WO2010110205A1 - リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔 - Google Patents

リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔 Download PDF

Info

Publication number
WO2010110205A1
WO2010110205A1 PCT/JP2010/054803 JP2010054803W WO2010110205A1 WO 2010110205 A1 WO2010110205 A1 WO 2010110205A1 JP 2010054803 W JP2010054803 W JP 2010054803W WO 2010110205 A1 WO2010110205 A1 WO 2010110205A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
active material
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2010/054803
Other languages
English (en)
French (fr)
Inventor
昭利 鈴木
健作 篠崎
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN2010800095552A priority Critical patent/CN102326284A/zh
Priority to JP2010541360A priority patent/JPWO2010110205A1/ja
Publication of WO2010110205A1 publication Critical patent/WO2010110205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a lithium ion secondary battery comprising a positive electrode, a negative electrode having a negative electrode current collector formed on the surface of a negative electrode current collector, and a nonaqueous electrolyte.
  • the present invention relates to an electrode to be used and an electrolytic copper foil constituting a current collector of the electrode.
  • a lithium ion secondary battery comprising a positive electrode and a negative electrode current collector made of copper foil having a smooth surface is coated with carbon particles as a negative electrode active material layer, further pressed, and a non-aqueous electrolyte. Used for telephones, notebook computers, etc.
  • a so-called “untreated electrolytic copper foil” manufactured by electrolysis is subjected to a rust prevention treatment.
  • the copper foil as the negative electrode current collector for a lithium ion secondary battery has a reduced surface roughness difference between a glossy surface and a rough surface (both surfaces of the copper foil).
  • a decrease in charge / discharge efficiency of the battery is suppressed.
  • Patent Document 2 discloses a method for producing an electrolytic copper foil using a compound having a mercapto group added to an electrolytic solution, chloride ions, and a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide. ing.
  • the electrolytic copper foil produced by the above production method is coated with carbon particles on the surface of the copper foil, and further pressed to form a negative electrode current collector (electrode).
  • This electrolytic copper foil has a tensile strength of 300 to 350 N / mm 2 and is a suitable material in combination with appropriate elongation when used as an electrode copper foil using the carbon particles as an active material.
  • lithium ion secondary batteries that use aluminum, silicon, tin, or the like electrochemically alloyed with lithium during charging as a negative electrode active material have been proposed. (See Patent Document 3).
  • An electrode (negative electrode) for a lithium ion secondary battery for the purpose of increasing the capacity is obtained by depositing, for example, silicon on an amorphous silicon thin film or microcrystalline silicon thin film on a current collector such as a copper foil by CVD or sputtering. As it is deposited and formed. Since the thin film layer of the active material prepared by such a method is in close contact with the current collector, it has been found that it exhibits good charge / discharge cycle characteristics (see Patent Document 4). Recently, a forming method has also been developed in which powdered silicon is slurried with an imide-based binder in an organic solvent, coated on a copper foil, dried and pressed.
  • the volume of silicon active material expands by about 4 times due to occlusion of lithium ions during charging. Further, during discharge, lithium ions are released and contract. Therefore, a phenomenon in which the active material is pulverized and peeled off from the current collector due to expansion and contraction of the active material layer volume accompanying charging / discharging is observed.
  • the active material layer is in close contact with the current collector, when the volume of the active material layer expands and contracts due to repeated charge and discharge, a large stress acts on the current collector, and the current collector is wrinkled. When charging and discharging was repeated many times, there was a problem that the foil constituting the current collector was broken.
  • the negative electrode in which the active material mainly composed of silicon, germanium, or tin is deposited on the current collector is used as the electrode for the lithium ion secondary battery
  • the volume of the active material layer is increased due to the charge / discharge reaction.
  • the current collector expands and contracts, and a large stress acts on the current collector to cause deformation such as wrinkles in the current collector.
  • the foil as a current collector was broken.
  • the current collector is deformed, such as wrinkles, the volume occupied by the electrode increases when the electrode is stored in the battery, resulting in a problem that the energy density per volume decreases.
  • the current collector breaks stable battery performance cannot be maintained for a long time.
  • the present invention relates to a lithium ion secondary battery using a negative electrode in which an active material mainly composed of silicon, germanium, or tin, for example, is deposited on a current collector, and the current collector is free from wrinkles.
  • An object of the present invention is to provide a lithium ion secondary battery capable of maintaining stable performance for a long time without breakage, and to provide an electrode for the secondary battery and an electrolytic copper foil constituting the electrode. .
  • the electrolytic copper foil for a lithium ion secondary battery electrode of the present invention has a tensile strength of 400 N / mm 2 or more and an elongation of 4.5% or more and less than 13%, and electrochemically or chemically occludes lithium.
  • the surface roughness Ra of the surface on which the releasable active material layer is formed is 0.01 to 1 ⁇ m.
  • the surface of the electrolytic copper foil that forms the active material layer is preferably a surface roughened by a plating method, a vapor phase growth method, an etching method, or a polishing method. Further, the surface of the electrolytic copper foil forming the active material layer is particularly preferably a surface roughened with particles mainly composed of copper by a plating method.
  • the surface of the electrolytic copper foil forming the active material layer has a granular copper plating layer formed by copper burnt plating, and a dense copper plating (covering plating) that does not impair the uneven shape on the granular copper plating layer. It is preferable that the surface is formed with the copper plating layer formed in step 1).
  • the electrode for a lithium ion secondary battery of the present invention is an electrode for a lithium ion secondary battery formed by depositing an active material layer capable of electrochemically or chemically absorbing and releasing lithium on a current collector.
  • the current collector is made of an electrolytic copper foil, the copper foil has a tensile strength of 400 N / mm 2 or more, an elongation of 4.5% or more and less than 13%, and the active material layer is formed.
  • the surface roughness Ra of the surface of the current collector is 0.01 to 1 ⁇ m.
  • the lithium ion secondary battery of the present invention is a lithium ion secondary battery formed by depositing an active material layer capable of inserting and extracting lithium electrochemically or chemically on a current collector.
  • the surface of the current collector on which the body is made of electrolytic copper foil, the tensile strength of the copper foil is 400 N / mm 2 or more, the elongation is 4.5% or more and less than 13%, and the active material layer is formed
  • the surface roughness Ra is 0.01 to 1 ⁇ m.
  • the active material of the lithium ion secondary battery electrode is preferably composed mainly of silicon, germanium, or tin.
  • the electrolytic copper foil for a lithium ion secondary battery electrode of the present invention when the copper foil is used as a current collector, deformation such as wrinkles due to charging and discharging can be suppressed, The energy density per volume of the secondary battery can be increased, and since the current collector does not break, a lithium ion secondary battery having stable performance over a long period of time can be provided. Since the lithium ion secondary battery of the present invention uses the electrolytic copper foil for the negative electrode of the battery, the current collector does not undergo deformation such as wrinkles due to charge and discharge, and the energy per volume of the lithium ion secondary battery The density can be increased, and since the current collector does not break, a lithium ion secondary battery having stable performance over a long period of time can be provided.
  • FIG. 1 is a diagram showing a state in which charging and discharging are performed using the copper foil for a lithium ion secondary battery electrode of the present invention.
  • the copper foil for a lithium ion secondary battery electrode of the present invention is an electrolytic copper foil in which an active material capable of electrochemically and chemically absorbing and releasing lithium is deposited on the surface thereof, and its tensile strength is 400 N /
