WO2013002279A1 - 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 - Google Patents

電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013002279A1
WO2013002279A1 PCT/JP2012/066421 JP2012066421W WO2013002279A1 WO 2013002279 A1 WO2013002279 A1 WO 2013002279A1 JP 2012066421 W JP2012066421 W JP 2012066421W WO 2013002279 A1 WO2013002279 A1 WO 2013002279A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
ppm
hour
heating
Prior art date
Application number
PCT/JP2012/066421
Other languages
English (en)
French (fr)
Inventor
健作 篠崎
鈴木 昭利
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2013522908A priority Critical patent/JP5379928B2/ja
Priority to CN201280031824.4A priority patent/CN103649378B/zh
Priority to US14/129,138 priority patent/US9966608B2/en
Priority to KR1020147002267A priority patent/KR20140041804A/ko
Priority to KR1020167032744A priority patent/KR20160138321A/ko
Publication of WO2013002279A1 publication Critical patent/WO2013002279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector, and a nonaqueous electrolyte, for example, a lithium ion secondary battery, and
  • the present invention relates to an electrolytic copper foil particularly excellent for constituting a current collector of a battery negative electrode.
  • next-generation negative electrode active materials having charge / discharge capacities far exceeding the theoretical capacity of carbon materials has been promoted as negative electrode active materials for lithium ion secondary batteries.
  • a material containing a metal that can be alloyed with lithium (Li) such as silicon (Si) or tin (Sn) is expected.
  • These active materials such as Si and Sn have poor electron conductivity. If the conductivity of the negative electrode is poor, the internal resistance of the electrode increases, and the cycle characteristics deteriorate. Therefore, it is common to add a carbon material such as graphite or carbon black to the active material layer as a conductive material. However, it has been found that even when a carbon material is used as the conductive material, the resistance is no longer lowered when the amount exceeds a certain amount.
  • these materials when Si, Sn, or the like is used as an active material, these materials have a large volume change due to insertion / extraction of Li during charge / discharge, and thus maintain a good adhesion state between the current collector and the active material. It is difficult. In addition, these materials have a very large volume change rate due to the insertion and desorption of Li, and the expansion and contraction are repeated by the charge / discharge cycle, and the active material particles are pulverized or desorbed. Has the disadvantage of being large.
  • Patent Document 1 The copper foil disclosed in Patent Document 1 (Patent No. 4583149) was developed for a flexible printed wiring board (FPC) to be laminated with a film (polymer material). Withstands heat treatment for hours and has high tensile strength.
  • a copper foil for FPC usually needs to withstand heat treatment of 350 ° C. ⁇ 1 hour as a battery current collector, and when the copper foil is exposed to such a temperature, the crystal becomes coarse, Since the tensile strength after heating cannot be maintained at 300 MPa or more, such a copper foil cannot be employed as a current collector for a secondary battery.
  • an active material composition prepared by adding a solvent to a mixture of an active material, a conductive material and a binder to a surface of a current collector for a lithium ion secondary battery is applied, and after a drying process, lithium This is because the negative electrode of the ion secondary battery is usually subjected to heat treatment at 350 ° C. for 1 hour in the drying step.
  • the copper foil for FPC is used as it is, the crystal of the copper foil is coarsened, and the tensile strength after heating cannot be maintained at 300 MPa or more, so it cannot withstand expansion and contraction due to the charge / discharge cycle of the active material, The copper foil may break.
  • Patent Document 2 Patent Publication No. 2004-79523 discloses an active material using a pitch coke material.
  • the active material disclosed here has a smaller volume change associated with insertion and extraction of Li during charge and discharge than that of the Si or Sn alloy system.
  • the surface roughness of the copper foil is extremely low and smooth, when such a copper foil is applied to an active material using a pitch coke material, the copper foil accompanying the insertion / desorption of Li during charging and discharging is used. Since the volume change is larger than that of the coke material, peeling of the copper foil and the active material occurs, and the contact area with the active material may be reduced, and charging / discharging may not be possible.
  • the copper foil disclosed in Patent Document 3 Japanese Patent Publication No. 2010-282959
  • Patent Document 3 Japanese Patent Publication No. 2010-282959
  • the copper foil disclosed in Patent Document 3 is prepared by roughening both sides of the copper foil in order to improve the adhesion between the active material and the copper foil.
  • the problem of peeling off the active material and the copper foil can be solved.
  • the difference in roughness between the front and back surfaces of the copper foil is not taken into consideration, and especially the active material of Si or Sn alloy has a very small particle size.
  • the expansion and contraction of the active material due to charging / discharging may deform the copper foil, causing wrinkles and the like, and making it unusable as a battery.
  • Non-Patent Document 1 (Lakshmanan et al., “Effect of Chlorine Ion in Copper Electrowinning”, Journal of Applied Electrochemistry, 7 (1977) 81-90) discloses that the surface state of copper foil depends on the current density. That is, it is disclosed that a smooth surface can be obtained by suppressing to a lower current density with 0 ppm chlorine ions in the foil-making process.
  • Non-Patent Document 2 (Anderson et al., “Tensile Properties of Acid Electrodeposited Copper”, Journal of Applied Electrochemistry, 15 (1985) 631-637), as disclosed in FIG. 7, describes chlorine in a copper sulfate plating bath. It is disclosed that when the ion concentration is 0 ppm, the initial maximum tensile strength is high, but the elongation is low, and when the chlorine ion concentration is 5 ppm, the initial maximum tensile strength is remarkably lowered, and the elongation is remarkably increased in inverse proportion to the maximum tensile strength. Yes. Further, it is suggested that when the chlorine ion concentration is added to 10 ppm or more, the maximum tensile strength and the elongation rate show a gradual change while being inversely proportional.
  • Charging / discharging cycle life means repeated charging / discharging causes the contact between the current collector (copper foil) and the active material due to stress due to expansion and contraction, etc., resulting in electrical conductivity that some active materials cannot be used for charging / discharging. This is the lifetime that leads to deterioration of capacity.
  • the overcharge characteristic is required to prevent the current collector (copper foil) from cracking or breaking due to deterioration over time when overcharge is performed.
  • the copper foil with a roughened copper foil surface having a surface roughness Rz of 1.5 to 20 ⁇ m has a thick and uniform slurry containing Si or Sn alloy-based active material, particularly for producing a negative electrode of a battery.
  • the copper foil may not be able to be applied and may cause cracks, wrinkles, deformation, etc. in the copper foil.
  • a copper foil that is particularly excellent in elongation characteristics after heat treatment at 350 ° C. for 1 hour is required.
  • the present invention performs a roughening process on the glossy surface of the copper foil, and has a surface area ratio (actual surface area / geometric area) of 1.6 to 2.2 on both sides of the copper foil (S surface, M surface).
  • An object of the present invention is to provide an electrolytic copper foil having a tensile strength of 300 MPa or more and an elongation of 3.0% or more after heat treatment at 350 ° C. for 1 hour. It is also a well-known technique to control the surface area ratio by roughening both sides of the electrolytic copper foil, but by applying a roughening treatment to the mat surface (rough surface) side, the weight of the copper foil increases and the battery energy is increased. There is a disadvantage that the density decreases.
  • the glossy surface of the electrolytic copper foil becomes a replica of a titanium rotating drum used for the cathode, and is therefore smooth and has poor adhesion to the active material unless roughening is applied.
  • the surface roughness and shape of the matte surface (rough surface) are determined by the additive of the electrolytic solution.
  • the surface of the present invention is characterized by controlling the surface area, Sm, Rz, and Ra of the mat surface (rough surface) by controlling the additive components, concentration, liquid temperature, and electric density in the electrolyte solution, and roughening the mat surface side. It is to provide a copper foil excellent in battery characteristics by making the treatment unnecessary and performing the roughening treatment only on the S surface side.
  • the present invention is such that the current collector (copper foil) breaks while maintaining the adhesion between the current collector (copper foil) and the active material against the large expansion and contraction of the Si or Sn alloy active material. It aims at providing the copper foil which does not carry out, and also aims at providing the lithium ion secondary battery which uses the electrolytic copper foil as a collector.
  • the electrolytic copper foil of the present invention is an electrolytic copper foil having a rough gloss surface, and the tensile strength after heating the copper foil at 350 ° C. for 1 hour is 300 MPa or more, and the elongation after heating at 350 ° C. for 1 hour.
  • the electrolytic copper foil has a rate of 3.0% or more and a surface area ratio (actual surface area / geometric area) of both sides of the copper foil (M surface, S surface) is 1.6 to 2.2.
  • the electrolytic copper foil of the present invention preferably has a tensile strength in a normal state (normal temperature and normal pressure state) of 500 MPa or more.
  • the lithium ion secondary battery of the present invention is characterized in that the negative electrode current collector constituting the lithium ion secondary battery is the electrolytic copper foil of the present invention.
  • the method for producing an electrolytic copper foil of the present invention is a method for producing an electrolytic copper foil having a tensile strength after heating at 350 ° C. for 1 hour of 300 MPa or more and an elongation after heating at 350 ° C. for 1 hour of 3.0% or more.
  • the electrolytic solution for forming the electrolytic copper foil is 1 to 20 ppm as an organic additive of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N or a thiourea compound, It is characterized by being a copper sulfate electrolyte containing chlorine ions added at 10 ppm to 80 ppm.
  • the present invention can provide an electrolytic copper foil having a tensile strength of 300 MPa or more and an elongation of 3.0% or more after heat treatment at 350 ° C. for 1 hour, and as a result, a large expansion of the Si or Sn alloy active material, An electrolytic copper foil that does not break the current collector (copper foil) can be provided while maintaining the adhesion between the current collector (copper foil) and the active material against the shrinkage. Moreover, this invention can provide the outstanding lithium ion secondary battery by making this electrolytic copper foil into a negative electrode collector.
  • FIG. 1 is a partial front view for explaining a lithium ion secondary battery.
  • a non-aqueous electrolyte secondary battery for example, a lithium ion secondary battery, includes a positive electrode 3 formed by applying a positive electrode active material 2 to a positive electrode current collector 1 and a negative electrode current collector 4 with a negative electrode. It is comprised from the negative electrode 6 formed by apply
  • FIG. 1 a positive electrode 3, a separator 7, a negative electrode 6, and a separator 7 are laminated in this order to form a laminated electrode body, and the upper and lower sides of a spiral electrode body formed by winding this laminated electrode body many times. In the state where the insulators 8 and 9 are arranged, the battery can 10 is housed.
  • the negative electrode 6 constituting the lithium ion secondary battery is constituted by applying an active material 5 to a current collector 4 made of copper foil and drying.
  • the electrolytic copper foil for the negative electrode current collector 4 of the present invention is an electrolytic copper foil having a tensile strength of 300 MPa or more after heating at 350 ° C. for 1 hour and an elongation of 3.0% or more after heating at 350 ° C. for 1 hour. .
  • the electrolytic copper foil constituting the negative electrode current collector 4 of the lithium ion secondary battery is usually required to withstand heat treatment at 350 ° C. for 1 hour. That is, the surface of the negative electrode current collector 6 for a lithium ion secondary battery is coated with an active material composition prepared in the form of a paste by adding a solvent to a mixture of an active material, a conductive material and a binder, and undergoes a drying process. Although it is set as the negative electrode 6 of a lithium ion secondary battery, the heat processing of 350 degreeC x 1 hour are normally required in the drying process.
  • the tensile strength after heating at 350 ° C. for 1 hour is 300 MPa or more, preferably 500 MPa or more, and the elongation rate
  • the electrolytic copper foil needs to be 3.0% or more.
  • the surface area ratio (actual surface area / geometric area) of both sides of the copper foil is set to 1.6 to 2.2.
