppm~80ppm添加した硫酸銅系電解液である。
なお、HEC、PBFの添加量が12ppmを超えると銅箔の350℃×1時間加熱後の伸びが3.0%以下となり好ましくなく、添加量は0~12ppmとすることが好ましい。勿論、HEC、PBFを合わせて添加しても同様の効果が得られる。
下記硫酸銅電解浴に表1に示す量のNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物及びヒドロキシエチルセルロース(HEC)若しくは低分子量膠 (PBF)を添加した組成の電解液にチタンドラムをセットし、下記電解条件で電解銅箔を製膜した。
銅(Cu) 70g/l
硫酸(H2SO4) 50g/l
塩素イオン 30ppm
電解条件;
電流密度 40A/dm2
温度 45℃
(A)粗化処理の焼けめっき:
銅30g/dm3、硫酸150g/dm3を主成分とする電解液中で、表2に示す様にMo、Fe、Ni、Co、Ti、Bi、W等の金属元素を0.1~2000mg/l含む電解浴で加温することなく、電流密度10~20A/dm2の範囲において、電解時間を適宜選択し、予め決定した所定の表面形状を得る条件によりカソード電解した。
銅70g/dm3、硫酸100g/dm3を主成分とし液温40℃に保った電解液中で、電流密度5~10A/dm2の範囲において、予め(A)の条件と共に決定した所定の表面形状を得る電解時間を適宜選択した条件によりカソード電解した。
未処理電解銅箔をCrO3;1g/l水溶液に5秒間浸漬して、クロメート処理を施し、水洗後乾燥させた。
なお、ここでは、クロメート処理を行ったが、ベンゾトリアゾール系処理、或いはシランカップリング剤処理、又はクロメート処理後にシランカップリング剤処理を行ってもよいことは勿論である。
表3に示す電解液組成、電解条件で電解銅箔を作成した。
このようにして製箔した未処理銅箔に前記実施例1と同様の表面処理を行った。
一方、比較例1~6はNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の添加量が3~20ppmの範囲外であったために伸び率が3%以下であり、期待値をクリアーできなかった。
即ち、硫酸銅系電解液にNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppm、ヒドロキシエチルセルロース若しくは低分子量膠を0~12ppmを添加して、350℃×1時間熱処理後の引張り強さが300MPa以上、或は350℃×1時間加熱後の伸び率が3.0%以上であり、塩素イオンの添加による銅箔への悪影響が、有機添加剤の添加により打ち消された結果となっている。
粉末状のSi合金系活物質(平均粒径0.1μm~10μm)を使用した。このときに、Si合金系活物質を90重量%、結着材としてポリイミド系バインダを10重量%の割合で混合して負極合剤を調整した。次いで、この負極合剤を溶剤であるN-メチルピロリドンに分散させてスラリーにした。そして、このスラリーを実施例、比較例で製作した厚さ12μmの帯状の電解銅箔の両面に塗布し、乾燥後ローラープレス機で圧縮形成して、帯状負極とした。この帯状負極は、成形後の負極合剤の膜厚が両面共に90μmで同一であり、その幅が55.6mm、長さが551.5mmに形成された。
この正極活物質(LiCoO2)を91重量%、導電剤としてグラファイトを6重量%、結着剤としてポリフッ化ビニリデンを3重量%の割合で混合して正極合材を作製し、これをN-メチル-2ピロリドンに分散してスラリー状とした。次に、このスラリーを厚み20μmの帯状のアルミニウムからなる正極集電体1の両面に均一に塗布し、乾燥後ローラープレス機で圧縮成形して厚み160μmの帯状正極を得た。この帯状正極は、成形後の正極合剤の膜厚が表面共に70μmであり、その幅が53.6mm、長さが523.5mmに形成された。
この渦巻式電極体が収納された電池缶に、プロピレンカーボネイトとジエチルカーボネイトとの等容量混合した溶媒中にLiPF6を1モル/lの割合で溶解した非水電解液5.0gを注入した。次いで、アスファルトで表面を塗布された絶縁封口ガスケット12を介して電池缶をかしめて電池蓋11を固定し、電池缶内の気密性を保持させた。
初回条件
充電:0.1C相当電流で定電流充電し、0.02V(対Li/Li+)到達後、定電位充電し、充電電流が0.05C相当に低下した時点で終了した。
放電:0.1C相当電流で定電流放電し、1.5Vになった時点で終了した。
充放電サイクル条件
初回充放電試験を実施した後、同じ0.1C相当電流で100サイクルまで充放電を繰り返した。
この電解銅箔を負極集電体材料として用いた電極について、充放電100サイクル後、放電容量保持率30%以上を合格とし○で、それ以外を不合格として×で、表1に示した。
なお、100サイクル後の放電容量保持率は次式で示す。
上記のように比較例1~6は加熱後の引張り強度、伸び率が期待値をクリアーできなかったために、リチウムイオン二次電池の集電体としても満足な結果を示すことがなかった。
2 :正極活物質
3 :正極
4 :負極集電体
5 :負極活物質
6 :負極
7 :セパレータ
8、9:絶縁体
10 :電池缶
11 :電池蓋
12 :ガスケット
13 :正極リード
Claims (7)
- 表面粗化された電解銅箔であって、該銅箔の350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率が3.0%以上、銅箔両面の表面積比(実際の表面積/幾何面積)がそれぞれ1.6~2.2である、電解銅箔。
- 常温常圧状態での引張り強さが500MPa以上である請求項1に記載の電解銅箔。
- 前記粗化された面の粗化粒子の平均粒子径が0.1~2.0μmである請求項1~2に記載の電解銅箔。
- 前記粗化された面の粗化処理層の厚さが0.3~2μmである請求項1~3に記載の電解銅箔。
- 前記粗化された面が電解銅箔の光沢面であることを特徴とする請求項1~4に記載の電解銅箔。
- 平面状集電体の表面に電極構成活物質層が形成されてなる正極及び負極を備えるリチウムイオン二次電池において、負極集電体は請求項1~5に記載の電解銅箔からなる、リチウムイオン二次電池。
- 350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸びが3.0%以上の電解銅箔の製造方法であって、
