WO2011055570A1 - シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置 - Google Patents

シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置 Download PDF

Info

Publication number
WO2011055570A1
WO2011055570A1 PCT/JP2010/061945 JP2010061945W WO2011055570A1 WO 2011055570 A1 WO2011055570 A1 WO 2011055570A1 JP 2010061945 W JP2010061945 W JP 2010061945W WO 2011055570 A1 WO2011055570 A1 WO 2011055570A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
node
electrode
potential
signal
Prior art date
Application number
PCT/JP2010/061945
Other languages
English (en)
French (fr)
Inventor
明久 岩本
秀樹 森井
隆行 水永
慶 生田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/501,198 priority Critical patent/US8519764B2/en
Priority to JP2011539304A priority patent/JP5127986B2/ja
Priority to EP10828131.2A priority patent/EP2498260B1/en
Priority to RU2012122770/08A priority patent/RU2543312C2/ru
Priority to CN2010800495150A priority patent/CN102598145B/zh
Priority to BR112012011605A priority patent/BR112012011605A2/pt
Priority to KR1020127011435A priority patent/KR101250158B1/ko
Publication of WO2011055570A1 publication Critical patent/WO2011055570A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/287Organisation of a multiplicity of shift registers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the present invention relates to a shift register provided in a drive circuit of an active matrix display device, and more particularly to a shift register that can shift an input signal bidirectionally.
  • FIG. 23 is a block diagram showing a configuration example of the gate driver of such a conventional display device.
  • FIG. 24 is a circuit diagram showing a configuration example of one stage of the shift register constituting the gate driver.
  • the gate driver includes a shift register 90 having a plurality of stages (stages equal to the number of gate bus lines). Each stage of the shift register 90 is in one of two states (first state and second state) at each time point and outputs a signal indicating the state as a scanning signal. It is a circuit. As described above, the shift register 90 includes a plurality of bistable circuits SR. Each bistable circuit SR has an input terminal for receiving a two-phase clock signal CKA (hereinafter referred to as “first clock”) and CKB (hereinafter referred to as “second clock”), and a low-level power supply voltage.
  • first clock hereinafter referred to as “first clock”
  • CKB hereinafter referred to as “second clock”
  • An input terminal for receiving VSS, an input terminal for receiving set signal SET, an input terminal for receiving reset signal RESET, and an output terminal for outputting scanning signal GOUT are provided.
  • the scanning signal GOUT output from each stage (bistable circuit) is given to the next stage as a set signal and given to the previous stage as a reset signal.
  • the bistable circuit includes four thin film transistors T91, T92, T93, and T94, and a capacitor C9.
  • the bistable circuit has four input terminals 91 to 94 and one output terminal 95 in addition to the input terminal for the low-level power supply voltage VSS.
  • the source terminal of the thin film transistor T91, the drain terminal of the thin film transistor T92, and the gate terminal of the thin film transistor T93 are connected to each other.
  • a region (wiring) in which these are connected to each other is referred to as “netA” for convenience.
  • the gate terminal and the drain terminal are connected to the input terminal 91 (that is, diode connection), and the source terminal is connected to netA.
  • the gate terminal is connected to the input terminal 92, the drain terminal is connected to netA, and the source terminal is connected to the power supply voltage VSS.
  • the thin film transistor T93 the gate terminal is connected to netA, the drain terminal is connected to the input terminal 93, and the source terminal is connected to the output terminal 95.
  • the thin film transistor T94 the gate terminal is connected to the input terminal 94, the drain terminal is connected to the output terminal 95, and the source terminal is connected to the power supply voltage VSS.
  • the capacitor C9 has one end connected to the netA and the other end connected to the output terminal 95.
  • each stage (bistable circuit) of the shift register 90 operates as follows.
  • FIG. 25 is a timing chart for explaining the operation of each stage of the shift register 90.
  • the input terminal 93 is supplied with a first clock CKA that becomes high level every other horizontal scanning period.
  • the input terminal 94 is supplied with a second clock CKB that is 180 degrees out of phase with the first clock CKA.
  • the potential of netA and the potential of the scanning signal GOUT are at a low level.
  • a pulse of the set signal SET is given to the input terminal 91. Since the thin film transistor T91 is diode-connected as shown in FIG. 24, the thin film transistor T91 is turned on by the pulse of the set signal SET, and the capacitor C9 is charged. As a result, the potential of netA changes from the low level to the high level, and the thin film transistor T93 is turned on.
  • the first clock CKA is at a low level. Therefore, the scanning signal GOUT is maintained at a low level during this period.
  • the reset signal RESET is at a low level, the thin film transistor T92 is maintained in an off state. For this reason, the potential of netA does not decrease during this period.
  • the first clock CKA changes from low level to high level.
  • the potential of the output terminal 95 increases as the potential of the input terminal 93 increases.
  • the capacitor C9 is provided between the netA-output terminal 95, the potential of the netA rises as the potential of the output terminal 95 rises (netA is bootstrapped).
  • a large voltage is applied to the thin film transistor T93, and the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA.
  • the gate bus line connected to the output terminal 95 of this bistable circuit is selected.
  • the second clock CKB is at a low level during the period from the time point t1 to the time point t2. Therefore, since the thin film transistor T94 is maintained in the off state, the potential of the scanning signal GOUT does not decrease during this period.
  • the first clock CKA changes from high level to low level.
  • the potential at the output terminal 95 decreases with a decrease in the potential at the input terminal 93, and the potential at netA also decreases through the capacitor C9.
  • a pulse of the reset signal RESET is given to the input terminal 92.
  • the thin film transistor T92 is turned on.
  • the potential of netA changes from the high level to the low level.
  • the second clock CKB changes from the low level to the high level.
  • the thin film transistor T94 is turned on.
  • the potential of the output terminal 95 that is, the potential of the scanning signal GOUT becomes low level.
  • the scanning signal GOUT output from each stage (bistable circuit) as described above is given to the next stage as a set signal SET as shown in FIG.
  • the plurality of gate bus lines provided in the display device are sequentially selected in units of one horizontal scanning period, and writing to the pixel capacitors in the pixel circuit is performed row by row.
  • FIG. 26 is a block diagram showing the configuration of the shift register disclosed in US Pat. No. 6,778,626.
  • circuits circuits for inputting a select signal SW that is a signal corresponding to the scanning order
  • 310, 312, and 314 are provided for each stage. Then, the scanning order is switched by a select signal SW given to the circuits 310, 312, and 314.
  • FIG. 27 is a block diagram showing the structure of the shift register disclosed in Japanese Special Table 2001-501604.
  • each stage is given a set signal from the previous stage or the next stage, and given a reset signal from the previous stage or the next stage.
  • the purpose of enabling the switching of the gate bus line scanning order is as follows.
  • the mounting direction may differ depending on the shipping destination (for example, upside down).
  • the shipping order can be switched at the shipping destination, an image desired by the user can be displayed.
  • televisions that allow the image reflected in the mirror to be viewed have been proposed, and if the scan order can be switched, the user can view the normal image on the screen reflected in the mirror. Become.
  • circuits 310, 312, and 314 for switching the scanning order are required for each stage of the shift register. For this reason, the circuit area and current consumption increase, and the cost increases. Further, the circuits 310, 312, and 314 for switching the scanning order are configured such that the switches are switched by the select signal SW. According to such a configuration, the switches are configured during the operation of the display device. The transistor will be kept on. For this reason, when a thin film transistor using amorphous silicon or the like is employed as a switch, the threshold voltage of the transistor may shift during high-temperature aging, and abnormal operation may occur. Therefore, high reliability is not ensured.
  • the panel has been increased in size and resolution, and it has become a problem to prevent insufficient charging of the pixel capacity.
  • the shift register disclosed in Japanese Patent Publication No. 2001-506044 there is no period in which a plurality of gate bus lines are simultaneously selected (see FIG. 28). Therefore, for example, during forward scanning, preliminary charging (precharging) cannot be performed on the (k + 1) th row during the period in which charging is performed on the kth row. In order to enable precharge with this shift register, it is necessary to employ a configuration using six or more clock signals.
  • an object of the present invention is to realize a shift register capable of switching the scanning order of scanning signal lines while suppressing an increase in circuit area, an increase in current consumption, and insufficient charging of a pixel capacitor.
  • a first aspect of the present invention includes a plurality of bistable circuits having a first state and a second state and connected in series to each other, and among the plurality of bistable circuits, an odd-stage bistable circuit
  • the first clock signal and the second clock are supplied to a two-phase clock signal given as a first clock signal and a second clock signal to the circuit and the even-numbered bistable circuit among the plurality of bistable circuits.
  • a shift register in which the plurality of bistable circuits sequentially enter a first state based on at least a four-phase clock signal including a two-phase clock signal provided as a signal;
  • Each bistable circuit is An output node that outputs a state signal representing either the first state or the second state;
  • An output control switching element in which the first clock signal is applied to a second electrode, and a third electrode is connected to the output node;
  • a first first-node charging unit for charging a first node connected to the first electrode of the output control switching element based on a state signal output from a bistable circuit preceding the bistable circuit.
  • a second first-node charging unit for charging the first node based on a state signal output from a bistable circuit subsequent to the bistable circuit;
  • a first first node discharging unit for discharging the first node based on a state signal output from a bistable circuit at a stage three stages after the bistable circuit;
  • a second first-node discharging unit for discharging the first node based on a state signal output from a bistable circuit three stages before each of the bistable circuits.
  • the first clock signal and the second clock signal may be 180 degrees out of phase with each other.
  • the two-phase clock signal applied to the odd-stage bistable circuit and the two-phase clock signal applied to the even-stage bistable circuit are each 90 ° out of phase with each other. .
  • the timing at which the first clock signal changes from high level to low level and the timing at which the second clock signal changes from low level to high level are the same, and the first clock signal is low.
  • the timing at which the level changes from the high level to the timing at which the second clock signal changes from the high level to the low level is the same.
  • Each of the four-phase clock signals has an on-duty of 50%.
  • each bistable circuit In each bistable circuit, In the first first-node charging unit, a state signal output from a bistable circuit preceding the bistable circuit is supplied to the first electrode and the second electrode, and a third electrode is connected to the first node. Including a first switching element In the second first node charging unit, a state signal output from a bistable circuit next to the bistable circuit is provided to the first electrode and the second electrode, and a third electrode is provided to the first node.
  • Including a connected second switching element In the first first node discharge unit, a state signal output from a bistable circuit in a stage three stages after the bistable circuit is supplied to the first electrode, and the second electrode is connected to the first node. And a third switching element in which a low level potential is applied to the third electrode, In the second first node discharge unit, a state signal output from a bistable circuit three stages before the bistable circuit is supplied to the first electrode, and the second electrode is connected to the first node. And a fourth switching element in which a low-level potential is applied to the third electrode.
  • Each bistable circuit is A fifth switching element having a second electrode connected to the first node and a low-level potential applied to the third electrode;
  • a second node control unit configured to control a potential of a second node connected to the first electrode of the fifth switching element based on the second clock signal and the potential of the first node;
  • the second node controller is A sixth switching element in which the second clock signal is applied to the first electrode and the second electrode, and a third electrode is connected to the second node;
  • the first node is connected to the first node, the second electrode is connected to the second node, and the seventh switching element is provided with a low-level potential applied to the third electrode.
  • the odd-stage bistable circuit receives a two-phase clock signal applied to the even-stage bistable circuit as a third clock signal and a fourth clock signal, respectively.
  • the even-stage bistable circuit receives a two-phase clock signal applied to the odd-stage bistable circuit as the third clock signal and the fourth clock signal, respectively.
  • Each bistable circuit is An eighth switching element having a second electrode connected to the first node and a low-level potential applied to the third electrode; A third node control unit for controlling a potential of a third node connected to the first electrode of the eighth switching element based on the third clock signal and the potential of the first node; An eleventh switching element having a second electrode connected to the first node and a low-level potential applied to the third electrode; A fourth node control unit for controlling a potential of a fourth node connected to the first electrode of the eleventh switching element based on the fourth clock signal and the potential of the first node;
  • the third node controller is A ninth switching element in which the third clock signal is applied to the first electrode and the second electrode, and the third electrode is connected to the third node; A first electrode connected to the first node, a second electrode connected to the third node, and a tenth switching element to which a low-level potential is applied to the third electrode;
  • the fourth node controller is A twelfth switching element in which the fourth clock signal is applied to the first electrode and the second electrode, and a third electrode is connected to the fourth node; A first electrode is connected to the first node, a second electrode is connected to the fourth node, and a thirteenth switching element to which a low-level potential is applied to the third electrode.
  • the first aspect of the present invention Three first-stage sides for discharging the first nodes included in the first-stage, second-stage, and third-stage bistable circuits of the plurality of bistable circuits by the second first-node discharge unit, respectively.
  • Control signal is given from the outside, To discharge the first node included in the last stage, the previous stage of the last stage, and the last two stages of the bistable circuit among the plurality of bistable circuits by the first first node discharge unit, respectively.
  • the three final stage side control signals are provided from the outside.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention, Of the three first-stage control signals, two first-stage control signals are realized by one signal, Of the three final stage side control signals, two final stage side control signals are realized by one signal.
  • a thirteenth aspect of the present invention is the twelfth aspect of the present invention, In each of the first stage, the second stage, and the third stage of the plurality of bistable circuits, after the first node is charged by the second first node charging unit, the second node During the period until the first node is discharged by the first node discharging unit, the change from the low level to the high level of the first clock signal is suppressed, The first node is charged by the first first node charging unit in each of the last stage, the last stage before the last stage, and the last stage bistable circuit among the plurality of bistable circuits. Thereafter, during the period until the first node is discharged by the first first node discharging unit, the change from the low level to the high level of the first clock signal is suppressed.
  • One of the first, second, and third bistable circuits of the plurality of bistable circuits is supplied with the first-stage control signal to the first electrode, and the second electrode is connected to the output node.
  • a fifteenth switching element in which a low level potential is applied to the third electrode Any one of the last stage, the last stage before the last stage, and the last stage before the last stage among the plurality of bistable circuits is provided with the last stage side control signal to the first electrode, and the output node Including a sixteenth switching element to which the second electrode is connected and a low level potential is applied to the third electrode.
  • Each bistable circuit further includes a fourteenth switching element in which the second clock signal is applied to the first electrode, the second electrode is connected to the output node, and a low-level potential is applied to the third electrode. It is characterized by that.
  • Each bistable circuit further includes a capacitor having one end connected to the first node and the other end connected to the output node.
  • each bistable circuit In each bistable circuit, a state signal output from the bistable circuit of the second or third stage after each bistable circuit is given to the first electrode, and the second electrode is connected to the output node, A seventeenth switching element to which a low-level potential is applied to the third electrode, and a state signal output from the bistable circuit two stages before or three stages before each bistable circuit are applied to the first electrode. And an 18th switching element, wherein a second electrode is connected to the output node, and a low level potential is applied to the third electrode.
  • the first aspect of the present invention is formed using amorphous silicon.
  • the first aspect of the present invention is formed using microcrystalline silicon.
  • the first aspect of the present invention is formed using polycrystalline silicon.
  • the first aspect of the present invention is formed using an oxide semiconductor.
  • a scanning signal line driving circuit for a display device that drives a plurality of scanning signal lines disposed in a display unit
  • a shift register according to the first aspect of the present invention is provided,
  • the plurality of bistable circuits are provided in one-to-one correspondence with the plurality of scanning signal lines,
  • Each bistable circuit supplies a state signal output from the output node as a scanning signal to a scanning signal line corresponding to each bistable circuit.
  • a twenty-third aspect of the present invention is a display device, A scanning signal line driving circuit according to a twenty-second aspect of the present invention is provided, including the display section.
  • a shift register including the plurality of bistable circuits is provided on both one end side and the other end side of the display portion.
  • the odd-stage bistable circuit is provided on one end side of the display unit, and the even-stage bistable circuit is provided on the other end side of the display unit.
  • each stage (bistable circuit) of the shift register includes an output control switching element that controls the potential of the output node (the potential of the state signal output from each stage).
  • the output control switching element controls the potential of the output node (the potential of the state signal output from each stage).
  • a signal for charging the first node connected to the first electrode typically the gate electrode
  • a state signal output from the previous stage and a state signal output from the next stage are given, and the first node
  • a status signal output from the stage three stages before and a status signal output from the stage three stages after are provided. That is, the state signal output from each stage of the shift register functions to charge the first node of the previous stage and the next stage, and discharges the first node of the stage three stages before and after the third stage.
  • the second clock (typically the drain electrode) of the output control switching element is supplied with a first clock signal that periodically repeats a high level potential and a low level potential. For this reason, when the first node is charged at the first stage of the shift register for the first time, the status signals output from the stages of the shift register in the forward order (from the first stage to the last stage) are 1 state. On the other hand, when the first node is charged in the last stage of the shift register for the first time, the status signals output from the stages of the shift register are in the reverse order (the order from “last stage to first stage”). 1 state.
  • the shift without changing the configuration that has been conventionally required for switching the shift direction (such as “a switch that is switched by a select signal”, “a drive circuit and signal wiring for a select signal”) is provided.
  • a shift register capable of switching the direction is realized. For this reason, for example, when the display device is configured so that the scanning order of the scanning signal lines can be switched, an increase in circuit area, an increase in current consumption, an increase in cost, and the like are suppressed.
  • a switch for switching the scanning order (shift direction) becomes unnecessary, the occurrence of malfunction due to the shift of the threshold voltage of the switch (transistor) during high temperature aging is suppressed.
  • the two-phase clock signal given to the odd-numbered stage and the two-phase clock signal given to the even-numbered stage are shifted from each other by 90 degrees. For this reason, the charging time to the pixel capacitance is made uniform, and the occurrence of display defects due to the charging difference is suppressed.
  • the noise of the state signal output from the bistable circuit is reduced.
  • the charging time for the pixel capacitance becomes longer, the occurrence of display defects due to insufficient charging is effectively suppressed.
  • the on-duty of each clock signal is 50%. Therefore, it is possible to provide a period in which a plurality of scanning signal lines are simultaneously selected. At this time, preliminary charge (precharge) to the pixel capacitor is performed in the first half of the period in which each scanning signal line is selected, and main charge to the pixel capacitor is performed in the second half. . As a result, a sufficient charging time is ensured, and deterioration of display quality due to insufficient charging of the pixel capacity is suppressed.
  • the first first node charging unit, the second first node charging unit, the first first node discharging unit, and the second first node discharging unit include switching elements. In the configuration including the same effect as the first aspect of the present invention can be obtained.
  • the potential of the second node for controlling the potential of the first node is set to the high level every predetermined period during the period in which the potential of the first node is at the low level. be able to.
  • the fifth switching element is turned on every predetermined period, and the potential of the first node is drawn to a lower potential. For this reason, for example, even when a threshold voltage shift of the switching element for output control occurs due to high temperature aging, and the leakage current in the switching element becomes large, the potential of the first node is surely set to a low level every predetermined period. And output of abnormal pulses from the output node is suppressed.
  • the potentials of the third node and the fourth node for controlling the potential of the first node are set at predetermined intervals during the period when the potential of the first node is at a low level. Can be high level.
  • the potential of the third node and the potential of the fourth node are controlled based on different clock signals. This makes it possible to draw the potential of the first node to a lower potential in, for example, most of the periods in which the potential of the first node is at a low level.
  • the first stage, the second stage, the third stage, the stage before the final stage, the stage before the final stage, and the first node of the final stage are discharged by a control signal supplied from the outside.
  • the first node of two stages among the last stage, the preceding stage of the last stage, and the preceding stage of the last stage. are discharged based on the same signal.
  • the shift operation is performed in the reverse order, the first nodes of two stages of the first stage, the second stage, and the third stage are discharged based on the same signal. For this reason, the signal wiring necessary for discharging the first node is reduced, and the effects such as reduction in circuit area, reduction in current consumption, and reduction in cost are further enhanced.
  • the thirteenth aspect of the present invention in the first stage, the second stage, the third stage, the stage before the last stage, the stage before the last stage, and the last stage, an unnecessary increase in the potential of the first node is suppressed. As a result, deterioration of display quality is suppressed.
  • the potential of the state signal is based on a control signal given from outside. Can be set to low level
  • the potential of the output node becomes low level based on the second clock signal, so that an abnormal pulse is output from the output node. Is effectively suppressed.
  • the potential of the first node rises via the capacitor (the first node is bootstrapped). For this reason, during the period in which the bistable circuit is to be maintained in the first state, a decrease in the potential of the first node is suppressed, and a large voltage is applied to the first electrode of the output control switching element. . Thereby, the waveform of the state signal output from the output node is stabilized.
  • the shift operation when the shift operation is performed in the forward order, it is based on the state signal output from the stage after the second stage of each stage or the stage after the third stage of each stage.
  • the potential of the output node is set to the low level and the shift operation is performed in the reverse order, the state signal output from the stage two stages before each stage or the stage three stages before each stage is used.
  • the potential of the output node is set to a low level.
  • the potential of the state signal can be more reliably lowered to the low level.
  • the same effect as in the first aspect of the present invention can be obtained.
  • the same effect as in the first aspect of the present invention can be obtained.
  • the same effect as in the first aspect of the present invention can be obtained in the shift register formed using an oxide semiconductor.
  • a scanning signal line drive circuit including a shift register capable of obtaining the same effect as in the first aspect of the present invention is realized.
  • a display device including a scanning signal line driving circuit that can obtain the same effect as in the twenty-second aspect of the present invention is realized.
  • one scanning signal line is charged from both sides of the display unit. For this reason, the deterioration of the display quality resulting from insufficient charging is suppressed.
  • the size per stage of the shift register is almost halved compared to the configuration in which the bistable circuit constituting the shift register is provided only on one side of the display unit. be able to. As a result, it is possible to reduce the area required for the frame of the panel, and to realize miniaturization of various products.
  • FIG. 1 is a block diagram illustrating a configuration of a shift register in a gate driver of an active matrix liquid crystal display device according to a first embodiment of the present invention.
  • it is a block diagram which shows the whole structure of a liquid crystal display device.
  • it is a block diagram for demonstrating the structure of a gate driver.
  • it is a figure for demonstrating the input-output signal of the bistable circuit of the k-th stage of a shift register.
  • FIG. 3 is a circuit diagram showing a configuration of a bistable circuit included in a shift register in the first embodiment.
  • FIG. 4 is a timing chart for explaining the operation of each stage of the shift register when forward scanning is performed in the first embodiment.
  • 6 is a timing chart for explaining the operation of each stage of the shift register when reverse scanning is performed in the first embodiment.
  • 4 is a timing chart for explaining the overall operation of the shift register when forward scanning is performed in the first embodiment.
  • 6 is a timing chart for explaining the overall operation of the shift register when reverse scanning is performed in the first embodiment.
  • FIGS. 8A to 8C are diagrams for explaining the effects in the second embodiment.
  • FIG. 10 is a block diagram showing a configuration of a shift register in a gate driver in a third embodiment of the present invention.
  • the 4th Embodiment of this invention it is a circuit diagram which shows the structure of the bistable circuit contained in a shift register. 10 is a timing chart for explaining the operation of each stage of the shift register when forward scanning is performed in the fourth embodiment. 10 is a timing chart for explaining the operation of each stage of the shift register when reverse scanning is performed in the fourth embodiment.
  • the 5th Embodiment of this invention it is a block diagram which shows the structure of the shift register in a gate driver.
  • it is a circuit diagram which shows the structure of the bistable circuit contained in a shift register.
  • FIG. 10 is a block diagram showing a configuration of a shift register in a gate driver in a sixth embodiment of the present invention.
  • it is a timing chart for demonstrating the operation
  • It is a block diagram which shows one structural example of the gate driver of the conventional display apparatus.
  • it is a circuit diagram which shows the structural example for one stage of the shift register which comprises a gate driver.
  • FIG. 10 is a timing chart for explaining the operation of each stage of the shift register in the conventional example.
  • FIG. 6 is a block diagram illustrating a configuration of a shift register disclosed in US Pat. No. 6,778,626.
  • FIG. 12 is a block diagram showing a configuration of a shift register disclosed in Japanese Special Table 2001-501604. 6 is a timing chart for explaining the operation of the shift register disclosed in Japanese Patent Special Publication 2001-506044.
  • the gate terminal (gate electrode) of the thin film transistor corresponds to the first electrode
  • the drain terminal (drain electrode) corresponds to the second electrode
  • the source terminal (source electrode) corresponds to the third electrode.
  • FIG. 2 is a block diagram showing the overall configuration of the active matrix liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device includes a display unit 10, a display control circuit 20, a source driver (video signal line driving circuit) 30, and a gate driver (scanning signal line driving circuit) 40.
  • the display control circuit 20 is formed on the control board 2.
  • the source driver 30 is formed on the flexible substrate 3.
  • the gate driver 40 is formed on the display panel 4 including the display unit 10 using amorphous silicon, polycrystalline silicon, microcrystalline silicon, an oxide semiconductor (for example, IGZO) or the like. That is, in the present embodiment, the gate driver 40 has a monolithic configuration.
