WO2010051042A1 - Benzoxazole kinase inhibitors and methods of use - Google Patents
Benzoxazole kinase inhibitors and methods of use Download PDFInfo
- Publication number
- WO2010051042A1 WO2010051042A1 PCT/US2009/005958 US2009005958W WO2010051042A1 WO 2010051042 A1 WO2010051042 A1 WO 2010051042A1 US 2009005958 W US2009005958 W US 2009005958W WO 2010051042 A1 WO2010051042 A1 WO 2010051042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- aryl
- heteroaryl
- alkenyl
- alkynyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 Cc1ccc2[o]c(I=C=**)nc2c1 Chemical compound Cc1ccc2[o]c(I=C=**)nc2c1 0.000 description 20
- XDTMQSROBMDMFD-UHFFFAOYSA-N C1CCCCC1 Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- BKQXJQBOXQFQJD-ALCCZGGFSA-N C/C=C(/C)\c1c(C=C)nc(C)[o]1 Chemical compound C/C=C(/C)\c1c(C=C)nc(C)[o]1 BKQXJQBOXQFQJD-ALCCZGGFSA-N 0.000 description 1
- WSLXRGLSWPKNLQ-UHFFFAOYSA-N CC(Nc1nc(ccc(Br)c2)c2[o]1)=O Chemical compound CC(Nc1nc(ccc(Br)c2)c2[o]1)=O WSLXRGLSWPKNLQ-UHFFFAOYSA-N 0.000 description 1
- IPWKHHSGDUIRAH-UHFFFAOYSA-N CC1(C)OB(B2OC(C)(C)C(C)(C)O2)OC1(C)C Chemical compound CC1(C)OB(B2OC(C)(C)C(C)(C)O2)OC1(C)C IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 1
- OVRKATYHWPCGPZ-UHFFFAOYSA-N CC1CCOCC1 Chemical compound CC1CCOCC1 OVRKATYHWPCGPZ-UHFFFAOYSA-N 0.000 description 1
- VJXRKZJMGVSXPX-UHFFFAOYSA-N CCc1ccncc1 Chemical compound CCc1ccncc1 VJXRKZJMGVSXPX-UHFFFAOYSA-N 0.000 description 1
- INOSHKPVRBASBE-UHFFFAOYSA-N CNc1n[o]c2c1cc(B(O)O)cc2 Chemical compound CNc1n[o]c2c1cc(B(O)O)cc2 INOSHKPVRBASBE-UHFFFAOYSA-N 0.000 description 1
- MBKNGZWYYPENFY-UHFFFAOYSA-N Cc(cc1)c(C)c2c1nc(N)[o]2 Chemical compound Cc(cc1)c(C)c2c1nc(N)[o]2 MBKNGZWYYPENFY-UHFFFAOYSA-N 0.000 description 1
- NURQLCJSMXZBPC-UHFFFAOYSA-N Cc1c(C)cncc1 Chemical compound Cc1c(C)cncc1 NURQLCJSMXZBPC-UHFFFAOYSA-N 0.000 description 1
- YMKXMMQMOLXMAY-UHFFFAOYSA-N Cc1n[o]c2c1cccc2C Chemical compound Cc1n[o]c2c1cccc2C YMKXMMQMOLXMAY-UHFFFAOYSA-N 0.000 description 1
- ZERXNBBJHAUMKS-UHFFFAOYSA-N Cc1nc(ccc(C)c2C)c2[o]1 Chemical compound Cc1nc(ccc(C)c2C)c2[o]1 ZERXNBBJHAUMKS-UHFFFAOYSA-N 0.000 description 1
- GLTSBRUWOZVDLL-UHFFFAOYSA-N Cc1nc2c(C)cccc2[o]1 Chemical compound Cc1nc2c(C)cccc2[o]1 GLTSBRUWOZVDLL-UHFFFAOYSA-N 0.000 description 1
- APUYIVHTTCCVMF-UHFFFAOYSA-N Nc1nc(ccc(Br)c2)c2[o]1 Chemical compound Nc1nc(ccc(Br)c2)c2[o]1 APUYIVHTTCCVMF-UHFFFAOYSA-N 0.000 description 1
- GHTVIPMWLCALSF-UHFFFAOYSA-N OSc(cc1)cc2c1[o]nc2NC1CC1 Chemical compound OSc(cc1)cc2c1[o]nc2NC1CC1 GHTVIPMWLCALSF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/275—Nitriles; Isonitriles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/275—Nitriles; Isonitriles
- A61K31/277—Nitriles; Isonitriles having a ring, e.g. verapamil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/455—Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7068—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0078—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
Definitions
- the activity of cells can be regulated by external signals that stimulate or inhibit intracellular events.
- the process by which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response is referred to as signal transduction.
- cascades of signal transduction events have been elucidated and found to play a central role in a variety of biological responses. Defects in various components of signal transduction pathways have been found to account for a vast number of diseases, including numerous forms of cancer, inflammatory disorders, metabolic disorders, vascular and neuronal diseases (Gaestel et al. Current Medicinal Chemistry (2007) 14:2214-2234).
- Kinases represent a class of important signaling molecules. Kinases can generally be classified into protein kinases and lipid kinases, and certain kinases exhibit dual specificities. Protein kinases are enzymes that phosphorylate other proteins and/or themselves (i.e., autophosphorylation).
- Protein kinases can be generally classified into three major groups based upon their substrate utilization: tyrosine kinases which predominantly phosphorylate substrates on tyrosine residues (e.g., erb2, PDGF receptor, EGF receptor, VEGF receptor, src, abl), serine/threonine kinases which predominantly phosphorylate substrates on serine and/or threonine residues (e.g., mTorC l , mTorC2, ATM, ATR, DNA-PK, Akt), and dual-specificity kinases which phosphorylate substrates on tyrosine, serine and/or threonine residues.
- tyrosine kinases which predominantly phosphorylate substrates on tyrosine residues (e.g., erb2, PDGF receptor, EGF receptor, VEGF receptor, src, abl), serine/threonine kinases which predominantly phosphorylate
- Lipid kinases are enzymes that catalyze the phosphorylation of lipids. These enzymes, and the resulting phosphorylated lipids and lipid-derived biologically active organic molecules, play a role in many different physiological processes, including cell proliferation, migration, adhesion, and differentiation. Certain lipid kinases are membrane associated and they catalyze the phosphorylation of lipids contained in or associated with cell membranes. Examples of such enzymes include phosphoinositide(s) kinases (such as PI3-kinases, PI4-Kinases), diacylglycerol kinases, and sphingosine kinases.
- PI3Ks phosphoinositide 3-kinases
- the phosphoinositide 3-kinases (PI3Ks) signaling pathway is one of the most highly mutated systems in human cancers.
- PI3K signaling is also a key factor in many other diseases in humans.
- PI3K signaling is involved in many disease states including allergic contact dermatitis, rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, chronic obstructive pulmonary disorder, psoriasis, multiple sclerosis, asthma, disorders related to diabetic complications, and inflammatory complications of the cardiovascular system such as acute coronary syndrome.
- P13Ks are members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3'-OH group on phosphatidylinositols or phosphoinositides.
- the PI3K family comprises 15 kinases with distinct substrate specificities, expression patterns, and modes of regulation (Katso et al., 2001).
- the class I PI3Ks (pi 10a, pi l O ⁇ , pi lO ⁇ , and pi lO ⁇ ) are typically activated by tyrosine kinases or G-protein coupled receptors to generate phosphatidylinositol-3,4,5-trisphosphate (PIP 3 ), which engages downstream effectors such as those in the Akt/PDKl pathway, mTOR, the Tec family kinases, and the Rho family GTPases.
- PIP 3 phosphatidylinositol-3,4,5-trisphosphate
- the class Il and III PI3-Ks play a key role in intracellular trafficking through the synthesis of PI(3)P and PI(3,4)P2.
- the PIKKs are protein kinases that control cell growth (mTORCl ) or monitor genomic integrity (ATM, ATR, DNA-PK, and hSmg-1).
- Akt posseses a plckstrin homology (PH) domain that bind PIP3, leading to Akt kinase activation.
- Akt phosphorylates many substrates and is a central downstream effector of PI3K for diverse cellular responses.
- Full activation of Akt typically requires phosphorylation of T308 in the activation loop and S473 in a hydrophobic motif.
- One important function of Akt is to augment the activity of mTOR, through phosphorylation of TSC2 and other mechanisms.
- mTOR is a serine-threonine kinase related to the lipid kinases of the PI3K family. mTOR has been implicated in a wide range of biological processes including cell growth, cell proliferation, cell motility and survival. Disregulation of the mTOR pathway has been reported in various types of cancer. mTOR is a multifunctional kinase that integrates growth factor and nutrient signals to regulate protein translation, nutrient uptake, autophagy, and mitochondrial function.
- mTORCl contains the raptor subunit and mTORC2 contains rictor. These complexes are differentially regulated, and have distinct substrate specificities and rapamycin sensitivity. For example, mTORCl phosphorylates S6 kinase (S6K) and 4EBP 1, promoting increased translation and ribosome biogenesis to facilitate cell growth and cell cycle progression. S6K also acts in a feedback pathway to attenuate PI3K/Akt activation. mTORC2 is generaly insensitive to rapamycin.
- mTORC2 is though to modulate growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases such as Akt. In many cellular contexts, mTORC2 is required for phosphorylation of the S473 site of Akt.
- 00111 Over the past decade, mTOR has drawn considerable attention due to its role in cell growth control and its involvement in human diseases. mTor has been implicated in a wide range of disorders including but not limited to cancer, diabetes, obesity, cardiovascular diseases and neurological disorders. It has been shown that mTOR modulates many fundamental biological processes including transcription, translation, autophagy, actin organization and ribosome biogenesis by integrating intracellular and extracellular signals, such as signals mediated by growth factors, nutrients, energy levels and cellular stress.
- kinases particularly protein kinases such as mTor and Akt, as well as lipid kinases such as PI3Ks are prime targets for drug development.
- the present invention addresses this need in the art by providing a new class of kinase inhibitors.
- is N or C-E 1 , X 2 is N, X 3 is C, and X 4 is C-R 9 or N; or X 1 is N or C-E 1 , X 2 is C, X 3 is N, and X 4 is C-R 9 or N;
- R 1 is H, -L-C,., o alkyl, -L-C 3 . 8 cycloalkyl, -L-C MO alkyl -Q.gcycloalkyl, -L- aryl, -L-heteroaryl, -L-C 1 . l oalkylaryl, -L- Ci. 10 alkylheteroaryl, -L- Ci_i 0 alkylheterocyclyl, -L-C 2 .] O alkenyl, -L-C 2 . 10 alkynyl, -L-C 2 . 10 alkenyl-C 3 .
- scycloalkyl -L-C 2 .
- is benzoxazolyl substituted with -(W 2 X -R 2 or benzisoxazolyl substituted with -(W 2 X -R 2 ;
- k is O or l ;
- E 1 and E 2 are independently -(W) 1 -R 4 ;
- W 1 is -O-, -NR 7 -, -S(O) 0 . 2 - -C(O>- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)- -N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 H -CH(R 7 )N(C(O)R 8 K -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, - CH(R 7 )N(R 8 )C(OH -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -O-, -NR 7 -, -S(O) 0-2 - -C(O)- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )C(O)N(R 8 )- -N(R 7 )S(O)-, - N(R 7 )S(O) 2 - -C(O)O- -CH(R 7 )N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 )- ; -CH(R 7 )N(SO 2 R 8 )- -CH(R 7 )N(R 8 )-, - CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or
- loalkylheterocyclyl C 2 .i 0 alkenyl, C 2 .i O alkynyl, C 2 _i O alkenyl -Ci -!O alkyl, C 2 . 10 alkynyl -C
- Ci. 10 alkylheteroaryl Q. l oalkylheterocyclyl, C 2 . 10 alkenyl, C 2 .i O alkynyl, C 2 . 10 alkenyl -C 1-10 alkyl, C 2 _i 0 alkynyl -Ci. 10 alkyl, C 2 . 10 alkenylaryl, C 2 .
- each of R 31 , R 32 , and R 33 is independently H or Ci. 10 alkyl , wherein the C
- each of R 7 and R 8 is independently hydrogen, Ci_
- each of said alkyl, alkenyl, alkynyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OCi.
- X is N or C-E 1 and X 2 is N; or X 1 is NH or CH-E 1 and X 2 is C;
- is H, -L-Ci.i O alkyl, -L-C 3 . 8 cycloalkyl, -L- Ci.i O alkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L-C).
- 100381 k is O or l ;
- E 1 and E 2 are independently -(W') j -R 4 ;
- W 1 is -O- -NR 7 -, -S(O) 0 . 2 - -C(O)- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O>-, -N(R 7 )S(O) 2 - -C(O)O-
- W 2 is -O- -NR 7 -, -S(O) 0 . 2 - -C(OK-C(O)N(R 7 K -N(R 7 )C(OK -N(R 7 )C(O)N(R 8 K -N(R 7 )S(OK - N(R 7 )S(O) 2 -, -C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 K -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 K - CH(R 7 )C(O)N(R 8 K -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(OK or -CH(R 7 )N(R 8 )S(O) 2 -;
- 0043] R 2 is
- alkyl-monocyclic aryl C MO alkyl-substituted monocyclic aryl, or C
- Ci. ]0 alkylheteroaryl d. l oalkylheterocyclyl, C 2 . 10 alkenyl, C 2 .
- o alkyl, -CF 3 , -O-aryl, -OCF 3 , -OC,. 10 alkyl, -NH 2 , - NCC.ioalkylXC.ioalkyl), - NH(C,. 10 alkyl), - NH( aryl), - NR 34 R 35 , -C(O)(C, . 10 alkyl), -QO)(C,. 10 alkyl-aryl), -C(O)(aryl), -CO 2 -C,. 10 alkyl, -CO 2 -C,. 10 alkyl, -CO 2 -C,. 10 alkylaryl, -CO 2 -aryl, - C( O)N(C,.
- each of R 7 and R 8 is independently hydrogen, Ci.
- R 6 is aryl-Ci.
- the invention provides a compound of Formula III:
- is -H, -L-d.i O alkyl, -L-C 3 . 8 cycloalkyl, -L-Ci.i O alkyI -C 3 _ 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L-Ci. ⁇ O alkylaryl, -L- Ci.
- 0054] M is benzoxazolyl substituted with -(W 2 ) k -R 2 ;
- k is O or l ;
- E 1 and E 2 are independently -(W') j -R 4 ;
- 0057] j in E 1 or j in E 2 is independently 0 or 1 ;
- W 1 is -O-, -NR 7 -, -S(O) 0-2 -, -C(O)- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-,-N(R 7 )S(O) 2 -, -C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 ⁇ -, -CH(R 7 )N(R 8 H -CH(R 7 )C(O)N(R 8 K - CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(OK or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -0-, -NR 7 -, -S(O) 0 . 2 -,-C(O)-,-C(O)N(R 7 ⁇ -, -N(R 7 )C(0)-, -N(R 7 )C(O)N(R 8 )-,-N(R 7 )S(O)-, - N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 ⁇ -, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, - CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(O)-, or -
- alkyl-monocyclic aryl C
- Ci.i 0 alkylheteroaryl C
- loalkynylaryl C 2 .
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, Ci_ 6 alkyl, or O- aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1, or 2 more heteroatoms in addition to the nitrogen atom;
- each of R 7 and R 8 is independently hydrogen, C MO alkyl, C 2 . 10 alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . l ocycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 ;
- each of said alkyl, alkenyl, alkynyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OCioalkyl, C ⁇ alkyl, C 2 . loalkenyl, C 2 . 10 alkynyl, haloC MO alkyl, haloC 2 ., 0 alkenyl, haloC 2 .
- the invention provides a compound of Formula IV-A-I :
- X 1 is N or C-E 1 and X 2 is N; or X 1 is NH or CH-E'and X 2 is C;
- scycloalkyl -L-C M oalkynyl-Cj. ⁇ cycIoalkyl, -L-heteroalkyl, -L-heteroalkylaryl, -L-heteroalkylheteroaryl, -L- heteroalkyl-heterocyclyl, -L-heteroalkyl-Cs.gcycloalkyl, -L-aralkyl, -L-heteroaralkyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R J ;
- E 1 and E 2 are independently -(W) j -R 4 ; [0073] j in E 1 orj in E 2 , is independently 0 or 1 ;
- W 1 is -O-, -NR 7 - -S(0)o- 2 - -C(OH-C(O)N(R 7 H -N(R 7 )C(OH -N(R 7 )S(OH -N(R 7 )S(O) 2 - -C(O)O- , -CH(R 7 )N(C(O)OR 8 H -CH(R 7 )N(C(O)R 8 H -CH(R 7 )N(SO 2 R 8 H -CH(R 7 )N(R 8 H -CH(R 7 )C(O)N(R 8 H - CH(R 7 )N(R 8 )C(OH -CH(R 7 )N(R 8 )S(OH or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -O- -NR 7 -, -S(0)o. 2 -,-C(OH-C(0)N(R 7 H -N(R 7 )C(0H -N(R 7 )C(O)N(R 8 H, -N(R 7 )S(OH - N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 H -CH(R 7 )N(C(O)R 8 H -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 H - CH(R 7 )C(O)N(R 8 H -CH(R 7 )N(R 8 )C(OH -CH(R 7 )N(R 8 )S(OH or -CH(R 7 )N(R 8 )S(O) 2 -;
- 0076] k is O or l
- each of R 7 and R 8 is independently hydrogen, C
- each of said alkyl, alkenyl, alkynyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OC
- the invention provides a compound of Formula IV-A or Formula IV-B:
- X 1 is N or C-E 1 , X 2 is N, X 3 is C, and X 4 is CR 9 or N; or X 1 is N or C-E 1 , X 2 is C, X 3 is N, and X 4 is CR 9 or N;
- E 1 and E 2 are independently -(W ') j -R 4 ; [0089] j in E 1 or j in E 2 , is independently 0 or 1 ;
- W 1 is -O-, -NR 7 - -S(O) 0 . 2 --C(OH-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)- ,-N(R 7 )S(O) 2 - -C(O)O-, -CH(R ⁇ N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, - CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -O- -NR 7 -, -S(O) 0 . 2 -,-C(O)-,-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )C(O)N(R 8 )- -N(R 7 )S(O)-, - N(R 7 )S(O) 2 -,-C(O)O- -CH(R ⁇ N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, - CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or
- loalkynylaryl C 2 .
- aryl- Q.ioalkyl e.g. monocyclic aryl-C 2 .i O alkyl, substituted monocyclic aryl- Ci.i O alkyl, or bicycloaryl— C MO alkyl
- each of R j l , R j2 , and R JJ is independently H or Q. ⁇ alkyl , wherein the C ⁇ oalkyl is unsubstituted or is substituted with one or more aryl, heteroalkyl, heterocyclyl, or heteroaryl group, wherein each of said alkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more halo, -OH, - Ci.
- ioalkyl -CF 3 , -O-aryl, -OCF 3 , -OC MO alkyl, -NH 2 , - NtC.oalkylXC M oalkyl), - NH(C,.
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3- 10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, C 1-6 alkyl, or O- aryl, and wherein said 3- 10 membered saturated or unsaturated ring independently contains O, 1 , or 2 more heteroatoms in addition to the nitrogen atom;
- each of R 7 and R 8 is independently hydrogen, Ci.i O alkyl, C 2 . 10 alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . locycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 ;
- R 6 is halo, -OR 31 , -SH, -NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -C0 2 aryl, -C(O)NR 31 R 32 , C(O)NR 34 R 35 , -NO 2 , -CN, -S(O) 0-2 C MO alkyl, -S(O) o_ 2 aryl, -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , C,.
- alkynyl wherein each of said alkyl, alkenyl, alkynyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OCi.i 0 alkyl, Ci.
- X 4 is CR 9 . In another embodiment, X 4 is N. [001011
- E 2 is -H.
- Xi is N and X 2 is N.
- X is C-E 1 and X 2 is N.
- is NH and X 2 is C.
- In some embodiments of the compounds of the invention, R 31 and R 32 are -H.
- is a benzoxazolyl moiety, substituted at the 2-position with -(W 2 ) k -R 2 .
- M 1 is either a 5- benzoxazolyl or a 6- benzoxazolyl moiety, optionally substituted with -(W 2 X-R 2 .
- M 1 is either a 5- benzoxazolyl or a 6- benzoxazolyl moiety, optionally substituted at its 2-position with -(W 2 ) ⁇ -R 2 .
- is a moiety having one of the following structures:
- - ⁇ W 2 )k- is -NR 7 -, -N(R 7 )C(O)-, - N(R ⁇ C(O)N(R 8 K or -N(R 7 )S(O) 2 -.
- -(W 2 ) k - is -NH-.
- -(W 2 ) k - is -(CH) 2 -.
- -(W 2 ) k - is -NHC(O)-.
- -(W 2 ) k - is — N(R 7 )C(O)N(R 8 )-.
- -(W 2 ) k - is -NHS(O) 2 -.
- Ri is unsubstit
- R 2 is -H. In other embodiments of the compounds of the invention, R 2 is alkyl. In yet other embodiments of the compounds of the invention, R 2 is methyl. In other embodiments of the compounds of the invention, R 2 is isopropyl. In some embodiments of the compounds of the invention, R 2 is cycloalkyl. In other embodiments of the compounds of the invention, R 2 is cyclopropyl.
- R 1 is -L-C MO alkyl, -L-C 3 . 8 cycloalkyl, -L-Ci.ioalkylheterocyclyl, or -L-heterocyclyl, each of which is unsubstituted or substituted by one or more independent R J substituents; and
- Ri is -Ci.ioalkyl, -C 3 .gcycloalkyl, or -C 1 . i 0 alkylheterocyclyl.
- Ri is isopropyl.
- the invention further provides a compound of Formula:
- X is N or C-E 1 and X 2 is N; or X, is NH or CH-E 1 and X 2 is C;
- R is hydrogen, -L-C MO alkyl, -L-C ⁇ cycloalkyl, -L- C MO alkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L-
- W 1 is -O- -NR 7 -, -S(O) 0 . 2 -,-C(O)-,-C(O)N(R 7 )-, -N(R 7 )C(0)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R ⁇ N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )QO)N(R 8 )-, -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -0-, -NR 7 -, -S(O) 0 . 2 -,-C(O ⁇ - -QO)N(R 7 )-, -N(R 7 )C(0)-, -N(R 7 )C(O)N(R 8 )-, -N(R 7 )S(O)-, - N(R 7 )S(O) 2 -, -C(O)O- -CH(R 7 )N(C(O)OR 8 ⁇ -, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 H - CH(R 7 )C(O)N(R 8 ⁇ -, -CH(R 7 )N(R 8 )QO)-, -CH(R 7 )N(R 8 )S(O)-, or -CH(CH(
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , Or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, Q.ealkyl, or O- aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1, or 2 more heteroatoms in addition to the nitrogen atom;
- each of R 7 and R 8 is independently hydrogen, Ci - ⁇ o a!kyl, C 2 .i 0 alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . l ocycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 substituents; and
- R 6 is halo, -OR 31 , -SH, NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -C0 2 aryl, -C(O)NR 31 R 32 , C(O) NR 34 R 35 , -NO 2 , -CN, -S(O) o- 2 C,. 10 alkyl, -S(0) o_ 2 aryl, -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , C,., o alkyl, C 2 .i 0 alkenyl, C 2 .
- 1001321 comprising the step of allowing a compound of Formula A to react with a compound of Formula B under conditions that are effective for synthesizing a compound of Formula C; wherein:
- X is N or C-E 1 , X 2 is N, and X 3 is C; or X 1 is N or C-E 1 , X 2 is C, and X 3 is N;
- R 1 is hydrogen, -L-C MO alkyl, -L-C 3 . 8 cycloalkyl, -L- C MO alkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L- C
- W 1 is -O- -NR 7 - -S(0)o- 2 - -C(OH-C(O)N(R 7 )-, -N(R 7 )C(OH -N(R 7 )S(OH -N(R 7 )S(O) 2 - -
- k is O or 1 ;
- W 2 is -O-, -NR 7 -, -S(Ok n -C(OK-C(O)N(R 7 K -N(R 7 )C(OK -N(R 7 )C(O)N(R 8 )-, -N(R 7 )S(O)-, -
- R 2 is hydrogen, halogen, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , -C(O)R 31 , -CO 2 R 31 , -
- NR 34 R 35 -C(O)(C, ., o alkyl), -C(O)(C M0 alkyl-aryl), -C(O)(aryl), -C0 2 -C,.,oalkyl, -CO 2 -C M0 alkylaryl, -CO 2 -aryl, -
- each of R 7 and R 8 is independently hydrogen, C MO alkyl, C 2 .i O alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . locycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 ; and
- alkynyl each of which is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OC N l oalkyl, C,.i O alkyl, C 2 .i O alkenyl, C 2 .i 0 alkynyl, haloCi_i 0 alkyl, haloC 2 .i 0 alkenyl, haloC 2 _i 0 alkynyl, -COOH, -
- R 3 , of Formula A and R 3 , of Formula C are the same; R 32 Of Formula A and R 32 of Formula C are the same; Xi of
- Formula A and X i of Formula C are the same; X 2 of Formula A and X 2 of Formula C are the same; and X 3 of
- T 1 is iodo or bromo.
- each of the compound of Formula B and the compound of Formula C is the compound wherein:
- is -L-C MO alkyl, -L-Q.scycloalkyl, -L- Ci. 10 alkylheterocyclyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 substituents;
- the compound of Formula A reacts with the compound of Formula B in the presence of palladium tetrakis (triphenylphosphine).
- the palladium tetrakis (triphenylphosphine) is present in an amount from about 0.05 molar equivalents to about 0.20 molar equivalents, or from about 0.07 molar equivalents to about 0.15 molar equivalents of the compound of Formula A.