該電解銅箔を製箔する電解液は、Nを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤を1~20ppm、塩素イオンを10ppm~80ppm添加した硫酸銅系電解液である、電解銅箔の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013522908A JP5379928B2 (ja) | 2011-06-30 | 2012-06-27 | 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 |
CN201280031824.4A CN103649378B (zh) | 2011-06-30 | 2012-06-27 | 电解铜箔、该电解铜箔的制造方法、以及将该电解铜箔作为集电体的锂离子二次电池 |
US14/129,138 US9966608B2 (en) | 2011-06-30 | 2012-06-27 | Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector |
KR1020147002267A KR20140041804A (ko) | 2011-06-30 | 2012-06-27 | 전해 동박, 상기 전해 동박의 제조 방법 및 상기 전해 동박을 집전체로 하는 리튬 이온 이차 전지 |
KR1020167032744A KR20160138321A (ko) | 2011-06-30 | 2012-06-27 | 전해 동박, 상기 전해 동박의 제조 방법 및 상기 전해 동박을 집전체로 하는 리튬 이온 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011145382 | 2011-06-30 | ||
JP2011-145382 | 2011-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013002279A1 true WO2013002279A1 (ja) | 2013-01-03 |
Family
ID=47424169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066421 WO2013002279A1 (ja) | 2011-06-30 | 2012-06-27 | 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9966608B2 (ja) |
JP (1) | JP5379928B2 (ja) |
KR (2) | KR20160138321A (ja) |
CN (1) | CN103649378B (ja) |
TW (1) | TWI526578B (ja) |
WO (1) | WO2013002279A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5993984A (ja) * | 1982-11-17 | 1984-05-30 | Fuji Electric Co Ltd | 水封式ポンプ装置 |
WO2014115681A1 (ja) * | 2013-01-24 | 2014-07-31 | 古河電気工業株式会社 | 電解銅箔とその製造方法 |
WO2014119582A1 (ja) * | 2013-01-29 | 2014-08-07 | 古河電気工業株式会社 | 電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を用いたリチウムイオン二次電池 |
WO2014119656A1 (ja) * | 2013-01-31 | 2014-08-07 | 三井金属鉱業株式会社 | 電解銅箔、その電解銅箔の製造方法及びその電解銅箔を用いて得られる表面処理銅箔 |
WO2015033917A1 (ja) * | 2013-09-05 | 2015-03-12 | 三井金属鉱業株式会社 | 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板 |
JP2016121394A (ja) * | 2014-12-23 | 2016-07-07 | エル エス エムトロン リミテッドLS Mtron Ltd. | 電解銅箔、これを含むfccl及びccl |
JP2016537514A (ja) * | 2013-11-08 | 2016-12-01 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 電解銅箔、並びにこれを含む電気部品及び電池 |
JPWO2014112619A1 (ja) * | 2013-01-18 | 2017-01-19 | 古河電気工業株式会社 | 電解銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池 |
JP2017505385A (ja) * | 2013-12-30 | 2017-02-16 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 銅箔、これを含む電気部品及び電池 |
JP2018519633A (ja) * | 2015-06-26 | 2018-07-19 | エル エス エムトロン リミテッドLS Mtron Ltd. | リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池 |
US10050256B2 (en) | 2014-11-27 | 2018-08-14 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing positive electrode for lithium ion secondary battery |
WO2018155972A3 (ko) * | 2017-02-27 | 2018-12-20 | 케이씨에프테크놀로지스 주식회사 | 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 |