  • the display unit 10 includes a plurality (m) of source bus lines (video signal lines) SL1 to SLm, a plurality (n) of gate bus lines (scanning signal lines) GL1 to GLn, and their source buses.
  • a plurality of (n ⁇ m) pixel forming portions provided corresponding to the intersections of the lines SL1 to SLm and the gate bus lines GL1 to GLn are included.
  • the plurality of pixel forming portions are arranged in a matrix to form a pixel array.
  • Each pixel forming portion includes a thin film transistor (TFT) 11 which is a switching element having a gate terminal connected to a gate bus line passing through a corresponding intersection and a source terminal connected to a source bus line passing through the intersection.
  • the liquid crystal layer is sandwiched between the electrode and the common electrode Ec.
  • a pixel capacitor Cp is constituted by a liquid crystal capacitor formed by the pixel electrode and the common electrode Ec.
  • an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to reliably hold the voltage in the pixel capacitor Cp.
  • the auxiliary capacitor is not directly related to the present invention, its description and illustration are omitted.
  • the display control circuit 20 receives an image signal DAT and a timing signal group TG such as a horizontal synchronization signal and a vertical synchronization signal sent from the outside, and receives a digital video signal DV and a source start pulse for controlling image display on the display unit 10.
  • a signal SSP, a source clock signal SCK, a latch strobe signal LS, first to sixth scanning control signals CNT1 to CNT6, and first to fourth gate clock signals GCK1 to GCK4 are output.
  • the source driver 30 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 20, and supplies the driving video signal S to the source bus lines SL1 to SLm. (1) to S (m) are applied.
  • the gate driver 40 Based on the first to sixth scan control signals CNT1 to CNT6 and the first to fourth gate clock signals GCK1 to GCK4 output from the display control circuit 20, the gate driver 40 generates an active scan signal GOUT (1 ) To GOUT (n) are repeatedly applied to the gate bus lines GL1 to GLn with one vertical scanning period as a cycle.
  • the forward scanning (the order of “GL1, GL2,..., GLn ⁇ 1, GLn”) depends on the generation timing of each of the first to sixth scanning control signals CNT1 to CNT6.
  • scanning in the reverse direction scanning in the order of “GLn, GLn ⁇ 1,..., GL2, GL1”. A detailed description of the gate driver 40 will be given later.
  • the driving video signals S (1) to S (m) are applied to the source bus lines SL1 to SLm, and the scanning signals GOUT (1) to GOUT (n) are applied to the gate bus lines GL1 to GLn. Is applied, an image based on the image signal DAT sent from the outside is displayed on the display unit 10.
  • the gate driver 40 includes an n-stage shift register 410.
  • each stage of the shift register 410 is provided so as to correspond to each row of the pixel matrix on a one-to-one basis.
  • Each stage of the shift register 410 is in one of two states (first state and second state) at each time point, and scans a signal (state signal) indicating the state. It is a bistable circuit that outputs as a signal.
  • the shift register 410 includes n bistable circuits SR (1) to SR (n).
  • the bistable circuit if the bistable circuit is in the first state, a high level (H level) state signal is output from the bistable circuit as a scanning signal, and the bistable circuit is in the second state. In this state, a low level (L level) state signal is output as a scanning signal from the bistable circuit.
  • the shift register 410 includes eight bistable circuits SR (1) to SR (8).
  • FIG. 1 is a block diagram showing the configuration of the shift register 410 in the gate driver 40.
  • FIG. 4 is a diagram for describing input / output signals of the k-th stage bistable circuit SR (k) of the shift register 410.
  • the shift register 410 includes eight bistable circuits SR (1) to SR (8).
  • Each bistable circuit includes an input terminal for receiving two-phase clock signals CKA (hereinafter referred to as “first clock”) and CKB (hereinafter referred to as “second clock”), and a low-level power supply voltage VSS.
  • An input terminal for receiving a first set signal SET1 which is a signal for starting scanning during forward scanning, and a second signal for starting scanning during backward scanning.
  • An input terminal for receiving the set signal SET2, an input terminal for receiving the first reset signal RESET1, which is a signal for ending the scanning at the time of forward scanning, and a signal for ending the scanning at the time of backward scanning are provided with an input terminal for receiving the second reset signal RESET2 and an output terminal for outputting the scanning signal GOUT.
  • each bistable circuit signals applied to the input terminals of each stage (each bistable circuit) will be described.
  • the low-level power supply voltage VSS is commonly applied to all the stages SR (1) to SR (8) as shown in FIG.
  • the first clock CKA and the second clock CKB are as follows (see FIG. 1).
  • the first gate clock signal GCK1 is given as the first clock CKA
  • the third gate clock signal GCK3 is given as the second clock CKB.
  • the second gate clock signal GCK2 is supplied as the first clock CKA
  • the fourth gate clock signal GCK4 is supplied as the second clock CKB.
  • the third gate clock signal GCK3 is supplied as the first clock CKA
  • the first gate clock signal GCK1 is supplied as the second clock CKB.
  • the fourth gate clock signal GCK4 is supplied as the first clock CKA
  • the second gate clock signal GCK2 is supplied as the second clock CKB.
  • the fifth stage SR (5) to the eighth stage SR (8) have the same configuration as that of the first stage SR (1) to the fourth stage SR (4) described above.
  • the first set signal SET1 and the second set signal SET2 are as follows. Focusing on the k-th stage SR (k), the preceding stage scanning signal GOUT (k ⁇ 1) is given as the first set signal SET1, and the next stage scanning signal GOUT (k + 1) is given as the second set signal SET2. (See FIG. 4). However, the third scanning control signal GNT3 is given as the first set signal SET1 for the first stage SR (1), and the fourth scanning control is performed for the eighth stage (final stage) SR (8). The signal GNT4 is given as the second set signal SET2 (see FIG. 1).
  • the first reset signal RESET1 and the second reset signal RESET2 are as follows. Focusing on the k-th stage SR (k), the (k + 3) -th stage scanning signal GOUT (k + 3) is given as the first reset signal RESET1, and the (k-3) -th stage scanning signal GOUT (k-3). Is provided as the second reset signal RESET2 (see FIG. 4). However, for the first stage SR (1), the first scan control signal CNT1 is given as the second reset signal RESET2, and for the second stage SR (2), the second scan control signal CNT2 is the second reset signal. The third scanning control signal CNT3 is supplied as the second reset signal RESET2 for the third stage SR (3).
  • the fourth scanning control signal CNT4 is given as the first reset signal RESET1
  • the fifth scanning control signal CNT5 is the first reset signal.
  • the sixth scan control signal CNT6 is provided as the first reset signal RESET1 for the eighth stage SR (8) (see FIG. 1).
  • a scanning signal GOUT (k) for setting the k-th gate bus line GLk to the selected state is output from the output terminal of the k-th stage SR (k).
  • the scanning signal GOUT (k) is given to the (k-3) stage as the first reset signal RESET1, and is given to the (k-1) stage as the second set signal SET2, and the first set signal It is given to the (k + 1) stage as SET1, and is given to the (k + 3) stage as the second reset signal RESET2 (see FIG. 4).
  • the first stage control signal is realized by the first scanning control signal GNT1, the second scanning control signal GNT2, and the third scanning control signal GNT3, and the fourth scanning control signal GNT4 and the fifth scanning control signal GNT5.
  • the sixth scanning control signal GNT6 realizes the final stage side control signal.
  • FIG. 5 is a circuit diagram showing a configuration of the bistable circuit included in the shift register 410 described above (configuration of one stage of the shift register 410).
  • this bistable circuit includes six thin film transistors TS (output control switching elements), T1 (first switching elements), T2 (second switching elements), and T3 (third switching elements). Element), T4 (fourth switching element), T14 (fourteenth switching element), and a capacitor C1.
  • the bistable circuit has six input terminals 41 to 46 and one output terminal (output node) 51 in addition to the input terminal for the low-level power supply voltage VSS.
  • An input terminal that receives the first set signal SET1 is denoted by reference numeral 41
  • an input terminal that receives the second set signal SET2 is denoted by reference numeral 42
  • an input terminal that receives the first reset signal RESET1 is denoted.
  • the input terminal that receives the second reset signal RESET2 is denoted by reference numeral 43
  • the input terminal that receives the first clock CKA is denoted by reference numeral 45
  • the input terminal that receives the second clock CKB is denoted by reference numeral 43.
  • symbol 46 is attached
  • the source terminal of the thin film transistor T1, the source terminal of the thin film transistor T2, the drain terminal of the thin film transistor T3, the drain terminal of the thin film transistor T4, and the gate terminal of the thin film transistor TS are connected to each other.
  • a region (wiring) in which these are connected to each other is referred to as “netA” (first node) for convenience.
  • the gate terminal and the drain terminal are connected to the input terminal 41 (that is, diode connection), and the source terminal is connected to netA.
  • the gate terminal and the drain terminal are connected to the input terminal 42 (that is, diode connection), and the source terminal is connected to netA.
  • the gate terminal is connected to the input terminal 43, the drain terminal is connected to netA, and the source terminal is connected to the power supply voltage VSS.
  • the gate terminal is connected to the input terminal 44, the drain terminal is connected to netA, and the source terminal is connected to the power supply voltage VSS.
  • the gate terminal is connected to netA, the drain terminal is connected to the input terminal 45, and the source terminal is connected to the output terminal 51.
  • the gate terminal is connected to the input terminal 46, the drain terminal is connected to the output terminal 51, and the source terminal is connected to the power supply voltage VSS.
  • the capacitor C1 has one end connected to the netA and the other end connected to the output terminal 51.
  • the thin film transistor T1 sets the potential of netA to high level when the first set signal SET1 is at high level.
  • the thin film transistor T2 sets the potential of netA to a high level when the second set signal SET2 is at a high level.
  • the thin film transistor T3 sets the potential of netA to a low level when the first reset signal RESET1 is at a high level.
  • the thin film transistor T4 sets the potential of netA to a low level when the second reset signal RESET2 is at a high level.
  • the thin film transistor TS applies the potential of the first clock CKA to the output terminal 51 when the potential of netA is at a high level.
  • the thin film transistor T14 sets the potential of the scanning signal GOUT (the potential of the output terminal 51) to a low level when the second clock CKB is at a high level.
  • the capacitor C1 functions as a compensation capacitor for maintaining the potential of netA at a high level during the period when the gate bus line connected to the bistable circuit is in a selected state.
  • the first first node charging unit is realized by the thin film transistor T1
  • the second first node charging unit is realized by the thin film transistor T2.
  • a first first node discharge unit is realized by the thin film transistor T3
  • a second second node discharge unit is realized by the thin film transistor T4.
  • FIG. 6 is a timing chart when forward scanning is performed
  • FIG. 7 is a timing chart when backward scanning is performed.
  • the period from time t2 to time t4 in FIGS. 6 and 7 is the period during which the gate bus line connected to the output terminal 51 of the bistable circuit is to be in the selected state (selection period).
  • the period from the time point t2 to the time point t3 is a period for preliminary charge (precharge) to the pixel capacitor
  • the period from the time point t3 to the time point t4 is the original charge to the pixel capacitor (main charge). ) For the period.
  • the potential of netA and the potential of the scanning signal GOUT are at a low level.
  • a pulse of the second reset signal RESET2 is given to the input terminal 44.
  • the thin film transistor T4 is turned on, and the potential of the netA is maintained at a low level.
  • a pulse of the first set signal SET1 is given to the input terminal 41. Since the thin film transistor T1 is diode-connected as shown in FIG. 5, the thin film transistor T1 is turned on by the pulse of the first set signal SET1, and the capacitor C1 is charged.
  • the potential of netA changes from the low level to the high level, and the thin film transistor TS is turned on.
  • the first clock CKA is at a low level. Therefore, the scanning signal GOUT is maintained at a low level during this period.
  • the first clock CKA changes from the low level to the high level.
  • the potential of the output terminal 51 increases as the potential of the input terminal 45 increases.
  • the capacitor C1 is provided between the netA-output terminal 51, the potential of the netA rises as the potential of the output terminal 51 rises (netA is bootstrapped).
  • a large voltage is applied to the thin film transistor TS, and the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA.
  • the gate bus line connected to the output terminal 51 of the bistable circuit is selected.
  • a pulse of the second set signal SET2 is given to the input terminal 42. Since the thin film transistor T2 is diode-connected as shown in FIG. 5, the thin film transistor T2 is turned on by the pulse of the second set signal SET2. However, since the potential of netA has already been increased by the bootstrap, the potential of netA does not fluctuate due to the thin film transistor T2 being turned on. Further, since the potential of the first clock CKA and the potential of the second clock CKB do not change at the time t3, the potentials from the time t2 to the time t3 are maintained for the netA and the scanning signal GOUT.
  • the first clock CKA changes from high level to low level.
  • the potential of the output terminal 51 decreases as the potential of the input terminal 45 decreases, and the potential of netA also decreases via the capacitor C1.
  • the second clock CKB changes from the low level to the high level. Accordingly, the thin film transistor T14 is turned on, and the potential of the output terminal 51, that is, the potential of the scanning signal GOUT becomes low level.
  • a pulse of the first reset signal RESET1 is given to the input terminal 43.
  • the thin film transistor T3 is turned on, and the potential of netA changes from the high level to the low level.
  • the thin film transistors T3 and T4 are maintained in the off state. For this reason, the potential of netA does not fall to a low level during this period.
  • the second clock CKB is at the low level, so that the thin film transistor T14 is maintained in the off state. Therefore, the potential of the scanning signal GOUT does not decrease to a low level during this period.
  • the first set signal SET1 functions as a signal for raising the potential of netA from a low level to a high level to generate an active scanning signal GOUT.
  • 1 reset signal RESET1 functions as a signal for lowering the potential of netA, which is at a high level, to a low level.
  • the active clock signal GOUT is output from the bistable circuit when the first clock CKA goes high during the period when the potential of netA is high.
  • the potential of netA and the potential of the scanning signal GOUT are at a low level.
  • a pulse of the first reset signal RESET1 is given to the input terminal 43.
  • the thin film transistor T3 is turned on, and the potential of netA is maintained at a low level.
  • a pulse of the second set signal SET2 is given to the input terminal. Since the thin film transistor T2 is diode-connected as shown in FIG. 5, the thin film transistor T2 is turned on by the pulse of the second set signal SET2, and the capacitor C1 is charged.
  • the potential of netA changes from the low level to the high level, and the thin film transistor TS is turned on.
  • the first clock CKA is at a low level. Therefore, the scanning signal GOUT is maintained at a low level during this period.
  • the first clock CKA changes from the low level to the high level.
  • the potential of the output terminal 51 increases as the potential of the input terminal 45 increases.
  • the capacitor C1 is provided between the netA-output terminal 51, the potential of the netA rises as the potential of the output terminal 51 rises (netA is bootstrapped).
  • a large voltage is applied to the thin film transistor TS, and the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA.
  • the gate bus line connected to the output terminal 51 of the bistable circuit is selected.
  • a pulse of the first set signal SET1 is given to the input terminal 41. Since the thin film transistor T1 is diode-connected as shown in FIG. 5, the thin film transistor T1 is turned on by the pulse of the first set signal SET1. However, since the potential of netA has already been increased by the bootstrap, the potential of netA does not fluctuate due to the thin film transistor T1 being turned on. Further, since the potential of the first clock CKA and the potential of the second clock CKB do not change at the time t3, the potentials from the time t2 to the time t3 are maintained for the netA and the scanning signal GOUT.
  • the first clock CKA changes from high level to low level.
  • the potential of the output terminal 51 decreases as the potential of the input terminal 45 decreases, and the potential of netA also decreases via the capacitor C1.
  • the second clock CKB changes from the low level to the high level. Accordingly, the thin film transistor T14 is turned on, and the potential of the output terminal 51, that is, the potential of the scanning signal GOUT becomes low level.
  • a pulse of the second reset signal RESET2 is given to the input terminal 44.
  • the thin film transistor T4 is turned on, and the potential of netA changes from the high level to the low level.
  • the potential of the netA does not drop to the low level during the period from the time point t1 to the time point t5, and the potential of the scanning signal GOUT is low during the period from the time point t2 to the time point t4, as in the forward scanning. It will not drop to.
  • the second set signal SET2 functions as a signal for raising the potential of netA from a low level to a high level to generate an active scanning signal GOUT.
  • 2 reset signal RESET2 functions as a signal for lowering the potential of netA, which is at high level, to low level. Then, the active clock signal GOUT is output from the bistable circuit when the first clock CKA goes high during the period when the potential of netA is high.
  • the first to fourth gate clock signals GCK1 to GCK4 are supplied to the shift register 410 as shown in FIG.
  • the phase of the second gate clock signal GCK2 is delayed by 90 degrees
  • the phase of the third gate clock signal GCK3 is delayed by 180 degrees
  • the fourth gate The phase of the clock signal GCK4 is delayed by 270 degrees.
  • the potential of netA is low level in all stages, and the potential of the scanning signal GOUT output from all stages is low level.
  • a pulse of the third scanning control signal CNT3 is given to the shift register 410.
  • the third scanning control signal CNT3 is given to the first stage SR (1) as the first set signal SET1, and to the third stage SR (3) as the second reset signal RESET2.
  • the potential of netA of the first stage SR (1) changes from the low level to the high level.
  • the potential of netA in the third stage SR (3) is maintained at a low level.
  • the first gate clock signal GCK1 changes from low level to high level.
  • the potential of the input terminal 45 changes from the low level to the high level, so that the potential of netA of the first stage SR (1) further increases.
  • the scanning signal GOUT (1) output from the first stage SR (1) becomes high level.
  • the scanning signal GOUT (1) output from the first stage SR (1) is given to the second stage SR (2) as the first set signal SET1, and the second reset signal RESET2 Is given to the fourth stage SR (4).
  • the potential of the netA is maintained at a high level for the second stage SR (2), and the potential of the netA is maintained at a low level for the fourth stage SR (4).
  • the second gate clock signal GCK2 changes from low level to high level.
  • the potential of the input terminal 45 changes from the low level to the high level in the second stage SR (2)
  • the potential of netA of the second stage SR (2) further increases.
  • the scanning signal GOUT (2) output from the second stage SR (2) becomes high level.
  • the scanning signal GOUT (2) output from the second stage SR (2) is given to the first stage SR (1) as the second set signal SET2.
  • the potential of netA does not fluctuate based on the scanning signal GOUT (2).
  • the potentials of the first gate clock signal GCK1 and the third gate clock signal GCK3 given to the first stage SR (1) do not change. Therefore, for the first stage SR (1), the potential of netA and the potential of the scanning signal GOUT are maintained from the time point tb to the time point tc.
  • the scanning signal GOUT (2) output from the second stage SR (2) is also given to the third stage SR (3) as the first set signal SET1, and the fifth stage SR as the second reset signal RESET2. Given in (5).
  • the potential of the netA is maintained at the high level for the third stage SR (3), and the potential of the netA is maintained at the low level for the fifth stage SR (5).
  • the first gate clock signal GCK1 changes from high level to low level.
  • the potential of netA of the first stage SR (1) decreases.
  • the third gate clock signal GCK3 changes from the low level to the high level.
  • the scanning signal GOUT output from the first stage SR (1). (1) is low level.
  • the third gate clock signal GCK3 is supplied to the third stage SR (3) as the first clock CKA.
  • the third gate clock signal GCK3 changes from the low level to the high level
  • the potential of netA of the third stage SR (3) further rises, and the scanning signal output from the third stage SR (3).
  • GOUT (3) goes high.
  • the scanning signal GOUT (3) output from the third stage SR (3) is given to the second stage SR (2) as the second set signal SET2, and the fourth stage SR (4) as the first set signal SET1.
  • the second reset signal RESET2 to the sixth stage SR (6).
  • the second stage SR (2) as in the first stage SR (1) at the time point tc
  • the potential of the netA and the potential of the scanning signal GOUT are maintained from the time point tc to the time point td.
  • the potential of netA is set to the high level for the fourth stage SR (4), and the potential of netA is maintained at the low level for the sixth stage SR (6).
  • the second gate clock signal GCK2 changes from high level to low level.
  • the potential of netA in the second stage SR (2) decreases.
  • the fourth gate clock signal GCK4 changes from the low level to the high level.
  • the scanning signal GOUT (2) output from the second stage SR (2) is low.
  • the fourth gate clock signal GCK4 is supplied to the fourth stage SR (4) as the first clock CKA.
  • the scanning signal GOUT (4) output from the fourth stage SR (4) is given to the first stage SR (1) as the first reset signal RESET1, and the third stage SR (3) as the second set signal SET2. ), As the first set signal SET1, to the fifth stage SR (5), and to the seventh stage as the second reset signal RESET2.
  • the potential of netA of the first stage SR (1) changes from the high level to the low level, and the potential of netA of the third stage SR (3) is maintained at the high level, and the potential of the fifth stage SR (5).
  • the potential of netA changes from the low level to the high level, and the potential of netA of the seventh stage SR (7) is maintained at the low level.
  • the scanning signals GOUT (1) to GOUT (8) sequentially become high level for each predetermined period from the first stage SR (1) to the eighth stage SR (8).
  • the pulse of the fourth scanning control signal CNT4 is given to the shift register 410.
  • the fourth scanning control signal CNT4 is given to the sixth stage SR (6) as the first reset signal RESET1, and given to the eighth stage SR (8) as the second set signal SET2. It is done.
  • the potential of netA of the sixth stage SR (6) changes from the high level to the low level, and the potential of netA of the eighth stage SR (8) is maintained at the high level.
  • the pulse of the fifth scanning control signal CNT5 is given to the shift register 410.
  • the fifth scan control signal CNT5 is given to the seventh stage SR (7) as the first reset signal RESET1.
  • the potential of netA of the seventh stage SR (7) changes from the high level to the low level.
  • the pulse of the sixth scanning control signal CNT6 is given to the shift register 410.
  • the sixth scan control signal CNT6 is given to the eighth stage SR (8) as the first reset signal RESET1.
  • the potential of netA of the eighth stage SR (8) changes from the high level to the low level.
  • the third scanning control signal CNT3 is used as a signal for starting scanning of the gate bus lines GL1 to GL8 included in the liquid crystal display device, and the fourth to sixth scannings are used as signals for ending the scanning.
  • the control signals CNT4 to CNT6 the gate bus lines GL1 to GL8 are scanned in the forward direction.
  • the first to fourth gate clock signals GCK1 to GCK4 are supplied to the shift register 410 as shown in FIG.
  • the phase of the second gate clock signal GCK2 is advanced by 90 degrees
  • the phase of the third gate clock signal GCK3 is advanced by 180 degrees
  • the phase of the gate clock signal GCK4 is advanced by 270 degrees.
  • these four-phase clocks are in the order of “first gate clock signal GCK1, second gate clock signal GCK2, third gate clock signal GCK3, fourth gate clock signal GCK4”.
  • the clock pulse of the signal is applied to the shift register 410.
  • the fourth gate clock signal GCK4 the third gate clock signal GCK3, the second gate clock signal GCK2, and the first gate clock signal GCK2 Clock pulses of these four-phase clock signals are given to the bistable circuit in the order of “gate clock signal GCK1”.
  • the display control circuit 20 switches the generation order of such clock pulses.
  • the potential of netA is low level in all stages, and the potential of the scanning signal GOUT output from all stages is low level.
  • the pulse of the fourth scan control signal CNT4 is given to the shift register 410.
  • the fourth scanning control signal CNT4 is applied to the eighth stage SR (8) as the second set signal SET2, and to the sixth stage SR (6) as the first reset signal RESET1.
  • the potential of netA of the eighth stage SR (8) changes from the low level to the high level.
  • the potential of netA in the sixth stage SR (6) is maintained at a low level.
  • the fourth gate clock signal GCK4 changes from the low level to the high level.
  • the potential of the input terminal 45 changes from the low level to the high level in the eighth stage SR (8)
  • the potential of netA of the eighth stage SR (8) further increases.
  • the scanning signal GOUT (8) output from the eighth stage SR (8) becomes high level.
  • the scanning signal GOUT (8) output from the eighth stage SR (8) is given to the seventh stage SR (7) as the second set signal SET2, and the first reset signal RESET1. Is given to the fifth stage SR (5).
  • the potential of netA is kept at a high level for the seventh stage SR (7), and the potential of netA is maintained at a low level for the fifth stage SR (5).
  • the third gate clock signal GCK3 changes from low level to high level.
  • the potential of the input terminal 45 changes from the low level to the high level in the seventh stage SR (7)
  • the potential of netA of the seventh stage SR (7) further increases.
  • the scanning signal GOUT (7) output from the seventh stage SR (7) becomes high level.
  • the scanning signal GOUT (7) output from the seventh stage SR (7) is given to the eighth stage SR (8) as the first set signal SET1.
  • the eighth stage SR (8) since the potential of netA has already been increased by the bootstrap, the potential of netA does not fluctuate based on the scanning signal GOUT (7).
  • the potentials of the second gate clock signal GCK2 and the fourth gate clock signal GCK4 given to the eighth stage SR (8) do not change. Therefore, for the eighth stage SR (8), the potential of netA and the potential of the scanning signal GOUT are maintained from the time point tb to the time point tc.
  • the scanning signal GOUT (7) output from the seventh stage SR (7) is also given to the sixth stage SR (6) as the second set signal SET2, and the fourth stage SR as the first reset signal RESET1. Given in (4).
  • the potential of netA is kept at a high level for the sixth stage SR (6), and the potential of netA is maintained at a low level for the fourth stage SR (4).
  • the fourth gate clock signal GCK4 changes from high level to low level.
  • the potential of netA of the eighth stage SR (8) decreases.
  • the second gate clock signal GCK2 changes from the low level to the high level.
  • the scanning signal GOUT (8) output from the eighth stage SR (8) is low.
  • the second gate clock signal GCK2 is given to the sixth stage SR (6) as the first clock CKA.
  • the second gate clock signal GCK2 changes from the low level to the high level
  • the potential of netA of the sixth stage SR (6) further rises, and the scanning signal output from the sixth stage SR (6).
  • GOUT (6) goes high.
  • the scanning signal GOUT (6) output from the sixth stage SR (6) is given to the seventh stage SR (7) as the first set signal SET1, and the fifth stage SR (5) as the second set signal SET2.
  • the first reset signal RESET1 is supplied to the third stage SR (3).
  • the potential of the netA and the potential of the scanning signal GOUT are maintained from the time point tc to the time point td as in the eighth stage SR (8) at the time point tc.
  • the potential of netA is kept at a high level
  • the potential of netA of the third stage SR (3) is maintained at a low level.
  • the third gate clock signal GCK3 changes from high level to low level.
  • the potential of netA of the seventh stage SR (7) decreases.
  • the first gate clock signal GCK1 changes from the low level to the high level.
  • the scanning signal GOUT (7) output from the seventh stage SR (7) is low.
  • the first gate clock signal GCK1 is given to the fifth stage SR (5) as the first clock CKA.
  • the potential of netA of the fifth stage SR (5) when the first gate clock signal GCK1 changes from the low level to the high level, the potential of netA of the fifth stage SR (5) further rises, and the scanning signal output from the fifth stage SR (5). GOUT (5) goes high.
  • the scanning signal GOUT (5) output from the fifth stage SR (5) is given to the eighth stage SR (8) as the second reset signal RESET2, and the sixth stage SR (6) as the first set signal SET1.
  • the second set signal SET2 As the second set signal SET2, to the fourth stage SR (4), and to the second stage as the first reset signal RESET1.
  • the potential of netA of the eighth stage SR (8) changes from the high level to the low level, and the potential of netA of the sixth stage SR (6) is maintained at the high level.
  • the potential of netA changes from the low level to the high level, and the potential of netA in the second stage SR (2) is maintained at the low level.
  • the scanning signals GOUT (8) to GOUT (1) sequentially become high level for a predetermined period from the eighth stage SR (8) to the first stage SR (1).
  • the pulse of the third scanning control signal CNT3 is given to the shift register 410.
  • the third scanning control signal CNT3 is given to the third stage SR (3) as the second reset signal RESET2, and given to the first stage SR (1) as the first set signal SET1. It is done.
  • the potential of netA of the third stage SR (3) changes from the high level to the low level, and the potential of netA of the first stage SR (1) is maintained at the high level.
  • the pulse of the second scanning control signal CNT2 is given to the shift register 410.
  • the second scanning control signal CNT2 is given to the second stage SR (2) as the second reset signal RESET2.
  • the potential of netA in the second stage SR (2) changes from the high level to the low level.
  • the pulse of the first scanning control signal CNT1 is given to the shift register 410.
  • the first scanning control signal CNT1 is given to the first stage SR (1) as the second reset signal RESET2.
  • the potential of netA in the first stage SR (1) changes from the high level to the low level.
  • the fourth scan control signal CNT4 is used as a signal for starting scanning of the gate bus lines GL1 to GL8 included in the liquid crystal display device, and the first to third scans are used as signals for ending the scan.
  • the control signals CNT1 to CNT3 reverse scanning of the gate bus lines GL1 to GL8 is performed.