  • the surface roughness Ra of the electrolytic copper foil after being subjected to the roughening treatment is 0.01 to 1 ⁇ m, characterized in that it is mm 2 or more, the elongation is 4.5% or more and less than 13%.
  • the copper foil for lithium ion secondary battery electrodes of the present invention is made of an electrolytic copper foil having a tensile strength of 400 N / mm 2 or more and an elongation of 4.5% or more and less than 13%, and this electrolytic copper foil is used as a current collector. Therefore, even when subjected to stress due to expansion / contraction of the active material layer due to insertion / extraction of lithium, the current collector is not deformed or broken such as wrinkles.
  • the current collection is caused by the stress associated with the expansion / contraction of the active material layer accompanying the insertion / release of lithium during charge / discharge. Wrinkles occur in the body. If the elongation is small even if the tensile strength is 400 N / mm 2 or more, the current collector (foil) breaks while repeating the charge / discharge cycle many times. In order not to cause the foil to break, an elongation of 4.5% or more and less than 13% is necessary.
  • the foil breaks while repeating the charge / discharge cycle many times.
  • the elongation exceeds 13%, the foil does not break, but the elongation tends to decrease as the tensile strength increases from the manufacturing principle of the electrolytic copper foil, and the tensile strength is actually 400 N / mm. This is because it is difficult to produce one having two or more and an elongation exceeding 13%.
  • the copper foil for a lithium ion secondary battery electrode of the present invention is a copper for a lithium ion secondary battery electrode formed by depositing an active material capable of inserting and extracting lithium electrochemically or chemically on the surface thereof.
  • the copper foil has a tensile strength of 400 N / mm 2 or more, an elongation of 4.5% or more and less than 13%, and surface irregularities on which the active material layer is formed, that is, the surface roughness Ra is 0.00. 01 to 1 ⁇ m.
  • the surface roughness Ra of the current collector surface By setting the surface roughness Ra of the current collector surface to 0.01 to 1 ⁇ m, the influence of the copper foil on the expansion and contraction of the active material layer accompanying the charge / discharge cycle is mitigated, and the copper foil as the current collector is wrinkled. Etc., and the effect of preventing breakage.
  • FIG. 1A when an active material layer 21 is formed on a roughened electrolytic copper foil (current collector) 11 having a surface roughness Ra of 0.01 to 1 ⁇ m, The active material enters the irregularities formed on the surface of the electroless electrolytic copper foil (current collector) 11 to form an active material layer.
  • FIG. 1 (b) when the lithium ion secondary battery using the roughened electrolytic copper foil (current collector) 11 having the active material layer 21 formed as a negative electrode is initially charged, the active material becomes By storing lithium ions, the volume of the active material expands and the active material layer 21 becomes dense.
  • the above effect is not effective when the surface roughness Ra is less than 0.01 ⁇ m, and the effect is saturated even if Ra is 1 ⁇ m or more. Further, it is not practical to roughen the surface of the copper foil so that Ra is 1 ⁇ m or more. Therefore, it is effective to form the active material layer 21 on the roughened electrolytic copper foil 11 (current collector) having a surface roughness Ra of 0.01 to 1 ⁇ m.
  • the tensile strength and elongation are values measured by a method defined in Japanese Industrial Standard (JIS K 6251). Further, the surface roughness Ra is an arithmetic surface roughness defined in Japanese Industrial Standard (JIS B 0601-1994), for example, a value measured by a surface roughness meter.
  • the negative electrode for a lithium ion secondary battery of the present invention has a surface roughness on which an electrolytic copper foil has a tensile strength of 400 N / mm 2 or more, an elongation of 4.5% or more and less than 13%, and an active material layer is formed. That is, an active material layer capable of electrochemically or chemically absorbing and releasing lithium is deposited on the surface of a current collector (electrolytic copper foil) having a surface roughness Ra of 0.01 to 1 ⁇ m. To form.
  • a current collector electrolytic copper foil
  • Ra electrolytic copper foil
  • the electrolytic copper foil for a lithium ion secondary battery electrode of the present invention is provided by using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution and facing an insoluble anode made of titanium coated with a white metal element or an oxide element thereof and the anode. While supplying the electrolyte between the cathode cathode made of titanium and rotating the cathode drum at a constant speed, a direct current was passed between the two electrodes to deposit copper on the surface of the cathode drum. It is manufactured by a method of peeling off from the surface of the cathode drum and winding it continuously.
  • the electrolytic copper foil for a lithium ion secondary battery electrode of the present invention is obtained by adding a compound having a mercapto group, a chloride ion, and a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide to a sulfuric acid-copper sulfate electrolytic solution, It can be produced by adding thioureas, polypropylene glycol, polyethylene glycol dimethyl ether and polyvinyl alcohol.
  • the surface of the side where the electrolytic copper foil is in contact with the surface of the cathode drum is referred to as a “glossy surface”, and the opposite surface is referred to as a “rough surface”. It is called “untreated electrolytic copper foil”.
  • the surface of the untreated electrolytic copper foil is roughened as necessary.
  • a plating method, a vapor phase growth method, an etching method, a polishing method, or the like can be suitably employed.
  • the plating method and the vapor phase growth method are methods of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil.
  • an electrolytic plating method and an electroless plating method can be employed.
  • a sputtering method, a CVD method, a vapor deposition method, or the like can be applied as the vapor phase growth method.
  • a method of forming a plating film mainly composed of copper such as copper or copper alloy on the surface of the untreated electrolytic copper foil is preferable.
  • a roughening method by plating generally used for copper foil for printed circuit disclosed in Patent Document 5 Japanese Patent Publication No. 53-39376, Is preferably used. That is, after forming a granular copper plating layer by so-called “bake plating”, “cover plating” is performed on this granular copper plating layer so as not to impair the uneven shape, thereby substantially smoothing.
  • a method of forming a thin film mainly composed of copper, copper alloy or the like on the surface of the untreated electrolytic copper foil by a sputtering method or a CVD method is preferable.
  • etching method a method by physical etching or chemical etching is suitable.
  • surface roughening by the polishing method sandpaper polishing, blasting or the like can be applied.
  • the active material layer in the present invention is a material that occludes / releases lithium, and is preferably an active material that occludes lithium by alloying.
  • Examples of such an active material include silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, potassium, and indium.
  • silicon, germanium, and tin are preferably used because of their high theoretical capacity.
  • the active material layer used in the present invention is preferably a layer mainly composed of silicon, germanium, or tin, and particularly preferably a silicon layer.
  • the active material layer in the present invention is preferably an amorphous layer or a microcrystalline layer. Accordingly, an amorphous silicon layer or a microcrystalline silicon layer is particularly preferable.
  • the active material layer in the present invention can be formed by a CVD method, a sputtering method, a vapor deposition method, a thermal spraying method, or a plating method when formed as a thin film.
  • CVD method a chemical vapor deposition method
  • thermal spraying method a physical vapor deposition method
  • plating method a plating method when formed as a thin film.
  • the active material is formed into a slurry together with a binder and a solvent, and is formed by coating, drying and pressing.
  • the current collector is preferably thin, and therefore is preferably a metal foil, particularly an electrolytic copper foil.
  • the active material layer can be formed by being deposited on one side or both sides of the current collector.
  • the surface roughness Ra on both sides of the current collector is preferably 0.01 to 1 ⁇ m.
  • lithium may be occluded or added in advance.
  • Lithium may be added when forming the active material layer. That is, by forming an active material layer containing lithium, lithium is contained in the active material layer. Further, after forming the active material layer, lithium may be occluded or added to the active material layer. Examples of the method for inserting or adding lithium into the active material layer include a method for electrochemically inserting or adding lithium.
  • the current collector component (copper) is preferably diffused in the active material layer.