WO2019198337A1 (ja) * | 2018-04-13 | 2019-10-17 | 東洋鋼鈑株式会社 | 積層電解箔 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3018396A1 (fr) * | 2014-03-04 | 2015-09-11 | Commissariat Energie Atomique | Procede de fabrication d'une cellule electrochimique elementaire a electrode a gaz du type metal-gaz et cellule associee |
KR102392045B1 (ko) * | 2014-12-23 | 2022-04-28 | 에스케이넥실리스 주식회사 | 전해 동박, 그리고 이를 포함하는 fccl 및 ccl |
WO2017018655A1 (ko) * | 2015-07-24 | 2017-02-02 | 엘에스엠트론 주식회사 | 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지 |
KR102136784B1 (ko) | 2015-07-24 | 2020-07-22 | 케이씨에프테크놀로지스 주식회사 | 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지 |
KR102473557B1 (ko) * | 2015-09-24 | 2022-12-01 | 에스케이넥실리스 주식회사 | 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 |
WO2017051767A1 (ja) * | 2015-09-25 | 2017-03-30 | 古河電気工業株式会社 | 電解銅箔、その電解銅箔を用いた各種製品 |
JP6067910B1 (ja) * | 2015-11-04 | 2017-01-25 | 古河電気工業株式会社 | 電解銅箔、その電解銅箔を用いたリチウムイオン二次電池 |
KR102218889B1 (ko) * | 2016-06-14 | 2021-02-22 | 후루카와 덴키 고교 가부시키가이샤 | 전해 동박, 리튬 이온 2차 전지용 부극 전극 및 리튬 이온 2차 전지 그리고 프린트 배선판 |
KR101733408B1 (ko) | 2016-11-11 | 2017-05-10 | 일진머티리얼즈 주식회사 | 이차전지용 전해동박 및 그의 제조방법 |
KR101734840B1 (ko) * | 2016-11-11 | 2017-05-15 | 일진머티리얼즈 주식회사 | 내굴곡성이 우수한 이차전지용 전해동박 및 그의 제조방법 |
KR101733409B1 (ko) | 2016-11-11 | 2017-05-10 | 일진머티리얼즈 주식회사 | 이차전지용 전해동박 및 그의 제조방법 |
KR101733410B1 (ko) * | 2016-11-11 | 2017-05-10 | 일진머티리얼즈 주식회사 | 저온 물성이 우수한 이차전지용 전해동박 및 그의 제조방법 |
KR101755203B1 (ko) | 2016-11-11 | 2017-07-10 | 일진머티리얼즈 주식회사 | 이차전지용 전해동박 및 그의 제조방법 |
KR102180926B1 (ko) | 2017-06-28 | 2020-11-19 | 에스케이넥실리스 주식회사 | 우수한 작업성 및 충방전 특성을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 |
US10205170B1 (en) * | 2017-12-04 | 2019-02-12 | Chang Chun Petrochemical Co., Ltd. | Copper foil for current collector of lithium secondary battery |
KR102495166B1 (ko) * | 2018-02-23 | 2023-02-06 | 후루카와 덴키 고교 가부시키가이샤 | 전해 동박, 그리고 당해 전해 동박을 이용한 리튬 이온 2차 전지용 부극, 리튬 이온 2차 전지, 동 클래드 적층판 및 프린트 배선판 |
KR102103765B1 (ko) * | 2018-05-16 | 2020-04-28 | 일진머티리얼즈 주식회사 | 전해동박 및 이를 이용한 이차전지 |
JP6524309B1 (ja) | 2018-05-18 | 2019-06-05 | 株式会社エフ・シー・シー | 燃料電池システム |
ES2933128T3 (es) * | 2018-08-10 | 2023-02-01 | Sk Nexilis Co Ltd | Lámina de cobre que tiene características de docilidad y carga/descarga mejoradas, electrodo que incluye la misma, batería secundaria que incluye la misma y método para fabricar la misma |
TWI660541B (zh) * | 2018-10-01 | 2019-05-21 | 長春石油化學股份有限公司 | 用於鋰二次電池集電體之銅箔及包含其之負極 |
US11365486B2 (en) | 2018-10-16 | 2022-06-21 | Chang Chun Petrochemical Co., Ltd. | Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same |
TWI656682B (zh) * | 2018-10-16 | 2019-04-11 | 長春石油化學股份有限公司 | 電解銅箔、包含其的電極、及包含其的鋰離子電池 |
TWI731330B (zh) * | 2019-04-30 | 2021-06-21 | 南亞塑膠工業股份有限公司 | 電解銅箔、其製造方法、及鋰離子二次電池 |
CN111485260B (zh) * | 2020-04-30 | 2020-12-08 | 广东嘉元科技股份有限公司 | 二次电池用低翘曲电解铜箔、制造方法 |