  • the electrolytic copper foil satisfying the above conditions is made as follows. That is, the method for producing an electrolytic copper foil having a tensile strength after heating at 350 ° C. for 1 hour of 300 MPa or more and an elongation after heating at 350 ° C. for 1 hour of 3.0% or more is an electrolysis method for producing the electrolytic copper foil.
  • the liquid contains 3 to 20 ppm as an organic additive of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing nitrogen (N) or a thiourea compound, and 0 to hydroxyethyl cellulose or low molecular weight glue. This is a copper sulfate electrolyte solution to which -12 ppm and chlorine ions are added at 10 ppm to 80 ppm.
  • the reason why the amount of the organic additive added to the electrolytic solution is 3 to 20 ppm is that if it is less than 3 ppm, the initial strength of the copper foil and the strength after heating cannot obtain target values. On the other hand, when the amount of the organic additive is 20 ppm or more, the strength of the copper foil is remarkably improved, but it becomes brittle and the elongation becomes 3.0% or less, which is not preferable.
  • the amount of chlorine added to the electrolyte is 10 to 80 ppm. According to the contents disclosed in Non-Patent Document 2 (Anderson's paper), if the chlorine ion is 10 ppm or more, the maximum tensile strength decreases as the amount of chlorine ion added increases, and the elongation increases gradually. Disclosure has been made. In the following Examples and Comparative Examples, chlorine was added at 10 ppm or less, 30 ppm, and 80 ppm. When chlorine ions are added at 10 ppm or less, the tensile strength after heating at 350 ° C. for 1 hour is 300 MPa or less, and when chlorine ions are added at 80 ppm, the surface roughness increases and the battery characteristics after 100 cycles are deteriorated. Although it tends to be, up to 80 ppm was in a range that does not hinder the copper foil for batteries. Accordingly, it is preferable to add chlorine ions in an amount not exceeding 10 to 80 ppm, preferably not exceeding 80 ppm.
  • the electrolytic copper foil has a current density of 40 to 55 A / dm 2 , a liquid temperature of 45 to 60, using the copper sulfate solution shown in Example 1 as an electrolyte, noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. Foil is produced by electrolytic treatment under the condition of ° C.
  • a roughening process is performed on the S surface.
  • the roughening conditions applied to the S surface are such that the surface roughness of the M surface approximates the surface roughness of the S surface after roughening.
  • surface roughness (Rz), (Sm), and surface area ratio are the same as M surface by roughening S surface under the conditions of current density of 40 to 55 A / dm 2 and bath temperature of 45 to 60 ° C. Can be improved.
  • Examples 1 to 15 and Comparative Examples 1 to 6> One or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N in the amount shown in Table 1 in the following copper sulfate electrolytic bath, or a thiourea compound, and hydroxyethyl cellulose (HEC) or a low molecular weight glue ( A titanium drum was set in an electrolytic solution having a composition to which (PBF) was added, and an electrolytic copper foil was formed under the following electrolytic conditions.
  • PPF hydroxyethyl cellulose
  • Copper sulfate electrolytic bath composition Copper (Cu) 70g / l Sulfuric acid (H 2 SO 4 ) 50 g / l Chloride ion 30ppm Electrolysis conditions; Current density 40A / dm 2 Temperature 45 ° C
  • Roughening process (A) Roughening burn plating: As shown in Table 2, 0.1 to 2000 mg of metal elements such as Mo, Fe, Ni, Co, Ti, Bi, and W are contained in an electrolytic solution mainly composed of copper 30 g / dm 3 and sulfuric acid 150 g / dm 3. The cathode was electrolyzed under the conditions for obtaining a predetermined surface shape by appropriately selecting an electrolysis time within a current density range of 10 to 20 A / dm 2 without heating in an electrolytic bath containing 1 l.
  • the reason why the bright surface is burnt-plated in the electrolytic bath containing the metal element described above is to make the roughened particles uniform and prevent the roughened particles from falling off, and the electrolytic bath containing the metal element is burnt-plated. This is to prevent a decrease in the strength of the roughened particles after heating, and to reduce the difference in hardness from the untreated precipitation surface (mat surface).
  • the particle size of the roughened particles after the roughening treatment of (A) and (B) should be about 0.1 to 2.0 ⁇ m. Is preferred. If it is smaller than 0.1 ⁇ m, the anchor effect with the active material becomes weak, and the cycle characteristics of the battery are not good. Conversely, if the particle size of the roughened particles exceeds 2.0 ⁇ m, the active material does not enter the depth of the roughened particles, and voids are generated at the interface between the copper foil and the active material. This is to make it easier to get worse. For this reason, the particle size of the roughened particles is preferably in the range of 0.1 to 2.0 ⁇ m.
  • the thickness of the roughened particle layer deposited on the glossy surface side is preferably 0.3 to 2.0 ⁇ m. If it is less than 0.3 ⁇ m, it is difficult to control the surface area by roughening, and if it exceeds 2.0 ⁇ m, there is almost no difference in the effect of roughening, and conversely, the weight of the roughened particles increases. This is because the energy density per weight of the battery is lowered.
  • the electrolytic copper foil subjected to foil production and roughening treatment in this way was subjected to rust prevention treatment under the following conditions.
  • the untreated electrolytic copper foil was immersed in a CrO 3 ; 1 g / l aqueous solution for 5 seconds, subjected to chromate treatment, washed with water and dried.
  • the chromate treatment is performed here, it goes without saying that the silane coupling agent treatment may be performed after the benzotriazole-based treatment, the silane coupling agent treatment, or the chromate treatment.
  • An electrolytic copper foil was prepared with the electrolytic solution composition and electrolytic conditions shown in Table 3. The untreated copper foil thus foil-treated was subjected to the same surface treatment as in Example 1.
  • the electrolytic copper foil obtained in each example and comparative example was subjected to roughening treatment on the glossy surface (S surface) under the combination of roughening conditions shown in Tables 2 and 4, and the surface area, Sm and mat of the roughened surface were processed.
  • the surface roughness Rz, Ra, Ry, Sm of the surface was measured, and the surface area ratio of the S surface and the M surface to the geometric surface was calculated.
  • a 50 ⁇ m ⁇ 50 ⁇ m (2500 ⁇ m 2 ) visual field was observed with a laser microscope (VK-8700 / 9700 manufactured by KEYENCE), and the surface area ratio was defined as 1 if the measurement result was 2500 ⁇ m 2 .
  • the addition amount of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N contained in the electrolyte solution or a thiourea compound is 1 to 20 ppm. Therefore, the tensile strength of the produced electrolytic copper foil was 300 MPa or more and the elongation was 3% or more, which cleared the expected value.
  • the addition amount of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N or a thiourea compound was outside the range of 3 to 20 ppm. The rate was 3% or less, and the expected value could not be cleared.
  • a negative electrode for a lithium secondary battery was prepared as follows using the copper foil prepared in each Example and Comparative Example as a current collector.
  • a powdery Si alloy-based active material (average particle size of 0.1 ⁇ m to 10 ⁇ m) was used.
  • a negative electrode mixture was prepared by mixing 90% by weight of the Si alloy active material and 10% by weight of a polyimide binder as a binder.
  • this negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to form a slurry.
  • This slurry was apply
  • This strip-shaped negative electrode was formed such that the negative electrode mixture after molding had the same thickness of 90 ⁇ m on both sides, the width was 55.6 mm, and the length was 551.5 mm.
  • the positive electrode 3 was produced as follows.
  • the positive electrode active material (LiCoO 2 ) was mixed with 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate, and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2.
  • a positive electrode mixture was prepared by mixing 91% by weight of this positive electrode active material (LiCoO 2 ), 6% by weight of graphite as a conductive agent, and 3% by weight of polyvinylidene fluoride as a binder. Dispersed in methyl-2pyrrolidone to form a slurry.
  • this slurry was uniformly applied to both surfaces of a positive electrode current collector 1 made of strip-shaped aluminum having a thickness of 20 ⁇ m, dried, and then compression-molded with a roller press to obtain a strip-shaped positive electrode having a thickness of 160 ⁇ m.
  • the belt-like positive electrode was formed such that the thickness of the positive electrode mixture after molding was 70 ⁇ m on the surface, the width was 53.6 mm, and the length was 523.5 mm.
  • the laminated positive electrode and the negative electrode produced in this manner were laminated with a separator 7 made of a microporous polypropylene film having a thickness of 25 ⁇ m and a width of 58.1 mm to obtain a laminated electrode body.
  • This laminated electrode body was wound many times in a spiral shape along the length direction with the negative electrode 6 inside, and the final end of the outermost separator was fixed with tape to form a spiral electrode body.
  • the hollow part of the spiral electrode body has an inner diameter of 3.5 mm and an outer shape of 17 mm.
  • the spiral electrode body produced as described above was housed in a nickel-plated iron battery can with insulating plates installed on both upper and lower surfaces.
  • the positive electrode lead made of aluminum is led out from the thirteen positive electrode current collector 1 and connected to the battery lid 11, and the negative electrode lead made of nickel is led out from the negative electrode current collector 4.
  • Connected to the battery can. To the battery can containing the spiral electrode body, 5.0 g of a non-aqueous electrolyte solution in which LiPF6 was dissolved at a ratio of 1 mol / l in a solvent in which equal volumes of propylene carbonate and diethyl carbonate were mixed was injected.
  • the battery can was caulked through the insulating sealing gasket 12 whose surface was coated with asphalt to fix the battery lid 11, and the airtightness in the battery can was maintained.
  • a cylindrical non-aqueous electrolyte (lithium ion) secondary battery having a diameter of 18 mm and a height of 65 mm is manufactured, and the negative electrode in this non-aqueous electrolyte (lithium ion) secondary battery is evaluated by the following method. At a temperature of 25 ° C.
  • the electrode using this electrolytic copper foil as a negative electrode current collector material is shown in Table 1 after 100 cycles of charge and discharge, with a discharge capacity retention rate of 30% or more as “good” and “other” as bad.
  • the discharge capacity retention after 100 cycles is shown by the following equation.
  • Examples 1 to 15 are selected from compounds having a structure in which an SH group is bonded to a heterocyclic ring containing N in a copper sulfate electrolyte solution for forming an electrolytic copper foil or a thiourea compound.
  • the addition amount of one or more compounds is 3 to 20 ppm, the addition of 0 to 12 ppm of hydroxyethyl cellulose or low molecular weight glue, and the addition of 30 ppm of chlorine ions, the tensile strength after heating at 350 ° C. for 1 hour is 300 MPa or more,
  • an electrolytic copper foil having an elongation of 3.0% or more after heating at 350 ° C. for 1 hour By producing an electrolytic copper foil having an elongation of 3.0% or more after heating at 350 ° C. for 1 hour, a lithium ion secondary battery using this copper foil as a current collector also exhibited high performance.
  • Comparative Examples 1 to 6 the addition amount of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N or a thiourea compound was outside the range of 3 to 20 ppm. The rate was 3% or less, and the expected value could not be cleared. As described above, Comparative Examples 1 to 6 did not show satisfactory results as a current collector of a lithium ion secondary battery because the tensile strength and elongation after heating could not clear the expected values.
  • the present invention provides 3 to 20 ppm as an organic additive of one or more compounds selected from a compound having a structure in which an SH group is bonded to a heterocyclic ring containing N in a copper sulfate electrolyte, or a thiourea compound.
  • Lithium ion secondary having 0 to 12 ppm of molecular weight glue and a tensile strength after heat treatment at 350 ° C. for 1 hour of 300 MPa or more, or an elongation rate of 3.0% or more after heating at 350 ° C. for 1 hour
  • An electrolytic copper foil that is particularly preferable as a battery current collector could be provided.
  • Positive electrode current collector 2 Positive electrode active material 3: Positive electrode 4: Negative electrode current collector 5: Negative electrode active material 6: Negative electrode 7: Separator 8, 9: Insulator 10: Battery can 11: Battery lid 12: Gasket 13: Positive lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 350℃×1時間熱処理後の引張強さ300MPa以上、伸び率3.0%以上である電解銅箔を提供すること、及び、Si又はSn合金系活物質の大きな膨張、収縮に対して、集電体(銅箔)と活物質との密着性を保持しながら、集電体(銅箔)が破断しない銅箔を提供する。表面粗化された電解銅箔であって、該銅箔の350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率が3.0%以上、粗化された面と粗化されていない面の銅箔両面の表面積比(実際の表面積/幾何面積)が1.6~2.2である電解銅箔。該電解銅箔は、硫酸銅系電解液に、Nを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppmを添加した電解液にヒドロキシエチルセルロース若しくは低分子量膠が0~12ppm、塩素イオンが10ppm~80ppm添加された電解液で製箔する。