  • each stage SR (k) of the shift register 410 receives the scanning signal GOUT (k-3) output from the stage SR (k-3) three stages before the second reset signal RESET2
  • the scanning signal GOUT (k ⁇ 1) output from the previous stage SR (k ⁇ 1) is supplied as the first set signal SET1, and the scanning signal GOUT (k + 1) output from the next stage SR (k + 1).
  • Is provided as the second set signal SET2, and the scanning signal GOUT (k + 3) output from the stage SR (k + 3) after the third stage is provided as the first reset signal RESET1.
  • the third scanning control signal CNT3 is supplied as the first set signal SET1 to the first stage SR (1), and the fourth scanning control signal CNT4 is supplied to the eighth stage (final stage) SR (8).
  • each stage of the shift register 410 receives the two set signals SET1, SET2 and the two reset signals RESET1, RESET2, so that the scanning order of the gate bus lines GL1 to GL8 is changed. Switching is possible.
  • the configuration conventionally required for switching the scanning order of the gate bus lines (“configuration for switching the switch by the select signal”, “the drive circuit for the select signal) And signal wiring ”are not required. For this reason, when realizing a shift register capable of switching the scanning order of the gate bus lines, it is possible to suppress an increase in circuit area, an increase in current consumption, and an increase in cost. In addition, since a switch for switching the scanning order is not required, the occurrence of malfunction due to the shift of the threshold voltage of the switch (transistor) during high-temperature aging is suppressed.
  • the odd and even stages of the shift register 410 operate based on different clock signals. For this reason, as shown in FIGS. 8 and 9, it is possible to provide a period in which a plurality of gate bus lines are simultaneously selected.
  • each gate bus line is selected.
  • the pixel capacitor is precharged during the first half period, and the pixel capacitor is fully charged during the second half period.
  • the gate voltage (the voltage for turning on the thin film transistor 11 in the pixel formation portion) can be reduced, and the size of the thin film transistor 11 can be reduced, so that current consumption is also reduced.
  • the capacitor C1 is provided between the netA and the output terminal 51, but the present invention is not limited to this.
  • the capacitor C1 is provided for stabilizing the waveform of the scanning signal GOUT, and may be configured without this capacitor C1.
  • the thin film transistor T14 that is controlled to be turned on / off by the second clock CKB is provided.
  • the thin film transistor T14 is also provided for stabilizing the waveform of the scanning signal GOUT, and may be configured without the thin film transistor T14.
  • a control signal input as the second reset signal RESET2 is applied to the gate terminal, the thin film transistor (fifteenth switching element) having the drain terminal connected to the output terminal 51 and the source terminal connected to the power supply voltage VSS.
  • the thin film transistor (fifteenth switching element) having the drain terminal connected to the output terminal 51 and the source terminal connected to the power supply voltage VSS.
  • the control signal input as the first reset signal RESET1 is given to the gate terminal, the drain terminal is connected to the output terminal 51
  • Any of the sixth stage SR (6) to the eighth stage SR (8) may be provided with a thin film transistor (sixteenth switching element) whose source terminal is connected to the power supply voltage VSS.
  • the drain terminal is connected to the output terminal 51
  • the source terminal is connected to the power supply voltage VSS
  • the scanning signal GOUT (k-2) or GOUT (k-3) output from the previous stage SR (k-3) is applied to the gate terminal, the drain terminal is connected to the output terminal 51, and the source terminal is the power source.
  • a thin film transistor (eighteenth switching element) connected to the voltage VSS may be further provided. As a result, the potential of the scanning signal GOUT (k) can be more reliably lowered to the low level.
  • FIG. 10 is a block diagram showing the configuration of the shift register in the gate driver 40 according to the second embodiment of the present invention.
  • the shift register includes a first shift register 411a in the gate driver provided on one side of the display unit 10 and a second shift register in the gate driver provided on the other side of the display unit 10. 411b.
  • Both the first shift register 411a and the second shift register 411b have the same configuration as the shift register 410 (see FIG. 1) in the first embodiment.
  • the configuration of each bistable circuit in the first shift register 411a and the second shift register 411b is the same as the configuration in the first embodiment (see FIG. 5). Further, the operation of each stage (bistable circuit) of the shift register and the operation of the entire shift register are also the same as those in the first embodiment, and thus description thereof is omitted.
  • the scanning signal output from the shift register is delayed due to the presence of the wiring capacity (load) of the gate bus line.
  • the waveform of the scanning signal may be greatly different between a position close to the shift register and a position far from the shift register.
  • the waveform of the scanning signal at the position indicated by the arrow P1 in FIG. 11A is as shown in FIG. 11B, and the scanning signal at the position indicated by the arrow P2 in FIG.
  • the waveform may be as shown in FIG.
  • the pixel capacitor is insufficiently charged at a position far from the shift register, and the display quality is deteriorated.
  • charging is performed on both sides of the display unit 10 for one gate bus line, and deterioration of display quality due to insufficient charging in the large panel is suppressed.
  • FIG. 12 is a block diagram showing the configuration of the shift register in the gate driver 40 according to the third embodiment of the present invention.
  • the shift register includes a first shift register 412a in the gate driver provided on one side of the display unit 10 and a second shift register in the gate driver provided on the other side of the display unit 10. 412b.
  • the odd-stage SR (1), SR (3), SR (5), and SR (7) in the bistable circuit in the shift register 410 (see FIG. 1) in the first embodiment, Provided on one side of the display unit 10 (left side of the display unit 10 in FIG.
  • each bistable circuit and the operation of the entire shift register are the same as those in the first embodiment, and a description thereof will be omitted.
  • the size per stage of the shift register (the size in the direction in which the source bus line extends) can be reduced to almost one half of the size in the first embodiment. For this reason, it becomes possible to reduce an area required as a frame of the panel. Thereby, miniaturization of various products using a liquid crystal panel is realized.
  • FIG. 13 is a circuit diagram showing a configuration of the bistable circuit in the present embodiment.
  • three thin film transistors T5 (fifth switching element), T6 (sixth switching element), and T7 (first switching element) are provided. 7 switching elements) and an input terminal 47 for receiving the second clock CKB. Note that the input terminal 46 and the input terminal 47 may be the same terminal (one terminal).
  • the source terminal of the thin film transistor T6, the drain terminal of the thin film transistor T7, and the gate terminal of the thin film transistor T5 are connected to each other.
  • a region (wiring) in which these are connected to each other is referred to as “netB” (second node) for convenience.
  • the gate terminal is connected to netB, the drain terminal is connected to netA, and the source terminal is connected to the power supply voltage VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 47 (that is, diode connection), and the source terminal is connected to netB.
  • the gate terminal is connected to netA, the drain terminal is connected to netB, and the source terminal is connected to the power supply voltage VSS.
  • the circuit indicated by reference numeral 60 in FIG. 13 is an AND circuit that outputs a logical product of the logical value of the logical inversion signal of the signal indicating the potential of netA and the logical value of the second clock CKB.
  • a second node control unit is realized by this AND circuit.
  • the thin film transistor T5 sets the potential of netA to a low level when the potential of netB is at a high level.
  • the thin film transistor T6 sets the potential of netB to high level when the second clock CKB is at high level.
  • the thin film transistor T7 sets the potential of netB to a low level when the potential of netA is at a high level. From the above, when the potential of netA is at low level and the second clock CKB is at high level, the thin film transistor T5 is turned on, and the potential of netA is drawn to the potential of the power supply voltage VSS. It is.
  • FIG. 14 is a timing chart when forward scanning is performed
  • FIG. 15 is a timing chart when backward scanning is performed. Since the overall operation of the shift register 410 is the same as that of the first embodiment, the description thereof is omitted.
  • the potential of netB becomes high level for every predetermined period according to the change of the potential of the second clock CKB, and the thin film transistor T5 is turned on, which is the same as in the first embodiment. Is performed. Specifically, during the period before time t1, the potential of netA is maintained at a low level, whereas the potential of the second clock CKB is repeated between a high level and a low level every predetermined period. As described above, when the potential of netA is at a low level and the second clock CKB is at a high level, the thin film transistor T5 is turned on. Therefore, during the period before time t1, the thin film transistor T5 is turned on during the period when the second clock CKB is at the high level.
  • a pulse of the first set signal SET1 is given to the input terminal 41.
  • the potential of netA changes from the low level to the high level, and the thin film transistor TS is turned on.
  • the scanning signal GOUT is maintained at the low level during the period from the time point t1 to the time point t2.
  • the gate terminal of the thin film transistor T7 is connected to netA. For this reason, when the potential of netA becomes high level, the thin film transistor T7 is turned on. Accordingly, since the potential of netB becomes low level, the thin film transistor T5 is turned off. Therefore, during the period from the time point t1 to the time point t2, “the thin film transistor T5 is turned on and the potential of the netA is not lowered”.
  • the first clock CKA changes from the low level to the high level.
  • the potential of netA increases.
  • the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA, and the gate bus line connected to the output terminal 51 of this bistable circuit is selected.
  • the second clock CKB is at a low level, so that the thin film transistor T6 is in an off state.
  • the potential of netB is at a low level, and the thin film transistor T5 is turned off. Therefore, during the period from the time point t2 to the time point t3, the “thin film transistor T5 is in an on state and the potential of the netA is not lowered”.
  • a pulse of the second set signal SET2 is given to the input terminal 42.
  • the thin film transistor T2 is turned on, but the potential of the netA does not fluctuate due to the thin film transistor T2 being turned on, as in the first embodiment.
  • the potential of the first clock CKA and the potential of the second clock CKB do not change at the time t3, the potentials from the time t2 to the time t3 are maintained for the netA and the scanning signal GOUT.
  • the first clock CKA changes from the high level to the low level
  • the second clock CKB changes from the low level to the high level.
  • the potential of the scanning signal GOUT becomes low level.
  • the potential of netA is maintained at a high level although it is lower than the period from time t2 to time t4.
  • the thin film transistor T7 is maintained in the on state even in the period after the time point t4.
  • the thin film transistor T5 is turned off. Therefore, during the period from the time point t4 to the time point t5, “the thin film transistor T5 is in an on state and the potential of the netA is not lowered” does not occur.
  • the potential of netB becomes a high level every predetermined period in accordance with the change in the potential of the second clock CKB, and the thin film transistor T5 is turned on, which is the same as in the first embodiment. Is performed.
  • the potential of netB becomes high level for every predetermined period according to the change of the potential of the second clock CKB, and the thin film transistor T5 is turned on, which is the same as in the first embodiment. Is performed.
  • a pulse of the second set signal SET2 is given to the input terminal.
  • the potential of netA changes from the low level to the high level, and the thin film transistor TS is turned on.
  • the scanning signal GOUT is maintained at the low level during the period from the time point t1 to the time point t2.
  • the thin film transistor T5 is turned on and the potential of the netA is not lowered”.
  • the first clock CKA changes from the low level to the high level.
  • the potential of netA increases.
  • the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA, and the gate bus line connected to the output terminal 51 of this bistable circuit is selected.
  • the potential of netA has been at a high level from time t1, so that during the period from time t2 to time t3, “thin film transistor T5 is turned on and the potential of netA decreases during the period from time t2 to time t3. "There is no such thing.
  • a pulse of the first set signal SET1 is given to the input terminal 41.
  • the thin film transistor T1 is turned on, but the potential of netA does not fluctuate due to the thin film transistor T1 being turned on, as in the first embodiment.
  • the potential of the first clock CKA and the potential of the second clock CKB do not change at the time t3, the potentials from the time t2 to the time t3 are maintained for the netA and the scanning signal GOUT.
  • the first clock CKA changes from the high level to the low level
  • the second clock CKB changes from the low level to the high level.
  • the potential of the scanning signal GOUT becomes low level.
  • the potential of netA is maintained at a high level although it is lower than the period from time t2 to time t4. Therefore, as in the case of forward scanning, during the period from the time point t4 to the time point t5, there is no case that “the thin film transistor T5 is turned on and the potential of the netA is lowered”.
  • the potential of netB becomes a high level every predetermined period in accordance with the change in the potential of the second clock CKB, and the thin film transistor T5 is turned on, which is the same as in the first embodiment. Is performed.
  • the potential of netB corresponds to the change in the potential of the second clock CKB during the period before time t1 and during the period after time t5. It becomes high level for every predetermined period (see FIGS. 14 and 15). For this reason, in the period before time t1 and the period after time t5, the thin film transistor T5 is turned on every predetermined period.
  • the potential of netA is reliably set to a low level every predetermined period, and the output terminal 51 Abnormal pulse output is suppressed.
  • the occurrence of an abnormal operation of the shift register due to the sequential application of such abnormal pulses to the subsequent stage is suppressed.
  • a configuration may be provided that includes a thin film transistor that sets the potential of netB to a low level when the first clock CKA is at a high level. Thereby, the potential of netB is reliably set to the low level during the period when the first clock CKA is at the high level, so that the threshold voltage shift of the thin film transistor T5 is suppressed.
  • FIG. 16 is a block diagram showing a configuration of the shift register 413 in the gate driver 40 in the present embodiment.
  • this shift register 413 includes eight bistable circuits SR (1) to SR (8).
  • Each bistable circuit includes an input terminal for receiving four-phase clock signals CKA, CKB, CKC (hereinafter referred to as “third clock”) and CKD (hereinafter referred to as “fourth clock”), An input terminal for receiving the level power supply voltage VSS, an input terminal for receiving the first set signal SET1, an input terminal for receiving the second set signal SET2, and a first reset signal RESET1 Input terminal, an input terminal for receiving the second reset signal RESET2, and an output terminal for outputting the scanning signal GOUT.
  • the four-phase clock signals CKA, CKB, CKC, and CKD input to each stage will be described.
  • the first set signal SET1, the second set signal SET2, the first reset signal RESET1, the second reset signal RESET2, and the power supply voltage VSS are the same as those in the first embodiment, and therefore will be described. Is omitted.
  • the first gate clock signal GCK1 is provided as the first clock CKA
  • the third gate clock signal GCK3 is provided as the second clock CKB.
  • the second gate clock signal GCK2 is supplied as the third clock CKC
  • the fourth gate clock signal GCK4 is supplied as the fourth clock CKD.
  • the second gate clock signal GCK2 is provided as the first clock CKA
  • the fourth gate clock signal GCK4 is provided as the second clock CKB.
  • the first gate clock signal GCK1 is given as the third clock CKC
  • the third gate clock signal GCK3 is given as the fourth clock CKD.
  • the third gate clock signal GCK3 is provided as the first clock CKA, and the first gate clock signal GCK1 is provided as the second clock CKB.
  • the fourth gate clock signal GCK4 is supplied as the third clock CKC, and the second gate clock signal GCK2 is supplied as the fourth clock CKD.
  • the fourth gate clock signal GCK4 is provided as the first clock CKA
  • the second gate clock signal GCK2 is provided as the second clock CKB.
  • the third gate clock signal GCK3 is supplied as the third clock CKC
  • the first gate clock signal GCK1 is supplied as the fourth clock CKD.
  • FIG. 17 is a circuit diagram showing a configuration of a bistable circuit in the present embodiment.
  • six thin film transistors T8 to T13 (eighth to thirteenth switching elements) and an input for receiving the third clock CKC.
  • a terminal 48 and an input terminal 49 for receiving the fourth clock CKD are provided.
  • the gate terminal of the thin film transistor T8, the source terminal of the thin film transistor T9, and the drain terminal of the thin film transistor T10 are connected to each other.
  • a region (wiring) in which these are connected to each other is referred to as “netB1” (third node) for convenience.
  • the gate terminal of the thin film transistor T11, the source terminal of the thin film transistor T12, and the drain terminal of the thin film transistor T13 are connected to each other.
  • a region (wiring) in which these are connected to each other is referred to as “netB2” (fourth node) for convenience.
  • the gate terminal is connected to the netB1, the drain terminal is connected to the netA, and the source terminal is connected to the power supply voltage VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 48 (that is, diode connection), and the source terminal is connected to the netB1.
  • the gate terminal is connected to netA, the drain terminal is connected to netB1, and the source terminal is connected to the power supply voltage VSS.
  • the thin film transistor T8 sets the potential of netA to a low level when the potential of netB1 is at a high level.
  • the thin film transistor T9 sets the potential of netB1 to the high level when the third clock CKC is at the high level.
  • the thin film transistor T10 sets the potential of netB1 to the low level when the potential of netA is at the high level.
  • the gate terminal is connected to netB2, the drain terminal is connected to netA, and the source terminal is connected to the power supply voltage VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 49 (that is, diode connection), and the source terminal is connected to the netB2.
  • the gate terminal is connected to netA, the drain terminal is connected to netB2, and the source terminal is connected to the power supply voltage VSS.
  • the thin film transistor T11 sets the potential of netA to a low level when the potential of netB2 is at a high level.
  • the thin film transistor T12 sets the potential of the netB2 to the high level when the fourth clock CKD is at the high level.
  • the thin film transistor T13 sets the potential of netB2 to the low level when the potential of netA is at the high level.
  • FIG. 18 is a timing chart when forward scanning is performed
  • FIG. 19 is a timing chart when backward scanning is performed. Since the overall operation of the shift register 413 is the same as that of the first embodiment, description thereof is omitted.
  • the potential of netA and the potential of the scanning signal GOUT are at a low level.
  • the potential of netB1 alternately repeats the high level and the low level based on the third clock CKC, and the potential of netB2 alternates between the low level and the high level based on the fourth clock CKD. It is repeating. Accordingly, in the period before time t1, the thin film transistors T8 and T11 are turned on every predetermined period.
  • a pulse of the first set signal SET1 is given to the input terminal 41.
  • the potential of netA changes from the low level to the high level, and the thin film transistor TS is turned on.
  • the scanning signal GOUT is maintained at the low level.
  • the gate terminals of the thin film transistors T10 and T13 are connected to netA. For this reason, when the potential of netA becomes high level, the thin film transistors T10 and T13 are turned on.
  • the potentials of netB1 and netB2 are at a low level, so that the thin film transistors T8 and T11 are turned off. Therefore, during the period from the time point t1 to the time point t2, there is no case that “the thin film transistor T8 or the thin film transistor T11 is turned on and the potential of the netA is decreased”.
  • the first clock CKA changes from the low level to the high level.
  • the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA, and the gate bus line connected to the output terminal 51 of the bistable circuit is selected. It becomes a state.
  • the thin film transistors T10 and T13 are maintained in the ON state. Therefore, during the period from the time point t2 to the time point t3, the potential of the netB1 and the potential of the netB2 are at a low level, and the thin film transistors T8 and T11 are turned off. Therefore, during the period from the time point t2 to the time point t3, “the thin film transistor T8 or the thin film transistor T11 is in an on state and the potential of the netA is not decreased”.
  • a pulse of the second set signal SET2 is given to the input terminal 42.
  • the thin film transistor T2 is turned on, but the potential of the netA does not fluctuate due to the thin film transistor T2 being turned on, as in the first embodiment.
  • the potential of the first clock CKA and the potential of the second clock CKB do not change at the time t3, the potentials from the time t2 to the time t3 are maintained for the netA and the scanning signal GOUT.
  • the first clock CKA changes from the high level to the low level
  • the second clock CKB changes from the low level to the high level.
  • the potential of the scanning signal GOUT becomes low level.
  • the potential of netA is maintained at a high level although it is lower than the period from time t2 to time t4.
  • the thin film transistors T10 and T13 are maintained in the ON state even in the period after the time point t4. Accordingly, the potential of netB1 and the potential of netB2 are at a low level, so that the thin film transistors T8 and T11 are turned off.
  • the thin film transistor T8 or the thin film transistor T11 are turned on and the potential of the netA is decreased”.
  • the thin film transistor T8 and the thin film transistor T11 are turned on every predetermined period, as in the period before time t0.
  • the thin film transistor T8 and the thin film transistor T11 are turned on every predetermined period as in the case of forward scanning.
  • a pulse of the second set signal SET2 is given to the input terminal.
  • the potential of netA changes from the low level to the high level, and the thin film transistor TS is turned on.
  • the scanning signal GOUT is maintained at the low level. Note that, as in the forward scanning, during the period from the time point t1 to the time point t2, there is no case that “the thin film transistor T8 or the thin film transistor T11 is turned on and the potential of the netA is decreased”.
  • the first clock CKA changes from the low level to the high level.
  • the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA, and the gate bus line connected to the output terminal 51 of the bistable circuit is selected. It becomes a state. Note that, as in the forward scanning, during the period from the time point t2 to the time point t3, “the thin film transistor T8 or the thin film transistor T11 is turned on and the potential of the netA is not decreased”.
  • a pulse of the first set signal SET1 is given to the input terminal 41.
  • the thin film transistor T1 is turned on, but the potential of netA does not fluctuate due to the thin film transistor T1 being turned on, as in the first embodiment.
  • the potential of the first clock CKA and the potential of the second clock CKB do not change at the time t3, the potentials from the time t2 to the time t3 are maintained for the netA and the scanning signal GOUT.
  • the first clock CKA changes from the high level to the low level
  • the second clock CKB changes from the low level to the high level.
  • the potential of the scanning signal GOUT becomes low level.
  • the potential of netA is maintained at a high level although it is lower than the period from time t2 to time t4.
  • the thin film transistors T10 and T13 are maintained in the ON state even in the period after the time point t4. Accordingly, the potential of netB1 and the potential of netB2 are at a low level, so that the thin film transistors T8 and T11 are turned off.
  • the thin film transistor T8 or the thin film transistor T11 are turned on and the potential of the netA is decreased”.
  • the thin film transistor T8 and the thin film transistor T11 are turned on every predetermined period as in the case of forward scanning.
  • the potential of netB1 corresponds to the change in the potential of the third clock CKC during the period before time t1 and the period after time t5.
  • the potential of netB2 becomes high level for every predetermined period according to the change of the potential of the fourth clock CKD (see FIGS. 19 and 20).
  • the third clock CKC and the fourth clock CKD are 180 degrees out of phase. For this reason, either the thin film transistor T8 or the thin film transistor T11 is in the on state during the period before the time point t1 and the period after the time point t5.
  • the thin film transistor that sets the potential of netB1 to low level when the fourth clock CKD is high level and the potential of netB2 when the third clock CKC is high level A structure including a thin film transistor which is set to a low level may be used.
  • the potential of netB1 is surely set to low level during the period when the fourth clock CKD is high level, and the potential of netB2 is reliably set to low level during the period when the third clock CKC is high level.
  • the threshold voltage shift of the thin film transistors T8 and T11 is suppressed.
  • the overall configuration and the schematic configuration of the gate driver are substantially the same as those in the first embodiment shown in FIGS.
  • the first to sixth scanning control signals CNT1 to CNT6 are sent from the display control circuit 20 as signals for controlling the scanning order (scanning direction) of the gate bus lines GL1 to GL8.
  • the first to fourth scanning control signals CNT1 to CNT4 are sent from the display control circuit 20 to the gate driver 40.
  • FIG. 20 is a block diagram showing a configuration of the shift register 414 in the gate driver 40 in the present embodiment.
  • the shift register 414 includes eight bistable circuits SR (1) to SR (8).
  • Each bistable circuit has an input terminal for receiving the two-phase clock signals CKA and CKB, an input terminal for receiving the low-level power supply voltage VSS, and an input terminal for receiving the first set signal SET1.
  • the configuration of each stage (bistable circuit) of the shift register 414 is the same as the configuration in the first embodiment shown in FIG.
  • the signal given as the second reset signal RESET2 to the first stage SR (1) and the second reset signal RESET2 to the second stage SR (2) The signal given as was different. Specifically, as the second reset signal RESET2, the first scanning control signal CNT1 is given to the first stage SR (1), and the second scanning control signal CNT2 is given to the second stage SR (2). Was given. On the other hand, in the present embodiment, as shown in FIG. 20, the first scanning control signal CNT1 is changed to the second reset signal RESET2 for both the first stage SR (1) and the second stage SR (2). As given.
  • the signal given as the first reset signal RESET1 to the seventh stage SR (7) and the first reset to the eighth stage SR (8) was different from the signal given as signal RESET1.
  • the first reset signal RESET1 the fifth scanning control signal CNT5 is given to the seventh stage SR (7)
  • the sixth scanning control signal CNT6 is given to the eighth stage SR (8).
  • the fourth scanning control signal CNT4 is the first reset signal RESET1 for both the seventh stage SR (7) and the eighth stage SR (8). As given.
  • FIG. 21 is a timing chart when forward scanning is performed
  • FIG. 22 is a timing chart when backward scanning is performed. Since the operation of each stage (bistable circuit) of the shift register is the same as that of the first embodiment, description thereof is omitted.
  • a pulse of the fourth scanning control signal CNT4 is generated.
  • the fourth scanning control signal CNT4 is given to the seventh stage SR (7) and the eighth stage SR (8) as the first reset signal RESET1.
  • the potential of netA in the seventh stage SR (7) and the eighth stage SR (8) changes from the high level to the low level.
  • the operation of the entire shift register 414 when reverse scanning is performed will be described.
  • the same operation as that of the first embodiment is performed in a period before the time point tf.
  • a pulse of the second scanning control signal CNT2 is generated as shown in FIG.
  • the second scanning control signal CNT2 is given to the third stage SR (3) as the second reset signal RESET2.
  • the potential of netA in the third stage SR (3) changes from the high level to the low level.
  • no pulse is generated for the second reset signal RESET2 applied to any stage. Therefore, in any stage, the potential of netA does not change from high level to low level at the timing of time tg.
  • a pulse of the first scanning control signal CNT1 is generated as shown in FIG.
  • the first scanning control signal CNT1 is given to the second stage SR (2) and the first stage SR (1) as the second reset signal RESET2.
  • the potential of netA in the second stage SR (2) and the first stage SR (1) changes from the high level to the low level.
  • the third gate clock signal GCK3 changes from the low level to the high level at the timing of the time point th during the forward scanning, the potential of the netA of the seventh stage SR (7) rises due to the bootstrap described above. Is concerned. Therefore, it is preferable that the third gate clock signal GCK3 does not become a high level during the period from the time point th to the time point ti (see the portion indicated by the arrow 81 in FIG. 21). Similarly, during backward scanning, it is preferable that the second gate clock signal GCK2 does not become a high level during the period from the time point th to the time point ti (see the portion indicated by the arrow 82 in FIG. 22). ).
  • the scanning order of the gate bus lines GL1 to GL8 is controlled by a smaller number of control signals than in the first embodiment. For this reason, compared with the first embodiment, signal wiring is reduced, and signals to be generated by the display control circuit 20 are reduced. Thereby, effects such as a reduction in circuit area, a reduction in current consumption, and a reduction in cost are further enhanced.
  • the liquid crystal display device has been described as an example, but the present invention is not limited to this.
  • the present invention can be applied to other display devices such as an organic EL (Electro Luminescence) as long as the configuration includes a shift register capable of switching the scanning order of the gate bus lines.
  • organic EL Electro Luminescence
  • SYMBOLS 10 Display part 20 ... Display control circuit 30 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 走査信号線の走査順序の切り替えが可能なシフトレジスタを、回路面積の増大,消費電流の増大,および画素容量への充電不足を抑制しつつ実現することを目的とする。 シフトレジスタ(410)を構成する各段は、走査信号の電位を第1クロック(CKA)に基づいて上昇させるための出力制御用の薄膜トランジスタと、当該薄膜トランジスタのゲート端子に接続された第1ノードの電位を前段/後段から出力される走査信号に基づいて上昇させるための2つの薄膜トランジスタと、第1ノードの電位を3段後の段/3段前の段から出力される走査信号に基づいて低下させるための2つの薄膜トランジスタとを備える。シフトレジスタ(410)は、奇数段目に与えられる2相のクロック信号(GCK1,GCK3)と偶数段目に与えられる2相のクロック信号(GCK2,GCK4)とからなる位相が90度ずつずれた4相のクロック信号に基づいて動作する。

