WO2010024233A1 - 機能素子を内蔵可能な配線基板及びその製造方法 - Google Patents

機能素子を内蔵可能な配線基板及びその製造方法 Download PDF

Info

Publication number
WO2010024233A1
WO2010024233A1 PCT/JP2009/064757 JP2009064757W WO2010024233A1 WO 2010024233 A1 WO2010024233 A1 WO 2010024233A1 JP 2009064757 W JP2009064757 W JP 2009064757W WO 2010024233 A1 WO2010024233 A1 WO 2010024233A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating resin
functional element
wiring board
resin layer
Prior art date
Application number
PCT/JP2009/064757
Other languages
English (en)
French (fr)
Inventor
船矢 琢央
山道 新太郎
大輔 大島
中島 嘉樹
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/060,990 priority Critical patent/US8692135B2/en
Priority to JP2010526708A priority patent/JPWO2010024233A1/ja
Publication of WO2010024233A1 publication Critical patent/WO2010024233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2072Anchoring, i.e. one structure gripping into another
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • H05K3/424Plated through-holes or plated via connections characterised by electroplating method by direct electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2008-218558 (filed on Aug. 27, 2008), the entire description of which is incorporated herein by reference. Shall.
  • the present invention relates to a wiring board capable of incorporating a functional element and a manufacturing method thereof.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-064178
  • a substrate and a cavity are formed.
  • Circuit boards having through vias that are formed and filled with conductive paste or the like are alternately laminated, and a solder ball is attached to the lowermost substrate to form a semiconductor laminated package.
  • JP-A-2001-332863 Patent Document 2
  • JP-A-2001-339165 Patent Document 3
  • JP-A-2001-352174 Patent Document 4
  • JP-A-2002-084074 Patent Document 5
  • JP-A-2002-170840 Patent Document 6
  • a through hole is formed in a core substrate, and a semiconductor chip is mounted inside thereof with an active surface facing upward using an adhesive
  • the wiring layer is built up from the electrode terminal.
  • through vias are formed in the core substrate, and wiring layers are built up on both sides by a semi-additive method or the like.
  • a semiconductor element is mounted face-up on a heat sink made of metal or ceramics, and a wiring layer is built up on the electrode terminals.
  • Patent Document 8 an insulating layer and a conductor layer are formed on a support plate by a build-up method, and then a semiconductor chip formed with Au stud bumps or solder bumps is face down. After connecting bumps to the conductor wiring on the support plate by the so-called flip chip method, reinforcing with underfill, covering the periphery of the connected semiconductor chip with resin, then via formation and insulating layer by build-up method, Conductor layers are formed.
  • Patent Document 9 a positioning pattern is formed on a side surface of a chip by a conductor wiring around a portion where a semiconductor IC chip is mounted on a transfer substrate.
  • Patent Documents 1 to 9 are incorporated herein by reference.
  • the following analysis is given by the present invention.
  • the first problem is that in Patent Documents 2 to 7, a metal via located on the side surface of a built-in functional element is formed, so that a via hole is formed by a laser or a drill in a portion located on the side surface of the functional element.
  • a metal plating seed layer is to be formed on the surface of the insulating resin, sputtering or electroless plating is required, but the roughened resin surface, protruding glass cloth, or silica filler It is difficult to completely cover the seed layer, and the resin surface portion that is not covered with the seed layer has low adhesion strength even after the subsequent electroplating, and is generated by incorporating the functional element in the circuit board. Due to the internal stress, peeling may occur between the metal via located on the side surface of the functional element and the insulating resin.
  • the second problem is that when a functional element is built in as in the techniques disclosed in Patent Documents 1 to 7, a circuit board without a support plate and using an organic resin as a base material is provided below the functional element mounting surface.
  • the organic resin portion of the circuit board is bent due to the mounting load, and bending stress is generated in the device itself.
  • the built-in functional device is made of silicon, glass, ceramics, etc., the device itself May be damaged and the yield may be reduced.
  • the load is applied to the element in the same way as when the element is mounted. There is a similar possibility.
  • a metal post to be a via later is formed in advance on the side surface of the chip, and after mounting the chip, the resin is supplied to the chip periphery and the metal post periphery, and then polished on the chip.
  • the head of the electrode terminal and the metal post is done.
  • the metal post is formed by plating, has a flat side surface, weak adhesion to the resin, and may have low adhesion strength against stress such as bending to the substrate by incorporating the chip in the substrate. .
  • the fourth problem is that, as described in Patent Documents 2 to 7, when an insulating resin layer covering a portion containing a functional element is supplied and thermally cured, the surface shape is not flat, and thereafter There is a possibility that the workability in the formation of wiring and mounting of electronic parts and the product yield may be reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a wiring board that is resistant to stress. In another aspect of the present invention, it is an object to provide a method for processing the formation of a wiring board and the connection of functional elements to the wiring board together.
  • a wiring board according to the present invention is a wiring board formed by laminating one or more conductor wiring layers and one or more insulating resin layers, and penetrates the insulating resin layer.
  • One or more metal vias wherein the insulating resin layer includes a particulate and / or fibrous reinforcing component, and at the interface between the metal via and the insulating resin layer, the metal via is the reinforcing component. It is characterized by being a reinforced structure in which is wound.
  • the reinforcing component examples include known reinforcing materials such as silica filler, glass fiber, aramid fiber, and aramica film, and one or more of these can be used in combination.
  • the wiring board according to the present invention is configured by laminating one or more conductor wiring layers and one or more insulating resin layers, and has one or more layers formed through the insulating resin layers.
  • Including a metal via, and a boundary surface between the metal via and the insulating resin layer has an uneven boundary cross-sectional structure in which the metal via and the insulating resin directly mesh with each other without a plating seed layer interposed therebetween.
  • an electronic device according to the present invention is formed using the above wiring board.
  • a method for manufacturing a wiring board according to the present invention comprises laminating one or more conductor wiring layers and one or more insulating resin layers.
  • a via forms a reinforcing structure in which the reinforcing component is wound inside.
  • a method for manufacturing a wiring board according to the present invention comprises laminating one or more conductor wiring layers and one or more insulating resin layers, and passing through the insulating resin layer.
  • a boundary boundary structure having a shape is formed.
  • a method for manufacturing a wiring board according to the present invention includes a step of forming at least each of a first conductor wiring layer and an insulating resin layer on a support plate, and the insulating resin layer. Forming a via hole and roughening the insulating resin on the inner side surface of the via hole; and forming a metal via by plating in the via hole using the support plate as a power feeding layer.
  • a method for manufacturing a wiring board according to the present invention includes a step of alternately forming an insulating resin layer and a conductive wiring layer on both surfaces of the core board using the wiring board as a core board, Forming a metal via for connecting the conductor wiring layers.
  • the wiring board capable of incorporating a functional element according to the present invention can form a metal via that is not directly connected to the functional element and has high strength against stress caused by incorporating the functional element or external bending stress. It is possible to obtain a highly reliable product without peeling between the metal via and the insulating resin. Further, according to the method for manufacturing a wiring board according to the present invention, the formation of the wiring board and the connection of the functional element to the wiring board can be processed together, and a highly reliable wiring board can be manufactured with a small number of man-hours. .
  • FIG. 1 A wiring board in which the electrodes of the functional element and the conductor wiring layer are all connected.
  • C A wiring board in which the electrodes of the functional elements are tapered. It is a cross-sectional schematic diagram of the wiring board which concerns on Example 4 of this invention. It is a cross-sectional schematic diagram of the wiring board according to Example 5 of the present invention. It is a cross-sectional schematic diagram of the wiring board based on Example 6 of this invention which formed the soldering resist. It is a cross-sectional schematic diagram of the wiring board which mounted the functional element based on Example 6 of this invention. It is a cross-sectional schematic diagram of the wiring board which concerns on Example 6 of this invention when not using a soldering resist. FIG.
  • Example 9 is a schematic cross-sectional view of a wiring board according to Example 6 of the present invention in which solder balls are provided on the side opposite to FIG. 8. It is a cross-sectional schematic diagram of the wiring board which mounts a resistor etc. based on Example 7 of this invention. It is a cross-sectional schematic diagram of the wiring board which has an intermediate
  • the boundary surface between the insulating resin layer and the metal via is roughened with a profile (uneven height) in the range of 0.1 to 5 ⁇ m.
  • a plating seed layer made of metal is not formed on the boundary surface between the insulating resin layer and the metal via.
  • One or more functional elements can be included in the insulating resin layer, and one or more electrode terminals are formed on a circuit surface, that is, an active surface of the built-in functional element, and are closest to the active surface of the functional element. It is preferable that the first conductor wiring layer disposed on the active element is connected to the active surface of the functional element via the electrode terminal.
  • an electrode terminal inner diameter of a portion in contact with the first conductor wiring layer of at least one of the electrode terminals is larger than an electrode terminal inner diameter of a portion in contact with the active surface of the functional element.
  • the electrode terminal formed on the active surface of the functional element has a plating seed layer on the connection portion boundary surface with the first conductor wiring layer, and on the boundary surface with the resin layer on the side surface of the electrode terminal It is preferable not to have a plating seed layer.
  • the second conductor wiring layer on the outermost surface of the wiring board located on the side opposite to the active surface of the functional element is covered with the insulating resin except for the wiring surface portion of the second conductor wiring layer. It is preferable.
  • first conductor wiring layer and the second conductor wiring layer are connected via the metal vias located away from the functional element.
  • the “metal via located away from the functional element” is a via that is not directly connected to the functional element.
  • the metal via has no plating seed layer on the boundary surface with the insulating resin in contact with the side surface of the metal via and the boundary surface with the second conductor wiring layer, and the boundary with the first conductor wiring layer.
  • a plating seed layer is preferably present on the surface.
  • the metal via is formed in a mushroom shape with a central portion thicker than the outer periphery and an upper portion protruding outward.
  • the inner diameter at the boundary surface with the first conductor wiring layer is formed in a rivet shape larger than the boundary surface with the second conductor wiring layer.
  • the insulating resin layers and the conductor wiring layers are alternately arranged on both sides of the wiring board, and the conductor wirings are connected via the metal vias.
  • the resin layer may include an intermediate layer for increasing the mechanical strength of the wiring board.
  • the conductive wiring layer and the functional element can be stacked and mounted on a metal or ceramic support plate using the insulating resin layer as a base material.
  • the inner surface of the insulating resin layer is roughened and electrolytic plating, electroless plating using a conductive plate as a power feeding layer, or filling with a conductive paste by printing is used.
  • the method may include a step of mounting at least one functional element and forming an insulating resin layer around the functional element. Furthermore, after forming one or more second conductor wiring layers on the functional element, a step of removing the support plate can be included.
  • the method for manufacturing a wiring board may further include a step of flattening the upper portion of the metal via by polishing or grinding and removing the insulating resin immediately above the electrode terminal portion of the functional element.
  • the support plate has a release layer formed in advance, and the support plate is removed from the release layer during the manufacturing process.
  • the support plate preferably contains one or more metal elements of copper, iron, titanium, nickel, chromium, aluminum, palladium, and cobalt.
  • the outer shape of the wiring board according to the present invention having a built-in functional element is larger than that of the built-in functional element, the wiring rules for the electrode terminals of the functional element are expanded on both sides of the board, In connection with an electronic device, mounting with excellent workability and reliability becomes possible.
  • Functional elements include Si, GaAs, LiTaO 3 , LiNbO 3 , semiconductor or SAW filter or thin film functional elements formed on quartz, etc., chip parts such as capacitors, resistors, inductors, printed boards, flexible boards, etc. Although what was formed is used suitably, it is not limited to them.
  • the support plate ceramics such as silicon, glass, alumina, glass ceramics, titanium nitride and aluminum nitride, metals such as copper, stainless steel, iron and nickel, organic resins such as thick polyimide and epoxy are preferably used. Not.
  • the second type via formed at a position away from the functional element is an insulating resin by a laser when a conductive metal such as gold, silver, copper, or nickel is formed by plating.
  • a conductive metal such as gold, silver, copper, or nickel is formed by plating.
  • a filled via that is filled with metal by electrolytic plating inside the via opening with a support plate as a power feeding layer is preferably used.
  • a method for opening the via UV-YAG, CO 2 laser, or the like is preferably used, but is not limited thereto. Further, by making the insulating resin layer photosensitive, vias can be opened by exposure and development.
  • first type via a via directly formed as an electrode on the functional element
  • second type via formed apart (on the side surface) from the functional element.
  • copper, nickel, gold, silver, Sn-Ag solder or the like is used to form the conductor wiring portion exposed on the surface.
  • conductor wiring is formed by copper plating
  • it can be suitably formed by applying electroless plating, seed layer formation by sputtering and electrolytic plating, or printing treatment and reflow. Is not limited to these.
  • the via metal located on the side surface of the functional element incorporated in the wiring board according to the present invention copper, nickel, gold, silver, and Sn—Ag can be preferably used, but are not limited thereto.
  • the via metal can be formed by plating, but after the conductive paste is printed by printing, the metal in the via can be integrated by high-temperature treatment.
  • the electrode terminal (first type via) formed on the functional element is a so-called columnar post made of copper, nickel, gold, silver or the like, or a ball such as Sn—Ag solder.
  • stud bumps made of Au, copper, or the like are preferably used, but are not limited thereto.
  • the conductor wiring portion exposed to the surface is limited to prevent the conductor wiring from being oxidized, and the conductor wiring is short-circuited during mounting using solder.
  • solder resist layer having openings only at necessary portions.
  • the conductor wiring exposed in the opening is subjected to copper, nickel, gold, silver, Sn-Ag solder, etc., electroless plating, electrolytic plating, printing processing, etc., so that the conductor has excellent anti-oxidation and solder wettability. Wiring can be formed.
  • the wiring board according to the present invention can be subjected to a build-up in which insulating layers and conductor wiring layers are alternately formed on both surfaces so that the conductor wirings are connected via vias for multilayer wiring. It is.
  • a multilayered wiring board, an electronic component mounted on another circuit board, a functional element after separation into pieces by dicing, or a board further incorporating a wiring board incorporating the functional element is also included in the present invention.
  • Example 1 1A and 1B show a first embodiment of the present invention.
  • 1A and 1B show a cross-sectional structure of a second type metal via (that is, a via other than a functional element electrode) 7 disposed in a wiring board according to the present invention.
  • the upper surface of the metal via 7 made of copper formed by electrolytic plating is flat with an unevenness of 10 ⁇ m or less, and the upper surface of the insulating resin layer 8 is in the same plane with an error of ⁇ 5 ⁇ m or less in height.
  • the (first) conductor wiring layer 3 is connected via a (plating) seed layer 55.
  • the seed layer 55 was sequentially formed by a sputtering apparatus in the order of 30 to 200 nm in thickness of Ti and 200 to 400 nm in thickness of Cu.
  • a (second) conductor wiring layer 4 is connected to the lower part of the metal via 7, and no seed layer exists between the metal via 7 and the conductor wiring layer 4. It was confirmed by a temperature cycle test, a high-temperature and high-humidity test, and a bending test that the connection portion between the metal via 7 and the conductor wiring layer 4 maintains excellent reliability because it does not have a boundary surface with a different material.
  • the interface between the side surface of the metal via 7 and the insulating resin layer 8 is roughened with a profile of 0.1 to 5 ⁇ m (level difference, unevenness), and the fine unevenness formed on the resin surface Via metal has entered, and excellent adhesion strength can be realized. Although this alone can sufficiently increase the strength, when an insulating resin including a reinforcing material is used as shown in FIG. 1, an inorganic reinforcing material such as a glass cloth 81 or a silica filler 82 included in the insulating resin is further added. Since the metal via 7 is formed by being rolled, it is possible to maintain an excellent adhesion strength by being closely bonded to the metal via 7 and to be excellent in deformation resistance in the three-dimensional direction. It became possible to obtain a wiring board.
  • FIG. 1B shows that the center of the upper surface of the metal via 7 is formed in a mushroom shape in which the center of the metal via 7 is 10 ⁇ m or more thicker than the end of the upper surface of the metal via 7.
  • This portion has a large shape of about 0.1 to 10 ⁇ m.
  • a conductor wiring layer 3 is formed on the mushroom-like structure via a plating seed layer 55.
  • This mushroom-shaped bulk portion serves as a rivet for the metal via 7 formed in the insulating resin layer 8, and therefore it is possible to obtain excellent reliability with respect to bending in the z-axis direction. This was confirmed by a thermal cycle test at 55 ° C to 125 ° C. As in FIG.
  • the conductor wiring layer 4 is connected to the lower part of the metal via 7, and no seed layer exists between the metal via 7 and the conductor wiring layer 4.
  • the property of the interface in contact with the insulating resin layer 8 on the side surface of the metal via 7 is the same as that described with reference to FIG.
  • the mushroom shape has a protruding shape, but the other functional element built-in substrate surface is flat. In that case, the reliability for bending in the Z-axis direction can be improved, and the height of the mushroom shape is set to be less than or equal to the height of the insulating resin layer supplied on top, thereby building a high-density multilayer wiring. It becomes possible to form by up.
  • Example 2 (a) and 2 (b) show a second embodiment.
  • the electrode terminal 5 formed on the electrode pad 15 of the functional element 1 incorporated in the insulating resin layer 8 and the conductor wiring layer 3 are connected via the (plating) seed layer 55.
  • the structure sectional view of the wiring board according to the present invention is shown.
  • the insulating resin layer 8 commercially available prepregs such as “ABF-GX” manufactured by Ajinomoto Fine Techno Co., Ltd. and “GEA-679FG” manufactured by Hitachi Chemical Co., Ltd. were used.
  • V-259PA trade name
  • Sumiresin CRC-8300 trade name
  • the electrode terminal 5 was formed by copper plating with a height of 5 ⁇ m to 50 ⁇ m.
  • the plating seed layer 55 is located between the bottom of the conductor wiring layer 3 and the upper part of the insulating resin layer 8, and the plating seed layer 55 exists between the electrode terminal 5 and the conductor wiring layer 3 on the same surface.
  • Ti was formed in a thickness of 30 to 200 nm and Cu was sequentially formed in a thickness of 200 to 400 nm between the insulating resin layer 8 and the bottom of the conductor wiring layer 3 by a sputtering apparatus.
  • the seed layer 55 can also be formed by sequential sputtering using a combination of a Cr layer and a Cu layer, a combination of a Pd layer and a Cu layer, and a combination of a Ti layer and a Cu layer.
  • the seed layer 55 can also be formed by using electroless Cu plating, and in that case, a slight amount of Pd or Sn is included in order to perform displacement plating.
  • the upper surface of the insulating resin layer 8 in contact with the seed layer 55 and the upper surface of the electrode terminal 5 are on the same plane with an error of a height of ⁇ 5 ⁇ m or less.
  • the electrode terminal 5 and the conductor wiring layer 3 have a connection structure in a plane with few displacement points, and high product reliability can be obtained.
  • the step of forming the conductor wiring layer 3 by performing wiring formation in a state where the exposed portion of the electrode terminal 5 and the surface layer of the insulating resin layer 8 are on the same plane, exposure and development of the plating resist pattern can be facilitated.
  • the wiring layer 3 and the electrode terminal 5 can be connected with excellent positional accuracy.
  • the surface of the insulating resin layer 8 and the exposed electrode terminal 5 is usually roughened by a desmear treatment using KMnO 4 , NaMnO 4 or the like, and is usually about 10 ⁇ m or less.
  • a desmear treatment using KMnO 4 , NaMnO 4 or the like, and is usually about 10 ⁇ m or less.
  • the adhesion strength between the insulating resin layer 8, the seed layer 55, and the conductor wiring layer 3 can be increased, thereby improving the reliability of the product. It becomes possible to raise.