CA3172019A1 (en) * | 2021-10-07 | 2023-04-07 | Circuit Foil Luxembourg | Copper foil with high energy at break and secondary battery comprising the same |
KR20230062081A (ko) * | 2021-10-29 | 2023-05-09 | 롯데에너지머티리얼즈 주식회사 | 이차전지 집전체용 전해동박 |
CN116516425B (zh) * | 2023-05-17 | 2023-12-19 | 安徽铜冠铜箔集团股份有限公司 | 一种电解高阶通讯用极低轮廓电子铜箔的制作方法及应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10330983A (ja) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | 電解銅箔及びその製造方法 |
JP2001123290A (ja) * | 1999-10-27 | 2001-05-08 | Dowa Mining Co Ltd | 電解銅箔とその製造方法 |
JP2001189154A (ja) * | 2000-01-06 | 2001-07-10 | Hitachi Maxell Ltd | リチウム二次電池 |
JP2005197205A (ja) * | 2003-12-12 | 2005-07-21 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用負極集電体 |
JP2008101267A (ja) * | 2006-04-28 | 2008-05-01 | Mitsui Mining & Smelting Co Ltd | 電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法 |
JP2008226800A (ja) * | 2007-03-16 | 2008-09-25 | Fukuda Metal Foil & Powder Co Ltd | リチウム二次電池負極集電体用銅箔およびその製造方法 |
JP2008285751A (ja) * | 2007-04-19 | 2008-11-27 | Mitsui Mining & Smelting Co Ltd | 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板 |
JP2009221592A (ja) * | 2007-10-31 | 2009-10-01 | Mitsui Mining & Smelting Co Ltd | 電解銅箔及びその電解銅箔の製造方法 |
JP2009299100A (ja) * | 2008-06-10 | 2009-12-24 | Mitsui Mining & Smelting Co Ltd | 電解銅箔及びその電解銅箔の製造方法 |
WO2010110205A1 (ja) * | 2009-03-24 | 2010-09-30 | 古河電気工業株式会社 | リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔 |
JP2011174146A (ja) * | 2010-02-25 | 2011-09-08 | Fukuda Metal Foil & Powder Co Ltd | 電解銅箔及びその製造方法 |
JP2012033475A (ja) * | 2010-06-28 | 2012-02-16 | Furukawa Electric Co Ltd:The | 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池 |
WO2012091060A1 (ja) * | 2010-12-27 | 2012-07-05 | 古河電気工業株式会社 | リチウムイオン二次電池、その二次電池用電極、その二次電池の電極用電解銅箔 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431803A (en) | 1990-05-30 | 1995-07-11 | Gould Electronics Inc. | Electrodeposited copper foil and process for making same |
JP3628585B2 (ja) * | 2000-04-05 | 2005-03-16 | 株式会社日鉱マテリアルズ | 銅張り積層板及び銅張り積層板のレーザーによる穴開け方法 |
JP3794613B2 (ja) * | 2000-05-18 | 2006-07-05 | 三井金属鉱業株式会社 | 電解銅箔の電解装置 |
JP4413552B2 (ja) | 2002-08-01 | 2010-02-10 | 古河電気工業株式会社 | 電解銅箔および二次電池集電体用電解銅箔 |
KR100389061B1 (ko) * | 2002-11-14 | 2003-06-25 | 일진소재산업주식회사 | 전해 동박 제조용 전해액 및 이를 이용한 전해 동박 제조방법 |
TW200424359A (en) * | 2003-02-04 | 2004-11-16 | Furukawa Circuit Foil | Copper foil for high frequency circuit, method of production and apparatus for production of same, and high frequency circuit using copper foil |
CN1226621C (zh) * | 2003-03-28 | 2005-11-09 | 中国石油化工股份有限公司 | 一种色-质联用预测原油馏分性质的方法 |
JP4583149B2 (ja) | 2004-12-01 | 2010-11-17 | 三井金属鉱業株式会社 | 電解銅箔及びその製造方法 |
JP4910297B2 (ja) * | 2005-03-17 | 2012-04-04 | パナソニック株式会社 | リチウムイオン二次電池用負極、その製造方法およびそれを用いたリチウムイオン二次電池 |