  • the components of the current collector are diffused in the active material layer, adhesion between the current collector and the active material layer can be improved.
  • an element such as copper that is not alloyed with lithium is diffused as a component of the current collector, alloying with lithium is suppressed in the diffusion region, so that expansion and contraction of the thin film associated with the charge / discharge reaction is suppressed. It is possible to suppress the generation of stress that causes the active material layer to peel from the current collector.
  • a lithium ion secondary battery of the present invention comprises a negative electrode comprising the lithium ion secondary battery electrode of the present invention, a positive electrode using a material that absorbs and releases lithium as an active material, and a nonaqueous electrolyte. .
  • the nonaqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte in which a solute is dissolved in a solvent.
  • the solvent for the non-aqueous electrolyte is not particularly limited as long as it is a solvent used for lithium ion secondary batteries.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate
  • chain carbonates such as methyl ethyl carbonate.
  • a mixed solvent of a cyclic carbonate and a chain carbonate is used.
  • a mixed solvent of the above cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane, or a chain ester such as ⁇ -butyrolactone, sulfolane, or methyl acetate may be used. Good.
  • the solute of the nonaqueous electrolyte is not particularly limited as long as it is a solute used for a lithium ion secondary battery.
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 and the like can be mentioned.
  • LiXFy (wherein X is P, As, Sb, B, Bi, Al, Ga, or In, y is 6 when X is P, As, or Sb, and X is B, Bi, Al) , Ga or y when in, is four.) and lithium perfluoroalkyl sulfonic acid imide LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) (wherein, m and n are each independently Te is an integer of 1-4.) or lithium perfluoroalkyl sulfonic acid methide LiC (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) ( wherein, p, q and r is independently an integer of 1 to 4, and a mixed solute is preferably used.
  • a mixed solute of LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 is particularly preferably used.
  • a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
  • a polymer electrolyte such as polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride
  • an electrolytic solution or an inorganic solid electrolyte such as LiI or Li 3 N
  • the electrolyte of the lithium ion secondary battery of the present invention is limited as long as the Li compound as a solute that develops ionic conductivity and the solvent that dissolves and retains it are not decomposed by the voltage at the time of charging, discharging or storing the battery. Can be used.
  • LiCoO 2 LiNiO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.5 Ni 0.5 O 2, LiNi 0.7 Co 0.2 Mn 0.1 O 2
  • LiCoO 2 LiCo 0.5 Ni 0.5 O 2, LiNi 0.7 Co 0.2 Mn 0.1 O 2
  • lithium-containing transition metal oxides such as MnO 2
  • metal oxides not containing lithium such as MnO 2
  • any substance that electrochemically inserts and desorbs lithium can be used without limitation.
  • the current collector can be prevented from being deformed or broken due to charging / discharging, the energy density per volume of the lithium ion secondary battery is increased, and the performance is stable for a long time.
  • the lithium ion secondary battery which maintains can be provided.
  • the conditions for the granular powder plating for roughening the copper foil surface and the conditions for the dense copper plating (cover plating) are as follows.
  • Granular plating conditions Copper sulfate 80g / L Sulfuric acid 110-160g / L Additive Appropriate amount Liquid temperature 30-60 °C Current density 10-50A / dm 2 Processing time 2-20 seconds
  • Table 2 shows the thickness, tensile strength, elongation, and surface roughness Ra, Rz of the current collectors a1, a2, and a3.
  • the thickness is a value measured with a micrometer
  • the tensile strength and the elongation are values measured using a tensile tester (Model 1122 manufactured by Instron).
  • the surface roughness Ra and Rz are values measured using a stylus type surface roughness meter (SE-3C type manufactured by Kosaka Laboratories) according to the method defined in Japanese Industrial Standard (JIS B 0601-1994). It is.
  • a silicon thin film serving as a negative electrode active material was formed on the current collectors a1 and a2 by RF sputtering.
  • the sputtering conditions were: sputtering gas: argon (Ar), sputtering gas flow rate: 100 sccm, substrate temperature: room temperature (no heating), reaction pressure: 0.133 Pa (1.0 ⁇ 10 ⁇ 3 Torr), high frequency power: 200 W did.
  • the silicon thin film was deposited until the thickness became 5.5 ⁇ m.
  • the obtained silicon thin film was subjected to Raman spectroscopic analysis, a peak in the vicinity of 480 cm ⁇ 1 was detected, but a peak in the vicinity of 520 cm ⁇ 1 was not detected. From this, the obtained silicon thin film is an amorphous silicon thin film.
  • Example 1 current collector a1
  • Working electrodes (negative electrodes) of Example 2 (current collector a2) and Example 3 (current collector a3) were obtained.
  • a three-electrode beaker cell was prepared in a glove box under an argon gas atmosphere.
  • the beaker cell was constructed by immersing a counter electrode, a working electrode, and a reference electrode in an electrolytic solution placed in a glass container.
  • an electrolytic solution an electrolytic solution in which 1 mol / liter of LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 was used.
  • Lithium metal was used as the counter electrode and the reference electrode.
  • the thickness of the working electrode before and after the charge / discharge test was measured with a micrometer to determine the change in thickness before and after the charge / discharge test.
  • pieces of a center part and four corners was measured, and the average value was made into the thickness of an electrode.
  • the evaluation results are shown in Table 4.
  • An amorphous silicon thin film was formed on the current collectors b1, b2, and b3 in the same manner as in Examples 1, 2, and 3, and Comparative Example 1 (current collection in the same manner as in Examples 1, 2, and 3).
  • Working electrodes of the body b1), the comparative example 2 (current collector b2), and the comparative example 3 (current collector b3) were prepared.
  • beaker cells were prepared in the same manner as in Examples 1, 2 and 3, and the initial discharge capacity and the initial charge / discharge efficiency were measured for each beaker cell. The results are also shown in Table 3. Indicated.
  • the working electrodes of Examples 1 and 2 and 3 have significantly smaller changes in thickness before and after the charge / discharge test than the working electrodes of Comparative Examples 1 and 3. This is because, in the working electrodes of Examples 1, 2 and 3, the change in thickness is only the change in thickness due to the expansion and contraction of the active material due to charge and discharge, and the current collector is deformed by the charge and discharge test. This is because no occurs. On the other hand, in Comparative Examples 1 and 3, wrinkles were generated in the current collector, so that the thickness change was large.
  • Comparative Example 2 the thickness change before and after charging / discharging was small, but fracture was observed in the foil after 300 cycles. This is probably because the electrolytic copper foil used for the current collector b2 has a relatively high tensile strength, so that wrinkles due to charging and discharging are small, but the elongation is small and the foil is easily broken. In Comparative Example 3, since the elongation is large, no rupture after 300 cycles is observed. However, since the tensile strength is small, the generation of wrinkles is remarkable.
  • the tensile strength needs to be 400 N / mm 2 or more. Furthermore, even when the tensile strength is 400 N / mm 2 or more, when the elongation is small (Comparative Example 2), the current collector does not deform such as wrinkles, but the foil breaks while charging and discharging are repeated. Has the disadvantage of being easy. In order not to generate wrinkles and the foil does not break, an electrolytic copper foil having a tensile strength of 400 N / mm 2 or more and an elongation of 4.5% or more and less than 13% is preferable.
  • the electrolytic copper foil used for the current collector needs to have a high tensile strength and a high elongation. Wrinkling can be prevented by simply having a high tensile strength, but if the elongation is small, the foil will break during repeated charge / discharge cycles. In the case of an electrolytic copper foil having a large tensile strength and a large elongation, wrinkling can be prevented and the foil does not break. Similar results were obtained when an active material made of germanium or tin was used.
  • the present invention it is possible to suppress the occurrence of deformation such as wrinkles in the current collector due to charging / discharging, to increase the energy density per volume of the lithium ion secondary battery, and to repeat the charging / discharging cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 エネルギー密度が高く、充放電サイクルを繰り返しても容量の低下が起こらない高寿命で、小型化可能なリチウムイオン二次電池を作成可能なリチウムイオン二次電池負極用電解銅箔を供給することを目的とする。 リチウムイオン二次電池であって、該電池の電極集電体用電解銅箔が、前記電極用電解銅箔は、その引張強さが400N/mm以上、伸びが4.5%以上13%未満であり、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を形成する表面の表面粗さRaが0.01~1μmである。

