WO2016002644A1 - シフトレジスタおよびそれを備える表示装置 - Google Patents

シフトレジスタおよびそれを備える表示装置 Download PDF

Info

Publication number
WO2016002644A1
WO2016002644A1 PCT/JP2015/068458 JP2015068458W WO2016002644A1 WO 2016002644 A1 WO2016002644 A1 WO 2016002644A1 JP 2015068458 W JP2015068458 W JP 2015068458W WO 2016002644 A1 WO2016002644 A1 WO 2016002644A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
terminal
output
control node
output control
Prior art date
Application number
PCT/JP2015/068458
Other languages
English (en)
French (fr)
Inventor
俊次 末木
泰章 岩瀬
卓哉 渡部
晶 田川
健吾 原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580035417.4A priority Critical patent/CN106663470B/zh
Priority to US15/322,802 priority patent/US10276119B2/en
Priority to JP2016531327A priority patent/JP6316423B2/ja
Publication of WO2016002644A1 publication Critical patent/WO2016002644A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/287Organisation of a multiplicity of shift registers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • the present invention relates to an active matrix display device, and more particularly to a shift register in a scanning signal line driving circuit for driving a scanning signal line provided in a display portion of an active matrix display device.
  • an active matrix type liquid crystal display device having a display unit including a plurality of source bus lines (video signal lines) and a plurality of gate bus lines (scanning signal lines) is known.
  • a gate driver scanning signal line drive circuit
  • IC Integrated Circuit
  • the display portion of the active matrix type liquid crystal display device includes a plurality of source bus lines, a plurality of gate bus lines, and intersections of the plurality of source bus lines and the plurality of gate bus lines, respectively.
  • a plurality of corresponding pixel forming portions are formed.
  • the plurality of pixel forming portions are arranged in a matrix to form a pixel array.
  • Each pixel formation unit holds a thin film transistor, which is a switching element in which a gate terminal is connected to a gate bus line passing through a corresponding intersection and a source terminal is connected to a source bus line passing through the intersection, and a pixel voltage value It includes a pixel capacity and the like.
  • the active matrix liquid crystal display device is also provided with the gate driver described above and a source driver (video signal line driving circuit) for driving the source bus line.
  • the video signal indicating the pixel voltage value is transmitted through the source bus line.
  • each source bus line cannot transmit video signals indicating pixel voltage values for a plurality of rows at a time (simultaneously).
  • the writing (charging) of the video signal to the pixel capacitors in the above-described pixel formation portion arranged in a matrix is sequentially performed row by row. Therefore, the gate driver is constituted by a shift register having a plurality of stages so that a plurality of gate bus lines are sequentially selected for a predetermined period. Then, by sequentially outputting active scanning signals from each stage of the shift register, writing of video signals to the pixel capacitors is sequentially performed row by row as described above.
  • a circuit constituting each stage of the shift register is referred to as a “stage constituent circuit”.
  • FIG. 24 is a circuit diagram of a conventional stage configuration circuit having the simplest configuration.
  • This stage configuration circuit includes four thin film transistors T81 to T84 and one capacitor CAP.
  • the stage configuration circuit has one output terminal 80 and four input terminals 81 to 84 in addition to the input terminal for the low-level DC power supply potential VSS.
  • the gate terminal of the thin film transistor T81, the source terminal of the thin film transistor T83, and the drain terminal of the thin film transistor T84 are connected to each other. A region where these are connected to each other is called an “output control node”.
  • the output control node is denoted by the symbol NA.
  • NA the higher of the drain and the source
  • the source potential is higher than the drain potential. May be higher.
  • the magnitude of the low-level DC power supply potential VSS is referred to as “VSS potential” for convenience.
  • a scanning signal GOUT to be supplied to the gate bus line connected to this stage constituent circuit is output.
  • the input terminal 81 is supplied with the first clock CKA.
  • the input terminal 82 is supplied with the second clock CKB.
  • the first clock CKA and the second clock CKB are 180 degrees out of phase.
  • the input terminal 83 is supplied with a scanning signal output from the preceding stage configuration circuit as a set signal S.
  • the input terminal 84 is supplied with a scanning signal output from the next stage configuration circuit as a reset signal R.
  • the “previous stage constituent circuit” may be simply abbreviated as “previous stage”
  • the “next stage stage constituent circuit” may be simply abbreviated as “next stage”.
  • the gate terminal is connected to the output control node NA, the drain terminal is connected to the input terminal 81, and the source terminal is connected to the output terminal 80.
  • the gate terminal is connected to the input terminal 82, the drain terminal is connected to the output terminal 80, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 83 (that is, diode connection), and the source terminal is connected to the output control node NA.
  • the gate terminal is connected to the input terminal 84, the drain terminal is connected to the output control node NA, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • One end of the capacitor CAP is connected to the output control node NA, and the other end is connected to the output terminal 80.
  • each stage configuration circuit a period during which an operation for writing (charging) to a pixel capacitor in a pixel formation portion connected to a corresponding gate bus line is performed is referred to as a “writing operation period”. " A period other than the write operation period is referred to as a “normal operation period”. In FIG. 25, a period from time t80 to time t82 is a writing operation period, and a period before time t80 and a period after time t82 are normal operation periods.
  • a pulse of the set signal S is given to the input terminal 83. Since the thin film transistor T83 is diode-connected as shown in FIG. 24, the thin film transistor T83 is turned on by the pulse of the set signal S, and the capacitor CAP is charged. As a result, the potential of the output control node NA rises and the thin film transistor T81 is turned on.
  • the first clock CKA is at a low level. Therefore, the scanning signal GOUT is maintained at a low level during this period.
  • the reset signal R is at the low level during the period from the time point t80 to the time point t81, the thin film transistor T84 is maintained in the off state. Therefore, the potential of the output control node NA does not decrease during this period.
  • the first clock CKA changes from the low level to the high level.
  • the potential of the output terminal 80 increases as the potential of the input terminal 81 increases.
  • the capacitor CAP is provided between the output control node NA and the output terminal 80
  • the potential of the output control node NA increases as the potential of the output terminal 80 increases (output control node).
  • NA is bootstrapped).
  • a large voltage is applied to the gate terminal of the thin film transistor T81, and the potential of the scanning signal GOUT rises to the high level potential of the first clock CKA.
  • the gate bus line connected to the output terminal 80 of this stage constituent circuit is selected.
  • the second clock CKB is at the low level during the period from the time point t81 to the time point t82. Therefore, since the thin film transistor T82 is maintained in the off state, the potential of the scanning signal GOUT does not decrease during this period.
  • the first clock CKA changes from the high level to the low level.
  • the potential of the output terminal 80 decreases as the potential of the input terminal 81 decreases, and the potential of the output control node NA also decreases via the capacitor CAP.
  • a pulse of the reset signal R is given to the input terminal 84.
  • the thin film transistor T84 is turned on.
  • the potential of the output control node NA changes from high level to low level.
  • the second clock CKB changes from the low level to the high level.
  • the thin film transistor T82 is turned on.
  • the potential of the scanning signal GOUT becomes a low level.
  • the active scanning signal GOUT is applied to the gate bus line corresponding to this stage constituent circuit during the latter half of the writing operation period.
  • the scanning signal GOUT output from the stage configuration circuit of an arbitrary stage is given as a set signal S to the next stage.
  • a plurality of gate bus lines provided in the liquid crystal display device are sequentially selected, and writing to the pixel capacitors is performed row by row.
  • the potential of the scanning signal GOUT to be fixed at a low level may vary during the normal operation period due to noise caused by the clock signal (first clock CKA). This will be described below.
  • Parasitic capacitance is formed between the respective electrodes of the thin film transistors in the stage configuration circuit constituting the shift register. Therefore, in the configuration shown in FIG. 24, parasitic capacitance is also formed between the gate and drain of the thin film transistor T81 or between the gate and source. For this reason, when the first clock CKA changes from the low level to the high level, the gate potential of the thin film transistor T81 rises through the parasitic capacitance.
  • the potential of the output control node NA rises somewhat although the potential of the output control node NA should be fixed at a low level (the potential of the output control node NA floats).
  • a leak current flows through the thin film transistor T81, and the potential of the scanning signal GOUT varies.
  • the first clock CKA changes from a low level to a high level in a predetermined cycle throughout the operation period of the liquid crystal display device. Accordingly, during the normal operation period, the potential of the scanning signal GOUT varies at a predetermined cycle. As a result, abnormal operation and increased power consumption are caused.
  • FIG. 26 is a diagram schematically showing a configuration of a stage configuration circuit having an output control node stabilization unit.
  • the stage configuration circuit includes an output control node stabilization unit 950 in addition to a buffer 910, a scanning signal stabilization unit 920, an output control node set unit 930, and an output control node reset unit 940.
  • the thin film transistor T81, the thin film transistor T82, the thin film transistor T83, and the thin film transistor T84 in FIG. 24 correspond to the buffer 910, the scan signal stabilization unit 920, the output control node set unit 930, and the output control node reset unit 940 in FIG.
  • FIG. 27 is a circuit diagram showing the configuration of the stage constituent circuit disclosed in the pamphlet of International Publication No. 2011/066761.
  • the stage configuration circuit shown in FIG. 27 includes ten thin film transistors T91 to T100 and one capacitor CAP.
  • this stage configuration circuit has one output terminal 90 and six input terminals 91 to 96.
  • the gate terminal of the thin film transistor T91, the drain terminal of the thin film transistor T92, the source terminal of the thin film transistor T95, the gate terminal of the thin film transistor T96, and the drain terminal of the thin film transistor T97 are connected to each other via a first control node NA as an output control node. .
  • the gate terminal of the thin film transistor T92, the source terminal of the thin film transistor T93, the drain terminal of the thin film transistor T94, the drain terminal of the thin film transistor T96, and the gate terminal of the thin film transistor T100 are connected to each other. A region where these are connected to each other is referred to as a “second control node”.
  • the second control node is denoted by reference numeral NB.
  • the gate terminal is connected to the first control node NA, the drain terminal is connected to the input terminal 91, and the source terminal is connected to the output terminal 90.
  • the gate terminal is connected to the second control node NB, the drain terminal is connected to the first control node NA, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 93 (that is, diode connection), and the source terminal is connected to the second control node NB.
  • the gate terminal is connected to the input terminal 94, the drain terminal is connected to the second control node NB, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 95 (that is, diode connection), and the source terminal is connected to the first control node NA.
  • the gate terminal is connected to the first control node NA, the drain terminal is connected to the second control node NB, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the input terminal 96, the drain terminal is connected to the first control node NA, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the input terminal 96, the drain terminal is connected to the output terminal 90, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the input terminal 92, the drain terminal is connected to the output terminal 90, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the second control node NB, the drain terminal is connected to the output terminal 90, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • One end of the capacitor CAP is connected to the output control node NA, and the other end is connected to the output terminal 90.
  • the output control node stabilizing unit 950 described above is realized by the thin film transistors T92, T93, T94, and T96.
  • FIG. 28 is a signal waveform diagram for explaining the operation of the stage constituent circuit having the configuration shown in FIG.
  • this stage configuration circuit generates four-phase clock signals (first clock CKA, second clock CKB, third clock CKC, and fourth clock CKD) whose phases are shifted by 90 degrees. Work on the basis.
  • attention is focused on the normal operation period. During the normal operation period, the potential of the first control node (output control node) NA is maintained at a low level, so that the thin film transistor T96 is maintained in an off state.
  • the thin film transistor T93 is in an on state and the thin film transistor T94 is in an off state. Further, during the period in which the third clock CKC is at a low level and the fourth clock CKD is at a high level, the thin film transistor T93 is in an off state and the thin film transistor T94 is in an on state.
  • the potential of the second control node NB becomes high level every predetermined period. Thereby, in the normal operation period, the thin film transistor T92 is turned on every predetermined period, and the potential of the first control node NA is drawn to the VSS potential.
  • a monolithic gate driver that prevents the potential of the output control node NA from floating during the normal operation period and does not cause abnormal operation is realized.
  • the thin film transistor T96 is provided to prevent the potential of the second control node NB from going high during the write operation period.
  • each stage constituent circuit constituting the shift register includes a large number of thin film transistors. This increases the area occupied by the gate driver on the TFT substrate, making it difficult to narrow the frame.
  • the load on the thin film transistor connected to the output control node NA is increased, the reliability for long-term operation is reduced. Further, in FIG.
  • both the thin film transistors T93 and T96 are turned on. Current flows. As a result, power consumption increases. As described above, according to the conventional configuration, it is difficult to narrow the frame and reduce the power consumption and to ensure the reliability for long-term operation.
  • an object of the present invention is to realize a shift register for driving a scanning signal line that can achieve a narrow frame and low power consumption of a display device while ensuring reliability for long-term operation.
  • a first aspect of the present invention drives a scanning signal line of a display device, which is composed of a plurality of stages that operate based on a plurality of clock signals that periodically repeat a first level and a second level.
  • a control terminal, a first conduction terminal, and a second conduction terminal, and the scanning signal output from the output node among the plurality of clock signals is changed from the off level at a timing at which the scanning signal should change from the on level to the off level.
  • a first output node stabilization switching element in which a clock signal changing to an on level is applied to a control terminal, a first conduction terminal is connected to the output node, and an off-level power supply potential is applied to a second conduction terminal. And a control terminal, a first conduction terminal, and a second conduction terminal, and the scanning signal output from the output node among the plurality of clock signals is turned off at a timing at which the scanning signal should change from the off level to the on level. Is applied to the first conduction terminal, and a second conduction terminal is connected to the output node.
  • An output control node connected to a control terminal of the output control switching element; A scan signal that changes from an off level to an on level at a timing when the output control node should change from an off level to an on level among the scan signals output from the output node of one or more stages before is received as the set signal, and the set An output control node turn-on unit for changing a level of the output control node toward an on level based on a signal; Among the scanning signals output from the output node of one or more stages later, a scanning signal that changes from the off level to the on level at a timing when the output control node should change from the on level to the off level is received as a reset signal, and the reset An output control node turn-off unit for changing the level of the output control node toward an off level based on a signal; An output control node stabilizing unit for preventing fluctuation of the level of the output control node during a period in which the level of the output control node is to be maintained at an off level;
  • a clock signal that changes from on to on-level is applied to the control terminal, a first conduction terminal is connected to the output control node, and a scanning signal output from the output node in the previous stage is applied to the second conduction terminal.
  • a switching element for stabilizing the output control node of It has a control terminal, a first conduction terminal, and a second conduction terminal, and is turned off at the timing when the scanning signal output from the output node of the next stage among the plurality of clock signals should change from the off level to the on level.
  • a clock signal that changes from a level to an on level is applied to a control terminal, a first conduction terminal is connected to the output control node directly or via another switching element, and a scanning signal output from an output node at the next stage includes a second output control node stabilizing switching element provided to the second conduction terminal.
  • the output control node stabilization unit includes only the first output control node stabilization switching element and the second output control node stabilization switching element, The first conduction terminal of the second output control node stabilization switching element is directly connected to the output control node.
  • the output control node stabilizing unit has a control terminal, a first conduction terminal, and a second conduction terminal, and a clock signal applied to the first conduction terminal of the output control switching element is provided to the control terminal.
  • a third output control node for stabilization wherein a first conduction terminal is connected to the output control node, and a second conduction terminal is connected to the first conduction terminal of the second output control node stabilization switching element. It further includes a switching element.
  • the output control node turn-on unit receives a scan signal output from the output node of the previous stage as the set signal.
  • the output control node stabilization unit has a control terminal, a first conduction terminal, and a second conduction terminal, and provides an initialization signal that changes from an off level to an on level immediately after the start of the vertical scanning period to the control terminal.
  • the output control node further includes a fourth output control node stabilization switching element having a first conduction terminal connected to the output control node and an off-level power supply potential applied to the second conduction terminal.
  • the output control node stabilizing unit has a control terminal, a first conduction terminal, and a second conduction terminal, and gives a clear signal that changes from an off level to an on level at the end of the vertical scanning period to the control terminal.
  • the output control node further includes a fifth output control node stabilizing switching element having a first conduction terminal connected to the output control node and an off-level power supply potential applied to the second conduction terminal.
  • the stage configuration circuit has a control terminal, a first conduction terminal, and a second conduction terminal, and a clear signal that changes from an off level to an on level at the end of the vertical scanning period is given to the control terminal,
  • the output node further includes a second output node stabilization switching element having a first conduction terminal connected to the output node and an off-level power supply potential applied to the second conduction terminal.
  • the stage configuration circuit has a control terminal, a first conduction terminal, and a second conduction terminal, and a clear signal that changes from an off level to an on level at the end of the vertical scanning period is given to the control terminal, A second output node stabilization switching element, wherein a first conduction terminal is connected to the output node, and an off-level power supply potential is applied to the second conduction terminal;
  • the output control node stabilizing unit includes: A clock signal provided to the first conduction terminal of the output control switching element has a control terminal, a first conduction terminal, and a second conduction terminal, and is provided to the control terminal.
  • a third output control node stabilization switching element having a second conduction terminal connected to the first conduction terminal of the second output control node stabilization switching element;
  • An initialization signal having a control terminal, a first conduction terminal, and a second conduction terminal and changing from an off level to an on level immediately after the start of the vertical scanning period is given to the control terminal, and the output control node
  • a fourth output control node stabilization switching element to which one conduction terminal is connected and an off-level power supply potential is applied to the second conduction terminal;
  • a clear signal having a control terminal, a first conduction terminal, and a second conduction terminal and changing from an off level to an on level at the end of the vertical scanning period is given to the control terminal, and the output control node receives a first signal.