  • the conductor wiring layer 3 was formed of Cu with a thickness of 5 to 25 ⁇ m. In addition, Au was used when an inert metal was necessary. Furthermore, when wiring is formed with Cu, it can be used as it is, but the surface was subjected to electroless plating with Ni and Au to prevent oxidation. In accordance with surface mounting, Sn, Sn—Ag, and Sn—Ag—Cu solder were supplied to the surface of the conductor wiring layer 3 by paste printing and reflow treatment. After forming the conductor wiring layer 3, the conductor wiring layer 3 was used as a circuit by mechanically etching the excess seed layer 55 other than the wiring pattern by chemical etching using chemicals or IBE (Ion Beam Etching). .
  • IBE Ion Beam Etching
  • an insulating resin layer 83 having a strong adhesion strength with the seed layer is formed on the insulating resin layer 8.
  • the structure is shown.
  • the insulating resin layer 83 is excellent in workability with a CO 2 or UV-YAG laser in order to maintain the opening of the portion once exposed by grinding of the electrode terminal 5, or a photosensitive type. It is desirable that the resin.
  • a seed layer 55 was formed on the insulating resin layer 83 by sequentially sputtering Cr and Cu or Ti and Cu as in the case of FIG.
  • 3A, 3B and 3C show a third embodiment of the wiring board according to the present invention.
  • 3A, 3B, and 3C are cross-sectional structural views of a wiring board according to the present invention in which the functional element 1 is built in the insulating resin layer 8 as a base material.
  • a first conductor wiring layer 3 and a second conductor wiring layer 4 are formed by copper plating with a thickness of 1 to 20 ⁇ m on the upper and lower sides of the functional element 1 based on GaAs and silicon.
  • the electrode terminal 5 made of copper of the functional element 1 and the conductor wiring layer 3 are connected as shown in FIG. 2 (a) or (b).
  • the metal via 7 and the conductor wiring layer 3 are connected as shown in FIGS.
  • the height of the second conductor wiring layer 4 opposite to the electrode terminal surface of the substrate 1 is 0 to 20 ⁇ m buried from the surface of the insulating resin layer 8 (that is, the surface height is lower than the surface of the insulating resin layer 8).
  • the side surfaces of the conductor wiring layer 4 are covered with the insulating resin layer 8, and the outer surface of the conductor wiring layer 4 is not covered with the insulating resin layer 8.
  • 3A shows an example in which only a part of the electrode terminal 5 is connected to the conductor wiring layer 3.
  • another functional element is connected to the built-in functional element 1. It became possible to connect directly via the electrode terminal 5.
  • the other device is a chip having electrode terminals having the same pitch as the electrode terminals 5 of the functional element 1, the active element and the active surface are connected to each other through Sn-Ag lead-free solder by flip-chip connection. It is possible to connect to other devices facing each other, and it is possible to transmit signals between two functional elements at a high transmission speed of 5 GHz or more at the same time with high reliability.
  • the functional element 1 having the electrode terminals 5 having a pitch of 50 ⁇ m is enlarged by the conductor wiring layer 3 to form electrode pads having a pitch of 100 ⁇ m and connected to other devices having electrode terminals having a pitch of 100 ⁇ m. This enables high reliability and high-speed transmission between two functional elements at 5 GHz or higher.
  • the electrode terminal 501 of the functional element 1 has a taper, and this taper is in the same direction as the second type metal via 7 located on the side surface of the functional element 1. Since the electrode terminal 501 has a taper, the electrode terminal 501 is formed in the insulating resin layer 8 between the conductor wiring layer 3 and the functional element 1 so as to strike a wedge. Separation does not occur between the electrode terminal 501 and the insulating resin layer 8, and the reliability of the product can be improved. As in FIG. 1, the side surface of the electrode terminal 501 is also formed with fine irregularities with a profile of 0.1 to 5 ⁇ m, so that the adhesion strength between the metal of the electrode terminal 501 and the insulating resin layer 8 can be increased. It becomes possible, and it becomes possible to further improve the reliability.
  • the surface of the functional element 1 opposite to the electrode terminals 5 and 501 is connected to the functional element 1 by a semi-cured resin adhesive layer 2 called a die attachment film.
  • the conductor wiring layer 4 is connected.
  • the wiring pattern close to the outer surface opposite to the electrode terminal 5 or the functional element 1 Confirm that it is possible to obtain a more efficient heat dissipation effect by forming a pattern with a larger area than the outer shape of 8.5 mm x 8.5 mm, and at the same time, protect the functional element 1 from the impact from the outside of the substrate. Therefore, it is possible to form a highly reliable circuit board structure.
  • the effect of protecting the functional element 1 is great when the thickness of the functional element is 200 ⁇ m or less, and suppresses local stress on the functional element 1 due to the stress caused by bending the substrate, thereby preventing the functional element 1 from being broken due to cracks or the like. I confirmed that I could do it.
  • a wiring pattern for heat dissipation of the substrate with a built-in functional element is provided, and the heat dissipation pattern relieves stress generated by the difference in thermal expansion coefficient between the wiring material of the board and the functional element. Therefore, the product can be highly reliable.
  • the conductor wiring layer 4 forms a pattern
  • the insulating resin layer 8 is exposed at a proper position from a package in which a large-sized metal integrated body such as a normal heat sink is attached to the back surface of the functional element chip.
  • the functional element built-in substrate formed according to the present invention is used as a semiconductor package, the stress generated by the difference in thermal expansion coefficient of the material between the functional element and the conductor wiring layer 4 is easily relieved. In addition, it was confirmed that it is possible to make a product with high reliability and long life.
  • conductor wiring layers 3 and 4 it is preferable to use one or more kinds of copper, nickel, gold, silver, lead-free solder, etc. by plating or printing, but it is not limited thereto.
  • the insulating resin layer 8 those based on epoxy, polyimide, liquid crystal polymer and the like are preferably used, but are not limited thereto.
  • an aramid non-woven cloth, an aramid film, a glass cloth, and a silica film can be suitably used as the containing material.
  • the contained material is not limited thereto.
  • these insulating resin layers 8 can be entangled with each other at the interface with the metal via 7 and can exhibit excellent reliability against stress such as substrate bending.
  • the insulating resin layer 8 was an epoxy base material containing glass cloth inside, an aramid nonwoven fabric, and an aramid film. It was also confirmed that polyimide can be used.
  • the insulating resin layer 8 can be used as a base material for the functional element-embedded substrate with a single type of resin.
  • the resin layers are laminated and insulated.
  • the resin layer 8 can also be used.
  • FIG. 4 shows a fourth embodiment of the present invention.
  • a circuit board structure in which functional elements are built using organic insulating resin layers 8, 10, 11 having a thickness of 10 to 500 ⁇ m as a base material is shown.
  • a conductive wiring layer 3 and a conductive wiring layer 4 made of copper are formed one by one above and below a functional element 1 on which a resistor, a capacitor, and an inductor circuit are formed using silicon, glass, and polyimide as a base material.
  • the electrode terminal 5 of the functional element 1 whose uppermost surface is made of copper and the conductor wiring layer 3 are connected via a seed layer 55 as shown in FIG. 2 (a) or (b). Further, the metal via 7 and the conductor wiring layer 3 are connected as shown in FIGS.
  • FIGS. are closely attached.
  • the side of the functional element 1 opposite to the side where the electrode terminals 5 are arranged is bonded to an insulating resin layer 10 provided immediately above the conductor wiring layer 4 via an adhesive layer 2 of an epoxy base material.
  • the conductor wiring layer 4 is entirely covered with the insulating resin layer 10 except for the outer surface, and the wiring is formed inside the surface of the insulating resin layer 10.
  • the upper and lower conductor wiring layers 3 and 4 are connected through metal vias 7 filled with conductive paste containing plated copper or Sn—Ag-based powder inside the vias.
  • conductive paste containing plated copper or Sn—Ag-based powder inside the vias.
  • the insulating resin layers 10 and 11 close to the substrate surface are made of a soft resin that is strong in suppressing bending stress and cracking from the outside as a polyimide resin or an epoxy resin
  • the insulating resin layer 8 close to the element 1 is made of an organic resin containing glass cloth, glass filler, aramid nonwoven fabric, or aramid film, and cracks generated between the resin and the functional element by bringing the thermal expansion coefficient close to the functional element 1. It has become possible to improve reliability.
  • the insulating resin layer by separating the insulating resin layer, it is possible to use a combination of a resin with a high heat resistance temperature and a low resin, or a combination of a resin with a high cost and a resin with a low cost. It becomes possible.
  • the thickness of the organic insulating resin layers 8, 10, 11 can be changed according to the thickness of the built-in functional element.
  • an insulating layer is provided in advance on the outer periphery of the electrode terminal of the functional element like the insulating resin layer 9, a resin having good adhesion to the insulating resin layer 9 can be selected as the insulating resin layer 11.
  • the number of combinations of the resin layers is not limited to three layers, and the resin layers can be stacked in multiple layers in the manufacturing process.
  • this structure can obtain an effect different from the structure of FIG. 3B because the insulating resin layer 10 exists between the adhesive layer 2 and the conductor wiring layer 4 so that the heat generation amount during operation is low.
  • two conductor wiring patterns of the conductor wiring layer 3 and the conductor wiring layer 4 can be formed on the substrate surface immediately above and immediately below the functional element 1.
  • Electronic component surface mounting, semiconductor flip chip connection, etc. are possible on the conductor wiring pattern exposed on the surface of the functional element built-in substrate according to the present invention, so that the board area can be effectively used for mounting and the board area can be reduced. Can contribute to the miniaturization of products.
  • FIG. 5 shows a circuit board structure in which a functional element 1 having an organic insulating resin layer 8 as a base material is incorporated as a fifth embodiment according to the present invention.
  • a conductor wiring layer 3 made of copper having a thickness of 10 ⁇ m is formed on the functional element 1, a conductor wiring layer 41 made of copper having a thickness of 10 ⁇ m and a conductor wiring layer 4 made of copper having a thickness of 10 ⁇ m and a conductor wiring layer 4 made of copper having a thickness of 10 ⁇ m. Is formed.
  • the electrode terminal 5 of the functional element 1 made of a silicon base material and the conductor wiring layer 3 are connected via a seed layer 55.
  • the side of the functional element 1 opposite to the side where the electrode terminals 5 are arranged is bonded to a conductor wiring layer 41 provided immediately above the conductor wiring layer 4 via the adhesive layer 2.
  • the conductor wiring layer 3 and the conductor wiring layer 41 are connected via the copper metal via 7 located on the side surface of the functional element 1, and the conductor wiring layer 41 and the conductor wiring layer 4 are connected via the copper conductor via 71.
  • the height of the conductor wiring layer 4 is lower than that of the insulating resin layer 8, and the side surface of the conductor wiring layer 4 is in contact with the insulating resin layer 8, but the surface of the conductor wiring layer 4 is the insulating resin layer 8. Not covered.
  • the number of conductor wiring layers located on the upper and lower surfaces of the functional element 1 can be freely set.
  • the conductor wiring layer 41 immediately above the conductor wiring layer 4 it becomes possible to obtain good electrical characteristics due to an increase in the degree of freedom in designing the ground and the like. Good heat dissipation can be obtained by using copper wiring in a large area.
  • the functional element mounting position of the conductor wiring layer 41 is formed to be a flat pattern larger than the outer shape of the functional element. Mountability was obtained.
  • FIG. 6 shows a structure in which solder resist layers 51 are formed on the front and back of a substrate with the functional element 1 built in using the organic insulating resin layers 8, 10, and 11 as a base material.
  • a conductor wiring layer 3 and a conductor wiring layer 4 are formed one layer above and below the functional element 1, and a seed is formed between the electrode terminal 5 and the conductor wiring layer 3 of the functional element as shown in FIG. Wired through layer 55.
  • the metal via 7 and the conductor wiring layer 3 are connected as shown in FIGS. 1A and 1B, and the interface between the metal via 7 and the insulating resin layer 8 is also as shown in FIGS. 1A and 1B. Is in close contact.
  • the upper and lower conductor wiring layers 3 and 4 are connected through metal vias 7 filled with metal or conductive paste inside the vias.
  • the surface of the functional element 1 opposite to the side where the electrode terminals 5 are arranged is adhered to an insulating resin layer 10 provided immediately above the conductor wiring layer 4. Further, the height of the conductor wiring layer 4 is lower than the surface of the insulating resin layer 10, and the side surfaces of the conductor wiring layers located in the conductor wiring layer 4 are covered with the insulating resin layer 10. The surface is not covered with the insulating resin layer 10.
  • the solder resist is supplied by a printing method or a spin coating method when a liquid solder resist is used, and is supplied by a laminating method when a solder resist of a dry film is used.
  • a solder resist having a thickness of 2 to 50 ⁇ m and a necessary opening 52 was formed.
  • the opening 52 can be used as a Ball Grid Array (BGA) package after mounting a solder ball 53 as shown in FIG.
  • BGA Ball Grid Array
  • the surface of the conductor wiring layer 4 is already disposed at the same or recessed position as the surface of the insulating resin layer 10, so that the solder resist layer 51 is required.
  • the solder resist layer 51 is required.
  • FIG. 8 it is possible to directly form the solder balls 53, which leads to cost reduction by not forming the solder resist layer, and generation of cracks between the solder resist and the insulating resin layer 10 Can be suppressed.
  • the lead-free solder 13 or the solder balls 531 of the functional elements 111 such as the second LSI and wireless elements are obtained by reflowing the electronic component 12 when surface mounting.
  • solder resist layer 51 Since it is desirable to provide the solder resist layer 51 having only the electrode terminal portions opened in order to prevent a short circuit between the conductor wirings due to melting of the substrate, when the substrate is thin and prevents warping of the substrate, the symmetry of the substrate front and back structure It is preferable to provide the solder resist layer 51 also on the surface side of the conductor wiring layer 4 in order to maintain the resistance.
  • the surface on which the solder balls 53 are formed may be the surface on the electrode terminal 5 side of the functional element 1, as opposed to FIG. 8. In this case, it is possible to shorten the wiring length between the electrode terminal 5 of the built-in functional element 1 and a circuit board such as a mother board to which the package is connected via the solder ball 53. It becomes possible to obtain a product having excellent electrical characteristics.
  • 6, 7, 8, and 9 one type of resin of the insulating resin layer 8 is used as the base material of the functional element-embedded substrate in the case of FIG. In the present invention, three layers of the resin layer 8, the resin layer 10, and the resin layer 11 are used in order not to limit the number and types of the resin layers.
  • the resin layers 10 and 11 close to the substrate surface are made of resin having a thermal expansion coefficient of about 60 ppm / K that is strong against bending stress and cracking from the outside, and close to the functional element 1.
  • the insulating resin layer 8 uses a resin of about 30 ppm / K containing silica filler and glass cloth in order to bring the thermal expansion coefficient close to that of the functional element 1, suppresses cracks generated between the resin and the functional element, and performs a temperature cycle test. And reliability in bending tests can be improved.
  • the resin layer by separating the resin layer, it is possible to use a combination of a polyimide resin with a high heat resistance of 200 ° C. or higher, an epoxy resin with a low heat resistance of 180 ° C. or lower, a high cost resin and a low resin. As a result, the product reliability can be improved and the cost can be reduced.
  • the thickness of the organic resin layers 8, 10, and 11 can be changed according to the thickness of the built-in functional element.
  • the combination of the resin layers is not limited to three layers.
  • the insulating resin layer 10 can also be used as an adhesive when fixing the back surface of the functional element 1. After supplying the insulating resin layer 10 by the laminating method, it was realized by preliminarily curing and maintaining the shape and mounting the functional element 1 thereon.
  • the effect different from the structure of FIG. 3B is that the insulating resin layer 10 exists between the adhesive layer 2 and the conductor wiring layer 4.
  • conductor wiring patterns can be formed on the front and back of the substrate immediately above and below the functional element 1. Furthermore, since these wirings are connected through metal vias 7, these circuit boards can be stacked vertically, and a high-density mounting body can be formed.
  • the via taper (the relationship between the via bottom and the inner diameter of the upper part) is in the same direction, and the conductor wiring The inner diameter is small with respect to the substrate surface with the layer 4 and the inner diameter is larger with respect to the substrate surface with the conductor wiring layer 3 on the opposite side.
  • the bottom of the metal via 7 may be in a state where the inner diameter of the via outer peripheral resin shape is expanded by about 10 ⁇ m due to heating with a laser.
  • the inside of the via can be filled with a lead-free solder paste or a conductive paste by a printing method and subjected to heat treatment. It was also possible to integrate the metal particles. Surface mounting of electronic components and semiconductor flip chip connection, etc. are possible on the conductor wiring patterns provided on both sides of these boards, and the board area can be effectively used for mounting, and the board area can be reduced. Contributed to the miniaturization of
  • FIG. 10 shows a seventh embodiment according to the present invention.
  • FIG. 10 shows a wiring board structure in which the functional element 1 is built using the organic resin layers 8, 10 and 11 as base materials.
  • a conductor wiring layer 3 and a conductor wiring layer 4 are formed one by one above and below a functional element 1 having a thickness of 20 ⁇ m made of a GaAs substrate.
  • the electrode terminal 5 of the functional element 1 and the conductor wiring layer 3 are connected via a seed layer 55 formed by sequentially sputtering Ti and Cu.
  • the metal via 7 and the conductor wiring layer 3 are connected as shown in FIGS. 1A and 1B, and the interface between the metal via 7 and the insulating resin layer 8 is also as shown in FIGS. 1A and 1B. It is connected to.
  • the upper and lower conductor wiring layers 3 and 4 are connected through metal vias 7 filled with metal or conductive paste inside the vias.
  • the functional element 1 is bonded to the conductor wiring layer 4 via the adhesive layer 2 on the surface opposite to the side where the electrode terminals 5 are arranged.
  • the height of the conductor wiring layer 4 is about 5 ⁇ m lower than the surface of the insulating resin layer 8, and the side surface of the conductor wiring layer 4 is covered with the insulating resin layer 8, but the surface of the conductor wiring layer 4 is covered with the insulating resin layer 8. Not covered.
  • a conductor wiring layer 32 is further disposed above the conductor wiring layer 3, and the conductor wiring layer 3 is connected to the conductor wiring layer 3 via a conductor via 151.
  • a resistor 401 is formed of titanium nitride or titanium oxide on a part of the conductor wiring layer 3 located above the conductor wiring layer 3 and the conductor wiring layer 3 of the functional element built-in substrate.
  • a dielectric substrate 402 made of tantalum oxide or strontium / titanium oxide is formed, and a wiring board structure including an inductor 403 having a spiral shape or a meander shape is shown.
  • the conductor wiring layer 3 of the functional element-embedded substrate and a part of the conductor wiring layer 32 positioned above the conductor wiring layer 3 include Cu, W, Cr, Pt, Ni, Zn , Fe, Al, C, Mn, Ir, Ti, N, O, and a resistor containing one or more elements, and Mg, Ti, Sr, Ba, Ca, Zn, Al, Ta, A dielectric including one or more elements of Si, Au, N, and O exists, and a functional element 1 including an inductor having a spiral shape or a meander shape can be incorporated.
  • a seed layer different from the seed layer 55 may be provided at the bottom of the conductor via 152 connected from the conductor wiring layer 32 to the electrode terminal 5 of the functional element 1.
  • These resistors, dielectrics, and inductors may be formed on the surface opposite to the electrode terminal 5 of the functional element 1.
  • the functional element built-in substrate according to the present invention shown in FIG. 10 can be used by forming a solder resist layer, and a plurality of conductor wiring layers on both sides of the layer in which the functional element is built as a core substrate.
  • An insulating resin layer can be provided, and a high-performance multilayer wiring board can be obtained.
  • FIG. 11 shows an eighth embodiment according to the present invention.
  • FIG. 11 shows a functional element built-in wiring board structure in which an organic insulating resin layer 8 is used as a base material and a metal or ceramic intermediate layer 404 is provided on the side surface of the functional element 1.