WO2007125994A1 (ja) | 2006-04-28 | 2007-11-08 | Mitsui Mining & Smelting Co., Ltd. | 電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法 |
JP5356309B2 (ja) | 2009-05-08 | 2013-12-04 | 古河電気工業株式会社 | 2次電池用負極、電極用銅箔、2次電池および2次電池用負極の製造方法 |
CN102959135B (zh) * | 2010-07-01 | 2016-03-09 | 三井金属矿业株式会社 | 电解铜箔以及其制造方法 |
-
2012
- 2012-06-27 CN CN201280031824.4A patent/CN103649378B/zh active Active
- 2012-06-27 KR KR1020167032744A patent/KR20160138321A/ko not_active Application Discontinuation
- 2012-06-27 JP JP2013522908A patent/JP5379928B2/ja active Active
- 2012-06-27 KR KR1020147002267A patent/KR20140041804A/ko active Application Filing
- 2012-06-27 WO PCT/JP2012/066421 patent/WO2013002279A1/ja active Application Filing
- 2012-06-27 US US14/129,138 patent/US9966608B2/en active Active
- 2012-06-28 TW TW101123174A patent/TWI526578B/zh active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10330983A (ja) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | 電解銅箔及びその製造方法 |
JP2001123290A (ja) * | 1999-10-27 | 2001-05-08 | Dowa Mining Co Ltd | 電解銅箔とその製造方法 |
JP2001189154A (ja) * | 2000-01-06 | 2001-07-10 | Hitachi Maxell Ltd | リチウム二次電池 |
JP2005197205A (ja) * | 2003-12-12 | 2005-07-21 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用負極集電体 |
JP2008101267A (ja) * | 2006-04-28 | 2008-05-01 | Mitsui Mining & Smelting Co Ltd | 電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法 |
JP2008226800A (ja) * | 2007-03-16 | 2008-09-25 | Fukuda Metal Foil & Powder Co Ltd | リチウム二次電池負極集電体用銅箔およびその製造方法 |
JP2008285751A (ja) * | 2007-04-19 | 2008-11-27 | Mitsui Mining & Smelting Co Ltd | 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板 |
JP2009221592A (ja) * | 2007-10-31 | 2009-10-01 | Mitsui Mining & Smelting Co Ltd | 電解銅箔及びその電解銅箔の製造方法 |
JP2009299100A (ja) * | 2008-06-10 | 2009-12-24 | Mitsui Mining & Smelting Co Ltd | 電解銅箔及びその電解銅箔の製造方法 |
WO2010110205A1 (ja) * | 2009-03-24 | 2010-09-30 | 古河電気工業株式会社 | リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔 |
JP2011174146A (ja) * | 2010-02-25 | 2011-09-08 | Fukuda Metal Foil & Powder Co Ltd | 電解銅箔及びその製造方法 |
JP2012033475A (ja) * | 2010-06-28 | 2012-02-16 | Furukawa Electric Co Ltd:The | 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池 |
WO2012091060A1 (ja) * | 2010-12-27 | 2012-07-05 | 古河電気工業株式会社 | リチウムイオン二次電池、その二次電池用電極、その二次電池の電極用電解銅箔 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5993984A (ja) * | 1982-11-17 | 1984-05-30 | Fuji Electric Co Ltd | 水封式ポンプ装置 |
JPWO2014112619A1 (ja) * | 2013-01-18 | 2017-01-19 | 古河電気工業株式会社 | 電解銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池 |
KR101660201B1 (ko) | 2013-01-24 | 2016-09-26 | 후루카와 덴키 고교 가부시키가이샤 | 전해 구리박과 그 제조 방법 |
WO2014115681A1 (ja) * | 2013-01-24 | 2014-07-31 | 古河電気工業株式会社 | 電解銅箔とその製造方法 |
JP5706045B2 (ja) * | 2013-01-24 | 2015-04-22 | 古河電気工業株式会社 | 電解銅箔とその製造方法 |