  • a fifth output control node stabilizing switching element to which one conduction terminal is connected and an off-level power supply potential is applied to the second conduction terminal.
  • the switching element included in the stage constituent circuit is a thin film transistor including an oxide semiconductor.
  • the oxide semiconductor is indium gallium zinc oxide.
  • An eleventh aspect of the present invention is a display device, A display unit provided with a plurality of scanning signal lines; And a shift register according to any one of the first to tenth aspects of the present invention, the shift register being configured to correspond to the plurality of scanning signal lines on a one-to-one basis.
  • the stage constituent circuit constituting the shift register includes two switching elements (from the off level at the timing when the scanning signal output from the previous stage should change from the off level to the on level).
  • a clock signal that changes to an on level is applied to the control terminal, a first conduction terminal is connected to the output control node, and a scanning signal output from the previous stage is applied to the second conduction terminal.
  • Switching element and a clock signal that changes from the off level to the on level at the timing when the scanning signal output from the next stage should change from the off level to the on level is applied to the control terminal and directly to the output control node or other
  • the first conduction terminal is connected via the switching element, and the scanning signal output from the next stage is supplied to the second conduction terminal.
  • Output control node stabilizer constituted by a switching element
  • the first output control is performed in a normal operation period (a period other than a write operation period in which an operation for writing (charging) to a pixel capacitor is performed in a row corresponding to each stage configuration circuit).
  • a normal operation period a period other than a write operation period in which an operation for writing (charging) to a pixel capacitor is performed in a row corresponding to each stage configuration circuit.
  • the output control node stabilizing unit for maintaining the potential of the output control node at the off level throughout the normal operation period is realized by using a smaller number of switching elements than in the past. For this reason, in the display device using this shift register, the area occupied by the scanning signal line driver circuit on the panel substrate can be reduced, and the frame can be made narrower than before.
  • the output control node stabilizing unit is realized by using only two switching elements. For this reason, by using this shift register in the scanning signal line driving circuit in the display device, the area occupied by the scanning signal line driving circuit on the panel substrate can be remarkably reduced, and the frame is significantly narrower than before. Can be achieved. In addition, the load on the switching element connected to the output control node is remarkably reduced, and the reliability for long-term operation is significantly improved as compared with the conventional case.
  • the second conduction terminal and the output control node of the second output control node stabilization switching element are the second output control node stabilization switching element and the third output control. Electrical connection is established when both of the node stabilizing switching elements are in the ON state. Even if the clock signal applied to the control terminal of the second output control node stabilization switching element is on level, the clock signal applied to the control terminal of the third output control node stabilization switching element is off level. Then, since the third output control node stabilization switching element is turned off, the second conduction terminal of the second output control node stabilization switching element and the output control node are electrically disconnected from each other. Maintained. Since the stage configuration circuit has such a configuration, the period for precharging the output control node can be extended. This improves the reliability for long-term operation.
  • the third aspect of the present invention since the output control node changes from the off level to the on level based on the scanning signal output from the output node of the previous stage, the third aspect of the present invention The effect can be reliably achieved.
  • noise is generated at the output control node by the rise of the clock signal applied to the first conduction terminal of the output control switching element immediately after the start of the vertical scanning period. Even if they are mixed, the potential of the output control node is pulled to the off-level power supply potential by turning on the fourth output control node stabilizing switching element. As a result, the occurrence of an abnormal operation due to the clock operation immediately after the start of the vertical scanning period of the clock signal applied to the first conduction terminal of the output control switching element is suppressed.
  • the fifth output control node stabilizing switching element is turned on at the end of the vertical scanning period, whereby the potential of the output control node is set. Is pulled to the off-level power supply potential. As a result, the state of the output control node in each stage constituent circuit is cleared for each frame, and the reliability is improved.
  • the second output node stabilizing switching element in each stage constituent circuit, at the end of the vertical scanning period, the second output node stabilizing switching element is turned on, so that the potential of the output node is turned off. Pulled to the level power supply potential. As a result, the state of the output node in each stage constituent circuit is cleared for each frame, and the reliability is improved.
  • the eighth aspect of the present invention the occurrence of abnormal operation due to the clock operation immediately after the start of the vertical scanning period is suppressed, and the reliability for long-term operation is improved.
  • a thin film transistor including an oxide semiconductor is used. Since the oxide semiconductor has high mobility, the display device can have a narrower frame.
  • the effect of the ninth aspect of the present invention can be reliably achieved.
  • a display device including a shift register capable of obtaining the same effect as any one of the first to tenth aspects of the present invention is realized.
  • FIG. 2 is a circuit diagram illustrating a configuration of a stage configuration circuit (configuration of one stage of a shift register) in the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an overall configuration of an active matrix liquid crystal display device according to the first embodiment. It is a block diagram for demonstrating the structure of the gate driver in the said 1st Embodiment. It is a block diagram which shows the structure of the shift register in the gate driver in the said 1st Embodiment. It is a signal waveform diagram about the gate clock signal given to each stage (each stage constituent circuit) of the shift register in the first embodiment.
  • FIG. 1 is a circuit diagram illustrating a configuration of a stage configuration circuit (configuration of one stage of a shift register) in the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an overall configuration of an active matrix liquid crystal display device according to the first embodiment. It is a block diagram for demonstrating the structure of the gate
  • FIG. 6 is a diagram for describing input / output signals of an n-th stage constituent circuit of the shift register in the first embodiment. It is a signal waveform diagram about the scanning signal given to the gate bus line in the first embodiment. In the said 1st Embodiment, it is a figure for demonstrating the period when the scanning signal is a high level.
  • FIG. 6 is a diagram for explaining rising of a scanning signal in the first embodiment.
  • FIG. 3 is a signal waveform diagram of the entire liquid crystal display device during an operation period in the first embodiment.
  • FIG. 6 is a signal waveform diagram for describing an operation during a write operation period in the first embodiment.
  • FIG. 6 is a signal waveform diagram for describing an operation in a normal operation period in the first embodiment.
  • it is a figure for demonstrating the input-output signal of the n-th stage structure circuit of a shift register.
  • It is a signal waveform diagram of the whole during the operation period of the liquid crystal display device in the second embodiment.
  • FIG. 10 is a diagram for describing input / output signals of an n-th stage constituent circuit of a shift register in a third embodiment of the present invention. It is a circuit diagram which shows the structure (structure for one stage of a shift register) of the stage structure circuit in the said 3rd Embodiment.
  • it is a signal waveform diagram for demonstrating the operation
  • FIG. 25 is a signal waveform diagram for describing the operation of the stage constituent circuit having the configuration shown in FIG. 24. It is the figure which showed typically the structure of the stage structure circuit which has an output control node stabilization part. It is a circuit diagram which shows the structure of the stage structure circuit currently disclosed by the international publication 2011/067641 pamphlet.
  • FIG. 28 is a signal waveform diagram for describing the operation of the stage constituent circuit having the configuration shown in FIG. 27.
  • the gate terminal (gate electrode) of the thin film transistor corresponds to the control electrode
  • the drain terminal (drain electrode) corresponds to the first conduction terminal
  • the source terminal (source electrode) corresponds to the second conduction. Corresponds to the terminal.
  • all thin film transistors provided in the shift register are n-channel type.
  • FIG. 2 is a block diagram showing the overall configuration of the active matrix liquid crystal display device according to the first embodiment of the present invention. As shown in FIG. 2, this liquid crystal display device is common to a power supply 100, a DC / DC converter 110, a display control circuit 200, a source driver (video signal line driving circuit) 300, and a gate driver (scanning signal line driving circuit) 400. An electrode driving circuit 500 and a display unit 600 are provided. In the present embodiment, the gate driver 400 and the display unit 600 are formed on the same substrate (TFT substrate which is one of the two substrates constituting the liquid crystal panel).
  • the display unit 600 includes a plurality (j) of source bus lines (video signal lines) SL1 to SLj, a plurality (i) of gate bus lines (scanning signal lines) GL1 to GLi, and a plurality of these.
  • a plurality of (i ⁇ j) pixel forming portions provided corresponding to the intersections of the source bus lines SL1 to SLj and the plurality of gate bus lines GL1 to GLi are formed.
  • the plurality of pixel forming portions are arranged in a matrix to form a pixel array.
  • Each pixel forming portion includes a thin film transistor (TFT) 60 which is a switching element having a gate terminal connected to a gate bus line passing through a corresponding intersection and a source terminal connected to a source bus line passing through the intersection.
  • a pixel electrode connected to the drain terminal of the thin film transistor 60, a common electrode Ec which is a common electrode provided in common to the plurality of pixel formation portions, and a pixel provided in common to the plurality of pixel formation portions.
  • the liquid crystal layer is sandwiched between the electrode and the common electrode Ec.
  • a pixel capacitor Cp is constituted by a liquid crystal capacitor formed by the pixel electrode and the common electrode Ec.
  • an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to hold the electric charge in the pixel capacitor Cp with certainty.
  • the auxiliary capacitor is not directly related to the present invention, its description and illustration are omitted.
  • the thin film transistor 60 for example, an oxide TFT (a thin film transistor using an oxide semiconductor for a channel layer) can be employed.
  • the oxide TFT for example, a thin film transistor containing InGaZnO (indium gallium zinc oxide) can be given.
  • the present invention is not limited to this.
  • a thin film transistor using amorphous silicon as a channel layer can be employed.
  • the power supply 100 supplies a predetermined power supply voltage to the DC / DC converter 110, the display control circuit 200, and the common electrode drive circuit 500.
  • the DC / DC converter 110 generates a predetermined DC voltage for operating the source driver 300 and the gate driver 400 from the power supply voltage and supplies it to the source driver 300 and the gate driver 400.
  • the common electrode drive circuit 500 gives a predetermined potential Vcom to the common electrode Ec.
  • the display control circuit 200 receives an image signal DAT and a timing signal group TG such as a horizontal synchronization signal and a vertical synchronization signal sent from the outside, and receives a digital video signal DV and a source start pulse for controlling image display on the display unit 600.
  • a signal SSP, a source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, and a gate clock signal GCK are output.
  • the gate clock signal GCK is composed of four-phase clock signals (first gate clock signal GCK1 to fourth gate clock signal GCK4).
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal S for driving to the source bus lines SL1 to SLj. (1) to S (j) are applied.
  • the gate driver 400 Based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, the gate driver 400 applies the active scanning signals GOUT (1) to GOUT (i) to the gate bus lines GL1 to GLi. The application is repeated with one vertical scanning period as a cycle. In the following description, when it is not necessary to distinguish the i scanning signals GOUT (1) to GOUT (i) from each other, the scanning signal is simply represented by a symbol GOUT. A detailed description of the gate driver 400 will be given later.
  • the driving video signals S (1) to S (j) are applied to the source bus lines SL1 to SLj, and the scanning signals GOUT (1) to GOUT (i) are applied to the gate bus lines GL1 to GLi. Is applied, an image based on the image signal DAT sent from the outside is displayed on the display unit 600.
  • the gate driver 400 includes a shift register 410 having a plurality of stages.
  • a pixel matrix of i rows ⁇ j columns is formed, and each stage of the shift register 410 is provided so as to correspond to each row of the pixel matrix on a one-to-one basis.
  • the shift register 410 includes i stage configuration circuits SR (1) to SR (i). These i stage constituent circuits SR (1) to SR (i) are connected in series with each other.
  • FIG. 4 is a block diagram showing the configuration of the shift register 410 in the gate driver 400.
  • the shift register 410 includes i stage configuration circuits SR (1) to SR (i).
  • FIG. 4 shows stage configuration circuits SR (n ⁇ 2) to SR (n + 2) from the (n ⁇ 2) th stage to the (n + 2) th stage.
  • the stage constituent circuits are simply represented by the symbol SR.
  • the stage constituent circuit SR has an input terminal for receiving a clock signal CKA (hereinafter referred to as “first clock”), an input terminal for receiving a clock signal CKB (hereinafter referred to as “second clock”), and a clock.
  • An input terminal for receiving a signal CKC hereinafter referred to as “third clock”
  • an input terminal for receiving a clock signal CKD hereinafter referred to as “fourth clock”
  • a low-level DC power supply potential VSS are received.
  • An input terminal for output and an output terminal for outputting the scanning signal GOUT are provided.
  • the first to fourth gate clock signals GCK1 to GCK4 having waveforms as shown in FIG. 5 are given to the respective stages (each stage constituent circuit) of the shift register 410.
  • the first to fourth gate clock signals GCK1 to GCK4 are out of phase by 90 degrees as shown in FIG.
  • the second gate clock signal GCK2 is given as the first clock CKA
  • the first gate clock signal GCK1 is given as the second clock CKB
  • the fourth gate clock signal GCK4 is provided as the third clock CKC
  • the third gate clock signal GCK3 is provided as the fourth clock CKD.
  • the fourth gate clock signal GCK4 is supplied as the first clock CKA, and the third gate clock signal GCK3 is supplied as the second clock CKB.
  • the first gate clock signal GCK1 is given as the third clock CKC, and the second gate clock signal GCK2 is given as the fourth clock CKD.
  • the first gate clock signal GCK1 is given as the first clock CKA
  • the second gate clock signal GCK2 is given as the second clock CKB
  • the fourth gate clock signal GCK4 is provided as the fourth clock CKD.
  • the third gate clock signal GCK3 is given as the first clock CKA
  • the fourth gate clock signal GCK4 is given as the second clock CKB
  • the signal GCK2 is given as the third clock CKC
  • the first gate clock signal GCK1 is given as the fourth clock CKD.
  • the scanning signal GOUT (n ⁇ 1) output from the previous stage SR (n ⁇ 1) is the first control signal SA1 and
  • the scanning signal GOUT (n + 1) output as the set signal S and output from the next stage SR (n + 1) is supplied as the second control signal SA2, and the scanning signal GOUT output from the stage SR (n + 3) after the third stage. (N + 3) is given as the reset signal R.
  • the gate start pulse signal GSP is supplied as the first control signal SA1 and the set signal S.
  • the scanning signal GOUT (n) output from an arbitrary stage (here, the n-th stage) is applied to the corresponding gate bus line, and as a reset signal R It is given to the previous stage SR (n-3) three stages, given to the previous stage SR (n-1) as the second control signal SA2, and next stage SR (n + 1) as the first control signal SA1 and the set signal S Given to.
  • the gate clock signal Based on the clock operation of GCK (first to fourth gate clock signals GCK1 to GCK4), the shift pulse included in the scanning signal GOUT output from each stage constituent circuit SR is the first stage constituent circuit SR (1).
  • the scanning signal GOUT output from each stage constituent circuit SR is sequentially set to the high level. As a result, the scanning signal GOUT having a waveform as shown in FIG. 7 is applied to the gate bus line in the display unit 600.
  • the scanning signal GOUT (n) output from an arbitrary stage here, the n-th stage
  • the scanning signal GOUT (n ⁇ 1) output from the previous stage is also at a high level
  • Tb of the period in which the scanning signal GOUT (n) is at a high level The scanning signal GOUT (n + 1) output from is also at a high level.
  • preliminary charge to the pixel capacitor is performed in the first half period Ta, and main charge to the pixel capacitor is performed in the second half period Tb.
  • FIG. 1 is a circuit diagram showing the configuration of the stage configuration circuit SR (configuration of one stage of the shift register 410) in the present embodiment.
  • the stage configuration circuit SR includes six thin film transistors M1 to M6 and one capacitor CAP.
  • the stage configuration circuit SR has one output terminal (output node) 40 and eight input terminals 41 to 48 in addition to the input terminal for the low-level DC power supply potential VSS.
  • the input terminal that receives the first clock CKA is denoted by reference numeral 41
  • the input terminal that receives the second clock CKB is denoted by reference numeral 42
  • the input terminal that receives the third clock CKB is denoted by reference numeral 43.
  • the input terminal that receives the fourth clock CKD is denoted by reference numeral 44.
  • An input terminal that receives the set signal S is denoted by reference numeral 45
  • an input terminal that receives the reset signal R is denoted by reference numeral 46
  • an input terminal that receives the first control signal SA1 is denoted by reference numeral 47
  • the input terminal that receives the second control signal SA2 is denoted by reference numeral 48.
  • the output terminal 40 is a terminal for outputting the scanning signal GOUT.
  • the thin film transistors M1 to M6 of the stage configuration circuit SR are realized by the same type of thin film transistor (for example, a thin film transistor including InGaZnO) as the thin film transistor 60 (see FIG. 2) in the pixel formation portion described above.
  • the gate terminal of the thin film transistor M1, the source terminal of the thin film transistor M3, the drain terminal of the thin film transistor M4, the drain terminal of the thin film transistor M5, the drain terminal of the thin film transistor M6, and one end of the capacitor CAP are connected to each other via the output control node NA.
  • the gate terminal is connected to the output control node NA, the drain terminal is connected to the input terminal 41, and the source terminal is connected to the output terminal 40.
  • the gate terminal is connected to the input terminal 42, the drain terminal is connected to the output terminal 40, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal and the drain terminal are connected to the input terminal 45 (that is, diode connection), and the source terminal is connected to the output control node NA.
  • the gate terminal is connected to the input terminal 46, the drain terminal is connected to the output control node NA, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the input terminal 44, the drain terminal is connected to the output control node NA, and the source terminal is connected to the input terminal 47.
  • the gate terminal is connected to the input terminal 43, the drain terminal is connected to the output control node NA, and the source terminal is connected to the input terminal 48.
  • the capacitor CAP has one end connected to the output control node NA and the other end connected to the output terminal 40.
  • the thin film transistor M1 applies the potential of the first clock CKA to the output terminal 40 when the potential of the output control node NA is at a high level.
  • the thin film transistor M2 changes the potential of the output terminal 40 (the potential of the scanning signal GOUT) toward the VSS potential when the second clock CKB is at a high level.
  • the thin film transistor M3 changes the potential of the output control node NA toward the high level when the set signal S is at the high level.
  • the thin film transistor M4 changes the potential of the output control node NA toward the VSS potential when the reset signal R is at a high level.
  • the thin film transistor M5 changes the potential of the output control node NA toward the VSS potential when the fourth clock CKD is at a high level during the normal operation period.
  • the thin film transistor M6 changes the potential of the output control node NA toward the VSS potential when the third clock CKC is at a high level during the normal operation period.
  • the capacitor CAP functions as a compensation capacitor for maintaining the potential of the output control node NA at a high level during the write operation period.
  • an output control switching element is realized by the thin film transistor M1, and a first output node stabilization switching element is realized by the thin film transistor M2. Further, an output control node turn-on unit is realized by the thin film transistor M3, and an output control node turn-off unit is realized by the thin film transistor M4. Further, the output control node stabilizing unit 420 is realized by the thin film transistors M5 and M6.