Description

シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
 本発明は、アクティブマトリクス型表示装置の駆動回路に設けられるシフトレジスタに関し、更に詳しくは、入力信号を双方向にシフトさせることのできるシフトレジスタに関する。
 近年、表示装置の小型化,低コスト化などを図るために、画素回路を含む表示部とゲートバスライン(走査信号線)を駆動するためのゲートドライバとを同一の基板上に形成する表示装置の開発が進められている。図23は、そのような従来の表示装置のゲートドライバの一構成例を示すブロック図である。また、図24は、ゲートドライバを構成するシフトレジスタの一段分の構成例を示す回路図である。
 図23に示すように、ゲートドライバには複数段(ゲートバスラインの本数に等しい段)のシフトレジスタ90が含まれている。シフトレジスタ90の各段は、各時点において2つの状態(第1の状態および第2の状態)のうちのいずれか一方の状態となっていて当該状態を示す信号を走査信号として出力する双安定回路となっている。このように、シフトレジスタ90は複数個の双安定回路SRで構成されている。各双安定回路SRには、2相のクロック信号CKA(以下「第1クロック」という。),CKB(以下「第2クロック」という。)をそれぞれ受け取るための入力端子と、ローレベルの電源電圧VSSを受け取るための入力端子と、セット信号SETを受け取るための入力端子と、リセット信号RESETを受け取るための入力端子と、走査信号GOUTを出力するための出力端子とが設けられている。各段(双安定回路)から出力される走査信号GOUTは、セット信号として次段に与えられるとともに、リセット信号として前段に与えられる。
 双安定回路は、図24に示すように、4個の薄膜トランジスタT91,T92,T93,およびT94と、キャパシタC9とを備えている。また、この双安定回路は、ローレベルの電源電圧VSS用の入力端子のほか、4個の入力端子91~94と1個の出力端子95とを有している。薄膜トランジスタT91のソース端子,薄膜トランジスタT92のドレイン端子,および薄膜トランジスタT93のゲート端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを便宜上「netA」という。
 薄膜トランジスタT91については、ゲート端子およびドレイン端子は入力端子91に接続され(すなわち、ダイオード接続となっている)、ソース端子はnetAに接続されている。薄膜トランジスタT92については、ゲート端子は入力端子92に接続され、ドレイン端子はnetAに接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT93については、ゲート端子はnetAに接続され、ドレイン端子は入力端子93に接続され、ソース端子は出力端子95に接続されている。薄膜トランジスタT94については、ゲート端子は入力端子94に接続され、ドレイン端子は出力端子95に接続され、ソース端子は電源電圧VSSに接続されている。キャパシタC9については、一端はnetAに接続され、他端は出力端子95に接続されている。
 以上のような構成において、シフトレジスタ90の各段(双安定回路)は次のように動作する。なお、図25は、このシフトレジスタ90の各段の動作を説明するためのタイミングチャートである。入力端子93には、1水平走査期間おきにハイレベルとなる第1クロックCKAが与えられる。入力端子94には、第1クロックCKAとは位相が180度ずれた第2クロックCKBが与えられる。時点t0以前の期間には、netAの電位および走査信号GOUTの電位(出力端子95の電位)はローレベルとなっている。
 時点t0になると、入力端子91にセット信号SETのパルスが与えられる。薄膜トランジスタT91は図24に示すようにダイオード接続となっているので、このセット信号SETのパルスによって薄膜トランジスタT91はオン状態となり、キャパシタC9が充電される。これにより、netAの電位はローレベルからハイレベルに変化し、薄膜トランジスタT93はオン状態となる。ここで、時点t0~時点t1の期間中、第1クロックCKAはローレベルとなっている。このため、この期間中、走査信号GOUTはローレベルで維持される。また、この期間中、リセット信号RESETはローレベルとなっているので、薄膜トランジスタT92はオフ状態で維持される。このため、この期間中にnetAの電位が低下することはない。
 時点t1になると、第1クロックCKAがローレベルからハイレベルに変化する。このとき、薄膜トランジスタT93はオン状態となっているので、入力端子93の電位の上昇とともに出力端子95の電位は上昇する。ここで、図24に示すようにnetA-出力端子95間にはキャパシタC9が設けられているので、出力端子95の電位の上昇とともにnetAの電位も上昇する(netAがブートストラップされる)。その結果、薄膜トランジスタT93には大きな電圧が印加され、走査信号GOUTの電位は、第1クロックCKAのハイレベルの電位にまで上昇する。これにより、この双安定回路の出力端子95に接続されているゲートバスラインが選択状態となる。なお、時点t1~時点t2の期間中、第2クロックCKBはローレベルとなっている。このため、薄膜トランジスタT94はオフ状態で維持されるので、この期間中に走査信号GOUTの電位が低下することはない。
 時点t2になると、第1クロックCKAはハイレベルからローレベルに変化する。これにより、入力端子93の電位の低下とともに出力端子95の電位は低下し、キャパシタC9を介してnetAの電位も低下する。また、時点t2には、入力端子92にリセット信号RESETのパルスが与えられる。これにより、薄膜トランジスタT92はオン状態となる。その結果、netAの電位はハイレベルからローレベルに変化する。また、時点t2には、第2クロックCKBがローレベルからハイレベルに変化する。これにより、薄膜トランジスタT94はオン状態となる。その結果、出力端子95の電位すなわち走査信号GOUTの電位はローレベルとなる。
 以上のようにして各段(双安定回路)から出力された走査信号GOUTは、図23に示すように、セット信号SETとして次段に与えられる。これにより、表示装置に設けられている複数本のゲートバスラインが1水平走査期間ずつ順次に選択状態となり、1行ずつ画素回路内の画素容量への書き込みが行われる。
 上述のような表示装置に関し、ゲートバスラインの走査順序(走査方向)の切り替えを可能にした構成が提案されている。図26は、米国特許第6778626号明細書に開示されたシフトレジスタの構成を示すブロック図である。このシフトレジスタでは、各段毎に、走査順序を切り替えるための回路(走査順序に応じた信号であるセレクト信号SWを入力するための回路)310,312,および314が設けられている。そして、それらの回路310,312,および314に与えられるセレクト信号SWによって走査順序の切り替えが行われる。
 図27は、日本の特表2001-506044号公報に開示されたシフトレジスタの構成を示すブロック図である。このシフトレジスタでは、各段は、前段または次段からセット信号が与えられ、前々段または次々段からリセット信号が与えられる。このような構成にすることにより、走査順序切り替え用のセレクト信号を用いることなく、ゲートバスラインの走査順序の切り替えが可能となっている。
 なお、ゲートバスラインの走査順序の切り替えを可能にする目的としては、次のようなものが挙げられる。例えば、液晶表示モジュールが出荷先でユーザによってテレビに組み込まれる場合に、出荷先によって組み込み方向が異なる(例えば、上下が逆になる)ことがある。このようなときに出荷先で走査順序の切り替えが可能であれば、ユーザの所望する画像表示が可能となる。また、鏡に映した画像が見られるようにしたテレビが提案されており、走査順序の切り替えが可能であれば、利用者は鏡に映った画面でも通常状態の画像を見ることができるようになる。
米国特許第6778626号明細書 日本の特表2001-506044号公報
 ところが、米国特許第6778626号明細書に記載された構成によると、上述したように、走査順序を切り替えるための回路310,312,および314がシフトレジスタの各段毎に必要となる。このため、回路面積や消費電流が増大するとともにコスト上昇をも招くことになる。また、走査順序を切り替えるための回路310,312,および314についてはセレクト信号SWでスイッチの切り替えが行われる構成になるところ、そのような構成によれば、表示装置の動作中、スイッチを構成するトランジスタはオン状態で維持されることになる。このため、スイッチとしてアモルファスシリコンを用いた薄膜トランジスタなどが採用されている場合、高温エージング時にトランジスタの閾値電圧のシフトが起こり、異常動作が生じることがある。従って、高い信頼性が確保されない。
 また、近年、パネルの大型化や高解像度化が進んでおり、画素容量への充電不足を防止することが課題となっている。これに関し、日本の特表2001-506044号公報に開示されたシフトレジスタによると、複数のゲートバスラインが同時に選択されている期間はない(図28参照)。従って、例えば順方向走査の際に、k行目についての充電が行われる期間中に(k+1)行目に予備的な充電(プリチャージ)を施すことができない。このシフトレジスタでプリチャージを可能にするためには、6個以上のクロック信号を用いる構成にしなければならない。
 そこで本発明は、走査信号線の走査順序の切り替えが可能なシフトレジスタを、回路面積の増大,消費電流の増大,および画素容量への充電不足を抑制しつつ実現することを目的とする。
 本発明の第1の局面は、第1の状態と第2の状態とを有し互いに直列に接続された複数の双安定回路を含み、前記複数の双安定回路のうち奇数段目の双安定回路に第1のクロック信号および第2のクロック信号として与えられる2相のクロック信号と前記複数の双安定回路のうち偶数段目の双安定回路に前記第1のクロック信号および前記第2のクロック信号として与えられる2相のクロック信号とを含む少なくとも4相のクロック信号に基づいて前記複数の双安定回路が順次に第1の状態となるシフトレジスタであって、
 各双安定回路は、
  前記第1の状態または前記第2の状態のいずれかの状態を表す状態信号を出力する出力ノードと、
  第2電極に前記第1のクロック信号が与えられ、前記出力ノードに第3電極が接続された出力制御用スイッチング素子と、
  当該各双安定回路の前段の双安定回路から出力される状態信号に基づいて前記出力制御用スイッチング素子の第1電極に接続された第1ノードを充電するための第1の第1ノード充電部と、
  当該各双安定回路の次段の双安定回路から出力される状態信号に基づいて前記第1ノードを充電するための第2の第1ノード充電部と、
  当該各双安定回路の3段後の段の双安定回路から出力される状態信号に基づいて前記第1ノードを放電するための第1の第1ノード放電部と、
  当該各双安定回路の3段前の段の双安定回路から出力される状態信号に基づいて前記第1ノードを放電するための第2の第1ノード放電部と
を有することを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1のクロック信号と前記第2のクロック信号とは互いに位相が180度ずらされていることを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記奇数段目の双安定回路に与えられる2相のクロック信号と前記偶数段目の双安定回路に与えられる2相のクロック信号とはそれぞれ互いに位相が90度ずらされていることを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記第1のクロック信号がハイレベルからローレベルに変化するタイミングと前記第2のクロック信号がローレベルからハイレベルに変化するタイミングとが同じであって、かつ、前記第1のクロック信号がローレベルからハイレベルに変化するタイミングと前記第2のクロック信号がハイレベルからローレベルに変化するタイミングとが同じであることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記4相のクロック信号のオンデューティはそれぞれ50%とされていることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 各双安定回路において、
  前記第1の第1ノード充電部は、第1電極および第2電極に当該各双安定回路の前段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第3電極が接続された第1のスイッチング素子を含み、
  前記第2の第1ノード充電部は、第1電極および第2電極に当該各双安定回路の次段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第3電極が接続された第2のスイッチング素子を含み、
  前記第1の第1ノード放電部は、第1電極に当該各双安定回路の3段後の段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第3のスイッチング素子を含み、
  前記第2の第1ノード放電部は、第1電極に当該各双安定回路の3段前の段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第4のスイッチング素子を含むことを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 各双安定回路は、
  前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第5のスイッチング素子と、
  前記第5のスイッチング素子の第1電極に接続された第2ノードの電位を前記第2のクロック信号と前記第1ノードの電位とに基づいて制御する第2ノード制御部と
を更に有することを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記第2ノード制御部は、
  第1電極および第2電極に前記第2のクロック信号が与えられ、前記第2ノードに第3電極が接続された第6のスイッチング素子と、
  前記第1ノードに第1電極が接続され、前記第2ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第7のスイッチング素子とからなることを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記奇数段目の双安定回路は、前記偶数段目の双安定回路に与えられる2相のクロック信号をそれぞれ第3のクロック信号および第4のクロック信号として受け取り、
 前記偶数段目の双安定回路は、前記奇数段目の双安定回路に与えられる2相のクロック信号をそれぞれ前記第3のクロック信号および前記第4のクロック信号として受け取り、
 各双安定回路は、
  前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第8のスイッチング素子と、
  前記第8のスイッチング素子の第1電極に接続された第3ノードの電位を前記第3のクロック信号と前記第1ノードの電位とに基づいて制御する第3ノード制御部と、
  前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第11のスイッチング素子と、
  前記第11のスイッチング素子の第1電極に接続された第4ノードの電位を前記第4のクロック信号と前記第1ノードの電位とに基づいて制御する第4ノード制御部と
を更に有することを特徴とする。
 本発明の第10の局面は、本発明の第9の局面において、
 前記第3ノード制御部は、
  第1電極および第2電極に前記第3のクロック信号が与えられ、前記第3ノードに第3電極が接続された第9のスイッチング素子と、
  前記第1ノードに第1電極が接続され、前記第3ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第10のスイッチング素子とからなり、
 前記第4ノード制御部は、
  第1電極および第2電極に前記第4のクロック信号が与えられ、前記第4ノードに第3電極が接続された第12のスイッチング素子と、
  前記第1ノードに第1電極が接続され、前記第4ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第13のスイッチング素子とからなることを特徴とする。
 本発明の第11の局面は、本発明の第1の局面において、
 前記複数の双安定回路のうちの初段,2段目,および3段目の双安定回路に含まれる前記第1ノードをそれぞれ前記第2の第1ノード放電部によって放電させるための3つの初段側制御信号が外部から与えられ、
 前記複数の双安定回路のうちの最終段,最終段の前段,および最終段の前々段の双安定回路に含まれる前記第1ノードをそれぞれ前記第1の第1ノード放電部によって放電させるための3つの最終段側制御信号が外部から与えられることを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 前記3つの初段側制御信号のうち2つの初段側制御信号が1つの信号によって実現され、
 前記3つの最終段側制御信号のうち2つの最終段側制御信号が1つの信号によって実現されていることを特徴とする。
 本発明の第13の局面は、本発明の第12の局面において、
 前記複数の双安定回路のうちの初段,2段目,および3段目の双安定回路のそれぞれにおいて、前記第2の第1ノード充電部によって前記第1ノードが充電された後、前記第2の第1ノード放電部によって前記第1ノードが放電されるまでの期間、前記第1のクロック信号のローレベルからハイレベルへの変化が抑止され、
 前記複数の双安定回路のうちの最終段,最終段の前段,および最終段の前々段の双安定回路のそれぞれにおいて、前記第1の第1ノード充電部によって前記第1ノードが充電された後、前記第1の第1ノード放電部によって前記第1ノードが放電されるまでの期間、前記第1のクロック信号のローレベルからハイレベルへの変化が抑止されることを特徴とする。
 本発明の第14の局面は、本発明の第1の局面において、
 前記複数の双安定回路のうちの初段,2段目,および3段目の双安定回路のいずれかは、第1電極に前記初段側制御信号が与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第15のスイッチング素子を含み、
 前記複数の双安定回路のうちの最終段,最終段の前段,および最終段の前々段の双安定回路のいずれかは、第1電極に前記最終段側制御信号が与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第16のスイッチング素子を含むことを特徴とする。
 本発明の第15の局面は、本発明の第1の局面において、
 各双安定回路は、第1電極に前記第2のクロック信号が与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第14のスイッチング素子を更に有することを特徴とする。
 本発明の第16の局面は、本発明の第1の局面において、
 各双安定回路は、前記第1ノードに一端が接続され、前記出力ノードに他端が接続されたキャパシタを更に有することを特徴とする。
 本発明の第17の局面は、本発明の第1の局面において、
 各双安定回路は、当該各双安定回路の2段後または3段後の段の双安定回路から出力される状態信号が第1電極に与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第17のスイッチング素子と、当該各双安定回路の2段前または3段前の段の双安定回路から出力される状態信号が第1電極に与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第18のスイッチング素子とを更に有することを特徴とする。
 本発明の第18の局面は、本発明の第1の局面において、
 アモルファスシリコンを用いて形成されていることを特徴とする。
 本発明の第19の局面は、本発明の第1の局面において、
 微結晶シリコンを用いて形成されていることを特徴とする。
 本発明の第20の局面は、本発明の第1の局面において、
 多結晶シリコンを用いて形成されていることを特徴とする。
 本発明の第21の局面は、本発明の第1の局面において、
 酸化物半導体を用いて形成されていることを特徴とする。
 本発明の第22の局面は、表示部に配設された複数の走査信号線を駆動する、表示装置の走査信号線駆動回路であって、
 本発明の第1の局面に係るシフトレジスタを備え、
 前記複数の双安定回路は、前記複数の走査信号線と1対1で対応するように設けられ、
 各双安定回路は、前記出力ノードから出力される状態信号を当該各双安定回路に対応する走査信号線に走査信号として与えることを特徴とする。
 本発明の第23の局面は、表示装置であって、
 前記表示部を含み、本発明の第22の局面に係る走査信号線駆動回路を備えたことを特徴とする。
 本発明の第24の局面は、本発明の第23の局面において、
 前記複数の双安定回路からなるシフトレジスタが前記表示部の一端側および他端側の双方に設けられていることを特徴とする。
 本発明の第25の局面は、本発明の第23の局面において、
 前記奇数段目の双安定回路は前記表示部の一端側に設けられ、前記偶数段目の双安定回路は前記表示部の他端側に設けられていることを特徴とする。
 本発明の第1の局面によれば、シフトレジスタの各段(双安定回路)には、出力ノードの電位(当該各段から出力される状態信号の電位)を制御する出力制御用スイッチング素子の第1電極(典型的にはゲート電極)に接続された第1ノードを充電するための信号として、前段から出力される状態信号と次段から出力される状態信号とが与えられ、第1ノードを放電するための信号として、3段前の段から出力される状態信号と3段後の段から出力される状態信号とが与えられる。すなわち、シフトレジスタの各段から出力される状態信号は、前段および次段の第1ノードを充電するために機能するとともに、3段前の段および3段後の段の第1ノードを放電するために機能する。また、出力制御用スイッチング素子の第2電極(典型的にはドレイン電極)には、ハイレベルの電位とローレベルの電位とを周期的に繰り返す第1のクロック信号が与えられる。このため、最初にシフトレジスタの初段において第1ノードの充電が行われたときには、順方向の順序(「初段から最終段」の順序)で、シフトレジスタの各段から出力される状態信号が第1の状態となる。一方、最初にシフトレジスタの最終段において第1ノードの充電が行われたときには、逆方向の順序(「最終段から初段」の順序)で、シフトレジスタの各段から出力される状態信号が第1の状態となる。このように、シフト方向を切り替えるために従来必要とされていた構成(「セレクト信号でスイッチの切り替えを行う構成」、「セレクト信号のための駆動回路や信号配線」など)を備えることなく、シフト方向の切り替えが可能なシフトレジスタが実現される。このため、例えば表示装置において走査信号線の走査順序が切り替え可能な構成とする場合に、回路面積の増大・消費電流の増大・コストの上昇などが抑制される。また、走査順序(シフト方向)を切り替えるためのスイッチが不要となるので、高温エージング時のスイッチ(トランジスタ)の閾値電圧のシフトに起因する誤動作の発生が抑制される。
 本発明の第2の局面によれば、本発明の第1の局面と同様の効果が得られる。
 本発明の第3の局面によれば、奇数段目に与えられる2相のクロック信号と偶数段目に与えられる2相のクロック信号とはそれぞれ互いに位相が90度ずらされている。このため、画素容量への充電時間が均一化され、充電差に起因する表示不良の発生が抑制される。
 本発明の第4の局面によれば、第1のクロック信号の変化タイミングと第2のクロック信号の変化タイミングとが同じになるので、双安定回路から出力される状態信号のノイズが低減される。また、画素容量への充電時間が長くなるので、充電不足に起因する表示不良の発生が効果的に抑制される。
 本発明の第5の局面によれば、各クロック信号のオンデューティは50%とされている。このため、複数の走査信号線が同時に選択されている期間を設けることができる。このとき、各走査信号線が選択されている期間のうち前半の期間には画素容量への予備的な充電(プリチャージ)が行われ、後半の期間には画素容量への本充電が行われる。これにより、充分な充電時間が確保され、画素容量への充電不足に起因する表示品位の低下が抑制される。
 本発明の第6の局面によれば、第1の第1ノード充電部,第2の第1ノード充電部,第1の第1ノード放電部,および第2の第1ノード放電部にスイッチング素子を含めた構成において、本発明の第1の局面と同様の効果が得られる。
 本発明の第7の局面によれば、第1ノードの電位がローレベルとなっている期間に、第1ノードの電位を制御するための第2ノードの電位を所定期間毎にハイレベルにすることができる。これにより、第1ノードの電位がローレベルとなっている期間中、所定期間毎に第5のスイッチング素子がオン状態となって第1ノードの電位はより低い電位へと引き込まれる。このため、例えば高温エージングによって出力制御用スイッチング素子の閾値電圧のシフトが生じ、当該スイッチング素子におけるリーク電流が大きくなった場合でも、所定期間毎に第1ノードの電位を確実にローレベルにすることができ、出力ノードからの異常パルスの出力が抑制される。
 本発明の第8の局面によれば、第2ノード制御部にスイッチング素子を含めた構成において、本発明の第7の局面と同様の効果が得られる。
 本発明の第9の局面によれば、第1ノードの電位がローレベルとなっている期間に、第1ノードの電位を制御するための第3ノードおよび第4ノードの電位を所定期間毎にハイレベルにすることができる。ここで、第3ノードの電位と第4ノードの電位とは、異なるクロック信号に基づいて制御される。これにより、第1ノードの電位がローレベルとなっている期間のうちの例えば大半の期間において第1ノードの電位がより低い電位へと引き込まれるようにすることが可能となる。このため、例えば高温エージングによって出力制御用スイッチング素子の閾値電圧のシフトが生じ、当該スイッチング素子におけるリーク電流が大きくなった場合でも、第1ノードの電位がローレベルに固定され、出力ノードからの異常パルスの出力が効果的に抑制される。
 本発明の第10の局面によれば、第3ノード制御部および第4ノード制御部にスイッチング素子を含めた構成において、本発明の第9の局面と同様の効果が得られる。
 本発明の第11の局面によれば、初段,2段目,3段目,最終段の前々段,最終段の前段,および最終段の第1ノードは外部から与えられる制御信号によって放電される。
 本発明の第12の局面によれば、順方向の順序でシフト動作が行われる際には、最終段,最終段の前段,および最終段の前々段のうちの2つの段の第1ノードは同一の信号に基づいて放電される。また、逆方向の順序でシフト動作が行われる際には、初段,2段目,および3段目のうちの2つの段の第1ノードは同一の信号に基づいて放電される。このため、第1ノードを放電させるために必要な信号配線が削減され、回路面積の低減・消費電流の低減・コストの低減などの効果がより高められる。
 本発明の第13の局面によれば、初段,2段目,3段目,最終段の前々段,最終段の前段,および最終段において、第1ノードの電位の不必要な上昇が抑止され、表示品位の低下が抑制される。
 本発明の第14の局面によれば、初段,2段目,3段目,最終段の前々段,最終段の前段,および最終段において、外部から与えられる制御信号に基づき状態信号の電位をローレベルにすることが可能となる
 本発明の第15の局面によれば、出力制御用スイッチング素子でオフリークが生じても、第2のクロック信号に基づいて出力ノードの電位がローレベルとなるので、出力ノードからの異常パルスの出力が効果的に抑制される。
 本発明の第16の局面によれば、出力ノードの電位が上昇する際に、キャパシタを介して第1ノードの電位が上昇する(第1ノードがブートストラップされる)。このため、双安定回路が第1の状態で維持されるべき期間中に、第1ノードの電位の低下が抑制されるとともに、出力制御用スイッチング素子の第1電極には大きな電圧が印加される。これにより、出力ノードから出力される状態信号の波形が安定化する。
 本発明の第17の局面によれば、順方向の順序でシフト動作が行われる際には、各段の2段後の段または各段の3段後の段から出力される状態信号に基づいて出力ノードの電位がローレベルにされ、逆方向の順序でシフト動作が行われる際には、各段の2段前の段または各段の3段前の段から出力される状態信号に基づいて出力ノードの電位がローレベルにされる。これにより、状態信号の電位をより確実にローレベルにまで低下させることが可能となる。
 本発明の第18の局面によれば、アモルファスシリコンを用いて形成されたシフトレジスタにおいて、本発明の第1の局面と同様の効果が得られる。
 本発明の第19の局面によれば、微結晶シリコンを用いて形成されたシフトレジスタにおいて、本発明の第1の局面と同様の効果が得られる。
 本発明の第20の局面によれば、多結晶シリコンを用いて形成されたシフトレジスタにおいて、本発明の第1の局面と同様の効果が得られる。
 本発明の第21の局面によれば、酸化物半導体を用いて形成されたシフトレジスタにおいて、本発明の第1の局面と同様の効果が得られる。
 本発明の第22の局面によれば、本発明の第1の局面と同様の効果が得られるシフトレジスタを備えた走査信号線駆動回路が実現される。
 本発明の第23の局面によれば、本発明の第22の局面と同様の効果が得られる走査信号線駆動回路を備えた表示装置が実現される。
 本発明の第24の局面によれば、1本の走査信号線に対して表示部の両側から充電が施される。このため、充電不足に起因する表示品位の低下が抑制される。
 本発明の第25の局面によれば、シフトレジスタを構成する双安定回路が表示部の片側のみに設けられた構成と比較して、シフトレジスタ1段あたりのサイズをほぼ2分の1にすることができる。これにより、パネルの額縁として必要となる面積を小さくすることが可能となり、各種製品の小型化が実現される。
本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置のゲートドライバ内のシフトレジスタの構成を示すブロック図である。 上記第1の実施形態において、液晶表示装置の全体構成を示すブロック図である。 上記第1の実施形態において、ゲートドライバの構成を説明するためのブロック図である。 上記第1の実施形態において、シフトレジスタのk段目の双安定回路の入出力信号について説明するための図である。 上記第1の実施形態において、シフトレジスタに含まれる双安定回路の構成を示す回路図である。 上記第1の実施形態において、順方向走査が行われる際のシフトレジスタの各段の動作を説明するためのタイミングチャートである。 上記第1の実施形態において、逆方向走査が行われる際のシフトレジスタの各段の動作を説明するためのタイミングチャートである。 上記第1の実施形態において、順方向走査が行われる際のシフトレジスタの全体の動作を説明するためのタイミングチャートである。 上記第1の実施形態において、逆方向走査が行われる際のシフトレジスタの全体の動作を説明するためのタイミングチャートである。 本発明の第2の実施形態において、ゲートドライバ内のシフトレジスタの構成を示すブロック図である。 A-Cは、上記第2の実施形態における効果について説明するための図である。 本発明の第3の実施形態において、ゲートドライバ内のシフトレジスタの構成を示すブロック図である。 本発明の第4の実施形態において、シフトレジスタに含まれる双安定回路の構成を示す回路図である。 上記第4の実施形態において、順方向走査が行われる際のシフトレジスタの各段の動作を説明するためのタイミングチャートである。 上記第4の実施形態において、逆方向走査が行われる際のシフトレジスタの各段の動作を説明するためのタイミングチャートである。 本発明の第5の実施形態において、ゲートドライバ内のシフトレジスタの構成を示すブロック図である。 上記第5の実施形態において、シフトレジスタに含まれる双安定回路の構成を示す回路図である。 上記第5の実施形態において、順方向走査が行われる際のシフトレジスタの各段の動作を説明するためのタイミングチャートである。 上記第5の実施形態において、逆方向走査が行われる際のシフトレジスタの各段の動作を説明するためのタイミングチャートである。 本発明の第6の実施形態において、ゲートドライバ内のシフトレジスタの構成を示すブロック図である。 上記第6の実施形態において、順方向走査が行われる際のシフトレジスタの全体の動作を説明するためのタイミングチャートである。 上記第6の実施形態において、逆方向走査が行われる際のシフトレジスタの全体の動作を説明するためのタイミングチャートである。 従来の表示装置のゲートドライバの一構成例を示すブロック図である。 従来例において、ゲートドライバを構成するシフトレジスタの一段分の構成例を示す回路図である。 従来例において、シフトレジスタの各段の動作を説明するためのタイミングチャートである。 米国特許第6778626号明細書に開示されたシフトレジスタの構成を示すブロック図である。 日本の特表2001-506044号公報に開示されたシフトレジスタの構成を示すブロック図である。 日本の特表2001-506044号公報に開示されたシフトレジスタの動作を説明するためのタイミングチャートである。
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。なお、以下の説明においては、薄膜トランジスタのゲート端子(ゲート電極)は第1電極に相当し、ドレイン端子(ドレイン電極)は第2電極に相当し、ソース端子(ソース電極)は第3電極に相当する。
<1.第1の実施形態>
<1.1 全体構成および動作>
 図2は、本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置の全体構成を示すブロック図である。図2に示すように、この液晶表示装置は、表示部10と表示制御回路20とソースドライバ(映像信号線駆動回路)30とゲートドライバ(走査信号線駆動回路)40とを備えている。表示制御回路20は、コントロール基板2上に形成されている。ソースドライバ30は、フレキシブル基板3上に形成されている。ゲートドライバ40は、アモルファスシリコン,多結晶シリコン,微結晶シリコン,酸化物半導体(例えばIGZO)などを用いて、表示部10を含む表示パネル4上に形成されている。すなわち、本実施形態においては、ゲートドライバ40がモノリシック化された構成となっている。
 表示部10には、複数本(m本)のソースバスライン(映像信号線)SL1~SLmと、複数本(n本)のゲートバスライン(走査信号線)GL1~GLnと、それらのソースバスラインSL1~SLmとゲートバスラインGL1~GLnとの交差点にそれぞれ対応して設けられた複数個(n×m個)の画素形成部とが含まれている。
 上記複数個の画素形成部はマトリクス状に配置されて画素アレイを構成している。各画素形成部は、対応する交差点を通過するゲートバスラインにゲート端子が接続されると共に当該交差点を通過するソースバスラインにソース端子が接続されたスイッチング素子である薄膜トランジスタ(TFT)11と、その薄膜トランジスタ11のドレイン端子に接続された画素電極と、上記複数個の画素形成部に共通的に設けられた対向電極である共通電極Ecと、上記複数個の画素形成部に共通的に設けられ画素電極と共通電極Ecとの間に挟持された液晶層とからなる。そして、画素電極と共通電極Ecとにより形成される液晶容量により、画素容量Cpが構成される。なお通常、画素容量Cpに確実に電圧を保持すべく、液晶容量に並列に補助容量が設けられるが、補助容量は本発明には直接に関係しないのでその説明および図示を省略する。
 表示制御回路20は、外部から送られる画像信号DATおよび水平同期信号や垂直同期信号などのタイミング信号群TGを受け取り、デジタル映像信号DVと、表示部10における画像表示を制御するためのソーススタートパルス信号SSP,ソースクロック信号SCK,ラッチストローブ信号LS,第1~第6の走査制御信号CNT1~CNT6,および第1~第4のゲートクロック信号GCK1~GCK4を出力する。
 ソースドライバ30は、表示制御回路20から出力されるデジタル映像信号DV,ソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSを受け取り、各ソースバスラインSL1~SLmに駆動用映像信号S(1)~S(m)を印加する。
 ゲートドライバ40は、表示制御回路20から出力される第1~第6の走査制御信号CNT1~CNT6と第1~第4のゲートクロック信号GCK1~GCK4とに基づいて、アクティブな走査信号GOUT(1)~GOUT(n)の各ゲートバスラインGL1~GLnへの印加を1垂直走査期間を周期として繰り返す。本実施形態においては、第1~第6の走査制御信号CNT1~CNT6のそれぞれのパルスの発生タイミングに応じて、順方向走査(「GL1,GL2,・・・,GLn-1,GLn」の順序での走査)と逆方向走査(「GLn,GLn-1,・・・,GL2,GL1」の順序での走査)との切り替えが行われる。なお、このゲートドライバ40についての詳しい説明は後述する。
 以上のようにして、各ソースバスラインSL1~SLmに駆動用映像信号S(1)~S(m)が印加され、各ゲートバスラインGL1~GLnに走査信号GOUT(1)~GOUT(n)が印加されることにより、外部から送られた画像信号DATに基づく画像が表示部10に表示される。
<1.2 ゲートドライバの構成>
 次に、図1,図3,および図4を参照しつつ、本実施形態におけるゲートドライバ40の構成について説明する。図3に示すように、ゲートドライバ40はn段のシフトレジスタ410によって構成されている。表示部10にはn行×m列の画素マトリクスが形成されているところ、それら画素マトリクスの各行と1対1で対応するようにシフトレジスタ410の各段が設けられている。また、シフトレジスタ410の各段は、各時点において2つの状態(第1の状態および第2の状態)のうちのいずれか一方の状態となっていて当該状態を示す信号(状態信号)を走査信号として出力する双安定回路となっている。このように、このシフトレジスタ410はn個の双安定回路SR(1)~SR(n)で構成されている。なお、本実施形態においては、双安定回路が第1の状態となっていれば、当該双安定回路からはハイレベル(Hレベル)の状態信号が走査信号として出力され、双安定回路が第2の状態となっていれば、当該双安定回路からはローレベル(Lレベル)の状態信号が走査信号として出力される。また、以下においては、シフトレジスタ410は8個の双安定回路SR(1)~SR(8)で構成されているものと仮定して説明する。