- In another aspect, the invention provides a composition comprising a compound of Formula A and a compound of Formula B:
- M of Formula B is a Mi moiety, and wherein Mi of Formula B has one of the following structures:
- E' is - ⁇ W') j -R 4 wherein j is 0 or 1 ;
- W 1 is -O- -NR 7 -, -S(0)o. 2 - -C(OH-C(0)N(R 7 )-, -N(R 7 )C(O)- -N(R 7 )S(O)- -N(R 7 )S(O) 2 - -
- W 2 is -O- -NR 7 - -S(O) 0 . 2 - -C(O)- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )C(O)N(R 8 )-, -N(R 7 )S(O)-, -
- R 1 is hydrogen, -L-C MO alkyl, -L-Cs.scycloalkyl, -L- C,.i O alkyl -L- aryl, -L-heteroaryl, -L-
- R 2 is hydrogen, halogen, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , -C(O)R 31 , -CO 2 R 31 , -
- alkylheteroaryl C MO alkylheterocyclyl, C 2 -ioalkenyl, C 2 .i O alkynyl, C 2 .i O alkenyl -C MO alkyl, C 2 .ioalkynyl -Ci., o alkyl, C 2 .i 0 alkenylaryl, C 2 .
- loalkynylaryl C 2 .
- scycloalkenyl C M oalkoxy C ⁇ oalkyl, Ci.ioalkoxy-C M oalkenyl, C 1 .i 0 alkoxy-C 2 .i 0 alkynyl, heterocyclyl, heterocyclyl - Ci_i O alkyl, heterocyclyl-C 2 .
- each of R 31 , R 32 , and R 33 is independently H or C MO alkyl , wherein the C
- o alkyl, -CF 3 , -O-aryl, -OCF 3 , -OC MO alkyl, -NH 2 , - N(C,.,oalkyl)(C,. lo alkyl), - NH(C MO alkyl), - NH( aryl), - NR 34 R 35 , -C(O)(C M0 alkyl), -C(O)(C M0 alkyl-aryl), -C(O)(aryl), -CO 2 -C,. l0 alkyl, -CO 2 -C,. 10 alkylaryl, -CO 2 -aryl, - C( O)N(C,.
- each of the compound of Formula A and the compound of Formula B is the compound wherein:
- R is -L-C MO alkyl, -L-C 3 . 8 cycloalkyl, -L- Ci.ioalkylheterocyclyl, or -L- heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 substituents;
- Mi of Formula B and M 1 of Formula C are the same; R 1 of Formula A and Ri of Formula C are the same; R 31 of Formula A and R 3 ) of Formula C are the same; R 32 Of Formula A and R 32 Of Formula C are the same; Xi of Formula A and Xi of Formula C are the same; X 2 of Formula A and X 2 of Formula C are the same; and X 3 of Formula A and X 3 of Formula C are the same.
- the composition further comprises an organic solvent.
- the invention provides a process for synthesizing a compound of Formula G-6-B:
- G"6 G-6-B comprising the step of allowing a compound of Formula G-6 to react with an acid under conditions effective for synthesizing a compound of Formula G-6-B.
- the acid is hydrochloric acid.
- 001811 In another aspect, the invention provides a process for synthesizing a compound of Formula G-6:
- Formula 1 -2 Formula G-6 comprising the step of allowing a compound of Formula 1-2 to react with bis(pinacolato)diboron under conditions effective for synthesis of the compound of Formula G-6.
- In yet another aspect, the invention provides a process for synthesizing a compound of Formula 1-2:
- Formula 1 -1 Formula 1-2 comprising the step of allowing a compound of Formula 1-1 to react with a cyanogen halide under conditions effective to synthesize the compound of Formula 1 -2.
- the cyanogen halide is cyanogen bromide.
- the invention provides a process for synthesizing a compound of Formula B:
- Formula D comprising the step of allowing a compound of Formula D to react with a base and a trialkyl borate under conditions effective to synthesize a compound of Formula B; wherein: G is alkyl; T 2 is halo, triflate, tosylate or mesylate; each of M of Formula D and M of Formula B is a Mi moiety, and wherein M, moiety of Formula D and M 1 moiety of Formula B are identical, having one of the following structures:
- R 5 is hydrogen; k is 1 ; -W 2 -R 2 is -NH- G p ;
- G p is acetyl, tert-butyl carbamate (Boc), carbobenzyloxy (Cbz), benzyl (Bz), fluorenylmethyloxycarbonyl
- the base is n-butyllithium.
- the trialkyl borate is triisopropyl borate.
- each of the compound of Formula D and the compound of Formula B is the compound wherein -(W 2 ) k - is -NR 7 -, -N(R 7 )C(O)- or -N(R 7 )S(O) 2 -.
- the process further comprises the step of allowing the compound of Formula B wherein -W 2 -R 2 is -NH- G p and G p is tert-butyl carbamate to react with a reagent under conditions effective to yield a compound of Formula B, wherein -W 2 -R 2 is -NH 2 .
- the reagent is hydrochloric acid.
- the invention provides a process for synthesizing a compound of Formula 3-4:
- Formula 3-3 00190
- Xi is N or C-E 1 , X 2 is N, and X 3 is C; or X 1 is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two ring nitrogen atoms of the compound of Formula 3-3 are adjacent; and wherein no more than two ring nitrogen atoms of the compound of Formula 3-4 are adjacent;
- E 1 is -(W)J -R 4 wherein j is O or l ;
- W 1 is -O- -NR 7 - -S(0)o- 2 - -C(OK-C(O)N(R 7 H -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O- -CH(R 7 )N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 K -CH(R 7 )N(SO 2 R 8 K -CH(R 7 )N(R 8 K -CH(R 7 )C(O)N(R 8 K -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(OK or -CH(R 7 )N(R 8 )S(O) 2 -;
- Ri is hydrogen, — L-Ci -10 alkyl, -L-Q.scycloalkyl, -L- Ci -10 alkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L- C
- alkynylaryl C 2 . 10 alkynylheteroaryl, C 2 . 10 alkynylheteroalkyl, C 2 . 10 alkynylheterocyclyl, C 2 . 10 aIkynyl-C 3 .
- scycloalkenyl C
- ioalkyl -CF 3 , -O-aryl, -OCF 3 , -OC,. 10 alkyl, -NH 2 , - ⁇ C.oalkylXC.oalkyl), - NH(C,.
- l oalkynyl each of which is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OC 1 . l oalkyl, C MO alkyl, C 2 ., 0 alkenyl, C 2 . 10 alkynyl, haloC MO alkyl, haloC 2 . 10 alkenyl, haloC 2 .ioalkynyl, -COOH, -
- R, of Formula 3-3 and R, of Formula 3-4 are the same; R 3 , of Formula 3-3 and R 31 of Formula 3-4 are the same; R 32 of Formula 3-3 and R 32 of Formula 3-4 are the same; X 1 of Formula 3-3 and X 1 of Formula 3-4 are the same; X 2 of Formula 3-3 and X 2 of Formula 3-4 are the same; and X 3 of Formula 3-3 and X 3 of Formula 3-4 are the same.
- each of the compound of Formula 3-3 and the compound of Formula 3-4 is the compound wherein:
- R 1 is -L-C MO alkyl, -L-C 3 . 8 cycloalkyl, -L- Ci.ioalkylheterocyclyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 substituents; and wherein
- R 3 is hydrogen, -OH, -OR 31 , -NR 31 R 32 , -C(O)R 31 , -C(O)NR 31 R 32 , -C(O)NR 34 R 35 , aryl, heteroaryl, C,. 10 alkyl, C 3 .
- gcycloalkyl, or heterocyclyl wherein each of said aryl or heteroaryl moiety is unsubstituted or is substituted with one or more independent alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , -C(O)R 31 , -CO 2 R 31 , -C(K))NR 31 R 32 ,
- each of said alkyl, cycloalkyl, or heterocyclyl moiety is unsubstituted or is substituted with one or more alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -O-aryl, -NR 31 R 32 , -NR 34 R 35 ,-C(O)R 31 , -CO 2 R 31 , -
- the cyanogen halide is cyanogen bromide.
- the invention provides a process for synthesizing a compound of Formula 3-3:
- X 1 is N or C-E 1 , X 2 is N, and X 3 is C; or X 1 is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two ring nitrogen atoms of the compound of Formula 3-3 are adjacent; and wherein no more than two ring nitrogen atoms of the compound of Formula 3-4 are adjacent; 1002081 E 1 is -(W') j -R 4 wherein j is 0 or 1 ;
- W 1 is -O- -NR 7 -, -S(OV 2 - -C(OH-C(O)N(R 7 H -N(R 7 )C(OH -N(R 7 )S(OH -N(R 7 )S(O) 2 - - C(O)O- -CH(R 7 )N(C(O)OR 8 H -CH(R 7 )N(C(O)R 8 H -CH(R 7 )N(SO 2 R 8 H -CH(R 7 )N(R 8 H -CH(R 7 )C(O)N(R 8 H -CH(R 7 )N(R 8 )C(OH -CH(R 7 )N(R 8 )S(OH or -CH(R 7 )N(R 8 )S(O) 2 -;
- R 1 is hydrogen, — L-Ci.ioalkyl, -L-C 3 . 8 cycloalkyl, -L- Ci.ioalkyl -C 3 .gcycloalkyl, -L- aryl, -L-heteroaryl, -L- C MO alkylaryl, -L- C M oalkylheteroaryl, -L- C MO alkylheterocyclyl, -L-C 2 . 10 alkenyl, -L-C 2 . 10 alkynyl, -L-C 2 .
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, C ⁇ alkyl, or O- aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1 , or 2 more heteroatoms in addition to the nitrogen atom; each of R 7 and R 8 is independently hydrogen, Ci -)O alkyl, C 2 .] O alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . 1 0 cycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6
- R 6 is halo, -OR 31 , -SH, NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -C0 2 aryl, -C(O)NR 31 R 32 , C(O) NR 34 R 35 , -NO 2 , -CN, -S(O) C2 C,. l0 alkyl, -S(O) ,>_ 2 aryl, -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , C MO alkyl, C 2 . 10 alkenyl, C 2 .
- alkynyl aryl-C
- the reagent is (a) sodium dithionite or (b) palladium on carbon in the presence of hydrogen gas.
- each of the compound of Formula 3-2 and the compound of Formula 3-3 is a compound wherein: Xi and X 2 are N and X 3 is C; R 1 is -L-Ci. , o alkyl, -L-C 3 . 8 cycloalkyl, -L- C M oalkylheterocyclyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R J substituents; and wherein
- R 3 is hydrogen, -OH, -OR 31 , -NR 31 R 32 , -C(O)R 31 , -C(O)NR 31 R 32 , -C(O)NR 34 R 35 , aryl, heteroaryl, C,. ⁇ O alkyl, C 3 .
- X is N or C-E 1 , X 2 is N, and X 3 is C; or X, is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two ring nitrogen atoms of the compound of Formula 3-1 are adjacent; and wherein no more than two ring nitrogen atoms of the compound of Formula 3-2 are adjacent; 100223] E 1 Js -(W 1 ), -R 4 wherein j is 0 or 1 ;
- W 1 is -O- -NR 7 -, -S(O) 0 . 2 - -C(O)-,-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2
- R is hydrogen, -L-C MO alkyl, -L-C 3 . 8 cycloalkyl, -L- C
- loalkynylaryl C 2 .
- each of R 3 ', R 32 , and R 33 is independently H or C MO alkyl , wherein the Ci.
- NR 34 R 35 -C(O)(C i-ioalkyl), -C(O)(C,., 0 alkyl-aryl), -C(O)(aryl), -CO 2 -C M0 alkyl, -CO 2 -C,. 10 alkylaryl, -CO 2 -aryl, -
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R j2 , hydroxyl, halogen, oxo, aryl, heteroaryl, Ci_ 6 alkyl, or O- aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1, or 2 more heteroatoms in addition to the nitrogen atom;
- each of R 7 and R 8 is independently hydrogen, C 1-10 alkyl, C 2 . 10 alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . l ocycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 ; and
- R 6 is halo, OR 31 , -SH, NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -C0 2 aryl, -C(O)NR 31 R 32 , C(O) NR 34 R 35 ,
- l oalkynyl each of which is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OC,. i O alkyl, C 1-I0 alkyl, C 2 .
- R, of Formula 3- 1 and R 1 Of Formula 3-23 are the same;
- R 31 of Formula 3-1 and R 3 ) Of Formula 3-2 are the same;
- R 32 of Formula 3-1 and R 32 of Formula 3-2 are the same;
- X t of Formula 3-1 and Xi of Formula 3-2 are the same;
- X 2 of Formula 3-1 and X 2 of Formula 3-2 are the same;
- X 3 of Formula 3-1 and X 3 of Formula 3-2 are the same.
- the reagent is nitric acid.
- each of the compound of Formula 3-1 and the compound of Formula 3-2 is a compound wherein: [00235
- G is H or R 01 ; and R G ⁇ is alkyl, alkenyl, or aryl;
- R 02 is H, acetyl, tert-butyl carbamate (Boc), carbobenzyloxy (Cbz), benzyl (Bz), fluorenylmethyloxycarbonyl (FMOC), or p-methoxybenzyl (PMB).
- R 02 is H, acetyl, tert-butyl carbamate (Boc), carbobenzyloxy (Cbz), benzyl (Bz), fluorenylmethyloxycarbonyl (FMOC), or p-methoxybenzyl (PMB).
- the compound of Formula E is:
- a compound of the invention is a compound of Formula F:
- W 1 is -O- -NR 7 -, -S(O) 0 . 2 - -C(O)- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR 8 H -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(OK or -CH(R 7 )N(R 8 )S(O) 2 -
- is hydrogen, -L-C
- R 3 and R 4 are independently hydrogen, halogen, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , - C(O)R 31 , -CO 2 R 31 , -C(O)NR 31 R 32 , -C(O)NR 34 R 35 , -NO 2 , -CN, -S(OV 2 R 31 , -SO 2 NR 31 R 32 , -SO 2 NR 34 R 35 , - NR 31 C(O)R 32 , -NR 31 C
- o alkyl, -CF 3 , -O-aryl, -OCF 3 , -OC MO alkyl, -NH 2 , - N(C MO alkyl)(C,., o alkyl), - NH(C,. 10 alkyl), - NH( aryl), - NR 34 R 35 , -C(O)(C M0 alkyl), -C(O)(C,. l0 alkyl-aryl), -C(O)(aryl), -CO 2 -C M0 alkyl, -C0 2 -C M oalkylaryl, -CO 2 -aryl, - C( O)N(C,.
- each of R 7 and R 8 is independently hydrogen, C MO alkyl, C 2 . 10 alkenyl, aryl, heteroaryl, heterocyclyl or C 3 .
- R 36 is NH 2 or NO 2 .
- the compound of Formula 3-3' is a compound wherein:
- R is -L-C
- each of said aryl or heteroaryl moiety is unsubstituted or is substituted with one or more independent alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , -C(O)R 31 , -
- -(W 2 ) k - is -NR 7 -, -N(R 7 )C(O)- or -N(R 7 )S(O) 2 -.
- the invention provides a composition comprising a compound of Formula 3-3:
- X 1 is N or C-E 1 , X 2 is N, and X 3 is C; or X, is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two nitrogen ring atoms are adjacent;
- E 1 is -(W 1 ⁇ -R 4 wherein j is 0 or 1 ;
- W 1 is -O- -NR 7 - -S(O) 0 . 2 - -C(O)-,-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O>-, -N(R 7 )S(O) 2 - - C(O)O- -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -;
- R 1 is hydrogen, -L-C ⁇ .i O alkyl, -L-C 3 . 8 cycloalkyl, -L- -C ⁇ cycloalkyl, -L- aryl, -L-heteroaryl, -L- C
- loalkynylaryl C 2 .
- scycloalkenyl C MO alkoxy C
- o alkyl Ci.i O alkyl, C 2 . 10 alkenyl, C 2 .i 0 alkynyl, haloC MO alkyl, haloC 2 .i 0 alkenyl, haloC 2 .i 0 alkynyl, -COOH, -
- each of R j l , R j2 , and R 3j is independently H or Ci.i O alkyl , wherein the Ci. ]O alkyl is unsubstituted or is substituted with one or more aryl, heteroalkyl, heterocyclyl, or heteroaryl group, wherein each of said aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more halo, -OH, - Ci.
- NR 34 R 35 -C(0)(C M oalkyl), -C(O)(C,. 10 alkyl-aryl), -C(O)(aryl), -CO 2 -C,., 0 alkyl, -COj-Cioalkylaryl, -CO 2 -aryl, -
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , Or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, C). 6 alkyl, or O- aryl, and wherein said 3- 10 membered saturated or unsaturated ring independently contains O, 1 , or 2 more heteroatoms in addition to the nitrogen atom.
- the cyanogen halide is cyanogen bromide.
- the compound of Formula 3-3 is the compound wherein:
- Ri is -L-Ci.
- each of said aryl or heteroaryl moiety is unsubstituted or is substituted with one or more independent alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , -C(O)R 31 , -
- composition comprisng a compound of Formula 3-3 and cyanogen halide
- the composition further comprises a compound of Formula 3-4:
- R, of Formula 3-3 and R 1 of Formula 3-4 are the same; R 3 i of Formula 3-3 and R 3 , of Formula 3-4 are the same; R 32 Of Formula 3-3 and R 32 Of Formula 3-4 are the same; X 1 of Formula 3-3 and Xi of Formula 3-4 are the same; X 2 of Formula 3-3 and X 2 of Formula 3-4 are the same; and X 3 of Formula 3-3 and X 3 of Formula 3-4 are the same.
- the invention provides a composition comprising a compound of Formula 3-1 :
- X 1 is N or C-E 1 , X 2 is N, and X 3 is C; or X 1 is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two nitrogen ring atoms are adjacent; 100283] E' is -(W 1 ), -R 4 wherein j is 0 or 1 ;
- W 1 is -O- -NR 7 -, -S(O) 0 . 2 - -C(O)-,-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O)-, or
- is hydrogen, — L-Ci -10 alkyt, -L-C 3 _ 8 cycloalkyl, -L- C ⁇ oalkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L- C 1-10 alkylaryl, -L- C M oalkylheteroaryl, -L- Ci.i 0 alkylheterocyclyl, -L-C 2 .i O alkenyl, -L-C 2 .i 0 alkynyl, -L-C 2 _ 10 alkenyl- C 3 .
- cycloalkyl -L-Q M oalkynyl-Cj.scycIoalkyl, -L-heteroalkyl, -L-heteroalkylaryl, -L-heteroalkylheteroaryl, -L- heteroalkyl-heterocyclyl, -L-heteroalkyl-C 3 .
- 8 cycloalkyl, -L-aralkyl, -L-heteroaralkyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 ;
- alkynyl C 2 .
- each of R 31 , R 32 , and R 33 is independently H or Ci.ioalkyl , wherein the Q.ioalkyl is unsubstituted or is substituted with one or more aryl, heteroalkyl, heterocyclyl, or heteroaryl group, wherein each of said aryl, heteroalkyl, heterocyclyl, or heteroaryl group
- the compound of Formula 3- 1 is the compound wherein: 1002931 X, and X 2 are N and X 3 is C;
- R is -L-Ci_i O alkyl, -L-C 3 _ 8 cycloalkyl, -L- Ci.ioalkylheterocyclyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 substituents;
- the composition comprising a compound of Formula 3-1 and a nitrating agent
- the compostion further comprises a compound of Formula 3-2:
- R, of Formula 3-1 and Ri of Formula 3-2 are the same; R 3 i of Formula 3-1 and R 3 ] of Formula 3-2 are the same; R 32 of Formula 3-1 and R 32 Of Formula 3-2 are the same; Xi of Formula 3-1 and Xi of Formula 3-2 are the same; X 2 of Formula 3-1 and X 2 of Formula 3-2 are the same, and X 3 of Formula 3-1 and X 3 of Formula 3-2 are the same.
- the invention provides a process for synthesizing a compound of Formula C:
- [00301 ] comprising the step of allowing a compound of Formula A to react with a compound of Formula B under conditions that are effective for synthesizing a compound of Formula C; wherein; 100302] T, is halo;
- X is N or C-E 1 , X 2 is N, and X 3 is C; or X, is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two ring nitrogen atoms of the compound of Formula A are adjacent; and wherein no more than two ring nitrogen atoms of the compound of Formula C are adjacent;
- Ri is hydrogen, -L-Cj.ioalkyl, -L-C 3 . 8 cycloalkyl, -L- Ci -10 aIkyl -L- aryl, -L-heteroaryl, -L- C MO alkylaryl, -L- C MO alkylheteroaryl, -L- Ci.ioalkylheterocyclyl, -L-C 2 . ⁇ oalkenyl, -L-C 2 .i O alkynyl, -L-C 2 .i 0 alkenyl- C 3 . 8 cycloalkyl, -L-C 2 .
- M of Formula B is a M
- E 1 is -(W) 1 -R 4 wherein j is O or 1 ;
- W 1 is -0-, -NR 7 -, -S(O) 0-2 - -C(OK-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 K -CH(R 7 )N(SO 2 R 8 K -CH(R 7 )N(R 8 K -CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(OH -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -; [00310] k is O or 1 ;
- W 2 is -O-, -NR 7 -, -S(O) 0 . 2 - -C(OK-C(O)N(R 7 )-, -N(R 7 JC(O)-, -N(R 7 )C(O)N(R 8 K -N(R 7 )S(0K - N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(C(O)R 8 K -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 K - CH(R 7 )C(O)N(R 8 K -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(OK or -CH(R 7 )N(R 8 )S(O) 2
- alkenylheterocyclcyl C 2 .i O alkenyl-C 3 . gcycloalkyl, C 2 .i O alkynylaryl, C 2 .i 0 alkynylheteroaryl, C 2 .i 0 alkynylheteroalkyl, C 2 .
- each of R 31 , R j2 , and R 33 is independently H or C MO alkyl , wherein the C MO alkyl is unsubstituted or is substituted with one or more aryl, heteroalkyl, heterocyclyl, or heteroaryl group, wherein each of said aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more halo, -OH, - C t . loalkyl, -CF 3 , -O-aryl, -OCF 3 , -OC,. 10 alkyl, -NH 2 , - NtC.oalkylXC.
- of Formula B and M 1 of Formula C are the same;
- R 5 of Formula B and R 5 of Formula C are the same;
- of Formula C are the same;
- R 3 i of Formula A and R 31 of Formula C are the same;
- R 32 Of Formula A and R 32 of Formula C are the same;
- X 1 of Formula A and X 1 of Formula C are the same;
- X 2 of Formula A and X 2 of Formula C are the same;
- X 3 of Formula A and X 3 of Formula C are the same.
- each of the compound of Formula A and the compound of Fornula C is the compound wherein:
- R 1 is -L-Q.ioalkyl, -L-Q.gcycloalkyl, -L- or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 substituents;
- the compound of Formula B has one of the following structures:
- the invention provides a composition comprising a compound of Formula A and a compound of Formula B:
- X is N or C-E 1 , X 2 is N, and X 3 is C; or X, is N or C-E 1 , X 2 is C, and X 3 is N; wherein no more than two ring nitrogen atoms of the compound of Formula A are adjacent; and wherein no more than two ring nitrogen atoms of the compound of Formula C are adjacent;
- M of Formula B is a M, moiety, and wherein M, moiety of Formula B has one of the following structures:
- E 1 is -(W 1 ) j -R 4 wherein j is 0 or 1 ;
- W 1 is -O- -NR 7 -, -S(O) 0-2 - -C(O)- -C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR 8 K -CH(R 7 )N(QO)R 8 )-, -CH(R 7 )N(SO 2 R 8 ⁇ -, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -O- -NR 7 - -S(OV 2 - -C(OK-C(O)N(R 7 H -N(R 7 )C(0H -N(R 7 )C(O)N(R 8 K -N(R 7 )S(OH - N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, - CH(R 7 )C(O)N(R 8 K -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(OH or -CH(R 7 )N(R 8 )S(O) 2 -;
- alkenyl Ci.
- loalkynylaryl C 2 .
- R 6 is halo, -OR 31 , -SH, NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -CO 2 aryl, -C(O)NR 31 R 32 , C(O) NR 34 R 35 , -NO 2 , -CN, -S(0)o- 2 C MO alkyl, -S(0) o- 2 aryl, -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , C MO alkyl, C 2 ., o alkenyl, C 2 ., 0 alkynyl, aryl-Ci.ioalkyl, aryl-C 2 .i 0 alkenyl, aryl-C 2 .i 0 alkynyl, heteroaryl-Ci.
- composition comprising a compound of Formula A and a compound of
- R] is -L-C MO alkyl, -L- Ci.ioalkylheterocyclyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 substituents;
- R 3 is hydrogen, -OH, -OR 31 , -NR 31 R 32 , -C(O)R 3 ', -C(O)NR 31 R 32 , -C(O)NR 34 R 35 , aryl, heteroaryl, C,.
- aryl or heteroaryl moiety is unsubstituted or is substituted with one or more independent alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, -OH, -R 31 , -CF 3 , -OCF 3 , -OR 31 , -NR 31 R 32 , -NR 34 R 35 , -C(O)R 31 , -
- -(W 2 X- is -NR 7 -, -N(R 7 )C(O)- or -N(R 7 )S(O) 2 -.
- composition comprising a compound of Formula A and a compound of
- the compound of Formula B is a compound having one of the following formulae:
- composition comprising a compound of Formula A and a compound of Formula B
- composition further comprises a compound of Formula C:
- M, of Formula B and Mi of Formula e are the same; R 5 of Formula B and R 5 of Formula C are the same; Ri of Formula A and R, of Formula C are the same; R, of Formula A and R t of Formula C are the same; R 31 of Formula A and R 3) of Formula C are the same; R 32 Of Formula A and R 32 Of Formula C are the same; Xi of Formula A and Xi of Formula C are the same; X 2 of Formula A and X 2 of Formula C are the same; and X 3 of Formula A and X 3 of Formula C are the same.
- In a further aspect the invention provides a compound of Formula I-B:
- or a pharmaceutically acceptable salt thereof wherein: [00354
- is hydrogen, -L-C MO alkyl, -L-C 3 . 8 cycloalkyl, -L- Ci -I0 alkyl -C ⁇ cycloalkyl, -L- aryl, -L-heteroaryl, -L- C MO alkylaryl, -L- Ci.i 0 alkylheteroaryl, -L- Ci.ioalkylheterocyclyl, -L-C 2 .i O alkenyl, -L-C 2 .ioalkynyl, -L-C 2 .i 0 alkenyl- C 3 .gcycloalkyl, -L-C 2 .ioalkynyl-C 3 .