  • FIG. 10 is an overall signal waveform diagram during the operation period of the liquid crystal display device.
  • FIG. 11 is a signal waveform diagram for explaining the operation in the write operation period. Note that the waveforms M1 to M6 in FIG. 11 indicate whether the thin film transistors M1 to M6 are on or off.
  • the set signal S changes from low level to high level. Since the thin film transistor M3 is diode-connected as shown in FIG. 1, the thin film transistor M3 is turned on by the pulse of the set signal S. Further, at time t0, the fourth clock CKD changes from the low level to the high level. As a result, the thin film transistor M5 is turned on. At this time, the first control signal SA1 is at a high level. As described above, at time t0, the potential of the output control node NA increases and the thin film transistor M1 is turned on. Here, during the period from the time point t0 to the time point t1, the reset signal R and the third clock CKC are at a low level. Therefore, during this period, the thin film transistor M4 and the thin film transistor M6 are maintained in an off state. Therefore, the potential of the output control node NA does not decrease during this period.
  • the first clock CKA changes from low level to high level.
  • the potential of the output terminal 40 increases as the potential of the input terminal 41 increases.
  • the capacitor CAP is provided between the output control node NA and the output terminal 40, the potential of the output control node NA increases as the potential of the output terminal 40 increases (output control node). NA is bootstrapped).
  • a large voltage is applied to the gate terminal of the thin film transistor M1, and the potential of the scanning signal GOUT is brought to a level sufficient for the gate bus line connected to the output terminal 40 of the stage configuration circuit SR to be selected.
  • the thin film transistor M2 is maintained in the off state. Therefore, the potential of the scanning signal GOUT does not decrease during this period.
  • the reset signal R is at the low level, so that the thin film transistor M4 is maintained in the off state. Therefore, the potential of the output control node NA does not decrease during this period.
  • the thin film transistor M5 since the fourth clock CKD is at the high level during the period from the time point t1 to the time point t2, the thin film transistor M5 is in the on state. However, since the first control signal SA1 (scanning signal output from the previous stage) is at a high level during this period, the potential of the output control node NA is attributed to the fact that the thin film transistor M5 is on. Will not drop. Further, since the third clock CKC is at a high level during the period from the time point t2 to the time point t3, the thin film transistor M6 is in an on state. However, during this period, the second control signal SA2 (scanning signal output from the next stage) is at a high level, so that the thin film transistor M6 is in the ON state, which causes the output control node NA to The potential does not decrease.
  • the first clock CKA changes from the high level to the low level.
  • the potential of the output terminal 40 decreases as the potential of the input terminal 41 decreases.
  • the potential of the output control node NA also decreases via the capacitor CAP.
  • the second clock CKB changes from the low level to the high level.
  • the thin film transistor M2 is turned on.
  • the potential of the scanning signal GOUT becomes a low level.
  • the reset signal R changes from low level to high level.
  • the thin film transistor M4 is turned on.
  • the fourth clock CKD changes from the low level to the high level.
  • the thin film transistor M5 is turned on.
  • the first control signal SA1 is at a low level.
  • the potential of the output control node NA becomes low level.
  • each stage configuration circuit SR By performing the operation as described above in each stage configuration circuit SR, a plurality of gate bus lines GL1 to GLi provided in the liquid crystal display device are sequentially selected, and writing to the pixel capacitors row by row. Is done.
  • FIG. 12 is a signal waveform diagram for explaining the operation in the normal operation period.
  • the scanning signal GOUT (n ⁇ 1) output from the previous stage is given to each stage configuration circuit SR as the first control signal SA1
  • the scanning signal GOUT (n + 1) output from the next stage is received.
  • This is given as the second control signal SA2.
  • the first control signal SA1 and the second control signal SA2 are maintained at a low level (VSS potential).
  • the first clock CKA changes from a low level to a high level every predetermined period during the normal operation period. Therefore, at time t11 and time t12 in FIG.
  • the potential of the output control node NA may vary due to the parasitic capacitance of the thin film transistor M1. That is, during the normal operation period, the potential of the output control node NA can be in a floating state every predetermined period. However, during the period in which the third clock CKC is at a high level, the thin film transistor M6 is turned on, so that the potential of the output control node NA is drawn to the VSS potential. Further, since the thin film transistor M5 is in the on state during the period in which the fourth clock CKD is at the high level, the potential of the output control node NA is drawn to the VSS potential.
  • the potential of the output control node NA is maintained at the VSS potential. Note that during the period in which the second clock CKB is at a high level, the thin film transistor M2 is turned on, and the potential of the output terminal 40 (the potential of the scanning signal GOUT) is pulled to the VSS potential.
  • the stage configuration circuit SR constituting the shift register 410 in the gate driver 400 has two thin film transistors (the drain terminal is connected to the output control node NA, and the fourth clock CKD is applied to the gate terminal).
  • the drain terminal is connected to the output control node NA, and the third clock CKC is connected to the gate terminal.
  • the thin film transistor M5 is configured so that the scanning signal output from the previous stage is supplied to the source terminal as the first control signal SA1. Is provided, and an output control node stabilization unit 420 configured by a thin film transistor M6) configured to supply a scanning signal output from the next stage to a source terminal as a second control signal SA2.
  • the first control signal SA1 and the second control signal SA2 are at a low level, based on the clock operations of the third clock CKC and the fourth clock CKD.
  • the thin film transistors M5 and M6 are alternately turned on.
  • the first control signal SA1 is at a high level when the fourth clock CKD is at a high level
  • the second control signal SA1 is at a high level when the third clock CKC is at a high level.
  • the control signal SA2 is at a high level. Therefore, the potential of the output control node NA does not decrease during the write operation period due to the provision of the thin film transistors M5 and M6.
  • the output control node stabilizing unit 950 is realized using a large number of thin film transistors (for example, four thin film transistors in the conventional configuration shown in FIG. 27).
  • the output control node stabilizing unit 420 is realized using only two thin film transistors M5 and M6. Therefore, the area occupied by the gate driver 400 on the TFT substrate can be reduced, and the frame can be made narrower than before.
  • the number of thin film transistors constituting the output control node stabilizing unit is reduced, the load of the thin film transistors connected to the output control node NA is reduced, and the reliability for long-term operation is improved as compared with the conventional case.
  • unlike the conventional configuration no through current flows through the thin film transistor. For this reason, power consumption is reduced as compared with the prior art.
  • a gate driver scanning signal line driving circuit that can achieve a narrow frame and low power consumption of a display device while ensuring reliability for long-term operation is realized.
  • Second Embodiment> A second embodiment of the present invention will be described. Only differences from the first embodiment will be described.
  • FIG. 13 is a block diagram showing a configuration of the shift register 410 in the gate driver 400 in the present embodiment.
  • the scanning signal output from the previous stage is given as the set signal S to each stage constituent circuit SR.
  • the scanning signal output from the previous two stages is supplied as the set signal S to each stage constituent circuit SR. That is, as shown in FIG. 14, for an arbitrary stage (here, n-th stage), the scanning signal GOUT (n ⁇ 1) output from the previous stage SR (n ⁇ 1) is used as the first control signal SA1.
  • the scanning signal GOUT (n ⁇ 2) output from the previous stage SR (n ⁇ 2) is applied as the set signal S, and the scanning signal GOUT (n + 1) output from the next stage SR (n + 1). Is provided as the second control signal SA2, and the scanning signal GOUT (n + 3) output from the stage SR (n + 3) after the third stage is provided as the reset signal R.
  • the scanning signal GOUT (n) output from an arbitrary stage here, the n-th stage
  • the scanning signal GOUT (n) output from an arbitrary stage (here, the n-th stage) is applied to the corresponding gate bus line, and as a reset signal R Is provided to the previous stage SR (n-3) as the second control signal SA2, and is provided to the previous stage SR (n + 1) as the first control signal SA1.
  • the set signal S is given to the stage SR (n + 2) after the second stage.
  • FIG. 15 is a circuit diagram showing the configuration of the stage configuration circuit SR (configuration of one stage of the shift register 410) in the present embodiment.
  • a thin film transistor M7 is provided between the output control node NA and the thin film transistor M6.
  • the gate terminal is connected to the input terminal 41
  • the drain terminal is connected to the output control node NA
  • the source terminal is connected to the drain terminal of the thin film transistor M6.
  • the drain terminal of the thin film transistor M6 is connected to the source terminal of the thin film transistor M7.
  • the scanning signal GOUT (n ⁇ 2) output from the stage SR (n ⁇ 2) preceding by two stages is supplied to the input terminal 45 as the set signal S.
  • the output control node stabilizing unit 421 is realized by the thin film transistor M5, the thin film transistor M6, and the thin film transistor M7.
  • FIG. 16 is an overall signal waveform diagram during the operation period of the liquid crystal display device.
  • FIG. 17 is a signal waveform diagram for describing the operation in the write operation period.
  • the set signal S changes from the low level to the high level. Since the thin film transistor M3 is diode-connected as shown in FIG. 15, the thin film transistor M3 is turned on by the pulse of the set signal S, and the potential of the output control node NA rises. As a result, the thin film transistor M1 is turned on.
  • the reset signal R, the fourth clock CKD, and the first clock CKA are at the low level. Therefore, during this period, the thin film transistor M4, the thin film transistor M5, and the thin film transistor M7 are maintained in an off state. Therefore, the potential of the output control node NA does not decrease during this period.
  • the fourth clock CKD changes from the low level to the high level.
  • the thin film transistor M5 is turned on.
  • the first control signal SA1 is at a high level.
  • the reset signal R and the first clock CKA are at a low level. Therefore, during this period, the thin film transistor M4 and the thin film transistor M7 are maintained in an off state. As described above, during this period, the potential of the output control node NA is maintained at the potential immediately before the time point t21.
  • the first clock CKA changes from the low level to the high level.
  • the potential of the output terminal 40 increases as the potential of the input terminal 41 increases.
  • the capacitor CAP is provided between the output control node NA and the output terminal 40, the potential of the output control node NA increases as the potential of the output terminal 40 increases (output control node). NA is bootstrapped).
  • a large voltage is applied to the gate terminal of the thin film transistor M1, and the potential of the scanning signal GOUT is brought to a level sufficient for the gate bus line connected to the output terminal 40 of the stage configuration circuit SR to be selected.
  • the thin film transistor M2 is maintained in the off state. Therefore, the potential of the scanning signal GOUT does not decrease during this period.
  • the reset signal R is at the low level, so that the thin film transistor M4 is maintained in the off state. Therefore, the potential of the output control node NA does not decrease during this period.
  • the thin film transistor M5 is in an on state.
  • the first control signal SA1 scanning signal output from the previous stage
  • the potential of the output control node NA is attributed to the fact that the thin film transistor M5 is on. Will not drop.
  • both the third clock CKC and the first clock CKA are at the high level during the period from the time point t23 to the time point t24
  • both the thin film transistor M6 and the thin film transistor M7 are in the on state.
  • the second control signal SA2 scanning signal output from the next stage
  • both the thin film transistors M6 and M7 are on. The potential of the output control node NA does not decrease.
  • the first clock CKA changes from the high level to the low level.
  • the potential of the output terminal 40 decreases as the potential of the input terminal 41 decreases.
  • the potential of the output control node NA also decreases via the capacitor CAP.
  • the second clock CKB changes from the low level to the high level.
  • the thin film transistor M2 is turned on.
  • the potential of the scanning signal GOUT becomes a low level.
  • the reset signal R changes from low level to high level.
  • the thin film transistor M4 is turned on.
  • the fourth clock CKD changes from the low level to the high level.
  • the thin film transistor M5 is turned on.
  • the first control signal SA1 is at a low level. From the above, at time t25, the potential of the output control node NA becomes low level.
  • each stage configuration circuit SR By performing the operation as described above in each stage configuration circuit SR, a plurality of gate bus lines GL1 to GLi provided in the liquid crystal display device are sequentially selected, and writing to the pixel capacitors row by row. Is done.
  • FIG. 18 is a signal waveform diagram for explaining the operation in the normal operation period.
  • the scanning signal GOUT (n ⁇ 1) output from the previous stage is given to each stage configuration circuit SR as the first control signal SA1
  • the scanning signal GOUT (n + 1) output from the next stage is received.
  • This is given as the second control signal SA2. Therefore, as shown in FIG. 18, during the normal operation period, the first control signal SA1 and the second control signal SA2 are maintained at a low level (VSS potential).
  • the first clock CKA changes from a low level to a high level every predetermined period during the normal operation period.
  • the potential of the output control node NA may vary at time t31 or time t32 in FIG. 18 due to the parasitic capacitance of the thin film transistor M1. That is, during the normal operation period, the potential of the output control node NA can be in a floating state every predetermined period. However, during the period in which both the third clock CKC and the first clock CKA are at the high level, since both the thin film transistor M6 and the thin film transistor M7 are in the on state, the potential of the output control node NA is pulled to the VSS potential. It is. Further, since the thin film transistor M5 is in the on state during the period in which the fourth clock CKD is at the high level, the potential of the output control node NA is drawn to the VSS potential. As described above, as in the first embodiment, even if noise resulting from the clock operation of the first clock CKA enters the output control node NA during the normal operation period, the potential of the output control node NA is the VSS potential. Maintained.
  • the input terminal 48 for receiving the scanning signal GOUT (n + 1) output from the next stage and the output control node NA are electrically connected when both the thin film transistor M6 and the thin film transistor M7 are on. Connected. Therefore, even if the third clock CKC is at a high level, if the first clock CKA is at a low level, the thin film transistor M7 is turned off, so that the input terminal 48 and the output control node NA are electrically disconnected. Maintained. Since the stage configuration circuit SR has such a configuration, the period for precharging the output control node NA can be made longer than that in the first embodiment.
  • each stage configuration circuit SR it is possible to use the scanning signal GOUT (n ⁇ 2) output from the previous stage as the set signal S for precharging the output control node NA. . In this way, the precharge period of the output control node NA becomes longer, so that the reliability for long-term operation is improved.
  • the stage configuration circuit SR in the present embodiment receives an input terminal for receiving the first clock CKA, an input terminal for receiving the second clock CKB, and the third clock CKC.
  • An input terminal for receiving the fourth clock CKD an input terminal for receiving the low-level DC power supply potential VSS, an input terminal for receiving the set signal S, and a reset signal R
  • An input terminal for output and an output terminal for outputting the scanning signal GOUT are provided.
  • FIG. 20 is a circuit diagram showing the configuration of the stage configuration circuit SR (configuration of one stage of the shift register 410) in the present embodiment.
  • a thin film transistor M8 in addition to the components in the second embodiment, a thin film transistor M8, a thin film transistor M9, and a thin film transistor M10 are provided.
  • the input terminal that receives the initialization signal SP is denoted by reference numeral 51
  • the input terminal that receives the clear signal CLR is denoted by reference numeral 52.
  • the gate terminal is connected to the input terminal 51, the drain terminal is connected to the output control node NA, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the input terminal 52, the drain terminal is connected to the output control node NA, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the gate terminal is connected to the input terminal 52, the drain terminal is connected to the output terminal 40, and the source terminal is connected to the input terminal for the DC power supply potential VSS.
  • the thin film transistor M8 changes the potential of the output control node NA toward the VSS potential when the initialization signal SP is at a high level.
  • the thin film transistor M9 changes the potential of the output control node NA toward the VSS potential when the clear signal CLR is at a high level.
  • the thin film transistor M10 changes the potential of the output terminal 40 (the potential of the scanning signal GOUT) toward the VSS potential when the clear signal CLR is at a high level.
  • the output control node stabilization unit 422 is realized by the thin film transistors M5 to M9, and the second output node stabilization switching element is realized by the thin film transistor M10.
  • the stage configuration circuit SR in the present embodiment is supplied with a signal that becomes a high level only during a predetermined period immediately after the start of the vertical scanning period as the initialization signal SP, and is set to a high level only during the predetermined period at the end of the vertical scanning period. Is given as the clear signal CLR. Accordingly, the same operation as that of the second embodiment is performed except for immediately after the start of the vertical scanning period and at the end of the vertical scanning period.
  • FIG. 21 is a signal waveform diagram for explaining the operation immediately after the start of the vertical scanning period.
  • the initialization signal SP changes from the low level to the high level immediately after the vertical scanning period is started by the rise of the gate start pulse signal GSP.
  • the thin film transistor M8 is turned on, and the potential of the output control node NA is pulled to the VSS potential.
  • the output control node NA is to be precharged based on the set signal S, it is necessary to prevent the potential of the output control node NA from being lowered via the thin film transistor M8.
  • FIG. 22 is a signal waveform diagram for explaining the operation at the end of the vertical scanning period.
  • the clear signal CLR changes from the low level to the high level. Change. Accordingly, the thin film transistor M9 and the thin film transistor M10 are turned on.
  • the thin film transistor M9 is turned on, the potential of the output control node NA is pulled to the VSS potential. Further, when the thin film transistor M10 is turned on, the potential of the output terminal 40 (the potential of the scanning signal GOUT) is pulled to the VSS potential.
  • the timing at which the initialization signal SP rises is shown in FIG. 21 as long as the increase in the potential of the output control node NA due to the rise of the first clock CKA immediately after the start of the vertical scanning period can be suppressed.
  • the timing may be different from the timing.
  • the clear signal CLR is raised at a timing different from the timing shown in FIG. 22 as long as it is before the next vertical scanning period is started after writing to the pixel capacitor in the last row. There may be.
  • each stage configuration circuit SR noise is mixed into the output control node NA by the first clock CKA rising immediately before the third clock CKC and the fourth clock CKD rise immediately after the start of the vertical scanning period. Even so, the potential of the output control node NA is pulled to the VSS potential when the thin film transistor M8 is turned on. As a result, the occurrence of an abnormal operation due to the clock operation of the first clock CKA immediately after the start of the vertical scanning period is suppressed.
  • the thin film transistor M9 and the thin film transistor M10 are turned on, so that the potential of the output control node NA and the potential of the output terminal 40 (the potential of the scanning signal GOUT) are pulled to the VSS potential. It is. As a result, the internal state of each stage constituent circuit SR is cleared for each frame, and the reliability of the liquid crystal display device is improved.
  • thin film transistors M8 to M10 are provided in addition to the components in the second embodiment (see FIG. 15).
  • the components in the first embodiment In addition to the configuration shown in FIG. 1, thin film transistors M8 to M10 may be provided.
  • the precharge period of the output control node NA cannot be lengthened. Therefore, in consideration of reliability with respect to long-term operation, it is preferable to adopt the configuration shown in FIG.
  • the thin film transistors M8 to M10 are added to the components in the first embodiment or the components in the second embodiment.
  • the structure which provides can also be employ
  • liquid crystal display device has been described as an example, but the present invention is not limited to this.
  • the present invention can also be applied to other display devices such as an organic EL (Electro Luminescence).