 図1は、ゲートドライバ40内のシフトレジスタ410の構成を示すブロック図である。また、図4は、シフトレジスタ410のk段目の双安定回路SR(k)の入出力信号について説明するための図である。図1に示すように、このシフトレジスタ410は8個の双安定回路SR(1)~SR(8)によって構成されている。各双安定回路には、2相のクロック信号CKA(以下「第1クロック」という。),CKB(以下「第2クロック」という。)をそれぞれ受け取るための入力端子と、ローレベルの電源電圧VSSを受け取るための入力端子と、順方向走査の際の走査開始用の信号である第1のセット信号SET1を受け取るための入力端子と、逆方向走査の際の走査開始用の信号である第2のセット信号SET2を受け取るための入力端子と、順方向走査の際の走査終了用の信号である第1のリセット信号RESET1を受け取るための入力端子と、逆方向走査の際の走査終了用の信号である第2のリセット信号RESET2を受け取るための入力端子と、走査信号GOUTを出力するための出力端子とが設けられている。
 以下、各段(各双安定回路)の入力端子に与えられる信号について説明する。なお、ローレベルの電源電圧VSSについては、図1に示すように、全ての段SR(1)~SR(8)に共通的に与えられる。
 第1クロックCKAおよび第2クロックCKBについては、次のようになっている(図1参照)。1段目SR(1)については、第1のゲートクロック信号GCK1が第1クロックCKAとして与えられ、第3のゲートクロック信号GCK3が第2クロックCKBとして与えられる。2段目SR(2)については、第2のゲートクロック信号GCK2が第1クロックCKAとして与えられ、第4のゲートクロック信号GCK4が第2クロックCKBとして与えられる。3段目SR(3)については、第3のゲートクロック信号GCK3が第1クロックCKAとして与えられ、第1のゲートクロック信号GCK1が第2クロックCKBとして与えられる。4段目SR(4)については、第4のゲートクロック信号GCK4が第1クロックCKAとして与えられ、第2のゲートクロック信号GCK2が第2クロックCKBとして与えられる。5段目SR(5)から8段目SR(8)については、上述した1段目SR(1)から4段目SR(4)までの構成と同様の構成となっている。
 第1のセット信号SET1および第2のセット信号SET2については、次のようになっている。k段目SR(k)に着目すると、前段の走査信号GOUT(k-1)が第1のセット信号SET1として与えられ、次段の走査信号GOUT(k+1)が第2のセット信号SET2として与えられる(図4参照)。但し、1段目SR(1)については、第3の走査制御信号GNT3が第1のセット信号SET1として与えられ、8段目(最終段目)SR(8)については、第4の走査制御信号GNT4が第2のセット信号SET2として与えられる(図1参照)。
 第1のリセット信号RESET1および第2のリセット信号RESET2については、次のようになっている。k段目SR(k)に着目すると、(k+3)段目の走査信号GOUT(k+3)が第1のリセット信号RESET1として与えられ、(k-3)段目の走査信号GOUT(k-3)が第2のリセット信号RESET2として与えられる(図4参照)。但し、1段目SR(1)については第1の走査制御信号CNT1が第2のリセット信号RESET2として与えられ、2段目SR(2)については第2の走査制御信号CNT2が第2のリセット信号RESET2として与えられ、3段目SR(3)については第3の走査制御信号CNT3が第2のリセット信号RESET2として与えられる。また、6段目SR(6)については第4の走査制御信号CNT4が第1のリセット信号RESET1として与えられ、7段目SR(7)については第5の走査制御信号CNT5が第1のリセット信号RESET1として与えられ、8段目SR(8)については第6の走査制御信号CNT6が第1のリセット信号RESET1として与えられる(図1参照)。
 次に、各段(各双安定回路)の出力端子から出力される信号について説明する。k段目SR(k)の出力端子からは、k行目のゲートバスラインGLkを選択状態にするための走査信号GOUT(k)が出力される。当該走査信号GOUT(k)は、第1のリセット信号RESET1として(k-3)段目に与えられ、第2のセット信号SET2として(k-1)段目に与えられ、第1のセット信号SET1として(k+1)段目に与えられ、第2のリセット信号RESET2として(k+3)段目に与えられる(図4参照)。
 なお、第1の走査制御信号GNT1,第2の走査制御信号GNT2,および第3の走査制御信号GNT3によって初段側制御信号が実現され、第4の走査制御信号GNT4,第5の走査制御信号GNT5,および第6の走査制御信号GNT6によって最終段側制御信号が実現されている。
<1.3 双安定回路の構成>
 図5は、上述したシフトレジスタ410に含まれている双安定回路の構成(シフトレジスタ410の1段分の構成)を示す回路図である。図5に示すように、この双安定回路は、6個の薄膜トランジスタTS(出力制御用スイッチング素子),T1(第1のスイッチング素子),T2(第2のスイッチング素子),T3(第3のスイッチング素子),T4(第4のスイッチング素子),およびT14(第14のスイッチング素子)と、キャパシタC1とを備えている。また、この双安定回路は、ローレベルの電源電圧VSS用の入力端子のほか、6個の入力端子41~46と1個の出力端子(出力ノード)51とを有している。なお、第1のセット信号SET1を受け取る入力端子には符号41を付し、第2のセット信号SET2を受け取る入力端子には符号42を付し、第1のリセット信号RESET1を受け取る入力端子には符号43を付し、第2のリセット信号RESET2を受け取る入力端子には符号44を付し、第1クロックCKAを受け取る入力端子には符号45を付し、第2クロックCKBを受け取る入力端子には符号46を付している。以下、この双安定回路内における構成要素間の接続関係について説明する。
 薄膜トランジスタT1のソース端子,薄膜トランジスタT2のソース端子,薄膜トランジスタT3のドレイン端子,薄膜トランジスタT4のドレイン端子,および薄膜トランジスタTSのゲート端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを便宜上「netA」(第1ノード)という。
 薄膜トランジスタT1については、ゲート端子およびドレイン端子は入力端子41に接続され(すなわち、ダイオード接続となっている)、ソース端子はnetAに接続されている。薄膜トランジスタT2については、ゲート端子およびドレイン端子は入力端子42に接続され(すなわち、ダイオード接続となっている)、ソース端子はnetAに接続されている。薄膜トランジスタT3については、ゲート端子は入力端子43に接続され、ドレイン端子はnetAに接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT4については、ゲート端子は入力端子44に接続され、ドレイン端子はnetAに接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタTSについては、ゲート端子はnetAに接続され、ドレイン端子は入力端子45に接続され、ソース端子は出力端子51に接続されている。薄膜トランジスタT14については、ゲート端子は入力端子46に接続され、ドレイン端子は出力端子51に接続され、ソース端子は電源電圧VSSに接続されている。キャパシタC1については、一端はnetAに接続され、他端は出力端子51に接続されている。
 次に、各構成要素のこの双安定回路における機能について説明する。薄膜トランジスタT1は、第1のセット信号SET1がハイレベルになっているときに、netAの電位をハイレベルにする。薄膜トランジスタT2は、第2のセット信号SET2がハイレベルになっているときに、netAの電位をハイレベルにする。薄膜トランジスタT3は、第1のリセット信号RESET1がハイレベルになっているときに、netAの電位をローレベルにする。薄膜トランジスタT4は、第2のリセット信号RESET2がハイレベルになっているときに、netAの電位をローレベルにする。薄膜トランジスタTSは、netAの電位がハイレベルになっているときに、第1クロックCKAの電位を出力端子51に与える。薄膜トランジスタT14は、第2クロックCKBがハイレベルになっているときに、走査信号GOUTの電位(出力端子51の電位)をローレベルにする。キャパシタC1は、この双安定回路に接続されたゲートバスラインが選択状態となっている期間中にnetAの電位をハイレベルで維持するための補償容量として機能する。
 なお、本実施形態においては、薄膜トランジスタT1によって第1の第1ノード充電部が実現され、薄膜トランジスタT2によって第2の第1ノード充電部が実現されている。また、薄膜トランジスタT3によって第1の第1ノード放電部が実現され、薄膜トランジスタT4によって第2の第2ノード放電部が実現されている。
<1.4 シフトレジスタの動作>
 次に、本実施形態におけるシフトレジスタ410の動作について説明する。なお、表示制御回路20から与えられる第1~第6の走査制御信号CNT1~CNT6のそれぞれのパルスの発生タイミングに応じて、順方向走査の際と逆方向走査の際とで異なる動作が行われる。
<1.4.1 各段(双安定回路)の動作>
 まず、図5~図7を参照しつつ、シフトレジスタ410の各段(双安定回路)の動作について説明する。なお、図6は順方向走査が行われる際のタイミングチャートであり、図7は逆方向走査が行われる際のタイミングチャートである。また、以下の説明では、図6および図7の時点t2から時点t4までの期間が、双安定回路の出力端子51に接続されているゲートバスラインが選択状態とされるべき期間(選択期間)であるものと仮定する。但し、時点t2から時点t3までの期間は画素容量への予備的な充電(プリチャージ)のための期間であり、時点t3から時点t4までの期間が画素容量への本来的な充電(本充電)のための期間である。
<1.4.1.1 順方向走査の際の動作>
 順方向走査が行われる際の双安定回路の動作について説明する。図6に示すように、液晶表示装置の動作中、入力端子45には第1クロックCKAが与えられ、入力端子46には第2クロックCKBが与えられる。このように、本実施形態においては、互いに位相が180度ずれた2相のクロック信号が双安定回路に与えられている。
 時点t0以前の期間には、netAの電位および走査信号GOUTの電位(出力端子51の電位)はローレベルとなっている。時点t0になると、入力端子44に第2のリセット信号RESET2のパルスが与えられる。これにより、薄膜トランジスタT4はオン状態となり、netAの電位はローレベルで維持される。時点t1になると、入力端子41に第1のセット信号SET1のパルスが与えられる。薄膜トランジスタT1は図5に示すようにダイオード接続となっているので、この第1のセット信号SET1のパルスによって薄膜トランジスタT1はオン状態となり、キャパシタC1が充電される。これにより、netAの電位はローレベルからハイレベルに変化し、薄膜トランジスタTSはオン状態となる。ところで、時点t1~時点t2の期間中、第1クロックCKAはローレベルとなっている。このため、この期間中、走査信号GOUTはローレベルで維持される。
 時点t2になると、第1クロックCKAがローレベルからハイレベルに変化する。このとき、薄膜トランジスタTSはオン状態となっているので、入力端子45の電位の上昇とともに出力端子51の電位は上昇する。ここで、図5に示すようにnetA-出力端子51間にはキャパシタC1が設けられているので、出力端子51の電位の上昇とともにnetAの電位も上昇する(netAがブートストラップされる)。その結果、薄膜トランジスタTSには大きな電圧が印加され、走査信号GOUTの電位は、第1クロックCKAのハイレベルの電位にまで上昇する。これにより、この双安定回路の出力端子51に接続されているゲートバスラインが選択状態となる。
 時点t3になると、入力端子42に第2のセット信号SET2のパルスが与えられる。薄膜トランジスタT2は図5に示すようにダイオード接続となっているので、この第2のセット信号SET2のパルスによって薄膜トランジスタT2はオン状態となる。しかしながら、netAの電位は既にブートストラップによって高くなっているので、薄膜トランジスタT2がオン状態となったことに起因してnetAの電位が変動することはない。また、時点t3には第1クロックCKAの電位および第2クロックCKBの電位は変化しないので、netAおよび走査信号GOUTについては、時点t2~時点t3における電位が維持される。
 時点t4になると、第1クロックCKAがハイレベルからローレベルに変化する。これにより、入力端子45の電位の低下とともに出力端子51の電位は低下し、キャパシタC1を介してnetAの電位も低下する。但し、netAの電位は、ほぼ出力端子51の電位の低下分だけ低下するので、ローレベルまでは低下せずハイレベルで維持される。また、時点t4には、第2クロックCKBがローレベルからハイレベルに変化する。これにより、薄膜トランジスタT14はオン状態となり、出力端子51の電位すなわち走査信号GOUTの電位はローレベルとなる。
 時点t5になると、入力端子43に第1のリセット信号RESET1のパルスが与えられる。これにより、薄膜トランジスタT3はオン状態となり、netAの電位はハイレベルからローレベルに変化する。
 なお、時点t1~時点t5の期間中、第1のリセット信号RESET1および第2のリセット信号RESET2はローレベルとなっているので、薄膜トランジスタT3およびT4はオフ状態で維持される。このため、この期間中にnetAの電位がローレベルにまで低下することはない。また、時点t2~時点t4の期間中、第2クロックCKBはローレベルとなっているので、薄膜トランジスタT14はオフ状態で維持される。このため、この期間中に走査信号GOUTの電位がローレベルにまで低下することはない。
 以上のように、順方向走査の際には、第1のセット信号SET1が、アクティブな走査信号GOUTを生成すべくnetAの電位をローレベルからハイレベルに上昇させるための信号として機能し、第1のリセット信号RESET1が、ハイレベルとなっているnetAの電位をローレベルに低下させるための信号として機能している。そして、netAの電位がハイレベルになっている期間中に第1クロックCKAがハイレベルになることによって、双安定回路からアクティブな走査信号GOUTが出力される。
<1.4.1.2 逆方向走査の際の動作>
 次に、逆方向走査が行われる際の双安定回路の動作について説明する。図7に示すように、液晶表示装置の動作中、順方向走査の際と同様、入力端子45には第1クロックCKAが与えられ、入力端子46には第2クロックCKBが与えられる。
 時点t0以前の期間には、netAの電位および走査信号GOUTの電位(出力端子51の電位)はローレベルとなっている。時点t0になると、入力端子43に第1のリセット信号RESET1のパルスが与えられる。これにより、薄膜トランジスタT3はオン状態となり、netAの電位はローレベルで維持される。時点t1になると、入力端子42に第2のセット信号SET2のパルスが与えられる。薄膜トランジスタT2は図5に示すようにダイオード接続となっているので、この第2のセット信号SET2のパルスによって薄膜トランジスタT2はオン状態となり、キャパシタC1が充電される。これにより、netAの電位はローレベルからハイレベルに変化し、薄膜トランジスタTSはオン状態となる。ところで、時点t1~時点t2の期間中、第1クロックCKAはローレベルとなっている。このため、この期間中、走査信号GOUTはローレベルで維持される。
 時点t2になると、第1クロックCKAがローレベルからハイレベルに変化する。このとき、薄膜トランジスタTSはオン状態となっているので、入力端子45の電位の上昇とともに出力端子51の電位は上昇する。ここで、図5に示すようにnetA-出力端子51間にはキャパシタC1が設けられているので、出力端子51の電位の上昇とともにnetAの電位も上昇する(netAがブートストラップされる)。その結果、薄膜トランジスタTSには大きな電圧が印加され、走査信号GOUTの電位は、第1クロックCKAのハイレベルの電位にまで上昇する。これにより、この双安定回路の出力端子51に接続されているゲートバスラインが選択状態となる。
 時点t3になると、入力端子41に第1のセット信号SET1のパルスが与えられる。薄膜トランジスタT1は図5に示すようにダイオード接続となっているので、この第1のセット信号SET1のパルスによって薄膜トランジスタT1はオン状態となる。しかしながら、netAの電位は既にブートストラップによって高くなっているので、薄膜トランジスタT1がオン状態となったことに起因してnetAの電位が変動することはない。また、時点t3には第1クロックCKAの電位および第2クロックCKBの電位は変化しないので、netAおよび走査信号GOUTについては、時点t2~時点t3における電位が維持される。
 時点t4になると、第1クロックCKAがハイレベルからローレベルに変化する。これにより、入力端子45の電位の低下とともに出力端子51の電位は低下し、キャパシタC1を介してnetAの電位も低下する。但し、netAの電位は、ほぼ出力端子51の電位の低下分だけ低下するので、ローレベルまでは低下せずハイレベルで維持される。また、時点t4には、第2クロックCKBがローレベルからハイレベルに変化する。これにより、薄膜トランジスタT14はオン状態となり、出力端子51の電位すなわち走査信号GOUTの電位はローレベルとなる。
 時点t5になると、入力端子44に第2のリセット信号RESET2のパルスが与えられる。これにより、薄膜トランジスタT4はオン状態となり、netAの電位はハイレベルからローレベルに変化する。
 なお、順方向走査の際と同様、時点t1~時点t5の期間中にnetAの電位がローレベルにまで低下することはなく、時点t2~時点t4の期間中に走査信号GOUTの電位がローレベルにまで低下することはない。
 以上のように、逆方向走査の際には、第2のセット信号SET2が、アクティブな走査信号GOUTを生成すべくnetAの電位をローレベルからハイレベルに上昇させるための信号として機能し、第2のリセット信号RESET2が、ハイレベルとなっているnetAの電位をローレベルに低下させるための信号として機能している。そして、netAの電位がハイレベルになっている期間中に第1クロックCKAがハイレベルになることによって、双安定回路からアクティブな走査信号GOUTが出力される。
<1.4.2 シフトレジスタ全体の動作>
 次に、図1,図5,図8,および図9を参照しつつ、上記各段(双安定回路)における動作に基づくシフトレジスタ410全体の動作について説明する。なお、図8は順方向走査が行われる際のタイミングチャートであり、図9は逆方向走査が行われる際のタイミングチャートである。
<1.4.2.1 順方向走査の際の動作>
 順方向走査が行われる際のシフトレジスタ410全体の動作について説明する。液晶表示装置の動作中、図8に示すように、第1~第4のゲートクロック信号GCK1~GCK4がシフトレジスタ410に与えられる。第1のゲートクロック信号GCK1を基準にすると、第2のゲートクロック信号GCK2については位相が90度遅れており、第3のゲートクロック信号GCK3については位相が180度遅れており、第4のゲートクロック信号GCK4については位相が270度遅れている。
 時点ta以前の期間には、全ての段においてnetAの電位はローレベルとなっていて、また、全ての段から出力される走査信号GOUTの電位はローレベルとなっている。時点taになると、第3の走査制御信号CNT3のパルスがこのシフトレジスタ410に与えられる。その第3の走査制御信号CNT3は、図1に示すように、第1のセット信号SET1として1段目SR(1)に与えられ、第2のリセット信号RESET2として3段目SR(3)に与えられる。これにより、1段目SR(1)のnetAの電位は、ローレベルからハイレベルに変化する。3段目SR(3)のnetAの電位は、ローレベルで維持される。
 時点tbになると、第1のゲートクロック信号GCK1がローレベルからハイレベルに変化する。この時、1段目SR(1)においては入力端子45(図5参照)の電位がローレベルからハイレベルに変化することになるので、1段目SR(1)のnetAの電位は更に上昇する。その結果、1段目SR(1)から出力される走査信号GOUT(1)はハイレベルとなる。1段目SR(1)から出力される走査信号GOUT(1)は、図1に示すように、第1のセット信号SET1として2段目SR(2)に与えられ、第2のリセット信号RESET2として4段目SR(4)に与えられる。これにより、時点tbには、2段目SR(2)についてはnetAの電位はハイレベルとされ、4段目SR(4)についてはnetAの電位はローレベルで維持される。
 時点tcになると、第2のゲートクロック信号GCK2がローレベルからハイレベルに変化する。この時、2段目SR(2)においては入力端子45の電位がローレベルからハイレベルに変化することになるので、2段目SR(2)のnetAの電位は更に上昇する。その結果、2段目SR(2)から出力される走査信号GOUT(2)はハイレベルとなる。2段目SR(2)から出力される走査信号GOUT(2)は、第2のセット信号SET2として1段目SR(1)に与えられる。1段目SR(1)においては、netAの電位は既にブートストラップによって高くなっているので、走査信号GOUT(2)に基づいてnetAの電位が変動することはない。また、時点tcには、1段目SR(1)に与えられる第1のゲートクロック信号GCK1および第3のゲートクロック信号GCK3の電位は変化しない。このため、1段目SR(1)については、netAの電位および走査信号GOUTの電位は、時点tb~時点tcにおける電位が維持される。2段目SR(2)から出力される走査信号GOUT(2)は、また、第1のセット信号SET1として3段目SR(3)に与えられ、第2のリセット信号RESET2として5段目SR(5)に与えられる。これにより、時点tcには、3段目SR(3)についてはnetAの電位はハイレベルとされ、5段目SR(5)についてはnetAの電位はローレベルで維持される。
 時点tdになると、第1のゲートクロック信号GCK1がハイレベルからローレベルに変化する。これにより、1段目SR(1)のnetAの電位は低下する。また、時点tdには、第3のゲートクロック信号GCK3がローレベルからハイレベルに変化する。この時、1段目SR(1)においては入力端子46(図5参照)の電位がローレベルからハイレベルに変化することになるので、1段目SR(1)から出力される走査信号GOUT(1)はローレベルとなる。また、第3のゲートクロック信号GCK3は第1クロックCKAとして3段目SR(3)に与えられる。従って、第3のゲートクロック信号GCK3がローレベルからハイレベルに変化することによって、3段目SR(3)のnetAの電位は更に上昇し、3段目SR(3)から出力される走査信号GOUT(3)はハイレベルとなる。3段目SR(3)から出力される走査信号GOUT(3)は、第2のセット信号SET2として2段目SR(2)に与えられ、第1のセット信号SET1として4段目SR(4)に与えられ、第2のリセット信号RESET2として6段目SR(6)に与えられる。2段目SR(2)については、時点tcにおける1段目SR(1)と同様、netAの電位および走査信号GOUTの電位は、時点tc~時点tdにおける電位が維持される。また、4段目SR(4)についてはnetAの電位はハイレベルとされ、6段目SR(6)についてはnetAの電位はローレベルで維持される。
 時点teになると、第2のゲートクロック信号GCK2がハイレベルからローレベルに変化する。これにより、2段目SR(2)のnetAの電位は低下する。また、時点teには、第4のゲートクロック信号GCK4がローレベルからハイレベルに変化する。この時、2段目SR(2)においては入力端子46の電位がローレベルからハイレベルに変化することになるので、2段目SR(2)から出力される走査信号GOUT(2)はローレベルとなる。また、第4のゲートクロック信号GCK4は第1クロックCKAとして4段目SR(4)に与えられる。従って、第4のゲートクロック信号GCK4がローレベルからハイレベルに変化することによって、4段目SR(4)のnetAの電位は更に上昇し、4段目SR(4)から出力される走査信号GOUT(4)はハイレベルとなる。4段目SR(4)から出力される走査信号GOUT(4)は、第1のリセット信号RESET1として1段目SR(1)に与えられ、第2のセット信号SET2として3段目SR(3)に与えられ、第1のセット信号SET1として5段目SR(5)に与えられ、第2のリセット信号RESET2として7段目に与えられる。これにより、1段目SR(1)のnetAの電位はハイレベルからローレベルに変化し、3段目SR(3)のnetAの電位はハイレベルで維持され、5段目SR(5)のnetAの電位はローレベルからハイレベルに変化し、7段目SR(7)のnetAの電位はローレベルで維持される。
 以上のようにして、1段目SR(1)から8段目SR(8)へと走査信号GOUT(1)~GOUT(8)が所定期間ずつ順次にハイレベルとなる。そして、時点tfになると、第4の走査制御信号CNT4のパルスがこのシフトレジスタ410に与えられる。第4の走査制御信号CNT4は、図1に示すように、第1のリセット信号RESET1として6段目SR(6)に与えられ、第2のセット信号SET2として8段目SR(8)に与えられる。これにより、6段目SR(6)のnetAの電位はハイレベルからローレベルに変化し、8段目SR(8)のnetAの電位はハイレベルで維持される。
 時点tgになると、第5の走査制御信号CNT5のパルスがこのシフトレジスタ410に与えられる。第5の走査制御信号CNT5は、図1に示すように、第1のリセット信号RESET1として7段目SR(7)に与えられる。これにより、7段目SR(7)のnetAの電位はハイレベルからローレベルに変化する。
 時点thになると、第6の走査制御信号CNT6のパルスがこのシフトレジスタ410に与えられる。第6の走査制御信号CNT6は、図1に示すように、第1のリセット信号RESET1として8段目SR(8)に与えられる。これにより、8段目SR(8)のnetAの電位はハイレベルからローレベルに変化する。
 以上のように、この液晶表示装置に含まれるゲートバスラインGL1~GL8の走査を開始する信号として第3の走査制御信号CNT3が用いられ、当該走査を終了する信号として第4~第6の走査制御信号CNT4~CNT6が用いられることにより、ゲートバスラインGL1~GL8の順方向走査が行われる。
<1.4.2.2 逆方向走査の際の動作>
 次に、逆方向走査が行われる際のシフトレジスタ410全体の動作について説明する。液晶表示装置の動作中、図9に示すように、第1~第4のゲートクロック信号GCK1~GCK4がシフトレジスタ410に与えられる。第1のゲートクロック信号GCK1を基準にすると、第2のゲートクロック信号GCK2については位相が90度進んでおり、第3のゲートクロック信号GCK3については位相が180度遅進んでおり、第4のゲートクロック信号GCK4については位相が270度進んでいる。ところで、順方向走査の際には、「第1のゲートクロック信号GCK1,第2のゲートクロック信号GCK2,第3のゲートクロック信号GCK3,第4のゲートクロック信号GCK4」の順にこれら4相のクロック信号のクロックパルスがこのシフトレジスタ410に与えられるが、逆方向走査の際には、「第4のゲートクロック信号GCK4,第3のゲートクロック信号GCK3,第2のゲートクロック信号GCK2,第1のゲートクロック信号GCK1」の順にこれら4相のクロック信号のクロックパルスがこの双安定回路に与えられる。このようなクロックパルスの発生順序については、表示制御回路20にて切り替えが行われる。
 時点ta以前の期間には、全ての段においてnetAの電位はローレベルとなっていて、また、全ての段から出力される走査信号GOUTの電位はローレベルとなっている。時点taになると、第4の走査制御信号CNT4のパルスがこのシフトレジスタ410に与えられる。その第4の走査制御信号CNT4は、図1に示すように、第2のセット信号SET2として8段目SR(8)に与えられ、第1のリセット信号RESET1として6段目SR(6)に与えられる。これにより、8段目SR(8)のnetAの電位は、ローレベルからハイレベルに変化する。6段目SR(6)のnetAの電位は、ローレベルで維持される。
 時点tbになると、第4のゲートクロック信号GCK4がローレベルからハイレベルに変化する。この時、8段目SR(8)においては入力端子45の電位がローレベルからハイレベルに変化することになるので、8段目SR(8)のnetAの電位は更に上昇する。その結果、8段目SR(8)から出力される走査信号GOUT(8)はハイレベルとなる。8段目SR(8)から出力される走査信号GOUT(8)は、図1に示すように、第2のセット信号SET2として7段目SR(7)に与えられ、第1のリセット信号RESET1として5段目SR(5)に与えられる。これにより、時点tbには、7段目SR(7)についてはnetAの電位はハイレベルとされ、5段目SR(5)についてはnetAの電位はローレベルで維持される。
 時点tcになると、第3のゲートクロック信号GCK3がローレベルからハイレベルに変化する。この時、7段目SR(7)においては入力端子45の電位がローレベルからハイレベルに変化することになるので、7段目SR(7)のnetAの電位は更に上昇する。その結果、7段目SR(7)から出力される走査信号GOUT(7)はハイレベルとなる。7段目SR(7)から出力される走査信号GOUT(7)は、第1のセット信号SET1として8段目SR(8)に与えられる。8段目SR(8)においては、netAの電位は既にブートストラップによって高くなっているので、走査信号GOUT(7)に基づいてnetAの電位が変動することはない。また、時点tcには、8段目SR(8)に与えられる第2のゲートクロック信号GCK2および第4のゲートクロック信号GCK4の電位は変化しない。このため、8段目SR(8)については、netAの電位および走査信号GOUTの電位は、時点tb~時点tcにおける電位が維持される。7段目SR(7)から出力される走査信号GOUT(7)は、また、第2のセット信号SET2として6段目SR(6)に与えられ、第1のリセット信号RESET1として4段目SR(4)に与えられる。これにより、時点tcには、6段目SR(6)についてはnetAの電位はハイレベルとされ、4段目SR(4)についてはnetAの電位はローレベルで維持される。
 時点tdになると、第4のゲートクロック信号GCK4がハイレベルからローレベルに変化する。これにより、8段目SR(8)のnetAの電位は低下する。また、時点tdには、第2のゲートクロック信号GCK2がローレベルからハイレベルに変化する。この時、8段目SR(8)においては入力端子46の電位がローレベルからハイレベルに変化することになるので、8段目SR(8)から出力される走査信号GOUT(8)はローレベルとなる。また、第2のゲートクロック信号GCK2は第1クロックCKAとして6段目SR(6)に与えられる。従って、第2のゲートクロック信号GCK2がローレベルからハイレベルに変化することによって、6段目SR(6)のnetAの電位は更に上昇し、6段目SR(6)から出力される走査信号GOUT(6)はハイレベルとなる。6段目SR(6)から出力される走査信号GOUT(6)は、第1のセット信号SET1として7段目SR(7)に与えられ、第2のセット信号SET2として5段目SR(5)に与えられ、第1のリセット信号RESET1として3段目SR(3)に与えられる。7段目SR(7)については、時点tcにおける8段目SR(8)と同様、netAの電位および走査信号GOUTの電位は、時点tc~時点tdにおける電位が維持される。また、5段目SR(5)についてはnetAの電位はハイレベルとされ、3段目SR(3)のnetAの電位はローレベルで維持される。
 時点teになると、第3のゲートクロック信号GCK3がハイレベルからローレベルに変化する。これにより、7段目SR(7)のnetAの電位は低下する。また、時点teには、第1のゲートクロック信号GCK1がローレベルからハイレベルに変化する。この時、7段目SR(7)においては入力端子46の電位がローレベルからハイレベルに変化することになるので、7段目SR(7)から出力される走査信号GOUT(7)はローレベルとなる。また、第1のゲートクロック信号GCK1は第1クロックCKAとして5段目SR(5)に与えられる。従って、第1のゲートクロック信号GCK1がローレベルからハイレベルに変化することによって、5段目SR(5)のnetAの電位は更に上昇し、5段目SR(5)から出力される走査信号GOUT(5)はハイレベルとなる。5段目SR(5)から出力される走査信号GOUT(5)は、第2のリセット信号RESET2として8段目SR(8)に与えられ、第1のセット信号SET1として6段目SR(6)に与えられ、第2のセット信号SET2として4段目SR(4)に与えられ、第1のリセット信号RESET1として2段目に与えられる。これにより、8段目SR(8)のnetAの電位はハイレベルからローレベルに変化し、6段目SR(6)のnetAの電位はハイレベルで維持され、4段目SR(4)のnetAの電位はローレベルからハイレベルに変化し、2段目SR(2)のnetAの電位はローレベルで維持される。
 以上のようにして、8段目SR(8)から1段目SR(1)へと走査信号GOUT(8)~GOUT(1)が所定期間ずつ順次にハイレベルとなる。そして、時点tfになると、第3の走査制御信号CNT3のパルスがこのシフトレジスタ410に与えられる。第3の走査制御信号CNT3は、図1に示すように、第2のリセット信号RESET2として3段目SR(3)に与えられ、第1のセット信号SET1として1段目SR(1)に与えられる。これにより、3段目SR(3)のnetAの電位はハイレベルからローレベルに変化し、1段目SR(1)のnetAの電位はハイレベルで維持される。
 時点tgになると、第2の走査制御信号CNT2のパルスがこのシフトレジスタ410に与えられる。第2の走査制御信号CNT2は、図1に示すように、第2のリセット信号RESET2として2段目SR(2)に与えられる。これにより、2段目SR(2)のnetAの電位はハイレベルからローレベルに変化する。
 時点thになると、第1の走査制御信号CNT1のパルスがこのシフトレジスタ410に与えられる。第1の走査制御信号CNT1は、図1に示すように、第2のリセット信号RESET2として1段目SR(1)に与えられる。これにより、1段目SR(1)のnetAの電位はハイレベルからローレベルに変化する。
 以上のように、この液晶表示装置に含まれるゲートバスラインGL1~GL8の走査を開始する信号として第4の走査制御信号CNT4が用いられ、当該走査を終了する信号として第1~第3の走査制御信号CNT1~CNT3が用いられることにより、ゲートバスラインGL1~GL8の逆方向走査が行われる。
<1.5 効果>
 本実施形態によれば、シフトレジスタ410の各段SR(k)には、3段前の段SR(k-3)から出力される走査信号GOUT(k-3)が第2のリセット信号RESET2として与えられ、前段SR(k-1)から出力される走査信号GOUT(k-1)が第1のセット信号SET1として与えられ、次段SR(k+1)から出力される走査信号GOUT(k+1)が第2のセット信号SET2として与えられ、3段後の段SR(k+3)から出力される走査信号GOUT(k+3)が第1のリセット信号RESET1として与えられる。また、1段目SR(1)には第3の走査制御信号CNT3が第1のセット信号SET1として与えられ、8段目(最終段目)SR(8)には第4の走査制御信号CNT4が第2のセット信号SET2として与えられる。このため、ゲートバスラインGL1~GL8の走査を開始するために第3の走査制御信号CNT3のパルスがこのシフトレジスタ410に与えられたときには、「1段目,2段目,・・・,7段目,8段目」の順で各段に第1のセット信号SET1のパルスが与えられ、ゲートバスラインGL1~GL8の順方向走査が行われる。一方、ゲートバスラインGL1~GL8の走査を開始するために第4の走査制御信号CNT4のパルスがこのシフトレジスタ410に与えられたときには、「8段目,7段目,・・・,2段目,1段目」の順で各段に第2のセット信号SET2のパルスが与えられ、ゲートバスラインGL1~GL8の逆方向走査が行われる。ここで、本実施形態においては、シフトレジスタ410の各段が2つのセット信号SET1,SET2と2つのリセット信号RESET1,RESET2とを受け取る構成とすることにより、ゲートバスラインGL1~GL8の走査順序の切り替えが可能となっている。このように、本実施形態によれば、ゲートバスラインの走査順序の切り替えのために従来必要とされていた構成(「セレクト信号でスイッチの切り替えを行う構成」、「セレクト信号のための駆動回路や信号配線」など)が不要となる。このため、ゲートバスラインの走査順序の切り替えが可能なシフトレジスタを実現する際に、回路面積増大の抑制,消費電流増大の抑制,コスト上昇の抑制を図ることができる。また、走査順序を切り替えるためのスイッチが不要となるので、高温エージング時のスイッチ(トランジスタ)の閾値電圧のシフトに起因する誤動作の発生が抑制される。
 さらに、本実施形態においては、シフトレジスタ410の奇数段目と偶数段目とは、異なるクロック信号に基づいて動作する。このため、図8や図9に示したように、複数のゲートバスラインが同時に選択されている期間を設けることができる。ここで、シフトレジスタ410の奇数段目を動作させるためのクロック信号とシフトレジスタ410の偶数段目を動作させるためのクロック信号とは互いに位相が90度ずれているので、各ゲートバスラインが選択されている期間のうち前半の期間には画素容量へのプリチャージが行われ、後半の期間には画素容量への本充電が行われる。これにより、充分な充電時間が確保され、画素容量への充電不足に起因する表示品位の低下が抑制される。また、ゲート電圧(画素形成部内の薄膜トランジスタ11をオン状態にさせるための電圧)の低減や薄膜トランジスタ11のサイズの縮小が可能となり、消費電流も低減される。
<1.6 変形例>