- Mi is a moiety having one of the following structures:
- E' and E 2 are independently -(W 1 ), -R 4 ;
- W 1 is -O- -NR 7 - -S(OVr- -C(OK-C(O)N(R 7 K -N(R 7 )C(OK -N(R 7 )S(O)- -N(R 7 )S(O) 2 - -C(O)O-
- W 2 is -O-, -NR 7 -, -S(O) 0 . 2 - -C(OK-C(O)N(R 7 K -N(R 7 JC(O)-, -N(R 7 )C(O)N(R 8 K-N(R 7 )S(OK -
- each of R j l , R 32 , and R j3 is independently H or C
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, Coalkyl, or O-aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1 , or 2 more heteroatoms in addition to the nitrogen atom;
- each of R 7 and R 8 is independently hydrogen, Ci.i O alkyl, C 2 . ⁇ oalkenyl, aryl, heteroaryl, heterocyclyl or C 3 . 10 cycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 ; and
- the compound Formula I-B is the compound wherein M, is:
- the invention provides a compound of Formula IV-A or Formula IV-B:
- I00372J Xi is N or C-E 1 , X 2 is N, and X 3 is C; or X 1 is N or C-E 1 , X 2 is C, X 3 is N, and X 4 is CR 9 or N;
- cycloalkyl -L-heteroalkyl, -L-heteroalkylaryl, -L-heteroalkylheteroaryl, -L- heteroalkyl-heterocyclyl, -L-heteroalkyl-C ⁇ cycloalkyl, -L-aralkyl, -L-heteroaralkyl, or -L-heterocyclyl, each of which is unsubstituted or is substituted by one or more independent R 3 ;
- E 1 and E 2 are independently -(W 1 ), -R 4 ; [00377] j in E 1 or j in E 2 , is independently 0 or 1 1 ;
- W 1 is -O- -NR 7 -, -S(O) 0-2 - -C(O)- -C(O)N(R 7 K -N(R 7 )C(OK -N(R 7 )S(OH-N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 H -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )-, - CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )S(O) 2 -;
- W 2 is -CH
- loalkenyl C 2 .
- loalkynylaryl C 2 .ioalkynylheteroaryl, C 2 _ioalkynylheteroalkyl, C 2 -ioalkynylheterocyclyl, C 2 .ioalkynyl-C 3 .
- Ci.ioalkyl-Cs.scycloalkyl Ci.ioalkyl-Cs.scycloalkyl, C 3 . 8 cycloalkyl- Ci.i O aikyl, C ⁇ cycloalkyl- C 2 .i 0 alkenyl, C 3 . 8 cycloalkyl- C 2 .ioalkynyl, C,. l oalkyl- C 2 .i O alkenyl, C MO alkyl- C 2 .
- each of R 31 , R 32 , and R 3j is independently H or C
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R ⁇ 2 , hydroxyl, halogen, oxo, aryl, heteroaryl, Ci_ 6 alkyl, or O- aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1, or 2 more heteroatoms in addition to the nitrogen atom;
- each of R 7 and R 8 is independently hydrogen, C 1-10 alkyl, C 2 . 10 alkenyl, aryl, heteroaryl, heterocyclyl or C 3 . l ocycloalkyl, each of which except for hydrogen is unsubstituted or is substituted by one or more independent R 6 ; 100386]
- R 6 is halo, -OR 31 , -SH, -NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -C0 2 aryl, -C(O)NR 31 R 32 , C(O)NR 34 R 35 , -NO 2 , -CN, -S(0)o_ 2 C MO alkyl, -S(O) o- 2 aryl, -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , C, -10 alkyl, C 2 ., 0 alkenyl, C 2 ., 0
- each of said alkyl, alkenyl, alkynyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more independent halo, cyano, nitro, -OC ⁇ oalkyl, C] -10 alkyl, C 2 . , o alkenyl, C 2 . 10 alkynyl, haloC,.i 0 alkyl, haloC 2 .
- R 9 is H, halo, -OR 31 , -SH, -NH 2 , -NR 34 R 35 , - NR 31 R 32 , -CO 2 R 31 , -C0 2 aryl, -C(O)NR 31 R 32 , C(O)NR 34 R 35 , -NO 2 , -CN, -S(0) o- 2 C,., o alkyl, -S ⁇ aryl, -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , C,., o alkyl, C 2 .
- X 4 is CR 9 . In other embodiments, X 4 is N.
- the compounds of the invention inhibit a protein kinase. In some embodiments of the compounds of the invention, the compound inhibits a lipid kinase. In other embodiments of the compounds of the invention, the compound inhibits a protein kinase and a lipid kinase. In some embodiments of the compounds of the invention, the compound inhibits a kinase selected from the group consisting of PI3 kinase ⁇ , PI3 kinase ⁇ , PI3 kinase ⁇ , PI3 kinase ⁇ , DNA-PK, mTorC (including mTorCl and mTorC2), AbI. VEGFR, EphB4, Tie2, FlO, PDGFR, RET, InsR, ATM, ATR, hSmg-1 , and IGFR.
- a compound of the invention or a pharmaceutically acceptable salt thereof inhibits mTor at an IC 50 value of less than about 100 nM. In other embodiments, a compound of the invention or a pharmaceutically acceptable salt thereof inhibits mTor at an IC 50 value of less than about 10 nM.
- the invention provides a composition
- a composition comprising a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1, II-A-la, and II-A-2), II-B (including II-B-1 and II-B-2), III (including IH-A and III-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3 , or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A- 1, II-A-la, and II-A-2), II-B (including II-B-1 and II-B-2), III (including IH-A and IH-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein E 2 is -H; Xi and X 2 are N; Ri is -L-Ci.i O alkyl, -L- C 3 .
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A- 1 , II-A-la, and II-A-2), II-B (including II-B-1 and II-B-2), III (including IH-A and III-B), IV-A (including IV-A- I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein X 4 is CR 9 . In another embodiment, X 4 is N.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A- 1 , II-A-la, and II-A-2), II-B (including II-B-1 and II-B-2), HI (including IH-A and IH-B), IV-A (including IV-A- I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein E 2 is — H.
- X is N and X 2 is N.
- Xi is C-E 1 and X 2 is N.
- is NH and X 2 is C.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A- 1 , H-A-I a, and II-A-2), H-B (including II-B-1 and II-B-2), III (including IH-A and III-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein R 3 i and R 32 are -H.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), HI (including IH-A and III-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein -(W 2 )k- is -NR 7 -, -N(R 7 )C(O)-, - N(R 7 )C(O)N(RV, or -N(R 7 )S(O) 2 -.
- -(W 2 ) k - is -NH-. In another embodiment, -(W 2 ) k - is -(CH) 2 -. In yet another embodiment, -(W 2 ) k - is -NHC(O)-. In a further embodiment of the compounds of the invention, -(W 2 ) k - is — N(R 7 )C(O)N(R 8 )-. In another embodiment of the compounds of the invention, -(W 2 ) k - is -NHS(O) 2 -.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including HI-A and III-B), IV-A (including IV-A- I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein R, is -L-Ci_i O alkyl, -L-C 3 . 8 cycloalkyl, -L- C 1 .
- R is unsubstituted or is substituted with Ci-
- a compound of Formula I'-A', I (including I-A and I-B), II-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including IH-A and III-B), IV-A (including IV-A- I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein R 2 is alkyl. In yet other embodiments, R 2 is methyl. In other embodiments of the compounds of the invention, R 2 is isopropyl. In some embodiments , R 2 is cycloalkyl. In other embodiments, R 2 is cyclopropyl.
- a method is provided of inhibiting activity of a protein kinase and/or a lipid kinase present in a cell, comprising contacting said cell with an effective amount of a compound of Formula I'- A', I (including 1-A and I-B), II-A (including II-A-1 , II-A-la, and II-A-2), II-B (including II-B-1 and II-B-2), III (including IH-A and HI-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3.
- a compound of Formula I'- A' I (including 1-A and I-B), II-A (including II-A-1 , II-A-la, and II-A-2), II-B (including II-B-1 and II-B-2), III (including IH-A and HI-B), IV-A (including IV-A-I and IV-A-2) , IV
- a compound of Formula I'-A', I (including I-A and I-B), II-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including IH-A and HI-B), IV-A (including IV-A- I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein E 2 is -H; X t and X 2 are N; R
- a compound of Formula I'-A 1 , 1 (including I-A and I-B), H-A (including H-A-I , II-A-la, and II-A-2), H-B (including H-B-I and II-B-2), III (including IH-A and HI-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein X 4 is CR 9 . In another embodiment, X 4 is N.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including IH-A and HI-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein E 2 is -H.
- X ⁇ is N and X 2 is N.
- X is C-E 1 and X 2 is N.
- X 1 is NH and X 2 is C.
- a compound of Formula I'-A 1 , 1 (including I-A and I-B), H-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including IH-A and IH-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein R 31 and R 32 are -H.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1 , II-A-la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including III-A and IH-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein -(W 2 )k- is -NR 7 -, -N(R 7 )C(O)-, -N(R 7 )C(O)N(R 8 )-, or - N(R 7 )S(O) 2 - In other embodiments, -(W 2 ) k - is -NH-.
- -(W 2 ) k - is -(CH) 2 -.
- - ⁇ W 2 ) k - is -NHC(O)-.
- -(W 2 ) k - is — N(R 7 )C(O)N(R 8 >-
- - ⁇ W 2 ) k - is -NHS(O) 2 -.
- a compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1 , II-A-l a, and II-A-2), II-B (including II-B- 1 and II-B-2), III (including III-A and III-B), IV-A (including IV-A-I and IV-A-2) , IV-B (including IV-B-I and IV-B-2), C, 3-6, or N-3, or a pharmaceutically acceptable salt thereof, is a compound wherein R, is -L-C M oalkyl, -L-C 3 .
- compositions of the invention a compound of Formula I'-A', I (including I-A and 1-B), H-A (including II-A- 1 , II-A- la, and II-A-2), H-B (including II-B-1 and II-B-2), III (including IH-A and
- IV-A including IV-A-I and IV-A-2)
- IV-B including IV-B-I and IV-B-2
- C 3-6, or N-3, or a pharmaceutically acceptable salt thereof
- R 2 is alkyl.
- R 2 is methyl.
- R 2 is isopropyl.
- R 2 is cycloalkyl.
- R 2 is cyclopropyl.
- the inhibiting takes place in a subject suffering from a disorder selected from the group consisting of cancer, kidney disease, bone disorder, inflammatory disease, immune disease, nervous system disease, metabolic disease, respiratory disease, cardiac disease, and any other conditions disclosed herein. Further, in some embodiments of the method of the invention a second therapeutic agent is administered.
- one or more compounds of the invention yield selective inhibition of mTor- mediated signal transduction as compared to PI3K.
- the compounds provided herein can inhibit mTor-mediated activity more effectively than rapamycin, hence providing an alternative treatment for rapamycin-resistant conditions.
- one or more compounds of the invention selectively inhibits both mTorCl and mTorC2 activity relative to all type I phosphatidylinositol 3-kinases (PI3-kinase) consisting of PI3-kinase ⁇ , PI3- kinase ⁇ , PI3-kinase ⁇ , and PI3-kinase ⁇ .
- PI3-kinase all type I phosphatidylinositol 3-kinases
- one or more compounds of the invention selectively inhibits both mTor activity with an IC 50 value of about 100 nM, 50 nM, 10 nM, 5 nM, 100 pM, 10 pM or even 1 pM, or less as ascertained in an in vitro kinase assay.
- one or more compounds of the invention is substantially ineffective in inhibiting a type I PI3-kinase at a concentration of 10OnM, 20OnM, 50OnM, or IuM, 5 uM or lOuM, or higher in an in vitro kinase assay.
- one or more compounds of the invention inhibits phosphorylation of Akt (S473) and
- Akt (T308) more effectively than rapamycin when tested at a comparable molar concentration in an in vitro kinase assay.
- one or more compounds of the invention competes with ATP for binding to ATP- binding site on mTorCl and/or mTorC2.
- one or more compounds of the invention causes apoptosis of said cell or cell cycle arrest.
- the present invention provides methods and composition for inhibiting cell proliferation.
- the method comprises contacting a cell with one or more compounds of the invention that selectively inhibits mTorC l and/or mTorC2 activity relative to one or more type I phosphatidylinositol 3-kinases (PI3-kinase) ascertained by an in vitro kinase assay, wherein the one or more type I PI3-kinase is selected from the group consisting of PI3-kinase ⁇ , PI3-kinase ⁇ , PI3-kinase ⁇ , and PI3-kinase ⁇ .
- PI3-kinase type I phosphatidylinositol 3-kinases
- the inhibition of cell-proliferation is evidenced by an assay selected from the group consisting of an MTS cell proliferation assay, a resazurin assay, a colony formation assay, flow cytometry, and a cell division tracker dye assay.
- the present invention provides a method of inhibiting phosphorylation of both Akt (S473) and Akt (T308) in a cell, comprising contacting a cell with an effective amount of one or more compounds of the invention that selectively inhibits both mTorCl and mTorC2 activity relative to one or more type I phosphatidylinositol 3-kinases (PI3-kinase) as ascertained by a cell-based assay or an in vitro kinase assay, wherein the one or more type I PI3-kinase is selected from the group consisting of PI3-kinase ⁇ , PI3- kinase ⁇ , PI3-kinase ⁇ , and PI3-kinase ⁇ , thereby Akt phosphorylation at residues S473 and T308 is simultaneously inhibited.
- PI3-kinase type I phosphatidylinositol 3-kinases
- the present invention provies a method of substantially inhibiting proliferation of a neoplastic cell comprising contacting the cell with an effective amount of one or more compounds of the invention that inhibits full activation of Akt in a cell and an anti-cancer agent, wherein said inhibition of cell proliferation is enhanced through a synergistic effect of said compound and said anti-cancer agent.
- the present invention provides a method of ameliorating a medical condition mediated by mTorCl and/or mTorC2, comprising administering to a subject in need thereof a therapeutically effective amount of one or more compounds of the invention that selectively inhibits mTorCl and/or mTorC2 activity relative to one or more type I phosphatidylinositol 3-kinases (PI3-kinase) as ascertained in a cell-based assay or an in vitro kinase assay, wherein the one or more type I PI3-kinase is selected from the group consisting of PI3-kinase ⁇ , PI3-kinase ⁇ , PI3-kinase ⁇ , and PI3-kinase ⁇ .
- PI3-kinase type I phosphatidylinositol 3-kinases
- Also provided in the present invention is a combination treatment for a subject diagnosed with or at risk of a neoplastic condition, comprising administering to said subject a therapeutically effective amount of one or more compounds of the invention that substantially inhibits full activation of Akt in a cell and an anti-cancer agent, wherein the efficacy of said treatment is enhanced through a synergistic effect of said compound and said anticancer agent.
- the compound utilized in the subject methods is a compound that selectively inhibits both mTorCl and mTORC2 activity relative to all type I phosphatidylinositol 3-kinases (PI3-kinase) consisting of PI3-kinase ⁇ , PI3-kinase ⁇ , PI3-kinase ⁇ , and PI3-kinase ⁇ .
- PI3-kinase all type I phosphatidylinositol 3-kinases
- the anti-cancer agent utlized in the subject methods can include but are not limited to rapamycin, Gleevec, or derivative thereof, which inhibits a mammalian target of rapamycin or Gleevec.
- rapamycin Gleevec
- a wide variety of neoplastic conditions can be treated using one or more of the subject compositions. Such conditions include but are not limited to neoplastic condition such as restenosis, cancer selected from B cell lymphoma, T cell lymphoma, non small cell lung carcinoma, and leukemia, or an autoimmune disorder.
- the compound of the invention and/or the anti-cancer agent can be administered parenterally, orally, intraperitoneal Iy, intravenously, intraarterially, transdermally, intramuscularly, liposomally, via local delivery by catheter or stent, subcutaneously, intraadiposally, or intrathecally.
- FIG. 1 A-I B summarizes the results of cell proliferation inhibition assays performed with a wide range of neoplastic cell lines in vitro using conventional anti-cancer drugs or a compound of the present invention such as a compound of Table 1. The experimental procedure is described herein, e.g., in Example 17.
- the degree of inhibition is reported in the Figure herein as +, ++, +++, ++++, or +++++ in the order of increased magnitude in inhibiting cell proliferation.
- the results demonstrate that one or more compounds of the invention yields 50% inhibition of cell proliferation at a concentration that is one or two orders of magnitude less than that of the conventional anti-cancer drugs when tested under the same condition.
- Figure 2 is a western blot illustrating the dose dependent effect of a compoud of Table 1 in inhibiting pAKT phosphorylation at residue 47 as well as other signalling molecules downstream of mTOR including p4EBPl and pRAS40.
- the results demonstrate that the subject mTOR inhibitor of the invention is more effective in inhibiting Akt phosphorylation as compared to rapamycin.
- Figure 3A depicts the in vivo effect of a compound of Table 1 of the subject invention in inhibiting tumor growth in a tumor model such as the U87 human glioblastoma xenograft mouse model over a course of about 14 study days upon administration of the compound at the dose of 3mg/kg, l mg/kg, or 0.3mg/kg.
- Figure 3B shows the test animals and the size of the tumor taken from the negative control animal (PEG400 treated) or from the test animals treated with 0.3mg/kg once daily, 1 mg/kg once daily, or 3mg/kg once every other day of a compound of Table 1.
- Figure 3C is a plot of body weight of the negative control and test animals measured over the course of treatment. The results demonstrate that the compound is well tolerated and no significant weight loss is detected during the treatment period, and that tumor growth is significantly inhibited by administration of one or more compounds of the present invention under the conditions tested.
- Figure 4A illustrates an experimental procedure for assessing the ability of the compounds of the invention to inhibit mTOR signalling, especially phosphorylation of AKT(473), PRAS40, S6(240), and 4EBP-1.
- the phosphorylation pattern of these signalling molecules are shown in Figure 4B.
- Figure 5 depicts the results of lipid and protein kinase selectivity assays with a compound of Table 1.
- 00429] Figure 6 depicts the effects of a compound of Table 1 of the present invention on PC3 cell proliferation, PC3 pAKT activation, and primary tumor cell line proliferation. Additionally, the specificity of a compound of Table 1 was tested by culturing Jurakt cells in whole blood to test for non-specific binding/inactivation of the one or more compounds by components of whole blood.
- Figure 7A-7B depict the effect of a compound of Table 1 of the present invention on cellular proliferation and PI3K. pathway activation as compared to rapamycin.
- Figure 7A depicts a graph showing the dose response curve of PC3 cell proliferation in response to rapamcyin and a compound of the invention from Table 1.
- Figure 7B depicts a western blot analysis of inhibition of phosphorylation of PI3K. pathway targets by one or more compounds selected from Table 1 as compared to rapamycin.
- Figure 8A-8B depicts a comparison of the effect of a compound of Table 1 of the present invention on the proliferation of the indicated cell lines.
- Figure 8A depicts the IC 50 of the compound for inhibition of cell lines derived from lung and colon and lists the respective proliferation activating mutations associateed with those cell lines.
- Figure 8B depicts the effects of a compound of Table 1 of the present invention on proliferation of cell lines comprising the various activating mutations indicated in comparison to the inhibition provided by a Pan PI3 kinase inhibitor or a Pan PI3 kinase inhibitor that also inhibits mTOR.
- Figure 9A-9B depict the effects of a compound of Table 1 of the present invention on cell cycle progression in HCTl 16 and SW620 cells as compared to various other compounds.
- Figure 9 A depicts the inhibiting
- FIG. 9B depicts the effect of the indicated compounds on the population of cells residing in
- FIG. 10 depicts a western blot analysis of the effect of a compound of Table 1 of the present invention on phosphorylation in tumor cells from a U87-MG xenograft tumor mouse model.
- Figures 1 I A-I I D depicts the efficacy of oral adminsitration of a compound of Table 1 of the present invention for inhibiting growth of U87-MG, A549, ZR-75-1 , and 786-0 xenograft tumors in female athymic nude mice.
- Figure 12 depicts the results of TUNEL staining of the tumor mass of U87-MG xenograft tumors excised from mice, which were administered vehicle, lmg/kg, or 3mg/kg of the compound of the invention orally. These results show increased in vivo apoptosis in the presence of a compound of Table 1 of the present invention.
- the term "effective amount” or “therapeutically effective amount” refers to that amount of a compound described herein that is sufficient to effect the intended application including but not limited to disease treatment, as defined below.
- the therapeutically effective amount may vary depending upon the intended application ⁇ in vitro or in vivo), or the subject and disease condition being treated, e.g., the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
- the term also applies to a dose that will induce a particular response in target cells, e.g. reduction of platelet adhesion and/or cell migration.
- treatment or “treating,” or “palliating” or “ameliorating” is used interchangeably herein. These terms refer to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated.
- compositions may be administered to a subject at risk of developing a particular disease, or to a subject reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
- a prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.
- co-administration encompass administration of two or more agents to an animal so that both agents and/or their metabolites are present in the subject at the same time.
- Co-administration includes simultaneous administration in separate compositions, administration at different times in separate compositions, or administration in a composition in which both agents are present.
- pharmaceutically acceptable salt refers to salts derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like, when the molecule contains an acidic functionality; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate ( methane sulfonate), ethane sulfonate, acetate, maleate, oxalate, phosphate, and the like.
- more than one of the basic moieties may be converted to the salt form, including but not limited to a bis- or tris- salt.
- a compound having more than one basic moiety may form a salt at only one of the basic moieties.
- antagonists are used interchangeably, and they refer to a compound having the ability to inhibit a biological function of a target protein, whether by inhibiting the activity or expression of the target protein. Accordingly, the terms “antagonist” and “inhibitors” are defined in the context of the biological role of the target protein. While preferred antagonists herein specifically interact with (e.g. bind to) the target, compounds that inhibit a biological activity of the target protein by interacting with other members of the signal transduction pathway of which the target protein is a member are also specifically included within this definition. A preferred biological activity inhibited by an antagonist is associated with the development, growth, or spread of a tumor.
- agonist refers to a compound having the ability to initiate or enhance a biological function of a target protein, whether by inhibiting the activity or expression of the target protein. Accordingly, the term “agonist” is defined in the context of the biological role of the target polypeptide. While preferred agonists herein specifically interact with (e.g. bind to) the target, compounds that initiate or enhance a biological activity of the target polypeptide by interacting with other members of the signal transduction pathway of which the target polypeptide is a member are also specifically included within this definition.
- agent refers to a biological, pharmaceutical, or chemical compound or other moiety.
- Non-limiting examples include a simple or complex organic or inorganic molecule, a peptide, a protein, an oligonucleotide, an antibody, an antibody derivative, antibody fragment, a vitamin derivative, a carbohydrate, a toxin, or a chemotherapeutic compound.
- Various compounds can be synthesized, for example, small molecules and oligomers (e.g., oligopeptides and oligonucleotides), and synthetic organic compounds based on various core structures.
- various natural sources can provide compounds for screening, such as plant or animal extracts, and the like.
- Signal transduction is a process during which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response.
- a modulator of a signal transduction pathway refers to a compound which modulates the activity of one or more cellular proteins mapped to the same specific signal transduction pathway.
- a modulator may augment (agonist) or suppress (antagonist) the activity of a signaling molecule.
- an "anti-cancer agent”, “anti-tumor agent” or “chemotherapeutic agent” refers to any agent useful in the treatment of a neoplastic condition.
- One class of anti-cancer agents comprises chemotherapeutic agents.
- “Chemotherapy” means the administration of one or more chemotherapeutic drugs and/or other agents to a cancer patient by various methods, including intravenous, oral, intramuscular, intraperitoneal, intravesical, subcutaneous, transdermal, buccal, or inhalation or in the form of a suppository.
- cell proliferation refers to a phenomenon by which the cell number has changed as a result of division. This term also encompasses cell growth by which the cell morphology has changed (e.g., increased in size) consistent with a proliferative signal.
- selective inhibition refers to a biologically active agent refers to the agent's ability to preferentially reduce the target signaling activity as compared to off-target signaling activity, via direct or indirect interaction with the target.
- mTorCl and/or mTorC2 activity refers to the agent's ability to modulate signal transduction mediated by mTorC l and/or mTorC2.
- modulation of mTorCl and/or mTorC2 activity is evidenced by alteration in signaling output from the PI3K/Akt/mTor pathway.
- B-ALL refers to B-cell Acute Lymphoblastic Leukemia.
- Subject refers to an animal, such as a mammal, for example a human.
- the methods described herein can be useful in both human therapaeutics and veterinary applications.
- the subject is a mammal, and in some embodiments, the subject is human.
- Radionuclides e.g., actinium and thorium radionuclides
- LET low linear energy transfer
- beta emitters conversion electron emitters
- an "anti-cancer agent”, “anti-tumor agent” or “chemotherapeutic agent” refers to any agent useful in the treatment of a neoplastic condition.
- One class of anti-cancer agents comprises chemotherapeutic agents.
- “Chemotherapy” means the administration of one or more chemotherapeutic drugs and/or other agents to a cancer patient by various methods, including intravenous, oral, intramuscular, intraperitoneal, intravesical, subcutaneous, transdermal, buccal, or inhalation or in the form of a suppository.
- Prodrug is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound described herein.
- prodrug refers to a precursor of a biologically active compound that is pharmaceutically acceptable.
- a prodrug may be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis.
- the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g.,
- prodrug is also meant to include any covalently bonded carriers, which release the active compound in vivo when such prodrug is administered to a mammalian subject.
- Prodrugs of an active compound, as described herein may be prepared by modifying functional groups present in the active compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent active compound.
- Prodrugs include compounds wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the active compound is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively.
- Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of a hydroxy functional group, or acetamide, formamide and benzamide derivatives of an amine functional group in the active compound and the like.
- in vivo refers to an event that takes place in a subject's body.
- in vitro refers to an event that takes places outside of a subject's body.
- an in vitro assay encompasses any assay run outside of a subject assay.
- in vitro assays encompass cell-based assays in which cells alive or dead are employed.
- In vitro assays also encompass a cell-free assay in which no intact cells are employed.
- heteroarylthio Ci -4 alkyl has a heteroaryl group connected through a thio sulfur to a C,.
- structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13 C- or ' 4 C- enriched carbon are within the scope of this invention.
- the compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds.
- the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.
- alkyl having 1 -4 carbons—that is, 1, 2, 3, or 4 carbons in a straight or branched configuration.