Abstract

 長期動作に対する信頼性を確保しつつ表示装置の狭額縁化・低消費電力化を図ることのできる走査信号線駆動用のシフトレジスタを実現する。 各段構成回路内の出力制御ノード安定部(420)は、前段から出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化する第4クロック(CKD)がゲート端子に与えられ、出力制御ノード(NA)にドレイン端子が接続され、前段から出力される走査信号がソース端子に与えられる薄膜トランジスタ(M5)と、次段から出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化する第3クロック(CKC)がゲート端子に与えられ、出力制御ノード(NA)にドレイン端子が接続され、次段から出力される走査信号がソース端子に与えられる薄膜トランジスタ(M6)とによって構成される。

Description

シフトレジスタおよびそれを備える表示装置
 本発明は、アクティブマトリクス型の表示装置に関し、更に詳しくは、アクティブマトリクス型の表示装置の表示部に配設された走査信号線を駆動する走査信号線駆動回路内のシフトレジスタに関する。
 従来より、複数本のソースバスライン(映像信号線)および複数本のゲートバスライン(走査信号線)を含む表示部を備えたアクティブマトリクス型の液晶表示装置が知られている。このような液晶表示装置に関し、従来、ゲートバスラインを駆動するためのゲートドライバ(走査信号線駆動回路)は、液晶パネルを構成する基板の周辺部にIC(Integrated Circuit)チップとして搭載されることが多かった。しかしながら、近年、液晶パネルを構成する2枚のガラス基板のうちの一方の基板であるTFT基板上に直接的にゲートドライバを形成することが徐々に多くなされている。このようなゲートドライバは「モノリシックゲートドライバ」などと呼ばれている。
 ところで、アクティブマトリクス型の液晶表示装置の表示部には、複数本のソースバスラインと、複数本のゲートバスラインと、それら複数本のソースバスラインと複数本のゲートバスラインとの交差点にそれぞれ対応して設けられた複数個の画素形成部とが形成されている。上記複数個の画素形成部はマトリクス状に配置されて画素アレイを構成している。各画素形成部は、対応する交差点を通過するゲートバスラインにゲート端子が接続されるとともに当該交差点を通過するソースバスラインにソース端子が接続されたスイッチング素子である薄膜トランジスタや、画素電圧値を保持するための画素容量などを含んでいる。アクティブマトリクス型の液晶表示装置には、また、上述したゲートドライバと、ソースバスラインを駆動するためのソースドライバ(映像信号線駆動回路)とが設けられている。
 画素電圧値を示す映像信号はソースバスラインによって伝達される。しかしながら、各ソースバスラインは複数行分の画素電圧値を示す映像信号を一時(同時)に伝達することができない。このため、マトリクス状に配置された上述の画素形成部内の画素容量への映像信号の書き込み(充電)は1行ずつ順次に行われる。そこで、複数本のゲートバスラインが所定期間ずつ順次に選択されるように、ゲートドライバは複数段からなるシフトレジスタによって構成されている。そして、シフトレジスタの各段から順次にアクティブな走査信号が出力されることによって、上述のように、画素容量への映像信号の書き込みが1行ずつ順次に行われる。なお、本明細書においては、シフトレジスタの各段を構成する回路のことを「段構成回路」という。
 図24は、従来の最も簡単な構成の段構成回路の回路図である。この段構成回路は、4個の薄膜トランジスタT81~T84と1個のキャパシタCAPとを備えている。また、この段構成回路は、ローレベルの直流電源電位VSS用の入力端子のほか、1個の出力端子80と4個の入力端子81~84とを有している。薄膜トランジスタT81のゲート端子,薄膜トランジスタT83のソース端子,および薄膜トランジスタT84のドレイン端子は互いに接続されている。これらが互いに接続されている領域のことを「出力制御ノード」という。出力制御ノードには、符号NAを付している。なお、一般的には、ドレインとソースのうち電位の高い方がドレインと呼ばれているが、本明細書の説明では、一方をドレイン,他方をソースと定義するので、ドレイン電位よりもソース電位の方が高くなることもある。また、ローレベルの直流電源電位VSSについての電位の大きさのことを便宜上「VSS電位」という。
 出力端子80からは、この段構成回路に接続されているゲートバスラインに与えるための走査信号GOUTが出力される。入力端子81には、第1クロックCKAが与えられる。入力端子82には、第2クロックCKBが与えられる。なお、第1クロックCKAと第2クロックCKBとは位相が180度ずれている。入力端子83には、前段の段構成回路から出力される走査信号がセット信号Sとして与えられる。入力端子84には、次段の段構成回路から出力される走査信号がリセット信号Rとして与えられる。なお、以下においては、「前段の段構成回路」のことを単に「前段」と略記し、「次段の段構成回路」のことを単に「次段」と略記することもある。
 薄膜トランジスタT81については、ゲート端子は出力制御ノードNAに接続され、ドレイン端子は入力端子81に接続され、ソース端子は出力端子80に接続されている。薄膜トランジスタT82については、ゲート端子は入力端子82に接続され、ドレイン端子は出力端子80に接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT83については、ゲート端子およびドレイン端子は入力端子83に接続され(すなわち、ダイオード接続となっている)、ソース端子は出力制御ノードNAに接続されている。薄膜トランジスタT84については、ゲート端子は入力端子84に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。キャパシタCAPについては、一端は出力制御ノードNAに接続され、他端は出力端子80に接続されている。
 次に、図25を参照しつつ、図24に示す構成の段構成回路の動作について説明する。なお、以下においては、各段構成回路に関し、対応するゲートバスラインに接続されている画素形成部内の画素容量への書き込み(充電)のための動作が行われる期間のことを「書込動作期間」という。また、書込動作期間以外の期間のことを「通常動作期間」という。図25においては、時点t80~時点t82の期間が書込動作期間であり、時点t80以前の期間および時点t82以降の期間が通常動作期間である。
 まず、書込動作期間の動作について説明する。時点t80になると、入力端子83にセット信号Sのパルスが与えられる。薄膜トランジスタT83は図24に示すようにダイオード接続となっているので、このセット信号Sのパルスによって薄膜トランジスタT83はオン状態となり、キャパシタCAPが充電される。これにより、出力制御ノードNAの電位が上昇し、薄膜トランジスタT81がオン状態となる。ここで、時点t80~時点t81の期間中、第1クロックCKAはローレベルとなっている。このため、この期間中、走査信号GOUTはローレベルで維持される。また、時点t80~時点t81の期間中、リセット信号Rはローレベルとなっているので、薄膜トランジスタT84はオフ状態で維持される。このため、この期間中に出力制御ノードNAの電位が低下することはない。
 時点t81になると、第1クロックCKAがローレベルからハイレベルに変化する。このとき、薄膜トランジスタT81はオン状態となっているので、入力端子81の電位の上昇とともに出力端子80の電位が上昇する。ここで、図24に示すように出力制御ノードNA-出力端子80間にはキャパシタCAPが設けられているので、出力端子80の電位の上昇とともに出力制御ノードNAの電位も上昇する(出力制御ノードNAがブートストラップされる)。その結果、薄膜トランジスタT81のゲート端子には大きな電圧が印加され、走査信号GOUTの電位は、第1クロックCKAのハイレベルの電位にまで上昇する。これにより、この段構成回路の出力端子80に接続されているゲートバスラインが選択状態となる。なお、時点t81~時点t82の期間中、第2クロックCKBはローレベルとなっている。このため、薄膜トランジスタT82はオフ状態で維持されるので、この期間中に走査信号GOUTの電位が低下することはない。
 時点t82になると、第1クロックCKAはハイレベルからローレベルに変化する。これにより、入力端子81の電位の低下とともに出力端子80の電位は低下し、キャパシタCAPを介して出力制御ノードNAの電位も低下する。また、時点t82には、入力端子84にリセット信号Rのパルスが与えられる。これにより、薄膜トランジスタT84はオン状態となる。その結果、出力制御ノードNAの電位はハイレベルからローレベルに変化する。また、時点t82には、第2クロックCKBがローレベルからハイレベルに変化する。これにより、薄膜トランジスタT82はオン状態となる。その結果、走査信号GOUTの電位はローレベルとなる。
 以上のようにして、書込動作期間のうちの後半の期間に、この段構成回路に対応するゲートバスラインにアクティブな走査信号GOUTが与えられる。任意の段の段構成回路から出力された走査信号GOUTは、セット信号Sとして次段に与えられる。これにより、液晶表示装置に設けられている複数本のゲートバスラインが順次に選択状態となり、1行ずつ画素容量への書き込みが行われる。
 ところが、上記構成によると、通常動作期間に、クロック信号(第1クロックCKA)に起因するノイズによって、ローレベルで固定されるべき走査信号GOUTの電位に変動が生じることがある。これについて、以下に説明する。シフトレジスタを構成する段構成回路内の薄膜トランジスタの各電極間には寄生容量が形成される。従って、図24に示す構成においては、薄膜トランジスタT81のゲート-ドレイン間やゲート-ソース間にも寄生容量が形成される。このため、第1クロックCKAがローレベルからハイレベルに変化すると、寄生容量を介して薄膜トランジスタT81のゲート電位が上昇する。すなわち、出力制御ノードNAの電位が、ローレベルで固定されるべきにもかかわらず、いくらか上昇する(出力制御ノードNAの電位が浮く)。これにより、薄膜トランジスタT81にリーク電流が流れ、走査信号GOUTの電位に変動が生じる。図25から把握されるように、液晶表示装置の動作期間を通じて、第1クロックCKAは所定の周期でローレベルからハイレベルに変化する。従って、通常動作期間中、所定の周期で走査信号GOUTの電位に変動が生じる。その結果、異常動作や消費電力の増大が引き起こされる。
 そこで、一般的に、通常動作期間を通じて出力制御ノードNAの電位をローレベルで維持するための回路(以下、「出力制御ノード安定部」という。)が段構成回路に設けられている。図26は、出力制御ノード安定部を有する段構成回路の構成を模式的に示した図である。図26に示すように、段構成回路には、バッファ910,走査信号安定部920,出力制御ノードセット部930,出力制御ノードリセット部940に加えて、出力制御ノード安定部950が設けられている。なお、図24における薄膜トランジスタT81,薄膜トランジスタT82,薄膜トランジスタT83,および薄膜トランジスタT84がそれぞれ図26におけるバッファ910,走査信号安定部920,出力制御ノードセット部930,および出力制御ノードリセット部940に相当する。
 出力制御ノード安定部を有する従来の段構成回路の具体的な構成については、例えば、国際公開2011/067641号パンフレットに開示されている。図27は、国際公開2011/067641号パンフレットに開示されている段構成回路の構成を示す回路図である。図27に示す段構成回路は、10個の薄膜トランジスタT91~T100と1個のキャパシタCAPとを備えている。また、この段構成回路は、1個の出力端子90と6個の入力端子91~96とを有している。薄膜トランジスタT91のゲート端子と薄膜トランジスタT92のドレイン端子と薄膜トランジスタT95のソース端子と薄膜トランジスタT96のゲート端子と薄膜トランジスタT97のドレイン端子とは、出力制御ノードとしての第1制御ノードNAを介して互いに接続されている。薄膜トランジスタT92のゲート端子と薄膜トランジスタT93のソース端子と薄膜トランジスタT94のドレイン端子と薄膜トランジスタT96のドレイン端子と薄膜トランジスタT100のゲート端子とは互いに接続されている。これらが互いに接続されている領域のことを「第2制御ノード」という。第2制御ノードには、符号NBを付している。
 薄膜トランジスタT91については、ゲート端子は第1制御ノードNAに接続され、ドレイン端子は入力端子91に接続され、ソース端子は出力端子90に接続されている。薄膜トランジスタT92については、ゲート端子は第2制御ノードNBに接続され、ドレイン端子は第1制御ノードNAに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT93については、ゲート端子およびドレイン端子は入力端子93に接続され(すなわち、ダイオード接続となっている)、ソース端子は第2制御ノードNBに接続されている。薄膜トランジスタT94については、ゲート端子は入力端子94に接続され、ドレイン端子は第2制御ノードNBに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT95については、ゲート端子およびドレイン端子は入力端子95に接続され(すなわち、ダイオード接続となっている)、ソース端子は第1制御ノードNAに接続されている。薄膜トランジスタT96については、ゲート端子は第1制御ノードNAに接続され、ドレイン端子は第2制御ノードNBに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT97については、ゲート端子は入力端子96に接続され、ドレイン端子は第1制御ノードNAに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT98については、ゲート端子は入力端子96に接続され、ドレイン端子は出力端子90に接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT99については、ゲート端子は入力端子92に接続され、ドレイン端子は出力端子90に接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタT100については、ゲート端子は第2制御ノードNBに接続され、ドレイン端子は出力端子90に接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。キャパシタCAPについては、一端は出力制御ノードNAに接続され、他端は出力端子90に接続されている。以上のような構成において、薄膜トランジスタT92,T93,T94,およびT96によって上述した出力制御ノード安定部950が実現されている。
 図28は、図27に示す構成の段構成回路の動作について説明するための信号波形図である。図28から把握されるように、この段構成回路は、位相が90度ずつずれた4相のクロック信号(第1クロックCKA,第2クロックCKB,第3クロックCKC,および第4クロックCKD)に基づいて動作する。図28において、通常動作期間に着目する。通常動作期間には、第1制御ノード(出力制御ノード)NAの電位はローレベルで維持されるので、薄膜トランジスタT96はオフ状態で維持される。また、第3クロックCKCがハイレベルかつ第4クロックCKDがローレベルとなっている期間には、薄膜トランジスタT93はオン状態かつ薄膜トランジスタT94はオフ状態となる。また、第3クロックCKCがローレベルかつ第4クロックCKDがハイレベルとなっている期間には、薄膜トランジスタT93はオフ状態かつ薄膜トランジスタT94はオン状態となる。以上より、図28に示すように、通常動作期間には所定期間毎に第2制御ノードNBの電位がハイレベルとなる。これにより、通常動作期間には、所定期間毎に薄膜トランジスタT92がオン状態となり、第1制御ノードNAの電位がVSS電位へと引き込まれる。以上のようにして、通常動作期間に出力制御ノードNAの電位が浮くことが防止され、異常動作を引き起こすことのないモノリシックゲートドライバが実現されている。なお、薄膜トランジスタT96については、書込動作期間中に第2制御ノードNBの電位がハイレベルとなるのを防ぐために設けられている。
国際公開2011/067641号パンフレット
 上述のような液晶表示装置などの表示装置に関し、近年、小型化への要求が高まっている。そこで、表示装置の小型化を実現するために、狭額縁化が図られている。しかしながら、図27から把握されるように、従来の構成によれば、シフトレジスタを構成する各段構成回路には多数の薄膜トランジスタが含まれている。このため、TFT基板上におけるゲートドライバの占有面積が大きくなり、狭額縁化が困難である。また、出力制御ノードNAに接続されている薄膜トランジスタの負荷が大きくなるので、長期動作に対する信頼性が低下する。さらに、図28において第3クロックCKCがハイレベルかつ第1制御ノードNAの電位がハイレベルとなる期間には、薄膜トランジスタT93および薄膜トランジスタT96の双方がオン状態となるので、薄膜トランジスタT93および薄膜トランジスタT96に貫通電流が流れる。その結果、消費電力が増大する。以上のように、従来の構成によれば、狭額縁化や低消費電力化を図ることや長期動作に対する信頼性を確保することが困難である。
 そこで本発明は、長期動作に対する信頼性を確保しつつ表示装置の狭額縁化・低消費電力化を図ることのできる走査信号線駆動用のシフトレジスタを実現することを目的とする。
 本発明の第1の局面は、第1のレベルと第2のレベルとを周期的に繰り返す複数のクロック信号に基づいて動作する複数の段で構成された、表示装置の走査信号線を駆動するためのシフトレジスタであって、
 前記複数の段の各段を構成する段構成回路は、
  前記走査信号線に走査信号を出力するための出力ノードと、
  制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち前記出力ノードから出力される走査信号がオンレベルからオフレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、前記出力ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第1の出力ノード安定用スイッチング素子と
  制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち前記出力ノードから出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が第1の導通端子に与えられ、前記出力ノードに第2の導通端子が接続された出力制御用スイッチング素子と、
  前記出力制御用スイッチング素子の制御端子に接続された出力制御ノードと、
  一段以上前の段の出力ノードから出力される走査信号のうち前記出力制御ノードがオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化する走査信号をセット信号として受け取り、前記セット信号に基づいて前記出力制御ノードのレベルをオンレベルに向けて変化させるための出力制御ノードターンオン部と、