  • a conductor wiring layer 3 and a conductor wiring layer 4 are formed one layer above and below the functional element 1.
  • the electrode terminal 5 of the functional element and the conductor wiring layer 3 are connected via a seed layer 55 as shown in FIG. 2 (a) or (b).
  • the metal via 7 and the conductor wiring layer 3 are connected as shown in FIGS. 1A and 1B, and the side surfaces of the metal via 7 and the insulating resin layer 8 are also as shown in FIGS. 1A and 1B.
  • the functional element 1 is bonded to the conductor wiring layer 4 via the adhesive layer 2 on the surface opposite to the side where the electrode terminals 5 are arranged. Also, the height of the conductor wiring layer 4 is all the same as or lower than the surface of the insulating resin layer 8, and the side surface of the conductor wiring layer 4 is covered with the insulating resin layer 8, but the surface of the conductor wiring layer 4 is insulated. The resin layer 8 is not covered.
  • the intermediate layer 404 is for imparting strength to the substrate, and can improve the reliability of the product.
  • stainless steel SUS304 or Kovar alloy of 0.05 mm to 0.3 mm was used depending on the thickness of the functional element 1 incorporated.
  • a Cu plating via not shown
  • it can be used as a ground layer, and excellent electrical characteristics can be obtained.
  • the calorific value of the functional element 1 is large, it is possible to obtain a functional element-embedded substrate having excellent heat dissipation characteristics by using a metal intermediate layer.
  • the intermediate layer 404 is formed of a ceramic substrate made of SiO 2 , Al 2 O 3 or the like, a plurality of conductive element built-in substrates can be formed by forming a plurality of conductor wiring layers inside the ceramic substrate. It was possible to get
  • the functional element built-in substrate shown in FIG. 11 can be used by forming a solder resist layer, and as a core substrate, a plurality of conductor wiring layers are formed on both sides of the layer in which the functional element is built by the subtractive method. Insulating resin layers can be provided at low cost, and a high-performance multilayer wiring board can be obtained.
  • FIG. 12 shows a ninth embodiment of the present invention and shows a functional element built-in wiring board structure using organic (insulating) resin layers 8, 10, and 11 as base materials.
  • a conductor wiring layer 3 and a conductor wiring layer 4 are formed one layer above and below the functional element 1.
  • the electrode terminal 5 of the functional element and the conductor wiring layer 3 are connected via a seed layer 55 as shown in FIG. 2 (a) or (b).
  • the metal via 7 and the conductor wiring layer 3 are connected as shown in FIGS. 1A and 1B, and the side surfaces of the metal via 7 and the insulating resin layer 8 are also as shown in FIGS. 1A and 1B. It is in close contact.
  • the upper and lower conductor wiring layers 3 and 4 are connected via metal vias 7 filled with metal plating or conductive paste inside the vias.
  • the surface of the functional element 1 opposite to the side where the electrode terminals 5 are arranged is directly bonded to the insulating resin layer 10 provided immediately above the conductor wiring layer 4.
  • the height of the conductor wiring layer 4 is all the same as or lower than the surface of the insulating resin layer 10, and the side surface of the conductor wiring layer 4 is covered with the insulating resin layer 10, but the surface of the conductor wiring layer 4 is insulated resin. Not covered by layer 10.
  • the functional element 1 is bonded to the insulating resin layer 10 via the adhesive layer 2 in the case of FIG. 3B, whereas the functional element is not connected to the adhesive layer 2.
  • 1 is bonded to the insulating resin layer 10. Since the insulating resin layer 10 itself is a resin, the surface opposite to the electrode terminal 5 of the functional element 1 is pressure-mounted while directly applying heat to the insulating resin layer 10 in a semi-cured state before curing. The insulating resin layer 10 is fluidized by heat and can be in close contact with the functional element 1. As a result, the adhesive layer 2 having a thickness of about 2 to 40 ⁇ m is not necessary, and the built-in substrate can be thinned.
  • the insulating resin layer 10 is present between the functional element 1 and the conductor wiring layer 4, when the functional element 1 having a low calorific value during operation is built in, the insulating resin layer 10 is provided on the front and back of the substrate immediately above and immediately below the functional element 1 A conductor wiring pattern can be formed.
  • the taper of all the vias is directed in the same direction, and is set so that the inner diameter is small with respect to the substrate surface on which the conductor wiring layer 4 is provided and the inner diameter is large with respect to the opposite surface.
  • the electrode terminal 5 is provided on the active surface on one side of the functional element 1, but the electrode pitch between the functional element and the conductor wiring layer 3 is adjusted.
  • cylindrical copper called a copper post or one or more conductor wiring layers formed inside the insulating resin layer 9 is preferably used, but the shape and material are not limited.
  • the electrode terminals are exposed on the surface, the alignment marks when the elements are mounted can be clearly seen, so that the mounting accuracy is improved.
  • the electrode terminals are buried in the insulating resin layer 9. In this case, there is an effect of protecting the surface and an effect of improving workability when the functional element is mounted.
  • the insulating resin layer 9 uses “PIMEL” manufactured by Hitachi Chemical Co., Ltd., “BCB” manufactured by DOW, etc., it is not limited. In the circuit board structure according to the present invention, when the functional element is built in the resin, the insulating resin layer 9 can be used without being formed on the functional element in order to reduce the cost.
  • FIG. 13 shows a plurality of functional elements vertically stacked on a wiring board in which each of the functional elements 1 and 31 is built by insulating connection by the adhesive layer 40 and conductive connection by the via 45 filled with conductive paste. It is sectional drawing of a wiring board which incorporated the functional element.
  • the adhesive layer 40 is preferably based on epoxy, polyimide, liquid crystal polymer, or the like, but is not limited thereto.
  • an aramid non-woven cloth, an aramid film, a glass cloth, and a silica film can be suitably used as the inclusion material.
  • the contained material is not limited thereto.
  • the adhesive layer 40 is made of an epoxy resin called a normal prepreg material containing glass cloth or an epoxy resin containing an aramid nonwoven fabric and having a thickness of 20 to 80 ⁇ m.
  • the conductive paste used here includes a powder composed of elements such as Sn, Ag, Bi, and Cu, and the composition was determined according to the temperature of the manufacturing process. Also, the powder particle size was set to 10 ⁇ m or less when the inner diameter of the via 45 was 100 ⁇ m or less.
  • the electrode terminal surfaces of the built-in functional elements are arranged so as to face each other like the functional elements 1 and 31, it is possible to obtain an electrical connection at the shortest distance between the functional elements.
  • a circuit board with a built-in functional element having excellent characteristics can be obtained.
  • the surface of the conductor wiring having a uniform height is exposed on both sides of the substrate by the manufacturing method according to the present invention.
  • the distance between the substrate conductor wirings can be always constant, and a highly reliable connection is possible.
  • the conductor wiring layers 4 and 34 located on both sides of the substrate have their surfaces exposed at positions recessed from the insulating resin layers 42 and 10 surrounding these wiring layers, and later the surface is exposed to BGA balls or others with solder metal or the like. Therefore, it is not necessary to form a solder resist layer when joining these devices, and a low-cost product can be formed.
  • the functional element embedded substrates according to the present invention are connected to each other as shown in FIG. 13, but the functional element embedded substrate and another multilayer wiring substrate are connected by an insulating connection by an adhesive layer 40 and a conductive paste. It is also possible to form the functional element-embedded substrate according to the present invention by connecting by conductive connection using the via 45.
  • the dimensions of the outer shapes of the two substrates including the functional element built-in substrates connected by bonding may be different, and the volume of the functional element built-in substrate can be efficiently reduced.
  • FIG. 14 shows the functional element-embedded substrates 301 and 302 in a state where two functional elements according to the present invention are stacked as shown in FIG. 13, and further includes the insulating connection by the adhesive layer 40 and the via 45 by the conductive paste.
  • a cross section of a wiring board structure with built-in functional elements stacked by conductive connection is shown. In this way, by stacking multiple types of functional elements, it is possible to shorten the wiring length between the functional elements, and the problem that electronic components could be mounted only in the two-dimensional direction by surface mounting. Overcoming it, it is possible to mount highly integrated electronic components in three dimensions.
  • Example 11 15 and 16 show an eleventh embodiment of the present invention.
  • FIG. 15 shows a case where the insulating resin layers 21 and 22 having a thickness of 10 to 80 ⁇ m are formed between the conductor wirings 25 and 26 made of copper having a thickness of 1 to 25 ⁇ m by using a functional element built-in substrate as a core substrate and a semi-additive method on both sides
  • the circuit board structure is shown in which the conductor wirings are connected by conductor vias 23 and 24 and stacked.
  • This structure has the effect of enlarging the electrode terminal array of functional elements with fine pitch in recent years as the surface of the circuit board is approached.
  • the production location of the core substrate with the built-in functional elements and the location where the wiring layers on both sides are built up can be separated. The latter does not require installation of equipment, so the product cost is low. It can be suppressed.
  • FIG. 16 uses the functional element built-in substrate according to the present invention shown in FIG. 15 and forms solder balls 53 with a pitch of 0.5 mm on the surface to be connected to the mother board, and the other surface consists of resistors and capacitors.
  • a structure as a package in which the electronic component 12 and the functional element 111 are connected via solders 13 and 531 is shown.
  • the functional elements are three-dimensionally arranged to reduce the mounting area and contribute to product miniaturization.
  • FIG. 17 shows a first embodiment of the manufacturing method of the present invention.
  • a dry film and varnish plating resist is supplied to a support plate 101 made of copper, and after exposure and development, the first nickel wiring pattern 102 is formed with a thickness of 0.5 to 0.5 by plating. Plating to 20 ⁇ m.
  • the support plate 101 is made of a metal such as Cu or stainless steel, it is desirable that the wiring pattern 102 does not dissolve in the etching solution when the support plate 101 is removed by etching. .
  • gold or solder plating can be suitably used, but is not limited thereto.
  • the wiring pattern 102 may be composed of several types of plating layers instead of one plating layer.
  • the wiring pattern 102 may be omitted when the support plate is not chemically etched but mechanically polished or when the support plate is peeled off by stress.
  • the support plate is preferably a single material or a composite material made of Si, glass, aluminum, stainless steel, polyimide, epoxy, or the like, but is not limited thereto.
  • the wiring pattern 102 can be formed by supplying a plating seed metal by sputtering or electroless plating.
  • a method of supplying the release material into the support plate material in advance is preferably used, but is not limited thereto.
  • Mitsui Kinzoku Co., Ltd. formed a release layer between two layers of copper foil copper foil as a release layer bonded to a single-material plate made of glass, aluminum, stainless steel, polyimide, silicon, epoxy, etc.
  • the ultra-thin copper foil with a carrier “Micro Thin (MT)” series and the single-sided release tape “PTFE tape” manufactured by Sumitomo 3M Co., Ltd. can be suitably used as a support plate.
  • the plate is not limited to these.
  • the plating resist was not peeled off or was peeled off once, and then a pattern with a new plating resist was formed to form a second copper wiring pattern 103 with a thickness of 5 to 20 ⁇ m by a plating method, and the plating resist was peeled off.
  • the wiring pattern 103 is preferably present on the wiring pattern 102. Since the wiring pattern 103 remains as a conductor wiring layer after the support plate is removed, gold, copper, nickel, or the like can be used, but is not limited thereto. Thereafter, several insulating resin layers and conductive wiring layers may be alternately formed.
  • the functional element 1 having a thickness of 10 to 725 ⁇ m is mounted on the wiring pattern 103 by heating and pressing through the adhesive layer 2 made of an organic resin and having a thickness of 10 to 30 ⁇ m as shown in FIG. To do.
  • the functional element 1 is provided with an electrode terminal 5 made of a columnar or multilayer wiring in advance, but other Au stud bumps can also be used, and the shape of the electrode terminal 5 is not limited thereto.
  • the material of the electrode terminal 5 is also made of Cu, Ag, Ni, or the like, but is not limited thereto. If protection of the chip active surface is required, the insulating resin layer 9 may be supplied. When the insulating resin layer 9 is present, the electrode terminals 5 of the functional element before mounting may be embedded in the insulating resin layer 9 and not exposed to the surface.
  • the outer shape of the functional element is the same as that of the functional element in advance, or the width in one direction is 0.1 to A space is provided in the insulating resin layer 8 so as to be about 1 mm larger so that a substance that does not flow during pressing contained in the resin does not damage the functional element.
  • the number and types of the insulating resin layers can be appropriately determined according to the thickness of the built-in functional element 1 and the thickness of the entire substrate, and may be a single layer.
  • a via hole 67 with a diameter of 20 to 800 ⁇ m was opened to the wiring pattern 103 near the support plate using a laser device such as a CO 2 laser or a UV-YAG laser. Thereafter, desmear treatment is performed with a chemical solution to remove the resin residue on the wiring pattern 103 inside the via hole, and at the same time, the inner side resin surface of the via hole 67 is roughened. At this time, a glass cloth, a silica filler, an aramid nonwoven fabric, an aramikafil, or other reinforcing material contained in the insulating resin layers 8, 10, and 11 may be exposed on the surface.
  • electrolytic plating of copper was performed using the support plate 101 as a power feeding layer to form a metal via 7 in the via hole as shown in FIG.
  • electrolytic plating with gold, nickel, etc. is also possible.
  • the inside of the via hole 67 by electrolytic plating becomes the filled via 7 filled with the plating metal, and the plating metal may be formed in a mushroom shape on the via as shown in FIG.
  • the metal via 7 is plated on the insulating resin layer whose inner surface has been roughened in advance, an anchor effect is produced and excellent adhesion can be obtained. Furthermore, since the metal cloth 7 is encased with a reinforcing material such as a glass cloth, silica filler, aramid nonwoven fabric, or aramikafil contained in the insulating resin layers 8, 10 and 11 exposed in advance from the surface of the resin layer, High bonding strength can be obtained even between the reinforcing materials inside the resin, and this functional element built-in substrate can obtain high reliability against stress such as bending.
  • a reinforcing material such as a glass cloth, silica filler, aramid nonwoven fabric, or aramikafil contained in the insulating resin layers 8, 10 and 11 exposed in advance from the surface of the resin layer
  • the formation of the metal via 7 may be filled with metal by an electroless plating method or filled with a conductive paste by a printing method, but is not limited to these methods. In any case, high adhesion strength can be achieved by the anchor effect and the joining with the resin reinforcing material between the insulating resin.
  • a weak acid such as dilute sulfuric acid
  • electroless plating such as copper or nickel, or a combination of Ti layer and Cu layer
  • a combination of Pd layer and Cu layer, Cr layer and Cu One or more conductive layers made of one or more elements comprising a combination of layers were formed by sputtering, and used as a seed layer in the subsequent wiring plating process.
  • the elements constituting the seed layer were selected so that the formation process of the resistor, inductor, and capacitor shown in FIG.
  • multilayer wiring connected to the functional element 1 via vias can be obtained by alternately forming insulating resin layers and conductive wiring layers on the conductive wiring layer 3 before removing the support plate.
  • the conductor wiring layer 3 can also be formed by a printing method. Even in that case, since it is flat in the whole plane range, it is excellent in printability and fine wiring can be formed.
  • the support plate When the support plate is used as a heat radiating plate, it can be used as a package in the state shown in FIG.
  • the conductive wiring layer 102 made of nickel is exposed by etching with a copper etching solution.
  • the height of the conductor wiring layer 102 is the same as that of the insulating resin layer 10 surrounding the outer periphery.
  • the nickel conductor wiring layer 102 is etched with a nickel remover or the like, which is different from the chemical used for etching the support plate 101. It is also possible to expose the wiring layer 103 on the surface. At this time, the height of the conductor wiring layer 103 is about 0.5 to 20 ⁇ m lower than the surrounding insulating resin layer 10 and the insulating resin layer 10 can also function as a solder resist layer. Further, the conductor wiring layers 102 and 103 are wiring layers sequentially formed on the support plate, and a resin layer is not interposed on the surface, so that a highly reliable circuit board that can be mounted can be obtained. .
  • the height of the conductor wiring layers 102 and 103 is originally formed on the support plate, and thus is uniform, and can be suitably used as an electrode terminal to be surface-mounted in a semiconductor element, a BGA package, etc. Reliability can be obtained.
  • the functional element built-in circuit board obtained in this way can be used as it is, but a 5-30 ⁇ m-thick solder resist layer having an arbitrary opening is further formed, and the surface of the next multi-device. It can also be used for implementation.
  • a conductor wiring layer is formed alternately with an insulating resin layer.
  • FIG. 18 it was possible to form a functional element built-in substrate having multilayer wiring.
  • the functional element-embedded substrate in the state of FIG. 17 (h) or (i) can be embedded into another circuit substrate after dicing into pieces.
  • the conductor wiring layer 4 can be formed by plating by sputter deposition of a seed layer made of a conductor element, and the support plate is removed. In the process, it was confirmed that the support plate could be removed not only by etching but also by polishing or peeling off with a release layer.
  • the support plate can be applied even when the functional element is fragile or by pressing during mounting. Therefore, the functional element is not stressed and the functional element itself is not damaged. Even when the insulating resin layer is subsequently supplied to the outer periphery of the functional element by pressing or laminating, since the support plate is provided on the base, a reliable product can be manufactured without damaging the functional element.
  • the wiring layer can be built up above the terminal portion of the functional element with the support plate attached, even when the total thickness of the insulating resin layer is thin, it can be used for via processing, plating process, and insulating layer supply process. Thus, there is no damage to the functional element due to the bending of the substrate, and the workability is excellent.
  • vias can be directly formed in the wiring layer of the support plate located below the functional element. If the support plate is made of metal, the inside of the via with a large aspect ratio can be used without electroless plating. It is possible to improve the electrical reliability.
  • the part where the support plate was located can be in the same position as the surface of the conductor wiring or a recessed shape lower than the resin surface, and supply solder resist
  • the surface resin can play the role of solder resist without being uniform, and the height of the conductor wiring formed on the support plate is uniform, and the position of the surface resin provides high connection reliability when mounting a semiconductor or the like. I can do it. Note that when the support plate is removed, the functional element surface is not exposed on the surface, and it is possible to prevent chip damage during the process.
  • circuit board can be formed simultaneously with the connection of the functional elements, the cost required for forming the entire package, which is the sum of the expenses required for conventional circuit board formation and the expenses required for mounting the functional elements, is reduced. Is possible.
  • functional elements can be three-dimensionally integrated in a circuit board at a short distance, and a product excellent in high-speed transmission characteristics can be formed.
  • the electrode terminal of the built-in functional element is exposed to the surface by grinding, and the wiring development is performed. Therefore, the exposure development of the plating resist pattern is performed while directly confirming the electrode terminal. Therefore, the wiring can be formed with excellent positional accuracy, and a high-specification wiring circuit can be formed.
  • metal vias that are not directly connected to the built-in functional elements also eliminates resin residue on the support plate at the bottom of the via hole by performing desmearing or asher treatment after forming the via hole with a laser or the like. At the same time, the resin surface inside the via hole can be roughened.
  • additives for increasing the reliability such as glass cloth, aramid fiber, aramica film, silica resin and the like can be mixed in the insulating resin.
  • the insulating resin and additives to the insulating resin are contained inside the plated metal by via internal plating using the supporting plate inside the via as a power feeding layer.
  • Metal vias can be formed, and the metal can be a composite material having high strength between the peripheral resin layer and the additive, and high reliability can be obtained.
  • the metal plating in the second type via hole can be a metal via on the mushroom when the plating is made higher than the resin thickness by supplying power from the support plate.
  • the mushroom-like plated metal can also play a role as a rivet on the insulating resin, it is possible to obtain further high reliability.