- alkyl includes both branched and straight chain alkyl groups, or cyclic hydrocarbon groups, or a combination thereof.
- Alkyl groups are fully saturated, unsubstituted or substituted, and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. CpCio means one to ten carbons and C 2 -C 10 means two to ten carbons).
- Typical alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, n- heptyl, isooctyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, and the like.
- halo or halogen refers to fluoro, chloro, bromo, or iodo.
- haloalkyl refers to an alkyl group substituted with one or more halo groups, for example chloromethyl, 2-bromoethyl, 3-iodopropyl, trifluoromethyl, perfluoropropyl, 8-chlorononyl, and the like.
- cycloalkyl refers to a 3-8 carbon cyclic aliphatic ring structure that is unsubstituted or substituted with, for example, alkyl, hydroxy, oxo, or halo, such as cyclopropyl, methylcyclopropyl, cyclobutyl, cyclopentyl, 2-hydroxycyclopentyl, cyclohexyl, 4-chlorocyclohexyl, cycloheptyl, cyclooctyl, and the like.
- C ⁇ oalkyl - Q-gcycloalkyl is used to describe an alkyl group, branched or straight chain and containing 1 to 10 carbon atoms, attached to a linking cycloalkyl group which contains 3 to 8 carbons, such as for example, 2-methyl cyclopropyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- bicycloalkyl refers to a structure consisting of two cycloalkyl moieties, unsubstituted or substituted, that have two or more atoms in common. If the cycloalkyl moieties have exactly two atoms in common they are said to be "fused”.
- Examples include, but are not limited to, bicyclo[3.1.0]hexyl, perhydronaphthyl, and the like. If the cycloalkyl moieties have more than two atoms in common they are said to be "bridged". Examples include, but are not limited to, bicyclo[3.2.1]heptyl ("norbornyl"), bicyclo[2.2.2]octyl, and the like.
- As used herein, the term "heteroatom” or "ring heteroatom” is meant to include oxygen (O), nitrogen (N), sulfur (S), phosphorus (P), and silicon (Si).
- heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of at least one carbon atoms and at least one heteroatom selected from the group consisting of O, N, P, Si and S, and wherein the nitrogen, phosphorus, and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
- the heteroatom(s) O, N, P and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which alkyl group is attached to the remainder of the molecule.
- the alkyl portion of the moiety is unsubstituted or substituted.
- heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, -CH 2 -CH 2 -S-CH 2 -CH 2 - and -CH 2 -S-CH 2 -CH 2 -NH-CH 2 -.
- heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxo, alkylenedioxo, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula -C(O)OR'- represents both -C(O)OR'- and -R 1 OC(O)-.
- heteroalkyl groups include those groups that are attached to the remainder of the molecule through a heteroatom, such as -C(O)R', -C(O)NR', -NR 1 R " , -OR', -SR, and/or -SO 2 R'.
- heteroalkyl is recited, followed by recitations of specific heteroalkyl groups, such as -NR 1 R" or the like, it will be understood that the terms heteroalkyl and -NR 1 R" are not redundant or mutually exclusive. Rather, the specific heteroalkyl groups are recited to add clarity. Thus, the term “heteroalkyl” should not be interpreted herein as excluding specific heteroalkyl groups, such as -NR'R” or the like.
- heteroalkylaryl refers to a heteroalkyl group as defined above which is attached to an aryl group, and may be attached at a terminal point or through a branched portion of the heteroalkyl, for example, an benzyloxymethyl moiety. Either portion of the moiety is unsubstituted or substituted.
- heteroalkylheteroaryl refers likewise to a heteroalkyl group which is attached to a heteroaryl moiety, for example, an ethoxymethylpyridyl group. Either portion of the moiety is unsubstituted or substituted.
- heteroalkyl-heterocyclyl refers to a heteroalkyl group as defined above, which is attached to a heterocyclic group, for example, 4(3-aminopropyl)-N-piperazinyl. Either portion of the moiety is unsubstituted or substituted.
- heteroalkyI-C 3 . 8 cycloalkyl refers to a heteroalkyl group as defined above, which is attached to a cyclic alkyl containing 3 to 8 carbons, for example, l-aminobutyl-4-cyclohexyl. Either portion of the moiety is unsubstituted or substituted.
- heterocycloalkyl refers to a bicycloalkyl structure, which is unsubstituted or substituted, in which at least one carbon atom is replaced with a heteroatom independently selected from oxygen, nitrogen, and sulfur.
- heterospiroalkyl refers to a spiroalkyl structure, which is unsubstituted or substituted, in which at least one carbon atom is replaced with a heteroatom independently selected from oxygen, nitrogen, and sulfur.
- alkenyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, and having from two to ten carbon atoms (ie. C 2 -Ci 0 alkenyl).
- 10 carbon atoms means that the alkenyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms.
- an alkenyl comprises two to eight carbon atoms.
- an alkenyl comprises two to five carbon atoms (e.g., C 2 -C 5 alkenyl).
- the alkenyl is attached to the rest of the molecule by a single bond, for example, ethenyl (i.e., vinyl), prop-1-enyl (i.e., allyl), but-1-enyl, pent-1 -enyl, penta-l ,4-dienyl, and the like.
- the alkenyl is unsubstituted or substituted.
- C 2 .i 0 alkenyl- C 3 . 8 cycloalkyl refers to a group containing an alkenyl group, containing 2 to 10 carbons and branched or straight chain, which is attached to a linking cycloalkyl group containing 3 to 8 carbons, such as, for example 3-prop-3-enyl- cyclopent-lyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- C 2 . ⁇ 0 alkenyl-heteroalkyl refers to a group having an alkenyl moiety, containing 2 to 10 carbon atoms and is branched or straight chain, which is attached to a linking heteroalkyl group, such as, for example, allyloxy, and the like. Either portion of the moiety is unsubstituted or substituted.
- C 2- io alkynyl-heteroalkyl refers to a group having an alkynyl moiety, which is unsubstituted or substituted, containing 2 to 10 carbon atoms and is branched or straight chain, which is attached to a linking heteroalkyl group, such as, for example, 4-but- 1 -ynoxy, and the like. Either portion of the moiety is unsubstituted or substituted.
- haloalkenyl refers to an alkenyl group substituted with one or more halo groups.
- cycloalkenyl refers to a cyclic aliphatic 3 to 8 membered ring structure, optionally substituted with alkyl, hydroxy and halo, having 1 or 2 ethylenic bonds such as methylcyclopropenyl, trifluoromethylcyclopropenyl, cyclopentenyl, cyclohexenyl, 1,4-cyclohexadienyl, and the like.
- Alkynyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to ten carbon atoms (ie. C 2 -Ci 0 alkynyl).
- 10 carbon atoms means that the alkynyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms.
- an alkynyl comprises two to eight carbon atoms.
- an alkynyl has two to five carbon atoms (e g , C 2 -C 5 alkynyl)
- the alkynyl is attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like
- the alkynyl is unsubstituted or substituted
- C 2 _io alkynyl- C 3 . 8 cycloalkyl refers to a group containing an alkynyl group, containing 2 to 10 carbons and branched or straight chain, which is attached to a linking cycloalkyl group containing 3 to 8 carbons, such as, for example 3-prop-3-ynyl- cyclopent-lyl, and the like Either portion of the moiety is unsubstituted or substituted
- haloalkynyl refers to an alkynyl group substituted with one or more independent halo groups
- Amino or amine refers to a -NR'R" moiety, where each R is independently hydrogen, alkyl, fluoroalkyl, cycloalkyl, cycloaklylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, unless stated otherwise specifically in the specification
- R' and R" of a - NR'R" moiety are not hydrogen, R' and R" can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7-membered ⁇ ng
- - NR'R is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morphohnyl Unless stated otherwise specifically in the specification, an amino group is optionally substituted by one or more substituent which
- Aromatic or "aryl” refers to an aromatic radical with six to ten nng atoms (e g , Q-C 10 aromatic or Q-C 10 aryl) which has at least one ⁇ ng having a conjugated pi electron system which is carbocyclic (e g , phenyl, fluorenyl, and naphthyl) Whenever it appears herein, a nume ⁇ cal range such as “6 to 10" refers to each mteger in the given range, e g , "6 to 10 ring atoms” means that the aryl group may consist of 6 ring atoms, 7 ring atoms, etc , up to and including 10 ring atoms The term includes monocyclic or fused- ⁇ ng polycyclic (1 e , rings which share adjacent pairs of ring atoms) groups Examples of aryl include, but are not limited to, phenyl, 4-chlorophenyl, 4-fluorophenyl, 4-brom
- Heteroaryl or, alternatively, “heteroaromatic”, “heteroaryl”, 'heteroar” or “hetar” refers to a 5- to 18-membered aromatic radical (e.g., C 5 -C] 3 heteroaryl) that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur, and which may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system.
- a numerical range such as “5 to 18” refers to each integer in the given range; e.g., "5 to 18 ring atoms” means that the heteroaryl group may consist of 5 ring atoms, 6 ring atoms, etc., up to and including 18 ring atoms.
- An N-containing “heteroaromatic” or “heteroaryl” moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom.
- the polycyclic heteroaryl group may be fused or non- fused.
- the heteroatom(s) in the heteroaryl radical is optionally oxidized.
- One or more nitrogen atoms, if present, are optionally quaternized.
- heteroaryl is attached to the rest of the molecule through any atom of the ring(s).
- heteroaryls include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzindolyl, 1 ,3-benzodioxolyl, benzofuranyl, benzooxazolyl, benzo[d]thiazolyl, benzothiadiazolyl, benzo[6][l ,4]dioxepinyl, benzo[b][l,4]oxazinyl, 1 ,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzoxazolyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzofurazanyl, benzothiazolyl, be
- aryl-alkyl arylalkyl
- arylalkyl arylalkyl
- aralkyl a group wherein the alkyl chain can be branched or straight chain forming a linking portion with the terminal aryl, as defined above, of the aryl-alkyl moiety.
- aryl-alkyl groups include, but are not limited to, optionally substituted benzyl, phenethyl, phenpropyl and phenbutyl such as 4-chlorobenzyl, 2,4-dibromobenzyl, 2-methylbenzyl, 2-(3-fluorophenyl)ethyl, 2- (4-methylphenyl)ethyl, 2-(4-(trifluoromethyl)phenyl)ethyl, 2-(2-methoxyphenyl)ethyl, 2-(3-nitrophenyl)ethyl, 2- (2,4-dichlorophenyl)ethyl, 2-(3,5-dimethoxyphenyl)ethyi, 3-phenylpropyl, 3-(3-chlorophenyl)propyl, 3-(2- methylphenyOpropyl, 3-(4-methoxyphenyl)propyl, 3-(4-(trifluoromethyl)phenyl)propyl,
- Ci.i O alkylaryl refers to an alkyl group, as defined above, containing 1 to 10 carbon atoms, branched or unbranched, wherein the aryl group replaces one hydrogen on the alkyl group, for example, 3-phenylpropyl. Either portion of the moiety is unsubstituted or substituted.
- C 2 .io alkyl monocycloaryl refers to a group containing a terminal alkyl group, branched or straight chain and containing 2 to 10 atoms attached to a linking aryl group which has only one ring, such as for example, 2-phenyl ethyl. Either portion of the moiety is unsubstituted or substituted.
- Ci- io alkyl bicycloaryl refers to a group containing a terminal alkyl group, branched or straight chain and containing 2 to 10 atoms attached to a linking aryl group which is bicyclic, such as for example, 2-(l- naphthyl)- ethyl. Either portion of the moiety is unsubstituted or substituted.
- aryl-cycloalkyl and "arylcycloalkyl” are used to describe a group wherein the terminal aryl group is attached to a cycloalkyl group, for example phenyl cyclopentyl and the like. Either portion of the moiety is unsubstituted or substituted.
- heteroaryl-Cs.gcycloalkyl and “heteroaryl- C 3 .gcycloalkyl” are used to describe a group wherein the terminal heteroaryl group is attached to a cycloalkyl group, which contains 3 to 8 carbons, for example pyrid-2-yl-cyclopentyl and the like. Either portion of the moiety is unsubstituted or substituted.
- heteroaryl- heteroalkyl refers to a group wherein the terminal heteroaryl group is attached to a linking heteroalkyl group, such as for example, pyrid-2-yl methylenoxy, and the like. Either portion of the moiety is unsubstituted or substituted.
- aryl-alkenyl arylalkenyl
- arylalkenyl arylalkenyl
- aralkenyl a group wherein the alkenyl chain can be branched or straight chain forming a linking portion of the aralkenyl moiety with the terminal aryl portion, as defined above, for example styryl (2-phenyl vinyl), phenpropenyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- aryl -C 2 -ioalkenyl means an arylalkenyl as described above wherein the alkenyl moiety contains 2 to 10 carbon atoms such as for example, styryl (2-phenyl vinyl), and the like. Either portion of the moiety is unsubstituted or substituted.
- C 2 -ioalkenyl-aryl is used to describe a group wherein the terminal alkenyl group, which contains 2 to 10 carbon atoms and can be branched or straight chain, is attached to the aryl moiety which forms the linking portion of the alkenyl-aryl moiety, such as for example, 3-propenyl- naphth-1-yl, and the like. Either portion of the moiety is unsubstituted or substituted.
- aryl-alkynyl arylalkynyl
- arylalkynyl arylalkynyl
- aralkynyl a group wherein the alkynyl chain can be branched or straight chain forming a linking portion of the aryl-alkynyl moiety with the terminal aryl portion, as defined above, for example 3-phenyl-l-propynyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- aryl- C 2 -ioalkynyl means an arylalkynyl as described above wherein the alkynyl moiety contains two to ten carbons, such as, for example 3-phenyl-l-propynyl, and the like . Either portion of the moiety is unsubstituted or substituted.
- C 2 -ioalkynyl- aryl means a group containing an alkynyl moiety attached to an aryl linking group, both as defined above, wherein the alkynyl moiety contains two to ten carbons, such as, for example 3- propynyl-naphth-1-yl. Either portion of the moiety is unsubstituted or substituted.
- aryl-oxy "aryloxy” and “aroxy” are used to describe a terminal aryl group attached to a linking oxygen atom. Typical aryl-oxy groups include phenoxy, 3,4-dichlorophenoxy, and the like. Either portion of the moiety is unsubstituted or substituted.
- aryl-oxyalkyl aryloxyalkyl
- aromatic alkyl aryloxyalkyl
- aromatic alkyl aryloxyalkyl
- aromatic alkyl aryloxyalkyl
- .ioalkyl refers to a group wherein an alkoxy group, containing 1 to 10 carbon atoms and an oxygen atom within the branching or straight chain, is attached to a linking alkyl group, branched or straight chain which contains 1 to 10 carbon atoms, such as, for example methoxypropyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- 0 alkenyl refers to a group wherein an alkoxy group, containing 1 to 10 carbon atoms and an oxygen atom within the branching or straight chain, is attached to a linking alkenyl group, branched or straight chain which contains 1 to 10 carbon atoms, such as, for example 3-methoxybut-2-en-l-yl, and the like.
- Ci.i 0 alkoxy-C 2 .ioalkynyl refers to a group wherein an alkoxy group, containing 1 to 10 carbon atoms and an oxygen atom within the branching or straight chain, is attached to a linking alkynyl group, branched or straight chain which contains 1 to 10 carbon atoms, such as, for example 3-methoxybut-2-in-l-yl, and the like.
- heterocycloalkenyl refers to a cycloalkenyl structure, which is unsubstituted or substituted in which at least one carbon atom is replaced with a heteroatom selected from oxygen, nitrogen, and sulfur.
- heteroaryl-oxy are used to describe a terminal heteroaryl group, which is unsubstituted or substituted, attached to a linking oxygen atom.
- Typical heteroaryl-oxy groups include 4,6-dimethoxypyrimidin-2-yloxy and the like.
- heteroarylalkyl heteroarylalkyl
- heteroaryl-alkyl heteroaryl-alkyl
- heteroaryl-alkyl heteroaryl-alkyl
- heteroaralkyl are used to describe a group wherein the alkyl chain can be branched or straight chain forming a linking portion of the heteroaralkyl moiety with the terminal heteroaryl portion, as defined above, for example 3- furylmethyl, thenyl, furfuryl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heteroaryl-Ci.i 0 alkyl is used to describe a heteroaryl alkyl group as described above where the alkyl group contains 1 to 10 carbon atoms. Either portion of the moiety is unsubstituted or substituted.
- C M oalkyl-heteroaryl is used to describe a alkyl attached to a hetary group as described above where the alkyl group contains 1 to 10 carbon atoms. Either portion of the moiety is unsubstituted or substituted.
- heteroarylalkenyl and “heteroaralkenyl” are used to describe a heteroarylalkenyl group wherein the alkenyl chain can be branched or straight chain forming a linking portion of the heteroaralkenyl moiety with the terminal heteroaryl portion, as defined above, for example 3-(4-pyridyl)-l-propenyl. Either portion of the moiety is unsubstituted or substituted.
- heteroaryl- C 2 -ioalkenyl group is used to describe a group as described above wherein the alkenyl group contains 2 to 10 carbon atoms. Either portion of the moiety is unsubstituted or substituted.
- C 2 - ⁇ oalkenyl- heteroaryl is used to describe a group containing an alkenyl group, which is branched or straight chain and contains 2 to 10 carbon atoms, and is attached to a linking heteroaryl group, such as, for example 2-styryl-4-pyridyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heteroalkynyl and “heteroaralkynyl” are used to describe a group wherein the alkynyl chain can be branched or straight chain forming a linking portion of the heteroaralkynyl moiety with the heteroaryl portion, as defined above, for example 4-(2-thienyl)- l -butynyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heteroaryl- C 2 - ⁇ oalkynyl is used to describe a heteroarylalkynyl group as described above wherein the alkynyl group contains 2 to 10 carbon atoms. Either portion of the moiety is unsubstituted or substituted.
- C 2 -ioalkynyl- heteroaryl is used to describe a group containing an alkynyl group which contains
- heterocyclyl refers to a substituted or unsubstituted 3-, A-, 5-
- 6-membered saturated or partially unsaturated ring containing one, two, or three heteroatoms, preferably one or two heteroatoms independently selected from oxygen, nitrogen and sulfur; or to a bicyclic ring system containing up to 10 atoms including at least one heteroatom independently selected from oxygen, nitrogen, and sulfur wherein the ring containing the heteroatom is saturated.
- heterocyclyls include, but are not limited to, tetrahydrofuranyl, tetrahydrofuryl, pyrrolidinyl, piperidinyl, 4-pyranyl, tetrahydropyranyl, thiolanyl, morpholinyl, piperazinyl, dioxolanyl, dioxanyl, indolinyl, and 5-methyl-6-chromanyl.
- heterocyclylalkyl refers to the divalent derivative of heterocycloalkyl.
- C M oalkyl-heterocycyl refers to a group as defined above where the alkyl moiety contains 1 to
- heterocyclic group refers to a group containing a terminal heterocyclic group attached to a linking alkyl group which contains 1 to 10 carbons and is branched or straight chain, such as, for example, 4- morpholinyl ethyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heterocyclylalkenyl refers to the divalent derivative of heterocyclylalkenyl.
- heterocycyl- C 2 - I0 alkenyl refers to a group as defined above where the alkenyl group contains 2 to 10 carbon atoms and is branched or straight chain, such as, for example, 4-(N-piperazinyl)-but-2-en- 1 -yl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heterocyclylalkynyl refers to a group wherein the alkynyl chain can be branched or straight chain forming a linking portion of the heterocyclylalkynyl moiety with the terminal heterocyclyl portion, as defined above, for example 2-pyrrolidinyl- l - butynyl and the like. Either portion of the moiety is unsubstituted or substituted.
- heterocycyl- C 2 .io alkynyl refers to a group as defined above where the alkynyl group contains
- aryl- heterocycyl refers to a group containing a terminal aryl group attached to a linking heterocyclic group, such as for example, N4-(4-phenyl)- piperazinyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heteroaryl- heterocycyl refers to a group containing a terminal heteroaryl group attached to a linking heterocyclic group, such as for example, N4-(4-pyridyl)- piperazinyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- carboxylalkyl refers to a terminal carboxyl (-COOH) group attached to branched or straight chain alkyl groups as defined above.
- carboxylalkenyl refers to a terminal carboxyl (-COOH) group attached to branched or straight chain alkenyl groups as defined above.
- carboxylalkynyl refers to a terminal carboxyl (-COOH) group attached to branched or straight chain alkynyl groups as defined above.
- carboxylcycloalkyl refers to a terminal carboxyl (-COOH) group attached to a cyclic aliphatic ring structure as defined above.
- carboxylcycloalkenyl refers to a terminal carboxyl (-COOH) group attached to a cyclic aliphatic ring structure having ethylenic bonds as defined above.
- cycloalkylalkyl and “cycloalkyl-alkyl” refer to a terminal cycloalkyl group as defined above attached to an alkyl group, for example cyclopropylmethyl, cyclohexylethyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- cycloalkylalkenyl and “cycloalkyl-alkenyl” refer to a terminal cycloalkyl group as defined above attached to an alkenyl group, for example cyclohexylvinyl, cycloheptylallyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- cycloalkylalkynyl and “cycloalkyl-alkynyl” refer to a terminal cycloalkyl group as defined above attached to an alkynyl group, for example cyclopropylpropargyl, 4-cyclopentyl-2-butynyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- cycloalkenylalkyl and “cycloalkenyl-alkyl” refer to a terminal cycloalkenyl group as defined above attached to an alkyl group, for example 2-(cyclopenten-l-yl)ethyl and the like. Either portion of the moiety is unsubstituted or substituted.
- cycloalkenylalkenyl and “cycloalkenyl-alkenyl” refer to terminal a cycloalkenyl group as defined above attached to an alkenyl group, for example l-(cyclohexen-3-yl)allyl and the like.
- cycloalkenylalkynyl and “cycloalkenyl-alkynyl” refer to terminal a cycloalkenyl group as defined above attached to an alkynyl group, for example l-(cyclohexen-3-yl)propargyl and the like. Either portion of the moiety is unsubstituted or substituted.
- alkoxy includes both branched and straight chain terminal alkyl groups attached to a linking oxygen atom. Typical alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, tert-butoxy and the like. An alkoxy moiety is unsubstituted or substituted.
- haloalkoxy refers to an alkoxy group substituted with one or more halo groups, for example chloromethoxy, trifluoromethoxy, difluoromethoxy, perfluoroisobutoxy, and the like.
- alkoxyalkoxyalkyl refers to an alkyl group substituted with an alkoxy moiety which is in turn is substituted with a second alkoxy moiety, for example methoxymethoxymethyl, isopropoxymethoxyethyl, and the like. This moiety is substituted with further substituents or not substituted with other substituents.
- alkoxyalkyl refers to an alkyl group substituted with an alkoxy group, for example isopropoxymethyl and the like. Either portion of the moiety is unsubstituted or substituted.
- alkoxyalkenyl refers to an alkenyl group substituted with an alkoxy group, for example 3- methoxyallyl and the like. Either portion of the moiety is unsubstituted or substituted.
- alkoxyalkynyl refers to an alkynyl group substituted with an alkoxy group, for example 3- methoxypropargyl and the like. Either portion of the moiety is unsubstituted or substituted.
- C 2 .ioalkenylC 3 . 8 cycloalkyl refers to an alkenyl group as defined above substituted with a three to eight membered cycloalkyl group, for example, 4-(cyclopropyl) -2-butenyl and the like. Either portion of the moiety is unsubstituted or substituted.
- C 2 .ioalkynylC 3 . 8 cycloalkyl refers to an alkynyl group as defined above substituted with a three to eight membered cycloalkyl group, for example, 4-(cyclopropyl) -2-butynyl and the like. Either portion of the moiety is unsubstituted or substituted.
- heterocyclyl-C M oalkyl refers to a heterocyclic group as defined above substituted with an alkyl group as defined above having 1 to 10 carbons, for example, 4-(N-methyl)-piperazinyl, and the like. Either portion of the moiety is unsubstituted or substituted.
- heterocyclyl-C 2 -ioalkenyl refers to a heterocyclic group as defined above, substituted with an alkenyl group as defined above, having 2to 10 carbons, for example, 4-(N-allyl) piperazinyl, and the like. Moieties wherein the heterocyclic group is substituted on a carbon atom with an alkenyl group are also included. Either portion of the moiety is unsubstituted or substituted.
- heterocyclyl-C 2 - ⁇ oalkynyl refers to a heterocyclic group as defined above, substituted with an alkynyl group as defined above, having 2 to 10 carbons, for example, 4-(N-propargyl) piperazinyl, and the like.
- oxo refers to an oxygen that is double bonded to a carbon atom.
- an "oxo” requires a second bond from the atom to which the oxo is attached. Accordingly, it is understood that oxo cannot be subststituted onto an aryl or heteroaryl ring, unless it forms part of the aromatic system as a tautomer.
- oligomer refers to a low-molecular weight polymer, whose number average molecular weight is typically less than about 5000 g/mol, and whose degree of polymerization (average number of monomer units per chain) is greater than one and typically equal to or less than about 50.
- a sulfonamido group is optionally substituted by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl respectively.
- the present invention includes all manner of rotamers and conformational Iy restricted states of a compound of the invention.
- R 1 , R", R" 1 and R 11 ' 1 each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl (e.g., aryl substituted with 1-3 halogens), substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups.
- each of the R groups is independently selected as are each R 1 , R", R'" and R"" groups when more than one of these groups is present.
- R' and R" or R" and R'" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7-membered ring.
- -NR 1 R" is meant to include, but not be limited to, 1-pyrrolidinyl, 4 piperazinyl, and 4-morpholinyl.
- alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., -CF 3 and -CH 2 CF 3 ) and acyl (e.g., -C(O)CH 3 , -C(O)CF 3 , - C(O)CH 2 OCH 3 , and the like).
- haloalkyl e.g., -CF 3 and -CH 2 CF 3
- acyl e.g., -C(O)CH 3 , -C(O)CF 3 , - C(O)CH 2 OCH 3 , and the like.
- exemplary substituents for aryl and heteroaryl groups are varied and are selected from, for example: halogen, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, -OR', - NR 1 R", -SR', -halogen, -SiR 1 R 11 R"', -OC(O)R 1 , -C(O)R', -CO 2 R 1 , -C(O)NR 1 R", -
- each of the R groups is independently selected as are each R', R", R'" and R"" groups when more than one of these groups is present.