  一段以上後の段の出力ノードから出力される走査信号のうち前記出力制御ノードがオンレベルからオフレベルに変化すべきタイミングでオフレベルからオンレベルに変化する走査信号をリセット信号として受け取り、前記リセット信号に基づいて前記出力制御ノードのレベルをオフレベルに向けて変化させるための出力制御ノードターンオフ部と、
  前記出力制御ノードのレベルがオフレベルで維持されるべき期間に前記出力制御ノードのレベルの変動を防止するための出力制御ノード安定部と
を備え、
 前記出力制御ノード安定部は、
  制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち前段の出力ノードから出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、前段の出力ノードから出力される走査信号が第2の導通端子に与えられる第1の出力制御ノード安定用スイッチング素子と、
  制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち次段の出力ノードから出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、前記出力制御ノードに直接または他のスイッチング素子を介して第1の導通端子が接続され、次段の出力ノードから出力される走査信号が第2の導通端子に与えられる第2の出力制御ノード安定用スイッチング素子と
を含むことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記出力制御ノード安定部は、前記第1の出力制御ノード安定用スイッチング素子および前記第2の出力制御ノード安定用スイッチング素子のみからなり、
 前記第2の出力制御ノード安定用スイッチング素子の第1導通端子は、前記出力制御ノードに直接に接続されていることを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記出力制御ノード安定部は、制御端子,第1の導通端子,および第2の導通端子を有し、前記出力制御用スイッチング素子の第1の導通端子に与えられるクロック信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、前記第2の出力制御ノード安定用スイッチング素子の第1の導通端子に第2の導通端子が接続された第3の出力制御ノード安定用スイッチング素子を更に含むことを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記出力制御ノードターンオン部は、二段前の段の出力ノードから出力される走査信号を前記セット信号として受け取ることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記出力制御ノード安定部は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の開始直後にオフレベルからオンレベルに変化する初期化信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第4の出力制御ノード安定用スイッチング素子を更に含むことを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記出力制御ノード安定部は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第5の出力制御ノード安定用スイッチング素子を更に含むことを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記段構成回路は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第2の出力ノード安定用スイッチング素子を更に備えることを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記段構成回路は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第2の出力ノード安定用スイッチング素子を更に備え、
 前記出力制御ノード安定部は、
  制御端子,第1の導通端子,および第2の導通端子を有し、前記出力制御用スイッチング素子の第1の導通端子に与えられるクロック信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、前記第2の出力制御ノード安定用スイッチング素子の第1の導通端子に第2の導通端子が接続された第3の出力制御ノード安定用スイッチング素子と、
  制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の開始直後にオフレベルからオンレベルに変化する初期化信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第4の出力制御ノード安定用スイッチング素子と、
  制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第5の出力制御ノード安定用スイッチング素子と
を更に含むことを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記段構成回路に含まれるスイッチング素子は、酸化物半導体を含む薄膜トランジスタであることを特徴とする。
 本発明の第10の局面は、本発明の第9の局面において、
 前記酸化物半導体は、酸化インジウムガリウム亜鉛であることを特徴とする。
 本発明の第11の局面は、表示装置であって、
 複数の走査信号線が配設された表示部と、
 前記複数の走査信号線と1対1で対応するように設けられている複数の段で構成された本発明の第1から第10までのいずれかの局面に係るシフトレジスタと
を備えることを特徴とする。
 本発明の第1の局面によれば、シフトレジスタを構成する段構成回路には、2個のスイッチング素子(前段から出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、出力制御ノードに第1の導通端子が接続され、前段から出力される走査信号が第2の導通端子に与えられる第1の出力制御ノード安定用スイッチング素子、および、次段から出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、出力制御ノードに直接または他のスイッチング素子を介して第1の導通端子が接続され、次段から出力される走査信号が第2の導通端子に与えられる第2の出力制御ノード安定用スイッチング素子)によって構成された出力制御ノード安定部が設けられている。このような構成において、通常動作期間(各段構成回路に対応する行で画素容量への書き込み(充電)のための動作が行われる書込動作期間以外の期間)には、第1の出力制御ノード安定用スイッチング素子の第2の導通端子の電位および第2の出力制御ノード安定用スイッチング素子の第2の導通端子の電位がオフレベルとなっている状態で、第1の出力制御ノード安定用スイッチング素子と第2の出力制御ノード安定用スイッチング素子とが交互にオン状態となる。これにより、通常動作期間中、クロック信号のクロック動作に起因するノイズが出力制御ノードに混入しても、当該出力制御ノードの電位は充分なオフレベルへと引き込まれる。以上のように、通常動作期間を通じて出力制御ノードの電位をオフレベルで維持するための出力制御ノード安定部が、従来よりも少ない数のスイッチング素子を用いて実現される。このため、このシフトレジスタを用いる表示装置において、パネル基板上における走査信号線駆動回路の占有面積を小さくすることができ、従来よりも狭額縁化を図ることが可能となる。また、出力制御ノード安定部を構成するスイッチング素子の数が少なくなることから、出力制御ノードに接続されているスイッチング素子の負荷が小さくなり、従来よりも長期動作に対する信頼性が向上する。さらに、従来の構成とは異なり、スイッチング素子に貫通電流が流れることはない。このため、従来よりも消費電力が低減される。以上より、表示装置内の走査信号線駆動回路にこのシフトレジスタを用いることによって、長期動作に対する信頼性を確保しつつ表示装置の狭額縁化・低消費電力化を図ることが可能となる。
 本発明の第2の局面によれば、出力制御ノード安定部は、わずか2個のスイッチング素子を用いて実現される。このため、表示装置内の走査信号線駆動回路にこのシフトレジスタを用いることによって、パネル基板上における走査信号線駆動回路の占有面積を顕著に小さくすることができ、従来よりも顕著に狭額縁化を図ることが可能となる。また、出力制御ノードに接続されているスイッチング素子の負荷が顕著に小さくなり、従来よりも長期動作に対する信頼性が顕著に向上する。
 本発明の第3の局面によれば、第2の出力制御ノード安定用スイッチング素子の第2の導通端子と出力制御ノードとは、第2の出力制御ノード安定用スイッチング素子および第3の出力制御ノード安定用スイッチング素子の双方がオン状態になっているときに電気的に接続される。第2の出力制御ノード安定用スイッチング素子の制御端子に与えられるクロック信号がオンレベルとなっていても第3の出力制御ノード安定用スイッチング素子の制御端子に与えられるクロック信号がオフレベルになっていれば、第3の出力制御ノード安定用スイッチング素子がオフ状態となるので、第2の出力制御ノード安定用スイッチング素子の第2の導通端子と出力制御ノードとは電気的に切り離された状態で維持される。段構成回路がこのような構成となっているので、出力制御ノードをプリチャージするための期間を長くすることが可能となる。これにより、長期動作に対する信頼性が向上する。
 本発明の第4の局面によれば、出力制御ノードは二段前の段の出力ノードから出力される走査信号に基づいてオフレベルからオンレベルに変化するので、本発明の第3の局面の効果を確実に達成することができる。
 本発明の第5の局面によれば、各段構成回路において、垂直走査期間の開始直後に出力制御用スイッチング素子の第1の導通端子に与えられるクロック信号が立ち上がることによって出力制御ノードにノイズが混入しても、第4の出力制御ノード安定用スイッチング素子がオン状態となることによって出力制御ノードの電位はオフレベルの電源電位へと引き込まれる。これにより、出力制御用スイッチング素子の第1の導通端子に与えられるクロック信号の垂直走査期間開始直後のクロック動作に起因する異常動作の発生が抑制される。
 本発明の第6の局面によれば、各段構成回路において、垂直走査期間の終了の際には、第5の出力制御ノード安定用スイッチング素子がオン状態となることによって、出力制御ノードの電位はオフレベルの電源電位へと引き込まれる。これにより、フレーム毎に各段構成回路内の出力制御ノードの状態がクリアされ、信頼性が向上する。
 本発明の第7の局面によれば、各段構成回路において、垂直走査期間の終了の際には、第2の出力ノード安定用スイッチング素子がオン状態となることによって、出力ノードの電位はオフレベルの電源電位へと引き込まれる。これにより、フレーム毎に各段構成回路内の出力ノードの状態がクリアされ、信頼性が向上する。
 本発明の第8の局面によれば、垂直走査期間開始直後のクロック動作に起因する異常動作の発生が抑制されるとともに、長期動作に対する信頼性が向上する。
 本発明の第9の局面によれば、酸化物半導体を含む薄膜トランジスタが用いられる。酸化物半導体は移動度が高いため、より表示装置の狭額縁化が可能となる。
 本発明の第10の局面によれば、酸化物半導体として酸化インジウムガリウム亜鉛が用いられるので、本発明の第9の局面の効果を確実に達成することができる。
 本発明の第11の局面によれば、本発明の第1から第10までのいずれかの局面と同様の効果が得られるシフトレジスタを備えた表示装置が実現される。
本発明の第1の実施形態に係る液晶表示装置における段構成回路の構成(シフトレジスタの一段分の構成)を示す回路図である。 上記第1の実施形態に係るアクティブマトリクス型の液晶表示装置の全体構成を示すブロック図である。 上記第1の実施形態におけるゲートドライバの構成を説明するためのブロック図である。 上記第1の実施形態におけるゲートドライバ内のシフトレジスタの構成を示すブロック図である。 上記第1の実施形態におけるシフトレジスタの各段(各段構成回路)に与えられるゲートクロック信号についての信号波形図である。 上記第1の実施形態において、シフトレジスタのn段目の段構成回路の入出力信号について説明するための図である。 上記第1の実施形態におけるゲートバスラインに与えられる走査信号についての信号波形図である。 上記第1の実施形態において、走査信号がハイレベルになっている期間について説明するための図である。 上記第1の実施形態において、走査信号の立ち上がりについて説明するための図である。 上記第1の実施形態における液晶表示装置の動作期間中の全体の信号波形図である。 上記第1の実施形態において、書込動作期間の動作について説明するための信号波形図である。 上記第1の実施形態において、通常動作期間の動作について説明するための信号波形図である。 本発明の第2の実施形態におけるゲートドライバ内のシフトレジスタの構成を示すブロック図である。 上記第2の実施形態において、シフトレジスタのn段目の段構成回路の入出力信号について説明するための図である。 上記第2の実施形態における段構成回路の構成(シフトレジスタの一段分の構成)を示す回路図である。 上記第2の実施形態における液晶表示装置の動作期間中の全体の信号波形図である。 上記第2の実施形態において、書込動作期間の動作について説明するための信号波形図である。 上記第2の実施形態において、通常動作期間の動作について説明するための信号波形図である。 本発明の第3の実施形態において、シフトレジスタのn段目の段構成回路の入出力信号について説明するための図である。 上記第3の実施形態における段構成回路の構成(シフトレジスタの一段分の構成)を示す回路図である。 上記第3の実施形態において、垂直走査期間の開始直後の動作について説明するための信号波形図である。 上記第3の実施形態において、垂直走査期間の終了の際の動作について説明するための信号波形図である。 上記第3の実施形態の変形例における段構成回路の構成(シフトレジスタの一段分の構成)を示す回路図である。 従来の最も簡単な構成の段構成回路の回路図である。 図24に示す構成の段構成回路の動作について説明するための信号波形図である。 出力制御ノード安定部を有する段構成回路の構成を模式的に示した図である。 国際公開2011/067641号パンフレットに開示されている段構成回路の構成を示す回路図である。 図27に示す構成の段構成回路の動作について説明するための信号波形図である。
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。なお、以下の説明においては、薄膜トランジスタのゲート端子(ゲート電極)は制御電極に相当し、ドレイン端子(ドレイン電極)は第1の導通端子に相当し、ソース端子(ソース電極)は第2の導通端子に相当する。また、シフトレジスタ内に設けられている薄膜トランジスタはすべてnチャネル型であるものとして説明する。
<1.第1の実施形態>
<1.1 全体構成および動作>
 図2は、本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置の全体構成を示すブロック図である。図2に示すように、この液晶表示装置は、電源100とDC/DCコンバータ110と表示制御回路200とソースドライバ(映像信号線駆動回路)300とゲートドライバ(走査信号線駆動回路)400と共通電極駆動回路500と表示部600とを備えている。なお、本実施形態においては、ゲートドライバ400と表示部600とは同一基板(液晶パネルを構成する2枚の基板のうちの一方の基板であるTFT基板)上に形成されている。
 表示部600には、複数本(j本)のソースバスライン(映像信号線)SL1~SLjと、複数本(i本)のゲートバスライン(走査信号線)GL1~GLiと、それら複数本のソースバスラインSL1~SLjと複数本のゲートバスラインGL1~GLiとの交差点にそれぞれ対応して設けられた複数個(i×j個)の画素形成部とが形成されている。上記複数個の画素形成部はマトリクス状に配置されて画素アレイを構成している。各画素形成部は、対応する交差点を通過するゲートバスラインにゲート端子が接続されると共に当該交差点を通過するソースバスラインにソース端子が接続されたスイッチング素子である薄膜トランジスタ(TFT)60と、その薄膜トランジスタ60のドレイン端子に接続された画素電極と、上記複数個の画素形成部に共通的に設けられた対向電極である共通電極Ecと、上記複数個の画素形成部に共通的に設けられ画素電極と共通電極Ecとの間に挟持された液晶層とからなる。そして、画素電極と共通電極Ecとにより形成される液晶容量により、画素容量Cpが構成される。なお、通常、画素容量Cpに確実に電荷を保持すべく、液晶容量に並列に補助容量が設けられるが、補助容量は本発明には直接に関係しないのでその説明および図示を省略する。
 ところで、薄膜トランジスタ60としては、例えば、酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)を採用することができる。酸化物TFTとしては、例えば、InGaZnO(酸化インジウムガリウム亜鉛)を含む薄膜トランジスタが挙げられる。但し、本発明は、これに限定されない。例えば、アモルファスシリコンをチャネル層に用いた薄膜トランジスタを採用することもできる。
 電源100は、DC/DCコンバータ110と表示制御回路200と共通電極駆動回路500とに所定の電源電圧を供給する。DC/DCコンバータ110は、ソースドライバ300およびゲートドライバ400を動作させるための所定の直流電圧を電源電圧から生成し、それをソースドライバ300およびゲートドライバ400に供給する。共通電極駆動回路500は、共通電極Ecに所定の電位Vcomを与える。
 表示制御回路200は、外部から送られる画像信号DATおよび水平同期信号や垂直同期信号などのタイミング信号群TGを受け取り、デジタル映像信号DVと、表示部600における画像表示を制御するためのソーススタートパルス信号SSP,ソースクロック信号SCK,ラッチストローブ信号LS,ゲートスタートパルス信号GSP,およびゲートクロック信号GCKとを出力する。なお、本実施形態においては、ゲートクロック信号GCKは、4相のクロック信号(第1ゲートクロック信号GCK1~第4ゲートクロック信号GCK4)で構成されている。
 ソースドライバ300は、表示制御回路200から出力されるデジタル映像信号DV,ソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSを受け取り、各ソースバスラインSL1~SLjに駆動用映像信号S(1)~S(j)を印加する。
 ゲートドライバ400は、表示制御回路200から出力されるゲートスタートパルス信号GSPおよびゲートクロック信号GCKに基づいて、アクティブな走査信号GOUT(1)~GOUT(i)の各ゲートバスラインGL1~GLiへの印加を1垂直走査期間を周期として繰り返す。なお、以下においては、i個の走査信号GOUT(1)~GOUT(i)を互いに区別する必要がない場合には走査信号を単に符号GOUTで表す。このゲートドライバ400についての詳しい説明は後述する。