  • the functional element-embedded substrate according to the present invention has excellent flatness by simultaneously grinding or polishing the electrode terminal (first type metal via) of the functional element and the second type via after metal plating. Since the surface opposite to the electrode terminal side of the built-in functional element is also formed on the support plate, the wiring located on both the front and back sides of the functional element built-in substrate after the manufacturing process including the support plate removal process is completed. Another significant feature is that the layer and the insulating layer have a flat structure. Such a flat surface can improve the flatness of the product, and when a multilayer wiring is built up later, an excellent wiring density can be obtained.
  • FIG. 18 shows a second embodiment of the manufacturing method of the present invention. Similar to FIG. 17A, in FIG. 18A, a nickel wiring layer 102 having a thickness of 2 to 20 ⁇ m is formed on a copper support plate 101 having a thickness of 0.1 to 1.0 mm, and a conductor wiring layer 103 made of copper having a thickness of 5 to 30 ⁇ m. Each was formed by a plating method. Thereafter, as shown in FIG. 18B, the insulating resin layer 10 containing a polyimide or epoxy component having a thickness of 10 to 500 ⁇ m was supplied by a vacuum laminator and cured.
  • the conductor wiring layers 102 and 103 can be formed as a solid pattern with a large area aiming at the heat dissipation plate effect.
  • An arbitrary wiring shape such as a BGA pad or a flip chip pad can be formed.
  • a vacuum laminator, a vacuum press, a roll coater, a spin coat, a curtain coat or the like is preferably used, but is not limited thereto.
  • the functional element 1 made of a silicon base material was bonded to the insulating resin layer 10 through the adhesive layer 2 having a thickness of 10 to 30 ⁇ m made of an epoxy die attachment film.
  • the insulating resin layer 10 may be cured immediately after FIG. 18B, but if the functional element 1 is mounted with the insulating resin layer 10 semi-cured, the functional element chip without using the adhesive layer 2 Can be installed.
  • the insulating resin layer 8 and the intermediate layer 404 made of metal or ceramics are supplied by a vacuum laminator or vacuum press as shown in FIG. 18D, and the outer periphery of the functional element 1 is sealed with resin as shown in FIG. did.
  • the number of insulating resin layers can be one or more, and it is desirable for the reliability of the product and the workability at the time of manufacture to design the circuit board so that the circuit board is less warped after the support plate is removed. It is desirable to determine the arrangement of the insulating layer in consideration of the adhesion with the material.
  • the width of the functional element in the same direction or in one direction is 0.1 to 1 mm in advance. As much as possible, a space is provided in the insulating resin layer 8 so that a substance contained in the resin that does not flow during pressing does not damage the functional element.
  • the intermediate layer 404 made of metal (SUS340 or the like) or ceramic is effective in preventing warpage and increasing rigidity when the substrate is thin.
  • the intermediate layer 404 is formed in advance from the outer shape of the via hole 67 at an arbitrary location in advance for performing laser processing in the subsequent steps for forming the via hole 67 for connecting the conductor wiring layer 103 and the conductor wiring layer 3. Opening was performed by chemical etching with a large size, and the portion where the functional element 1 exists was opened with a size that was the same as or larger than the outer shape of the functional element 1.
  • a via hole 67 having a diameter of 50 to 800 ⁇ m was opened in the conductor wiring layer 103 near the support plate using a laser apparatus such as a CO 2 laser or a UV-YAG laser. Thereafter, desmear treatment was performed with a chemical solution to remove the resin residue on the conductor wiring layer 103 inside the via hole, and at the same time, the inner side resin of the via hole 67 was roughened. At this time, glass cloth, silica filler, aramid nonwoven fabric, aramikafil and other reinforcing materials contained in the insulating resin layers 8 and 10 may be exposed on the surface.
  • the metal via 7 was formed in the via hole by performing electrolytic plating of copper as shown in FIG. At this time, since it is not necessary to form a plating resist layer on the insulating resin layer 11, a low-cost process can be achieved.
  • the inside of the via hole 67 by electrolytic plating becomes the filled via 7 filled with the plating metal, and the plating metal may be formed in a mushroom shape on the via as shown in FIG.
  • the metal via 7 is plated on a previously roughened insulating resin layer, an anchor effect is produced and excellent adhesion can be obtained. Furthermore, since metal foil is plated as shown in FIG. 1 with a reinforcing material such as glass cloth, silica filler, aramid nonwoven fabric, or aramikafil contained in the insulating resin layers 8 and 10 exposed in advance from the resin surface, A high bonding strength was also obtained between 7 and the reinforcing material inside the resin, and this functional element-embedded substrate was able to obtain high reliability against stresses such as bending.
  • the formation of the metal via 7 may be performed by filling a metal by an electroless plating method or filling a conductive paste by a printing method, but is not limited to these methods. High adhesion strength can be achieved between the insulating resin and the anchor effect or by joining with a resin reinforcing material.
  • a grinding method is used as shown in FIG. 18 (g) to cue the electrode terminal 5 of the functional element 1 from the insulating resin layer 8, and at the same time, the metal provided at the side surface position of the functional element chip.
  • a portion of the via 7 exposed from the peripheral insulating resin layer 8 was shaved, and the upper portion of the metal via 7 could be made the same height as the insulating resin layer 8. For this reason, all of the metal via 7, the insulating resin layer 8, and the electrode terminal 5 are located on the same plane with unevenness of 5 ⁇ m or less except for the warpage of the substrate itself, so that the seed layer in FIG.
  • the conductor wiring layer 3 can also be formed by a printing method. Even in that case, since it is flat in the whole plane range, it is excellent in printability and fine wiring can be formed. If the upper part of the mushroom shape is not completely removed by buffing the metal via 7, etc., the fineness of the wiring is smaller than that of the flat case, but the mushroom bulk part plays a role of rivets for the resin layer. None, reliability can be further improved.
  • the support plate is used as a heat radiating plate, it can be specified as a package in the state of FIG.
  • the subsequent steps are the same as in FIGS. 17 (h) and (i), and the copper support plate 101 is removed in FIG. 18 (i), and the conductor wiring layer 103 is exposed on the surface in FIG. 18 (j).
  • the functional element built-in circuit board obtained in this way can be used as it is.
  • a 5-30 ⁇ m-thick solder resist layer having an arbitrary opening is formed to mount the next multi-device. It can also be used.
  • a solder resist layer may be formed only on one side.
  • 18 (i) and (j) can be used as a core substrate, and a conductive wiring layer can be formed alternately with an insulating resin layer on both sides by using an additive method, a semi-additive method, or a subtractive method. there were.
  • FIG. 19 shows a third embodiment of the manufacturing method of the present invention.
  • epoxy resin 5-30 ⁇ m is supplied in advance as an insulating layer 51 to be a solder resist on the glass support plate 101, and after the electroless copper plating is applied to the upper layer, conductor wiring by copper is performed.
  • Layer 4 is formed to a thickness of 5 to 30 ⁇ m. Thereafter, the plating resist is removed, and electroless copper plating other than the wiring pattern is removed by etching.
  • the outer periphery of the functional element 1 is covered by the insulating resin layers 8 and 11.
  • the functional element 1 and the circuit board according to the present invention were electrically connected by resin sealing and connecting the conductor wiring layers 3 and 4 through the metal vias 7.
  • the glass support plate 101 is removed by chemical solution or polishing, so that the insulating resin layer 51 is exposed on the surface, and the component mounted on the circuit board with a laser or the like.
  • the electrode terminal By opening a via (opening) 52 in a portion corresponding to the electrode terminal, the electrode terminal functions as a solder resist.
  • a solder resist layer 51 having a thickness of 5 to 30 ⁇ m with a via opening is formed on the opposite surface.
  • the solder balls 53 are mounted in the openings of the solder resist on one side, and a plurality of such functional element-embedded substrates with solder balls are used as a package, after electrical inspection of each package. It is possible to stack two or more functional element built-in substrates by stacking and reflowing as shown in FIG. Compared to using multiple types of functional elements and multiple functional elements as a single functional element-embedded substrate, when a functional element-embedded substrate is stacked, the overall volume increases. In the process, there is a merit that each functional element built-in substrate can be electrically inspected, and the yield of the product can be increased.
  • FIG. 20 shows a fourth embodiment of the manufacturing method of the present invention.
  • the functional element built-in substrate 410 according to the present invention in which the functional element 1 made of Si base material is built in, and further incorporating a plurality of functional element built-in substrates according to the present invention in the large-sized substrate 411, the functional element built-in substrate 410.