Description

リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
 本発明は、正極と、表面が凹凸状に形成された負極集電体の表面に負極活物質層が形成された負極と、非水電解質とを備えるリチウムイオン二次電池、該二次電池に用いる電極、ならびに該電極の集電体を構成する電解銅箔に関するものである。
 正極と、表面が平滑な銅箔からなる負極集電体の表面に負極活物質層としてカーボン粒子を塗布し、さらにプレスした負極と、非水電解質を備えるリチウムイオン二次電池は、現在、携帯電話、ノートタイプパソコン等に使用されている。このリチウムイオン二次電池の負極には、電解により製造された、いわゆる「未処理電解銅箔」に防錆処理を施したものが使用されている。
 前記リチウムイオン二次電池用負極集電体としての銅箔には、特許文献1に示すように、光沢面と粗面と(銅箔の両面)の間における表面粗さの差を小さくした銅箔を用いることにより、電池の充放電効率の低下を抑えている。
 上記のような光沢面と粗面との表面粗さの差を小さくした電解銅箔は、電解液に各種水溶性高分子物質、各種界面活性剤、各種有機イオウ系化合物、塩素イオンなどを適宜選定して添加することによって製造されている。
 例えば、特許文献2には、電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000以下の低分子量膠及び高分子多糖類を添加したものを用いた電解銅箔の製造方法が開示されている。
 上記製造方法で製造した電解銅箔は、その銅箔の表面にカーボン粒子が塗布され、さらにプレスされて負極の集電体(電極)となる。
 この電解銅箔は引張強さが300~350N/mmであり、前記カーボン粒子を活物質とした電極用銅箔として使用する場合には適度な伸びと併せて好適な材料である。
 ところで近年、リチウムイオン二次電池の高容量化を目的として、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを負極活物質として用いるリチウムイオン二次電池が提案されている(特許文献3参照)。
 高容量化を目的としたリチウムイオン二次電池用電極(負極)は、CVD法やスパッタリング法により、銅箔などの集電体の上に、例えばシリコンを非晶質シリコン薄膜や微結晶シリコン薄膜として堆積し形成している。このような方法で作成した活物質の薄膜層は集電体に密着するため、良好な充放電サイクル特性を示すことが見出されている(特許文献4参照)。
 また、最近では粉末シリコンをイミド系のバインダーとともに有機溶媒によりスラリー状にして銅箔上に塗布し、乾燥、プレスする形成方法も開発されている。
 しかし、このようなリチウムイオン二次電池用電極においては、例えばシリコン活物質は充電時にリチウムイオンを吸蔵することによりその体積が約4倍膨張する。さらに放電時にはリチウムイオンを放出して収縮する。
 従って充放電に伴う活物質層体積の膨張及び収縮により、活物質が微粉化して集電体から剥離する現象が見られる。
 また該活物質層が集電体と密着しているため、充放電の繰り返しにより活物質層の体積が膨張及び収縮すると、集電体に大きな応力が働き、集電体にしわが発生し、さらに多数回充放電を繰り返すと、集電体を構成する箔が破断するといった問題があった。
 集電体にしわなどの変形が生じると、この電極を電池内に収納した際、電極が占める体積が大きくなり、体積あたりのエネルギー密度が低下するという問題を生じる。また、集電体の破断が起こると長時間安定した電池性能を維持することができない。
特許第3742144号公報 特許第3313277号公報 特開平10-255768号公報 特開2002-083594号公報
 リチウムイオン二次電池用電極として上述したようにシリコン、ゲルマニウム、または錫を主成分とする活物質を集電体に堆積した負極電極を用いた場合、充放電反応に伴い活物質層の体積が膨張・収縮し、集電体に大きな応力が働き、集電体にしわなどの変形を生じさせる場合がある。さらに多数回充放電を繰り返すと集電体としての箔が破断するという問題があった。
 集電体にしわなどの変形が生じると、この電極を電池内に収納した際、電極が占める体積が大きくなり、体積当りのエネルギー密度が低下するという問題を生じる。また、集電体に破断が起こると長時間安定した電池性能を維持することができない。
 本発明は例えばシリコン、ゲルマニウム、または錫を主成分とする活物質を集電体に堆積した負極電極を用いたリチウムイオン二次電池において、集電体にしわが発生せず、また集電体の破断も起こらない長時間安定した性能を維持できるリチウムイオン二次電池を提供することを目的とし、該二次電池用の電極、ならびに該電極を構成する電解銅箔を提供することを目的とする。
 本発明のリチウムイオン二次電池電極用電解銅箔は、その引張強さが400N/mm以上、伸びが4.5%以上13%未満であり、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を形成する面の表面粗さRaが0.01~1μmであることを特徴とする。
 前記活物質層を形成する前記電解銅箔の表面は、めっき法、気相成長法、エッチング法、または研磨法により粗面化された表面であることが好ましい。
 また、前記活物質層を形成する前記電解銅箔の表面は、めっき法により銅を主成分とする粒子で粗面化された表面であることが特に好ましい。
 前記活物質層を形成する前記電解銅箔の表面は、銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき(被せめっき)で形成の銅めっき層とで形成された表面であることが好ましい。
 本発明のリチウムイオン二次電池用電極は、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を、集電体上に堆積して形成したリチウムイオン二次電池用電極であって、前記集電体が電解銅箔からなり、該銅箔の引張強さが400N/mm以上、伸びが4.5%以上13%未満あり、かつ前記活物質層が形成されている前記集電体の面の表面粗さRaが0.01~1μmであることを特徴とする。
 本発明のリチウムイオン二次電池は、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を集電体上に堆積して形成したリチウムイオン二次電池であって、前記集電体が電解銅箔からなり、該銅箔の引張強さが400N/mm以上、伸びが4.5%以上13%未満あり、かつ前記活物質層が形成されている前記集電体の面の表面粗さRaが0.01~1μmであることを特徴とする。
 前記リチウムイオン二次電池用電極の活物質は、シリコン、ゲルマニウム、または錫を主成分とするものであることが好ましい。
 本発明のリチウムイオン二次電池電極用電解銅箔によれば、該銅箔を集電体とした場合、充放電によりにしわ等の変形が発生するのを抑制することができ、リチウムイオン二次電池の体積当りのエネルギー密度を高めることができ、また集電体が破断しないため長時間にわたり安定した性能のリチウムイオン二次電池を提供することができる。
 本発明のリチウムイオン二次電池は、該電池の負極に前記電解銅箔を使用するので、充放電により集電体にしわ等の変形が発生せず、リチウムイオン二次電池の体積当りのエネルギー密度を高めることができ、また集電体が破断しないため長時間にわたり安定した性能のリチウムイオン二次電池を提供することができる。
図1は、本発明のリチウムイオン二次電池電極用銅箔を用いて、充電と放電とが実施されたときの様子を示す図である。
 本発明のリチウムイオン二次電池電極用銅箔は、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質を、その表面に堆積する電解銅箔であり、その引張強さが400N/mm以上、伸びが4.5%以上13%未満あり、かつ前記粗面化処理が施された後の電解銅箔の表面粗さRaが0.01~1μmであることを特徴とする。
 本発明のリチウムイオン二次電池電極用銅箔は、引張強さが400N/mm以上、伸びが4.5%以上13%未満の電解銅箔からなり、この電解銅箔を集電体として用いるので、リチウムの吸蔵・放出に伴う活物質層の膨張・収縮による応力を受けても、集電体としてしわ等の変形、破断等が生じることがない。
 引張強さが400N/mmを下回る電解銅箔を負極集電体に用いた場合には、充放電時のリチウムの吸蔵・放出に伴う活物質層の膨張・収縮に伴う応力によって、集電体にしわが発生する。
 また引張強さが400N/mm以上あっても伸びが小さい場合には充放電サイクルを多数回繰り返すうちに集電体(箔)の破断が発生する。箔の破断を発生させないためには4.5%以上13%未満の伸びが必要である。
 電解銅箔の伸びが4.5%を下回ると充放電サイクルを多数回繰り返すうちに箔の破断が発生する。一方で伸びが13%を超えていれば箔の破断は生じないが、電解銅箔の製造原理から引張強さが高くなるほど伸びが低下する傾向にあり、現実的に引張強さが400N/mm以上あり伸びが13%を超えるものを製造することが困難であるからである。
 本発明のリチウムイオン二次電池電極用銅箔は、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質を、その表面上に堆積して形成するリチウムイオン二次電池用電極の銅箔であり、該銅箔の引張強さが400N/mm以上、伸びが4.5%以上13%未満で、かつ活物質層が形成される表面の凹凸、すなわち表面粗さRaが0.01~1μmである。
 集電体表面の表面粗さRaを0.01~1μmとすることにより、充放電サイクルに伴う活物質層の膨張収縮に対する銅箔への影響を緩和し、集電体としての銅箔にしわ等の発生を防止し、破断を防止する効果がある。
 すなわち、図1(a)に示すように、表面粗さRaが0.01~1μmである粗面化電解銅箔(集電体)11の上に活物質層21を形成させると、粗面化電解銅箔(集電体)11の表面に形成されている凹凸に活物質が入り込んで活物質の層が形成される。