 上記第1の実施形態においては、netAと出力端子51との間にキャパシタC1が設けられているが、本発明はこれに限定されない。このキャパシタC1は走査信号GOUTの波形の安定化のために設けられているものであって、このキャパシタC1を有さない構成であっても良い。また、上記第1の実施形態においては、第2クロックCKBによってオン/オフが制御される薄膜トランジスタT14が設けられているが、本発明はこれに限定されない。この薄膜トランジスタT14についても走査信号GOUTの波形の安定化のために設けられているものであって、この薄膜トランジスタT14を有さない構成であっても良い。
 さらに、第2のリセット信号RESET2として入力される制御信号がゲート端子に与えられ、ドレイン端子が出力端子51に接続され、ソース端子が電源電圧VSSに接続された薄膜トランジスタ(第15のスイッチング素子)を1段目SR(1)~3段目SR(3)のいずれかが備え、第1のリセット信号RESET1として入力される制御信号がゲート端子に与えられ、ドレイン端子が出力端子51に接続され、ソース端子が電源電圧VSSに接続された薄膜トランジスタ(第16のスイッチング素子)を6段目SR(6)~8段目SR(8)のいずれかが備える構成にしても良い。
 さらにまた、k段目SR(k)に着目したときに、2段後の段SR(k+2)または3段後の段SR(k+3)から出力される走査信号GOUT(k+2)またはGOUT(k+3)がゲート端子に与えられ、ドレイン端子が出力端子51に接続され、ソース端子が電源電圧VSSに接続された薄膜トランジスタ(第17のスイッチング素子)と、2段前の段SR(k-2)または3段前の段SR(k-3)から出力される走査信号GOUT(k-2)またはGOUT(k-3)がゲート端子に与えられ、ドレイン端子が出力端子51に接続され、ソース端子が電源電圧VSSに接続された薄膜トランジスタ(第18のスイッチング素子)とを更に備えた構成にしても良い。これにより、走査信号GOUT(k)の電位をより確実にローレベルにまで低下させることが可能となる。
<2.第2の実施形態>
<2.1 シフトレジスタの構成>
 図10は、本発明の第2の実施形態におけるゲートドライバ40内のシフトレジスタの構成を示すブロック図である。このシフトレジスタは、図10に示すように、表示部10の一側に設けられたゲートドライバ内の第1シフトレジスタ411aと表示部10の他側に設けられたゲートドライバ内の第2シフトレジスタ411bとによって構成される。第1シフトレジスタ411aについても第2シフトレジスタ411bについても、上記第1の実施形態におけるシフトレジスタ410(図1参照)と同様の構成となっている。また、第1シフトレジスタ411aおよび第2シフトレジスタ411b内の各双安定回路の構成についても、上記第1の実施形態における構成(図5参照)と同様となっている。さらに、シフトレジスタの各段(双安定回路)の動作およびシフトレジスタ全体の動作についても、上記第1の実施形態と同様であるので、説明を省略する。
<2.2 効果>
 一般に、シフトレジスタから出力される走査信号については、ゲートバスラインの配線容量(負荷)の存在に起因して遅延が生じる。特に大型のパネルを採用する表示装置においてゲートドライバがパネルの片側のみに設けられている場合、シフトレジスタに近い位置とシフトレジスタから遠い位置とで走査信号の波形が大きく異なることがある。例えば、図11(A)で符号P1の矢印で示す位置における走査信号の波形が図11(B)に示すようなものとなり、図11(A)で符号P2の矢印で示す位置における走査信号の波形が図11(C)に示すようなものとなることがある。このような場合、シフトレジスタから遠い位置において画素容量への充電不足が生じ、表示品位が低下する。この点、本実施形態によると、1本のゲートバスラインに対して表示部10の両側から充電が施されることになり、大型パネルにおける充電不足に起因する表示品位の低下が抑制される。
<3.第3の実施形態>
<3.1 シフトレジスタの構成>
 図12は、本発明の第3の実施形態におけるゲートドライバ40内のシフトレジスタの構成を示すブロック図である。このシフトレジスタは、図12に示すように、表示部10の一側に設けられたゲートドライバ内の第1シフトレジスタ412aと表示部10の他側に設けられたゲートドライバ内の第2シフトレジスタ412bとによって構成される。詳しくは、上記第1の実施形態におけるシフトレジスタ410(図1参照)内の双安定回路のうち奇数段目SR(1),SR(3),SR(5),およびSR(7)については表示部10の一側(図12では表示部10の左側)に設けられ、偶数段目SR(2),SR(4),SR(6),およびSR(8)については表示部10の他側(図12では表示部10の右側)に設けられている。なお、各双安定回路の構成や動作、シフトレジスタ全体の動作については、上記第1の実施形態と同様であるので、説明を省略する。
<3.2 効果>
 本実施形態によれば、シフトレジスタ1段あたりのサイズ(ソースバスラインの延びる方向についてのサイズ)を上記第1の実施形態におけるサイズのほぼ2分の1にすることができる。このため、パネルの額縁として必要となる面積を小さくすることが可能となる。これにより、液晶パネルを用いた各種製品の小型化が実現される。
<4.第4の実施形態>
<4.1 全体構成およびゲートドライバの構成>
 本実施形態においては、全体構成およびゲートドライバの構成については、図1~図3に示した上記第1の実施形態における構成とほぼ同様であるので、詳しい説明を省略する。
<4.2 双安定回路の構成>
 図13は、本実施形態における双安定回路の構成を示す回路図である。本実施形態においては、図5に示した上記第1の実施形態における構成要素に加えて、3個の薄膜トランジスタT5(第5のスイッチング素子),T6(第6のスイッチング素子),およびT7(第7のスイッチング素子)と、第2クロックCKBを受け取る入力端子47とが設けられている。なお、入力端子46と入力端子47とは同じ端子(1つの端子)であっても良い。
 薄膜トランジスタT6のソース端子,薄膜トランジスタT7のドレイン端子,および薄膜トランジスタT5のゲート端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを便宜上「netB」(第2ノード)という。
 薄膜トランジスタT5については、ゲート端子はnetBに接続され、ドレイン端子はnetAに接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT6については、ゲート端子およびドレイン端子は入力端子47に接続され(すなわち、ダイオード接続となっている)、ソース端子はnetBに接続されている。薄膜トランジスタT7については、ゲート端子はnetAに接続され、ドレイン端子はnetBに接続され、ソース端子は電源電圧VSSに接続されている。これにより、図13で符号60で示す部分の回路は、netAの電位を示す信号の論理反転信号の論理値と第2クロックCKBの論理値との論理積を出力するAND回路となっている。本実施形態においては、このAND回路によって第2ノード制御部が実現されている。
 薄膜トランジスタT5は、netBの電位がハイレベルになっているときに、netAの電位をローレベルにする。薄膜トランジスタT6は、第2クロックCKBがハイレベルになっているときに、netBの電位をハイレベルにする。薄膜トランジスタT7は、netAの電位がハイレベルになっているときに、netBの電位をローレベルにする。以上のことから、netAの電位がローレベルであって、かつ、第2クロックCKBがハイレベルになっているときに、薄膜トランジスタT5はオン状態となり、netAの電位が電源電圧VSSの電位へと引き込まれる。
<4.3 シフトレジスタの動作>
 次に、図13~図15を参照しつつ、本実施形態におけるシフトレジスタ410の各段(双安定回路)の動作について説明する。なお、図14は順方向走査が行われる際のタイミングチャートであり、図15は逆方向走査が行われる際のタイミングチャートである。シフトレジスタ410の全体の動作については、上記第1の実施形態と同様であるので、説明を省略する。
<4.3.1 順方向走査の際の動作>
 順方向走査が行われる際の双安定回路の動作について説明する。図14に示すように、液晶表示装置の動作中、入力端子45には第1クロックCKAが与えられ、入力端子46および入力端子47には第2クロックCKBが与えられる。
 時点t1以前の期間には、第2クロックCKBの電位の変化に応じてnetBの電位が所定期間毎にハイレベルとなって薄膜トランジスタT5がオン状態となるほかは、上記第1の実施形態と同様の動作が行われる。詳しくは、時点t1以前の期間には、netAの電位はローレベルで維持されているのに対し、第2クロックCKBの電位は所定期間毎にハイレベルとローレベルとが繰り返されている。上述したように、netAの電位がローレベルであって、かつ、第2クロックCKBがハイレベルになっているときに、薄膜トランジスタT5はオン状態となる。従って、時点t1以前の期間には、第2クロックCKBがハイレベルになっている期間に薄膜トランジスタT5がオン状態となる。
 時点t1になると、入力端子41に第1のセット信号SET1のパルスが与えられる。これにより、上記第1の実施形態と同様、netAの電位がローレベルからハイレベルに変化し、薄膜トランジスタTSはオン状態となる。また、上記第1の実施形態と同様、時点t1~時点t2の期間中、走査信号GOUTはローレベルで維持される。ところで、本実施形態においては、薄膜トランジスタT7のゲート端子がnetAに接続されている。このため、netAの電位がハイレベルになることによって、薄膜トランジスタT7がオン状態となる。これにより、netBの電位はローレベルとなるので、薄膜トランジスタT5はオフ状態となる。従って、時点t1~時点t2の期間中に、「薄膜トランジスタT5がオン状態となってnetAの電位が低下する」ということはない。
 時点t2になると、第1クロックCKAがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、netAの電位は上昇する。そして、走査信号GOUTの電位が第1クロックCKAのハイレベルの電位にまで上昇し、この双安定回路の出力端子51に接続されているゲートバスラインが選択状態となる。ところで、netAの電位は時点t1からハイレベルとなっているので薄膜トランジスタT7はオン状態で維持されている。また、時点t2~時点t3の期間中、第2クロックCKBはローレベルとなっているので、薄膜トランジスタT6はオフ状態となっている。このため、時点t2~時点t3の期間中、netBの電位はローレベルとなり、薄膜トランジスタT5はオフ状態となる。従って、時点t2~時点t3の期間中に、「薄膜トランジスタT5がオン状態となってnetAの電位が低下する」ということはない。
 時点t3になると、入力端子42に第2のセット信号SET2のパルスが与えられる。これにより、薄膜トランジスタT2はオン状態となるが、上記第1の実施形態と同様、薄膜トランジスタT2がオン状態となったことに起因してnetAの電位が変動することはない。また、時点t3には第1クロックCKAの電位および第2クロックCKBの電位は変化しないので、netAおよび走査信号GOUTについては、時点t2~時点t3における電位が維持される。
 時点t4になると、第1クロックCKAがハイレベルからローレベルに変化し、第2クロックCKBがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、走査信号GOUTの電位はローレベルとなる。netAの電位については、時点t2~時点t4の期間よりは低下するものの、ハイレベルの状態で維持される。このため、時点t4以降の期間においても、薄膜トランジスタT7はオン状態で維持される。これにより、netBの電位はローレベルとなるので、薄膜トランジスタT5はオフ状態となる。従って、時点t4~時点t5の期間中に、「薄膜トランジスタT5がオン状態となってnetAの電位が低下する」ということはない。時点t5以降の期間には、第2クロックCKBの電位の変化に応じてnetBの電位が所定期間毎にハイレベルとなって薄膜トランジスタT5がオン状態となるほかは、上記第1の実施形態と同様の動作が行われる。
<4.3.2 逆方向走査の際の動作>
 逆方向走査が行われる際の双安定回路の動作について説明する。図15に示すように、液晶表示装置の動作中、入力端子45には第1クロックCKAが与えられ、入力端子46および入力端子47には第2クロックCKBが与えられる。
 時点t1以前の期間には、第2クロックCKBの電位の変化に応じてnetBの電位が所定期間毎にハイレベルとなって薄膜トランジスタT5がオン状態となるほかは、上記第1の実施形態と同様の動作が行われる。時点t1になると、入力端子42に第2のセット信号SET2のパルスが与えられる。これにより、上記第1の実施形態と同様、netAの電位がローレベルからハイレベルに変化し、薄膜トランジスタTSはオン状態となる。また、上記第1の実施形態と同様、時点t1~時点t2の期間中、走査信号GOUTはローレベルで維持される。また、順方向走査の際と同様、時点t1~時点t2の期間中に、「薄膜トランジスタT5がオン状態となってnetAの電位が低下する」ということはない。
 時点t2になると、第1クロックCKAがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、netAの電位は上昇する。そして、走査信号GOUTの電位が第1クロックCKAのハイレベルの電位にまで上昇し、この双安定回路の出力端子51に接続されているゲートバスラインが選択状態となる。また、netAの電位は時点t1からハイレベルになっているところ、順方向走査の際と同様、時点t2~時点t3の期間中に、「薄膜トランジスタT5がオン状態となってnetAの電位が低下する」ということはない。
 時点t3になると、入力端子41に第1のセット信号SET1のパルスが与えられる。これにより、薄膜トランジスタT1はオン状態となるが、上記第1の実施形態と同様、薄膜トランジスタT1がオン状態となったことに起因してnetAの電位が変動することはない。また、時点t3には第1クロックCKAの電位および第2クロックCKBの電位は変化しないので、netAおよび走査信号GOUTについては、時点t2~時点t3における電位が維持される。
 時点t4になると、第1クロックCKAがハイレベルからローレベルに変化し、第2クロックCKBがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、走査信号GOUTの電位はローレベルとなる。netAの電位については、時点t2~時点t4の期間よりは低下するものの、ハイレベルの状態で維持される。このため、順方向走査の際と同様、時点t4~時点t5の期間中に、「薄膜トランジスタT5がオン状態となってnetAの電位が低下する」ということはない。時点t5以降の期間には、第2クロックCKBの電位の変化に応じてnetBの電位が所定期間毎にハイレベルとなって薄膜トランジスタT5がオン状態となるほかは、上記第1の実施形態と同様の動作が行われる。
<4.4 効果>
 本実施形態によれば、順方向走査の際においても逆方向走査の際においても、時点t1以前の期間および時点t5以降の期間には、netBの電位が第2クロックCKBの電位の変化に応じて所定期間毎にハイレベルとなる(図14および図15参照)。このため、時点t1以前の期間および時点t5以降の期間には、所定期間毎に薄膜トランジスタT5がオン状態となる。これにより、例えば高温エージングによって薄膜トランジスタTSの閾値電圧のシフトが生じ、当該薄膜トランジスタTSにおけるリーク電流が大きくなった場合でも、所定期間毎にnetAの電位が確実にローレベルにされ、出力端子51からの異常パルスの出力が抑制される。また、そのような異常パルスが後段に順次に与えられることによるシフトレジスタの異常動作の発生が抑制される。
<4.5 変形例>
 図13に示した構成に加えて、第1クロックCKAがハイレベルになっているときにnetBの電位をローレベルにする薄膜トランジスタを備える構成にしても良い。これにより、第1クロックCKAがハイレベルになっている期間にはnetBの電位は確実にローレベルにされるので、薄膜トランジスタT5の閾値電圧のシフトが抑制される。
<5.第5の実施形態>
<5.1 全体構成およびゲートドライバの構成>
 本実施形態においては、全体構成およびゲートドライバの概略構成については、図2および図3に示した上記第1の実施形態における構成とほぼ同様であるので、詳しい説明を省略する。
<5.2 シフトレジスタの構成>
 図16は、本実施形態におけるゲートドライバ40内のシフトレジスタ413の構成を示すブロック図である。図16に示すように、このシフトレジスタ413は8個の双安定回路SR(1)~SR(8)によって構成されている。各双安定回路には、4相のクロック信号CKA,CKB,CKC(以下「第3クロック」という。),およびCKD(以下「第4クロック」という。)をそれぞれ受け取るための入力端子と、ローレベルの電源電圧VSSを受け取るための入力端子と、第1のセット信号SET1を受け取るための入力端子と、第2のセット信号SET2を受け取るための入力端子と、第1のリセット信号RESET1を受け取るための入力端子と、第2のリセット信号RESET2を受け取るための入力端子と、走査信号GOUTを出力するための出力端子とが設けられている。
 以下、各段(各双安定回路)に入力される4相のクロック信号CKA,CKB,CKC,およびCKDについて説明する。なお、第1のセット信号SET1,第2のセット信号SET2,第1のリセット信号RESET1,第2のリセット信号RESET2,および電源電圧VSSについては、上記第1の実施形態と同様であるので、説明を省略する。
 1段目SR(1)および5段目SR(5)については、第1のゲートクロック信号GCK1が第1クロックCKAとして与えられ、第3のゲートクロック信号GCK3が第2クロックCKBとして与えられ、第2のゲートクロック信号GCK2が第3クロックCKCとして与えられ、第4のゲートクロック信号GCK4が第4クロックCKDとして与えられる。
 2段目SR(2)および6段目SR(6)については、第2のゲートクロック信号GCK2が第1クロックCKAとして与えられ、第4のゲートクロック信号GCK4が第2クロックCKBとして与えられ、第1のゲートクロック信号GCK1が第3クロックCKCとして与えられ、第3のゲートクロック信号GCK3が第4クロックCKDとして与えられる。
 3段目SR(3)および7段目SR(7)については、第3のゲートクロック信号GCK3が第1クロックCKAとして与えられ、第1のゲートクロック信号GCK1が第2クロックCKBとして与えられ、第4のゲートクロック信号GCK4が第3クロックCKCとして与えられ、第2のゲートクロック信号GCK2が第4クロックCKDとして与えられる。
 4段目SR(4)および8段目SR(8)については、第4のゲートクロック信号GCK4が第1クロックCKAとして与えられ、第2のゲートクロック信号GCK2が第2クロックCKBとして与えられ、第3のゲートクロック信号GCK3が第3クロックCKCとして与えられ、第1のゲートクロック信号GCK1が第4クロックCKDとして与えられる。
<5.3 双安定回路の構成>
 図17は、本実施形態における双安定回路の構成を示す回路図である。本実施形態においては、図5に示した上記第1の実施形態における構成要素に加えて、6個の薄膜トランジスタT8~T13(第8~第13のスイッチング素子)と、第3クロックCKCを受け取る入力端子48と、第4クロックCKDを受け取る入力端子49とが設けられている。
 薄膜トランジスタT8のゲート端子,薄膜トランジスタT9のソース端子,および薄膜トランジスタT10のドレイン端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを便宜上「netB1」(第3ノード)という。薄膜トランジスタT11のゲート端子,薄膜トランジスタT12のソース端子,および薄膜トランジスタT13のドレイン端子は互いに接続されている。なお、これらが互いに接続されている領域(配線)のことを便宜上「netB2」(第4ノード)という。
 薄膜トランジスタT8については、ゲート端子はnetB1に接続され、ドレイン端子はnetAに接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT9については、ゲート端子およびドレイン端子は入力端子48に接続され(すなわち、ダイオード接続となっている)、ソース端子はnetB1に接続されている。薄膜トランジスタT10については、ゲート端子はnetAに接続され、ドレイン端子はnetB1に接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT8は、netB1の電位がハイレベルになっているときに、netAの電位をローレベルにする。薄膜トランジスタT9は、第3クロックCKCがハイレベルになっているときに、netB1の電位をハイレベルにする。薄膜トランジスタT10は、netAの電位がハイレベルになっているときに、netB1の電位をローレベルにする。
 薄膜トランジスタT11については、ゲート端子はnetB2に接続され、ドレイン端子はnetAに接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT12については、ゲート端子およびドレイン端子は入力端子49に接続され(すなわち、ダイオード接続となっている)、ソース端子はnetB2に接続されている。薄膜トランジスタT13については、ゲート端子はnetAに接続され、ドレイン端子はnetB2に接続され、ソース端子は電源電圧VSSに接続されている。薄膜トランジスタT11は、netB2の電位がハイレベルになっているときに、netAの電位をローレベルにする。薄膜トランジスタT12は、第4クロックCKDがハイレベルになっているときに、netB2の電位をハイレベルにする。薄膜トランジスタT13は、netAの電位がハイレベルになっているときに、netB2の電位をローレベルにする。
<5.4 シフトレジスタの動作>
 次に、図17~図19を参照しつつ、本実施形態におけるシフトレジスタ413の各段(双安定回路)の動作について説明する。なお、図18は順方向走査が行われる際のタイミングチャートであり、図19は逆方向走査が行われる際のタイミングチャートである。シフトレジスタ413の全体の動作については、上記第1の実施形態と同様であるので、説明を省略する。
<5.4.1 順方向走査の際の動作>
 順方向走査が行われる際の双安定回路の動作について説明する。図18に示すように、液晶表示装置の動作中、入力端子45には第1クロックCKAが与えられ、入力端子46には第2クロックCKBが与えられ、入力端子48には第3クロックCKCが与えられ、入力端子49には第4クロックCKDが与えられる。このように、本実施形態においては、90度ずつ位相がずれた4相のクロック信号が双安定回路に与えられる。
 時点t1以前の期間には、netAの電位および走査信号GOUTの電位(出力端子51の電位)はローレベルとなっている。また、時点t1以前の期間には、第3クロックCKCに基づきnetB1の電位がハイレベルとローレベルとを交互に繰り返し、第4クロックCKDに基づきnetB2の電位がローレベルとハイレベルとを交互に繰り返している。これにより、時点t1以前の期間には、薄膜トランジスタT8および薄膜トランジスタT11が所定期間毎にオン状態となる。
 時点t1になると、入力端子41に第1のセット信号SET1のパルスが与えられる。これにより、上記第1の実施形態と同様、netAの電位はローレベルからハイレベルに変化し、薄膜トランジスタTSはオン状態となる。また、時点t1~時点t2の期間中、第1クロックCKAはローレベルとなっているので、走査信号GOUTはローレベルで維持される。ところで、本実施形態においては、薄膜トランジスタT10,T13のゲート端子がnetAに接続されている。このため、netAの電位がハイレベルになることによって、薄膜トランジスタT10,T13がオン状態となる。これにより、netB1およびnetB2の電位はローレベルとなるので、薄膜トランジスタT8,T11はオフ状態となる。従って、時点t1~時点t2の期間中に、「薄膜トランジスタT8または薄膜トランジスタT11がオン状態となってnetAの電位が低下する」ということはない。
 時点t2になると、第1クロックCKAがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、走査信号GOUTの電位が第1クロックCKAのハイレベルの電位にまで上昇し、この双安定回路の出力端子51に接続されているゲートバスラインが選択状態となる。ところで、netAの電位は時点t1からハイレベルとなっているので薄膜トランジスタT10,T13はオン状態で維持されている。このため、時点t2~時点t3の期間中、netB1の電位およびnetB2の電位はローレベルとなり、薄膜トランジスタT8,T11はオフ状態となる。従って、時点t2~時点t3の期間中に、「薄膜トランジスタT8または薄膜トランジスタT11がオン状態となってnetAの電位が低下する」ということはない。
 時点t3になると、入力端子42に第2のセット信号SET2のパルスが与えられる。これにより、薄膜トランジスタT2はオン状態となるが、上記第1の実施形態と同様、薄膜トランジスタT2がオン状態となったことに起因してnetAの電位が変動することはない。また、時点t3には第1クロックCKAの電位および第2クロックCKBの電位は変化しないので、netAおよび走査信号GOUTについては、時点t2~時点t3における電位が維持される。
 時点t4になると、第1クロックCKAがハイレベルからローレベルに変化し、第2クロックCKBがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、走査信号GOUTの電位はローレベルとなる。netAの電位については、時点t2~時点t4の期間よりは低下するものの、ハイレベルの状態で維持される。このため、時点t4以降の期間においても、薄膜トランジスタT10,T13はオン状態で維持される。これにより、netB1の電位およびnetB2の電位はローレベルとなるので、薄膜トランジスタT8,T11はオフ状態となる。従って、時点t4~時点t5の期間中に、「薄膜トランジスタT8または薄膜トランジスタT11がオン状態となってnetAの電位が低下する」ということはない。時点t5以降の期間には、時点t0以前の期間と同様にして、薄膜トランジスタT8および薄膜トランジスタT11が所定期間毎にオン状態となる。
<5.4.2 逆方向走査の際の動作>
 逆方向走査が行われる際の双安定回路の動作について説明する。図19に示すように、液晶表示装置の動作中、入力端子45には第1クロックCKAが与えられ、入力端子46には第2クロックCKBが与えられ、入力端子48には第3クロックCKCが与えられ、入力端子49には第4クロックCKDが与えられる。
 時点t1以前の期間には、順方向走査の際と同様、薄膜トランジスタT8および薄膜トランジスタT11が所定期間毎にオン状態となる。時点t1になると、入力端子42に第2のセット信号SET2のパルスが与えられる。これにより、netAの電位はローレベルからハイレベルに変化し、薄膜トランジスタTSはオン状態となる。また、時点t1~時点t2の期間中、第1クロックCKAはローレベルとなっているので、走査信号GOUTはローレベルで維持される。なお、順方向走査の際と同様、時点t1~時点t2の期間中に、「薄膜トランジスタT8または薄膜トランジスタT11がオン状態となってnetAの電位が低下する」ということはない。
 時点t2になると、第1クロックCKAがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、走査信号GOUTの電位が第1クロックCKAのハイレベルの電位にまで上昇し、この双安定回路の出力端子51に接続されているゲートバスラインが選択状態となる。なお、順方向走査の際と同様、時点t2~時点t3の期間中に、「薄膜トランジスタT8または薄膜トランジスタT11がオン状態となってnetAの電位が低下する」ということはない。
 時点t3になると、入力端子41に第1のセット信号SET1のパルスが与えられる。これにより、薄膜トランジスタT1はオン状態となるが、上記第1の実施形態と同様、薄膜トランジスタT1がオン状態となったことに起因してnetAの電位が変動することはない。また、時点t3には第1クロックCKAの電位および第2クロックCKBの電位は変化しないので、netAおよび走査信号GOUTについては、時点t2~時点t3における電位が維持される。
 時点t4になると、第1クロックCKAがハイレベルからローレベルに変化し、第2クロックCKBがローレベルからハイレベルに変化する。これにより、上記第1の実施形態と同様、走査信号GOUTの電位はローレベルとなる。netAの電位については、時点t2~時点t4の期間よりは低下するものの、ハイレベルの状態で維持される。このため、時点t4以降の期間においても、薄膜トランジスタT10,T13はオン状態で維持される。これにより、netB1の電位およびnetB2の電位はローレベルとなるので、薄膜トランジスタT8,T11はオフ状態となる。従って、時点t4~時点t5の期間中に、「薄膜トランジスタT8または薄膜トランジスタT11がオン状態となってnetAの電位が低下する」ということはない。時点t5以降の期間には、順方向走査の際と同様、薄膜トランジスタT8および薄膜トランジスタT11が所定期間毎にオン状態となる。
<5.5 効果>
 本実施形態によれば、順方向走査の際においても逆方向走査の際においても、時点t1以前の期間および時点t5以降の期間には、netB1の電位が第3クロックCKCの電位の変化に応じて所定期間毎にハイレベルとなり、netB2の電位が第4クロックCKDの電位の変化に応じて所定期間毎にハイレベルとなる(図19および図20参照)。ここで、第3クロックCKCと第4クロックCKDとは位相が180度ずれている。このため、時点t1以前の期間および時点t5以降の期間には、薄膜トランジスタT8または薄膜トランジスタT11のいずれかがオン状態となっている。これにより、例えば高温エージングによって薄膜トランジスタTSの閾値電圧のシフトが生じ、当該薄膜トランジスタTSにおけるリーク電流が大きくなった場合でも、netAの電位がローレベルに固定され、出力端子51からの異常パルスの出力およびそのような異常パルスが後段に順次に与えられることによるシフトレジスタの異常動作の発生が、上記第4の実施形態と比べてより効果的に抑制される。
<5.6 変形例>
 図17に示した構成に加えて、第4クロックCKDがハイレベルになっているときにnetB1の電位をローレベルにする薄膜トランジスタおよび第3クロックCKCがハイレベルになっているときにnetB2の電位をローレベルにする薄膜トランジスタを備える構成にしても良い。これにより、第4クロックCKDがハイレベルになっている期間にはnetB1の電位は確実にローレベルにされ、第3クロックCKCがハイレベルになっている期間にはnetB2の電位は確実にローレベルにされる。その結果、薄膜トランジスタT8,T11の閾値電圧のシフトが抑制される。
<6.第6の実施形態>
<6.1 全体構成およびゲートドライバの構成>
 本実施形態においては、全体構成およびゲートドライバの概略構成については、図2および図3に示した上記第1の実施形態における構成とほぼ同様であるので、詳しい説明を省略する。但し、ゲートバスラインGL1~GL8の走査順序(走査方向)を制御するための信号として、上記第1の実施形態においては、第1~第6の走査制御信号CNT1~CNT6が表示制御回路20からゲートドライバ40に送られていたのに対し、本実施形態においては、第1~第4の走査制御信号CNT1~CNT4が表示制御回路20からゲートドライバ40に送られる。
<6.2 シフトレジスタの構成>
 図20は、本実施形態におけるゲートドライバ40内のシフトレジスタ414の構成を示すブロック図である。図20に示すように、このシフトレジスタ414は8個の双安定回路SR(1)~SR(8)によって構成されている。各双安定回路には、2相のクロック信号CKA,CKBをそれぞれ受け取るための入力端子と、ローレベルの電源電圧VSSを受け取るための入力端子と、第1のセット信号SET1を受け取るための入力端子と、第2のセット信号SET2を受け取るための入力端子と、第1のリセット信号RESET1を受け取るための入力端子と、第2のリセット信号RESET2を受け取るための入力端子と、走査信号GOUTを出力するための出力端子とが設けられている。なお、シフトレジスタ414の各段(双安定回路)の構成については、図5に示した上記第1の実施形態における構成と同様であるので、説明を省略する。
 上記第1の実施形態においては、図1に示したように、1段目SR(1)に第2のリセット信号RESET2として与えられる信号と2段目SR(2)に第2のリセット信号RESET2として与えられる信号とは異なっていた。具体的には、第2のリセット信号RESET2として、1段目SR(1)には第1の走査制御信号CNT1が与えられ、2段目SR(2)には第2の走査制御信号CNT2が与えられていた。これに対し、本実施形態においては、図20に示すように、1段目SR(1)についても2段目SR(2)についても、第1の走査制御信号CNT1が第2のリセット信号RESET2として与えられる。
 また、上記第1の実施形態においては、図1に示したように、7段目SR(7)に第1のリセット信号RESET1として与えられる信号と8段目SR(8)に第1のリセット信号RESET1として与えられる信号とは異なっていた。具体的には、第1のリセット信号RESET1として、7段目SR(7)には第5の走査制御信号CNT5が与えられ、8段目SR(8)には第6の走査制御信号CNT6が与えられていた。これに対し、本実施形態においては、図20に示すように、7段目SR(7)についても8段目SR(8)についても、第4の走査制御信号CNT4が第1のリセット信号RESET1として与えられる。
<6.2 シフトレジスタの動作>
 次に、本実施形態におけるシフトレジスタ414全体の動作について説明する。なお、図21は順方向走査が行われる際のタイミングチャートであり、図22は逆方向走査が行われる際のタイミングチャートである。シフトレジスタの各段(双安定回路)の動作については、上記第1の実施形態と同様であるので、説明を省略する。
 順方向走査が行われる際のシフトレジスタ414全体の動作について説明する。本実施形態では、時点tf以前の期間には、上記第1の実施形態と同様の動作が行われる。時点tfになると、図21に示すように、第3の走査制御信号CNT3のパルスが発生する。この第3の走査制御信号CNT3は、第1のリセット信号RESET1として6段目SR(6)に与えられる。これにより、6段目SR(6)のnetAの電位はハイレベルからローレベルに変化する。時点tgには、いずれの段に与えられる第1のリセット信号RESET1についてもパルスは生じない。このため、いずれの段についても、時点tgのタイミングでnetAの電位がハイレベルからローレベルに変化することはない。時点thになると、図21に示すように、第4の走査制御信号CNT4のパルスが発生する。この第4の走査制御信号CNT4は、第1のリセット信号RESET1として7段目SR(7)および8段目SR(8)に与えられる。これにより、7段目SR(7)および8段目SR(8)のnetAの電位はハイレベルからローレベルに変化する。
 逆方向走査が行われる際のシフトレジスタ414全体の動作について説明する。本実施形態では、時点tf以前の期間には、上記第1の実施形態と同様の動作が行われる。時点tfになると、図22に示すように、第2の走査制御信号CNT2のパルスが発生する。この第2の走査制御信号CNT2は、第2のリセット信号RESET2として3段目SR(3)に与えられる。これにより、3段目SR(3)のnetAの電位はハイレベルからローレベルに変化する。時点tgには、いずれの段に与えられる第2のリセット信号RESET2についてもパルスは生じない。このため、いずれの段についても、時点tgのタイミングでnetAの電位がハイレベルからローレベルに変化することはない。時点thになると、図22に示すように、第1の走査制御信号CNT1のパルスが発生する。この第1の走査制御信号CNT1は、第2のリセット信号RESET2として2段目SR(2)および1段目SR(1)に与えられる。これにより、2段目SR(2)および1段目SR(1)のnetAの電位はハイレベルからローレベルに変化する。
 ところで、順方向走査の際、時点thのタイミングで第3のゲートクロック信号GCK3がローレベルからハイレベルに変化すると、7段目SR(7)のnetAの電位が上述したブートストラップによって上昇することが懸念される。そこで、時点th~時点tiの期間には、第3のゲートクロック信号GCK3がハイレベルとならないようにすることが好ましい(図21で符号81の矢印で示す部分を参照)。同様に、逆方向走査の際には、時点th~時点tiの期間に第2のゲートクロック信号GCK2がハイレベルとならないようにすることが好ましい(図22で符号82の矢印で示す部分を参照)。
<6.3 効果>
 本実施形態によれば、上記第1の実施形態と比較して少ない数の制御信号によってゲートバスラインGL1~GL8の走査順序が制御される。このため、上記第1の実施形態と比較して、信号配線が削減され、また、表示制御回路20で生成されるべき信号が削減される。これにより、回路面積の低減,消費電流の低減,コストの低減などの効果がより高められる。
<7.その他>
 上記各実施形態においては液晶表示装置を例に挙げて説明したが、本発明はこれに限定されない。ゲートバスラインの走査順序の切り替え可能なシフトレジスタを備えた構成であれば、有機EL(Electro Luminescence)等の他の表示装置にも本発明を適用することができる。
 10…表示部
 20…表示制御回路
 30…ソースドライバ(映像信号線駆動回路)
 40…ゲートドライバ(走査信号線駆動回路)
 41~49…(双安定回路の)入力端子
 51…(双安定回路の)出力端子
 410~414…シフトレジスタ
 SR(1)~SR(n)…双安定回路
 TS,T1~T14…薄膜トランジスタ
 C1…キャパシタ
 GL1~GLn…ゲートバスライン
 SL1~SLm…ソースバスライン
 CNT1~CNT6…第1~第6の走査制御信号
 GCK1~GCK4…第1~第4のゲートクロック信号
 CKA,CKB,CKC,CKD…第1クロック,第2クロック,第3クロック,第4クロック
 GOUT(1)~GOUT(n)…走査信号
 SET1…第1のセット信号
 SET2…第2のセット信号
 RESET1…第1のリセット信号
 RESET2…第2のリセット信号