KR20150107735A (ko) * | 2013-01-24 | 2015-09-23 | 후루카와 덴키 고교 가부시키가이샤 | 전해 구리박과 그 제조 방법 |
WO2014119582A1 (ja) * | 2013-01-29 | 2014-08-07 | 古河電気工業株式会社 | 電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を用いたリチウムイオン二次電池 |
TWI588301B (zh) * | 2013-01-29 | 2017-06-21 | Furukawa Electric Co Ltd | Electrodeposited copper foil, electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same |
JP5740055B2 (ja) * | 2013-01-29 | 2015-06-24 | 古河電気工業株式会社 | 電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を用いたリチウムイオン二次電池 |
KR101675706B1 (ko) | 2013-01-29 | 2016-11-11 | 후루카와 덴키 고교 가부시키가이샤 | 전해 동박, 그 전해 동박을 사용한 리튬 이온 이차 전지용 전극, 그 전극을 사용한 리튬 이온 이차 전지 |
KR20150114459A (ko) * | 2013-01-29 | 2015-10-12 | 후루카와 덴키 고교 가부시키가이샤 | 전해 동박, 그 전해 동박을 사용한 리튬 이온 이차 전지용 전극, 그 전극을 사용한 리튬 이온 이차 전지 |
JPWO2014119656A1 (ja) * | 2013-01-31 | 2017-01-26 | 三井金属鉱業株式会社 | 電解銅箔、その電解銅箔の製造方法及びその電解銅箔を用いて得られる表面処理銅箔 |
KR20190006075A (ko) * | 2013-01-31 | 2019-01-16 | 미쓰이금속광업주식회사 | 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박 |
KR20150114484A (ko) * | 2013-01-31 | 2015-10-12 | 미쓰이금속광업주식회사 | 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박 |
CN104955988A (zh) * | 2013-01-31 | 2015-09-30 | 三井金属矿业株式会社 | 电解铜箔、该电解铜箔的制造方法及用该电解铜箔得到的表面处理铜箔 |
KR102272695B1 (ko) * | 2013-01-31 | 2021-07-05 | 미쓰이금속광업주식회사 | 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박 |
WO2014119656A1 (ja) * | 2013-01-31 | 2014-08-07 | 三井金属鉱業株式会社 | 電解銅箔、その電解銅箔の製造方法及びその電解銅箔を用いて得られる表面処理銅箔 |
KR102227681B1 (ko) * | 2013-01-31 | 2021-03-15 | 미쓰이금속광업주식회사 | 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박 |
JP2018165411A (ja) * | 2013-01-31 | 2018-10-25 | 三井金属鉱業株式会社 | 電解銅箔及びその電解銅箔を用いて得られる表面処理銅箔 |
WO2015033917A1 (ja) * | 2013-09-05 | 2015-03-12 | 三井金属鉱業株式会社 | 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板 |
JPWO2015033917A1 (ja) * | 2013-09-05 | 2017-03-02 | 三井金属鉱業株式会社 | 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板 |
JP2020109216A (ja) * | 2013-09-05 | 2020-07-16 | 三井金属鉱業株式会社 | 表面処理銅箔の製造方法 |
JP2016537514A (ja) * | 2013-11-08 | 2016-12-01 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 電解銅箔、並びにこれを含む電気部品及び電池 |
JP2017505385A (ja) * | 2013-12-30 | 2017-02-16 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 銅箔、これを含む電気部品及び電池 |
US10050256B2 (en) | 2014-11-27 | 2018-08-14 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing positive electrode for lithium ion secondary battery |
JP2016121394A (ja) * | 2014-12-23 | 2016-07-07 | エル エス エムトロン リミテッドLS Mtron Ltd. | 電解銅箔、これを含むfccl及びccl |
US10218004B2 (en) | 2015-06-26 | 2019-02-26 | Kcf Technologies Co., Ltd. | Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same |
JP2018519633A (ja) * | 2015-06-26 | 2018-07-19 | エル エス エムトロン リミテッドLS Mtron Ltd. | リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池 |