 図1(b)に示すように、この活物質層21を形成した粗面化電解銅箔(集電体)11を負極電極としたリチウムイオン二次電池に初充電を行うと、活物質がリチウムイオンを吸蔵することにより、活物質の体積が膨張して活物質層21が密になる。
 次いで、図1(c)に示すように、一回目の放電がされたときには、活物質層21では、リチウムイオンが放出され活物質が収縮し、粗面化電解銅箔11の粗面の凹に沿って亀裂ができて、凸部に沿って島状に分離する。
 そして、図1(d)に示すように、活物質層21においては、次の充電で再び活物質が膨張して亀裂が狭まる。
 しかし、この後、充放電が繰り返されても、亀裂の部分が膨張収縮のバッファとなり島状の部分は維持され、粗面化電解銅箔(集電体)11全体のひずみが緩和され、集電体としての粗面化電解銅箔11に、しわ等が発生することを防止し、破断を防止する効果がある。
 以上の効果は、表面粗さRaが0.01μmを下回ると効果がなく、Raを1μm以上にしても効果が飽和してしまう。また銅箔表面をRaが1μm以上に粗化するには、コストがかかり、実用的ではない。そのため、表面粗さRaが0.01~1μmの粗面化電解銅箔11(集電体)に活物質層21を形成することが効果的である。
 本発明において、引張強さ、伸びは、日本工業規格(JIS K 6251)に定められた方法により、測定した値である。
 また、表面粗さRaは、日本工業規格(JIS B 0601-1994)に定められた算術表面粗さであり、例えば表面粗さ計により測定した値である。
 本発明のリチウムイオン二次電池用負極電極は、電解銅箔の引張強さが400N/mm以上、伸びが4.5%以上13%未満で、かつ活物質層が形成される表面の凹凸、すなわち表面粗さRaが0.01~1μmである集電体(電解銅箔)の表面に、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を、その表面上に堆積して形成する。
 集電体の表面の表面粗さRaを0.01~1μmとすることにより、集電体と活物質層との密着性を高めることができ、また、粗面とすることで充放電サイクルに伴う活物質層の膨張収縮に対する銅箔への影響を緩和し、集電体としての銅箔にしわ等の発生を防止し、破断を防止する効果がある。
 本発明のリチウムイオン二次電池電極用電解銅箔は、硫酸-硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と該陽極に対向させて設けられたチタン製陰極ドラムとの間に該電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。
 本発明のリチウムイオン二次電池電極用電解銅箔は、硫酸-硫酸銅電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000以下の低分子量膠及び高分子多糖類を添加し、さらにチオ尿素類、ポリプロピレングリコール、ポリエチレングリコールジメチルエーテル、ポリビニルアルコールを加えることにより製造することができる。
 なお当業者間において、電解銅箔が陰極ドラム表面に接していた側の面を「光沢面」、逆の面を「粗面」と称し、前記のようにして製造された電解銅箔は「未処理電解銅箔」と称している。
 未処理電解銅箔表面の表面粗さRaを、0.01~1μmとするために、未処理電解銅箔の表面を必要により粗面化処理する。この粗面化処理としては、めっき法、気相成長法、エッチング法、及び研磨法等が好適に採用できる。
 めっき法及び気相成長法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗面化する方法である。めっき法としては、電解めっき法及び無電解めっき法が採用することができる。また、気相成長法としては、スパッタリング法、CVD法、蒸着法などが適用できる。
 めっき法による粗面化としては、銅や銅合金などの銅を主成分とするめっき膜を、未処理電解銅箔表面に形成する方法が好ましい。
 電気めっきにより粗面化する方法としては、例えば、特許文献5(特公昭53-39376号公報)に開示された、プリント回路用銅箔に対し一般的に用いられているめっきによる粗面化方法が好ましく用いられる。すなわち、いわゆる「やけめっき」により、粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、その凹凸形状を損なわないように「被せめっき」を行い、実質的に平滑なめっき層を堆積させて粒粉状銅をいわゆるコブ状銅とする粗面化方法である。
 気相成長法による粗面化の方法としては、銅や銅合金などからなる銅を主成分とする薄膜をスパッタリング法やCVD法で未処理電解銅箔表面に形成する方法が好ましい。
 エッチング法による粗面化としては、物理的エッチングや化学的エッチングによる方法が適している。また、研磨法による粗面化としては、サンドペーパーによる研磨やブラスト法による研磨などが適用できる。
 本発明における活物質層は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質であることが好ましい。このような活物質材料としては、シリコン、ゲルマニウム、錫、鉛、亜鉛、マグネシウム、ナトリウム、アルミニウム、カリウム、インジウムなどが挙げられる。これらの中でも、シリコン、ゲルマニウム、及び錫がその高い理論容量から好ましく用いられる。従って、本発明において用いる活物質層は、シリコン、ゲルマニウム、または錫を主成分とする層であることが好ましく、特に好ましくはシリコン層である。
 また、本発明における活物質層は、非晶質層または微結晶層であることが好ましい。従って、非晶質シリコン層または微結晶シリコン層であることが特に好ましい。
 本発明における活物質層は、薄膜として形成する場合はCVD法、スパッタリング法、蒸着法、溶射法、またはめっき法により形成することができる。このような方法の中でも、CVD法及びスパッタリング法により形成することが好ましい。
 また塗布型タイプの場合には、活物質をバインダー、溶剤とともにスラリー状にして、塗布、乾燥、プレスすることにより形成する。
 本発明においては、集電体は厚みの薄いものであることが好ましく、従って金属箔、特に電解銅箔であることが好ましい。活物質層は、集電体の片面または両面上に堆積して形成することができる。集電体の両面上に活物質層を形成する場合には、集電体の両面の表面粗さRaが0.01~1μmであることが好ましい。
 本発明における活物質層には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質層を形成する際に添加してもよい。すなわち、リチウムを含有する活物質層を形成することにより、活物質層にリチウムを含有させる。また、活物質層を形成した後に、活物質層にリチウムを吸蔵または添加させてもよい。活物質層にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。
 本発明においては、活物質層に集電体の成分(銅)が拡散していることが好ましい。活物質層に集電体の成分が拡散することにより、集電体と活物質層との密着性を高めることができる。集電体の成分として、リチウムと合金化しない銅などの元素が拡散している場合、拡散領域においてリチウムとの合金化が抑制されるため、充放電反応に伴う薄膜の膨張・収縮を抑制することができ、活物質層の集電体からの剥離を生じさせるような応力の発生を抑制することができる。
 本発明のリチウムイオン二次電池は、上記本発明のリチウムイオン二次電池用電極からなる負極と、リチウムを吸蔵・放出する物質を活物質に用いた正極と、非水電解質とを備えている。
 本発明のリチウムイオン二次電池において用いる非水電解質は、溶媒に溶質を溶解した電解質である。非水電解質の溶媒としては、リチウムイオン二次電池に使用される溶媒であれば特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネートが挙げられる。好ましくは、環状カーボネートと鎖状カーボネートとの混合溶媒が用いられる。また、上記環状カーボネートと、1,2-ジメトキシエタン、1,2-ジエトキシエタンなどのエーテル系溶媒や、γ-ブチロラクトン、スルホラン、酢酸メチル等の鎖状エステル等との混合溶媒を用いてもよい。
 非水電解質の溶質としては、リチウムイオン二次電池に用いられる溶質であれば特に限定されるものではなく、例えば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12などが挙げられる。特に、LiXFy(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である。)と、リチウムペルフルオロアルキルスルホン酸イミドLiN(C2m+1SO)(C2n+1SO)(式中、m及びnはそれぞれ独立して1~4の整数である。)またはリチウムペルフルオロアルキルスルホン酸メチドLiC(C2p+1SO)(C2q+1SO)(C2r+1SO)(式中、p、q及びrはそれぞれ独立して1~4の整数である。)との混合溶質が好ましく用いられる。これらの中でも、LiPFとLiN(CSOとの混合溶質が特に好ましく用いられる。
 また、非水電解質として、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデンなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を用いることができる。
 本発明のリチウムイオン二次電池の電解質は、イオン導電性を発現させる溶質としてのLi化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。