  • As a core layer one or more copper wiring layers and insulating layers were provided on one side or both sides.
  • the functional element built-in substrate 410 Before the large-sized substrate 411 was built, electrical inspection became easy. Further, by incorporating only the 8-inch diameter functional element built-in substrate 410, which has been determined to be non-defective by electrical inspection, in the large substrate 411 of 500 mm ⁇ 600 mm size, it becomes possible to increase the yield of the product, and processing with a large plate Manufacturing costs can be reduced by the process.
  • the functional element built-in substrate 410 is formed by using a semi-additive method capable of forming a fine wiring pattern because the wiring layer is directly connected to the electrode terminal 5 of the built-in functional element 1.
  • a semi-additive method capable of forming a fine wiring pattern because the wiring layer is directly connected to the electrode terminal 5 of the built-in functional element 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

 機能素子を内蔵可能な配線基板構造に於いて、応力に強い配線基板を提供し、また配線基板の形成及び機能素子の配線基板への接続を合わせて処理する方法を提供する。1以上の導体配線層(3,4)と1以上の絶縁樹脂層(8)とを積層して構成され、該絶縁樹脂層を貫通して構成される1以上の金属ビア(7)を含み、該金属ビアと該絶縁樹脂層との境界面が、該金属ビアと該絶縁樹脂とが相互にかみ合う凹凸状の境界断面構造を有することを特徴とする配線基板である(図1)。

Description

機能素子を内蔵可能な配線基板及びその製造方法
[関連出願の記載]
 本発明は、日本国特許出願:特願2008-218558号(2008年8月27日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、機能素子を内蔵可能な配線基板及びその製造方法に関する。
 半導体基板の構造及び製造方法に関しては、例えば特開2002-064178(特許文献1)に開示の技術では、半導体装置をフリップチップ接続などにより回路基板に接続した後、この様な基板と、キャビティを形成して導電性ペースト等を充填した貫通ビアを有する回路基板を交互に積層して、最下層の基板にはんだボールを付けることにより半導体積層パッケージとしている。
 例えば特開2001-332863(特許文献2)、特開2001-339165(特許文献3)、特開2001-352174(特許文献4)、特開2002-084074(特許文献5)、特開2002-170840(特許文献6)、特開2002-246504(特許文献7)では、コア基板に通孔を形成し、その内部に半導体チップを活性面を上にしてフェースアップで接着剤を用いて搭載し、電極端子上から配線層をビルドアップしている。またコア基板に貫通ビアを形成して両面に配線層をセミアディティブ法などによりビルドアップしている。また、金属又はセラミックスからなるヒートシンクにフェースアップで半導体素子を搭載し、電極端子上から配線層をビルドアップしている。
 例えば特開2006-339421(特許文献8)では、支持板上にビルドアップ法により絶縁層及び導体層を形成した後、Auのスタッドバンプやはんだ等のバンプを形成した半導体チップをフェースダウンによる、いわゆるフリップチップ法によって、支持板上の導体配線にバンプを接続した後、アンダーフィルで補強して、接続された半導体チップ外周を樹脂で覆って、その後、ビルドアップ法によりビア形成と絶縁層、導体層の形成を行っている。
 例えば特開2005-236039(特許文献9)では、転写基板上へ半導体ICチップを搭載する箇所周辺に導体配線により、チップ側面に位置決めパターンを形成している。
特開2002-064178号公報 特開2001-332863号公報 特開2001-339165号公報 特開2001-352174号公報 特開2002-084074号公報 特開2002-170840号公報 特開2002-246504号公報 特開2006-339421号公報 特開2005-236039号公報
 なお、上記特許文献1~9の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
 第一の問題点は、特許文献2~7においては、内蔵された機能素子の側面に位置する金属ビアを形成するため、その機能素子の側面に位置する部分にレーザやドリルでのビアホール形成を行い、絶縁樹脂表面に、金属によるめっきシード層を形成しようとする場合には、スパッタリング、または無電界めっきが必要となるが、粗化された樹脂面や、突出したガラスクロスやシリカフィラへは、完全にシード層を被覆することは困難であり、シード層が被覆されなかった樹脂面部分は、その後の電界めっきの後にも、密着強度が低く、機能素子を回路基板に内蔵することで発生する内部応力によって、機能素子の側面に位置する金属ビアと絶縁樹脂の間では剥離が生じる可能性があることである。
 第二の問題点は、特許文献1~7に開示された技術のように、機能素子を内蔵する際において、支持板の無い、有機樹脂を基材とした回路基板を機能素子搭載面の下に使う場合に、搭載荷重により、回路基板の有機樹脂部分が湾曲して、素子そのものに曲げ応力が発生し、内蔵される機能素子がシリコン、ガラスや、セラミックス等からなる場合には、素子そのものが損傷して歩留まりが低下する可能性がある点である。また、搭載に続く工程において、機能素子を覆いつくすように樹脂層を何層か積み重ねる際に、真空プレスや真空ラミネート法を使用した場合、素子搭載時と同様に荷重が素子にかかると先と同様の可能性がある。
 第三の問題点として、特許文献9では予めチップの側面に後にビアとなる金属ポストを形成して、チップ搭載後に樹脂をチップ周辺及び金属ポスト周辺に供給し、後に研磨することでのチップ上の電極端子と金属ポストの頭だしを行っている。しかしこの場合、ガラスクロス等のXY方向に広がる補強材を含有した樹脂を供給することは難しく、樹脂の選択可能性が減少する。また金属ポストは、めっきにより形成されたもので、側面が平坦であり、樹脂との密着が弱く、チップを基板に内蔵することによる、基板への曲げ等の応力に対する接着強度が低いことがある。
 第四の問題点は、特許文献2~7に記載のように、機能素子が内蔵された部分を覆う絶縁樹脂層を供給し、熱硬化させた場合には、表面形状が平坦ではなく、その後の配線形成や電子部品搭載等での作業性及び製品の歩留まりが低下する可能性があることである。
 本発明は、以上のような問題点を鑑みてなされたものであり、本発明の一視点において、応力に強い配線基板を提供することを課題とする。本発明の他の視点において、配線基板の形成及び機能素子の配線基板への接続を合わせて処理する方法を提供することを課題とする。
 本発明の第1の視点において、本発明に係る配線基板は、1以上の導体配線層と1以上の絶縁樹脂層とを積層してなる配線基板であって、該絶縁樹脂層を貫通してなる1以上の金属ビアを含み、該絶縁樹脂層は、粒子状及び/又は繊維状の補強成分を含み、該金属ビアと該絶縁樹脂層との境界面において、該金属ビアは、該補強成分を内部に巻き込んだ強化構造であることを特徴とする。
 補強成分としては、シリカフィラ、ガラス繊維、アラミド繊維、アラミカフィルム等の公知の補強材が挙げられ、これらのうちの1つ又は複数を組み合わせて用いることができる。
 本発明の第2の視点において、本発明に係る配線基板は、1以上の導体配線層と1以上の絶縁樹脂層とを積層して構成され、該絶縁樹脂層を貫通してなる1以上の金属ビアを含み、該金属ビアと該絶縁樹脂層との境界面が、該金属ビアと該絶縁樹脂とがめっきシード層を介さずに直接相互にかみ合う凹凸状の境界断面構造を有することを特徴とする。
 本発明の第3の視点において、本発明に係る電子デバイスは、上記の配線基板を使用して形成されていることを特徴とする。
 本発明の第4の視点において、本発明に係る配線基板の製造方法は、1以上の導体配線層と1以上の絶縁樹脂層とを積層してなり、該絶縁樹脂層は、粒子状及び/又は繊維状の補強成分を含み、該絶縁樹脂層を貫通してなる1以上の金属ビアを含む配線基板の製造方法であって、該金属ビアと該絶縁樹脂層との境界面において、該金属ビアが該補強成分を内部に巻き込んだ強化構造を形成させることを特徴とする。
 本発明の第5の視点において、本発明に係る配線基板の製造方法は、1以上の導体配線層と1以上の絶縁樹脂層とを積層してなり、該絶縁樹脂層を貫通してなる1以上の金属ビアを含む配線基板の製造方法であって、該金属ビアと該絶縁樹脂層との境界面に、該金属ビアと該絶縁樹脂とがめっきシード層を介さずに直接相互にかみ合う凹凸状の境界断面構造を形成させることを特徴とする。
 本発明の第6の視点において、本発明に係る配線基板の製造方法は、支持板の上に、第1の導体配線層及び絶縁樹脂層を少なくとも各一層形成する工程と、該絶縁樹脂層にビアホールを形成し、該ビアホール内側面の該絶縁樹脂を粗化する工程と、該支持板を給電層として該ビアホール内部にめっきにより金属ビアを形成する工程と、を含むことを特徴とする。
 本発明の第7の視点において、本発明に係る配線基板の製造方法は、上記の配線基板をコア基板として、該コア基板の両面に絶縁樹脂層と導体配線層を交互に形成する工程と、各該導体配線層間を結線する金属ビアを形成する工程とを含むことを特徴とする。
 本発明に係る機能素子内蔵可能な配線基板は、機能素子を内蔵することによって生じる応力や外部からの曲げ応力に対して高強度の、機能素子に直接接続されていない金属ビアを形成することが可能で、金属ビアと絶縁樹脂との間に剥離を生じず、信頼性の高い製品を得ることができる。また、本発明に係る配線基板の製造方法により、配線基板の形成及び機能素子の配線基板への接続を合わせて処理することができ、信頼性の高い配線基板を少ない工数で製造することができる。
本発明の第1の実施例であり、(a)第二種の金属ビアの断面模式図である。(b)マッシュルーム形状の第二種の金属ビアの断面模式図である。 本発明の第2の実施例であり、(a)第一種のビアの断面模式図である。(b)接着用絶縁層を含む第一種のビアの断面模式図である。 本発明の第3の実施例であり、(a)機能素子を含む配線基板の断面模式図である。(b)機能素子の電極と導体配線層をすべて接続した配線基板である。(c)機能素子の電極をテーパ上にした配線基板である。 本発明の実施例4に係る配線基板の断面模式図である。 本発明の実施例5に係る配線基板の断面模式図である。 ソルダーレジストを形成した、本発明の実施例6に係る配線基板の断面模式図である。 機能素子を実装した、本発明の実施例6に係る配線基板の断面模式図である。 ソルダーレジストを用いない場合の、本発明の実施例6に係る配線基板の断面模式図である。 はんだボールを図8とは反対側に設けた、本発明の実施例6に係る配線基板の断面模式図である。 本発明の実施例7に係る、抵抗体等を搭載した配線基板の断面模式図である。 本発明の実施例8に係る、中間層を有する配線基板の断面模式図である。 本発明の実施例9に係る、機能素子のための接着層を有しない配線基板の断面模式図である。 本発明の実施例10に係る、2つの配線基板を積層した配線基板の断面模式図である。 本発明の実施例10に係る、積層基板をさらに積層した配線基板の断面模式図である。 本発明の実施例11に係る、導体配線層を積層した配線基板の断面模式図である。 本発明の実施例11に係る、ボールグリッドを搭載した図15に示す配線基板の断面模式図である。 本発明の製造方法の実施例1に係る、配線基板の製造方法を示す断面模式図である。 本発明の製造方法の実施例2に係る、配線基板の製造方法を示す断面模式図である。 本発明の製造方法の実施例3に係る、配線基板の製造方法を示す断面模式図である。 本発明の製造方法の実施例4に係る、配線基板の製造方法を示す断面模式図である。
1 機能素子
2 接着層
3 (第1の)導体配線層
4 (第2の)導体配線層
5 電極端子(第一種のビア)
7 第二種の金属ビア
8、9、10、11 絶縁樹脂層
12 電子部品
13 無鉛はんだ
14 導体ビア
15 電極パッド
21、22 絶縁樹脂層
23、24 導体ビア
25、26、33 導体配線
31 機能素子
32 導体配線層
34 導体配線層
35 電極端子
38 絶縁樹脂層
40 接着層(絶縁樹脂層)
41 導体配線層
42 絶縁樹脂層
45 はんだもしくは導電性ペーストによるビア
51 ソルダーレジスト層
52 ソルダーレジスト層の開口部
53 はんだボール
55 (めっき)シード層
67 ビアホール
71 導体ビア
81 ガラスクロス
82 シリカフィラ
83 絶縁樹脂層
101 支持板
102、103 配線パターン(導体配線層)
111 機能素子
151、152 導体ビア
301、302 機能素子内蔵配線基板
401 抵抗体
402 誘電体
403 インダクタ
404 金属またはセラミックスによる中間層
410 機能素子内蔵基板
411 大型基板
501 テーパを持つ電極端子
531 はんだボール 
532 アンダーフィル樹脂
 配線基板は、前記絶縁樹脂層と前記金属ビアとの前記境界面が、0.1~5μmの範囲のプロファイル(凹凸高さ)で粗化されていることが好ましい。
 前記絶縁樹脂層と前記金属ビアとの境界面に、金属からなるめっきシード層が形成されていないことが好ましい。
 1以上の機能素子を前記絶縁樹脂層内に含むことができ、また内蔵された前記機能素子の回路面即ち活性面には1以上の電極端子が形成され、該機能素子の活性面に最も近傍に配置する第1の導体配線層と該機能素子の活性面とが、該電極端子を介して結線されていることが好ましい。
 少なくとも1つの前記電極端子の、前記第1の導体配線層に接する部分の電極端子内径が、前記機能素子の活性面に接する部分の電極端子内径より大きいことが好ましい。
 前記機能素子の活性面に形成された前記電極端子が、前記第1の導体配線層との結線部分境界面にめっきシード層を有し、該電極端子側面の前記樹脂層との境界面にはめっきシード層を有しないことが好ましい。
 前記機能素子の活性面とは反対面側に位置する前記配線基板最表面の第2の導体配線層が、該第2の導体配線層の配線表面部を除いて前記絶縁樹脂に覆われていることが好ましい。
 前記第1の導体配線層と前記第2の導体配線層が、前記機能素子から離れて位置する前記金属ビアを介して結線されていることが好ましい。「機能素子から離れて位置する金属ビア」とは、機能素子に直接接続されていないビアである。
 前記金属ビアは、該金属ビアの側面に接する絶縁樹脂との境界面及び前記第2の導体配線層との境界面にはめっきシード層が存在せず、前記第1の導体配線層との境界面にはめっきシード層が存在することが好ましい。
 前記金属ビアが前記第1の導体配線層と結線される箇所において、該金属ビアはその中央部が外周部よりも肉厚で上部が外側に張り出したかさ状部を持つマッシュルーム形状に形成され、かつ前記第2の導体配線層との境界面よりも該第1の導体配線層との境界面での内径のほうが大きなリベット状に形成されていることが好ましい。
 前記配線基板の両面側に前記絶縁樹脂層と前記導体配線層が交互に配置され、各該導体配線間は前記金属ビアを介して結線されていることが好ましい。
 前記樹脂層に、配線基板の機械的強度を増加させるための中間層を含むことができる。また、金属製又はセラミック製の支持板上に、前記絶縁樹脂層を基材として、前記導体配線層及び前記機能素子を積層搭載した構成とすることができる。
 また、上記配線基板の金属ビアの製造方法として、前記絶縁樹脂層のビアホール内側面を粗化し、導体板を給電層とする電解めっき、無電解めっき、又は印刷による導電性ペーストの充填により形成されることができる。また、機能素子を少なくとも1つ搭載し、該機能素子の周囲に絶縁樹脂層を形成する工程を含むことができる。さらに、該機能素子の上に一層以上の第2の導体配線層を形成した後に、該支持板を取り除く工程を含むことができる。
 また、上記配線基板の製造方法は、研磨もしくは研削により該金属ビア上部を平坦化するとともに、該機能素子の電極端子部分直上の前記絶縁樹脂を除去する工程をさらに含むことができる。
 また、上記製造方法において、前記支持板が予め離型層を形成したものであり、製造工程中に該支持板が該離型層より取り除かれることが好ましい。
 また、上記製造方法において、前記支持板が、銅、鉄、チタン、ニッケル、クロム、アルミニウム、パラジウム、コバルトのいずれかひとつ以上の金属元素を含むことが好ましい。
 機能素子を内蔵した、本発明に係る配線基板の外形は、内蔵される機能素子より外形が大きいがために、機能素子の電極端子の配線ルールを基板表裏において拡大し、続く機能素子内蔵基板と電子デバイスとの接続において作業性、及び信頼性の優れた実装が可能になる。
 機能素子としては、Si、GaAs、LiTaO、LiNbO、水晶等に配線形成した半導体またはSAWフィルターまたは薄膜機能素子等や、コンデンサ、抵抗、インダクタなどのチップ部品、プリント基板、フレキシブル基板等に配線形成をしたものが好適に使用されるがそれらに限定されない。支持板としてはシリコン、ガラス、アルミナ、ガラスセラミックス、窒化チタン、窒化アルミ等のセラミクス、銅、ステンレス、鉄、ニッケル等の金属、厚いポリイミド、エポキシ等の有機樹脂が好適に用いられるがそれらに限定されない。
 機能素子から離れた位置に形成される(即ち機能素子に直接接続されない)第二種のビアは、めっき法により金、銀、銅、ニッケル等の導体金属を使用形成する場合、レーザにより絶縁樹脂層にビア開口部を設けた後、デスミア処理によって、樹脂残渣を除去し、ビア内の絶縁樹脂表面も0.1~5μmのプロファイルで粗化する。このときプロファイルが0.1μm以下であれば、めっきによって形成されるビア金属との間で密着強度の上昇が見られない。また5μmより大きいプロファイルでは、樹脂成分を破壊し、樹脂表面の強度が脆弱になってしまうため、めっき金属と絶縁樹脂の間にクラックが発生してしまう。また配線のライン幅とライン間の距離(ライン/スペース)が15μm/15μm以下の狭ピッチの配線の形成が困難となる。
 本発明に係る金属ビアの製造方法としては、支持板を給電層としてビア開口部内を電解めっきすることで金属を充填させるフィルドビアなどが好適に使用されるがそれらに限定されない。ビアの開口方法は、UV-YAG、COレーザ等が好適に使用されるが、それらに限定されない。また、絶縁樹脂層を感光性とすることで、露光現像によりビアを開口することができる。
 機能素子の電極端子(即ち機能素子上に電極として直接形成されるビア、「第一種のビア」ともいう。)と機能素子から離れて(側面に)形成される第二種のビアを絶縁樹脂層から表面へ露出させる方法は、研削または研磨によって内部の第一種及び第二種のビアを同時に基板表面へ露出させることが可能である。
 本発明において、表面に露出している導体配線部分の形成は、銅、ニッケル、金、銀、Sn-Agはんだ等が用いられる。たとえば導体配線を銅メッキにより形成する場合、無電解めっき、スパッタリングでのシード層形成と電解めっき、又は印刷処理とリフロー等を施すことで、好適に形成することができるが、導体配線表面の材質はこれらに限定されない。本発明に係る配線基板に内蔵された機能素子側面に位置するビア金属に関しても、銅、ニッケル、金、銀、Sn-Agが好適に使用できるがこれらに限定されない。めっきによりビア金属を形成可能であるが、印刷により導電性ペーストを印刷した後に、高温処理してビア内の金属を一体物とすることも可能である。
 本発明における、機能素子に形成された電極端子(第一種のビア)は、銅、ニッケル、金、銀等からなる円柱状のポストと呼ばれるものや、Sn-Agはんだ等のボール上のものや、Auや銅等からなるスタッドバンプ等が好適に使用されるがそれらに限定されない。
 また、本発明に係る機能素子内蔵可能な配線基板の最表面には、表面に露出させる導体配線部分を制限し、導体配線の酸化を防ぐ目的や、はんだを使用した実装時に導体配線間でショートが発生するのを防ぐため、必要な箇所のみ開口部を設けたソルダーレジスト層を好適に形成することが可能である。さらにその開口部に露出した導体配線に銅、ニッケル、金、銀、Sn-Agはんだ等、無電解めっき、電解めっき、印刷処理等を施すことで、酸化防止や、はんだ濡れ性に優れた導体配線の形成が可能となる。
 なお本発明に係る配線基板は、多層配線化のために、両面に絶縁層と導体配線層を交互に形成し導体配線間がビアを介して結線された状態とするビルドアップを施すことも可能である。そのような多層化された配線基板や、ダイシングにより個片化の後、別の回路基板、機能素子へ実装された電子部品や、機能素子を内蔵した配線基板を更に内蔵した基板も本発明の請求範囲内となる。
 以下に本発明の実施例を、図面を参照して詳細に説明する。
(実施例1)
 図1(a)、(b)に本発明の第1の実施例を示す。図1(a)、(b)は、本発明に係る配線基板内に配置された、第二種の金属ビア(即ち機能素子電極以外のビア)7の断面構造を示す。図1(a)では、電解めっきにより形成された銅による金属ビア7の上面が凹凸10μm以下の平坦度で、且つ絶縁樹脂層8の上面とは高さ±5μm以下の誤差で同一平面にあり、(めっき)シード層55を介して(第1の)導体配線層3と結線されている。シード層55はTiを30~200nmの厚さ、Cuを200~400nmの厚さの順で、スパッタ装置により順次形成した。また金属ビア7の下部には(第2の)導体配線層4が結線され、金属ビア7と導体配線層4との間にシード層は存在しない。異材との境界面を持たないため、金属ビア7と導体配線層4の接続部分は優れた信頼性を維持していることを、温度サイクル試験や高温高湿度試験、曲げ試験により確認した。