- As used herein, 0-2 in the context of -S(0) ( o- 2) - are integers of O, 1, and 2.
- Two of the substituents on adjacent atoms of aryl or heteroaryl ring may optionally form a ring of the formula -T-C(O)-(CRR 1 ) q -U-, wherein T and U are independently -NR-, -0-, -CRR 1 - or a single bond, and q is an integer of from O to 3.
- two of the substituents on adjacent atoms of aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 ) r -B-, wherein A and B are independently -CRR'-, - O-, -NR-, -S-, -S(O)-, -S(O) 2 -, -S(O) 2 NR'- or a single bond, and r is an integer of from 1 to 4.
- One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
- two of the substituents on adjacent atoms of aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -(CRR') s -X'-(C"R"') d -, where s and d are independently integers of from O to 3, and X' is -0-, -NR'-, -S-, - S(O)-, -S(O) 2 -, or -S(O) 2 NR'-.
- R, R', R" and R'" are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
- structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by lj C- or 14 C- enriched carbon are within the scope of this invention.
- the compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds.
- the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine- 125 ( 125 I) or carbon-14 ( 14 C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.
- X is N or C-E 1 , X 2 is N, X 3 is C, and X 4 is C-R 9 or N; or X 1 is N or C-E 1 , X 2 is C, X 3 is N, and X 4 is C-R 9 or N;
- R is -H, -L-C,., o alkyl, -L-C 3 . 8 cycloalkyl, -L-d.i O alkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L-C 1 .
- is a moiety having the structure of Formula A-I or Formula A-2:
- Formula A-I Formula A-2 100569] k is O or l ;
- E 1 and E 2 are independently -(W') j -R 4 ;
- W' is -O- -NR 7 -, -S(O) 0 . 2 -,-C(O)-,-C(O)N(R 7 )-, -N(R 7 )C(O)-, -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - - C(O)O-, -CH(R 7 )N(C(O)OR S )-, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, -CH(R 7 )C(O)N(R 8 )- , -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)-, or -CH(R 7 )N(R 8 )
- W 2 is -O- -NR 7 - -S(O) 0-2 - ,-C(O)-,-C(O)N(R 7 ⁇ -, -N(R 7 )C(O)-, -N(R 7 )C(O)N(R 8 )-,-N(R 7 )S(O)-, - N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 ⁇ -, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 )N(SO 2 R 8 )-, -CH(R 7 )N(R 8 )-, - CH(R 7 )C(O)N(R 8 )-, -CH(R 7 )N(R 8 )C(O)-, -CH(R 7 )N(R 8 )S(O)--
- l oalkyl-monocyclic aryl C MO alkyl-substituted monocyclic aryl, or Ci.i 0 alkylheteroaryl, Ci. l oalkylheterocyclyl, C 2 .
- loalkylheterocyclyl C 2 .i 0 alkenyl, C 2 . l0 alkynyl, C 2 .
- R 31 , R 32 , and R 33 are independently H or C
- l0 alkyl -NH 2 , - N ⁇ oalkylKC ⁇ alkyl
- - NH(C,. 10 alkyl) - NH( aryl), -NR 34 R 35 , -C(O)(C,., 0 alkyl), -C(O)(C,., 0 alkyl-aryl), -C(O)(aryl), -CO 2 -C,. l0 alkyl, -CO 2 -C M0 alkylaryl, - CO 2 -aryl, -C(O)N(C,., 0 alkyl)( C,. 10 alkyl), -C(O)NH( C,.
- R 34 and R 35 in -NR 34 R 35 , -C(O)NR 34 R 35 , Or -SO 2 NR 34 R 35 are taken together with the nitrogen atom to which they are attached to form a 3-10 membered saturated or unsaturated ring; wherein said ring is independently unsubstituted or is substituted by one or more — NR 31 R 32 , hydroxyl, halogen, oxo, aryl, heteroaryl, C 1-6 alkyl, or O- aryl, and wherein said 3-10 membered saturated or unsaturated ring independently contains O, 1 , or 2 more heteroatoms in addition to the nitrogen atom;
- 005791 R 7 and R 8 are each independently hydrogen, C MO alkyl, C 2 .ioalkenyl, aryl, heteroaryl, heterocyclyl or C 3 .
- alkynyl 10 alkynyl; aryl-C MO alkyl, aryl-C 2 .i 0 alkenyl, aryl-C 2 .
- o alkenyl, C 2 ., o alkynyl, haloCi., 0 alkyl, haloC 2 ., 0 alkenyl, haloC 2 .i 0 alkynyl, -COOH, -C(O)NR 31 R 32 , - C( O)NR 34 R 35 , -SO 2 NR 34 R 35 , -SO 2 NR 31 R 32 , -NR 31 R 32 , Or -NR 34 R 35 ; and
- X 4 is C-R 9 .
- the invention also provides a compound as defined above, wherein the compound is of Formula I:
- the compound of Formula I or its pharmaceutically acceptable salt thereof is a compound having the structure of Formula I-A or Formula I-B:
- is N and X 2 is N. In other embodiments, X
- X is CH. In yet another embodiment, X, is C-halogen, where halogen is Cl, F, Br, or I.
- Xi it is C -(W 1 ), -R 4 .
- W 1 is -O-.
- W 1 is — NR 7 -.
- W 1 is — NH-.
- W 1 is — S(0)o- 2 --
- W 1 J is 1
- W 1 is — C(O)-.
- Xi, j is 1
- W 1 is — C(O)N(R 7 )-. In various embodiments of Xi, j is 1 , and W 1 is -
- W 1 is -N(R 7 )S(O)-.
- W' is — N(R 7 )S(O) 2 -.
- W 1 is -C(O)O-.
- W 1 is CH(R 7 )N(C(O)OR 8 )-.
- W 1 is -CH(R 7 )N(C(O)R 8 )-- In various embodiments OfX 1 J is 1 , and W 1 is -CH(R 7 )N(SO 2 R 8 )-. In various embodiments OfX 1 J is 1, and W 1 is -
- X 1 J is 1
- W 1 is -CH(R 7 )N(R 8 )C(O)-.
- W 1 is — CH(R 7 )N(R 8 )S(O)-.
- W 1 is -CH(R 7 )N(R 8 )S(O) 2 -.
- X 1 is CH 2 .
- X 1 is CH-halogen, where halogen is Cl, F,
- X 1 is N.
- X 2 is N. In other embodiments, X 2 is C.
- E 2 is -(W 1 ), -R 4 , where j is 0.
- E 2 is CH. In yet another embodiment, E 2 is C-halogen, where halogen is Cl, F, Br, or I.
- E 2 it is -(W') j -R 4 .
- W 1 is -O-.
- W 1 is — NR 7 -.
- W 1 is — NH-.
- j is 1, and W 1 is — S(O) 0-2 -.
- W 1 is — C(O)-.
- E 2 J is 1
- W 1 is — C(O)N(R 7 )-. In various embodiments OfE 2 J is 1 , and W 1 is -
- E 2 J is 1
- W 1 is -CH(R 7 )N(R 8 )C(O)-.
- W 1 is — CH(R 7 )N(R 8 )S(O)-.
- E 2 J is 1
- W 1 is -CH(R 7 )N(R 8 )S(O) 2 -.
- M is a moiety of Formula A- I
- Mi is benzoxazolyl substituted with -(W 2 ) k -
- is a benzoxazolyl substituted at the 2-position with -(W 2 ) j -R 2 .
- is a benzoxazolyl substituted at the 2-position with -(W 2 ) j -R 2 .
- M i is either a 5- benzoxazolyl or a 6- benzoxazolyl moiety, optionally substituted at the 2-position with -(W 2 ), -R 2 .
- moieties include but are not limited to the following:
- Formula A-2 is an aza-substituted benzoxazolyl moiety having a structure of one of the following formulae:
- Formula A-2 M 1 moieties include but are not limited to the following:
- k is O. In other embodiments of M, k is 1, and W 2 is selected from one of the following: -O- -NR 7 -, -S(O) 0-2 -, -C(O)-, -C(O)N(R 7 )-, -N(R 7 )C(O)-, or -N(R 7 )C(O)N(R 8 )-.
- M 1 k is 1
- W 2 is -N(R 7 )S(O)-, -N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 )-, - CH(R 7 )N(C(O)R 8 K or -CH(R 7 )N(SO 2 R 8 )-
- k is 1, and W 2 is -CH(R 7 )N(R 8 )-, - CH(R 7 )C(O)N(R 8 K -CH(R 7 )N(R 8 )C(O>-, or -CH(R 7 )N(R 8 )S(O)-.
- k is 1, and W 2 is -CH(R 7 )N(R 8 )S(O) 2 -.
- the compound of Formula I'-A', I (including I-A and I-B), H-A (including II-A-1 and II-A-2), II-B (including H-B- 1 and II-B-2), C, 3-6, C", or 3-6" ' is not a compound having one of the following structures:
- the invention provides a compound of Formula H-A or Formula H-B: Formula H-A Formula H-B
- is -H, -L-Ci. 10 alkyl, -L-C 3 . 8 cycloalkyl, -L- d.i O alkyl -C 3 . 8 cycloalkyl, -L- aryl, -L-heteroaryl, -L-C 1 .
- alkylaryl -L- C
- gcycloalkyl -L-C 2 .i 0 alkynyl-C 3 .
- E 1 and E 2 are independently -(W) 1 -R 4 ;
- W 1 is -O- -NR 7 -, -S(0) O . 2 -,-C(0)-,-C(0)N(RV, -N(R 7 )C(OH -N(R 7 )S(0K -N(R 7 )S(O) 2 - -C(O)O-
- W 2 is -O- -NR 7 -, -S(O) 0-2 - -C(OK-C(O)N(R 7 K -N(R 7 )C(O)-, -N(R 7 )C(O)N(R 8 K -N(R 7 )S(O)-, - N(R 7 )S(O) 2 - -C(O)O-, -CH(R 7 )N(C(O)OR 8 )-, -CH(R 7 )N(C(O)R 8 )-, -CH(R 7 MSO 2 R 8 )- -CH(R 7 MR 8 K - CH(R 7 )C(O)N(R 8 K -CH(R 7 )N(R 8 )C(OK -CH(R 7 )N(R 8 )S(OK or -CH(R 7 )N(R 8 )S(O) 2 -;
- O alkyl C 3 . 8 cycloalkyl, Ci.ioalkyl-Q.scycloalkyl, C 3 . 8 cycloalkyl -C].i O alkyl, C 3 . 8
- Ci.ioalkoxy Ci.ioalkyl C MO alkoxy-C 2 .ioalkenyl, Ci.i 0 alkoxy-C 2 .i 0 alkynyl, heterocyclyl -Ci.i O alkyl, heterocyclyl-C M oalkenyl, heterocyclyl-C 2 .
- R 31 , R 32 , and R j3 are independently H or Ci.ioalkyl , wherein the C ⁇ oalkyl is unsubstituted or is substituted with one or more aryl, heteroalkyl, heterocyclyl, or heteroaryl group, wherein each of said aryl, heteroalkyl, heterocyclyl, or heteroaryl group is unsubstituted or is substituted with one or more halo, - OH, - C MO alkyl, -CF 3 , -O-aryl, -OCF 3 , -OC,.
- R 6 is aryl-C
- the compound of Formula H-A has a structure of Formula II-A-1 or Formula II-A-2:
- X is N and X 2 is N.
- Xi is C-E 1 and X 2 is N.
- X, is NH and X 2 is C.
- X, is CH-E 1 and X 2 is C.
- X, is N and X 2 is C.
- is NH and X 2 is C.
- X, is CH-E 1 and X 2 is C.
- the compound of Formula H-B has a structure of Formula H-B-I or Formula II-B-2:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Endocrinology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Otolaryngology (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Applications Claiming Priority (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US19820008P | 2008-11-03 | 2008-11-03 | |
| US61/198,200 | 2008-11-03 | ||
| US20192308P | 2008-12-16 | 2008-12-16 | |
| US61/201,923 | 2008-12-16 | ||
| US21426109P | 2009-04-20 | 2009-04-20 | |
| US61/214,261 | 2009-04-20 | ||
| US23065509P | 2009-07-31 | 2009-07-31 | |
| US61/230,655 | 2009-07-31 | ||
| US12/586,309 US8476282B2 (en) | 2008-11-03 | 2009-09-17 | Benzoxazole kinase inhibitors and methods of use |
| US12/586,309 | 2009-09-17 | ||
| US12/586,241 US8476431B2 (en) | 2008-11-03 | 2009-09-17 | Benzoxazole kinase inhibitors and methods of use |
| US12/586,241 | 2009-09-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010051042A1 true WO2010051042A1 (en) | 2010-05-06 |
Family
ID=42337454
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/005958 Ceased WO2010051042A1 (en) | 2008-11-03 | 2009-11-02 | Benzoxazole kinase inhibitors and methods of use |
| PCT/US2009/005959 Ceased WO2010051043A1 (en) | 2008-11-03 | 2009-11-02 | Benzoxazole kinase inhibitors and methods of use |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/005959 Ceased WO2010051043A1 (en) | 2008-11-03 | 2009-11-02 | Benzoxazole kinase inhibitors and methods of use |
Country Status (25)
| Country | Link |
|---|---|
| US (6) | US8476431B2 (enExample) |
| EP (2) | EP2365750B1 (enExample) |
| JP (8) | JP5897333B2 (enExample) |
| KR (2) | KR101737192B1 (enExample) |
| CN (2) | CN104710428B (enExample) |
| AU (1) | AU2009310364B2 (enExample) |
| BR (1) | BRPI0920500B1 (enExample) |
| CA (1) | CA2741898C (enExample) |
| CY (1) | CY1117913T1 (enExample) |
| DK (1) | DK2365750T3 (enExample) |
| ES (1) | ES2588197T3 (enExample) |
| HR (1) | HRP20161074T1 (enExample) |
| HU (1) | HUE029906T2 (enExample) |
| IL (3) | IL212586A (enExample) |
| LT (1) | LT2365750T (enExample) |
| MX (3) | MX2011004523A (enExample) |
| MY (2) | MY182533A (enExample) |
| NZ (2) | NZ592608A (enExample) |
| PL (1) | PL2365750T3 (enExample) |
| PT (1) | PT2365750T (enExample) |
| SG (2) | SG10201501703TA (enExample) |
| SI (1) | SI2365750T1 (enExample) |
| SM (1) | SMT201600278B (enExample) |
| WO (2) | WO2010051042A1 (enExample) |
| ZA (1) | ZA201103270B (enExample) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012154695A3 (en) * | 2011-05-06 | 2013-01-10 | The Regents Of The University Of California | Treatment of polycystic disease |
| CN103703174A (zh) * | 2011-05-04 | 2014-04-02 | 因特利凯有限责任公司 | 联合药物组合物及其用途 |
| WO2014072937A1 (en) | 2012-11-08 | 2014-05-15 | Rhizen Pharmaceuticals Sa | Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor |
| CN103957918A (zh) * | 2011-08-11 | 2014-07-30 | 因特利凯有限责任公司 | 激酶抑制剂多晶型物 |
| CN104080786A (zh) * | 2011-11-08 | 2014-10-01 | 因特利凯有限责任公司 | 使用多种药剂的治疗方案 |
| US9050345B2 (en) | 2013-03-11 | 2015-06-09 | Bristol-Myers Squibb Company | Pyrrolotriazines as potassium ion channel inhibitors |
| WO2016040806A1 (en) | 2014-09-11 | 2016-03-17 | The Regents Of The University Of California | mTORC1 INHIBITORS |
| US9512125B2 (en) | 2004-11-19 | 2016-12-06 | The Regents Of The University Of California | Substituted pyrazolo[3.4-D] pyrimidines as anti-inflammatory agents |
| US9629843B2 (en) | 2008-07-08 | 2017-04-25 | The Regents Of The University Of California | MTOR modulators and uses thereof |
| US10023576B2 (en) | 2014-10-22 | 2018-07-17 | Bristol-Myers Squibb Company | Heteroaryl substituted pyrrolotriazine amine compounds as PI3K inhibitors |
| US10214537B2 (en) | 2014-10-22 | 2019-02-26 | Bristol-Myers Squibb Company | Bicyclic heteroaryl amine compounds |
| JP2019521992A (ja) * | 2016-06-16 | 2019-08-08 | 上海 インスティテュート オブ マテリア メディカ、チャイニーズ アカデミー オブ サイエンシーズShanghai Institute Of Materia Medica, Chinese Academy Of Sciences | Fgfr阻害活性を有する新規な化合物およびその製造と使用 |
| US10980889B1 (en) | 2018-05-01 | 2021-04-20 | Revolution Medicines, Inc. | C40-, C28-, and C-32-linked rapamycin analogs as mTOR inhibitors |
| US11547697B2 (en) | 2009-08-17 | 2023-01-10 | Millennium Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| US11685749B2 (en) | 2018-05-01 | 2023-06-27 | Revolution Medicines, Inc. | C26-linked rapamycin analogs as mTOR inhibitors |
| US12121522B2 (en) | 2022-05-25 | 2024-10-22 | Revolution Medicines, Inc. | Methods of treating cancer with an mTOR inhibitor |
| US12324807B2 (en) | 2018-06-01 | 2025-06-10 | Cornell University | Combination therapy for PI3K-associated disease or disorder |
| US12410170B2 (en) | 2019-06-04 | 2025-09-09 | Arcus Biosciences, Inc. | 2,3,5-trisubstituted pyrazolo[1,5-A]pyrimidine compounds |
Families Citing this family (117)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20130087054A (ko) | 2006-04-04 | 2013-08-05 | 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아 | 키나제 길항물질 |
| WO2009046448A1 (en) | 2007-10-04 | 2009-04-09 | Intellikine, Inc. | Chemical entities and therapeutic uses thereof |
| US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
| MX358640B (es) | 2008-01-04 | 2018-08-29 | Intellikine Llc | Isoquinolin-1 (2h) -onas y tieno [2,3-d]pirimidin-4(3h) -onas substituidas, y metodos de uso de las mismas. |
| JP5547099B2 (ja) | 2008-03-14 | 2014-07-09 | インテリカイン, エルエルシー | キナーゼ阻害剤および使用方法 |
| WO2009114874A2 (en) | 2008-03-14 | 2009-09-17 | Intellikine, Inc. | Benzothiazole kinase inhibitors and methods of use |
| US9096611B2 (en) | 2008-07-08 | 2015-08-04 | Intellikine Llc | Kinase inhibitors and methods of use |
| US8703778B2 (en) | 2008-09-26 | 2014-04-22 | Intellikine Llc | Heterocyclic kinase inhibitors |
| JP5819195B2 (ja) | 2008-10-16 | 2015-11-18 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 融合環ヘテロアリールキナーゼ阻害剤 |
| US8476431B2 (en) * | 2008-11-03 | 2013-07-02 | Itellikine LLC | Benzoxazole kinase inhibitors and methods of use |
| JP5789252B2 (ja) | 2009-05-07 | 2015-10-07 | インテリカイン, エルエルシー | 複素環式化合物およびその使用 |
| WO2011047384A2 (en) | 2009-10-16 | 2011-04-21 | The Regents Of The University Of California | Methods of inhibiting ire1 |
| EP2571357B1 (en) | 2010-05-21 | 2016-07-06 | Infinity Pharmaceuticals, Inc. | Chemical compounds, compositions and methods for kinase modulation |
| US9096590B2 (en) | 2010-05-24 | 2015-08-04 | Intellikine Llc | Substituted benzoxazoles as PI3 kinase inhibitors |
| EP2616082A2 (en) * | 2010-09-17 | 2013-07-24 | Mount Sinai School Of Medicine | Methods and compositions for inhibiting autophagy for the treatment of fibrosis |
| CN103298474B (zh) | 2010-11-10 | 2016-06-29 | 无限药品股份有限公司 | 杂环化合物及其用途 |
| US8754114B2 (en) | 2010-12-22 | 2014-06-17 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
| WO2012087336A1 (en) * | 2010-12-23 | 2012-06-28 | Genentech, Inc. | Autophagy inducer and inhibitor combination therapy for the treatment of neoplasms |
| TWI546305B (zh) | 2011-01-10 | 2016-08-21 | 英菲尼提製藥股份有限公司 | 製備異喹啉酮之方法及異喹啉酮之固體形式 |
| EP2678018A4 (en) * | 2011-02-23 | 2015-09-30 | Intellikine Llc | COMBINATION OF CHINESE HEMMER AND USES THEREOF |
| JP5808826B2 (ja) * | 2011-02-23 | 2015-11-10 | インテリカイン, エルエルシー | 複素環化合物およびその使用 |
| WO2012154608A1 (en) * | 2011-05-06 | 2012-11-15 | Intellikine, Llc | Reactive mtor and pi3 kinase inhibitors and uses thereof |
| WO2013012918A1 (en) | 2011-07-19 | 2013-01-24 | Infinity Pharmaceuticals Inc. | Heterocyclic compounds and uses thereof |
| AU2012284088B2 (en) | 2011-07-19 | 2015-10-08 | Infinity Pharmaceuticals Inc. | Heterocyclic compounds and uses thereof |
| CA2846431A1 (en) | 2011-08-29 | 2013-03-07 | Infinity Pharmaceuticals Inc. | Heterocyclic compounds and uses thereof |
| MX370814B (es) | 2011-09-02 | 2020-01-08 | Univ California | Pirazolo[3,4-d]pirimidinas sustituidas y usos de las mismas. |
| JP2014532057A (ja) * | 2011-09-30 | 2014-12-04 | デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド | 粘表皮癌を治療する方法 |
| WO2013071272A1 (en) * | 2011-11-11 | 2013-05-16 | Intellikine, Llc | Kinase inhibitor polymorphs |
| JP6130391B2 (ja) * | 2011-11-23 | 2017-05-17 | インテリカイン, エルエルシー | Mtor阻害剤を使用する強化された治療レジメン |
| EP2791143B1 (en) | 2011-12-15 | 2016-02-24 | Bayer Intellectual Property GmbH | Substituted benzothienyl-pyrrolotriazines and uses thereof in the treatment of cancer |
| UY34484A (es) | 2011-12-15 | 2013-07-31 | Bayer Ip Gmbh | Benzotienilo-pirrolotriazinas disustituidas y sus usos |
| CA2865021C (en) | 2012-02-23 | 2020-06-30 | Bayer Intellectual Property Gmbh | Substituted benzothienyl-pyrrolotriazines and uses thereof |
| US20150087687A1 (en) | 2012-03-23 | 2015-03-26 | Dennis Brown | Compositions and methods to improve the therapeutic benefit of indirubin and analogs thereof, including meisoindigo |
| US8940742B2 (en) | 2012-04-10 | 2015-01-27 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| KR20160027218A (ko) | 2012-05-23 | 2016-03-09 | 에프. 호프만-라 로슈 아게 | 내배엽 및 간세포를 수득하고 사용하는 조성물 및 방법 |
| CN103420994B (zh) * | 2012-05-24 | 2016-04-06 | 天津药物研究院 | 作为前药的达比加群酯衍生物及其制备方法和用途 |
| PE20190736A1 (es) | 2012-06-13 | 2019-05-23 | Incyte Holdings Corp | Compuestos triciclicos sustituidos como inhibidores del receptor del factor de crecimiento de fibroblastos (fgfr) |
| US8828998B2 (en) | 2012-06-25 | 2014-09-09 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
| AU2013280644B2 (en) | 2012-06-26 | 2018-08-02 | Jeffrey A. BACHA | Methods for treating tyrosine-kinase-inhibitor-resistant malignancies in patients with genetic polymorphisms or AHI1 dysregulations or mutations employing dianhydrogalactitol, diacetyldianhydrogalactitol, dibromodulcitol, or analogs or derivatives thereof |
| WO2014026125A1 (en) | 2012-08-10 | 2014-02-13 | Incyte Corporation | Pyrazine derivatives as fgfr inhibitors |
| CN102838627A (zh) * | 2012-09-10 | 2012-12-26 | 盛世泰科生物医药技术(苏州)有限公司 | 2-氨基苯并恶唑-5-硼酸的合成 |
| RU2015115631A (ru) | 2012-09-26 | 2016-11-20 | Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния | Модулирование ire1 |
| WO2014052550A1 (en) * | 2012-09-27 | 2014-04-03 | Thomas Jefferson University | Use of parp inhibitors to treat breast cancer |
| CN105102000B (zh) | 2012-11-01 | 2021-10-22 | 无限药品公司 | 使用pi3激酶亚型调节剂的癌症疗法 |
| US9266892B2 (en) | 2012-12-19 | 2016-02-23 | Incyte Holdings Corporation | Fused pyrazoles as FGFR inhibitors |
| US10130609B2 (en) | 2013-03-13 | 2018-11-20 | University Health Network | Pyrazole derivatives and their uses thereof |
| US9481667B2 (en) | 2013-03-15 | 2016-11-01 | Infinity Pharmaceuticals, Inc. | Salts and solid forms of isoquinolinones and composition comprising and methods of using the same |
| US20160089371A1 (en) * | 2013-03-15 | 2016-03-31 | Intellikine, Llc | Combination of Kinase Inhibitors and Uses Thereof |
| US9724354B2 (en) | 2013-03-22 | 2017-08-08 | Millennium Pharmaceuticals, Inc. | Combination of catalytic mTORC1/2 inhibitors and selective inhibitors of Aurora A kinase |
| JP2016519684A (ja) | 2013-04-08 | 2016-07-07 | デニス エム ブラウン | 準最適に投与された薬物療法の有効性を改善するための及び/又は副作用を低減するための方法および組成物 |
| KR102269032B1 (ko) | 2013-04-19 | 2021-06-24 | 인사이트 홀딩스 코포레이션 | Fgfr 저해제로서 이환식 헤테로사이클 |
| WO2014184069A1 (en) * | 2013-05-14 | 2014-11-20 | Nerviano Medical Sciences S.R.L. | Pyrrolo[2,3-d]pyrimidine derivatives, process for their preparation and their use as kinase inhibitors |
| CN104250250A (zh) * | 2013-06-25 | 2014-12-31 | 苏州科捷生物医药有限公司 | 4-芳香胺基嘧啶类化合物及其抗肿瘤用途 |
| CA2928568A1 (en) | 2013-07-26 | 2015-01-29 | Update Pharma Inc. | Combinatorial methods to improve the therapeutic benefit of bisantrene |
| MX389256B (es) | 2013-10-04 | 2025-03-20 | Infinity Pharmaceuticals Inc | Compuestos heterociclicos y usos de los mismos. |
| US9751888B2 (en) | 2013-10-04 | 2017-09-05 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| JP2016537345A (ja) | 2013-11-13 | 2016-12-01 | ノバルティス アーゲー | 免疫応答を増強するためのmTOR阻害剤 |
| US20170304288A1 (en) * | 2013-11-20 | 2017-10-26 | Texas Southern University | Formulations of Methionine Aminopeptidase Inhibitors for Treating Infectious Diseases |
| CA3225453A1 (en) | 2013-12-19 | 2015-06-25 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