WO2018155972A3 (ko) * | 2017-02-27 | 2018-12-20 | 케이씨에프테크놀로지스 주식회사 | 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 |
WO2019198337A1 (ja) * | 2018-04-13 | 2019-10-17 | 東洋鋼鈑株式会社 | 積層電解箔 |
JP2019186134A (ja) * | 2018-04-13 | 2019-10-24 | 東洋鋼鈑株式会社 | 積層電解箔 |
JP7085394B2 (ja) | 2018-04-13 | 2022-06-16 | 東洋鋼鈑株式会社 | 積層電解箔 |
Also Published As
Publication number | Publication date |
---|---|
TW201311940A (zh) | 2013-03-16 |
US9966608B2 (en) | 2018-05-08 |
TWI526578B (zh) | 2016-03-21 |
JPWO2013002279A1 (ja) | 2015-02-23 |
US20140199588A1 (en) | 2014-07-17 |
CN103649378B (zh) | 2016-12-14 |
CN103649378A (zh) | 2014-03-19 |
KR20140041804A (ko) | 2014-04-04 |
KR20160138321A (ko) | 2016-12-02 |
JP5379928B2 (ja) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5379928B2 (ja) | 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 | |
JP6619457B2 (ja) | 電解銅箔、それを含む集電体、それを含む電極、それを含む二次電池およびその製造方法 | |
JP5718476B2 (ja) | リチウムイオン二次電池用電解銅箔、リチウムイオン二次電池の負極電極及びリチウムイオン二次電池 | |
JP3742144B2 (ja) | 非水電解液二次電池及び非水電解液二次電池用の平面状集電体 | |
JP3850155B2 (ja) | 電解銅箔、二次電池の集電体用銅箔及び二次電池 | |
TWI570277B (zh) | An electrolytic copper foil, an electrolytic copper foil for a lithium ion secondary battery, an electrode for a lithium ion secondary battery using the electrolytic copper foil, and a lithium ion secondary battery using the electrode | |
TWI466367B (zh) | A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil | |
TWI516642B (zh) | Electrolytic copper foil and secondary battery with negative current collector | |
US20100136434A1 (en) | Electrolytic Copper Foil for Lithium Rechargeable Battery and Process for Producing the Copper Foil | |
WO2017217085A1 (ja) | 電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板 | |
JP2012038700A (ja) | リチウム二次電池の集電体用銅箔 | |
TWI490374B (zh) | Electrolytic copper foil, and a secondary battery collector and a secondary battery using the same | |
KR20140051375A (ko) | 피복층 부착 금속박 및 그 제조방법, 이차전지용 전극 및 그 제조방법, 및 리튬이온 이차전지 | |
EP3404755A1 (en) | Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same | |
KR101674840B1 (ko) | 구리박, 비수 전해질 이차전지용 음극 및 비수 전해질 이차전지 | |
JP4413552B2 (ja) | 電解銅箔および二次電池集電体用電解銅箔 | |
JPH1021928A (ja) | 二次電池用電極材料 | |
JP2013095954A (ja) | 銅合金箔、該銅合金箔の製造方法及び該銅合金箔を集電体とするリチウムイオン二次電池用電極及びリチウムイオン二次電池 | |
JP6248233B1 (ja) | 電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板 | |
JP3850321B2 (ja) | 二次電池 | |
US10403898B2 (en) | Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same | |
JP2010205659A (ja) | Liイオン二次電池負極材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013522908 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12803849 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147002267 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14129138 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12803849 Country of ref document: EP Kind code of ref document: A1 |