 金属ビア7の側面で絶縁樹脂層8と接する界面は、0.1~5μmのプロファイル(高低差、凹凸)にて樹脂界面が粗化されており、樹脂表面に形成された微細な凹凸部分にビア金属が入り込んだ状態となっており、優れた密着強度を実現することができる。これだけでも十分強度を高くすることができるが、図1に示すように補強材を含む絶縁樹脂を用いる場合には、さらに、絶縁樹脂に含まれる無機補強材、例えばガラスクロス81やシリカフィラ82を巻き込んで金属ビア7が形成されているため、さらに金属ビア7と密接に接合されて、優れた密着強度を維持することが可能となり、3次元方向に対しても変形に強い、優れた信頼性の配線基板を得ることが可能となった。
 図1(b)は、金属ビア7の上面中心が10μm以上金属ビア7の上面端部より肉厚となるマッシュルーム状に形成されており、また、絶縁樹脂層8の開口部よりもマッシュルーム形状のかさの部分0.1~10μm程度が大きい形状となっている。そのマッシュルーム状構造の上にめっきシード層55を介して導体配線層3が形成されている。このマッシュルーム形状のかさの部分が、絶縁樹脂層8に形成された金属ビア7をリベットの機能を果たすため、z軸方向への曲げに対して、優れた信頼性を得ることが出来ることを-55℃~125℃の熱サイクル試験により確認した。図1(a)と同様に、金属ビア7の下部には導体配線層4が結線され、金属ビア7と導体配線層4との間にシード層は存在しない。なお、金属ビア7の側面で絶縁樹脂層8と接する界面の性状については、図1(a)で説明したものと同様である。
 第二種の金属ビアをマッシュルーム状とした場合であっても、マッシュルーム形状は突出した形となるが、そのほかの機能素子内蔵基板表面は、平坦となる。その場合には、Z軸方向の曲げに対する信頼性を高めることが出来て、マッシュルーム形状の高さを、上に供給する絶縁樹脂層の高さ以下とすることで、高密度な多層配線をビルドアップで形成可能となる。
 図1に示すように、金属ビア7と絶縁樹脂層8との境界面にはめっきシード層がない。従って従来技術のようにめっきシード層を設ける場合に生じやすいボイドが発生しないため、構造欠陥の少ない信頼性の高い構造とすることができる。この構造は、後述の製造方法で好適に製造することができる。
(実施例2)
 図2(a)、(b)に第2の実施例を示す。図2(a)は、絶縁樹脂層8に内蔵された機能素子1の電極パッド15の上に形成された電極端子5と導体配線層3とが、(めっき)シード層55を介して結線された、本発明に係る配線基板の構造断面図を示す。絶縁樹脂層8としては、味の素ファインテクノ(株)製、「ABF-GX」や日立化成工業(株)製「GEA-679FG」等の市販されているプリプレグを使用した。また、硬化前が液状の日立化成工業(株)製「PIMEL」、新日鐵化学株式会社製「V-259PA」(商品名)、住友ベークライト株式会社製「スミレジン CRC-8300」(商品名)を使用しての形成も可能であった。
 電極端子5は、銅めっきにより高さ5μm~50μmで形成した。めっきシード層55は導体配線層3の底部と絶縁樹脂層8上部の間に位置し、その同一表面上で電極端子5と導体配線層3の間にもめっきシード層55が存在する。シード層55としては、絶縁樹脂層8側から導体配線層3底部の間にTiを30~200nmの厚さ、Cuを200~400nmの厚さの順で、スパッタ装置により順次形成した。ここで、シード層55は同様にCr層とCu層の組み合わせやPd層とCu層、Ti層とCu層の組み合わせで順次スパッタ処理により形成することも可能であった。またシード層55は、無電解Cuめっきを使用しても形成可能であり、その場合、置換めっきを行うために、若干量のPdやSnが含まれる。
 なお、シード層55に接する絶縁樹脂層8の上面と、電極端子5の上面は高さ±5μm以下の誤差で同一平面にあるようにする。このような構造にすることで、電極端子5と導体配線層3は変位点が少ない平面における接続構造となり、高い製品信頼性を得ることが可能となる。また、導体配線層3の形成工程では、電極端子5の露出部と絶縁樹脂層8の表層とが同一平面上にある状態で配線形成することによって、めっきレジストパターンの露光現像が容易となり、導体配線層3と電極端子5は、位置精度の優れた結線が可能となる。
 シード層55を形成する前処理としては、通常KMnO、NaMnO等を使用したデスミア処理により、絶縁樹脂層8、及び露出している電極端子5の表面を粗化するため、通常10μm以下程度の表面粗さを持つことになるが、この粗化処理を行うことで、絶縁樹脂層8とシード層55、導体配線層3の間の密着強度を強めることが可能となり、製品の信頼性を高めることが可能となる。
 導体配線層3は、Cuを5~25μmの厚みで形成した。また不活性な金属が必要な場合としては、Auを使用した。さらに、Cuで配線形成した場合、そのままでも使用できるが、酸化防止のために表面をNiとAuの無電解めっき処理を行った。表面実装に応じて、Sn、Sn-Ag、Sn-Ag-Cuはんだを導体配線層3の表面にペースト印刷と、リフロー処理で供給した。導体配線層3を形成後は、配線パターン以外の余分なシード層55を、薬剤による化学エッチングや、IBE(Ion Beam Etching)により機械的にエッチングすることで、導体配線層3を回路として使用した。
 図2(b)は、図2(a)の絶縁樹脂層8とシード層55の密着強度をさらに高めるため、絶縁樹脂層8上にシード層との密着強度の強い絶縁樹脂層83を形成した構造を示している。絶縁樹脂層83を使用する場合、電極端子5の研削により一度露出した部分の開口を保つため、絶縁樹脂層83は、COやUV-YAGレーザでの加工性に優れたものか感光性タイプの樹脂であることが望ましい。
 絶縁樹脂層83上には図2(a)の場合と同様にCrとCu、またはTiとCuを順次スパッタリングすることによってシード層55を形成した。この絶縁樹脂層83の開口径は、電極端子5の直径よりも小さくすることで、通常の電極端子5の端子間に引ける配線本数を、増やすことが可能となり、基板全体の体積の収縮が可能となった。
(実施例3)
 図3(a)、(b)、(c)に本発明に係る配線基板の第3の実施例を示す。図3(a)、(b)、(c)は、基材としての絶縁樹脂層8に機能素子1を内蔵する、本発明に係る配線基板の断面構造図を示している。GaAs、シリコンを基材とした機能素子1の上下に1層ずつ1~20μmの厚みで銅メッキによる第1の導体配線層3と第2の導体配線層4が形成されている。機能素子1の銅からなる電極端子5と導体配線層3の間は、図2(a)または(b)に示すように結線されている。金属ビア7と導体配線層3の間は、図1(a)、(b)の様に結線され、金属ビア7と絶縁樹脂層8の側面も図1(a)、(b)のように密着されている。基板1の電極端子面とは反対側の第2の導体配線層4の高さは、絶縁樹脂層8表面より0~20μm埋没して(即ち表面高さが絶縁樹脂層8の表面よりも低くなって)おり、導体配線層4側面は絶縁樹脂層8に覆われており、導体配線層4の外表面は絶縁樹脂層8に覆われていない。
 図3(a)の場合には、電極端子5の一部のみが、導体配線層3に結線されている例を示し、この場合には、内蔵された機能素子1に、他の機能素子を電極端子5を介して直接接続することが可能となった。特に、他のデバイスが機能素子1の電極端子5と同じピッチの電極端子を有するチップの場合には、フリップチップ接続により、Sn-Agの鉛フリーはんだを介して、機能素子1と活性面を向かい合わせて他のデバイスと接続することが可能となり、信頼性が高いと同時に、5GHz以上の速い伝送スピードでの2つの機能素子間の信号伝達が可能となった。
 図3(b)の場合には、電極端子5をすべて導体配線層3に結線しており、この場合には、導体配線層3での配線回路にて並び替えて、拡大、縮小された配線ピッチでの他の機能素子との接続が可能となる。本技術においては、50μmピッチの電極端子5を持つ機能素子1を導体配線層3でピッチ拡大することで、100μmピッチの電極パッドを形成し、他の100μmピッチの電極端子を持つデバイスと接続することで、高い信頼性と、5GHz以上での2つの機能素子間の高速伝送を可能とした。
 図3(c)の場合には、機能素子1の電極端子501にテーパが存在し、本テーパは、機能素子1の側面に位置する第二種の金属ビア7と同じ方向となっている。電極端子501にテーパが存在することによって、導体配線層3と機能素子1の間の絶縁樹脂層8内に電極端子501は楔を打つように形成されているため、樹脂の熱膨張によっても、電極端子501と絶縁樹脂層8の間で剥離が起こらず製品の信頼性を高めることが可能となった。また図1と同様に、電極端子501の側面も0.1~5μmのプロファイルでの微細な凹凸を形成することで、電極端子501の金属と絶縁樹脂層8の間の密着強度を高めることが可能となり、さらに信頼性を高めることが可能となる。
 図3(a)、(b)、(c)ともに、機能素子1の電極端子5、501とは反対側の面は、ダイアタッチメントフィルムと呼ばれる、半硬化樹脂なる接着層2によって機能素子1と導体配線層4とが接続されている。このことにより、機能素子1が発熱する場合には、導体配線層4を通して熱を外に逃がすことが出来て、製品の信頼性向上を得ることができる。
 また、導体配線層4が、直上に機能素子が搭載される部分について、機能素子1の外形が8mm×8mmの場合には、電極端子5と反対面の外形に近い配線パターン、もしくは機能素子1の外形より大きな面積のパターン8.5mm×8.5mmを形成しておくことで、より効率の高い放熱効果を得ることが出来ることを確認し、同時に基板外側からの衝撃から機能素子1を保護する役割も果たし、信頼性の高い、回路基板構造を形成することが可能となった。機能素子1を保護する効果は機能素子の厚みが200μm以下の場合に大きく、基板曲げによる応力で機能素子1に局所的な応力が掛かることを抑制し、機能素子1の割れ等による破壊から防ぐことが出来ることを確認した。
 このように機能素子の放熱を促すため、機能素子内蔵基板の放熱用の配線パターンを設け、かつ放熱パターンは、基板の配線材料と機能素子の間に熱膨張係数の差により発生する応力を緩和するよう自在に設計可能であるため、製品の高信頼化が可能となる。
 さらには、導体配線層4が、パターンを形成しているが故に、通常の放熱板などの大面積の金属一体物を機能素子チップ裏面に貼り付けたパッケージより、適所に絶縁樹脂層8が露出する部分を設けているため、機能素子と導体配線層4の間に材質の熱膨張係数差により発生する応力を緩和しやすく、本発明により形成された機能素子内蔵基板は半導体パッケージとして用いた場合に、信頼性が高く超寿命な製品とすることが可能であることを確認した。
 導体配線層3、4に関しては、メッキ法、印刷法による銅、ニッケル、金、銀、無鉛はんだなどの一種類以上を使用することが好適に考えられるが、それらに限定されない。
 絶縁樹脂層8については、エポキシ、ポリイミド、液晶ポリマー等をベースとしたものが好適に使用されるが、それらに限定されない。また、絶縁樹脂層8の内部に高強度化や、高速伝送性向上を目的として、アラミド不職布、アラミドフィルム、ガラスクロス、シリカフィルムを含有材として好適に使用可能であるが、絶縁樹脂への含有材料はそれらに限定されない。またこれら絶縁樹脂層8は、金属ビア7との境界面において相互にからみあうことが可能で、基板曲げ等の応力に対して優れた信頼性を発揮することが出来る。本実施例においては、絶縁樹脂層8は、エポキシ基材で内部にガラスクロスを含有したもの、及びアラミド不織布を含有したもの、及びアラミドフィルムを使用したものを用いた。またポリイミドも使用できることを確認した。
 ダイアタッチメントフィルムとしては、リンテック(株)社製「LE-4000」(商品名)、「LE-5000」(商品名)、日立化成工業(株)社製「DF402」(商品名)いずれも使用可能であることを確認した。機能素子1の直上に設けられた、導体配線層3に直接電子部品を実装することで、これらの電子部品と機能素子1の電極端子5の間の距離を短くし、優れた高速電気特性を得ることが可能となった。
 機能素子1の直上に設けられた、導体配線層3に直接電子部品を実装することで、これらの電子部品と機能素子1の電極端子5の間の距離を短くし、優れた高速電気特性を得ることが可能となる。絶縁樹脂層8は一種類の樹脂で機能素子内蔵基板の基材として使用することも可能であるが、本発明では、樹脂の層数、種類を制限しないために、樹脂層を積層して絶縁樹脂層8とすることも出来る。積層による樹脂層を分けることで、基板表面に近い樹脂層は、外部からの曲げ応力や、クラックの抑制に強いやわらかい樹脂とし、機能素子1に近い絶縁樹脂は、熱膨張係数を機能素子1に近づけることで、樹脂と機能素子間に発生するクラックを抑制し、信頼性を高めることが可能となる。
(実施例4)
 図4に本発明の第4の実施例を示す。各層の厚みを10~500μmとした有機絶縁樹脂層8、10、11を基材として、機能素子が内蔵された回路基板構造を示している。シリコン、ガラス、ポリイミドを基材として、蒸着薄膜による抵抗、キャパシタ、インダクタ回路を形成した機能素子1の上下に1層ずつ銅による導体配線層3と導体配線層4が形成されている。最上面が銅からなる機能素子1の電極端子5と導体配線層3の間は図2(a)または(b)に示すようにシード層55を介して結線されている。また、金属ビア7と導体配線層3の間が、図1の(a)、(b)の様に結線され、金属ビア7と絶縁樹脂層8の側面も図1(a)、(b)のように密着されている。機能素子1の電極端子5が配列している側と反対面は、エポキシ基材の接着層2を介して、導体配線層4の直上に設けられた絶縁樹脂層10に接着されている。導体配線層4は、外部表面を除いて全体が絶縁樹脂層10に覆われており、絶縁樹脂層10の表面より内側に配線が形成されている。
 上下の導体配線層3と4は、ビア内部にめっき銅やSn-Ag系粉末を含む導電性ペーストにより充填した金属ビア7を介して結線されている。本発明では、絶縁樹脂の層数、種類を制限する必要はなく、絶縁樹脂層8、絶縁樹脂層10、絶縁樹脂層11の三層を使用している。このように絶縁樹脂層を分けることで、基板表面に近い絶縁樹脂層10、11は、ポリイミド系樹脂や、エポキシ系樹脂として、外部からの曲げ応力や、クラックの抑制に強いやわらかい樹脂とし、機能素子1に近い絶縁樹脂層8は、ガラスクロスや、ガラスフィラ、アラミド不織布、アラミドフィルムを含有した有機樹脂とし、熱膨張係数を機能素子1に近づけることで、樹脂と機能素子間に発生するクラックを抑制し、信頼性を高めることが可能となった。
 また、絶縁樹脂層を分けることにより、耐熱温度の高い樹脂と低い樹脂、コストの高い樹脂と低い樹脂の組み合わせで使用することが可能となり、製品信頼性の向上と同時に、低コスト化を実現することが可能となる。有機絶縁樹脂層8、10、11の厚みは、内蔵する機能素子の厚みに応じて変化させることが可能である。絶縁樹脂層9のように機能素子の電極端子外周に予め絶縁層が設けられている場合には、絶縁樹脂層9と密着の良い樹脂が絶縁樹脂層11として選択可能となる。樹脂層の組み合わせ数に関しては、三層に限定されず、製造工程の中で樹脂層を多層に積み重ねることが可能である。
 また本構造が、図3(b)の構造と異なる効果を得られるのは、絶縁樹脂層10を接着層2と導体配線層4の間に存在させることで、動作時の発熱量の低い機能素子1を内蔵する場合に、機能素子1の直上と直下の基板表面に、導体配線層3、導体配線層4の二つの導体配線パターンを形成できるということである。これらの本発明による機能素子内蔵基板の表面に露出した導体配線パターン上に電子部品の表面実装や、半導体フリップチップ接続等が可能となり、実装に基板面積を有効活用可能で、基板面積を小さくすることが出来て、製品の小型化に貢献できる。
(実施例5)
 図5には、本発明による第5の実施例であり、有機絶縁樹脂層8を基材とする機能素子1が内蔵された回路基板構造を示している。機能素子1の上に1層、厚み10μmの銅による導体配線層3が形成され、機能素子1の下に2層、厚み10μmの銅による導体配線層41と厚み10μmの銅による導体配線層4が形成されている。シリコン基材による機能素子1の電極端子5と導体配線層3の間はシード層55を介して結線されている。機能素子1の電極端子5が配列している側と反対面は、接着層2を介して導体配線層4の直上に設けられた導体配線層41に接着されている。導体配線層3と導体配線層41の間が機能素子1の側面に位置する銅による金属ビア7を介して結線され、導体配線層41と導体配線層4の間が銅による導体ビア71を介して結線されている。さらに、導体配線層4の高さは、絶縁樹脂層8よりも低くなっており、導体配線層4の側面は絶縁樹脂層8に接しているが、導体配線層4表面は絶縁樹脂層8で覆われていない。
 本発明においては、機能素子1の上下面に位置する導体配線層数を自由に設定することが可能となる。導体配線層41を導体配線層4の直上に設けることで、グランド等の設計自由度増大による良好な電気特性を得ることが可能となった。銅配線を多面積で使用することで良好な放熱性を得ることが可能となった。さらに、銅による導体配線層4の機能素子直下部分に回路パターンが有る場合に、導体配線層41の機能素子搭載位置を機能素子外形より大きく平坦なパターンを形成することで、良好な機能素子チップ搭載性が得られた。
(実施例6)
 図6、7、8、9は、本発明による第6の実施例を示す。図6は、有機絶縁樹脂層8、10、11を基材として機能素子1を内蔵した基板の表裏にソルダーレジスト層51を形成した構造を示している。機能素子1の上下に1層ずつ導体配線層3と導体配線層4が形成され、機能素子の電極端子5と導体配線層3の間が図2(a)または(b)に示すようにシード層55を介して結線されている。金属ビア7と導体配線層3の間は、図1(a)、(b)の様に結線され、金属ビア7と絶縁樹脂層8の境界面も図1(a)、(b)のように密着されている。上下の導体配線層3と4の間は、ビア内部に金属や導電性ペーストにより充填した金属ビア7を介して結線されている。機能素子1の電極端子5が配列している側と反対面は、導体配線層4の直上に設けられた絶縁樹脂層10に接着されている。また、導体配線層4の高さが、絶縁樹脂層10表面より低くなっており、導体配線層4に位置する各々導体配線層側面は絶縁樹脂層10に覆われているが、導体配線層4表面は絶縁樹脂層10に覆われていない。
 ソルダーレジストは、液状のソルダーレジストを使う場合には印刷法、又はスピンコート法により供給され、ドライフィルムのソルダーレジストを使用する場合にはラミネート法によって供給され、その後、露光現像処理、本硬化を行うことで、厚み2~50μmで必要な開口部52を設けたソルダーレジストを形成した。この開口部52には、図7に示すようにはんだボール53を搭載した後にBall Grid Array(BGA)パッケージとして使用可能であった。
 導体配線層4の基板表面は、図3(b)に示したように、すでに絶縁樹脂層10の表面と同じもしくは窪んだ位置に導体配線面が配置されるため、ソルダーレジスト層51を必要とせず図8に示すように直接はんだボール53を形成することも可能であり、ソルダーレジスト層を形成しない分、コストの低減につながり、且つ、ソルダーレジストと絶縁樹脂層10の間でのクラックの発生を抑制することが可能となる。しかし図7のように、導体配線層3の存在する面においては、電子部品12を表面実装時のリフローで無鉛はんだ13や、第二のLSI、無線素子等の機能素子111のはんだボール531等が溶融することによる導体配線間ショートを防ぐために電極端子部分のみを開口させたソルダーレジスト層51を設けることが望ましいため、基板が薄く、基板の反りを防ぐ場合には、基板表裏構造の対称性を保つため導体配線層4の表面側にもソルダーレジスト層51を設けるのが好ましい。
 更に図9に示すように、はんだボール53が形成された面が図8と反対に機能素子1の電極端子5側の面であっても構わない。この場合には、内蔵された機能素子1の電極端子5と、このパッケージがはんだボール53を介して結線されるマザーボード等の回路基板との間の配線長さを短くすることが可能で、高速電気特性に優れた製品を得ることが可能となる。図6、7、8、9の構造の場合には、図3(b)の場合に絶縁樹脂層8の一種類の樹脂が機能素子内蔵基板の基材として使用されているのに対して、本発明では、樹脂の層数、種類を制限しないために、樹脂層8、樹脂層10、樹脂層11の三層使用している。
 このように樹脂層を分けることで、基板表面に近い樹脂層10、11は、外部からの曲げ応力や、クラックの抑制に強いやわらかい熱膨張係数約60ppm/Kの樹脂とし、機能素子1に近い絶縁樹脂層8は、熱膨張係数を機能素子1に近づけるためシリカフィラとガラスクロスを含有した約30ppm/Kの樹脂を使用し、樹脂と機能素子間に発生するクラックを抑制し、温度サイクル試験や曲げ試験での信頼性を高めることが可能となった。
 また、樹脂層を分けることにより、耐熱温度が200℃以上と高いポリイミド系の樹脂と耐熱温度が180℃以下と低いエポキシ系の樹脂、コストの高い樹脂と低い樹脂の組み合わせで使用することが可能となり、製品信頼性の向上と同時に、低コスト化を実現することが可能となった。有機樹脂層8、10、11の厚みは、内蔵する機能素子の厚みに応じて変化させることが可能である。樹脂層の組み合わせに関しては、三層に限定されない。
 図6に示すように絶縁樹脂層10を機能素子1の裏面を固定する際の接着剤としても用いることが出来る。絶縁樹脂層10をラミネート法によって供給した後、仮硬化させることで、形状を保ち、その上に機能素子1を搭載することにより実現できた。
 また図6、7、8、9の構造の場合には、図3(b)の構造と異なる効果を得られるのは、絶縁樹脂層10を接着層2と導体配線層4の間に存在させることで、動作時の発熱量の低い機能素子1を使用する場合に、機能素子1の直上と直下の基板表裏に、導体配線パターンを形成できるということである。さらにこれらの配線間は、金属ビア7を介して接続されているため、これらの回路基板を縦に積層することが可能となり、高密度な実装体を形成可能である。
 また全てのビアは機能素子1の電極端子5に対して上方からレーザ加工をしているため、ビアのテーパ(ビア底部と上部の内径の大小関係)は同一の方向を向いており、導体配線層4のある基板面に対して、内径が小さく、反対面の導体配線層3のある基板面に対して内径が大きくなるよう設置されている。このとき金属ビア7の底部は、レーザでの加熱によりビア外周樹脂形状が一部10μm程度内径が膨れた状態になることがある。テーパが同一方向であることは、ビア内部を金属めっきする工程において、めっき部分の観察が容易で、良好なめっき状態と不良箇所の判別がつきやすく、製品の品質を高めることが可能となる。
 金属ビア7については、金属ビア7上部の内径に対する高さの比が、1:1より大きくなる場合、無鉛半田ペーストや、導電性ペーストを印刷法により充填させ、熱処理を加えることで、ビア内部の金属粒子間を一体化させることも可能であった。これらの基板両面に設けられた導体配線パターン上に電子部品の表面実装や、半導体フリップチップ接続等が可能となり、実装に基板面積を有効活用可能で、基板面積を小さくすることが出来て、製品の小型化に貢献できた。
(実施例7)