Claims (25)

  1.  第1の状態と第2の状態とを有し互いに直列に接続された複数の双安定回路を含み、前記複数の双安定回路のうち奇数段目の双安定回路に第1のクロック信号および第2のクロック信号として与えられる2相のクロック信号と前記複数の双安定回路のうち偶数段目の双安定回路に前記第1のクロック信号および前記第2のクロック信号として与えられる2相のクロック信号とを含む少なくとも4相のクロック信号に基づいて前記複数の双安定回路が順次に第1の状態となるシフトレジスタであって、
     各双安定回路は、
      前記第1の状態または前記第2の状態のいずれかの状態を表す状態信号を出力する出力ノードと、
      第2電極に前記第1のクロック信号が与えられ、前記出力ノードに第3電極が接続された出力制御用スイッチング素子と、
      当該各双安定回路の前段の双安定回路から出力される状態信号に基づいて前記出力制御用スイッチング素子の第1電極に接続された第1ノードを充電するための第1の第1ノード充電部と、
      当該各双安定回路の次段の双安定回路から出力される状態信号に基づいて前記第1ノードを充電するための第2の第1ノード充電部と、
      当該各双安定回路の3段後の段の双安定回路から出力される状態信号に基づいて前記第1ノードを放電するための第1の第1ノード放電部と、
      当該各双安定回路の3段前の段の双安定回路から出力される状態信号に基づいて前記第1ノードを放電するための第2の第1ノード放電部と
    を有することを特徴とする、シフトレジスタ。
  2.  前記第1のクロック信号と前記第2のクロック信号とは互いに位相が180度ずらされていることを特徴とする、請求項1に記載のシフトレジスタ。
  3.  前記奇数段目の双安定回路に与えられる2相のクロック信号と前記偶数段目の双安定回路に与えられる2相のクロック信号とはそれぞれ互いに位相が90度ずらされていることを特徴とする、請求項1に記載のシフトレジスタ。
  4.  前記第1のクロック信号がハイレベルからローレベルに変化するタイミングと前記第2のクロック信号がローレベルからハイレベルに変化するタイミングとが同じであって、かつ、前記第1のクロック信号がローレベルからハイレベルに変化するタイミングと前記第2のクロック信号がハイレベルからローレベルに変化するタイミングとが同じであることを特徴とする、請求項1に記載のシフトレジスタ。
  5.  前記4相のクロック信号のオンデューティはそれぞれ50%とされていることを特徴とする、請求項1に記載のシフトレジスタ。
  6.  各双安定回路において、
      前記第1の第1ノード充電部は、第1電極および第2電極に当該各双安定回路の前段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第3電極が接続された第1のスイッチング素子を含み、
      前記第2の第1ノード充電部は、第1電極および第2電極に当該各双安定回路の次段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第3電極が接続された第2のスイッチング素子を含み、
      前記第1の第1ノード放電部は、第1電極に当該各双安定回路の3段後の段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第3のスイッチング素子を含み、
      前記第2の第1ノード放電部は、第1電極に当該各双安定回路の3段前の段の双安定回路から出力される状態信号が与えられ、前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第4のスイッチング素子を含むことを特徴とする、請求項1に記載のシフトレジスタ。
  7.  各双安定回路は、
      前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第5のスイッチング素子と、
      前記第5のスイッチング素子の第1電極に接続された第2ノードの電位を前記第2のクロック信号と前記第1ノードの電位とに基づいて制御する第2ノード制御部と
    を更に有することを特徴とする、請求項1に記載のシフトレジスタ。
  8.  前記第2ノード制御部は、
      第1電極および第2電極に前記第2のクロック信号が与えられ、前記第2ノードに第3電極が接続された第6のスイッチング素子と、
      前記第1ノードに第1電極が接続され、前記第2ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第7のスイッチング素子とからなることを特徴とする、請求項7に記載のシフトレジスタ。
  9.  前記奇数段目の双安定回路は、前記偶数段目の双安定回路に与えられる2相のクロック信号をそれぞれ第3のクロック信号および第4のクロック信号として受け取り、
     前記偶数段目の双安定回路は、前記奇数段目の双安定回路に与えられる2相のクロック信号をそれぞれ前記第3のクロック信号および前記第4のクロック信号として受け取り、
     各双安定回路は、
      前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第8のスイッチング素子と、
      前記第8のスイッチング素子の第1電極に接続された第3ノードの電位を前記第3のクロック信号と前記第1ノードの電位とに基づいて制御する第3ノード制御部と、
      前記第1ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第11のスイッチング素子と、
      前記第11のスイッチング素子の第1電極に接続された第4ノードの電位を前記第4のクロック信号と前記第1ノードの電位とに基づいて制御する第4ノード制御部と
    を更に有することを特徴とする、請求項1に記載のシフトレジスタ。
  10.  前記第3ノード制御部は、
      第1電極および第2電極に前記第3のクロック信号が与えられ、前記第3ノードに第3電極が接続された第9のスイッチング素子と、
      前記第1ノードに第1電極が接続され、前記第3ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第10のスイッチング素子とからなり、
     前記第4ノード制御部は、
      第1電極および第2電極に前記第4のクロック信号が与えられ、前記第4ノードに第3電極が接続された第12のスイッチング素子と、
      前記第1ノードに第1電極が接続され、前記第4ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第13のスイッチング素子とからなることを特徴とする、請求項9に記載のシフトレジスタ。
  11.  前記複数の双安定回路のうちの初段,2段目,および3段目の双安定回路に含まれる前記第1ノードをそれぞれ前記第2の第1ノード放電部によって放電させるための3つの初段側制御信号が外部から与えられ、
     前記複数の双安定回路のうちの最終段,最終段の前段,および最終段の前々段の双安定回路に含まれる前記第1ノードをそれぞれ前記第1の第1ノード放電部によって放電させるための3つの最終段側制御信号が外部から与えられることを特徴とする、請求項1に記載のシフトレジスタ。
  12.  前記3つの初段側制御信号のうち2つの初段側制御信号が1つの信号によって実現され、
     前記3つの最終段側制御信号のうち2つの最終段側制御信号が1つの信号によって実現されていることを特徴とする、請求項11に記載のシフトレジスタ。
  13.  前記複数の双安定回路のうちの初段,2段目,および3段目の双安定回路のそれぞれにおいて、前記第2の第1ノード充電部によって前記第1ノードが充電された後、前記第2の第1ノード放電部によって前記第1ノードが放電されるまでの期間、前記第1のクロック信号のローレベルからハイレベルへの変化が抑止され、
     前記複数の双安定回路のうちの最終段,最終段の前段,および最終段の前々段の双安定回路のそれぞれにおいて、前記第1の第1ノード充電部によって前記第1ノードが充電された後、前記第1の第1ノード放電部によって前記第1ノードが放電されるまでの期間、前記第1のクロック信号のローレベルからハイレベルへの変化が抑止されることを特徴とする、請求項12に記載のシフトレジスタ。
  14.  前記複数の双安定回路のうちの初段,2段目,および3段目の双安定回路のいずれかは、第1電極に前記初段側制御信号が与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第15のスイッチング素子を含み、
     前記複数の双安定回路のうちの最終段,最終段の前段,および最終段の前々段の双安定回路のいずれかは、第1電極に前記最終段側制御信号が与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第16のスイッチング素子を含むことを特徴とする、請求項11に記載のシフトレジスタ。
  15.  各双安定回路は、第1電極に前記第2のクロック信号が与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第14のスイッチング素子を更に有することを特徴とする、請求項1に記載のシフトレジスタ。
  16.  各双安定回路は、前記第1ノードに一端が接続され、前記出力ノードに他端が接続されたキャパシタを更に有することを特徴とする、請求項1に記載のシフトレジスタ。
  17.  各双安定回路は、当該各双安定回路の2段後または3段後の段の双安定回路から出力される状態信号が第1電極に与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第17のスイッチング素子と、当該各双安定回路の2段前または3段前の段の双安定回路から出力される状態信号が第1電極に与えられ、前記出力ノードに第2電極が接続され、第3電極にローレベルの電位が与えられる第18のスイッチング素子とを更に有することを特徴とする、請求項1に記載のシフトレジスタ。
  18.  アモルファスシリコンを用いて形成されていることを特徴とする、請求項1に記載のシフトレジスタ。
  19.  微結晶シリコンを用いて形成されていることを特徴とする、請求項1に記載のシフトレジスタ。
  20.  多結晶シリコンを用いて形成されていることを特徴とする、請求項1に記載のシフトレジスタ。
  21.  酸化物半導体を用いて形成されていることを特徴とする、請求項1に記載のシフトレジスタ。
  22.  表示部に配設された複数の走査信号線を駆動する、表示装置の走査信号線駆動回路であって、
     請求項1に記載のシフトレジスタを備え、
     前記複数の双安定回路は、前記複数の走査信号線と1対1で対応するように設けられ、
     各双安定回路は、前記出力ノードから出力される状態信号を当該各双安定回路に対応する走査信号線に走査信号として与えることを特徴とする、走査信号線駆動回路。
  23.  前記表示部を含み、請求項22に記載の走査信号線駆動回路を備えたことを特徴とする、表示装置。
  24.  前記複数の双安定回路からなるシフトレジスタが前記表示部の一端側および他端側の双方に設けられていることを特徴とする、請求項23に記載の表示装置。
  25.  前記奇数段目の双安定回路は前記表示部の一端側に設けられ、前記偶数段目の双安定回路は前記表示部の他端側に設けられていることを特徴とする、請求項23に記載の表示装置。
PCT/JP2010/061945 2009-11-04 2010-07-15 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置 WO2011055570A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/501,198 US8519764B2 (en) 2009-11-04 2010-07-15 Shift register, scanning signal line drive circuit provided with same, and display device
JP2011539304A JP5127986B2 (ja) 2009-11-04 2010-07-15 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
EP10828131.2A EP2498260B1 (en) 2009-11-04 2010-07-15 Shift register and the scanning signal line driving circuit provided there with, and display device
RU2012122770/08A RU2543312C2 (ru) 2009-11-04 2010-07-15 Сдвиговый регистр, возбуждающая схема линии сигналов сканирования, содержащая его, устройство отображения
CN2010800495150A CN102598145B (zh) 2009-11-04 2010-07-15 移位寄存器以及具备它的扫描信号线驱动电路和显示装置
BR112012011605A BR112012011605A2 (pt) 2009-11-04 2010-07-15 registrador de deslocamento, circuito de transmissão de linha de sinal de varredura fornecido com o mesmo, e dispositivo de exibição
KR1020127011435A KR101250158B1 (ko) 2009-11-04 2010-07-15 시프트 레지스터, 그것을 구비한 주사 신호선 구동 회로 및 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009252688 2009-11-04
JP2009-252688 2009-11-04