 また、正極に用いる正極活物質としては、LiCoO、LiNiO、LiMn、LiMnO、LiCo0.5Ni0.5、LiNi0.7Co0.2Mn0.1などのリチウム含有遷移金属酸化物や、MnOなどのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入・脱離する物質であれば、制限なく用いることができる。
 本発明によれば、充放電により集電体にしわ等の変形、あるいは破断が発生するのを抑制することができ、リチウムイオン二次電池の体積当りのエネルギー密度を高め、長期間安定した性能を維持するリチウムイオン二次電池を提供することができる。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
〔実施例1~3〕
〔未処理銅箔の製造〕
 銅70~130g/l-硫酸80~140g/lの酸性銅電解浴に表1に示す組成の添加剤を添加した。表中、MPSは3-メルカプト1-プロパンスルホン酸ナトリウム、HEC(高分子多糖類)はヒドロキシエチルセルロース、膠は分子量3,000の低分子量膠である。また、PPGはポリプロピレングリコール、PEGDMEはポリエチレングリコールジメチルエーテル、PVAはポリビニルアルコールである。MPS、HEC(高分子多糖類)、膠、エチレンチオ尿素、ポリプロピレングリコール、ポリエチレングリコールジメチルエーテル、ポリビニルアルコール及び塩化物イオンを表1に示す濃度となるように、それぞれ添加し製箔用電解液を調製した。なお、塩化物イオン濃度を全て30ppmに調整したが、塩化物イオン濃度は電解条件により適宜変更するものであり、この濃度に限定されるものではない。
 調製した電解液を用い、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて表1に示す電解条件(電流密度、液温)の下に、22μm厚みの未処理銅箔を電解製箔法によって製造した。
Figure JPOXMLDOC01-appb-T000001
〔作用極(負極)の作成〕
 表1に示す電解銅箔A1の表面に電気めっきにより銅のやけめっきを施し、粒粉状銅めっき層を形成した。さらに、該粒粉状銅めっき層の上にその凹凸形状を損なわないように、緻密な銅めっき(被せめっき)を行い、粒粉状銅と電解銅箔との密着性を向上させた粗面化電解銅箔を作成し、集電体a1とした。
 当初、電解銅箔A1の状態では重量厚さとして22μmの銅箔を作成し、その後25μm厚さになるように電気めっきによる銅のやけめっきを施し集電体a1とした。
 なお銅箔表面粗面化のための粒粉状めっきの条件、緻密な銅めっき(被せめっき)の条件は以下のようである。
 粒粉状めっき条件:
  硫酸銅            80g/L
  硫酸        110~160g/L
  添加剤            適量
  液温          30~60℃
  電流密度        10~50A/dm 
  処理時間         2~20秒
 緻密な銅めっき(被せめっき)条件:
  硫酸銅           200g/L
  硫酸         90~130g/L
  液温          30~60℃
  電流密度        10~30A/dm 
  処理時間         2~20秒
 次に、電解銅箔A2、A3の表面に、集電体a1と同様に、やけめっき及び被せめっきを施し、集電体a2、a3を作成した。集電体a1及びa2、a3の厚み、引張強さ、伸び、及び表面粗さRa、Rzを表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、厚みは、マイクロメーターで測定した値であり、引張強さ、伸びは、引張試験機(インストロン社製1122型)を用いて測定した値である。また、表面粗さRa、Rzは、日本工業規格(JIS B 0601-1994)に定められた方法で、触針式表面粗さ計(小坂研究所製SE-3C型)を用いて測定した値である。
 次に、集電体a1及びa2の上に、RFスパッタリング法により負極活物質となるシリコン薄膜を形成した。スパッタリングの条件は、スパッタガス:アルゴン(Ar)、スパッタガス流量:100sccm、基板温度:室温(加熱なし)、反応圧力:0.133Pa(1.0×10-3Torr)、高周波電力:200Wとした。シリコン薄膜は、その厚みが5.5μmとなるまで堆積させた。
 得られたシリコン薄膜について、ラマン分光分析を行ったところ、480cm-1近傍のピークは検出されたが、520cm-1近傍のピークは検出されなかった。このことから、得られたシリコン薄膜は非晶質シリコン薄膜である。
 シリコン薄膜を集電体とともに2cm×2cmの大きさに切り出し、ニッケルリード線を取り付けた後、100℃で2時間真空下に乾燥して、実施例1(集電体a1)の作用極及び実施例2(集電体a2)、実施例3(集電体a3)の作用極(負極)を得た。
〔ビーカーセルの作成〕
 上記の作用極を用い、アルゴンガス雰囲気下のグローブボックス中で、三電極式ビーカーセルを作成した。ビーカーセルは、ガラス容器内に入れられた電解液中に、対極、作用極、及び参照極を浸漬することにより構成した。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7の割合で混合した溶媒に対し、LiPFを1モル/リットル溶解した電解液を用いた。対極及び参照極としてはリチウム金属を用いた。
〔充放電サイクル特性の評価〕
 上記のようにして作成したビーカーセルを、25℃にて4mAの定電流で、作用極の電位が0V(vs.Li/Li)に達するまで充電した後、4mAの定電流で、作用極の電位が2V(vs.Li/Li)に達するまで放電し、単位面積当りの放電容量及び初期サイクルにおける充放電効率を評価した。なお、初期サイクルの充放電効率(初期充放電効率)とは、以下の式により算出されるものである。
 初期充放電効率(%)=初期の放電容量÷初期の充電容量×100
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
〔電極厚みの評価〕
 充放電試験前及び充放電試験後の作用極の厚みをマイクロメーターで測定し、充放電試験前後の厚みの変化を求めた。なお、電極については中央部及び四隅の合計5点の厚みを測定し、その平均値を電極の厚みとした。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
〔比較例1及び2、3〕
 集電体b1、b2、b3として、表1に示すような電解液組成と電解条件(電流密度、液温)で作成した電解銅箔B1、B2、B3を用い、該電解銅箔B1、B2、B3に対し、実施例1と同様の電気めっきによる粗面化処理を施し集電体b1及びb2、b3を作成した。この集電体b1及びb2、b3の厚み、引張強さ、伸び及び表面粗さRa、Rzを表2に併記して示す。
 集電体b1及びb2、b3の上に、実施例1及び2、3と同様にして、非晶質シリコン薄膜を形成し、実施例1及び2、3と同様にして比較例1(集電体b1)及び比較例2(集電体b2)、比較例3(集電体b3)の作用極を作成した。
 これらの作用極を用いて実施例1及び2、3と同様にしてビーカーセルを作成し、各ビーカーセルについて、初期放電容量及び初期充放電効率を測定し、その結果を表3に併記して示した。
 表3に示す結果から明らかなように、実施例1及び2、3並びに比較例1及び2、3のいずれの電極においても、3.5mAh/cm程度の放電容量が得られており、94%以上の初期充放電効率が得られている。これは、いずれの集電体も表面が粗面化されており、また、活物質層が厚み方向に形成された切れ目によって柱状に分離されているので、活物質層が剥離または崩壊することなく、集電体と密着しているためと考えられる。
 また、比較例1及び2、3の作用極についても、実施例1及び2、3の作用極と同様にして、充放電試験前後の厚みを測定し、充放電試験前後の厚みの変化を求め、表4に結果を併記した。
 表4から明らかなように、実施例1及び2、3の作用極は、比較例1及び3の作用極に比べ、充放電試験前後の厚みの変化が著しく小さくなっている。これは、実施例1及び2、3の作用極においては、厚みの変化が充放電による活物質の膨張、収縮に伴う厚み変化のみであり、充放電試験によっても集電体にしわなどの変形が生じないためである。これに対して比較例1及び3は集電体にしわが発生したため厚み変化が大きくなっている。
 比較例2は充放電前後の厚み変化は小さいが、300サイクル後に箔に破断が観察された。これは集電体b2に用いた電解銅箔の引張強さが比較的大きいために充放電によるシワの発生が少ないが、伸びが小さいため箔が破断しやすくなったものと考えられる。
 また、比較例3は伸びが大きいため300サイクル後の破断は観察されないが、引張強さが小さいため、しわの発生が著しい。
 充放電により、集電体にしわが発生しないためには引張強さが400N/mm以上である必要がある。さらに引張強さが400N/mm以上あっても、伸びが小さい場合(比較例2)には、集電体にしわ等の変形は生じないが、充電・放電を繰り返すうちに箔が破断しやすいという欠点を持つ。しわ発生が起こらず、なおかつ箔が破断しないためには、引張強さが400N/mm以上あり、さらに伸びが4.5%以上13%未満の電解銅箔であることが好ましい。
 以上のように、負極にシリコンを主成分とする活物質層を使用した場合には、集電体に使用する電解銅箔は引張強さが大きく、伸びも大きい必要がある。
 単に引張強さが大きいだけではしわ発生を防ぐことはできるが、伸びが小さいと充放電サイクルを繰り返すうちに箔に破断が生じる。引張強さが大きく、なおかつ伸びも大きい電解銅箔の場合はしわ発生を防ぐことができ、なおかつ箔に破断が生じない。
 なお、ゲルマニウム、または錫からなる活物質を用いた場合も同様な結果が得られた。
 本発明によれば、充放電により集電体にしわ等の変形が発生するのを抑制することができ、リチウムイオン二次電池の体積当りのエネルギー密度を高めることができ、充放電サイクルを繰り返しても容量の低下が起こらない高寿命で、小型化可能なリチウムイオン二次電池を提供することができる。