 図10には、本発明による第7の実施例を示す。図10は、有機樹脂層8、10、11を基材として機能素子1が内蔵された配線基板構造を示している。GaAs基材による厚み20μmの機能素子1の上下に、1層ずつ導体配線層3と導体配線層4が形成されている。機能素子1の電極端子5と導体配線層3の間は、Ti及びCuを順次スパッタリングすることによって形成されたシード層55を介して結線されている。金属ビア7と導体配線層3の間は、図1(a)、(b)の様に結線され、金属ビア7と絶縁樹脂層8の境界面も図1(a)、(b)のように結線されている。上下の導体配線層3と4の間は、ビア内部に金属や導電性ペーストを充填した金属ビア7を介して結線されている。機能素子1は、電極端子5が配列している側と反対面で導体配線層4に接着層2を介して接着されている。導体配線層4の高さは、絶縁樹脂層8表面より約5μm低くなっており、導体配線層4側面は絶縁樹脂層8に覆われているが、導体配線層4表面は絶縁樹脂層8に覆われていない。また、導体配線層3よりも一層上にさらに導体配線層32を配置し、導体配線層3との間は導体ビア151を介して接続されている。
 図10では、本機能素子内蔵基板の導体配線層3及び導体配線層3よりも一層上に位置する導体配線層32の一部には、チタン窒化物やチタン酸化物にて抵抗体401を形成し、また、タンタル酸化物や、ストロンチウム・チタン酸化物での誘電体402を形成し、また、スパイラル形状または、ミアンダー形状によるインダクタ403を含む配線基板構造を示している。
 実施例7にかかわらず、本機能素子内蔵基板の導体配線層3及び導体配線層3よりも一層上に位置する導体配線層32の一部には、Cu、W、Cr、Pt、Ni、Zn、Fe、Al、C、Mn、Ir、Ti、N、Oの何れか一つ以上の元素を含む抵抗体が存在し、また、Mg、Ti、Sr、Ba、Ca、Zn、Al、Ta、Si、Au、N、Oのいずれか一つ以上の元素を含む誘電体が存在し、また、スパイラル形状または、ミアンダー形状によるインダクタを含む機能素子1が内蔵されることができる。
 ここで本発明では、導体配線層32より機能素子1の電極端子5へと結線している導体ビア152の底部には、シード層55と異なるシード層が設けてあっても構わない。また、これらの抵抗体、誘電体、インダクタが機能素子1の電極端子5とは反対面に形成されても構わない。本発明においては、上記の抵抗体、誘電体、インダクタのうち、いずれか一つ以上含むことにより、基板に内蔵もしくは基板に表面実装により搭載する受動素子の体積を減らすことが可能で、且つ優れた電気特性を得ることが出来る。さらに、LSI上に形成することでQ値が小さくなるために困難なインダクタの形成も本発明による機能素子内蔵基板では容易に形成できるため、小さな体積での高機能化を得ることが可能となる。
 図10に示す本発明に係る機能素子内蔵基板には、ソルダーレジスト層を形成して使用することも可能であり、またコア基板として機能素子が内蔵された層の両面に複数の導体配線層と絶縁樹脂層を設けることも可能となり、高機能な多層配線基板とすることも出来る。
(実施例8)
 図11には、本発明による第8の実施例を示す。図11は、有機絶縁樹脂層8を基材として、機能素子1の側面に金属またはセラミックスによる中間層404を設けた機能素子内蔵配線基板構造を示している。機能素子1の上下に1層ずつ導体配線層3と導体配線層4が形成されている。機能素子の電極端子5と導体配線層3の間は、図2(a)または(b)に示すようにシード層55を介して結線されている。金属ビア7と導体配線層3の間は、図1(a)、(b)の様に結線され、金属ビア7と絶縁樹脂層8の側面も図1(a)、(b)のように密着されている。機能素子1は、電極端子5が配列している側と反対面で導体配線層4に接着層2を介して接着されている。また導体配線層4の高さが、全て絶縁樹脂層8の表面と同じ、もしくは低くなっており、導体配線層4側面は絶縁樹脂層8に覆われているが、導体配線層4表面は絶縁樹脂層8に覆われていない。
 ここで、中間層404は、基板に強度を与えるためのもので、製品の信頼性を高めることが出来る。ここでは、内蔵する機能素子1の厚みに応じて、0.05mm~0.3mmのステンレスSUS304やコバール合金系を使用した。この中間層へ、導体配線層3、4よりCuめっきビアを介して結線する(図示せず)ことで、グランド層として用いることができ、優れた電気特性を得ることが出来た。さらに機能素子1の発熱量が大きい場合には、中間層を金属とすることで優れた放熱特性のある機能素子内蔵基板とすることが可能となる。また、中間層404をSiO、Al等からなるセラミックス基板で形成した場合には、そのセラミックス基板内部に複数の導体配線層を形成しておくことで、更に多層の機能素子内蔵基板を得ることが可能であった。
 機能素子1の電極端子5と導体配線層3の間が図2(a)または(b)の第2の実施例に示すように結線することにより、さらに配線間の結線位置精度、及び構造としての製品信頼性を高めることが可能となる。図11に示す機能素子内蔵基板には、ソルダーレジスト層を形成して使用することも可能であり、またコア基板として、サブトラクティブ工法により機能素子が内蔵された層の両面に複数の導体配線層と絶縁樹脂層を低コストで設けることも可能となり、高機能な多層配線基板とすることができた。
(実施例9)
 図12は、本発明に係る第9の実施例であり、有機(絶縁)樹脂層8、10、11を基材とする機能素子内蔵配線基板構造を示している。機能素子1の上下に1層ずつ導体配線層3と導体配線層4が形成されている。機能素子の電極端子5と導体配線層3の間は図2(a)または(b)に示すようにシード層55を介して結線されている。金属ビア7と導体配線層3の間は、図1(a)、(b)の様に結線され、金属ビア7と絶縁樹脂層8の側面も図1(a)、(b)のように密着されている。上下の導体配線層3と4の間は、ビア内部に金属めっきや導電性ペーストを充填した金属ビア7を介して結線されている。機能素子1の電極端子5が配列している側と反対面は、導体配線層4の直上に設けられた絶縁樹脂層10に直接接着されている。また導体配線層4の高さは、全て絶縁樹脂層10表面と同じ、もしくは低くなっており、導体配線層4側面は絶縁樹脂層10に覆われているが、導体配線層4表面は絶縁樹脂層10に覆われていない。
 図12の構造の場合には、図3(b)の場合に接着層2を介して、絶縁樹脂層10に機能素子1が接着されていたのに対し、接着層2を介さずに機能素子1を絶縁樹脂層10に接着している。絶縁樹脂層10自体が樹脂であるがために、硬化前の半硬化の状態で、機能素子1の電極端子5と反対面を直接絶縁樹脂層10に熱を加えながら、加圧搭載することで、絶縁樹脂層10は熱により流動性を増して、機能素子1と密着することが可能となる。このことにより、約2~40μmの厚みを持つ接着層2が必要なくなり、内蔵基板の薄化を実現できる。また、絶縁樹脂層10を機能素子1と導体配線層4の間に存在させることで、動作時の発熱量の低い機能素子1を内蔵する場合に、機能素子1の直上と直下の基板表裏に、導体配線パターンを形成できる。
 これらの導体配線パターン上に電子部品の表面実装や、半導体フリップチップ接続等が可能となり、実装に基板面積を有効活用可能で、基板面積を小さくすることが出来て、製品の小型化に貢献できる。また全てのビアのテーパは同一の方向を向いており、導体配線層4のある基板面に対して、内径が小さく、反対面に対して内径が大きくなるよう設置されている。
 さらに、図12では、機能素子1の片側にある活性面に電極端子5が設けられているが、機能素子と導体配線層3の電極ピッチを調整している。予め、銅ポストと呼ばれる円柱状の銅や、一層以上の導体配線層を絶縁樹脂層9の内部に形成したものが好適に使用されるが、形状や材質に限定されるものでは無い。また、これらの電極端子は、表面に露出している場合には、素子搭載時のアライメントマークが明瞭に見えるため、搭載精度を高める効果があるが、電極端子が絶縁樹脂層9の中に埋没している場合には、表面保護の効果があり、機能素子搭載時の作業性が良くなる効果がある。
 ここで絶縁樹脂層9は、日立化成工業社製「PIMEL」、DOW社製「BCB」、などを使用したが、限定されるものではない。また、本発明による回路基板構造では、樹脂内部に機能素子を内蔵する場合、コスト低減のために絶縁樹脂層9を機能素子上に形成せずに使用することも可能である。
(実施例10)
 図13、14に本発明の第10の実施例を示す。図13は、機能素子1、31をおのおの内蔵した配線基板を、接着層40による絶縁性接続及び導電性ペーストを充填したビア45による導電性接続により、機能素子を縦に積層した、複数個の機能素子を内蔵した配線基板断面図である。
 ここで、接着層40は、エポキシ、ポリイミド、液晶ポリマー等をベースとしたものが好適に使用されるが、それらに限定されない。また、接着層40の内部に高強度化や、高速伝送性向上を目的として、アラミド不職布、アラミドフィルム、ガラスクロス、シリカフィルムを含有材として好適に使用可能であるが、絶縁樹脂層への含有材料はそれらに限定されない。本実施例においては、接着層40は、通常のプリプレグ材と呼ばれるエポキシ樹脂にガラスクロスを含有したものや、エポキシ樹脂にアラミド不織布を含有したもので、厚みが20~80μmのものを使用した。また、ここで使用する導電性ペーストは、Sn、Ag、Bi、Cu等の元素から成る粉末を含み、組成は、製造プロセスの温度に応じて決定した。また、粉末粒径もビア45の内径が100μm以下である場合に、10μm以下とした。
 機能素子1、31のように、内蔵されている機能素子の電極端子面が互いに向き合うように設置されている場合、機能素子間の最短距離での電気的接続を得ることが可能となり、高速電気特性に優れた機能素子内蔵回路基板とすることが出来る。
 また、図13の構造では基板両面において、本発明による製造方法によって高さ位置が均一な導体配線表面が露出するため、この回路基板は半導体のフリップチップ接続などに使用する場合に、LSIと回路基板導体配線間の距離を常に一定とすることが可能で、信頼性の高い接続が可能となる。
 また、基板両面に位置する導体配線層4、34は、これらの配線層を取り囲む絶縁樹脂層42、10より窪んだ位置で表面を露出しており、後に表面にはんだ金属等でBGAボールや他のデバイスを接合する際にソルダーレジスト層を形成する必要がなく、低コストな製品形成が可能となる。
 更に本実施例では、図13のように本発明に係る機能素子内蔵基板同士を接続しているが、機能素子内蔵基板と別の多層配線基板を接着層40による絶縁性接続及び導電性ペーストによるビア45による導電性接続により接続することによっても本発明に係る機能素子内蔵基板を形成することが可能である。
 また、これらの貼り合せにより接続される機能素子内蔵基板を含む二つの基板の外形の寸法は異なってもよく、効率的に機能素子内蔵基板の体積を小さくすることが可能となる。
 図14は、図13に示したような、本発明に係る機能素子を二つ積層した状態の機能素子内蔵基板301、302をさらに、接着層40による絶縁性接続及び導電性ペーストによるビア45による導電性接続により積層した機能素子内蔵の配線基板構造断面を示している。このように、複数種類の機能素子を積層することにより、各々の機能素子間の配線長を短くすることが可能であり、表面実装では二次元方向へしか、電子部品を実装できなかった問題を克服し、三次元的に高集積な電子部品の実装を可能とする。
(実施例11)
 図15、図16に本発明の第11の実施例を示す。図15は、機能素子内蔵基板をコア基板として用いて、両面にセミアディティブ工法を用いて、厚み10~80μmの絶縁樹脂層21、22を、厚み1~25μmの銅による導体配線25、26間に存在させて、導体配線間は導体ビア23、24等により結線させて積み上げた回路基板構造を示している。この構造は、近年の微細ピッチな機能素子の電極端子配列を、回路基板表面に近づくにつれ拡大させる効果がある。さらには、機能素子を内蔵したコア基板の作製場所と、その後の両面の配線層をビルドアップする場所を別々にすることが可能で、後者は、設備導入等を必要としないため製品コストも安く抑えることが出来る。
 図16は、図15に示した本発明による機能素子内蔵基板を使用して、マザーボードと接続される面に0.5mmピッチのはんだボール53を形成し、反対面には、抵抗、キャパシタからなる電子部品12と機能素子111をはんだ13、531を介して接続したパッケージとしての構造を示している。機能素子1と機能素子111を短距離で結線することで、高速電気特性を向上させることが可能となった。また、3次元的に機能素子を配置することで実装面積を減らし、製品の小型化に貢献することが可能となった。
(製造方法の実施例1)
 図17に、本発明の製造方法の第1の実施例を示す。図17(a)に示すように、先ず銅から成る支持板101にドライフィルム、ワニスのめっきレジストを供給し、露光現像の後にめっき法により、第1のニッケル配線パターン102を厚み0.5~20μmめっきする。このとき配線パターン102は、支持板101がCuやステンレス等の金属の場合にその支持板101をエッチングにより除去する場合、エッチング液に溶けないことが望ましいため、支持板101とは異なる材質が望ましい。また、支持板除去後に表面に露出する金属となるため、金やはんだめっきも好適に利用可能であるが、それらに限定されない。また、更に配線パターン102は、一つのめっき層ではなく、数種類のめっき層から成っても構わない。
 なお、支持板の除去方法が、化学エッチングではなく、機械的に支持板を研磨する場合や応力で支持板を引き剥がす場合などは、配線パターン102は無くても構わない。支持板は、Si、ガラス、アルミニウム、ステンレス、ポリイミド、エポキシ等からなる単材料、または複合材料が好適に使用されるがそれらに限定されない。また、支持板は導電材料でない場合には、スパッタや無電解めっきによりめっきシード金属を供給することで、配線パターン102を形成することが可能となる。
 支持板がエッチング以外の方法で除去する場合には、離型材を予め支持板材料内部に供給する方法が好適に使用されるがそれらに限定されない。例えばガラス、アルミニウム、ステンレス、ポリイミド、シリコン、エポキシ等からなる単材料からなる板に接着された離型層として、二層の銅箔銅箔間に離型層を形成した三井金属鉱業(株)社製キャリア付極薄銅箔「Micro Thin (MT)」シリーズや、住友スリーエム(株)社製の片面離型テープ「PTFEテープ」が支持板として好適に使用できるが、複合の材料からなる支持板は、これらに限定されない。
 その後、めっきレジストを剥離しないか、一度剥離してから新しいめっきレジストによるパターンを形成して第2の銅配線パターン103を5~20μmの厚みでめっき法により形成し、めっきレジストを剥離した。このとき配線パターン103は、配線パターン102上に存在するのが望ましい。配線パターン103は支持板除去後に導体配線層として残るため、金、銅、ニッケル等を使用することが可能であるが、これらに限定されない。この後、絶縁樹脂層と導体配線層を何層か交互に形成しても良い。
 続く工程では、図17(b)のように有機樹脂よりなる厚み10~30μmの接着層2を介して、10~725μmの厚みの機能素子1を配線パターン103の上に加熱と加圧により搭載する。このとき素子が搭載される部分には、ベタの金属エリアが形成されるよう配線パターン103を形成しておくと、支持板を除去後にその部分が放熱板の機能を果たすため望ましいが、それらに限定されない。
 機能素子1にはあらかじめ、円柱状、もしくは多層配線からなる電極端子5が設けられるが、その他Auのスタッドバンプも使用することが可能であり、電極端子5の形状はこれらに限定されない。電極端子5の材質も、Cu、Ag、Ni等からなるがこれらに限定されない。チップ活性面の保護が必要な場合には絶縁樹脂層9を供給してもよい。絶縁樹脂層9がある場合、搭載前の機能素子の電極端子5は絶縁樹脂層9に埋蔵して表面に露出していなくても構わない。
 続く工程では、図17(c)のように機能素子1の電極端子5側より何層かの絶縁樹脂層8、10、11を、樹脂がエポキシを含む場合にはピーク160~300℃の真空プレスにより供給し硬化させる。樹脂の供給方法は、真空ラミネート法や、真空プレス法が好適に使用されるがそれらに限定されない。樹脂がポリイミドを含む場合には、スピンコート法などでのポリイミド樹脂を供給後、ピーク温度200~400℃での樹脂キュアを行った。供給導体配線層や支持板の上に絶縁樹脂層を供給する際、配線層や支持板の表面を粗化することで、絶縁樹脂層との間の密着強度を高めることが可能である。このとき、支持板を除去した際に本機能素子内蔵の基板が反らないように、適正な樹脂層の組み合わせ及び樹脂層の配置順番とする。
 また機能素子の側面に配置する絶縁樹脂層8に、ガラスクロスや、アラミドフィルム等の流動しない物質が含まれる場合には、予め機能素子の外形と同じか、一方向の幅が0.1~1mm程度大きいくらいに、絶縁樹脂層8に空間を設けておき、樹脂中に含有されるプレス時に流動しない物質が機能素子を破損しないようにする。絶縁樹脂層の層数、種類は、内蔵される機能素子1の厚みや基板全体の厚みに応じて適宜判断することが可能であり、単層であっても構わない。
 続く工程において、図17(d)に示すように、COレーザ、UV-YAGレーザ等のレーザ装置を用いて、支持板付近の配線パターン103までφ20~800μmのビアホール67を開口した。その後、薬液によりデスミア処理を行い、ビアホール内部の配線パターン103上の樹脂残渣を取り除くと同時に、ビアホール67の内側面樹脂表面を粗化する。この際、絶縁樹脂層8、10、11に含有されるガラスクロスや、シリカフィラ、アラミド不織布、アラミカフィル等の補強材が表面に露出してもかまわない。
 希硫酸等の弱酸により開口部の配線パターン103を洗浄した後、支持板101を給電層として、銅の電解めっきを行い、図17(e)のようにビアホール内に金属ビア7を形成した。銅のほか、金、ニッケル等で電解めっきすることも可能である。この際、絶縁樹脂層11上にめっきレジスト層形成の必要が無いため、低コストなプロセスとすることが可能となる。電解めっきによりビアホール67内部は、全体がめっき金属により充填されたフィルドビア7となり、図17(e)のようにビアの上部にめっき金属がマッシュルーム状に形成されてもかまわない。
 金属ビア7は、予め内側面が粗化された絶縁樹脂層にめっきされるため、アンカー効果を生み、優れた密着性を得ることが可能となる。さらに、予め樹脂層表面より露出していた絶縁樹脂層8、10、11に含有されるガラスクロスや、シリカフィラ、アラミド不織布、アラミカフィル等の補強材を巻き込んでめっきされるため、金属ビア7と樹脂内部の補強材の間においても高い接合強度が得られ、本機能素子内蔵基板は、曲げ等の応力に対して、高い信頼性を得ることが出来る。
 金属ビア7の形成には、無電解めっき法による金属充填や、導電性ペーストを印刷法により充填してもよいが、これらの方法に限定されない。いずれの場合においても、絶縁樹脂との間にアンカー効果や樹脂補強材との接合により高い密着強度を達成できる。
 続く工程において、図17(f)のように研削、もしくは研磨法を使用して、機能素子1の電極端子5の絶縁樹脂層11からの頭だしを行い、同時に機能素子チップの側面位置に設けられた金属ビア7の周辺の絶縁樹脂層11より露出した部分を削り、金属ビア7の上部を絶縁樹脂層11と同じ高さとすることが可能となる。このため、金属ビア7、絶縁樹脂層11、電極端子5の全てが実質的に同一平面上に位置する。続く図17(g)で希硫酸等の弱酸により配線部を洗浄した後、銅、ニッケルなどの無電解めっきまたは、Ti層とCu層の組み合わせ、Pd層とCu層の組み合わせ、Cr層とCu層の組み合わせからなる一つ以上の元素による一層以上の導電層をスパッタ処理により形成し、続く配線めっき工程でのシード層とした。その他、シード層を構成する元素は、図13に示した抵抗体、インダクタ、キャパシタの形成工程が効率的に進行するよう選択した。シード層を無電解めっきや、スパッタリングによって供給した後に、導体配線層3形成時に、めっきレジスト形成のために露光を行うが、全平面範囲で焦点が合うため、ライン幅5μmでの微細な導体配線層3の形成が高歩留まりで可能となった。
 1~30μm厚みでの銅めっき配線形成後は、めっきレジストを除去し、配線部分以外のシード層をエッチングすることで、導体配線層3を完成させた。本発明においては、支持板除去前に導体配線層3に絶縁樹脂層、導体配線層を交互に形成することで、機能素子1上にビアを介して接続される多層配線を得ることも出来る。導体配線層3は、印刷法によっても形成可能である。その場合にも、全平面範囲において、平坦であるがために、印刷性に優れ、微細な配線を形成可能となる。金属ビア7をバフ研磨等によりマッシュルーム状の上部分を完全に削らない場合には、配線の微細度は平坦な場合と比べると小さくなるが、マッシュルームのかさの部分が樹脂層に対するリベットの役割をなし、信頼性をさらに向上させることが出来る。支持板を放熱板として用いる場合には、図17(g)の状態でのパッケージとして使用可能で、本発明の請求する範囲となる。
 続く工程で、図17(h)のように支持板101が銅の場合、銅エッチング液によりエッチングし、ニッケルからなる導体配線層102を露出させた。このとき、導体配線層102の高さは、外周を取り囲む絶縁樹脂層10と同じ高さとなっている。
 このままでも配線基板として使用可能であるが、続く工程図17(i)のようにニッケル導体配線層102を支持板101のエッチングに用いた薬液と異なる、ニッケルリムーバー等によりエッチングし、銅からなる導体配線層103を表面に露出させることも可能である。このとき導体配線層103の高さは、周りを取り囲む絶縁樹脂層10より0.5~20μm程度低い位置となり、絶縁樹脂層10がソルダーレジスト層として機能することも可能になる。また、導体配線層102、103は支持板上に順次配線形成された配線層であり、表面には樹脂層が介在せず、信頼性の高い実装の可能な回路基板を得ることが可能となる。また、導体配線層102、103の高さは、元々、支持板上に形成されたものであるため均一で、半導体素子、BGAパッケージ等で表面実装される電極端子として好適に使用でき、高い接続信頼性を得ることが出来る。このようにして得られた機能素子内蔵回路基板は、このままの状態で使用可能であるが、更に任意の開口部を持つ5~30μmの厚みのソルダーレジスト層を形成し、次の多デバイスの表面実装に使用することも可能である。
 また、図17(h)、または(i)の状態をコア基板として、両面にアディティブ法、セミアディティブ法、サブトラクティブ法を用いて、絶縁樹脂層と交互に導体配線層を形成することで図18のように、多層配線を持つ機能素子内蔵基板を形成することが可能であった。さらには、図17(h)、または(i)の状態の機能素子内蔵基板は、ダイシングにより個片化の後に他の回路基板への内蔵も可能である。
 支持板は、金属以外でも、ガラス、シリコン、セラミックスによる剛性の有る材料であれば、導体元素によるシード層をスパッタ蒸着することで、めっきにより導体配線層4が形成可能で、支持板を除去する工程においては、エッチング以外に、研磨によっても、離型層での引き剥がしによっても支持板を取り除くことが出来ることを確認した。
 このように、支持板の上に配線層と絶縁樹脂層を形成し、その上に機能素子を搭載する方法を用いることで、機能素子が脆い場合においても、搭載時の加圧によっても支持板が変形しないため機能素子に応力がかからず、機能素子自体を破損するおそれがない。また、その後に絶縁樹脂層をプレスやラミネートにより機能素子外周に供給する場合においても、下地に支持板があるため、機能素子を破損せずに信頼性の製品が製造可能となる。