 以上のようにして、各ソースバスラインSL1~SLjに駆動用映像信号S(1)~S(j)が印加され、各ゲートバスラインGL1~GLiに走査信号GOUT(1)~GOUT(i)が印加されることにより、外部から送られた画像信号DATに基づく画像が表示部600に表示される。
<1.2 ゲートドライバの構成および動作>
 次に、図3~図9を参照しつつ、本実施形態におけるゲートドライバ400の構成および動作の概要について説明する。図3に示すように、ゲートドライバ400は複数段からなるシフトレジスタ410によって構成されている。表示部600にはi行×j列の画素マトリクスが形成されているところ、それら画素マトリクスの各行と1対1で対応するようにシフトレジスタ410の各段が設けられている。すなわち、シフトレジスタ410にはi個の段構成回路SR(1)~SR(i)が含まれている。それらi個の段構成回路SR(1)~SR(i)は互いに直列に接続されている。
 図4は、ゲートドライバ400内のシフトレジスタ410の構成を示すブロック図である。上述したように、このシフトレジスタ410はi個の段構成回路SR(1)~SR(i)で構成されている。なお、図4には、(n-2)段目から(n+2)段目までの段構成回路SR(n-2)~SR(n+2)を示している。以下においては、i個の段構成回路SR(1)~SR(i)を互いに区別する必要がない場合には段構成回路を単に符号SRで表す。
 段構成回路SRには、クロック信号CKA(以下「第1クロック」という。)を受け取るための入力端子と、クロック信号CKB(以下「第2クロック」という。)を受け取るための入力端子と、クロック信号CKC(以下「第3クロック」という。)を受け取るための入力端子と、クロック信号CKD(以下「第4クロック」という。)を受け取るための入力端子と、ローレベルの直流電源電位VSSを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、第1の制御信号SA1を受け取るための入力端子と、第2の制御信号SA2を受け取るための入力端子と、走査信号GOUTを出力するための出力端子とが設けられている。
 シフトレジスタ410の各段(各段構成回路)には、図5に示すような波形の第1~第4ゲートクロック信号GCK1~GCK4が与えられる。第1~第4ゲートクロック信号GCK1~GCK4については、図5に示すように位相が90度ずつずれている。(n-2)段目の段構成回路SR(n-2)については、第2ゲートクロック信号GCK2が第1クロックCKAとして与えられ、第1ゲートクロック信号GCK1が第2クロックCKBとして与えられ、第4ゲートクロック信号GCK4が第3クロックCKCとして与えられ、第3ゲートクロック信号GCK3が第4クロックCKDとして与えられる。(n-1)段目の段構成回路SR(n-1)については、第4ゲートクロック信号GCK4が第1クロックCKAとして与えられ、第3ゲートクロック信号GCK3が第2クロックCKBとして与えられ、第1ゲートクロック信号GCK1が第3クロックCKCとして与えられ、第2ゲートクロック信号GCK2が第4クロックCKDとして与えられる。n段目の段構成回路SR(n)については、第1ゲートクロック信号GCK1が第1クロックCKAとして与えられ、第2ゲートクロック信号GCK2が第2クロックCKBとして与えられ、第3ゲートクロック信号GCK3が第3クロックCKCとして与えられ、第4ゲートクロック信号GCK4が第4クロックCKDとして与えられる。(n+1)段目の段構成回路SR(n+1)については、第3ゲートクロック信号GCK3が第1クロックCKAとして与えられ、第4ゲートクロック信号GCK4が第2クロックCKBとして与えられ、第2ゲートクロック信号GCK2が第3クロックCKCとして与えられ、第1ゲートクロック信号GCK1が第4クロックCKDとして与えられる。シフトレジスタ410の全ての段を通して、(n-2)段目から(n+1)段目までの構成と同様の構成が4段ずつ繰り返される。なお、ローレベルの直流電源電位VSSについては、全ての段構成回路SR(1)~SR(i)に共通的に与えられる。
 また、図6に示すように、任意の段(ここではn段目とする)について、前段SR(n-1)から出力される走査信号GOUT(n-1)が第1の制御信号SA1およびセット信号Sとして与えられ、次段SR(n+1)から出力される走査信号GOUT(n+1)が第2の制御信号SA2として与えられ、3段後の段SR(n+3)から出力される走査信号GOUT(n+3)がリセット信号Rとして与えられる。但し、1段目については、ゲートスタートパルス信号GSPが第1の制御信号SA1およびセット信号Sとして与えられる。
 また、図6に示すように、任意の段(ここではn段目とする)から出力される走査信号GOUT(n)は、対応するゲートバスラインに与えられるのに加えて、リセット信号Rとして3段前の段SR(n-3)に与えられ、第2の制御信号SA2として前段SR(n-1)に与えられ、第1の制御信号SA1およびセット信号Sとして次段SR(n+1)に与えられる。
 以上のような構成において、シフトレジスタ410の1段目の段構成回路SR(1)に第1の制御信号SA1およびセット信号Sとしてのゲートスタートパルス信号GSPのパルスが与えられると、ゲートクロック信号GCK(第1~第4ゲートクロック信号GCK1~GCK4)のクロック動作に基づいて、各段構成回路SRから出力される走査信号GOUTに含まれるシフトパルスが1段目の段構成回路SR(1)からi段目の段構成回路SR(i)へと順次に転送される。そして、このシフトパルスの転送に応じて、各段構成回路SRから出力される走査信号GOUTが順次にハイレベルとなる。これにより、図7に示すような波形の走査信号GOUTが、表示部600内のゲートバスラインに与えられる。
 ところで、任意の段(ここではn段目とする)から出力される走査信号GOUT(n)に着目すると、図8に示すように、走査信号GOUT(n)がハイレベルになっている期間の前半の期間Taには前段から出力される走査信号GOUT(n-1)もハイレベルとなっており、走査信号GOUT(n)がハイレベルになっている期間の後半の期間Tbには次段から出力される走査信号GOUT(n+1)もハイレベルとなっている。これに関し、走査信号GOUT(n)が与えられる行において、前半の期間Taには画素容量への予備充電が行われ、後半の期間Tbには画素容量への本充電が行われる。これにより、充分な充電時間が確保され、画素容量への充電不足に起因する表示品位の低下が抑制されている。また、図9に示すように仮に走査信号GOUTの立ち上がりが遅くても(走査信号GOUTの立ち上がりの際に波形なまりが生じていても)充電期間を充分に確保することができる。
<1.3 段構成回路の構成>
 図1は、本実施形態における段構成回路SRの構成(シフトレジスタ410の一段分の構成)を示す回路図である。図1に示すように、この段構成回路SRは、6個の薄膜トランジスタM1~M6と1個のキャパシタCAPとを備えている。また、この段構成回路SRは、ローレベルの直流電源電位VSS用の入力端子のほか、1個の出力端子(出力ノード)40と8個の入力端子41~48とを有している。ここで、第1クロックCKAを受け取る入力端子には符号41を付し、第2クロックCKBを受け取る入力端子には符号42を付し、第3クロックCKCを受け取る入力端子には符号43を付し、第4クロックCKDを受け取る入力端子には符号44を付している。また、セット信号Sを受け取る入力端子には符号45を付し、リセット信号Rを受け取る入力端子には符号46を付し、第1の制御信号SA1を受け取る入力端子には符号47を付し、第2の制御信号SA2を受け取る入力端子には符号48を付している。出力端子40は、走査信号GOUTを出力するための端子である。なお、段構成回路SRの薄膜トランジスタM1~M6は、上述した画素形成部内の薄膜トランジスタ60(図2参照)と同じ種類の薄膜トランジスタ(例えば、InGaZnOを含む薄膜トランジスタ)で実現される。
 次に、この段構成回路SR内における構成要素間の接続関係について説明する。薄膜トランジスタM1のゲート端子,薄膜トランジスタM3のソース端子,薄膜トランジスタM4のドレイン端子,薄膜トランジスタM5のドレイン端子,薄膜トランジスタM6のドレイン端子,およびキャパシタCAPの一端は出力制御ノードNAを介して互いに接続されている。
 薄膜トランジスタM1については、ゲート端子は出力制御ノードNAに接続され、ドレイン端子は入力端子41に接続され、ソース端子は出力端子40に接続されている。薄膜トランジスタM2については、ゲート端子は入力端子42に接続され、ドレイン端子は出力端子40に接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタM3については、ゲート端子およびドレイン端子は入力端子45に接続され(すなわち、ダイオード接続となっている)、ソース端子は出力制御ノードNAに接続されている。薄膜トランジスタM4については、ゲート端子は入力端子46に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタM5については、ゲート端子は入力端子44に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は入力端子47に接続されている。薄膜トランジスタM6については、ゲート端子は入力端子43に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は入力端子48に接続されている。キャパシタCAPについては、一端は出力制御ノードNAに接続され、他端は出力端子40に接続されている。
 次に、各構成要素のこの段構成回路SRにおける機能について説明する。薄膜トランジスタM1は、出力制御ノードNAの電位がハイレベルになっているときに、第1クロックCKAの電位を出力端子40に与える。薄膜トランジスタM2は、第2クロックCKBがハイレベルになっているときに、出力端子40の電位(走査信号GOUTの電位)をVSS電位に向けて変化させる。薄膜トランジスタM3は、セット信号Sがハイレベルになっているときに、出力制御ノードNAの電位をハイレベルに向けて変化させる。薄膜トランジスタM4は、リセット信号Rがハイレベルになっているときに、出力制御ノードNAの電位をVSS電位に向けて変化させる。薄膜トランジスタM5は、通常動作期間において、第4クロックCKDがハイレベルになっているときに、出力制御ノードNAの電位をVSS電位に向けて変化させる。薄膜トランジスタM6は、通常動作期間において、第3クロックCKCがハイレベルになっているときに、出力制御ノードNAの電位をVSS電位に向けて変化させる。キャパシタCAPは、書込動作期間中に出力制御ノードNAの電位をハイレベルに維持するための補償容量として機能する。
 なお、本実施形態においては、薄膜トランジスタM1によって出力制御用スイッチング素子が実現され、薄膜トランジスタM2によって第1の出力ノード安定用スイッチング素子が実現されている。また、薄膜トランジスタM3によって出力制御ノードターンオン部が実現され、薄膜トランジスタM4によって出力制御ノードターンオフ部が実現されている。また、薄膜トランジスタM5および薄膜トランジスタM6によって出力制御ノード安定部420が実現されている。
<1.4 段構成回路の動作>
 次に、本実施形態における段構成回路SRの動作について説明する。まず、図1,図10,および図11を参照しつつ、書込動作期間の動作について説明する。図10は、液晶表示装置の動作期間中の全体の信号波形図である。図11は、書込動作期間における動作について説明するための信号波形図である。なお、図11のM1~M6の波形は、薄膜トランジスタM1~M6がオン状態であるかオフ状態であるかを示している。
 時点t0になると、セット信号Sがローレベルからハイレベルに変化する。薄膜トランジスタM3は図1に示すようにダイオード接続となっているので、このセット信号Sのパルスによって薄膜トランジスタM3はオン状態となる。また、時点t0には、第4クロックCKDがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM5がオン状態となる。このとき第1の制御信号SA1はハイレベルとなっている。以上より、時点t0になると、出力制御ノードNAの電位が上昇し、薄膜トランジスタM1がオン状態となる。ここで、時点t0~時点t1の期間中、リセット信号Rおよび第3クロックCKCはローレベルとなっている。このため、この期間中、薄膜トランジスタM4および薄膜トランジスタM6はオフ状態で維持される。従って、この期間中に出力制御ノードNAの電位が低下することはない。
 時点t1になると、第1クロックCKAがローレベルからハイレベルに変化する。このとき、薄膜トランジスタM1はオン状態となっているので、入力端子41の電位の上昇とともに出力端子40の電位も上昇する。ここで、図1に示すように出力制御ノードNA-出力端子40間にはキャパシタCAPが設けられているので、出力端子40の電位の上昇とともに出力制御ノードNAの電位も上昇する(出力制御ノードNAがブートストラップされる)。その結果、薄膜トランジスタM1のゲート端子には大きな電圧が印加され、この段構成回路SRの出力端子40に接続されているゲートバスラインが選択状態となるのに充分なレベルにまで走査信号GOUTの電位が上昇する。ここで、時点t1~時点t3の期間中、第2クロックCKBはローレベルとなっているので薄膜トランジスタM2はオフ状態で維持される。従って、この期間中に走査信号GOUTの電位が低下することはない。また、時点t1~時点t3の期間中、リセット信号Rはローレベルとなっているので薄膜トランジスタM4はオフ状態で維持される。従って、この期間中に出力制御ノードNAの電位が低下することはない。
 ところで、時点t1~時点t2の期間には、第4クロックCKDがハイレベルとなっているので、薄膜トランジスタM5がオン状態となっている。しかしながら、この期間中、第1の制御信号SA1(前段から出力される走査信号)はハイレベルとなっているので、薄膜トランジスタM5がオン状態となっていることに起因して出力制御ノードNAの電位が低下することはない。また、時点t2~時点t3の期間には、第3クロックCKCがハイレベルとなっているので、薄膜トランジスタM6がオン状態となっている。しかしながら、この期間中、第2の制御信号SA2(次段から出力される走査信号)はハイレベルとなっているので、薄膜トランジスタM6がオン状態となっていることに起因して出力制御ノードNAの電位が低下することはない。
 時点t3になると、第1クロックCKAはハイレベルからローレベルに変化する。これにより、入力端子41の電位の低下とともに出力端子40の電位は低下する。出力端子40の電位が低下すると、キャパシタCAPを介して、出力制御ノードNAの電位も低下する。また、時点t3には、第2クロックCKBがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM2がオン状態となる。その結果、走査信号GOUTの電位はローレベルとなる。
 時点t4になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM4がオン状態となる。また、時点t4には、第4クロックCKDがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM5がオン状態となる。このとき、第1の制御信号SA1はローレベルとなっている。以上より、時点t4になると、出力制御ノードNAの電位はローレベルとなる。
 以上のような動作が各段構成回路SRで行われることによって、この液晶表示装置に設けられている複数本のゲートバスラインGL1~GLiが順次に選択状態となり、1行ずつ画素容量への書き込みが行われる。
 次に、図1,図10,および図12を参照しつつ、通常動作期間の動作について説明する。図12は、通常動作期間における動作について説明するための信号波形図である。上述したように、各段構成回路SRには、前段から出力される走査信号GOUT(n-1)が第1の制御信号SA1として与えられ、次段から出力される走査信号GOUT(n+1)が第2の制御信号SA2として与えられる。従って、図12に示すように、通常動作期間中、第1の制御信号SA1および第2の制御信号SA2はローレベル(VSS電位)で維持される。ところで、第1クロックCKAについては、通常動作期間中、所定期間毎にローレベルからハイレベルに変化する。従って、図12における時点t11や時点t12に、薄膜トランジスタM1の寄生容量に起因して、出力制御ノードNAの電位に変動が生じ得る。すなわち、通常動作期間中、所定期間毎に、出力制御ノードNAの電位が浮いた状態となり得る。しかしながら、第3クロックCKCがハイレベルとなっている期間には、薄膜トランジスタM6がオン状態となるので、出力制御ノードNAの電位はVSS電位へと引き込まれる。また、第4クロックCKDがハイレベルとなっている期間には、薄膜トランジスタM5がオン状態となるので、出力制御ノードNAの電位はVSS電位へと引き込まれる。以上より、通常動作期間中、第1クロックCKAのクロック動作に起因するノイズが出力制御ノードNAに混入しても、当該出力制御ノードNAの電位はVSS電位で維持される。なお、第2クロックCKBがハイレベルとなっている期間には、薄膜トランジスタM2がオン状態となり、出力端子40の電位(走査信号GOUTの電位)がVSS電位へと引き込まれる。
<1.5 効果>
 本実施形態によれば、ゲートドライバ400内のシフトレジスタ410を構成する段構成回路SRには、2個の薄膜トランジスタ(出力制御ノードNAにドレイン端子が接続され、ゲート端子に第4クロックCKDが与えられ、前段から出力される走査信号が第1の制御信号SA1としてソース端子に与えられるように構成された薄膜トランジスタM5、および、出力制御ノードNAにドレイン端子が接続され、ゲート端子に第3クロックCKCが与えられ、次段から出力される走査信号が第2の制御信号SA2としてソース端子に与えられるように構成された薄膜トランジスタM6)によって構成された出力制御ノード安定部420が設けられている。このような構成において、通常動作期間には、第1の制御信号SA1および第2の制御信号SA2がローレベルとなっている状態で、第3クロックCKCおよび第4クロックCKDのクロック動作に基づいて薄膜トランジスタM5と薄膜トランジスタM6とが交互にオン状態となる。これにより、通常動作期間中、クロック信号(第1クロックCKA)のクロック動作に起因するノイズが出力制御ノードNAに混入しても、当該出力制御ノードNAの電位はVSS電位へと引き込まれる。なお、書込動作期間には、第4クロックCKDがハイレベルになっている時には第1の制御信号SA1がハイレベルとなっており、第3クロックCKCがハイレベルになっている時には第2の制御信号SA2がハイレベルとなっている。従って、薄膜トランジスタM5,M6が設けられていることに起因して書込動作期間中に出力制御ノードNAの電位が低下することはない。