Description

電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
 本発明は、正極と、負極集電体の表面に負極活物質層が形成された負極と、非水電解液とを備える非水電解液二次電池、たとえば、リチウムイオン二次電池、ならびに該電池負極電極の集電体を構成するのに特に優れた電解銅箔に関するものである。
 近年リチウムイオン二次電池の負極活物質として炭素材料の理論容量を大きく超える充放電容量を持つ次世代の負極活物質の開発が進められている。例えば、珪素(Si)や錫(Sn)などリチウム(Li)と合金化可能な金属を含む材料が期待されている。
 これらのSiやSnなどの活物質は電子伝導性が悪い。負極の導電性が悪いと、電極の内部抵抗が上がるため、サイクル特性が劣化する。そのため、導電材として黒鉛やカーボンブラック等の炭素材を活物質層に添加するのが一般的である。しかし、導電材として炭素材を用いても、ある程度の添加量超えると最早抵抗が下がらなくなることが分かってきた。
 特に、SiやSnなどを活物質に用いる場合、これらの材料は、充放電時のLiの吸蔵・放出に伴う体積変化が大きいため、集電体と活物質との接着状態を良好に維持することが難しい。また、これらの材料はLiの挿入、脱離に伴う体積変化率が非常に大きく、充放電サイクルによって膨張、収縮を繰り返し、活物質粒子が微粉化したり、脱離したりするため、サイクル劣化が非常に大きいという欠点がある。
 特許文献1(特許4583149号)に開示されている銅箔はフィルム(高分子材
料)とラミネートするフレキシブルプリント配線板(FPC)用に開発されたもので、フィルムとラミネートに必要な180℃×1時間の熱処理には耐え、高い引張強さを有する。しかしながら、そのようなFPC用銅箔は、電池用集電体としては通常350℃×1時間の熱処理に耐える必要性があり、該銅箔をこのような温度に曝すと結晶が粗大化して、加熱後引張強さを300MPa以上に維持できなくなるため、かかる銅箔を二次電池用集電体として採用することはできない。その理由は、リチウムイオン二次電池用集電体表面には活物質、導電材とバインダの混合物に溶剤などを加えてペースト状に調製した活物質組成物が塗布され、乾燥工程を経て、リチウムイオン二次電池の負極となるが、その乾燥工程において、通常350℃×1時間の熱処理が必要となるためである。前記FPC用銅箔をそのままで使用すると、銅箔の結晶が粗大化して、加熱後の引張強さが300MPa以上を維持できなくなるため、活物質の充放電サイクルによる膨張、収縮に耐えられず、銅箔が破断してしまう可能性がある。
 特許文献2(特許公開2004-79523号公報)にはピッチコークス材料を用いた活物質が開示されている。ここに開示されている活物質は、充放電時のLiの吸蔵・放出に伴う体積変化がSiまたはSn合金系より小さいことが近年の研究で分かってきた。しかし、銅箔の表面粗さは極めて低く平滑の表面であるため、この様な銅箔をピッチコークス材料を用いた活物質に適用すると、充放電時のLiの吸蔵・放出に伴う銅箔の体積変化がコークス材料より大きいため、銅箔と活物質の剥離が発生して、活物質との接触面積が低下し、充放電できなくなる恐れがある。
 特許文献3(特許公開2010-282959号公報)に開示されている銅箔は、活物質と銅箔の密着性をあげるため、銅箔の両面を粗化してその対応を図っている。銅箔表面の粗化により活物質と銅箔の剥離の問題は解決できる。しかしながら、該銅箔の表裏両面の粗度の差については考慮されていず、特にSiまたSn合金の活物質は、極めて粒径が小さいため、必ずしも表裏両面に均一に活物質を塗布できるとは限らず、充放電による活物質の膨張と収縮によって、銅箔が変形し、しわなどが発生して電池として使えなくなる恐れがある。
 非特許文献1(Lakshmananら、「銅の電解採取における塩素イオンの影響」Journal of Applied Electrochemistry 7 (1977) 81-90)には、銅箔の表面状態は電流密度に依存すると開示している。即ち、製箔工程において、塩素イオン0ppmで、より低い電流密度に抑えることにより、平滑な表面が得られる、と開示している。
 また、非特許文献2(Andersonら、「酸電着銅の抗張力特性」Journal of Applied Electrochemistry 15(1985) 631-637)は、Fig7.に開示しているように、硫酸銅メッキ浴中の塩素イオン濃度が0ppmのとき、初期の最大抗張力は高いが、伸びが低く、塩素イオン濃度が5ppmになると初期の最大抗張力は著しく低下し、最大抗張力反比例して伸びが著しく大きくなることを開示している。そして、塩素イオン濃度を10ppm以上に添加すると最大抗張力と伸び率は反比例しながら緩やかな変化を示すことを示唆している。
 上記の文献に開示された技術により、電流密度を制御することによって、表面粗さを変えることができ、また、最大抗張力を高めても、伸びが著しく劣化しない電解銅箔を得るため、塩素イオンは5ppm以上で製箔することが望ましく、塩素イオンが10ppm以上で製箔することがより望ましい、との示唆が読みとれる。しかし、それらの文献には、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率3.0%以上の銅箔を得るための詳細な技術については開示されていない。
特許4583149号公報 特開2004-79523号公報 特開2010-282959号公報
Lakshmananら、「銅の電解採取における塩素イオンの影響」Journal of Applied Electrochemistry 7 (1977) 81-90 (Andersonら、「酸電着銅の抗張力特性」Journal of Applied Electrochemistry 15(1985) 631-637、Fig7
 リチウムイオン二次電池における重要な特性の一つに充放電サイクル寿命と過充電特性があり、更なる特性向上が求められている。
 充放電サイクル寿命とは充放電を繰り返すと膨張収縮によるストレスなどによって集電体(銅箔)と活物質との接触が悪くなり、一部の活物質が充放電に利用できない電気伝導度になって容量の劣化を引き起こすに至る寿命である。
 過充電特性とは、過充電が行われた際、集電体(銅箔)の経時的劣化による亀裂や破断が発生しないことを要求するものである。
 結晶組織を微細化し、表面粗さを小さくした前記特許文献1、特許文献2の公報に記載の電解銅箔は、特にSi又はSn合金系活物質に対して銅箔と活物質の剥離が発生して、充放電サイクル寿命、過充電特性の面で市場の要求に対して十分とはいえない状況にある。
 また銅箔の表面を粗化して、表面粗さRzが1.5~20μmにした銅箔では、特に電池の負極を製造するためにSi又はSn合金系活物質を含有するスラリーを厚く、均一に塗布できない場合があり、銅箔に亀裂、しわ、変形などを起す可能性がある。
 充放電サイクル寿命および過充電特性に影響する銅箔の特性としては、特に350℃×1時間熱処理後の伸び特性が優れる銅箔が求められている。
 そこで本発明は、銅箔の光沢面に粗化処理を施し、銅箔両面(S面、M面)それぞれの表面積比(実際の表面積/幾何面積)が1.6~2.2を有し、350℃×1時間熱処理後の引張強さ300MPa以上、伸び率3.0%以上である電解銅箔を提供することを目的とする。電解銅箔の両面を粗化する事により表面積比を制御することも周知の技術であるが、マット面(粗面)側に粗化処理を施す事により銅箔の重量が増加し電池のエネルギー密度が低下すると言った欠点がある。一般に電解銅箔の光沢面はカソードに用いるチタン製回転ドラムのレプリカとなる為、平滑であり粗化処理を施さないと活物質との密着性が悪い。しかし、マット面(粗面)は電解液の添加剤により表面粗度や表面形状が決定する。本発明の表面の特徴は電解液中の添加剤成分及び濃度及び液温、電密を制御する事によりマット面(粗面)の表面積、Sm、Rz、Raを制御しマット面側の粗化処理を不要とし、S面側にのみ粗化処理を施すことにより電池特性に優れた銅箔を提供することである。
 また、本発明は、Si又はSn合金系活物質の大きな膨張、収縮に対して、集電体(銅箔)と活物質との密着性を保持しながら、集電体(銅箔)が破断しない銅箔を提供することを目的とし、さらにその電解銅箔を集電体とするリチウムイオン二次電池を提供することを目的とする。
 本発明の電解銅箔は、光沢面が粗化された電解銅箔であって、該銅箔の350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率が3.0%以上、銅箔両面(M面、S面)のそれぞれの表面積比(実際の表面積/幾何面積)が1.6~2.2である電解銅箔である。
 本発明の電解銅箔は、常態(常温常圧状態)での引張り強さが500MPa以上であることが好ましい。