Publications (1)

Publication Number Publication Date
WO2011055570A1 true WO2011055570A1 (ja) 2011-05-12

Family

ID=43969810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061945 WO2011055570A1 (ja) 2009-11-04 2010-07-15 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Country Status (8)

Country Link
US (1) US8519764B2 (ja)
EP (1) EP2498260B1 (ja)
JP (1) JP5127986B2 (ja)
KR (1) KR101250158B1 (ja)
CN (1) CN102598145B (ja)
BR (1) BR112012011605A2 (ja)
RU (1) RU2543312C2 (ja)
WO (1) WO2011055570A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009094A (ja) * 2010-06-22 2012-01-12 Hitachi Displays Ltd 双方向シフトレジスタ、及びこれを用いた画像表示装置
JP2012142048A (ja) * 2010-12-28 2012-07-26 Japan Display East Co Ltd 双方向シフトレジスタ及びこれを用いた画像表示装置
JP2012252108A (ja) * 2011-06-01 2012-12-20 Japan Display East Co Ltd 表示装置
KR20130051340A (ko) * 2011-11-09 2013-05-20 엘지디스플레이 주식회사 복수의 클럭라인을 공유하는 쉬프트레지스터가 포함된 유기발광표시장치
WO2013146058A1 (ja) * 2012-03-30 2013-10-03 シャープ株式会社 表示装置
CN103460602A (zh) * 2012-04-10 2013-12-18 松下电器产业株式会社 缓冲电路以及缓冲电路的驱动方法
JP5404807B2 (ja) * 2009-11-04 2014-02-05 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
WO2014054517A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
WO2014054516A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
WO2015033838A1 (ja) * 2013-09-04 2015-03-12 シャープ株式会社 アクティブマトリクス基板、表示パネル及びそれを備えた表示装置
WO2016002644A1 (ja) * 2014-07-04 2016-01-07 シャープ株式会社 シフトレジスタおよびそれを備える表示装置
CN105741808A (zh) * 2016-05-04 2016-07-06 京东方科技集团股份有限公司 栅极驱动电路、阵列基板、显示面板及其驱动方法
JP2017021793A (ja) * 2015-06-25 2017-01-26 群創光電股▲ふん▼有限公司Innolux Corporation 画像表示システムおよびゲート駆動回路
JP2017504821A (ja) * 2013-12-18 2017-02-09 深▲セン▼市華星光電技術有限公司 液晶表示に用いられるgoa回路及び表示装置
US9881688B2 (en) 2012-10-05 2018-01-30 Sharp Kabushiki Kaisha Shift register
JP2018028665A (ja) * 2016-08-18 2018-02-22 鴻海精密工業股▲ふん▼有限公司 双方向シフトレジスタ及び双方向シフトレジスタを備える表示駆動システム
JP2019501414A (ja) * 2015-12-28 2019-01-17 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. ゲート駆動回路及び表示装置
JP2021044047A (ja) * 2014-04-24 2021-03-18 株式会社半導体エネルギー研究所 半導体装置
US11200862B2 (en) 2020-04-23 2021-12-14 Sharp Kabushiki Kaisha Shift register and display device provided with the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281077B2 (en) 2009-02-25 2016-03-08 Sharp Kabushiki Kaisha Shift register and display device
WO2011036911A1 (ja) * 2009-09-25 2011-03-31 シャープ株式会社 液晶表示装置
US8731135B2 (en) * 2010-01-29 2014-05-20 Sharp Kabushiki Kaisha Shift register and display device
JP5165153B2 (ja) * 2010-03-15 2013-03-21 シャープ株式会社 走査信号線駆動回路およびそれを備えた表示装置、ならびに走査信号線の駆動方法
KR101756667B1 (ko) 2011-04-21 2017-07-11 엘지디스플레이 주식회사 쉬프트 레지스터 및 이를 포함하는 표시장치
CN103279214A (zh) * 2012-06-28 2013-09-04 上海天马微电子有限公司 触摸显示屏的驱动方法
KR102055328B1 (ko) * 2012-07-18 2019-12-13 삼성디스플레이 주식회사 게이트 드라이버 및 이를 포함하는 표시 장치
TWI490844B (zh) * 2013-01-15 2015-07-01 Giantplus Technology Co Ltd 具單ㄧ共用控制端之驅動模組
KR102120070B1 (ko) * 2013-12-31 2020-06-08 엘지디스플레이 주식회사 표시장치 및 그 구동방법
KR20160012350A (ko) * 2014-07-23 2016-02-03 삼성디스플레이 주식회사 가변 게이트 클록 발생기, 이를 포함하는 디스플레이 장치 및 디스플레이 장치의 구동 방법
KR101572378B1 (ko) * 2014-08-04 2015-11-27 엘지디스플레이 주식회사 터치 센서들을 가지는 표시장치
JP6521794B2 (ja) 2014-09-03 2019-05-29 株式会社半導体エネルギー研究所 半導体装置、及び電子機器
CN104464600B (zh) * 2014-12-26 2017-02-01 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器电路以及显示装置
CN104616616B (zh) * 2015-02-12 2017-12-15 京东方科技集团股份有限公司 栅极驱动电路及其驱动方法、阵列基板、显示装置
CN104835476B (zh) * 2015-06-08 2017-09-15 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路及其驱动方法、阵列基板
CN105185339B (zh) * 2015-10-08 2017-12-29 京东方科技集团股份有限公司 移位寄存器单元、栅线驱动装置以及驱动方法
US10657917B2 (en) * 2015-10-19 2020-05-19 Sharp Kabushiki Kaisha Shift register and display device including same
CN105304011B (zh) * 2015-12-09 2019-11-19 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
KR102574511B1 (ko) 2016-03-03 2023-09-05 삼성디스플레이 주식회사 게이트 구동회로 및 그것을 포함하는 표시 장치
KR102435224B1 (ko) 2016-04-05 2022-08-25 삼성디스플레이 주식회사 게이트 구동회로 및 그것을 포함하는 표시 장치
CN107689217B (zh) * 2016-08-05 2020-08-07 瀚宇彩晶股份有限公司 栅极驱动电路和显示装置
KR101882435B1 (ko) * 2016-10-05 2018-08-24 실리콘 디스플레이 (주) 시프트 레지스터
TWI613632B (zh) 2017-02-20 2018-02-01 友達光電股份有限公司 閘極驅動電路
KR102470378B1 (ko) * 2017-11-30 2022-11-23 엘지디스플레이 주식회사 게이트 구동 회로 및 이를 포함하는 발광 표시 장치
KR102437178B1 (ko) * 2017-11-30 2022-08-26 엘지디스플레이 주식회사 게이트 구동 회로
CN108877639A (zh) * 2018-09-25 2018-11-23 京东方科技集团股份有限公司 显示面板的驱动方法、驱动电路、显示面板及显示装置
JP6845275B2 (ja) * 2018-11-22 2021-03-17 ラピスセミコンダクタ株式会社 表示装置及びデータドライバ
CN114694606B (zh) * 2020-12-25 2023-07-04 夏普株式会社 扫描信号线驱动电路以及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506044A (ja) 1996-12-09 2001-05-08 トムソン マルチメディア ソシエテ アノニム 二方向シフトレジスタ
JP2004227751A (ja) * 2003-01-25 2004-08-12 Sharp Corp シフトレジスタ
US6778626B2 (en) 2002-09-17 2004-08-17 Au Optronics Corp. Bi-directional shift-register circuit
JP2006331633A (ja) * 2005-05-26 2006-12-07 Lg Philips Lcd Co Ltd シフトレジスタとこれを用いた表示装置及びその駆動方法
JP2008217902A (ja) * 2007-03-05 2008-09-18 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
WO2009104306A1 (ja) * 2008-02-19 2009-08-27 シャープ株式会社 表示装置および表示装置の駆動方法
WO2010050262A1 (ja) * 2008-10-30 2010-05-06 シャープ株式会社 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法
JP2010192019A (ja) * 2009-02-17 2010-09-02 Sharp Corp シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410583A (en) * 1993-10-28 1995-04-25 Rca Thomson Licensing Corporation Shift register useful as a select line scanner for a liquid crystal display
JP3424320B2 (ja) * 1994-04-22 2003-07-07 ソニー株式会社 アクティブマトリクス表示装置
US7202846B2 (en) * 2001-11-30 2007-04-10 Sharp Kabushiki Kaisha Signal line drive circuit and display device using the same
KR100487439B1 (ko) * 2002-12-31 2005-05-03 엘지.필립스 엘시디 주식회사 평판표시장치의 양방향 구동 회로 및 구동 방법
US7486269B2 (en) 2003-07-09 2009-02-03 Samsung Electronics Co., Ltd. Shift register, scan driving circuit and display apparatus having the same
KR101157240B1 (ko) * 2005-04-11 2012-06-15 엘지디스플레이 주식회사 쉬프트 레지스터의 구동방법, 게이트 드라이버 및 이를구비한 표시장치
KR20080058570A (ko) * 2006-12-22 2008-06-26 삼성전자주식회사 게이트 구동회로 및 이를 포함하는 액정표시장치
TWI351006B (en) * 2007-02-02 2011-10-21 Ind Tech Res Inst Level shifter for gate driver
JP2008276849A (ja) 2007-04-27 2008-11-13 Mitsubishi Electric Corp 画像表示装置および半導体装置
US8937614B2 (en) * 2007-11-06 2015-01-20 Nlt Technologies, Ltd. Bidirectional shift register and display device using the same
KR101568249B1 (ko) * 2007-12-31 2015-11-11 엘지디스플레이 주식회사 쉬프트 레지스터
JP5190281B2 (ja) * 2008-03-04 2013-04-24 株式会社ジャパンディスプレイイースト 表示装置
JP2009223051A (ja) 2008-03-17 2009-10-01 Sharp Corp 表示装置および表示装置の駆動方法
BRPI0822355A2 (pt) * 2008-03-19 2015-06-16 Sharp Kk Circuito de excitação de painel de display, dispositivo de display de cristal líquido, registro de deslocamento, painel de cristal líquido, e método de excitação de dispositivo de display.
KR101286539B1 (ko) * 2008-04-15 2013-07-17 엘지디스플레이 주식회사 쉬프트 레지스터
BRPI0923245A2 (pt) 2008-12-10 2019-09-24 Sharp Kk circuito de excitacao de linha de sinal de varredura, registrador de deslocamente e metodo de excitacao de registrador de deslocamento
KR101407307B1 (ko) * 2008-12-20 2014-06-16 엘지디스플레이 주식회사 쉬프트 레지스터
JP5401213B2 (ja) 2009-08-31 2014-01-29 株式会社日立製作所 二次励磁発電装置及び二次励磁可変速発電電動装置
JPWO2011055584A1 (ja) * 2009-11-04 2013-03-28 シャープ株式会社 液晶表示装置およびその駆動方法
CN102598144B (zh) * 2009-11-04 2015-10-07 夏普株式会社 移位寄存器、具备其的扫描信号线驱动电路和显示装置
JP5436335B2 (ja) * 2010-05-25 2014-03-05 三菱電機株式会社 走査線駆動回路
US8654226B2 (en) * 2011-03-16 2014-02-18 Analog Devices, Inc. Clock gated power saving shift register

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506044A (ja) 1996-12-09 2001-05-08 トムソン マルチメディア ソシエテ アノニム 二方向シフトレジスタ
US6778626B2 (en) 2002-09-17 2004-08-17 Au Optronics Corp. Bi-directional shift-register circuit
JP2004227751A (ja) * 2003-01-25 2004-08-12 Sharp Corp シフトレジスタ
JP2006331633A (ja) * 2005-05-26 2006-12-07 Lg Philips Lcd Co Ltd シフトレジスタとこれを用いた表示装置及びその駆動方法
JP2008217902A (ja) * 2007-03-05 2008-09-18 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
WO2009104306A1 (ja) * 2008-02-19 2009-08-27 シャープ株式会社 表示装置および表示装置の駆動方法
WO2010050262A1 (ja) * 2008-10-30 2010-05-06 シャープ株式会社 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法
JP2010192019A (ja) * 2009-02-17 2010-09-02 Sharp Corp シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404807B2 (ja) * 2009-11-04 2014-02-05 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
JP2012009094A (ja) * 2010-06-22 2012-01-12 Hitachi Displays Ltd 双方向シフトレジスタ、及びこれを用いた画像表示装置
JP2012142048A (ja) * 2010-12-28 2012-07-26 Japan Display East Co Ltd 双方向シフトレジスタ及びこれを用いた画像表示装置
JP2012252108A (ja) * 2011-06-01 2012-12-20 Japan Display East Co Ltd 表示装置
US9489879B2 (en) 2011-06-01 2016-11-08 Japan Display Inc. Display device
US10643563B2 (en) 2011-06-01 2020-05-05 Japan Display Inc. Display device
US9842558B2 (en) 2011-06-01 2017-12-12 Japan Display Inc. Display device
US9147496B2 (en) 2011-06-01 2015-09-29 Japan Display Inc. Display device
US10147377B2 (en) 2011-06-01 2018-12-04 Japan Display Inc. Display device
KR20130051340A (ko) * 2011-11-09 2013-05-20 엘지디스플레이 주식회사 복수의 클럭라인을 공유하는 쉬프트레지스터가 포함된 유기발광표시장치
KR101924427B1 (ko) * 2011-11-09 2019-02-21 엘지디스플레이 주식회사 복수의 클럭라인을 공유하는 쉬프트레지스터가 포함된 유기발광표시장치
WO2013146058A1 (ja) * 2012-03-30 2013-10-03 シャープ株式会社 表示装置
JPWO2013146058A1 (ja) * 2012-03-30 2015-12-10 シャープ株式会社 表示装置
KR102126455B1 (ko) * 2012-04-10 2020-06-24 가부시키가이샤 제이올레드 버퍼 회로 및 버퍼 회로의 구동 방법
EP2838200A4 (en) * 2012-04-10 2015-04-29 Panasonic Corp BUFFER CIRCUIT AND METHOD FOR ATTACKING A BUFFER CIRCUIT
EP2838200A1 (en) * 2012-04-10 2015-02-18 Panasonic Corporation Buffer circuit and method for driving buffer circuit
KR20150003081A (ko) * 2012-04-10 2015-01-08 파나소닉 주식회사 버퍼 회로 및 퍼버 회로의 구동 방법
CN103460602A (zh) * 2012-04-10 2013-12-18 松下电器产业株式会社 缓冲电路以及缓冲电路的驱动方法
WO2014054517A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
US9881688B2 (en) 2012-10-05 2018-01-30 Sharp Kabushiki Kaisha Shift register
WO2014054516A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
US10121429B2 (en) 2013-09-04 2018-11-06 Sharp Kabushiki Kaisha Active matrix substrate, display panel, and display device including the same
WO2015033838A1 (ja) * 2013-09-04 2015-03-12 シャープ株式会社 アクティブマトリクス基板、表示パネル及びそれを備えた表示装置
JP2017504821A (ja) * 2013-12-18 2017-02-09 深▲セン▼市華星光電技術有限公司 液晶表示に用いられるgoa回路及び表示装置
JP2021044047A (ja) * 2014-04-24 2021-03-18 株式会社半導体エネルギー研究所 半導体装置
JPWO2016002644A1 (ja) * 2014-07-04 2017-04-27 シャープ株式会社 シフトレジスタおよびそれを備える表示装置
CN106663470A (zh) * 2014-07-04 2017-05-10 夏普株式会社 移位寄存器和具备它的显示装置
WO2016002644A1 (ja) * 2014-07-04 2016-01-07 シャープ株式会社 シフトレジスタおよびそれを備える表示装置
US10276119B2 (en) 2014-07-04 2019-04-30 Sharp Kabushiki Kaisha Shift register and display device provided therewith
JP2017021793A (ja) * 2015-06-25 2017-01-26 群創光電股▲ふん▼有限公司Innolux Corporation 画像表示システムおよびゲート駆動回路
JP2019501414A (ja) * 2015-12-28 2019-01-17 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. ゲート駆動回路及び表示装置
CN105741808A (zh) * 2016-05-04 2016-07-06 京东方科技集团股份有限公司 栅极驱动电路、阵列基板、显示面板及其驱动方法
US10255861B2 (en) 2016-05-04 2019-04-09 Boe Technology Group Co., Ltd. Gate driving circuit, array substrate, display panel and driving method thereof
JP2018028665A (ja) * 2016-08-18 2018-02-22 鴻海精密工業股▲ふん▼有限公司 双方向シフトレジスタ及び双方向シフトレジスタを備える表示駆動システム
US11200862B2 (en) 2020-04-23 2021-12-14 Sharp Kabushiki Kaisha Shift register and display device provided with the same

Also Published As

Publication number Publication date
JP5127986B2 (ja) 2013-01-23
EP2498260A1 (en) 2012-09-12
EP2498260A4 (en) 2016-03-16
KR101250158B1 (ko) 2013-04-05
BR112012011605A2 (pt) 2016-06-28
US8519764B2 (en) 2013-08-27
CN102598145A (zh) 2012-07-18
CN102598145B (zh) 2013-10-30
US20120194489A1 (en) 2012-08-02
EP2498260B1 (en) 2019-02-27
KR20120080621A (ko) 2012-07-17
RU2543312C2 (ru) 2015-02-27
RU2012122770A (ru) 2013-12-10
JPWO2011055570A1 (ja) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5127986B2 (ja) シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
JP5404807B2 (ja) シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
JP5372268B2 (ja) 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
WO2011055584A1 (ja) 液晶表示装置およびその駆動方法
KR101443126B1 (ko) 게이트 드라이버 온 어레이, 시프팅 레지스터 및 디스플레이 스크린
JP4990034B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
KR100847092B1 (ko) 시프트 레지스터 회로 및 그것을 구비하는 화상표시장치
JP5132818B2 (ja) 走査信号線駆動回路およびそれを備えた表示装置
JP2010192019A (ja) シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
TWI529682B (zh) A scanning signal line driving circuit, a display device including the same, and a driving method of a scanning signal line
WO2014092011A1 (ja) 表示装置およびその駆動方法
US20170025079A1 (en) Shift register unit and driving method thereof, gate driving circuit and display device
WO2011162057A1 (ja) 走査信号線駆動回路およびそれを備えた表示装置
JP5676189B2 (ja) シフト・レジスタおよびゲートライン駆動装置
KR20070105242A (ko) 시프트 레지스터 회로 및 그것을 구비한 화상표시장치
WO2018230456A1 (ja) 表示装置
JP2008140522A (ja) シフトレジスタ回路およびそれを備える画像表示装置、並びに電圧信号生成回路
JP3958271B2 (ja) レベルシフタ及びそれを用いた表示装置
JP2009181612A (ja) シフトレジスタ回路及び液晶表示装置
WO2018025412A1 (ja) 駆動回路及び表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049515.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011539304

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010828131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13501198

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3374/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127011435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012122770

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011605

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120503