 ところで、従来技術によれば、多数の薄膜トランジスタ(例えば、図27に示す従来の構成においては4個の薄膜トランジスタ)を用いて出力制御ノード安定部950が実現されていた。この点、本実施形態においては、図1に示すように、2個の薄膜トランジスタM5,M6のみを用いて出力制御ノード安定部420が実現されている。従って、TFT基板上におけるゲートドライバ400の占有面積を小さくすることができ、従来よりも狭額縁化を図ることが可能となる。また、出力制御ノード安定部を構成する薄膜トランジスタの数が少なくなることから、出力制御ノードNAに接続されている薄膜トランジスタの負荷が小さくなり、従来よりも長期動作に対する信頼性が向上する。さらに、従来の構成とは異なり、薄膜トランジスタに貫通電流が流れることはない。このため、従来よりも消費電力が低減される。
 以上のように、本実施形態によれば、長期動作に対する信頼性を確保しつつ表示装置の狭額縁化・低消費電力化を図ることのできるゲートドライバ(走査信号線駆動回路)が実現される。
<2.第2の実施形態>
 本発明の第2の実施形態について説明する。なお、上記第1の実施形態と異なる点についてのみ説明する。
<2.1 全体構成およびゲートドライバの構成>
 全体構成については、上記第1の実施形態における構成(図2参照)と同様であるので、説明を省略する。図13は、本実施形態におけるゲートドライバ400内のシフトレジスタ410の構成を示すブロック図である。上記第1の実施形態においては、各段構成回路SRには、前段から出力される走査信号がセット信号Sとして与えられていた。これに対して、本実施形態においては、各段構成回路SRには、2段前の段から出力される走査信号がセット信号Sとして与えられる。すなわち、図14に示すように、任意の段(ここではn段目とする)について、前段SR(n-1)から出力される走査信号GOUT(n-1)が第1の制御信号SA1として与えられ、2段前の段SR(n-2)から出力される走査信号GOUT(n-2)がセット信号Sとして与えられ、次段SR(n+1)から出力される走査信号GOUT(n+1)が第2の制御信号SA2として与えられ、3段後の段SR(n+3)から出力される走査信号GOUT(n+3)がリセット信号Rとして与えられる。また、図14に示すように、任意の段(ここではn段目とする)から出力される走査信号GOUT(n)は、対応するゲートバスラインに与えられるのに加えて、リセット信号Rとして3段前の段SR(n-3)に与えられ、第2の制御信号SA2として前段SR(n-1)に与えられ、第1の制御信号SA1として次段SR(n+1)に与えられ、セット信号Sとして2段後の段SR(n+2)に与えられる。
<2.2 段構成回路の構成>
 図15は、本実施形態における段構成回路SRの構成(シフトレジスタ410の一段分の構成)を示す回路図である。図15および図1から把握されるように、本実施形態においては、上記第1の実施形態における構成要素に加えて、出力制御ノードNAと薄膜トランジスタM6との間に薄膜トランジスタM7が設けられている。その薄膜トランジスタM7については、ゲート端子は入力端子41に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は薄膜トランジスタM6のドレイン端子に接続されている。また、本実施形態においては、薄膜トランジスタM6のドレイン端子は、薄膜トランジスタM7のソース端子に接続されている。また、本実施形態においては、入力端子45には、2段前の段SR(n-2)から出力される走査信号GOUT(n-2)がセット信号Sとして与えられる。
 なお、本実施形態においては、薄膜トランジスタM5,薄膜トランジスタM6,および薄膜トランジスタM7によって出力制御ノード安定部421が実現されている。
<2.3 段構成回路の動作>
 次に、本実施形態における段構成回路SRの動作について説明する。まず、図15,図16,および図17を参照しつつ、書込動作期間の動作について説明する。図16は、液晶表示装置の動作期間中の全体の信号波形図である。図17は、書込動作期間における動作について説明するための信号波形図である。
 時点t20になると、セット信号Sがローレベルからハイレベルに変化する。薄膜トランジスタM3は図15に示すようにダイオード接続となっているので、このセット信号Sのパルスによって薄膜トランジスタM3はオン状態となり、出力制御ノードNAの電位が上昇する。これにより、薄膜トランジスタM1がオン状態となる。ここで、時点t20~時点t21の期間中、リセット信号R,第4クロックCKD,および第1クロックCKAはローレベルとなっている。このため、この期間中、薄膜トランジスタM4,薄膜トランジスタM5,および薄膜トランジスタM7はオフ状態で維持される。従って、この期間中に出力制御ノードNAの電位が低下することはない。
 時点t21になると、第4クロックCKDがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM5がオン状態となる。このとき第1の制御信号SA1はハイレベルとなっている。また、時点t21~時点t22の期間中、リセット信号Rおよび第1クロックCKAはローレベルとなっている。このため、この期間中、薄膜トランジスタM4および薄膜トランジスタM7はオフ状態で維持される。以上より、この期間中、出力制御ノードNAの電位は、時点t21直前の電位で維持される。
 時点t22になると、第1クロックCKAがローレベルからハイレベルに変化する。このとき、薄膜トランジスタM1はオン状態となっているので、入力端子41の電位の上昇とともに出力端子40の電位も上昇する。ここで、図15に示すように出力制御ノードNA-出力端子40間にはキャパシタCAPが設けられているので、出力端子40の電位の上昇とともに出力制御ノードNAの電位も上昇する(出力制御ノードNAがブートストラップされる)。その結果、薄膜トランジスタM1のゲート端子には大きな電圧が印加され、この段構成回路SRの出力端子40に接続されているゲートバスラインが選択状態となるのに充分なレベルにまで走査信号GOUTの電位が上昇する。ここで、時点t22~時点t24の期間中、第2クロックCKBはローレベルとなっているので薄膜トランジスタM2はオフ状態で維持される。従って、この期間中に走査信号GOUTの電位が低下することはない。また、時点t22~時点t24の期間中、リセット信号Rはローレベルとなっているので薄膜トランジスタM4はオフ状態で維持される。従って、この期間中に出力制御ノードNAの電位が低下することはない。
 ところで、時点t22~時点t23の期間には、第4クロックCKDがハイレベルとなっているので、薄膜トランジスタM5がオン状態となっている。しかしながら、この期間中、第1の制御信号SA1(前段から出力される走査信号)はハイレベルとなっているので、薄膜トランジスタM5がオン状態となっていることに起因して出力制御ノードNAの電位が低下することはない。また、時点t23~時点t24の期間には、第3クロックCKCおよび第1クロックCKAの双方がハイレベルとなっているので、薄膜トランジスタM6および薄膜トランジスタM7の双方がオン状態となっている。しかしながら、この期間中、第2の制御信号SA2(次段から出力される走査信号)はハイレベルとなっているので、薄膜トランジスタM6および薄膜トランジスタM7の双方がオン状態となっていることに起因して出力制御ノードNAの電位が低下することはない。
 時点t24になると、第1クロックCKAはハイレベルからローレベルに変化する。これにより、入力端子41の電位の低下とともに出力端子40の電位は低下する。出力端子40の電位が低下すると、キャパシタCAPを介して、出力制御ノードNAの電位も低下する。また、時点t24には、第2クロックCKBがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM2がオン状態となる。その結果、走査信号GOUTの電位はローレベルとなる。
 時点t25になると、リセット信号Rがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM4がオン状態となる。また、時点t25には、第4クロックCKDがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM5がオン状態となる。このとき、第1の制御信号SA1はローレベルとなっている。以上より、時点t25になると、出力制御ノードNAの電位はローレベルとなる。
 以上のような動作が各段構成回路SRで行われることによって、この液晶表示装置に設けられている複数本のゲートバスラインGL1~GLiが順次に選択状態となり、1行ずつ画素容量への書き込みが行われる。
 次に、図15,図16,および図18を参照しつつ、通常動作期間の動作について説明する。図18は、通常動作期間における動作について説明するための信号波形図である。上述したように、各段構成回路SRには、前段から出力される走査信号GOUT(n-1)が第1の制御信号SA1として与えられ、次段から出力される走査信号GOUT(n+1)が第2の制御信号SA2として与えられる。従って、図18に示すように、通常動作期間中、第1の制御信号SA1および第2の制御信号SA2はローレベル(VSS電位)で維持される。ところで、第1クロックCKAについては、通常動作期間中、所定期間毎にローレベルからハイレベルに変化する。従って、図18における時点t31や時点t32に、薄膜トランジスタM1の寄生容量に起因して、出力制御ノードNAの電位に変動が生じ得る。すなわち、通常動作期間中、所定期間毎に、出力制御ノードNAの電位が浮いた状態となり得る。しかしながら、第3クロックCKCおよび第1クロックCKAの双方がハイレベルとなっている期間には、薄膜トランジスタM6および薄膜トランジスタM7の双方がオン状態となるので、出力制御ノードNAの電位はVSS電位へと引き込まれる。また、第4クロックCKDがハイレベルとなっている期間には、薄膜トランジスタM5がオン状態となるので、出力制御ノードNAの電位はVSS電位へと引き込まれる。以上より、上記第1の実施形態と同様、通常動作期間中、第1クロックCKAのクロック動作に起因するノイズが出力制御ノードNAに混入しても、当該出力制御ノードNAの電位はVSS電位で維持される。
<2.4 効果>
 本実施形態によれば、上記第1の実施形態と同様の効果が得られるのに加えて、以下のような効果が得られる。本実施形態においては、次段から出力される走査信号GOUT(n+1)を受け取るための入力端子48と出力制御ノードNAとは、薄膜トランジスタM6および薄膜トランジスタM7の双方がオン状態になっているときに電気的に接続される。従って、第3クロックCKCがハイレベルとなっていても第1クロックCKAがローレベルになっていれば、薄膜トランジスタM7がオフ状態となるので、入力端子48と出力制御ノードNAとは電気的に切り離された状態で維持される。段構成回路SRがこのような構成となっているので、出力制御ノードNAをプリチャージするための期間を上記第1の実施形態と比較して長くすることが可能となる。具体的には、各段構成回路SRにおいて、2段前の段から出力される走査信号GOUT(n-2)を出力制御ノードNAをプリチャージするためのセット信号Sとして用いることが可能となる。このようにして出力制御ノードNAのプリチャージ期間が長くなるので、長期動作に対する信頼性が向上する。
<3.第3の実施形態>
<3.1 構成>
 本発明の第3の実施形態について説明する。全体構成については、上記第1の実施形態における構成(図2参照)と同様であるので、説明を省略する。ゲートドライバ400内のシフトレジスタ410の構成については、初期化信号(垂直走査期間の開始直後に各段構成回路SRの内部状態を初期化するための信号)SPを受け取るための入力端子およびクリア信号(垂直走査期間の終了の際に各段構成回路SRの内部状態をクリアするための信号)CLRを受け取るための入力端子が各段構成回路SRに設けられているという点で上記第2の実施形態と異なっている。すなわち、本実施形態における段構成回路SRには、図19に示すように、第1クロックCKAを受け取るための入力端子と、第2クロックCKBを受け取るための入力端子と、第3クロックCKCを受け取るための入力端子と、第4クロックCKDを受け取るための入力端子と、ローレベルの直流電源電位VSSを受け取るための入力端子と、セット信号Sを受け取るための入力端子と、リセット信号Rを受け取るための入力端子と、第1の制御信号SA1を受け取るための入力端子と、第2の制御信号SA2を受け取るための入力端子と、初期化信号SPを受け取るための入力端子と、クリア信号CLRを受け取るための入力端子と、走査信号GOUTを出力するための出力端子とが設けられている。
 図20は、本実施形態における段構成回路SRの構成(シフトレジスタ410の一段分の構成)を示す回路図である。図20および図15から把握されるように、本実施形態においては、上記第2の実施形態における構成要素に加えて、薄膜トランジスタM8,薄膜トランジスタM9,および薄膜トランジスタM10が設けられている。なお、図20において、初期化信号SPを受け取る入力端子には符号51を付し、クリア信号CLRを受け取る入力端子には符号52を付している。
 薄膜トランジスタM8については、ゲート端子は入力端子51に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタM9については、ゲート端子は入力端子52に接続され、ドレイン端子は出力制御ノードNAに接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。薄膜トランジスタM10については、ゲート端子は入力端子52に接続され、ドレイン端子は出力端子40に接続され、ソース端子は直流電源電位VSS用の入力端子に接続されている。
 薄膜トランジスタM8は、初期化信号SPがハイレベルになっているときに、出力制御ノードNAの電位をVSS電位に向けて変化させる。薄膜トランジスタM9は、クリア信号CLRがハイレベルになっているときに、出力制御ノードNAの電位をVSS電位に向けて変化させる。薄膜トランジスタM10は、クリア信号CLRがハイレベルになっているときに、出力端子40の電位(走査信号GOUTの電位)をVSS電位に向けて変化させる。
 なお、本実施形態においては、薄膜トランジスタM5~M9によって出力制御ノード安定部422が実現され、薄膜トランジスタM10によって第2の出力ノード安定用スイッチング素子が実現されている。
<3.2 動作>
 次に、本実施形態における段構成回路SRの動作について説明する。本実施形態における段構成回路SRには、垂直走査期間の開始直後の所定期間にのみハイレベルとなる信号が初期化信号SPとして与えられ、垂直走査期間の終了の際の所定期間にのみハイレベルとなる信号がクリア信号CLRとして与えられる。従って、垂直走査期間の開始直後および終了の際を除いて、上記第2の実施形態と同様の動作が行われる。
 図21は、垂直走査期間の開始直後の動作について説明するための信号波形図である。本実施形態においては、図21に示すように、ゲートスタートパルス信号GSPが立ち上がることによって垂直走査期間が開始された直後に、初期化信号SPがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM8がオン状態となり、出力制御ノードNAの電位がVSS電位へと引き込まれる。なお、セット信号Sに基づいて出力制御ノードNAのプリチャージが行われるべき段については、薄膜トランジスタM8を介して出力制御ノードNAの電位が低下しないようにする必要がある。
 図22は、垂直走査期間の終了の際の動作について説明するための信号波形図である。本実施形態においては、図22に示すように、各垂直走査期間において全てのゲートバスラインGL1~GLiにアクティブな走査信号GOUTが順次に印加された後、クリア信号CLRがローレベルからハイレベルに変化する。これにより、薄膜トランジスタM9および薄膜トランジスタM10がオン状態となる。薄膜トランジスタM9がオン状態となることによって、出力制御ノードNAの電位がVSS電位へと引き込まれる。また、薄膜トランジスタM10がオン状態となることによって、出力端子40の電位(走査信号GOUTの電位)がVSS電位へと引き込まれる。
 なお、初期化信号SPを立ち上げるタイミングについては、垂直走査期間開始直後の第1クロックCKAの立ち上がりに起因する出力制御ノードNAの電位の上昇を抑制することができるのであれば、図21に示すタイミングとは異なるタイミングであっても良い。また、クリア信号CLRを立ち上げるタイミングについては、最後の行において画素容量への書き込みが行われてから次の垂直走査期間が開始される前であれば、図22に示すタイミングとは異なるタイミングであっても良い。
<3.3 効果>
 本実施形態によれば、各段構成回路SRにおいて、垂直走査期間の開始直後に第3クロックCKCや第4クロックCKDが立ち上がる前に第1クロックCKAが立ち上がることによって出力制御ノードNAにノイズが混入しても、薄膜トランジスタM8がオン状態となることによって出力制御ノードNAの電位はVSS電位へと引き込まれる。これにより、垂直走査期間開始直後の第1クロックCKAのクロック動作に起因する異常動作の発生が抑制される。また、垂直走査期間の終了の際には、薄膜トランジスタM9および薄膜トランジスタM10がオン状態となることによって、出力制御ノードNAの電位および出力端子40の電位(走査信号GOUTの電位)はVSS電位へと引き込まれる。これにより、フレーム毎に各段構成回路SRの内部状態がクリアされ、この液晶表示装置の信頼性が向上する。
<3.4 変形例>
 本実施形態においては上記第2の実施形態における構成要素(図15参照)に加えて薄膜トランジスタM8~M10が設けられているが、図23に示すように、上記第1の実施形態における構成要素(図1参照)に加えて薄膜トランジスタM8~M10を設ける構成としても良い。但し、図23に示す構成の場合、出力制御ノードNAのプリチャージ期間を長くすることができない。従って、長期動作に対する信頼性を考慮すると、図20に示す構成を採用する方が好ましい。
 また、上記第3の実施形態よりも効果は劣るが、上記第1の実施形態における構成要素または上記第2の実施形態における構成要素に加えて薄膜トランジスタM8~M10のうちの1個または2個だけを設ける構成を採用することもできる。
<4.その他>
 上記各実施形態においては液晶表示装置を例に挙げて説明したが、本発明はこれに限定されない。有機EL(Electro Luminescence)等の他の表示装置にも本発明を適用することができる。
 40…(段構成回路の)出力端子
 41~48,51,52…(段構成回路の)入力端子
 300…ソースドライバ(映像信号線駆動回路)
 400…ゲートドライバ(走査信号線駆動回路)
 410…シフトレジスタ
 600…表示部
 SR,SR(1)~SR(i)…段構成回路
 CAP…キャパシタ(容量素子)
 M1~M10…薄膜トランジスタ
 NA…出力制御ノード
 GL1~GLi…ゲートバスライン
 SL1~SLj…ソースバスライン
 GCK…ゲートクロック信号
 CKA,CKB,CKC,CKD…第1クロック,第2クロック,第3クロック,第4クロック
 S…セット信号
 R…リセット信号
 SA1…第1の制御信号
 SA2…第2の制御信号
 GOUT,GOUT(1)~(i)…走査信号
 VSS…ローレベルの直流電源電位