 本発明のリチウムイオン二次電池は、該リチウムイオン二次電池を構成する負極集電体が前記本発明の電解銅箔であることを特徴とする。
 本発明の電解銅箔の製造方法は、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸びが3.0%以上の電解銅箔の製造方法であって、該電解銅箔を製箔する電解液は、Nを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として1~20ppm、塩素イオンを10ppm~80ppm添加した硫酸銅系電解液であることを特徴とする。
 本発明は、350℃×1時間熱処理後、引張強さ300MPa以上、伸び3.0%以上である電解銅箔を提供することができ、その結果、Si又はSn合金系活物質の大きな膨張、収縮に対して、集電体(銅箔)と活物質との密着性を保持しながら、集電体(銅箔)が破断しない電解銅箔を提供できる。
 また、本発明は、該電解銅箔を負極集電体とすることで、優れたリチウ
ムイオン二次電池を提供することができる。
図1はリチウムイオン二次電池を説明するための部分正面図である。
 非水電解液二次電池、たとえば、リチウムイオン二次電池は、図1に示すように、正極集電体1に正極活物質2を塗布してなる正極3と、負極集電体4に負極活物質5を塗布してなる負極6とから構成される。
 そして、このリチウムイオン二次電池は、正極3、セパレータ7、負極6、セパレータ7をこの順に積層して積層電極体とし、この積層電極体を多数回巻回されてなる渦巻式電極体の上下に絶縁体8、9を配置した状態で電池缶10に収納してなるものである。
 リチウムイオン二次電池を構成する負極電極6は、銅箔からなる集電体4に活物質5を塗布、乾燥して構成する。
 本発明の負極集電体4用電解銅箔は、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率3.0%以上の電解銅箔である。
 上述したように、リチウムイオン二次電池の負極集電体4を構成する電解銅箔は、通常350℃×1時間の熱処理に耐える必要性がある。即ち、リチウムイオン二次電池用の負極集電体6の表面には活物質、導電材とバインダの混合物に溶剤などを加えてペースト状に調製した活物質組成物が塗布され、乾燥工程を経て、リチウムイオン二次電池の負極6とするが、その乾燥工程において、通常350℃×1時間の熱処理を必要とする。この乾燥工程の加熱条件に耐え、かつ活物質の充放電サイクルによる膨張、収縮に耐える銅箔としては、350℃×1時間加熱後の引張り強さが300MPa以上、好ましくは500MPa以上で、伸び率3.0%以上の電解銅箔とする必要がある。
 また、電解銅箔の光沢面のみ粗化処理を行い、両表面(S面、M面)のSm(うねりの平均間隔)を16μm~28μmとすることが好ましい。また、銅箔両面のそれぞれの表面積比(実際の表面積/幾何面積)が1.6~2.2とする。
 上記条件を満足する電解銅箔は、次のようにして製箔する。
 即ち、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸びが3.0%以上の電解銅箔の製造方法は、該電解銅箔を製箔する電解液は、窒素(N)を含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppm、ヒドロキシエチルセルロース若しくは低分子量膠を0~12ppm、塩素イオンを10ppm~80ppm添加した硫酸銅系電解液である。
 電解液に添加する上記有機添加剤の量を3~20ppmとするのは3ppm未満では銅箔の初期強度及び加熱後の強度が目標とする値を得られない為である。また、有機添加剤の量が20ppm以上となると銅箔の強度が著しく向上するものの脆くなり、伸びが3.0%以下となって好ましくなく、3~20ppmとすることが好ましい。
 Nを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppmを添加した電解液にヒドロキシエチルセルロース(HEC)若しくは低分子量膠(PBF)を0~12ppm添加することが好ましい。ヒドロキシエチルセルロース若しくは低分子量膠を添加することにより350℃×1時間加熱後の強度がより向上する。即ち、上記有機添加剤のみで加熱後の強度が得られない場合は、ヒドロキシエチルセルロース若しくは低分子量膠を添加することで350℃×1時間加熱後の強度が400MPaを越える銅箔を得られる。
 なお、HEC、PBFの添加量が12ppmを超えると銅箔の350℃×1時間加熱後の伸びが3.0%以下となり好ましくなく、添加量は0~12ppmとすることが好ましい。勿論、HEC、PBFを合わせて添加しても同様の効果が得られる。
 電解液に添加する塩素の量は10~80ppmである。上記非特許文献2(Andersonの論文)に開示された内容により塩素イオンは10ppm以上であれば、塩素イオンの添加量を増加するのに従って、最大抗張力も低下し、伸びは緩やかな増加となるとの開示がなされている。下記の実施例、比較例では、塩素添加量を10ppm以下、30ppm、80ppmで実施した。塩素イオンが10ppm以下の添加では、350℃×1時間加熱後の引張り強さが300MPa以下となり、また、塩素イオンを80ppm添加すると、表面粗さが大きくなり、100サイクル後の電池特性を悪くする傾向にあるが、80ppmまでは電池用銅箔として支障のない範囲であった。従って、塩素イオンは10~80ppm、好ましくは80ppmを超えない量で添加することが好ましい。
 電解銅箔は、下記実施例1に示す硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度40~55A/dm、液温45~60℃の条件で電解処理することで製箔する。
 本発明の一実施形態ではS面に粗化処理を施す。S面に施す粗化処理条件は、M面の表面粗さと粗化後のS面の表面粗さとが近似するように施す。例えば電流密度40~55A/dm、また浴温度45~60℃の条件でS面を粗化処理することで表面粗さ(Rz)、(Sm)、表面積比をM面と同じ表面状態に改善することができる。
 以下、本発明を実施例に基づいて詳細に説明する。
〈実施例1~15、比較例1~6〉
 下記硫酸銅電解浴に表1に示す量のNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物及びヒドロキシエチルセルロース(HEC)若しくは低分子量膠 (PBF)を添加した組成の電解液にチタンドラムをセットし、下記電解条件で電解銅箔を製膜した。
 硫酸銅電解浴組成;
銅(Cu)     70g/l
硫酸(H2SO4)  50g/l
塩素イオン     30ppm
 電解条件;
電流密度    40A/dm
温度      45℃
Figure JPOXMLDOC01-appb-T000001
 次にドラム側のS面のみ粗化めっきを施した。粗化めっきの条件は以下の通りである。粗化処理:
(A)粗化処理の焼けめっき:
 銅30g/dm、硫酸150g/dmを主成分とする電解液中で、表2に示す様にMo、Fe、Ni、Co、Ti、Bi、W等の金属元素を0.1~2000mg/l含む電解浴で加温することなく、電流密度10~20A/dmの範囲において、電解時間を適宜選択し、予め決定した所定の表面形状を得る条件によりカソード電解した。
Figure JPOXMLDOC01-appb-T000002
 上述した金属元素を含む電解浴で光沢面に焼けめっきを行うのは粗化の粒子を均一にし、粗化粒子の脱落を防ぐためであり、また、金属元素を含む電解浴で焼けめっきを行うことにより加熱後の粗化粒子の強度低下を防ぐためで、未処理の析出面(マット面)との硬度の差を少なくするためである。
 (B)粗化処理の平滑状銅めっき(カプセルめっき):
 銅70g/dm、硫酸100g/dmを主成分とし液温40℃に保った電解液中で、電流密度5~10A/dmの範囲において、予め(A)の条件と共に決定した所定の表面形状を得る電解時間を適宜選択した条件によりカソード電解した。
 本実施例の電解銅箔を電池用集電体として使用する時には、前記(A)、(B)の粗化処理後の粗化粒子の粒径を0.1~2.0μm程度とすることが好ましい。0.1μmより小さいと活物質とのアンカー効果が弱くなり、電池のサイクル特性が良くないためである。逆に粗化粒子の粒径が2.0μmを超えると活物質が粗化粒子の奥まで入り込まず、銅箔の界面と活物質の界面にボイドが発生することになり、電池のサイクル特性を悪化しやすくするためである。このため、粗化粒子の粒径は0.1~2.0μmの範囲が好ましい。
 また、この光沢面側に析出させる粗化粒子層の厚みは0.3~2.0μmが好ましい。0.3μm未満では粗化により表面積をコントロールすることが困難であり、2.0μmを越えても粗化による影響には殆ど差が見られず、逆に粗化粒子の重量が増加することにより電池の重量あたりのエネルギー密度が低下するためである。