| EP3087101B1 (en) | 2013-12-20 | 2024-06-05 | Novartis AG | Regulatable chimeric antigen receptor |
| WO2015142675A2 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
| EA201691872A1 (ru) | 2014-03-19 | 2017-04-28 | Инфинити Фармасьютикалз, Инк. | Гетероциклические соединения для применения в лечении pi3k-гамма-опосредованных расстройств |
| WO2015148615A1 (en) | 2014-03-26 | 2015-10-01 | Millennium Pharmaceuticals, Inc. | Treatment of bronchiolitis obliterans syndrome |
| WO2015148626A1 (en) * | 2014-03-26 | 2015-10-01 | Millennium Pharmaceuticals, Inc. | Treatment of fibrotic disorders |
| WO2015148623A1 (en) | 2014-03-26 | 2015-10-01 | Millennium Pharmaceuticals, Inc. | Treatment of fibrotic respiratory disorders |
| FI3888674T3 (fi) | 2014-04-07 | 2024-07-02 | Novartis Ag | Syövän hoito käyttäen kimeeristä anti-cd19-antigeenireseptoria |
| WO2015160975A2 (en) | 2014-04-16 | 2015-10-22 | Infinity Pharmaceuticals, Inc. | Combination therapies |
| US10519160B2 (en) | 2014-07-18 | 2019-12-31 | The General Hospital Corporation | Imaging agents for neural flux |
| JP2017528433A (ja) | 2014-07-21 | 2017-09-28 | ノバルティス アーゲー | 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ |
| BR112017001242A2 (pt) | 2014-07-21 | 2017-12-05 | Novartis Ag | tratamento de câncer usando um receptor antigênico quimérico a cd33 |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| US20170209492A1 (en) | 2014-07-31 | 2017-07-27 | Novartis Ag | Subset-optimized chimeric antigen receptor-containing t-cells |
| JP6919118B2 (ja) | 2014-08-14 | 2021-08-18 | ノバルティス アーゲー | GFRα−4キメラ抗原受容体を用いる癌の治療 |
| MY189028A (en) | 2014-08-19 | 2022-01-20 | Novartis Ag | Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment |
| CA2961636A1 (en) | 2014-09-17 | 2016-03-24 | Boris ENGELS | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| WO2016054491A1 (en) | 2014-10-03 | 2016-04-07 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| CN106973568B (zh) | 2014-10-08 | 2021-07-23 | 诺华股份有限公司 | 预测针对嵌合抗原受体疗法的治疗应答性的生物标志及其用途 |
| WO2016057931A1 (en) | 2014-10-10 | 2016-04-14 | The Research Foundation For The State University Of New York | Trifluoromethoxylation of arenes via intramolecular trifluoromethoxy group migration |
| US10851105B2 (en) | 2014-10-22 | 2020-12-01 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
| WO2016106351A1 (en) * | 2014-12-23 | 2016-06-30 | Millennium Pharmaceuticals, Inc. | Combination of raf inhibitors and mtor inhibitors |
| US9580423B2 (en) | 2015-02-20 | 2017-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
| ES2895769T3 (es) | 2015-02-20 | 2022-02-22 | Incyte Corp | Heterociclos bicíclicos como inhibidores de FGFR |
| MA41551A (fr) | 2015-02-20 | 2017-12-26 | Incyte Corp | Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4 |
| ES2876974T3 (es) | 2015-04-07 | 2021-11-15 | Novartis Ag | Combinación de terapia con receptor de antígeno quimérico y derivados de amino pirimidina |
| CN108473957B (zh) | 2015-04-17 | 2024-07-16 | 诺华股份有限公司 | 改善嵌合抗原受体表达细胞的功效和扩增的方法 |
| WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| CN108349985A (zh) | 2015-09-14 | 2018-07-31 | 无限药品股份有限公司 | 异喹啉酮的固体形式、其制备方法、包含其的组合物及其使用方法 |
| WO2017161116A1 (en) | 2016-03-17 | 2017-09-21 | Infinity Pharmaceuticals, Inc. | Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as pi3k kinase inhibitors |
| WO2017172596A1 (en) | 2016-03-28 | 2017-10-05 | Incyte Corporation | Pyrrolotriazine compounds as tam inhibitors |
| WO2017214269A1 (en) | 2016-06-08 | 2017-12-14 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| EP3474856B1 (en) | 2016-06-24 | 2022-09-14 | Infinity Pharmaceuticals, Inc. | Combination therapies |
| US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
| MA46205A (fr) * | 2016-09-08 | 2019-07-17 | Sabila Biosciences Llc | Composés 1,2-dithiolane utiles dans la neuroprotection, les maladies et les états auto-immuns et cancéreux |
| EP3523331A1 (en) | 2016-10-07 | 2019-08-14 | Novartis AG | Chimeric antigen receptors for the treatment of cancer |
| WO2018144791A1 (en) * | 2017-02-03 | 2018-08-09 | Millennium Pharmaceuticals, Inc. | Combination of vps34 inhibitors and mtor inhibitors |
| GB201705971D0 (en) * | 2017-04-13 | 2017-05-31 | Cancer Res Tech Ltd | Inhibitor compounds |
| EP3615055A1 (en) | 2017-04-28 | 2020-03-04 | Novartis AG | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| AR111960A1 (es) | 2017-05-26 | 2019-09-04 | Incyte Corp | Formas cristalinas de un inhibidor de fgfr y procesos para su preparación |
| WO2018226794A1 (en) * | 2017-06-06 | 2018-12-13 | Cornell University | Akt isozyme-specific covalent inhibitors derived from redox-signaling lipids |
| US20210047405A1 (en) | 2018-04-27 | 2021-02-18 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| US20210396739A1 (en) | 2018-05-01 | 2021-12-23 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
| SG11202010882XA (en) | 2018-05-04 | 2020-11-27 | Incyte Corp | Salts of an fgfr inhibitor |
| SI3788047T1 (sl) | 2018-05-04 | 2024-11-29 | Incyte Corporation | Trdne oblike inhibitorja fgfr in postopki priprave le-teh |
| WO2020113077A1 (en) | 2018-11-29 | 2020-06-04 | The Research Foundation For The State University Of New York | Compositions and methods for modular control of bioorthogonal ligation |
| WO2020185532A1 (en) | 2019-03-08 | 2020-09-17 | Incyte Corporation | Methods of treating cancer with an fgfr inhibitor |
| US11591329B2 (en) | 2019-07-09 | 2023-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
| WO2021067374A1 (en) | 2019-10-01 | 2021-04-08 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
| US11607416B2 (en) | 2019-10-14 | 2023-03-21 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
| US11566028B2 (en) | 2019-10-16 | 2023-01-31 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
| WO2021113462A1 (en) | 2019-12-04 | 2021-06-10 | Incyte Corporation | Derivatives of an fgfr inhibitor |
| EP4069696A1 (en) | 2019-12-04 | 2022-10-12 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
| US20210205322A1 (en) * | 2020-01-08 | 2021-07-08 | Albert Einstein College Of Medicine | Rictor-targeted therapy in the management of brain metastases |
| WO2021146424A1 (en) | 2020-01-15 | 2021-07-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
| EP4146828A4 (en) * | 2020-05-07 | 2024-07-17 | Lutronic Vision Inc. | Stimulation of the healing process on the retinal pigment epithelium after r:gen with rtf technology |
| WO2022221170A1 (en) | 2021-04-12 | 2022-10-20 | Incyte Corporation | Combination therapy comprising an fgfr inhibitor and a nectin-4 targeting agent |
| WO2022261160A1 (en) | 2021-06-09 | 2022-12-15 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
| WO2022261159A1 (en) | 2021-06-09 | 2022-12-15 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010024833A1 (en) * | 1998-05-14 | 2001-09-27 | Edgardo Laborde | Methods for the solid phase synthesis of combinatorial libraries of benzimidazol, benzoxazoles, benzothiazoles, and derivatives thereof |
| US6624119B1 (en) * | 1998-11-16 | 2003-09-23 | Basf Aktiengesellschaft | 3-[Benz(ox/thi)azol-7-yl]-1h-pyrimidine-2,4-diones |
| US20060246551A1 (en) * | 2005-04-22 | 2006-11-02 | Wyeth | Dihydrobenzofuran derivatives and uses thereof |
| US20070112005A1 (en) * | 2005-11-17 | 2007-05-17 | Xin Chen | Fused bicyclic mTOR inhibitors |
| US20070293516A1 (en) * | 2006-04-04 | 2007-12-20 | Regents Of The University Of California | Kinase antagonists |
Family Cites Families (359)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB812366A (en) | 1955-08-18 | 1959-04-22 | Wellcome Found | Improvements in and relating to derivatives of pyrimidine and the preparation thereof |
| GB937725A (en) | 1960-05-11 | 1963-09-25 | Ciba Ltd | Pyrazolo[3:4-d]pyrimidines |
| DE2004713A1 (de) | 1970-02-03 | 1971-08-12 | Boehnnger Mannheim GmbH, 6800 Mann heim Waldhof | Nitrofuryl triazolo pyrimidine und Verfahren zu ihrer Herstellung |
| US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
| IT1153216B (it) | 1981-10-16 | 1987-01-14 | Schering Ag | Procedimento per la preparazione di composti cianoeterociclici |
| DE3406533A1 (de) | 1984-02-23 | 1985-08-29 | Boehringer Mannheim Gmbh, 6800 Mannheim | Verwendung von adenosin-derivaten als antiallergica und arzneimittel, die diese enthalten |
| US5310731A (en) | 1984-06-28 | 1994-05-10 | Whitby Research, Inc. | N-6 substituted-5'-(N-substitutedcarboxamido)adenosines as cardiac vasodilators and antihypertensive agents |
| JPS61109797A (ja) | 1984-11-01 | 1986-05-28 | Yuki Gosei Yakuhin Kogyo Kk | 標識化ヌクレオチドおよび標識化ポリヌクレオチド |
| US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
| US5023252A (en) | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
| US5040548A (en) | 1989-06-01 | 1991-08-20 | Yock Paul G | Angioplasty mehtod |
| US5350395A (en) | 1986-04-15 | 1994-09-27 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
| US5061273A (en) | 1989-06-01 | 1991-10-29 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
| US4748982A (en) | 1987-01-06 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
| US5001139A (en) | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
| US4992445A (en) | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
| WO1990003370A1 (en) | 1988-09-28 | 1990-04-05 | Microprobe Corporation | DERIVATIVES OF PYRAZOLO[3,4-d]PYRIMIDINE |
| CA1322628C (en) | 1988-10-04 | 1993-10-05 | Richard A. Schatz | Expandable intraluminal graft |
| GB8827305D0 (en) | 1988-11-23 | 1988-12-29 | British Bio Technology | Compounds |
| US5428125A (en) | 1989-07-17 | 1995-06-27 | The Dow Chemical Company | Mesogenic polycyanates and thermosets thereof |
| US5442039A (en) | 1989-07-17 | 1995-08-15 | The Dow Chemical Company | Mesogenic polycyanates and thermosets thereof |
| US5674278A (en) | 1989-08-24 | 1997-10-07 | Arterial Vascular Engineering, Inc. | Endovascular support device |
| US5292331A (en) | 1989-08-24 | 1994-03-08 | Applied Vascular Engineering, Inc. | Endovascular support device |
| US6344053B1 (en) | 1993-12-22 | 2002-02-05 | Medtronic Ave, Inc. | Endovascular support device and method |
| US5795977A (en) | 1989-09-15 | 1998-08-18 | Metabasis Therapeutics, Inc. | Water soluble adenosine kinase inhibitors |
| US5646128A (en) | 1989-09-15 | 1997-07-08 | Gensia, Inc. | Methods for treating adenosine kinase related conditions |
| US5721356A (en) | 1989-09-15 | 1998-02-24 | Gensia, Inc. | Orally active adenosine kinase inhibitors |
| US5674998A (en) | 1989-09-15 | 1997-10-07 | Gensia Inc. | C-4' modified adenosine kinase inhibitors |
| US5763596A (en) | 1989-09-15 | 1998-06-09 | Metabasis Therapeutics, Inc. | C-4' modified adenosine kinase inhibitors |
| US5506347A (en) | 1993-02-03 | 1996-04-09 | Gensia, Inc. | Lyxofuranosyl analogues of adenosine |
| US5763597A (en) | 1989-09-15 | 1998-06-09 | Metabasis Therapeutics, Inc. | Orally active adenosine kinase inhibitors |
| GB9009542D0 (en) | 1990-04-27 | 1990-06-20 | Beecham Group Plc | Novel compounds |
| GB9113137D0 (en) | 1990-07-13 | 1991-08-07 | Ici Plc | Thioxo heterocycles |
| US5563257A (en) | 1990-08-20 | 1996-10-08 | Boehringer Mannheim Gmbh | Phospholipid derivatives of nucleosides |
| DE4026265A1 (de) | 1990-08-20 | 1992-02-27 | Boehringer Mannheim Gmbh | Neue phospholipid-derivate von nucleosiden, deren herstellung sowie deren verwendung als antivirale arzneimittel |
| EP0550631B1 (en) | 1990-09-25 | 1997-01-02 | Rhone-Poulenc Rorer International (Holdings) Inc. | Compounds having antihypertensive and anti-ischemic properties |
| US5652366A (en) | 1990-09-25 | 1997-07-29 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | DI (1R)-(-)camphosulfonic acid) salt, preparation thereof and use thereof |
| US5561134A (en) | 1990-09-25 | 1996-10-01 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Compounds having antihypertensive, cardioprotective, anti-ischemic and antilipolytic properties |
| GB9103839D0 (en) | 1991-02-23 | 1991-04-10 | Smithkline Beecham Plc | Pharmaceuticals |
| US5916891A (en) | 1992-01-13 | 1999-06-29 | Smithkline Beecham Corporation | Pyrimidinyl imidazoles |
| IL104369A0 (en) | 1992-01-13 | 1993-05-13 | Smithkline Beecham Corp | Novel compounds and compositions |
| DE4204032A1 (de) | 1992-02-12 | 1993-08-19 | Boehringer Mannheim Gmbh | Neue liponucleotide, deren herstellunmg sowie deren verwendung als antivirale arzneimittel |
| DE4204031A1 (de) | 1992-02-12 | 1993-08-19 | Boehringer Mannheim Gmbh | Neue lipidphosphonsaeure-nucleosid-konjugate sowie deren verwendung als antivirale arzneimittel |
| WO1993018035A1 (en) | 1992-03-04 | 1993-09-16 | Abbott Laboratories | Angiotensin ii receptor antagonists |
| GB9208135D0 (en) | 1992-04-13 | 1992-05-27 | Ludwig Inst Cancer Res | Polypeptides having kinase activity,their preparation and use |
| WO1993022443A1 (en) | 1992-04-24 | 1993-11-11 | Sri International | In vivo homologous sequence targeting in eukaryotic cells |
| DE69328440T3 (de) | 1992-06-19 | 2009-05-07 | Honeywell, Inc., Minneapolis | Infrarot kamera mit thermoelektrischer temperaturstabilisierung |
| US6057305A (en) | 1992-08-05 | 2000-05-02 | Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic | Antiretroviral enantiomeric nucleotide analogs |
| TW444018B (en) | 1992-12-17 | 2001-07-01 | Pfizer | Pyrazolopyrimidines |
| US5455258A (en) | 1993-01-06 | 1995-10-03 | Ciba-Geigy Corporation | Arylsulfonamido-substituted hydroxamic acids |
| IL108523A0 (en) | 1993-02-03 | 1994-05-30 | Gensia Inc | Pharmaceutical compositions containing adenosine kinase inhibitors for preventing or treating conditions involving inflammatory responses and pain |
| WO1995012588A1 (en) | 1993-11-05 | 1995-05-11 | Biochem Pharma Inc. | Antineoplastic heteronaphthoquinones |
| US5679683A (en) | 1994-01-25 | 1997-10-21 | Warner-Lambert Company | Tricyclic compounds capable of inhibiting tyrosine kinases of the epidermal growth factor receptor family |
| IL112249A (en) | 1994-01-25 | 2001-11-25 | Warner Lambert Co | Pharmaceutical compositions containing di and tricyclic pyrimidine derivatives for inhibiting tyrosine kinases of the epidermal growth factor receptor family and some new such compounds |
| US6632789B1 (en) | 1994-04-29 | 2003-10-14 | The United States Of America As Represented By The Secretary Of The Navy | Methods for modulating T cell responses by manipulating intracellular signal transduction |
| DE4418690A1 (de) | 1994-05-28 | 1996-01-11 | Boehringer Mannheim Gmbh | Neue Lipidester von Nucleosid-Monophosphaten und deren Verwendung als immunsuppressive Arzneimittel |
| US6323201B1 (en) | 1994-12-29 | 2001-11-27 | The Regents Of The University Of California | Compounds for inhibition of ceramide-mediated signal transduction |
| US5863949A (en) | 1995-03-08 | 1999-01-26 | Pfizer Inc | Arylsulfonylamino hydroxamic acid derivatives |
| AU711592B2 (en) | 1995-04-03 | 1999-10-14 | Novartis Ag | Pyrazole derivatives and processes for the preparation thereof |
| US6312894B1 (en) | 1995-04-03 | 2001-11-06 | Epoch Pharmaceuticals, Inc. | Hybridization and mismatch discrimination using oligonucleotides conjugated to minor groove binders |
| CA2218503C (en) | 1995-04-20 | 2001-07-24 | Pfizer Inc. | Arylsulfonyl hydroxamic acid derivatives |
| US5977061A (en) | 1995-04-21 | 1999-11-02 | Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic | N6 - substituted nucleotide analagues and their use |
| US5593997A (en) | 1995-05-23 | 1997-01-14 | Pfizer Inc. | 4-aminopyrazolo(3-,4-D)pyrimidine and 4-aminopyrazolo-(3,4-D)pyridine tyrosine kinase inhibitors |
| US6403599B1 (en) | 1995-11-08 | 2002-06-11 | Pfizer Inc | Corticotropin releasing factor antagonists |
| AU5982296A (en) | 1995-06-07 | 1996-12-30 | G.D. Searle & Co. | Method to treat cardiofibrosis with a combination of an angi otensin ii antagonist and spironolactone |
| ES2175098T3 (es) | 1995-06-07 | 2002-11-16 | Searle & Co | Terapia de combinacion de espironolactona y antagonista de angiotensina hi para el tratamiento del fallo cardiaco congestivo. |
| CZ297975B6 (cs) | 1995-06-07 | 2007-05-09 | G. D. Searle & Co. | Farmaceutická kombinace antagonisty receptoru proangiotensin II a epoxymexrenonu pro lécení kardiovaskulárních poruch |
| US5665721A (en) | 1995-06-07 | 1997-09-09 | Abbott Laboratories | Heterocyclic substituted cyclopentane compounds |
| US5763885A (en) | 1995-12-19 | 1998-06-09 | Loral Infrared & Imaging Systems, Inc. | Method and apparatus for thermal gradient stabilization of microbolometer focal plane arrays |
| GB9521987D0 (en) | 1995-10-26 | 1996-01-03 | Ludwig Inst Cancer Res | Phosphoinositide 3-kinase modulators |
| EP0780386B1 (en) | 1995-12-20 | 2002-10-02 | F. Hoffmann-La Roche Ag | Matrix metalloprotease inhibitors |
| US5747235A (en) | 1996-01-26 | 1998-05-05 | Eastman Kodak Company | Silver halide light sensitive emulsion layer having enhanced photographic sensitivity |
| CH690773A5 (de) | 1996-02-01 | 2001-01-15 | Novartis Ag | Pyrrolo(2,3-d)pyrimide und ihre Verwendung. |
| DE19603576A1 (de) | 1996-02-01 | 1997-08-07 | Bayer Ag | Acylierte 4-Amino und 4-Hydrazinopyrimidine |
| US5914488A (en) | 1996-03-05 | 1999-06-22 | Mitsubishi Denki Kabushiki Kaisha | Infrared detector |
| GB9611460D0 (en) | 1996-06-01 | 1996-08-07 | Ludwig Inst Cancer Res | Novel lipid kinase |
| WO1997048694A1 (en) | 1996-06-20 | 1997-12-24 | Board Of Regents, The University Of Texas System | Compounds and methods for providing pharmacologically active preparations and uses thereof |
| KR20000067904A (ko) | 1996-07-18 | 2000-11-25 | 디. 제이. 우드, 스피겔 알렌 제이 | 매트릭스 메탈로프로테아제의 포스피네이트계 억제제 |
| BR9711223A (pt) | 1996-08-23 | 1999-08-17 | Pfizer | Derivados de cido arilsulfonilamino-hidrox mico |
| JP4205168B2 (ja) | 1996-10-02 | 2009-01-07 | ノバルティス アクチエンゲゼルシヤフト | ピリミジン誘導体およびその製造法 |
| US5922753A (en) | 1996-10-23 | 1999-07-13 | Zymogenetics, Inc. | Methods for treating bone deficit conditions with benzothiazole |
| US6251901B1 (en) | 1996-10-23 | 2001-06-26 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US5994358A (en) | 1996-10-23 | 1999-11-30 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US6342514B1 (en) | 1996-10-23 | 2002-01-29 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US6153631A (en) | 1996-10-23 | 2000-11-28 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US5948776A (en) | 1996-10-23 | 1999-09-07 | Zymogenetic, Inc. | Compositions and methods for treating bone deficit conditions |
| US5919808A (en) | 1996-10-23 | 1999-07-06 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US5990169A (en) | 1996-10-23 | 1999-11-23 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US5965573A (en) | 1996-10-23 | 1999-10-12 | Zymogenetics, Inc. | Compositions and methods for treating bone deficit conditions |
| US5858753A (en) | 1996-11-25 | 1999-01-12 | Icos Corporation | Lipid kinase |
| ATE346085T1 (de) | 1996-12-06 | 2006-12-15 | Vertex Pharma | Inhibitoren des interleukin-1-beta konvertierenden enzyms |
| US6093737A (en) | 1996-12-30 | 2000-07-25 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| EP0950059B1 (en) | 1997-01-06 | 2004-08-04 | Pfizer Inc. | Cyclic sulfone derivatives |
| IL131042A0 (en) | 1997-02-03 | 2001-01-28 | Pfizer Prod Inc | Arylsulfonylamino hydroxamic acid derivatives |
| BR9807824A (pt) | 1997-02-07 | 2000-03-08 | Pfizer | Derivados de n-hidróxi-beta-sulfonil-propionamida e seu uso como inibidores de metaloproteinases de matriz |
| JP3784076B2 (ja) | 1997-02-07 | 2006-06-07 | プリンストン ユニヴァーシティ | 変性ヌクレオチド三燐酸基質を利用できる組み換えタンパクキナーゼ |
| KR20000070923A (ko) | 1997-02-11 | 2000-11-25 | 디. 제이. 우드, 스피겔 알렌 제이 | 아릴설포닐 하이드록삼산 유도체 |
| US7863444B2 (en) | 1997-03-19 | 2011-01-04 | Abbott Laboratories | 4-aminopyrrolopyrimidines as kinase inhibitors |
| CA2283961A1 (en) | 1997-03-19 | 1998-09-24 | Basf Aktiengesellschaft | Pyrrolo[2,3d]pyrimidines and their use as tyrosine kinase inhibitors |
| AU6780398A (en) | 1997-03-28 | 1998-10-22 | Du Pont Merck Pharmaceutical Company, The | Heterocyclic integrin inhibitor prodrugs |
| AU7449598A (en) | 1997-05-23 | 1998-12-11 | Nippon Shinyaku Co. Ltd. | Medicinal composition for prevention or treatment of hepatopathy |
| GB9711650D0 (en) | 1997-06-05 | 1997-07-30 | Pfizer Ltd | Compounds useful in therapy |
| US6207679B1 (en) | 1997-06-19 | 2001-03-27 | Sepracor, Inc. | Antimicrobial agents uses and compositions related thereto |
| EP1020445B1 (en) | 1997-10-02 | 2008-08-13 | Eisai R&D Management Co., Ltd. | Fused pyridine derivatives |