Claims (11)

  1.  第1のレベルと第2のレベルとを周期的に繰り返す複数のクロック信号に基づいて動作する複数の段で構成された、表示装置の走査信号線を駆動するためのシフトレジスタであって、
     前記複数の段の各段を構成する段構成回路は、
      前記走査信号線に走査信号を出力するための出力ノードと、
      制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち前記出力ノードから出力される走査信号がオンレベルからオフレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、前記出力ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第1の出力ノード安定用スイッチング素子と
      制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち前記出力ノードから出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が第1の導通端子に与えられ、前記出力ノードに第2の導通端子が接続された出力制御用スイッチング素子と、
      前記出力制御用スイッチング素子の制御端子に接続された出力制御ノードと、
      一段以上前の段の出力ノードから出力される走査信号のうち前記出力制御ノードがオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化する走査信号をセット信号として受け取り、前記セット信号に基づいて前記出力制御ノードのレベルをオンレベルに向けて変化させるための出力制御ノードターンオン部と、
      一段以上後の段の出力ノードから出力される走査信号のうち前記出力制御ノードがオンレベルからオフレベルに変化すべきタイミングでオフレベルからオンレベルに変化する走査信号をリセット信号として受け取り、前記リセット信号に基づいて前記出力制御ノードのレベルをオフレベルに向けて変化させるための出力制御ノードターンオフ部と、
      前記出力制御ノードのレベルがオフレベルで維持されるべき期間に前記出力制御ノードのレベルの変動を防止するための出力制御ノード安定部と
    を備え、
     前記出力制御ノード安定部は、
      制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち前段の出力ノードから出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、前段の出力ノードから出力される走査信号が第2の導通端子に与えられる第1の出力制御ノード安定用スイッチング素子と、
      制御端子,第1の導通端子,および第2の導通端子を有し、前記複数のクロック信号のうち次段の出力ノードから出力される走査信号がオフレベルからオンレベルに変化すべきタイミングでオフレベルからオンレベルに変化するクロック信号が制御端子に与えられ、前記出力制御ノードに直接または他のスイッチング素子を介して第1の導通端子が接続され、次段の出力ノードから出力される走査信号が第2の導通端子に与えられる第2の出力制御ノード安定用スイッチング素子と
    を含むことを特徴とする、シフトレジスタ。
  2.  前記出力制御ノード安定部は、前記第1の出力制御ノード安定用スイッチング素子および前記第2の出力制御ノード安定用スイッチング素子のみからなり、
     前記第2の出力制御ノード安定用スイッチング素子の第1導通端子は、前記出力制御ノードに直接に接続されていることを特徴とする、請求項1に記載のシフトレジスタ。
  3.  前記出力制御ノード安定部は、制御端子,第1の導通端子,および第2の導通端子を有し、前記出力制御用スイッチング素子の第1の導通端子に与えられるクロック信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、前記第2の出力制御ノード安定用スイッチング素子の第1の導通端子に第2の導通端子が接続された第3の出力制御ノード安定用スイッチング素子を更に含むことを特徴とする、請求項1に記載のシフトレジスタ。
  4.  前記出力制御ノードターンオン部は、二段前の段の出力ノードから出力される走査信号を前記セット信号として受け取ることを特徴とする、請求項3に記載のシフトレジスタ。
  5.  前記出力制御ノード安定部は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の開始直後にオフレベルからオンレベルに変化する初期化信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第4の出力制御ノード安定用スイッチング素子を更に含むことを特徴とする、請求項1に記載のシフトレジスタ。
  6.  前記出力制御ノード安定部は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第5の出力制御ノード安定用スイッチング素子を更に含むことを特徴とする、請求項1に記載のシフトレジスタ。
  7.  前記段構成回路は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第2の出力ノード安定用スイッチング素子を更に備えることを特徴とする、請求項1に記載のシフトレジスタ。
  8.  前記段構成回路は、制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第2の出力ノード安定用スイッチング素子を更に備え、
     前記出力制御ノード安定部は、
      制御端子,第1の導通端子,および第2の導通端子を有し、前記出力制御用スイッチング素子の第1の導通端子に与えられるクロック信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、前記第2の出力制御ノード安定用スイッチング素子の第1の導通端子に第2の導通端子が接続された第3の出力制御ノード安定用スイッチング素子と、
      制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の開始直後にオフレベルからオンレベルに変化する初期化信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第4の出力制御ノード安定用スイッチング素子と、
      制御端子,第1の導通端子,および第2の導通端子を有し、垂直走査期間の終了の際にオフレベルからオンレベルに変化するクリア信号が制御端子に与えられ、前記出力制御ノードに第1の導通端子が接続され、オフレベルの電源電位が第2の導通端子に与えられる第5の出力制御ノード安定用スイッチング素子と
    を更に含むことを特徴とする、請求項1に記載のシフトレジスタ。
  9.  前記段構成回路に含まれるスイッチング素子は、酸化物半導体を含む薄膜トランジスタであることを特徴とする、請求項1に記載のシフトレジスタ。
  10.  前記酸化物半導体は、酸化インジウムガリウム亜鉛であることを特徴とする、請求項9に記載のシフトレジスタ。
  11.  複数の走査信号線が配設された表示部と、
     前記複数の走査信号線と1対1で対応するように設けられている複数の段で構成された請求項1から10までのいずれか1項に記載のシフトレジスタと
    を備えることを特徴とする、表示装置。
PCT/JP2015/068458 2014-07-04 2015-06-26 シフトレジスタおよびそれを備える表示装置 WO2016002644A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580035417.4A CN106663470B (zh) 2014-07-04 2015-06-26 移位寄存器和具备它的显示装置
US15/322,802 US10276119B2 (en) 2014-07-04 2015-06-26 Shift register and display device provided therewith
JP2016531327A JP6316423B2 (ja) 2014-07-04 2015-06-26 シフトレジスタおよびそれを備える表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014138686 2014-07-04
JP2014-138686 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002644A1 true WO2016002644A1 (ja) 2016-01-07

Family

ID=55019183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068458 WO2016002644A1 (ja) 2014-07-04 2015-06-26 シフトレジスタおよびそれを備える表示装置

Country Status (4)

Country Link
US (1) US10276119B2 (ja)
JP (1) JP6316423B2 (ja)
CN (1) CN106663470B (ja)
WO (1) WO2016002644A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136528A1 (ja) * 2015-02-23 2016-09-01 シャープ株式会社 シフトレジスタ回路およびそれを備えた表示装置
CN109817177A (zh) * 2019-03-20 2019-05-28 深圳市华星光电技术有限公司 栅极驱动电路及阵列基板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464600B (zh) * 2014-12-26 2017-02-01 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器电路以及显示装置
KR102435224B1 (ko) * 2016-04-05 2022-08-25 삼성디스플레이 주식회사 게이트 구동회로 및 그것을 포함하는 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297559A1 (en) * 2006-06-23 2007-12-27 Lg.Philips Lcd Co., Ltd. Shift register
WO2011055570A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
US20130016804A1 (en) * 2011-07-12 2013-01-17 Jung-Eun Ahn Shift register
WO2014054516A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
WO2014054515A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 表示装置
WO2014054517A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
WO2014054518A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296645B1 (ko) * 2007-03-12 2013-08-14 엘지디스플레이 주식회사 쉬프트 레지스터
JP5318117B2 (ja) 2008-12-10 2013-10-16 シャープ株式会社 走査信号線駆動回路、シフトレジスタ、およびシフトレジスタの駆動方法
KR101752640B1 (ko) * 2009-03-27 2017-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
JP5208277B2 (ja) * 2009-07-15 2013-06-12 シャープ株式会社 走査信号線駆動回路およびそれを備えた表示装置
KR101324410B1 (ko) * 2009-12-30 2013-11-01 엘지디스플레이 주식회사 쉬프트 레지스터와 이를 이용한 표시장치
CN103514840B (zh) * 2012-06-14 2016-12-21 瀚宇彩晶股份有限公司 集成门极驱动电路及液晶面板
CN103632641B (zh) * 2012-08-22 2016-01-20 瀚宇彩晶股份有限公司 液晶显示器及其移位寄存装置
CN103915067B (zh) * 2013-07-11 2016-05-04 上海中航光电子有限公司 一种移位寄存单元、显示面板及显示装置
CN103927960B (zh) * 2013-12-30 2016-04-20 上海中航光电子有限公司 一种栅极驱动装置和显示装置
CN103928001B (zh) * 2013-12-31 2016-12-07 上海天马微电子有限公司 一种栅极驱动电路和显示装置
CN103943054B (zh) * 2014-01-27 2016-07-13 上海中航光电子有限公司 栅极驱动电路、tft阵列基板、显示面板及显示装置
CN104715710B (zh) * 2015-04-10 2016-10-19 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、扫描驱动电路、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297559A1 (en) * 2006-06-23 2007-12-27 Lg.Philips Lcd Co., Ltd. Shift register
WO2011055570A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
US20130016804A1 (en) * 2011-07-12 2013-01-17 Jung-Eun Ahn Shift register
WO2014054516A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
WO2014054515A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 表示装置
WO2014054517A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ、それを備える表示装置、およびシフトレジスタの駆動方法
WO2014054518A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 シフトレジスタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136528A1 (ja) * 2015-02-23 2016-09-01 シャープ株式会社 シフトレジスタ回路およびそれを備えた表示装置
JPWO2016136528A1 (ja) * 2015-02-23 2017-11-02 シャープ株式会社 シフトレジスタ回路およびそれを備えた表示装置
CN109817177A (zh) * 2019-03-20 2019-05-28 深圳市华星光电技术有限公司 栅极驱动电路及阵列基板

Also Published As

Publication number Publication date
JPWO2016002644A1 (ja) 2017-04-27
JP6316423B2 (ja) 2018-04-25
CN106663470B (zh) 2020-06-26
US10276119B2 (en) 2019-04-30
US20170140729A1 (en) 2017-05-18
CN106663470A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US8982107B2 (en) Scanning signal line drive circuit and display device provided with same
JP5372268B2 (ja) 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
JP5535374B2 (ja) 走査信号線駆動回路およびそれを備えた表示装置
JP5165153B2 (ja) 走査信号線駆動回路およびそれを備えた表示装置、ならびに走査信号線の駆動方法
TWI529682B (zh) A scanning signal line driving circuit, a display device including the same, and a driving method of a scanning signal line
US9666140B2 (en) Display device and method for driving same
JP6033225B2 (ja) 表示装置および走査信号線の駆動方法
JP5972267B2 (ja) 液晶表示装置および補助容量線の駆動方法
WO2011129126A1 (ja) 走査信号線駆動回路およびそれを備えた表示装置
KR102023641B1 (ko) 쉬프트 레지스터와 이의 구동방법
US10473958B2 (en) Shift register, display device provided with same, and method for driving shift register
US20190108810A1 (en) Shift register and display device provided with same
WO2018193912A1 (ja) 走査信号線駆動回路およびそれを備える表示装置
JP6316423B2 (ja) シフトレジスタおよびそれを備える表示装置
US10529296B2 (en) Scanning line drive circuit and display device including the same
JP2019138923A (ja) 表示装置
JPWO2013018595A1 (ja) 表示装置およびその駆動方法
JP2023096257A (ja) シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
JP2023096258A (ja) シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531327

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814749

Country of ref document: EP

Kind code of ref document: A1