 このようにして製箔、粗化処理した電解銅箔に下記条件で防錆処理を施した。
 未処理電解銅箔をCrO;1g/l水溶液に5秒間浸漬して、クロメート処理を施し、水洗後乾燥させた。
 なお、ここでは、クロメート処理を行ったが、ベンゾトリアゾール系処理、或いはシランカップリング剤処理、又はクロメート処理後にシランカップリング剤処理を行ってもよいことは勿論である。
〈実施例16、17〉〈比較例7、8〉
 表3に示す電解液組成、電解条件で電解銅箔を作成した。
 このようにして製箔した未処理銅箔に前記実施例1と同様の表面処理を行った。
Figure JPOXMLDOC01-appb-T000003
 各実施例、比較例で得られた電解銅箔に表2、表4に示す組合せの粗化処理条件で光沢面(S面)を粗化処理し、粗化処理面の表面積、Sm及びマット面の表面粗さRz、Ra、Ry、Smを測定し、またS面、M面其々の幾何学面に対する表面積比を算出した。これらの測定は、たとえば、レーザマイクロスコープ(キーエンス製 VK-8700/9700)で50μm×50μm(2500μm)の視野を観察し、測定の結果2500μmであれば表面積比を1と規定した。これらの結果及び充放電効率を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 各実施例、比較例の製造直後の初期引張強さと初期伸び率を測定した。また、350℃×1時間後の引張強さと伸び率を、加熱処理後、測定した。測定結果を表1に示す。IPC-TM-650に基づき測定した。
 表1、表3から明らかなように、電解液に含有するNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の添加量が1~20ppmの範囲内であったために、製箔された電解銅箔の引張強度は300MPa以上で、伸び率も3%以上であり、期待値をクリアーした。
 一方、比較例1~6はNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の添加量が3~20ppmの範囲外であったために伸び率が3%以下であり、期待値をクリアーできなかった。
 また、各実施例では塩素イオンを30ppm添加している。しかし、塩素の添加による銅箔の特性に施す悪影響は、添加した有機添加剤の作用の方が大きいことがこの実施例の測定結果より実証できた。
 即ち、硫酸銅系電解液にNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppm、ヒドロキシエチルセルロース若しくは低分子量膠を0~12ppmを添加して、350℃×1時間熱処理後の引張り強さが300MPa以上、或は350℃×1時間加熱後の伸び率が3.0%以上であり、塩素イオンの添加による銅箔への悪影響が、有機添加剤の添加により打ち消された結果となっている。
 各実施例、比較例で作成した銅箔を集電体としてリチウム二次電池用負極を次のようにして作製した。
 粉末状のSi合金系活物質(平均粒径0.1μm~10μm)を使用した。このときに、Si合金系活物質を90重量%、結着材としてポリイミド系バインダを10重量%の割合で混合して負極合剤を調整した。次いで、この負極合剤を溶剤であるN-メチルピロリドンに分散させてスラリーにした。そして、このスラリーを実施例、比較例で製作した厚さ12μmの帯状の電解銅箔の両面に塗布し、乾燥後ローラープレス機で圧縮形成して、帯状負極とした。この帯状負極は、成形後の負極合剤の膜厚が両面共に90μmで同一であり、その幅が55.6mm、長さが551.5mmに形成された。
 次に、正極3は、次にようにして作製した。正極活物質(LiCoO2)は、炭酸リチウム0.5モルと炭酸コバルト1モルと混合し、空気中で900℃、5時間焼成してLiCoO2を得た。
 この正極活物質(LiCoO2)を91重量%、導電剤としてグラファイトを6重量%、結着剤としてポリフッ化ビニリデンを3重量%の割合で混合して正極合材を作製し、これをN-メチル-2ピロリドンに分散してスラリー状とした。次に、このスラリーを厚み20μmの帯状のアルミニウムからなる正極集電体1の両面に均一に塗布し、乾燥後ローラープレス機で圧縮成形して厚み160μmの帯状正極を得た。この帯状正極は、成形後の正極合剤の膜厚が表面共に70μmであり、その幅が53.6mm、長さが523.5mmに形成された。
 このようにして作製された帯状正極と、帯状負極と、厚さが25μm、幅が58.1mmの微多孔性ポリプロピレンフィルムよりなるセパレータ7と積層し、積層電極体とした。この積層電極体は、その長さ方向に沿って負極6を内側にして渦巻型に多数回巻回し、最外周セパレータの最終端部をテープで固定し、渦巻式電極体とした。この渦巻式電極体の中空部分は、その内径が、3.5mm、外形が17mmに形成されている。
 上述のように作製された渦巻式電極体を、その上下両面に絶縁板が設置された状態で、ニッケルメッキが施された鉄製の電池缶に収納した。そして、正極及び負極の集電を行うために、アルミニウム製の正極リードを13正極集電体1から導出して電池蓋11に接続し、ニッケル製の負極リードを負極集電体4から導出して電池缶に接続した。
 この渦巻式電極体が収納された電池缶に、プロピレンカーボネイトとジエチルカーボネイトとの等容量混合した溶媒中にLiPF6を1モル/lの割合で溶解した非水電解液5.0gを注入した。次いで、アスファルトで表面を塗布された絶縁封口ガスケット12を介して電池缶をかしめて電池蓋11を固定し、電池缶内の気密性を保持させた。
 以上のようにして、直径18mm、高さ65mmの円筒形非水電解液(リチウムイオン)二次電池を作製し、この非水電解液(リチウムイオン)二次電池における負極の評価を次の方法により温度25℃で行った。
 充放電試験(活物質と集電体の密着性の評価)
初回条件
 充電:0.1C相当電流で定電流充電し、0.02V(対Li/Li+)到達後、定電位充電し、充電電流が0.05C相当に低下した時点で終了した。
 放電:0.1C相当電流で定電流放電し、1.5Vになった時点で終了した。
充放電サイクル条件
 初回充放電試験を実施した後、同じ0.1C相当電流で100サイクルまで充放電を繰り返した。
 この電解銅箔を負極集電体材料として用いた電極について、充放電100サイクル後、放電容量保持率30%以上を合格とし○で、それ以外を不合格として×で、表1に示した。
 なお、100サイクル後の放電容量保持率は次式で示す。
(100サイクル後放電容量保持率%)=[(100サイクル後の放電容量)/(最大放電容量)]×100
 表1から明らかなように、実施例1~15は電解銅箔を製箔する硫酸銅系電解液にNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の添加量が3~20ppm、ヒドロキシエチルセルロース若しくは低分子量膠を0~12ppmを添加し、塩素イオンを30ppm添加したことで、350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸びが3.0%以上の電解銅箔を製造することがで、この銅箔を集電体としたリチウムイオン二次電池も高い性能を発揮した。
 一方、比較例1~6はNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の添加量が3~20ppmの範囲外であったために伸び率が3%以下であり、期待値をクリアーできなかった。
 上記のように比較例1~6は加熱後の引張り強度、伸び率が期待値をクリアーできなかったために、リチウムイオン二次電池の集電体としても満足な結果を示すことがなかった。
 塩素イオンの添加量は、銅箔の特性に影響するが、これ以上に有機添加剤の作用も大きいことが実証できた。本発明は、硫酸銅系電解液にNを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤として3~20ppm、ヒドロキシエチルセルロース若しくは低分子量膠を0~12ppmを添加して、350℃×1時間熱処理後の引張り強さが300MPa以上、或は350℃×1時間加熱後の伸び率が3.0%以上であるリチウムイオン二次電池の集電体として特に好ましい電解銅箔を提供することができた。
 また、上記の活物質SiをSnに代えて同様の評価を行った。その結果は、活物質Siを使用したリチウムイオン二次電池と同等の性能を有することが確認できた。
  1  :正極集電体
  2  :正極活物質
  3  :正極
  4  :負極集電体
  5  :負極活物質
  6  :負極
  7  :セパレータ
  8、9:絶縁体
  10 :電池缶
  11 :電池蓋
  12 :ガスケット
  13 :正極リード