| US6649631B1 (en) | 1997-10-23 | 2003-11-18 | The Board Of Regents Of The University Of Texas System | Compositions and methods for treating bone deficit conditions |
| DE69824632T2 (de) | 1997-11-12 | 2005-06-09 | Mitsubishi Chemical Corp. | Purinderivate und medikamente, welche dieselben als aktiven bestandteil enthalten |
| GB9725782D0 (en) | 1997-12-05 | 1998-02-04 | Pfizer Ltd | Therapeutic agents |
| US6191170B1 (en) | 1998-01-13 | 2001-02-20 | Tularik Inc. | Benzenesulfonamides and benzamides as therapeutic agents |
| GB9801690D0 (en) | 1998-01-27 | 1998-03-25 | Pfizer Ltd | Therapeutic agents |
| US6127121A (en) | 1998-04-03 | 2000-10-03 | Epoch Pharmaceuticals, Inc. | Oligonucleotides containing pyrazolo[3,4-D]pyrimidines for hybridization and mismatch discrimination |
| US7715989B2 (en) | 1998-04-03 | 2010-05-11 | Elitech Holding B.V. | Systems and methods for predicting oligonucleotide melting temperature (TmS) |
| PA8469401A1 (es) | 1998-04-10 | 2000-05-24 | Pfizer Prod Inc | Derivados biciclicos del acido hidroxamico |
| PA8469501A1 (es) | 1998-04-10 | 2000-09-29 | Pfizer Prod Inc | Hidroxamidas del acido (4-arilsulfonilamino)-tetrahidropiran-4-carboxilico |
| JP4611524B2 (ja) | 1998-06-02 | 2011-01-12 | オーエスアイ・ファーマスーティカルズ・インコーポレーテッド | ピロロ[2,3d]ピリミジン組成物およびその使用 |
| JP2000072773A (ja) | 1998-08-28 | 2000-03-07 | Zeria Pharmaceut Co Ltd | プリン誘導体 |
| SK3852001A3 (en) | 1998-09-18 | 2003-03-04 | Basf Ag | 4-Aminopyrrolopyrimidines as kinase inhibitors |
| US6713474B2 (en) | 1998-09-18 | 2004-03-30 | Abbott Gmbh & Co. Kg | Pyrrolopyrimidines as therapeutic agents |
| US6319660B1 (en) | 1998-12-28 | 2001-11-20 | Eastman Kodak Company | Color photographic element containing speed improving compound |
| DE1140938T1 (de) | 1999-01-11 | 2003-01-09 | Princeton University, Princeton | Kinase-inhibitoren mit hoher affinität zur ziel detektion und ihre verwendung |
| CZ27399A3 (cs) | 1999-01-26 | 2000-08-16 | Ústav Experimentální Botaniky Av Čr | Substituované dusíkaté heterocyklické deriváty, způsob jejich přípravy, tyto deriváty pro použití jako léčiva, farmaceutická kompozice a kombinovaný farmaceutický přípravek tyto deriváty obsahující a použití těchto derivátů pro výrobu léčiv |
| EP1040831A3 (en) | 1999-04-02 | 2003-05-02 | Pfizer Products Inc. | Use of corticotropin releasing factor (CRF) antagonists to prevent sudden death |
| SE515856C2 (sv) | 1999-05-19 | 2001-10-22 | Ericsson Telefon Ab L M | Bärare för elektronikkomponenter |
| CN1636005A (zh) | 1999-06-03 | 2005-07-06 | 克诺尔股份有限公司 | 苯并噻嗪酮和苯并噁嗪酮化合物 |
| US6387894B1 (en) | 1999-06-11 | 2002-05-14 | Pfizer Inc. | Use of CRF antagonists and renin-angiotensin system inhibitors |
| TWI262914B (en) | 1999-07-02 | 2006-10-01 | Agouron Pharma | Compounds and pharmaceutical compositions for inhibiting protein kinases |
| PE20010306A1 (es) | 1999-07-02 | 2001-03-29 | Agouron Pharma | Compuestos de indazol y composiciones farmaceuticas que los contienen utiles para la inhibicion de proteina kinasa |
| GB9919588D0 (en) | 1999-08-18 | 1999-10-20 | Hoechst Schering Agrevo Gmbh | Fungicidal compounds |
| JP4831906B2 (ja) | 1999-08-27 | 2011-12-07 | ケモセントリックス, インコーポレイテッド | Cxcr3機能を調節するための複素環式化合物および方法 |
| WO2001019800A2 (en) | 1999-09-16 | 2001-03-22 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
| PT1212327E (pt) | 1999-09-17 | 2004-01-30 | Abbott Gmbh & Co Kg | Pirazolopirimidinas como agentes terapeuticos |
| US6921763B2 (en) | 1999-09-17 | 2005-07-26 | Abbott Laboratories | Pyrazolopyrimidines as therapeutic agents |
| US6506769B2 (en) | 1999-10-06 | 2003-01-14 | Boehringer Ingelheim Pharmaceuticals, Inc. | Heterocyclic compounds useful as inhibitors of tyrosine kinases |
| WO2001025238A2 (en) | 1999-10-06 | 2001-04-12 | Boehringer Ingelheim Pharmaceuticals, Inc. | Heterocyclic compounds useful as inhibitors of tyrosine kinases |
| US6472153B1 (en) | 1999-10-26 | 2002-10-29 | Epoch Biosciences, Inc. | Hybridization-triggered fluorescent detection of nucleic acids |
| US6660845B1 (en) | 1999-11-23 | 2003-12-09 | Epoch Biosciences, Inc. | Non-aggregating, non-quenching oligomers comprising nucleotide analogues; methods of synthesis and use thereof |
| GB0002032D0 (en) | 2000-01-28 | 2000-03-22 | Zeneca Ltd | Chemical compounds |
| US7217722B2 (en) | 2000-02-01 | 2007-05-15 | Kirin Beer Kabushiki Kaisha | Nitrogen-containing compounds having kinase inhibitory activity and drugs containing the same |
| US7115653B2 (en) | 2000-03-30 | 2006-10-03 | Curis, Inc. | Small organic molecule regulators of cell proliferation |
| US6613798B1 (en) | 2000-03-30 | 2003-09-02 | Curis, Inc. | Small organic molecule regulators of cell proliferation |
| KR100785363B1 (ko) | 2000-04-25 | 2007-12-18 | 이코스 코포레이션 | 인간 포스파티딜-이노시톨 3-키나제 델타의 억제제 |
| US6667300B2 (en) | 2000-04-25 | 2003-12-23 | Icos Corporation | Inhibitors of human phosphatidylinositol 3-kinase delta |
| US6777439B2 (en) | 2000-05-30 | 2004-08-17 | Advanced Research & Technology Institute, Inc. | Compositions and methods for identifying agents which modulate PTEN function and PI-3 kinase pathways |
| EP1294713A2 (en) | 2000-06-27 | 2003-03-26 | Genelabs Technologies, Inc. | Compounds possessing antibacterial, antifungal or antitumor activity |
| US6534691B2 (en) | 2000-07-18 | 2003-03-18 | E. I. Du Pont De Nemours And Company | Manufacturing process for α-olefins |
| WO2002030944A2 (en) | 2000-10-11 | 2002-04-18 | Applera Corporation | Fluorescent nucleobase conjugates having anionic linkers |
| AU2002213467A1 (en) | 2000-10-11 | 2002-04-22 | Chemocentryx, Inc. | Modulation of ccr4 function |
| JP2002131859A (ja) | 2000-10-19 | 2002-05-09 | Konica Corp | 撮影用赤外感光性ハロゲン化銀写真感光材料及び赤外感光性ハロゲン化銀乳剤 |
| US6890747B2 (en) | 2000-10-23 | 2005-05-10 | Warner-Lambert Company | Phosphoinositide 3-kinases |
| BR0116096A (pt) | 2000-12-11 | 2005-10-18 | Tularik Inc | Composto, composição farmacêutica, e, métodos para tratar uma condição ou doença inflamatória ou imune em um paciente, para tratar uma condição ou doença mediada por cxcr3 em um paciente, e para a modulação da função de cxcr3 em uma célula |
| US7157487B2 (en) | 2000-12-28 | 2007-01-02 | Daiichi Pharmaceutical Co., Ltd. | Vla-4 inhibitors |
| US7105499B2 (en) | 2001-01-22 | 2006-09-12 | Merck & Co., Inc. | Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase |
| HUP0400726A3 (en) | 2001-01-22 | 2007-05-29 | Merck & Co Inc | Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase |
| MXPA03008560A (es) | 2001-03-22 | 2004-06-30 | Abbot Gmbh & Co Kg | Pirazolopirimidinas como agentes terapeuticos. |
| US7250569B2 (en) | 2001-04-26 | 2007-07-31 | New York University School Of Medicine | Method for dissolving nanostructural materials |
| US6664269B2 (en) | 2001-05-08 | 2003-12-16 | Maybridge Plc | Isoquinolinone derivatives |
| US7144903B2 (en) | 2001-05-23 | 2006-12-05 | Amgen Inc. | CCR4 antagonists |
| EP1470119A4 (en) | 2001-06-13 | 2005-10-19 | Genesoft Pharmaceuticals Inc | BENZOTHIOPHENE COMPOUNDS WITH ANTI-INFECTIOUS ACTIVITY |
| WO2002101007A2 (en) | 2001-06-13 | 2002-12-19 | Genesoft Pharmaceuticals, Inc | Antipathogenic benzamide compounds |
| US6777425B2 (en) | 2001-06-13 | 2004-08-17 | Genesoft Pharmaceuticals, Inc. | Isoquinoline compounds having antiinfective activity |
| GB0115109D0 (en) | 2001-06-21 | 2001-08-15 | Aventis Pharma Ltd | Chemical compounds |
| AU2002315389A1 (en) | 2001-06-21 | 2003-01-08 | Ariad Pharmaceuticals, Inc. | Novel pyrazolo-and pyrrolo-pyrimidines and uses thereof |
| CA2455181C (en) | 2001-08-01 | 2010-04-06 | Merck & Co., Inc. | Benzimidazo[4,5-f]isoquinolinone derivatives |
| AU2002327422A1 (en) | 2001-08-03 | 2003-03-18 | Abbott Laboratories | Method of identifying inhibitors of lck |
| EP2181985B1 (en) | 2001-08-10 | 2011-10-26 | Shionogi & Co., Ltd. | Antiviral Agent |
| JP2003073357A (ja) | 2001-09-03 | 2003-03-12 | Mitsubishi Pharma Corp | アミド化合物を含有するRhoキナーゼ阻害剤 |
| US20030199516A1 (en) | 2001-09-13 | 2003-10-23 | Genesoft, Inc. | Methods of treating infection by drug resistant bacteria |
| US7101884B2 (en) | 2001-09-14 | 2006-09-05 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
| AUPR769501A0 (en) | 2001-09-14 | 2001-10-11 | Biomolecular Research Institute Limited | Cytokine receptor 1 |
| TWI330183B (enExample) | 2001-10-22 | 2010-09-11 | Eisai R&D Man Co Ltd | |
| WO2003037860A2 (en) | 2001-10-30 | 2003-05-08 | Conforma Therapeutics Corporation | Purine analogs having hsp90-inhibiting activity |
| US7319858B2 (en) | 2001-11-16 | 2008-01-15 | Cingular Wireless Ii, Llc | System and method for querying message information |
| WO2003048081A2 (en) | 2001-12-04 | 2003-06-12 | Bristol-Myers Squibb Company | Glycinamides as factor xa inhibitors |
| JP4085237B2 (ja) | 2001-12-21 | 2008-05-14 | 日本電気株式会社 | 携帯電話の利用契約システムと通信方法 |
| EP1465869B1 (en) | 2001-12-21 | 2013-05-15 | Exelixis Patent Company LLC | Modulators of lxr |
| US7064218B2 (en) | 2001-12-26 | 2006-06-20 | Genelabs Technologies, Inc. | Aromatic compounds and poly(oxyalkylene) containing aromatic compounds possessing antibacterial, antifungal or antitumor activity |
| US7414036B2 (en) | 2002-01-25 | 2008-08-19 | Muscagen Limited | Compounds useful as A3 adenosine receptor agonists |
| US20030225098A1 (en) | 2002-03-21 | 2003-12-04 | Hirst Gavin C. | Kinase inhibitors |
| WO2003082341A1 (en) | 2002-03-22 | 2003-10-09 | Cellular Genomics, Inc. | AN IMPROVED FORMULATION OF CERTAIN PYRAZOLO[3,4-d] PYRIMIDINES AS KINASE MODULATORS |
| AU2003219088A1 (en) | 2002-03-26 | 2003-10-08 | Zentopharm Gmbh | Fredericamycin derivatives |
| US7166293B2 (en) | 2002-03-29 | 2007-01-23 | Carlsbad Technology, Inc. | Angiogenesis inhibitors |
| DE10217046A1 (de) | 2002-04-17 | 2003-11-06 | Bioleads Gmbh | Fredericamycin-Derivate |
| EP1507535A1 (en) | 2002-04-26 | 2005-02-23 | Pfizer Products Inc. | Pyrimidine-2,4,6-trione metallo-proteinase inhibitors |
| CA2485343A1 (en) | 2002-05-23 | 2004-05-13 | Merck & Co., Inc. | Mitotic kinesin inhibitors |
| US7041676B2 (en) | 2002-06-14 | 2006-05-09 | Cytokinetics, Inc. | Compounds, compositions, and methods |
| CN1678311A (zh) | 2002-06-27 | 2005-10-05 | 诺沃挪第克公司 | 用作治疗剂的芳基羰基衍生物 |
| CA2488642C (en) | 2002-06-27 | 2011-09-06 | Dharma Rao Polisetti | Aryl carbonyl derivatives as glucokinase activators |
| US7265111B2 (en) | 2002-06-27 | 2007-09-04 | Sanofi-Aventis Deutschland Gmbh | Adenosine analogues and their use as pharmaceutical agents |
| DE10230917A1 (de) | 2002-07-09 | 2004-02-05 | Bioleads Gmbh | Fredericamycin-Derivate |
| WO2004006906A2 (en) | 2002-07-15 | 2004-01-22 | Combinatorx, Incorporated | Methods for the treatment of neoplasms |
| JP2006503008A (ja) | 2002-08-13 | 2006-01-26 | ワーナー−ランバート カンパニー リミティド ライアビリティー カンパニー | マトリクスメタロプロテイナーゼ阻害物質としての4−ヒドロキシキノリン誘導体 |
| CA2495661C (en) | 2002-08-16 | 2011-06-14 | Kinacia Pty Ltd. | Inhibition of phosphoinositide 3-kinase beta |
| EP1539180A4 (en) | 2002-08-21 | 2006-08-30 | Cytokinetics Inc | COMPOUNDS, COMPOSITIONS AND METHODS |
| US20030139427A1 (en) | 2002-08-23 | 2003-07-24 | Osi Pharmaceuticals Inc. | Bicyclic pyrimidinyl derivatives and methods of use thereof |
| AU2003266668A1 (en) | 2002-09-30 | 2004-04-23 | Banyu Pharmaceutical Co., Ltd. | 2-aminobenzimidazole derivative |
| JP2004161716A (ja) | 2002-11-15 | 2004-06-10 | Takeda Chem Ind Ltd | Jnk阻害剤 |
| UA80171C2 (en) | 2002-12-19 | 2007-08-27 | Pfizer Prod Inc | Pyrrolopyrimidine derivatives |
| ES2361924T3 (es) | 2002-12-20 | 2011-06-24 | X-Ceptor Therapeutics, Inc. | Derivados de isoquinolinona y su uso como agentes terapéuticos. |
| US7365094B2 (en) | 2002-12-23 | 2008-04-29 | 4Sc Ag | Compounds as anti-inflammatory, immunomodulatory and anti-proliferatory agents |
| US7071355B2 (en) | 2002-12-23 | 2006-07-04 | 4 Sc Ag | Compounds as anti-inflammatory, immunomodulatory and anti-proliferatory agents |
| US7247736B2 (en) | 2002-12-23 | 2007-07-24 | 4Sc Ag | Method of identifying inhibitors of DHODH |
| WO2004078702A1 (en) | 2003-03-06 | 2004-09-16 | Dsm Ip Assets B.V. | PROCESS FOR THE PREPARATION OF AN α-AMINO CARBONYL COMPOUND |
| US20040242566A1 (en) | 2003-03-25 | 2004-12-02 | Syrrx, Inc. | Dipeptidyl peptidase inhibitors |
| GB0306907D0 (en) | 2003-03-26 | 2003-04-30 | Angiogene Pharm Ltd | Boireductively-activated prodrugs |
| WO2004089297A2 (en) | 2003-04-02 | 2004-10-21 | Suntory Pharmaceutical Research Laboratories, Llc | Compounds and methods for treatment of thrombosis |
| ATE440825T1 (de) | 2003-06-06 | 2009-09-15 | Vertex Pharma | Pyrimidin-derivate zur verwendung als modulatoren von atp-bindende kassette transportern |
| US7429596B2 (en) | 2003-06-20 | 2008-09-30 | The Regents Of The University Of California | 1H-pyrrolo [2,3-D] pyrimidine derivatives and methods of use thereof |
| EP1680125A1 (en) | 2003-07-02 | 2006-07-19 | Warner-Lambert Company LLC | Combination of an allosteric inhibitor of matrix metalloproteinase-13 and a ligand to an alpha-2-delta receptor |
| CN1860118A (zh) | 2003-07-29 | 2006-11-08 | Irm责任有限公司 | 作为蛋白激酶抑制剂的化合物和组合物 |
| GB0317951D0 (en) | 2003-07-31 | 2003-09-03 | Trigen Ltd | Compounds |
| WO2005014532A1 (en) | 2003-08-08 | 2005-02-17 | Transtech Pharma, Inc. | Aryl and heteroaryl compounds, compositions and methods of use |
| US7208601B2 (en) | 2003-08-08 | 2007-04-24 | Mjalli Adnan M M | Aryl and heteroaryl compounds, compositions, and methods of use |
| WO2005016348A1 (en) | 2003-08-14 | 2005-02-24 | Icos Corporation | Method of inhibiting immune responses stimulated by an endogenous factor |
| WO2005016349A1 (en) | 2003-08-14 | 2005-02-24 | Icos Corporation | Methods of inhibiting leukocyte accumulation |
| AU2004264419B2 (en) | 2003-08-15 | 2009-01-15 | Irm Llc | 6-substituted anilino purines as RTK inhibitors |
| US7390820B2 (en) | 2003-08-25 | 2008-06-24 | Amgen Inc. | Substituted quinolinone derivatives and methods of use |
| WO2005044181A2 (en) | 2003-09-09 | 2005-05-19 | Temple University-Of The Commonwealth System Of Higher Education | Protection of tissues and cells from cytotoxic effects of ionizing radiation by abl inhibitors |
| EA010160B1 (ru) | 2003-09-18 | 2008-06-30 | Конформа Терапьютикс Корпорейшн | Новые гетероциклические соединения - ингибиторы hsp90 и способы их получения |
| GB0322409D0 (en) | 2003-09-25 | 2003-10-29 | Astrazeneca Ab | Quinazoline derivatives |
| EP1673343A4 (en) | 2003-10-08 | 2008-09-10 | Irm Llc | COMPOUNDS AND COMPOSITIONS AS PROTEIN KINASE INHIBITORS |
| AU2004289303A1 (en) | 2003-11-10 | 2005-05-26 | Synta Pharmaceuticals, Corp. | Fused heterocyclic compounds |
| JP2007511596A (ja) | 2003-11-17 | 2007-05-10 | ファイザー・プロダクツ・インク | 癌の治療において有用なピロロピリミジン化合物 |
| AR046845A1 (es) | 2003-11-21 | 2005-12-28 | Novartis Ag | Derivados de 1h-imidazo[4,5-c]quinolina para tratamiento de enfermedades dependientes de las proteino-quinasas |
| EP1692112A4 (en) | 2003-12-08 | 2008-09-24 | Cytokinetics Inc | COMPOUNDS, COMPOSITIONS, AND METHODS |
| AU2004308974A1 (en) | 2003-12-22 | 2005-07-14 | Gilead Sciences, Inc. | Kinase inhibitor phosphonate conjugates |
| ES2339670T3 (es) | 2003-12-23 | 2010-05-24 | Novartis Ag | Inhibidores heterociclicos biciclicos de la quinasa p-38. |
| CA2552664A1 (en) | 2004-01-08 | 2005-07-28 | Michigan State University | Methods for treating and preventing hypertension and hypertension-related disorders |
| CA2553724A1 (en) | 2004-02-03 | 2005-08-18 | Abbott Laboratories | Aminobenzoxazoles as therapeutic agents |
| AU2005212092B2 (en) | 2004-02-13 | 2011-01-20 | Msd K.K. | Fused-ring 4-oxopyrimidine derivative |
| US20050187418A1 (en) | 2004-02-19 | 2005-08-25 | Small Brooke L. | Olefin oligomerization |
| EP1720874A4 (en) | 2004-02-24 | 2010-03-03 | Bioaxone Therapeutique Inc | 4-SUBSTITUTED PIPERIDINE DERIVATIVES |
| JP2007523938A (ja) | 2004-02-27 | 2007-08-23 | エフ.ホフマン−ラ ロシュ アーゲー | ピラゾールの縮合誘導体 |
| WO2005085248A1 (en) | 2004-02-27 | 2005-09-15 | F.Hoffmann-La Roche Ag | Heteroaryl-fused pyrazolo derivatives |
| DE602005014964D1 (de) | 2004-04-02 | 2009-07-30 | Osi Pharm Inc | Mit einem 6,6-bicyclischen ring substituierte heterobicyclische proteinkinaseinhibitoren |
| US20070293489A1 (en) | 2004-04-02 | 2007-12-20 | Jerry Adams | Substituted Pyrazolopyrimidines |
| CA2564085C (en) | 2004-04-30 | 2013-04-02 | Takeda Pharmaceutical Company Limited | Heterocyclic amide compound and use thereof as an mmp-13 inhibitor |
| DE102004022897A1 (de) | 2004-05-10 | 2005-12-08 | Bayer Cropscience Ag | Azinyl-imidazoazine |
| WO2005113556A1 (en) | 2004-05-13 | 2005-12-01 | Icos Corporation | Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta |
| EP1750714A1 (en) | 2004-05-13 | 2007-02-14 | Vanderbilt University | Phosphoinositide 3-kinase delta selective inhibitors for inhibiting angiogenesis |
| JP2008500338A (ja) | 2004-05-25 | 2008-01-10 | イコス・コーポレイション | 造血細胞の異常増殖を治療及び/又は予防する方法 |
| CA2569406A1 (en) | 2004-06-04 | 2005-12-22 | Icos Corporation | Methods for treating mast cell disorders |
| GB0420722D0 (en) | 2004-09-17 | 2004-10-20 | Addex Pharmaceuticals Sa | Novel allosteric modulators |
| WO2006038865A1 (en) | 2004-10-01 | 2006-04-13 | Betagenon Ab | Nucleotide derivatives for the treatment of type 2 diabetes and other disorders |
| US8212012B2 (en) | 2004-11-03 | 2012-07-03 | University Of Kansas | Novobiocin analogues having modified sugar moieties |
| US7622451B2 (en) | 2004-11-03 | 2009-11-24 | University Of Kansas | Novobiocin analogues as neuroprotective agents and in the treatment of autoimmune disorders |
| US7608594B2 (en) | 2004-11-03 | 2009-10-27 | University Of Kansas | Novobiocin analogues as anticancer agents |
| US8212011B2 (en) | 2004-11-03 | 2012-07-03 | University Of Kansas | Novobiocin analogues |
| GB0425035D0 (en) | 2004-11-12 | 2004-12-15 | Novartis Ag | Organic compounds |
| JP2008520744A (ja) | 2004-11-19 | 2008-06-19 | ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア | 抗炎症性ピラゾロピリミジン |
| CA2588607A1 (en) | 2004-11-23 | 2006-06-01 | Ptc Therapeutics, Inc. | Carbazole, carboline and indole derivatives useful in the inhibition of vegf production |
| ATE479676T1 (de) | 2005-01-10 | 2010-09-15 | Bristol Myers Squibb Co | Als antikoagulanzien verwendbare phenylglycinamid-derivate |
| US20060156485A1 (en) | 2005-01-14 | 2006-07-20 | The Procter & Gamble Company | Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof |
| PE20061119A1 (es) | 2005-01-19 | 2006-11-27 | Aventis Pharma Sa | PIRAZOLO PIRIDINAS SUSTITUIDAS COMO INHIBIDORES DE CINASAS FAK, KDR Y Tie |
| GB0501999D0 (en) | 2005-02-01 | 2005-03-09 | Sentinel Oncology Ltd | Pharmaceutical compounds |
| US20080287469A1 (en) | 2005-02-17 | 2008-11-20 | Diacovo Thomas G | Phosphoinositide 3-Kinase Inhibitors for Inhibiting Leukocyte Accumulation |
| US7579348B2 (en) | 2005-02-25 | 2009-08-25 | Pgxhealth, Llc | Derivatives of 8-substituted xanthines |
| US20090124654A1 (en) | 2005-03-01 | 2009-05-14 | Mjalli Adnan M M | Aryl and Heteroaryl Compounds, Compositions, Methods of Use |
| CN101184395A (zh) | 2005-04-06 | 2008-05-21 | Irm责任有限公司 | 包含二芳基胺的化合物和组合物及其作为类固醇激素核受体调节剂的用途 |
| KR100781704B1 (ko) | 2005-04-20 | 2007-12-03 | 에스케이케미칼주식회사 | 피리딘 유도체와 이의 제조방법, 및 이를 포함하는약제조성물 |
| EP1879657A2 (en) | 2005-04-25 | 2008-01-23 | Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic | Use of compounds to enhance processivity of telomerase |
| ES2543714T3 (es) | 2005-06-22 | 2015-08-21 | Chemocentryx, Inc. | Compuestos de azaindazol y métodos de uso |
| WO2007002701A2 (en) | 2005-06-27 | 2007-01-04 | Amgen Inc. | Anti-inflammatory aryl nitrile compounds |
| JP2009500437A (ja) | 2005-07-11 | 2009-01-08 | デブジェン エヌブイ | キナーゼ阻害剤としてのアミド誘導体 |
| JP2009505948A (ja) | 2005-07-11 | 2009-02-12 | デブジェン エヌブイ | キナーゼ阻害剤としてのアミド誘導体 |
| GB0516723D0 (en) | 2005-08-15 | 2005-09-21 | Novartis Ag | Organic compounds |
| KR101011957B1 (ko) | 2005-08-25 | 2011-01-31 | 에프. 호프만-라 로슈 아게 | P38 mαp 키나아제 저해제 및 이의 사용 방법 |
| CA2620106A1 (en) | 2005-08-25 | 2007-03-01 | F. Hoffman-La Roche Ag | P38 map kinase inhibitors and methods for using the same |
| WO2007025090A2 (en) | 2005-08-25 | 2007-03-01 | Kalypsys, Inc. | Heterobicyclic and - tricyclic inhibitors of mapk/erk kinase |
| US20080318942A1 (en) | 2005-09-01 | 2008-12-25 | Bioagency Ag | Fredericamycin Derivatives |