Claims (9)

  1.  リチウムイオン二次電池電極用電解銅箔であって、前記電極用電解銅箔は、その引張強さが400N/mm以上、伸びが4.5%以上13%未満であり、電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を形成する表面の表面粗さRaが0.01~1μmである、リチウムイオン二次電池電極用電解銅箔。
  2.  前記活物質層を形成する前記電解銅箔の表面が、めっき法、気相成長法、エッチング法、または研磨法により粗面化された表面である、請求項1に記載のリチウムイオン二次電池電極用電解銅箔。
  3.  前記活物質層を形成する前記電解銅箔の表面が、めっき法により銅を主成分とする粒子で形成された表面である、請求項1に記載のリチウムイオン二次電池電極用電解銅箔。
  4.  前記活物質層を形成する前記電解銅箔の表面が、めっき法により銅を主成分とする粒子で形成された表面である、請求項2に記載のリチウムイオン二次電池電極用電解銅箔。
  5.  前記活物質層を形成する前記電解銅箔の表面が、銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき(被せめっき)により施された銅めっき層とで形成された表面である、請求項1に記載のリチウムイオン二次電池電極用電解銅箔。
  6.  前記活物質層を形成する前記電解銅箔の表面が、銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき(被せめっき)により施された銅めっき層とで形成された表面である、請求項2に記載のリチウムイオン二次電池電極用電解銅箔。
  7.  電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を集電体上に形成したリチウムイオン二次電池用電極であって、前記集電体が電解銅箔からなり、その引張強さが400N/mm以上、伸びが4.5%以上13%未満あり、かつ前記活物質層が形成されている前記集電体の表面の表面粗さRaが0.01~1μmである、リチウムイオン二次電池用電極。
  8.  前記活物質層が、シリコン、ゲルマニウム、または錫を主成分とする、請求項7に記載のリチウムイオン二次電池用電極。
  9.  電気化学的または化学的にリチウムを吸蔵・放出可能な活物質層を集電体上に堆積して形成した負極を有するリチウムイオン二次電池であって、前記集電体が電解銅箔からなり、その引張強さが400N/mm以上、伸びが4.5%以上13%未満あり、かつ前記活物質層が形成されている前記集電体の表面の表面粗さRaが0.01~1μmである、リチウムイオン二次電池。
PCT/JP2010/054803 2009-03-24 2010-03-19 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔 WO2010110205A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800095552A CN102326284A (zh) 2009-03-24 2010-03-19 锂离子充电电池、该电池用电极、该电池电极用电解铜箔
JP2010541360A JPWO2010110205A1 (ja) 2009-03-24 2010-03-19 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009072615 2009-03-24
JP2009-072615 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110205A1 true WO2010110205A1 (ja) 2010-09-30

Family

ID=42780899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054803 WO2010110205A1 (ja) 2009-03-24 2010-03-19 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔

Country Status (5)