Claims (7)

  1.  表面粗化された電解銅箔であって、該銅箔の350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸び率が3.0%以上、銅箔両面の表面積比(実際の表面積/幾何面積)がそれぞれ1.6~2.2である、電解銅箔。
  2.  常温常圧状態での引張り強さが500MPa以上である請求項1に記載の電解銅箔。
  3.  前記粗化された面の粗化粒子の平均粒子径が0.1~2.0μmである請求項1~2に記載の電解銅箔。
  4.  前記粗化された面の粗化処理層の厚さが0.3~2μmである請求項1~3に記載の電解銅箔。
  5.  前記粗化された面が電解銅箔の光沢面であることを特徴とする請求項1~4に記載の電解銅箔。
  6.  平面状集電体の表面に電極構成活物質層が形成されてなる正極及び負極を備えるリチウムイオン二次電池において、負極集電体は請求項1~5に記載の電解銅箔からなる、リチウムイオン二次電池。
  7.  350℃×1時間加熱後の引張り強さが300MPa以上、350℃×1時間加熱後の伸びが3.0%以上の電解銅箔の製造方法であって、
     該電解銅箔を製箔する電解液は、Nを含む複素環にSH基が結合した構造を有する化合物若しくはチオ尿素系化合物から選ばれる1以上の化合物の有機添加剤を1~20ppm、塩素イオンを10ppm~80ppm添加した硫酸銅系電解液である、電解銅箔の製造方法。
PCT/JP2012/066421 2011-06-30 2012-06-27 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池 WO2013002279A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013522908A JP5379928B2 (ja) 2011-06-30 2012-06-27 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
CN201280031824.4A CN103649378B (zh) 2011-06-30 2012-06-27 电解铜箔、该电解铜箔的制造方法、以及将该电解铜箔作为集电体的锂离子二次电池
US14/129,138 US9966608B2 (en) 2011-06-30 2012-06-27 Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector
KR1020147002267A KR20140041804A (ko) 2011-06-30 2012-06-27 전해 동박, 상기 전해 동박의 제조 방법 및 상기 전해 동박을 집전체로 하는 리튬 이온 이차 전지
KR1020167032744A KR20160138321A (ko) 2011-06-30 2012-06-27 전해 동박, 상기 전해 동박의 제조 방법 및 상기 전해 동박을 집전체로 하는 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011145382 2011-06-30
JP2011-145382 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002279A1 true WO2013002279A1 (ja) 2013-01-03