| BRPI0616459A2 (pt) | 2005-09-29 | 2011-06-21 | Wyeth Corp | compostos das fórmulas i, ii, e iii; processos para o tratamento ou para a prevenção de: um estado de saúde com melhora devido à recaptação de monoamina; pelo menos um sintoma vasomotor; pelo menos um distúrbio depressivo; pelo menos uma disfunção sexual; para a prevenção de dor; de distúrbio gastrointestinal ou genitourinário; de sìndrome de fadiga crÈnica; de sìndrome de fibromialgia; de esquizofrenia; e uso de um composto |
| US20090088452A1 (en) | 2005-11-22 | 2009-04-02 | Coleman Paul J | Indole Orexin Receptor Antagonists |
| AR057960A1 (es) | 2005-12-02 | 2007-12-26 | Osi Pharm Inc | Inhibidores de proteina quinasa biciclicos |
| WO2007075554A2 (en) | 2005-12-19 | 2007-07-05 | Osi Pharmaceuticals, Inc. | Combination of igfr inhibitor and anti-cancer agent |
| TW201307354A (zh) | 2005-12-29 | 2013-02-16 | Abbott Lab | 蛋白質激酶抑制劑 |
| US7659274B2 (en) | 2006-01-25 | 2010-02-09 | Osi Pharmaceuticals, Inc. | Unsaturated mTOR inhibitors |
| WO2007089669A2 (en) | 2006-01-26 | 2007-08-09 | Wyeth | Processes for the preparation of compounds which modulate cell proliferation |
| RU2008139599A (ru) | 2006-03-07 | 2010-04-20 | Эррэй Биофарма Инк. (Us) | Гетеробициклические производные пиразола и способы их применения |
| WO2007106503A2 (en) | 2006-03-13 | 2007-09-20 | Osi Pharmaceuticals, Inc. | Combined treatment with an egfr kinase inhibitor and an agent that sensitizes tumor cells to the effects of egfr kinase inhibitors |
| HUE067285T2 (hu) | 2006-03-24 | 2024-10-28 | Bioverativ Therapeutics Inc | PC5 mint IX-es faktor propeptidet feldolgozó enzim |
| EA200870385A1 (ru) | 2006-03-29 | 2009-04-28 | Фолдркс Фармасьютикалз, Инк. | Ингибирование токсичности альфа-синуклеина |
| WO2007121453A2 (en) | 2006-04-17 | 2007-10-25 | The Regents Of The University Of California | 2-hydroxy-1-oxo 1,2 dihydro isoquinoline chelating agents |
| AR060607A1 (es) | 2006-04-21 | 2008-07-02 | Novartis Ag | Derivados de purina,composiciones farmaceuticas que los contienen, metodo de preparacion y usos en enfermedades obstructivas o inflamatorias de las vias respiratorias. |
| GB0607948D0 (en) | 2006-04-21 | 2006-05-31 | Novartis Ag | Organic compounds |
| GB0607950D0 (en) | 2006-04-21 | 2006-05-31 | Novartis Ag | Organic compounds |
| AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
| WO2007125310A2 (en) | 2006-04-25 | 2007-11-08 | Astex Therapeutics Limited | Pharmaceutical combinations of pk inhibitors and other active agents |
| WO2007125315A2 (en) | 2006-04-25 | 2007-11-08 | Astex Therapeutics Limited | Pharmaceutical compounds |
| DE102006020327A1 (de) | 2006-04-27 | 2007-12-27 | Bayer Healthcare Ag | Heterocyclisch substituierte, anellierte Pyrazol-Derivate und ihre Verwendung |
| WO2007135398A1 (en) | 2006-05-22 | 2007-11-29 | Astrazeneca Ab | Indole derivatives |
| GB0610242D0 (en) | 2006-05-23 | 2006-07-05 | Novartis Ag | Organic compounds |
| US20080003254A1 (en) | 2006-05-23 | 2008-01-03 | Abbott Laboratories | Systems and methods for delivering a rapamycin analog that do not inhibit human coronary artery endothelial cell migration |
| GB0610317D0 (en) | 2006-05-24 | 2006-07-05 | Medical Res Council | Antiparasitic compounds and compositions |
| CA2658462C (en) | 2006-07-20 | 2011-09-27 | Amgen Inc. | Substituted pyridone compounds and methods of use |
| CN101490016A (zh) | 2006-07-28 | 2009-07-22 | 诺瓦提斯公司 | 作为脂激酶抑制剂的2,4-取代的喹唑啉 |
| ATE539752T1 (de) * | 2006-08-16 | 2012-01-15 | Exelixis Inc | Verwendung von pi3k- und mek-modulatoren bei der krebsbehandlung |
| EP2589597B1 (en) | 2006-08-22 | 2019-03-06 | Technion Research & Development Foundation | Heterocyclic derivatives binding to the peripheral-type benzodiazepine receptor (PBR) |
| CA2661436A1 (en) | 2006-08-24 | 2008-02-28 | Serenex, Inc. | Isoquinoline, quinazoline and phthalazine derivatives |
| US7956064B2 (en) | 2006-09-01 | 2011-06-07 | Cylene Pharmaceuticals, Inc. | Fused tricyclic compounds as serine-threonine protein kinase and PARP modulators |
| WO2008025755A1 (de) | 2006-09-01 | 2008-03-06 | Basf Se | Verwendung von n-haltigen heterozyklen in dermokosmetika |
| EP1903044A1 (en) | 2006-09-14 | 2008-03-26 | Novartis AG | Adenosine Derivatives as A2A Receptor Agonists |
| EP1900729A1 (en) | 2006-09-15 | 2008-03-19 | Novartis AG | Benzoxazoles and oxazolopyridines being useful as Janus kinases inhibitors |
| EP2077267A4 (en) | 2006-10-18 | 2010-04-07 | Takeda Pharmaceutical | CONDENSED HETEROCYCLIC COMPOUND |
| US7772180B2 (en) | 2006-11-09 | 2010-08-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
| CN101605797A (zh) | 2006-11-13 | 2009-12-16 | 伊莱利利公司 | 治疗炎症疾病和癌症的噻吩并嘧啶酮 |
| WO2008063625A2 (en) | 2006-11-20 | 2008-05-29 | Adolor Corporation | Pyridine compounds and methods of their use |
| JP5178738B2 (ja) | 2006-12-20 | 2013-04-10 | メルク・シャープ・アンド・ドーム・コーポレーション | 新規なjnk阻害剤 |
| WO2008079028A1 (en) | 2006-12-22 | 2008-07-03 | Industrial Research Limited | Azetidine analogues of nucleosidase and phosphorylase inhibitors |
| WO2008083070A1 (en) | 2006-12-29 | 2008-07-10 | Neurogen Corporation | Crf1 receptor ligands comprising fused bicyclic heteroaryl moieties |
| KR20090112732A (ko) | 2007-01-26 | 2009-10-28 | 아이알엠 엘엘씨 | 플라스모듐 관련 질환의 치료를 위한 키나제 억제제로서의 퓨린 화합물 및 조성물 |
| US8586619B2 (en) | 2007-03-12 | 2013-11-19 | Vm Therapeutics Llc | Agents of calcium ion channel modulators |
| US7919498B2 (en) | 2007-03-23 | 2011-04-05 | Amgen Inc. | Substituted pyrazolo[3,4-d]pyrimidines as PI3K inhibitors |
| AU2008231304B2 (en) | 2007-03-23 | 2011-05-12 | Amgen Inc. | Heterocyclic compounds and their uses |
| US7705018B2 (en) | 2007-03-23 | 2010-04-27 | Amgen Inc. | Substituted quinolines and their uses in treatment of inflammatory and related conditions |
| US7867983B2 (en) | 2007-03-29 | 2011-01-11 | The University Of Connecticut | Methods to protect skeletal muscle against injury |
| AU2008238379A1 (en) | 2007-04-13 | 2008-10-23 | Sanofi-Aventis | A transition metal catalyzed synthesis of N-aminoindoles |
| CN101636397B (zh) | 2007-04-13 | 2012-06-13 | 中国人民解放军军事医学科学院毒物药物研究所 | 脲类化合物、其制备方法及其医药用途 |
| JP2010163361A (ja) | 2007-04-27 | 2010-07-29 | Dainippon Sumitomo Pharma Co Ltd | キノリン誘導体 |
| US7960353B2 (en) | 2007-05-10 | 2011-06-14 | University Of Kansas | Novobiocin analogues as neuroprotective agents and in the treatment of autoimmune disorders |
| TW200902016A (en) | 2007-05-22 | 2009-01-16 | Taigen Biotechnology Co Ltd | Kinesin inhibitors |
| US9603848B2 (en) | 2007-06-08 | 2017-03-28 | Senomyx, Inc. | Modulation of chemosensory receptors and ligands associated therewith |
| US7928111B2 (en) | 2007-06-08 | 2011-04-19 | Senomyx, Inc. | Compounds including substituted thienopyrimidinone derivatives as ligands for modulating chemosensory receptors |
| BRPI0813273A2 (pt) | 2007-06-26 | 2014-12-30 | Sanofi Aventis | Síntese catalisada por metal regiosseletivo de benzimidazóis e azabenzimidazóis anelados |
| WO2009004621A1 (en) | 2007-07-02 | 2009-01-08 | Technion Research & Development Foundation Ltd. | Compositions, articles and methods comprising tspo ligands for preventing or reducing tobacco-associated damage |
| RU2345996C1 (ru) | 2007-07-17 | 2009-02-10 | Андрей Александрович Иващенко | Аннелированные азагетероциклические амиды, включающие пиримидиновый фрагмент, способ их получения и применения |
| EP2190466A4 (en) | 2007-08-10 | 2011-12-21 | Burnham Inst Medical Research | Tissue-specific alkaline phosphatase (TNAP) activators and their use |
| MX2010001784A (es) | 2007-08-13 | 2010-03-15 | Metabasis Therapeutics Inc | Activadores novedosos de la glucocinasa. |
| WO2009021990A1 (en) | 2007-08-14 | 2009-02-19 | Bayer Schering Pharma Aktiengesellschaft | Fused imidazoles for cancer treatment |
| JP5227965B2 (ja) | 2007-10-03 | 2013-07-03 | 独立行政法人理化学研究所 | ニトロトリアゾール誘導体、およびそれを用いる化合物の製造方法 |
| WO2009046448A1 (en) | 2007-10-04 | 2009-04-09 | Intellikine, Inc. | Chemical entities and therapeutic uses thereof |
| BRPI0818426A2 (pt) | 2007-10-15 | 2017-06-13 | Astrazeneca Ab | produto de combinação, uso de um produto de combinação, e, método para tratar câncer |
| JP2009104221A (ja) * | 2007-10-19 | 2009-05-14 | Fujitsu Ltd | 情報システム |
| WO2009059304A2 (en) | 2007-11-02 | 2009-05-07 | Taiga Biotechnologies, Inc. | Compounds for treating abnormal cellular proliferation |
| CA2716334A1 (en) | 2007-11-13 | 2009-05-22 | Icos Corporation | Inhibitors of human phosphatidyl-inositol 3-kinase delta |
| US20090163481A1 (en) | 2007-12-13 | 2009-06-25 | Murphy Brian J | Ppar-delta ligands and methods of their use |
| US7960397B2 (en) | 2007-12-28 | 2011-06-14 | Institute Of Experimental Botany, Academy Of Sciences Of The Czech Republic | 6,9-disubstituted purine derivatives and their use as cosmetics and cosmetic compositions |
| MX358640B (es) * | 2008-01-04 | 2018-08-29 | Intellikine Llc | Isoquinolin-1 (2h) -onas y tieno [2,3-d]pirimidin-4(3h) -onas substituidas, y metodos de uso de las mismas. |
| US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
| JP2011509305A (ja) | 2008-01-09 | 2011-03-24 | ピージーエックスヘルス、リミテッド、ライアビリティー、カンパニー | A2arアゴニストによる神経障害性疼痛の髄腔内治療 |
| WO2009100406A2 (en) | 2008-02-07 | 2009-08-13 | Synta Pharmaceuticals Corp. | Topical formulations for the treatment of psoriasis |
| CA2714516A1 (en) | 2008-02-07 | 2009-08-13 | Gilead Palo Alto, Inc. | Abca-1 elevating compounds and the use thereof |
| TWI444384B (zh) | 2008-02-20 | 2014-07-11 | Gilead Sciences Inc | 核苷酸類似物及其在治療惡性腫瘤上的用途 |
| WO2009114874A2 (en) | 2008-03-14 | 2009-09-17 | Intellikine, Inc. | Benzothiazole kinase inhibitors and methods of use |
| JP5547099B2 (ja) | 2008-03-14 | 2014-07-09 | インテリカイン, エルエルシー | キナーゼ阻害剤および使用方法 |
| MX2010010151A (es) | 2008-03-20 | 2010-10-25 | Amgen Inc | Moduladores de cinasa aurora y metodo de uso. |
| US20090312406A1 (en) | 2008-06-12 | 2009-12-17 | Hsing-Pang Hsieh | Coumarin compounds and their use for treating viral infection |
| US9096611B2 (en) * | 2008-07-08 | 2015-08-04 | Intellikine Llc | Kinase inhibitors and methods of use |
| WO2010006072A2 (en) | 2008-07-08 | 2010-01-14 | The Regents Of The University Of California | Mtor modulators and uses thereof |
| US20110118286A1 (en) | 2008-07-16 | 2011-05-19 | Santhosh Francis Neelamkavil | Bicyclic heterocycle derivatives and their use as gpcr modulators |
| US8450344B2 (en) | 2008-07-25 | 2013-05-28 | Aerie Pharmaceuticals, Inc. | Beta- and gamma-amino-isoquinoline amide compounds and substituted benzamide compounds |
| WO2010019210A2 (en) | 2008-08-11 | 2010-02-18 | President And Fellows Of Harvard College | Halofuginone analogs for inhibition of trna synthetases and uses thereof |
| AU2009298877A1 (en) | 2008-09-23 | 2010-04-08 | Georgetown University | Viral and fungal inhibitors |
| US8703778B2 (en) | 2008-09-26 | 2014-04-22 | Intellikine Llc | Heterocyclic kinase inhibitors |
| EP2349275B1 (en) * | 2008-10-31 | 2017-03-08 | Novartis AG | Combination of a phosphatidylinositol-3-kinase (pi3k) inhibitor and a mtor inhibitor. |
| US8476431B2 (en) | 2008-11-03 | 2013-07-02 | Itellikine LLC | Benzoxazole kinase inhibitors and methods of use |
| CA2749884C (en) | 2009-01-28 | 2018-01-23 | Cara Therapeutics, Inc. | Bicyclic pyrazolo-heterocycles |
| EP2400985A2 (en) | 2009-02-25 | 2012-01-04 | OSI Pharmaceuticals, LLC | Combination of an either an anti-igf-1r antibody or an igf binding protein and a small molecule igf-1r kinase inhibitor |
| WO2010118367A2 (en) | 2009-04-10 | 2010-10-14 | Progenics Pharmaceuticals, Inc. | Antiviral pyrimidines |
| JP5789252B2 (ja) | 2009-05-07 | 2015-10-07 | インテリカイン, エルエルシー | 複素環式化合物およびその使用 |
| CN101602768B (zh) | 2009-07-17 | 2012-05-30 | 河南省农科院农副产品加工研究所 | 一种芝麻素和芝麻林素的提纯方法 |
| EP2678018A4 (en) | 2011-02-23 | 2015-09-30 | Intellikine Llc | COMBINATION OF CHINESE HEMMER AND USES THEREOF |
-
2009
- 2009-09-17 US US12/586,241 patent/US8476431B2/en active Active
- 2009-09-17 US US12/586,309 patent/US8476282B2/en active Active
- 2009-11-02 PT PT98239478T patent/PT2365750T/pt unknown
- 2009-11-02 HR HRP20161074TT patent/HRP20161074T1/hr unknown
- 2009-11-02 ES ES09823947.8T patent/ES2588197T3/es active Active
- 2009-11-02 HU HUE09823947A patent/HUE029906T2/en unknown
- 2009-11-02 KR KR1020147030732A patent/KR101737192B1/ko active Active
- 2009-11-02 SG SG10201501703TA patent/SG10201501703TA/en unknown
- 2009-11-02 EP EP09823947.8A patent/EP2365750B1/en active Active
- 2009-11-02 MX MX2011004523A patent/MX2011004523A/es active IP Right Grant
- 2009-11-02 SG SG10201501702WA patent/SG10201501702WA/en unknown
- 2009-11-02 EP EP16171888.7A patent/EP3153023B8/en active Active
- 2009-11-02 AU AU2009310364A patent/AU2009310364B2/en active Active
- 2009-11-02 CA CA2741898A patent/CA2741898C/en active Active
- 2009-11-02 MX MX2016011082A patent/MX361811B/es unknown
- 2009-11-02 WO PCT/US2009/005958 patent/WO2010051042A1/en not_active Ceased
- 2009-11-02 JP JP2011534529A patent/JP5897333B2/ja active Active
- 2009-11-02 SI SI200931500A patent/SI2365750T1/sl unknown
- 2009-11-02 NZ NZ592608A patent/NZ592608A/xx unknown
- 2009-11-02 LT LTEP09823947.8T patent/LT2365750T/lt unknown
- 2009-11-02 NZ NZ609221A patent/NZ609221A/en unknown
- 2009-11-02 WO PCT/US2009/005959 patent/WO2010051043A1/en not_active Ceased
- 2009-11-02 MY MYPI2015001118A patent/MY182533A/en unknown
- 2009-11-02 BR BRPI0920500-4A patent/BRPI0920500B1/pt active IP Right Grant
- 2009-11-02 PL PL09823947.8T patent/PL2365750T3/pl unknown
- 2009-11-02 CN CN201510006838.6A patent/CN104710428B/zh active Active
- 2009-11-02 KR KR1020117012657A patent/KR101690339B1/ko active Active
- 2009-11-02 DK DK09823947.8T patent/DK2365750T3/en active
- 2009-11-02 MY MYPI2011001927A patent/MY166032A/en unknown
- 2009-11-02 CN CN200980153705.4A patent/CN102271513B/zh active Active
-
2011
- 2011-04-28 IL IL212586A patent/IL212586A/en active IP Right Grant
- 2011-04-29 MX MX2014006582A patent/MX341591B/es unknown
- 2011-05-05 ZA ZA2011/03270A patent/ZA201103270B/en unknown
-
2013
- 2013-05-13 US US13/893,187 patent/US20140030256A1/en not_active Abandoned
- 2013-05-13 US US13/893,163 patent/US20140128599A1/en not_active Abandoned
-
2014
- 2014-07-16 IL IL233677A patent/IL233677A/en active IP Right Grant
- 2014-09-04 JP JP2014179810A patent/JP5897667B2/ja active Active
-
2015
- 2015-06-01 US US14/727,336 patent/US9345706B2/en active Active
- 2015-08-23 IL IL240771A patent/IL240771A0/en unknown
-
2016
- 2016-03-02 JP JP2016039988A patent/JP6235058B2/ja active Active
- 2016-04-07 US US15/092,833 patent/US20160287596A1/en not_active Abandoned
- 2016-08-11 CY CY20161100802T patent/CY1117913T1/el unknown
- 2016-08-17 SM SM201600278T patent/SMT201600278B/it unknown
-
2017
- 2017-10-25 JP JP2017205797A patent/JP2018021073A/ja not_active Withdrawn
-
2019
- 2019-06-12 JP JP2019109399A patent/JP2019178151A/ja not_active Withdrawn
-
2020
- 2020-10-14 JP JP2020173377A patent/JP2021008514A/ja not_active Withdrawn
-
2022
- 2022-09-01 JP JP2022139129A patent/JP2022169786A/ja not_active Withdrawn
-
2023
- 2023-08-04 JP JP2023127917A patent/JP2023139324A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010024833A1 (en) * | 1998-05-14 | 2001-09-27 | Edgardo Laborde | Methods for the solid phase synthesis of combinatorial libraries of benzimidazol, benzoxazoles, benzothiazoles, and derivatives thereof |
| US6624119B1 (en) * | 1998-11-16 | 2003-09-23 | Basf Aktiengesellschaft | 3-[Benz(ox/thi)azol-7-yl]-1h-pyrimidine-2,4-diones |
| US20060246551A1 (en) * | 2005-04-22 | 2006-11-02 | Wyeth | Dihydrobenzofuran derivatives and uses thereof |
| US20070112005A1 (en) * | 2005-11-17 | 2007-05-17 | Xin Chen | Fused bicyclic mTOR inhibitors |
| US20070293516A1 (en) * | 2006-04-04 | 2007-12-20 | Regents Of The University Of California | Kinase antagonists |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9512125B2 (en) | 2004-11-19 | 2016-12-06 | The Regents Of The University Of California | Substituted pyrazolo[3.4-D] pyrimidines as anti-inflammatory agents |
| US9629843B2 (en) | 2008-07-08 | 2017-04-25 | The Regents Of The University Of California | MTOR modulators and uses thereof |
| US11547697B2 (en) | 2009-08-17 | 2023-01-10 | Millennium Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| CN103703174A (zh) * | 2011-05-04 | 2014-04-02 | 因特利凯有限责任公司 | 联合药物组合物及其用途 |
| US10172858B2 (en) | 2011-05-04 | 2019-01-08 | Intellikine Llc | Combination pharmaceutical compositions and uses thereof |
| WO2012154695A3 (en) * | 2011-05-06 | 2013-01-10 | The Regents Of The University Of California | Treatment of polycystic disease |
| CN103796655A (zh) * | 2011-05-06 | 2014-05-14 | 加利福尼亚大学董事会 | 多囊性疾病的治疗 |
| JP2014513141A (ja) * | 2011-05-06 | 2014-05-29 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 多発性嚢胞疾患の治療 |
| JP2014521726A (ja) * | 2011-08-11 | 2014-08-28 | インテリカイン, エルエルシー | キナーゼ阻害剤多形体 |
| EP2741749A4 (en) * | 2011-08-11 | 2015-04-15 | Intellikine Llc | KINASE-INHIBITING POLYMORPH |
| RU2636588C2 (ru) * | 2011-08-11 | 2017-11-24 | ИНТЕЛЛАЙКИН, ЭлЭлСи | Полиморфы ингибитора киназы |
| AU2012294202B2 (en) * | 2011-08-11 | 2017-02-23 | Takeda Pharmaceutical Company Limited | Kinase inhibitor polymorphs |
| CN103957918A (zh) * | 2011-08-11 | 2014-07-30 | 因特利凯有限责任公司 | 激酶抑制剂多晶型物 |
| CN106994126A (zh) * | 2011-11-08 | 2017-08-01 | 因特利凯有限责任公司 | 使用多种药剂的治疗方案 |
| CN104080786A (zh) * | 2011-11-08 | 2014-10-01 | 因特利凯有限责任公司 | 使用多种药剂的治疗方案 |
| CN106924741A (zh) * | 2011-11-08 | 2017-07-07 | 因特利凯有限责任公司 | 使用多种药剂的治疗方案 |
| EP2776441A4 (en) * | 2011-11-08 | 2015-04-08 | Intellikine Llc | TREATMENT METHOD WITH MULTIPLE PHARMACEUTICAL AGENTS |
| WO2014072937A1 (en) | 2012-11-08 | 2014-05-15 | Rhizen Pharmaceuticals Sa | Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor |
| US9050345B2 (en) | 2013-03-11 | 2015-06-09 | Bristol-Myers Squibb Company | Pyrrolotriazines as potassium ion channel inhibitors |
| US10117945B2 (en) | 2014-09-11 | 2018-11-06 | The Regents Of The University Of California | mTORC1 inhibitors |
| US10646577B2 (en) | 2014-09-11 | 2020-05-12 | The Regents Of The University Of California | mTORC1 inhibitors |
| WO2016040806A1 (en) | 2014-09-11 | 2016-03-17 | The Regents Of The University Of California | mTORC1 INHIBITORS |
| US12097262B2 (en) | 2014-09-11 | 2024-09-24 | The Regents Of The University Of California | mTORC1 inhibitors |
| US11452780B2 (en) | 2014-09-11 | 2022-09-27 | The Regents Of The University Of California | Mtorc1 inhibitors |
| US10023576B2 (en) | 2014-10-22 | 2018-07-17 | Bristol-Myers Squibb Company | Heteroaryl substituted pyrrolotriazine amine compounds as PI3K inhibitors |
| US10214537B2 (en) | 2014-10-22 | 2019-02-26 | Bristol-Myers Squibb Company | Bicyclic heteroaryl amine compounds |
| JP2019521992A (ja) * | 2016-06-16 | 2019-08-08 | 上海 インスティテュート オブ マテリア メディカ、チャイニーズ アカデミー オブ サイエンシーズShanghai Institute Of Materia Medica, Chinese Academy Of Sciences | Fgfr阻害活性を有する新規な化合物およびその製造と使用 |
| US10980889B1 (en) | 2018-05-01 | 2021-04-20 | Revolution Medicines, Inc. | C40-, C28-, and C-32-linked rapamycin analogs as mTOR inhibitors |
| US11685749B2 (en) | 2018-05-01 | 2023-06-27 | Revolution Medicines, Inc. | C26-linked rapamycin analogs as mTOR inhibitors |
| US12048749B2 (en) | 2018-05-01 | 2024-07-30 | Revolution Medicines, Inc. | C40-, C28-, and C-32-linked rapamycin analogs as mTOR inhibitors |
| US11364300B2 (en) | 2018-05-01 | 2022-06-21 | Revolution Medicines, Inc. | C40-, C28-, and C-32-linked rapamycin analogs as mTOR inhibitors |
| US12187746B2 (en) | 2018-05-01 | 2025-01-07 | Revolution Medicines, Inc. | C26-linked rapamycin analogs as mTOR inhibitors |
| US12324807B2 (en) | 2018-06-01 | 2025-06-10 | Cornell University | Combination therapy for PI3K-associated disease or disorder |
| US12410170B2 (en) | 2019-06-04 | 2025-09-09 | Arcus Biosciences, Inc. | 2,3,5-trisubstituted pyrazolo[1,5-A]pyrimidine compounds |
| US12121522B2 (en) | 2022-05-25 | 2024-10-22 | Revolution Medicines, Inc. | Methods of treating cancer with an mTOR inhibitor |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2009310364B2 (en) | Benzoxazole kinase inhibitors and methods of use | |
| US9637492B2 (en) | Benzothiazole kinase inhibitors and methods of use | |
| EP2252293B1 (en) | Kinase inhibitors and methods of use | |
| US9828378B2 (en) | Kinase inhibitors and methods of use | |
| WO2010036380A1 (en) | Heterocyclic kinase inhibitors | |
| HK1236070B (en) | Benzoxazole kinase inhibitors and methods of use | |
| HK1236070A1 (en) | Benzoxazole kinase inhibitors and methods of use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823946 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 09823946 Country of ref document: EP Kind code of ref document: A1 |