Country Link
JP (1) JPWO2010110205A1 (ja)
KR (1) KR20110118129A (ja)
CN (1) CN102326284A (ja)
TW (1) TW201044677A (ja)
WO (1) WO2010110205A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091060A1 (ja) 2010-12-27 2012-07-05 古河電気工業株式会社 リチウムイオン二次電池、その二次電池用電極、その二次電池の電極用電解銅箔
JP2012178309A (ja) * 2011-02-28 2012-09-13 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極と、これを用いたリチウムイオン二次電池
WO2012133564A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 二次電池負極集電体用電解銅箔及びその製造方法
WO2013002279A1 (ja) * 2011-06-30 2013-01-03 古河電気工業株式会社 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
JP2013091825A (ja) * 2011-10-25 2013-05-16 Furukawa Electric Co Ltd:The リチウムイオン二次電池用電解銅箔とその製造方法
WO2013129588A1 (ja) * 2012-02-28 2013-09-06 古河電気工業株式会社 リチウムイオン二次電池、該二次電池の負極電極を構成する集電体、ならびに該負極電極集電体を構成する電解銅箔
KR20150034743A (ko) 2012-06-27 2015-04-03 후루카와 덴키 고교 가부시키가이샤 전해 구리박, 리튬 이온 이차 전지의 부극 전극 및 리튬 이온 이차 전지

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751448B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
WO2013157811A1 (ko) * 2012-04-16 2013-10-24 주식회사 엘지화학 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
JP5718426B2 (ja) * 2012-10-31 2015-05-13 古河電気工業株式会社 銅箔、非水電解質二次電池用負極および非水電解質二次電池
KR20180031067A (ko) 2012-11-22 2018-03-27 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
KR20150065815A (ko) * 2012-11-22 2015-06-15 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
JP2015064988A (ja) 2013-09-24 2015-04-09 株式会社東芝 非水電解質二次電池及び電池パック
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
CN104805478A (zh) * 2014-01-29 2015-07-29 金居开发铜箔股份有限公司 负极集电体用电解铜箔及其制造方法
KR102473557B1 (ko) * 2015-09-24 2022-12-01 에스케이넥실리스 주식회사 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (ja) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd 電解銅箔及びその製造方法
JP2005197205A (ja) * 2003-12-12 2005-07-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極集電体
JP2008010320A (ja) * 2006-06-29 2008-01-17 Sony Corp 電極集電体及びその検査方法、電池用電極及びその製造方法、並びに二次電池及びその製造方法
JP2008047307A (ja) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池
JP2008226800A (ja) * 2007-03-16 2008-09-25 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池負極集電体用銅箔およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887623B2 (en) * 2001-04-09 2005-05-03 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2003007305A (ja) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2004335256A (ja) * 2003-05-07 2004-11-25 Sanyo Electric Co Ltd リチウム二次電池用電極およびその製造方法
JP4471603B2 (ja) * 2003-08-08 2010-06-02 三洋電機株式会社 リチウム二次電池
JP4338506B2 (ja) * 2003-12-03 2009-10-07 三洋電機株式会社 リチウム二次電池およびその製造方法
JP5219340B2 (ja) * 2006-03-08 2013-06-26 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008123814A (ja) * 2006-11-10 2008-05-29 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP5147342B2 (ja) * 2007-03-28 2013-02-20 三洋電機株式会社 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (ja) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd 電解銅箔及びその製造方法
JP2005197205A (ja) * 2003-12-12 2005-07-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極集電体
JP2008010320A (ja) * 2006-06-29 2008-01-17 Sony Corp 電極集電体及びその検査方法、電池用電極及びその製造方法、並びに二次電池及びその製造方法
JP2008047307A (ja) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池
JP2008226800A (ja) * 2007-03-16 2008-09-25 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池負極集電体用銅箔およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314474A (zh) * 2010-12-27 2013-09-18 古河电气工业株式会社 锂离子二次电池、该二次电池用电极、以及该二次电池的电极用电解铜箔
WO2012091060A1 (ja) 2010-12-27 2012-07-05 古河電気工業株式会社 リチウムイオン二次電池、その二次電池用電極、その二次電池の電極用電解銅箔
US9603245B2 (en) 2010-12-27 2017-03-21 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
JP2012178309A (ja) * 2011-02-28 2012-09-13 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極と、これを用いたリチウムイオン二次電池
WO2012133564A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 二次電池負極集電体用電解銅箔及びその製造方法
JP2012212529A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 二次電池負極集電体用電解銅箔及びその製造方法
CN103460464A (zh) * 2011-03-30 2013-12-18 Jx日矿日石金属株式会社 二次电池负极集电体用电解铜箔及其制造方法
WO2013002279A1 (ja) * 2011-06-30 2013-01-03 古河電気工業株式会社 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
JP5379928B2 (ja) * 2011-06-30 2013-12-25 古河電気工業株式会社 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
JPWO2013002279A1 (ja) * 2011-06-30 2015-02-23 古河電気工業株式会社 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
JP2013091825A (ja) * 2011-10-25 2013-05-16 Furukawa Electric Co Ltd:The リチウムイオン二次電池用電解銅箔とその製造方法
WO2013129588A1 (ja) * 2012-02-28 2013-09-06 古河電気工業株式会社 リチウムイオン二次電池、該二次電池の負極電極を構成する集電体、ならびに該負極電極集電体を構成する電解銅箔
JP5598884B2 (ja) * 2012-02-28 2014-10-01 古河電気工業株式会社 リチウムイオン二次電池、該二次電池の負極電極を構成する集電体、ならびに該負極電極集電体を構成する電解銅箔
JPWO2013129588A1 (ja) * 2012-02-28 2015-07-30 古河電気工業株式会社 リチウムイオン二次電池、該二次電池の負極電極を構成する集電体、ならびに該負極電極集電体を構成する電解銅箔
KR20150034743A (ko) 2012-06-27 2015-04-03 후루카와 덴키 고교 가부시키가이샤 전해 구리박, 리튬 이온 이차 전지의 부극 전극 및 리튬 이온 이차 전지
US10050277B2 (en) 2012-06-27 2018-08-14 Furukawa Electric Co., Ltd. Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
CN102326284A (zh) 2012-01-18
KR20110118129A (ko) 2011-10-28
JPWO2010110205A1 (ja) 2012-09-27
TW201044677A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2010110205A1 (ja) リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
JP5276158B2 (ja) リチウムイオン二次電池、該電池用負極電極、該電池負極集電体用電解銅箔
JP5128695B2 (ja) 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
US7147971B2 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery
JP4953583B2 (ja) リチウム二次電池
JP4497899B2 (ja) リチウム二次電池
JP2003007305A (ja) リチウム二次電池用電極及びリチウム二次電池
JP2002313319A (ja) リチウム二次電池用電極及びリチウム二次電池
JP2002319408A (ja) リチウム二次電池用電極及びリチウム二次電池
JP2013133514A (ja) 銅箔、二次電池の電極、二次電池、並びにプリント回路基板
WO2013080988A1 (ja) 電極用集電体、非水電解質二次電池用電極、非水電解質二次電池
KR20140051375A (ko) 피복층 부착 금속박 및 그 제조방법, 이차전지용 전극 및 그 제조방법, 및 리튬이온 이차전지
JP5981165B2 (ja) 銅箔、二次電池の負極電極、二次電池、並びにプリント回路基板
JP6067256B2 (ja) 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池
JP4436624B2 (ja) リチウム二次電池
JP2015198020A (ja) 負極電極用表面処理銅箔、負極電極およびそれを使用したリチウムイオン二次電池
JP4471603B2 (ja) リチウム二次電池
JP5873711B2 (ja) 銅箔、二次電池の電極、二次電池、並びにプリント回路基板
JP2013012450A (ja) リチウムイオン二次電池電極の集電体用金属箔、該金属箔の製造方法、及び該金属箔を集電体としたリチウムイオン二次電池
JP2014009365A (ja) 電解銅箔、リチウムイオン二次電池負極電極、及びリチウムイオン二次電池
CN117712386A (zh) 复合铜箔及其制备方法、锂离子二次电池
JP2005293852A (ja) リチウム二次電池及びリチウム二次電池用負極の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009555.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010541360

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016936

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756002

Country of ref document: EP

Kind code of ref document: A1