Family

ID=47424169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066421 WO2013002279A1 (ja) 2011-06-30 2012-06-27 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US9966608B2 (ja)
JP (1) JP5379928B2 (ja)
KR (2) KR20160138321A (ja)
CN (1) CN103649378B (ja)
TW (1) TWI526578B (ja)
WO (1) WO2013002279A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993984A (ja) * 1982-11-17 1984-05-30 Fuji Electric Co Ltd 水封式ポンプ装置
WO2014115681A1 (ja) * 2013-01-24 2014-07-31 古河電気工業株式会社 電解銅箔とその製造方法
WO2014119582A1 (ja) * 2013-01-29 2014-08-07 古河電気工業株式会社 電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を用いたリチウムイオン二次電池
WO2014119656A1 (ja) * 2013-01-31 2014-08-07 三井金属鉱業株式会社 電解銅箔、その電解銅箔の製造方法及びその電解銅箔を用いて得られる表面処理銅箔
WO2015033917A1 (ja) * 2013-09-05 2015-03-12 三井金属鉱業株式会社 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板
JP2016121394A (ja) * 2014-12-23 2016-07-07 エル エス エムトロン リミテッドLS Mtron Ltd. 電解銅箔、これを含むfccl及びccl
JP2016537514A (ja) * 2013-11-08 2016-12-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 電解銅箔、並びにこれを含む電気部品及び電池
JPWO2014112619A1 (ja) * 2013-01-18 2017-01-19 古河電気工業株式会社 電解銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池
JP2017505385A (ja) * 2013-12-30 2017-02-16 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 銅箔、これを含む電気部品及び電池
JP2018519633A (ja) * 2015-06-26 2018-07-19 エル エス エムトロン リミテッドLS Mtron Ltd. リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池
US10050256B2 (en) 2014-11-27 2018-08-14 Toyota Jidosha Kabushiki Kaisha Method of manufacturing positive electrode for lithium ion secondary battery
WO2018155972A3 (ko) * 2017-02-27 2018-12-20 케이씨에프테크놀로지스 주식회사 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2019198337A1 (ja) * 2018-04-13 2019-10-17 東洋鋼鈑株式会社 積層電解箔

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018396A1 (fr) * 2014-03-04 2015-09-11 Commissariat Energie Atomique Procede de fabrication d'une cellule electrochimique elementaire a electrode a gaz du type metal-gaz et cellule associee
KR102392045B1 (ko) * 2014-12-23 2022-04-28 에스케이넥실리스 주식회사 전해 동박, 그리고 이를 포함하는 fccl 및 ccl
WO2017018655A1 (ko) * 2015-07-24 2017-02-02 엘에스엠트론 주식회사 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
KR102136784B1 (ko) 2015-07-24 2020-07-22 케이씨에프테크놀로지스 주식회사 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
KR102473557B1 (ko) * 2015-09-24 2022-12-01 에스케이넥실리스 주식회사 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2017051767A1 (ja) * 2015-09-25 2017-03-30 古河電気工業株式会社 電解銅箔、その電解銅箔を用いた各種製品
JP6067910B1 (ja) * 2015-11-04 2017-01-25 古河電気工業株式会社 電解銅箔、その電解銅箔を用いたリチウムイオン二次電池
KR102218889B1 (ko) * 2016-06-14 2021-02-22 후루카와 덴키 고교 가부시키가이샤 전해 동박, 리튬 이온 2차 전지용 부극 전극 및 리튬 이온 2차 전지 그리고 프린트 배선판
KR101733408B1 (ko) 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 이차전지용 전해동박 및 그의 제조방법
KR101734840B1 (ko) * 2016-11-11 2017-05-15 일진머티리얼즈 주식회사 내굴곡성이 우수한 이차전지용 전해동박 및 그의 제조방법
KR101733409B1 (ko) 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 이차전지용 전해동박 및 그의 제조방법
KR101733410B1 (ko) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 저온 물성이 우수한 이차전지용 전해동박 및 그의 제조방법
KR101755203B1 (ko) 2016-11-11 2017-07-10 일진머티리얼즈 주식회사 이차전지용 전해동박 및 그의 제조방법
KR102180926B1 (ko) 2017-06-28 2020-11-19 에스케이넥실리스 주식회사 우수한 작업성 및 충방전 특성을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
US10205170B1 (en) * 2017-12-04 2019-02-12 Chang Chun Petrochemical Co., Ltd. Copper foil for current collector of lithium secondary battery
KR102495166B1 (ko) * 2018-02-23 2023-02-06 후루카와 덴키 고교 가부시키가이샤 전해 동박, 그리고 당해 전해 동박을 이용한 리튬 이온 2차 전지용 부극, 리튬 이온 2차 전지, 동 클래드 적층판 및 프린트 배선판
KR102103765B1 (ko) * 2018-05-16 2020-04-28 일진머티리얼즈 주식회사 전해동박 및 이를 이용한 이차전지
JP6524309B1 (ja) 2018-05-18 2019-06-05 株式会社エフ・シー・シー 燃料電池システム
ES2933128T3 (es) * 2018-08-10 2023-02-01 Sk Nexilis Co Ltd Lámina de cobre que tiene características de docilidad y carga/descarga mejoradas, electrodo que incluye la misma, batería secundaria que incluye la misma y método para fabricar la misma
TWI660541B (zh) * 2018-10-01 2019-05-21 長春石油化學股份有限公司 用於鋰二次電池集電體之銅箔及包含其之負極
US11365486B2 (en) 2018-10-16 2022-06-21 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
TWI656682B (zh) * 2018-10-16 2019-04-11 長春石油化學股份有限公司 電解銅箔、包含其的電極、及包含其的鋰離子電池
TWI731330B (zh) * 2019-04-30 2021-06-21 南亞塑膠工業股份有限公司 電解銅箔、其製造方法、及鋰離子二次電池
CN111485260B (zh) * 2020-04-30 2020-12-08 广东嘉元科技股份有限公司 二次电池用低翘曲电解铜箔、制造方法
CA3172019A1 (en) * 2021-10-07 2023-04-07 Circuit Foil Luxembourg Copper foil with high energy at break and secondary battery comprising the same
KR20230062081A (ko) * 2021-10-29 2023-05-09 롯데에너지머티리얼즈 주식회사 이차전지 집전체용 전해동박
CN116516425B (zh) * 2023-05-17 2023-12-19 安徽铜冠铜箔集团股份有限公司 一种电解高阶通讯用极低轮廓电子铜箔的制作方法及应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (ja) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd 電解銅箔及びその製造方法
JP2001123290A (ja) * 1999-10-27 2001-05-08 Dowa Mining Co Ltd 電解銅箔とその製造方法
JP2001189154A (ja) * 2000-01-06 2001-07-10 Hitachi Maxell Ltd リチウム二次電池
JP2005197205A (ja) * 2003-12-12 2005-07-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極集電体
JP2008101267A (ja) * 2006-04-28 2008-05-01 Mitsui Mining & Smelting Co Ltd 電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法
JP2008226800A (ja) * 2007-03-16 2008-09-25 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池負極集電体用銅箔およびその製造方法
JP2008285751A (ja) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板
JP2009221592A (ja) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd 電解銅箔及びその電解銅箔の製造方法
JP2009299100A (ja) * 2008-06-10 2009-12-24 Mitsui Mining & Smelting Co Ltd 電解銅箔及びその電解銅箔の製造方法
WO2010110205A1 (ja) * 2009-03-24 2010-09-30 古河電気工業株式会社 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
JP2011174146A (ja) * 2010-02-25 2011-09-08 Fukuda Metal Foil & Powder Co Ltd 電解銅箔及びその製造方法
JP2012033475A (ja) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
WO2012091060A1 (ja) * 2010-12-27 2012-07-05 古河電気工業株式会社 リチウムイオン二次電池、その二次電池用電極、その二次電池の電極用電解銅箔

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431803A (en) 1990-05-30 1995-07-11 Gould Electronics Inc. Electrodeposited copper foil and process for making same
JP3628585B2 (ja) * 2000-04-05 2005-03-16 株式会社日鉱マテリアルズ 銅張り積層板及び銅張り積層板のレーザーによる穴開け方法
JP3794613B2 (ja) * 2000-05-18 2006-07-05 三井金属鉱業株式会社 電解銅箔の電解装置
JP4413552B2 (ja) 2002-08-01 2010-02-10 古河電気工業株式会社 電解銅箔および二次電池集電体用電解銅箔
KR100389061B1 (ko) * 2002-11-14 2003-06-25 일진소재산업주식회사 전해 동박 제조용 전해액 및 이를 이용한 전해 동박 제조방법
TW200424359A (en) * 2003-02-04 2004-11-16 Furukawa Circuit Foil Copper foil for high frequency circuit, method of production and apparatus for production of same, and high frequency circuit using copper foil
CN1226621C (zh) * 2003-03-28 2005-11-09 中国石油化工股份有限公司 一种色-质联用预测原油馏分性质的方法
JP4583149B2 (ja) 2004-12-01 2010-11-17 三井金属鉱業株式会社 電解銅箔及びその製造方法
JP4910297B2 (ja) * 2005-03-17 2012-04-04 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法およびそれを用いたリチウムイオン二次電池
WO2007125994A1 (ja) 2006-04-28 2007-11-08 Mitsui Mining & Smelting Co., Ltd. 電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法
JP5356309B2 (ja) 2009-05-08 2013-12-04 古河電気工業株式会社 2次電池用負極、電極用銅箔、2次電池および2次電池用負極の製造方法
CN102959135B (zh) * 2010-07-01 2016-03-09 三井金属矿业株式会社 电解铜箔以及其制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (ja) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd 電解銅箔及びその製造方法
JP2001123290A (ja) * 1999-10-27 2001-05-08 Dowa Mining Co Ltd 電解銅箔とその製造方法
JP2001189154A (ja) * 2000-01-06 2001-07-10 Hitachi Maxell Ltd リチウム二次電池
JP2005197205A (ja) * 2003-12-12 2005-07-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極集電体
JP2008101267A (ja) * 2006-04-28 2008-05-01 Mitsui Mining & Smelting Co Ltd 電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法
JP2008226800A (ja) * 2007-03-16 2008-09-25 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池負極集電体用銅箔およびその製造方法
JP2008285751A (ja) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板
JP2009221592A (ja) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd 電解銅箔及びその電解銅箔の製造方法
JP2009299100A (ja) * 2008-06-10 2009-12-24 Mitsui Mining & Smelting Co Ltd 電解銅箔及びその電解銅箔の製造方法
WO2010110205A1 (ja) * 2009-03-24 2010-09-30 古河電気工業株式会社 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
JP2011174146A (ja) * 2010-02-25 2011-09-08 Fukuda Metal Foil & Powder Co Ltd 電解銅箔及びその製造方法
JP2012033475A (ja) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
WO2012091060A1 (ja) * 2010-12-27 2012-07-05 古河電気工業株式会社 リチウムイオン二次電池、その二次電池用電極、その二次電池の電極用電解銅箔

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993984A (ja) * 1982-11-17 1984-05-30 Fuji Electric Co Ltd 水封式ポンプ装置
JPWO2014112619A1 (ja) * 2013-01-18 2017-01-19 古河電気工業株式会社 電解銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池
KR101660201B1 (ko) 2013-01-24 2016-09-26 후루카와 덴키 고교 가부시키가이샤 전해 구리박과 그 제조 방법
WO2014115681A1 (ja) * 2013-01-24 2014-07-31 古河電気工業株式会社 電解銅箔とその製造方法
JP5706045B2 (ja) * 2013-01-24 2015-04-22 古河電気工業株式会社 電解銅箔とその製造方法
KR20150107735A (ko) * 2013-01-24 2015-09-23 후루카와 덴키 고교 가부시키가이샤 전해 구리박과 그 제조 방법
WO2014119582A1 (ja) * 2013-01-29 2014-08-07 古河電気工業株式会社 電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を用いたリチウムイオン二次電池
TWI588301B (zh) * 2013-01-29 2017-06-21 Furukawa Electric Co Ltd Electrodeposited copper foil, electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same
JP5740055B2 (ja) * 2013-01-29 2015-06-24 古河電気工業株式会社 電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を用いたリチウムイオン二次電池
KR101675706B1 (ko) 2013-01-29 2016-11-11 후루카와 덴키 고교 가부시키가이샤 전해 동박, 그 전해 동박을 사용한 리튬 이온 이차 전지용 전극, 그 전극을 사용한 리튬 이온 이차 전지
KR20150114459A (ko) * 2013-01-29 2015-10-12 후루카와 덴키 고교 가부시키가이샤 전해 동박, 그 전해 동박을 사용한 리튬 이온 이차 전지용 전극, 그 전극을 사용한 리튬 이온 이차 전지
JPWO2014119656A1 (ja) * 2013-01-31 2017-01-26 三井金属鉱業株式会社 電解銅箔、その電解銅箔の製造方法及びその電解銅箔を用いて得られる表面処理銅箔
KR20190006075A (ko) * 2013-01-31 2019-01-16 미쓰이금속광업주식회사 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박
KR20150114484A (ko) * 2013-01-31 2015-10-12 미쓰이금속광업주식회사 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박
CN104955988A (zh) * 2013-01-31 2015-09-30 三井金属矿业株式会社 电解铜箔、该电解铜箔的制造方法及用该电解铜箔得到的表面处理铜箔
KR102272695B1 (ko) * 2013-01-31 2021-07-05 미쓰이금속광업주식회사 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박
WO2014119656A1 (ja) * 2013-01-31 2014-08-07 三井金属鉱業株式会社 電解銅箔、その電解銅箔の製造方法及びその電解銅箔を用いて得られる表面処理銅箔
KR102227681B1 (ko) * 2013-01-31 2021-03-15 미쓰이금속광업주식회사 전해 동박, 이 전해 동박의 제조 방법 및 이 전해 동박을 사용하여 얻어지는 표면 처리 동박
JP2018165411A (ja) * 2013-01-31 2018-10-25 三井金属鉱業株式会社 電解銅箔及びその電解銅箔を用いて得られる表面処理銅箔
WO2015033917A1 (ja) * 2013-09-05 2015-03-12 三井金属鉱業株式会社 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板
JPWO2015033917A1 (ja) * 2013-09-05 2017-03-02 三井金属鉱業株式会社 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板
JP2020109216A (ja) * 2013-09-05 2020-07-16 三井金属鉱業株式会社 表面処理銅箔の製造方法
JP2016537514A (ja) * 2013-11-08 2016-12-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 電解銅箔、並びにこれを含む電気部品及び電池
JP2017505385A (ja) * 2013-12-30 2017-02-16 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 銅箔、これを含む電気部品及び電池
US10050256B2 (en) 2014-11-27 2018-08-14 Toyota Jidosha Kabushiki Kaisha Method of manufacturing positive electrode for lithium ion secondary battery
JP2016121394A (ja) * 2014-12-23 2016-07-07 エル エス エムトロン リミテッドLS Mtron Ltd. 電解銅箔、これを含むfccl及びccl
US10218004B2 (en) 2015-06-26 2019-02-26 Kcf Technologies Co., Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
JP2018519633A (ja) * 2015-06-26 2018-07-19 エル エス エムトロン リミテッドLS Mtron Ltd. リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池
WO2018155972A3 (ko) * 2017-02-27 2018-12-20 케이씨에프테크놀로지스 주식회사 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
WO2019198337A1 (ja) * 2018-04-13 2019-10-17 東洋鋼鈑株式会社 積層電解箔
JP2019186134A (ja) * 2018-04-13 2019-10-24 東洋鋼鈑株式会社 積層電解箔
JP7085394B2 (ja) 2018-04-13 2022-06-16 東洋鋼鈑株式会社 積層電解箔

Also Published As

Publication number Publication date
TW201311940A (zh) 2013-03-16
US9966608B2 (en) 2018-05-08
TWI526578B (zh) 2016-03-21
JPWO2013002279A1 (ja) 2015-02-23
US20140199588A1 (en) 2014-07-17
CN103649378B (zh) 2016-12-14
CN103649378A (zh) 2014-03-19
KR20140041804A (ko) 2014-04-04
KR20160138321A (ko) 2016-12-02
JP5379928B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5379928B2 (ja) 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
JP6619457B2 (ja) 電解銅箔、それを含む集電体、それを含む電極、それを含む二次電池およびその製造方法
JP5718476B2 (ja) リチウムイオン二次電池用電解銅箔、リチウムイオン二次電池の負極電極及びリチウムイオン二次電池
JP3742144B2 (ja) 非水電解液二次電池及び非水電解液二次電池用の平面状集電体
JP3850155B2 (ja) 電解銅箔、二次電池の集電体用銅箔及び二次電池
TWI570277B (zh) An electrolytic copper foil, an electrolytic copper foil for a lithium ion secondary battery, an electrode for a lithium ion secondary battery using the electrolytic copper foil, and a lithium ion secondary battery using the electrode
TWI466367B (zh) A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
TWI516642B (zh) Electrolytic copper foil and secondary battery with negative current collector
US20100136434A1 (en) Electrolytic Copper Foil for Lithium Rechargeable Battery and Process for Producing the Copper Foil
WO2017217085A1 (ja) 電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板
JP2012038700A (ja) リチウム二次電池の集電体用銅箔
TWI490374B (zh) Electrolytic copper foil, and a secondary battery collector and a secondary battery using the same
KR20140051375A (ko) 피복층 부착 금속박 및 그 제조방법, 이차전지용 전극 및 그 제조방법, 및 리튬이온 이차전지
EP3404755A1 (en) Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same
KR101674840B1 (ko) 구리박, 비수 전해질 이차전지용 음극 및 비수 전해질 이차전지
JP4413552B2 (ja) 電解銅箔および二次電池集電体用電解銅箔
JPH1021928A (ja) 二次電池用電極材料
JP2013095954A (ja) 銅合金箔、該銅合金箔の製造方法及び該銅合金箔を集電体とするリチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6248233B1 (ja) 電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板
JP3850321B2 (ja) 二次電池
US10403898B2 (en) Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP2010205659A (ja) Liイオン二次電池負極材およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522908

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147002267

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14129138

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12803849

Country of ref document: EP

Kind code of ref document: A1