 さらに、支持板を付けたままの状態で、機能素子の端子部分上方に配線層をビルドアップできるため、絶縁樹脂層の総厚みが薄い場合でも、ビア加工やめっき工程、絶縁層の供給工程にて、基板の曲げによる機能素子の破損が無く、作業性に優れる。また、機能素子よりも下に位置する支持板部分の配線層へ直接ビアを形成することが可能で、支持板が金属である場合には、無電解めっきをせずにアスペクト比の大きいビア内部のめっき加工を可能とし、電気的信頼性を高めることが出来る。
 さらに支持板を除去して基板裏面の導体配線を露出させるため、支持板のあった部分は樹脂表面より導体配線表面が同じ位置か、低くくぼんだ形状とすることが出来て、ソルダーレジストを供給せずに表面樹脂がソルダーレジストの役割を果たすことが出来て、且つ支持板の上に形成された導体配線の高さは均一となり、その位置は、半導体等の実装時に高い接続信頼性を得ることが出来る。尚、支持板を除去する際に機能素子面が表面に露出することはなく、工程中でのチップの損傷を防ぐことが可能となる。
 さらに機能素子の接続と同時に回路基板を形成できるため、従来の回路基板形成に必要な費用と機能素子の実装に必要な費用の合計であるパッケージ全体として形成するために必要なコストを削減することを可能とする。そして3次元的に機能素子を短距離で回路基板内に集積することを可能とし、高速伝送特性に優れた製品を形成可能とする。
 本発明においては内蔵される機能素子の電極端子を研削により、表面に露出させた上で、配線形成を行うために、めっきレジストパターンの露光現像は、その電極端子を直接確認しながら、露光現像ができるため、優れた位置精度での配線形成が可能となり、高仕様の配線回路が形成可能となる。
 また、内蔵された機能素子とは直接接続されていない金属ビアの形成も、レーザ等によりビアホールを形成した後に、デスミア処理、またアッシャー処理を行なうことでビアホール底部の支持板上の樹脂残渣を無くし、同時に、ビアホール内部の樹脂面を荒らすことが可能となる。このような手段の場合、絶縁樹脂内部にガラスクロス、アラミド繊維、アラミカフィルム、シリカ樹脂等の信頼性を上昇させるための添加物を混入させることが出来る。また、デスミア処理等により、それらの添加物は表面に露出するため、続くビア内部の支持板を給電層としたビア内部めっきにより、めっき金属中に絶縁樹脂及び絶縁樹脂への添加物を内部に巻き込む金属ビアを形成可能で、金属は周辺樹脂層、添加剤の間に高強度を持つ複合材料とすることが出来て、高信頼性を得ることが出来る。
 また、第二種のビアホール内の金属めっきは、支持板から給電することで樹脂厚みよりも高くめっきした場合にマッシュルーム上の金属ビアとすることが出来る。その場合、マッシュルーム状めっき金属は絶縁樹脂上にリベットとしての役割も同時に果たすことが出来るようになるため、更なる高信頼性を得ることが可能となる。
 機能素子の電極端子(第一種の金属ビア)と、金属めっき後の第二種のビアを同時に研削、もしくは研磨することにより、本発明による機能素子内蔵基板は優れた平坦性を有する。内蔵された機能素子の電極端子側とは反対面も支持板上での配線形成を行っているため、支持板除去工程を含む製造工程終了後は、機能素子内蔵基板の表裏両面に位置する配線層、及び絶縁層が平坦な構造となることも大きな特徴である。このように表面が平坦であることは、製品の平坦性も高めることが可能であり、後に多層配線をビルドアップする場合には、優れた配線密度を持たせることが可能となる。
(製造方法の実施例2)
 図18には、本発明の製造方法の第2の実施例を示す。図17(a)と同様に図18(a)で0.1~1.0mm厚みの銅支持板101上に厚み2~20μmのニッケル配線層102、5~30μmの銅からなる導体配線層103をそれぞれめっき法により形成した。その後、図18(b)のように厚み10~500μmのポリイミドまたはエポキシ成分を含む絶縁樹脂層10を真空ラミネーターにより供給し硬化した。絶縁樹脂層10は、支持板を除去した後も機能素子直下に存在するため、導体配線層102、103を放熱板効果を狙った広い面積のベタパターンと出来るほか、導体配線層102、103をBGAパッドや、フリップチップ用パッドなどの任意の配線形状とすることが可能となる。樹脂層の供給は、真空ラミネーターや、真空プレス機、ロールコーター、スピンコート、カーテンコートなどが好適に使用されるがそれらに限定されない。
 続く工程で、図18(c)のようにシリコン基材からなる機能素子1をエポキシ系ダイアタッチメントフィルムによる厚み10~30μmの接着層2を介して、絶縁樹脂層10へ接着した。図18(b)の直後に絶縁樹脂層10をキュアしても良いが、絶縁樹脂層10を半硬化の状態で、機能素子1をマウントすれば、接着層2を使用せずに機能素子チップの搭載が可能となる。
 その後、図18(d)のように絶縁樹脂層8、金属又はセラミックスによる中間層404を真空ラミネーターや、真空プレスにより供給し、図18(e)のように機能素子1外周を樹脂で封止した。このとき、絶縁樹脂層の数は、1種類以上で使用可能で、支持板除去後に本回路基板の反りの少ないよう設計するのが製品の信頼性、製造時の作業性に望ましく、機能素子の材料との密着性に関しても考慮して絶縁層の配置を決めることが望ましい。
 また機能素子の側面に配置する絶縁樹脂層8に、ガラスクロスや、アラミドフィルム等の流動しない物質が含まれる場合には、予め機能素子の外形と同じか一方向の幅が0.1~1mm程度大きいくらいに、絶縁樹脂層8に空間を設けておき、樹脂中に含有されるプレス時に流動しない物質が機能素子を破損しないようにする。
 金属(SUS340等)又はセラミックスによる中間層404は、基板の厚みが薄い場合に、反りを防ぎ、剛性を高めるために効果がある。この中間層404は、導体配線層103と導体配線層3の間を結線するためのビアホール67形成のため、レーザ加工を以後の工程で行うために、予め、任意の場所にビアホール67の外形より大きなサイズで化学エッチングにより開口し、機能素子1の存在箇所となる部分には機能素子1の外形と同じか大きいサイズで開口した。
 続く工程において、図18(f)に示すように、COレーザ、UV-YAGレーザ等のレーザ装置を用いて、支持板付近の導体配線層103へφ50~800μmのビアホール67を開口した。その後、薬液によりデスミア処理を行い、ビアホール内部の導体配線層103上の樹脂残渣を取り除くと同時に、ビアホール67の内側面樹脂を粗化した。この際、絶縁樹脂層8、10に含有されるガラスクロスや、シリカフィラ、アラミド不織布、アラミカフィル等の補強材が表面に露出してもかまわない。
 続く工程において、図17(e)のように銅の電解めっきを行うことで、ビアホール内に金属ビア7を形成した。この際、絶縁樹脂層11上にめっきレジスト層形成の必要が無いため、低コストなプロセスとすることが可能となる。電解めっきによりビアホール67内部は、全体がめっき金属により充填されたフィルドビア7となり、図17(e)のようにビアの上部にめっき金属がマッシュルーム状に形成されてもかまわない。
 金属ビア7は、予め粗化された絶縁樹脂層にめっきされるため、アンカー効果を生み、優れた密着性を得ることが可能となる。さらに、予め樹脂表面より露出していた絶縁樹脂層8、10に含有されるガラスクロスや、シリカフィラ、アラミド不織布、アラミカフィル等の補強材を巻き込んで図1のようにめっきされるため、金属ビア7と樹脂内部の補強材の間においても高い接合強度が得られ、本機能素子内蔵基板は、曲げ等の応力に対して、高い信頼性を得ることが出来た。金属ビア7の形成には、無電解めっき法による金属充填や、導電性ペーストを印刷法により充填してもよいが、これらの方法に限定されない。絶縁樹脂との間にアンカー効果や樹脂補強材との接合により高い密着強度を達成できる。
 続く工程において、図18(g)のように研削法を使用して、機能素子1の電極端子5の絶縁樹脂層8からの頭だしを行い、同時に機能素子チップの側面位置に設けられた金属ビア7の周辺絶縁樹脂層8より露出した部分を削り、金属ビア7の上部を絶縁樹脂層8と同じ高さとすることが可能であった。このため、金属ビア7、絶縁樹脂層8、電極端子5の全てが基板自体の反りを除き凹凸5μm以下の同一平面上に位置するため、続く図18(h)でのシード層を無電解めっきや、スパッタリングによって供給した後に、導体配線層3形成時に、めっきレジスト形成のために露光を行うが、全平面範囲で焦点が合うため、微細な導体配線層3の形成が高歩留まりで可能となった。
 めっき後は、めっきレジストをアルコール等で除去し、配線部分以外のシード層を酸等によりエッチングすることで、導体配線層3を完成させる。導体配線層3は、印刷法によっても形成可能である。その場合にも、全平面範囲において、平坦であるがために、印刷性に優れ、微細な配線を形成可能となる。金属ビア7をバフ研磨等によりマッシュルーム状の上部分を完全に削らない場合には、配線の微細度は平坦な場合と比べると小さくなるが、マッシュルームのかさの部分が樹脂層に対するリベットの役割をなし、信頼性をさらに向上させることが出来る。支持板を放熱板として用いる場合には、図18(h)の状態でのパッケージとして仕様可能で、本発明の請求する範囲となる。
 その後の工程は、図17(h)、(i)と同様で図18(i)で銅支持板101を除去し、図18(j)で、導体配線層103を表面に露出させる。このようにして得られた機能素子内蔵回路基板は、このままの状態で使用可能であるが、更に任意の開口部を持つ5~30μmの厚みのソルダーレジスト層を形成し、次の多デバイスの実装に使用することも可能である。このとき片面のみにソルダーレジスト層を形成しても良い。また、図18(i)、(j)の状態をコア基板として、両面にアディティブ法、セミアディティブ法、サブトラクティブ法を用いて、絶縁樹脂層と交互に導体配線層を形成することが可能であった。
(製造方法の実施例3)
 図19には、本発明の製造方法の第3の実施例を示す。図19(a)に示すように予めガラス支持板101上にソルダーレジストとなる絶縁層51としてエポキシ系樹脂5~30μmを供給し、その上の層に無電解銅めっきの後、銅による導体配線層4を5~30μm厚みで形成する。その後、めっきレジストを除去し、配線パターン以外の無電解銅めっきをエッチングにより取り除く。
 その後の図18(c)~(h)の工程と同様に、絶縁樹脂層10の供給、電極端子5を形成した機能素子1を搭載後、絶縁樹脂層8、11により機能素子1の外周を樹脂封止し、金属ビア7を介して、導体配線層3、4を接続することで、機能素子1と本発明による回路基板とを電気的に接続した。
 続く工程において、図19(b)に示したようにガラス支持板101を薬液や、研磨により除去することで、表面に絶縁樹脂層51を露出させ、レーザ等で本回路基板に実装される部品の電極端子に該当する部分に対してビア(開口部)52を開口することで、ソルダーレジストとして機能させる。さらに反対面にもビアを開口した5~30μmの厚みのソルダーレジスト層51を形成する。
 続いて、図19(c)のようにはんだボール53を片側のソルダーレジストの開口部に搭載し、このようなはんだボール付きの機能素子内蔵基板をパッケージとして複数個を、各パッケージの電気検査後、図19(d)用に積層とリフローすることで、二つ以上の機能素子内蔵基板を積層することが可能となった。機能素子を複数種類、複数個を一つの機能素子内蔵基板にするのと比較して、一つの機能素子を内蔵した機能素子内蔵基板を積層する場合には、全体の体積が大きくなるが、途中工程において、各機能素子内蔵基板の電気検査が出来るメリットがあり、製品の歩留まりを高めることが可能となった。
(製造方法の実施例4)
 図20には、本発明の製造方法の第4の実施例を示す。Si基材からなる機能素子1を内蔵した本発明に係る機能素子内蔵基板410を使用して、更に複数の本発明による機能素子内蔵基板を大型基板411に内蔵することで、機能素子内蔵基板410をコア層として、片面、もしくは両面に、銅配線層と絶縁層を一層以上設けた。この時、機能素子1の各々の電極端子5と結線されて端子ピッチを拡大された配線層が機能素子内蔵基板410の表面に存在するように設計しておくことで、機能素子内蔵基板410は、大型基板411に内蔵する前に、電気検査が容易となった。また、電気検査により良品と判定された直径8インチの機能素子内蔵基板410のみを500mm×600mmサイズの大型基板411に内蔵することで、製品の歩留まりを高めることが可能となり、大型板での処理工程により製造コストを下げることが可能となった。
 さらに、機能素子内蔵基板410は、内蔵される機能素子1の電極端子5から直接配線層を結線しているために、微細配線パターンの形成可能なセミアディティブ法を用いて形成したが、500mm×600mmサイズの大型基板411での配線工程では、微細配線ではないがコストの低いサブトラクティブ工法での配線形成が可能であるという場合には、2箇所での製造に分業することが作業上効率的で、歩留まりの良く、低コストな製品量産が可能となった。
 以上、本発明を上記実施形態に即して説明したが、本発明は上記実施形態の構成にのみ制限されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。

Claims (26)

  1.  1以上の導体配線層と1以上の絶縁樹脂層とを積層してなる配線基板であって、
     該絶縁樹脂層を貫通してなる1以上の金属ビアを含み、
     該絶縁樹脂層は、粒子状及び/又は繊維状の補強成分を含み、
     該金属ビアと該絶縁樹脂層との境界面において、該金属ビアは、該補強成分を内部に巻き込んだ強化構造であることを特徴とする、配線基板。
  2.  前記絶縁樹脂層と前記金属ビアとの前記境界面が、0.1~5μmの範囲のプロファイル(凹凸高さ)で粗化されていることを特徴とする、請求項1に記載の配線基板。
  3.  前記絶縁樹脂層と前記金属ビアとの前記境界面に、金属からなるめっきシード層が形成されていないことを特徴とする、請求項1又は2に記載の配線基板。
  4.  1以上の導体配線層と1以上の絶縁樹脂層とを積層してなる配線基板であって、
     該絶縁樹脂層を貫通してなる1以上の金属ビアを含み、
     該金属ビアと該絶縁樹脂層との境界面が、該金属ビアと該絶縁樹脂とがめっきシード層を介さずに直接相互にかみ合う凹凸状の境界断面構造を有することを特徴とする、配線基板。
  5.  1以上の機能素子を前記絶縁樹脂層内に含むことを特徴とする、請求項1~4のいずれか一に記載の配線基板。
  6.  内蔵された前記機能素子の回路面即ち活性面には1以上の電極端子が形成され、該機能素子の活性面の最も近傍に配置する第1の前記導体配線層と該機能素子の活性面とが、該電極端子を介して結線されていることを特徴とする、請求項5に記載の配線基板。
  7.  少なくとも1つの前記電極端子の、前記第1の導体配線層に接する部分の電極端子内径が、前記機能素子の活性面に接する部分の電極端子内径より大きいことを特徴とする、請求項6に記載の配線基板。
  8.  前記機能素子の活性面に形成された前記電極端子が、前記第1の導体配線層との結線部分境界面にめっきシード層を有し、該電極端子側面の前記樹脂層との境界面にはめっきシード層を有しないことを特徴とする、請求項6又は7に記載の配線基板。
  9.  前記機能素子の活性面とは反対面側に位置する前記配線基板最表面の第2の前記導体配線層が、該第2の導体配線層の配線表面部を除いて前記絶縁樹脂に覆われていることを特徴とする、請求項6~8のいずれか一に記載の配線基板。
  10.  前記第1の導体配線層と前記第2の導体配線層が、前記機能素子から離れて位置する前記金属ビアを介して結線されていることを特徴とする、請求項9に記載の配線基板。
  11.  前記金属ビアは、該金属ビアの側面に接する絶縁樹脂との境界面及び前記第2の導体配線層との境界面にはめっきシード層が存在せず、前記第1の導体配線層との境界面にはめっきシード層が存在することを特徴とする、請求項10に記載の配線基板。
  12.  前記金属ビアが前記第1の導体配線層と結線される箇所において、該金属ビアはその中央部が外周部よりも肉厚で上部が外側に張り出したかさ状部を持つマッシュルーム形状に形成され、かつ前記第2の導体配線層との境界面よりも該第1の導体配線層との境界面での内径のほうが大きなリベット状に形成されていることを特徴とする、請求項11に記載の配線基板。
  13.  前記配線基板の両面側に前記絶縁樹脂層と前記導体配線層が交互に配置され、各該導体配線間は前記金属ビアを介して結線されていることを特徴とする、請求項1~12のいずれか一に記載の配線基板。
  14.  前記樹脂層に、前記配線基板の機械的強度を増加させるための中間層を含むことを特徴とする、請求項1~13のいずれか一に記載の配線基板。
  15.  金属製又はセラミック製の支持板上に、前記絶縁樹脂層を基材として、前記導体配線層及び前記機能素子が積層搭載されていることを特徴とする、請求項5~14のいずれか一に記載の配線基板。
  16.  請求項1~15のいずれか一に記載の配線基板を使用して形成されていることを特徴とする電子デバイス。
  17.  1以上の導体配線層と1以上の絶縁樹脂層とを積層してなり、該絶縁樹脂層は、粒子状及び/又は繊維状の補強成分を含み、該絶縁樹脂層を貫通してなる1以上の金属ビアを含む配線基板の製造方法であって、
     該金属ビアと該絶縁樹脂層との境界面において、該金属ビアが該補強成分を内部に巻き込んだ強化構造を形成させることを特徴とする、製造方法。
  18.  1以上の導体配線層と1以上の絶縁樹脂層とを積層してなり、該絶縁樹脂層を貫通してなる1以上の金属ビアを含む配線基板の製造方法であって、
     該金属ビアと該絶縁樹脂層との境界面に、該金属ビアと該絶縁樹脂とがめっきシード層を介さずに直接相互にかみ合う凹凸状の境界断面構造を形成させることを特徴とする、製造方法。
  19.  前記金属ビアは、前記絶縁樹脂層のビアホール内側面を粗化し、導体板を給電層とする電解めっき、無電解めっき、又は印刷による導電性ペーストの充填により形成されることを特徴とする、請求項17又は18に記載の製造方法。
  20.  支持板の上に、第1の導体配線層及び絶縁樹脂層を少なくとも各一層形成する工程と、
     該絶縁樹脂層にビアホールを形成し、該ビアホール内側面の該絶縁樹脂を粗化する工程と、
     該支持板を給電層として該ビアホール内部にめっきにより金属ビアを形成する工程と、
     を含むことを特徴とする、配線基板の製造方法。
  21.  前記ビアホール内部に前記金属ビアを形成する工程が、めっきに替えて印刷により導電性ペーストを充填させて金属ビアを形成する工程であることを特徴とする、請求項20に記載の製造方法。
  22.  機能素子を少なくとも1つ搭載し、該機能素子の周囲に絶縁樹脂層を形成する工程と、
     該機能素子の上に一層以上の第2の導体配線層を形成した後に、該支持板を取り除く工程と、
     をさらに含む、請求項20又は21に記載の製造方法。
  23.  研磨もしくは研削により前記金属ビア上部を平坦化するとともに、前記機能素子の電極端子部分直上の前記絶縁樹脂を除去する工程をさらに含む、請求項22に記載の製造方法。
  24.  前記支持板が予め離型層を形成したものであり、製造工程中に該支持板が該離型層より取り除かれることを特徴とする、請求項20~23のいずれか一に記載の製造方法。
  25.  前記支持板が、銅、鉄、チタン、ニッケル、クロム、アルミニウム、パラジウム、コバルトのいずれかのひとつ以上の金属元素を含むことを特徴とする、請求項20~24のいずれか一に記載の製造方法。
  26.  請求項1~15のいずれか一に記載の配線基板をコア基板として、該コア基板の両面に絶縁樹脂層と導体配線層を交互に形成する工程と、各該導体配線層間を結線する金属ビアを形成する工程とを含むことを特徴とする、配線基板の製造方法。
PCT/JP2009/064757 2008-08-27 2009-08-25 機能素子を内蔵可能な配線基板及びその製造方法 WO2010024233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/060,990 US8692135B2 (en) 2008-08-27 2009-08-25 Wiring board capable of containing functional element and method for manufacturing same
JP2010526708A JPWO2010024233A1 (ja) 2008-08-27 2009-08-25 機能素子を内蔵可能な配線基板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008218558 2008-08-27
JP2008-218558 2008-08-27

Publications (1)

Publication Number Publication Date
WO2010024233A1 true WO2010024233A1 (ja) 2010-03-04

Family

ID=41721401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064757 WO2010024233A1 (ja) 2008-08-27 2009-08-25 機能素子を内蔵可能な配線基板及びその製造方法

Country Status (4)

Country Link
US (1) US8692135B2 (ja)
JP (1) JPWO2010024233A1 (ja)
TW (1) TWI436717B (ja)
WO (1) WO2010024233A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114774A1 (ja) * 2010-03-18 2011-09-22 日本電気株式会社 半導体素子内蔵基板およびその製造方法
US20120175784A1 (en) * 2008-12-08 2012-07-12 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Vertical Interconnect Structure in Substrate for IPD and Baseband Circuit Separated by High-Resistivity Molding Compound
JP5122018B1 (ja) * 2012-08-10 2013-01-16 太陽誘電株式会社 電子部品内蔵基板
JP2013041633A (ja) * 2011-08-11 2013-02-28 Dainippon Printing Co Ltd サスペンション用基板、サスペンション、素子付サスペンション、ハードディスクドライブ、およびサスペンション用基板の製造方法
JP2015103753A (ja) * 2013-11-27 2015-06-04 Tdk株式会社 Ic内蔵基板及びその製造方法
WO2015156141A1 (ja) * 2014-04-10 2015-10-15 株式会社村田製作所 部品内蔵多層基板
JP2015185773A (ja) * 2014-03-25 2015-10-22 新光電気工業株式会社 配線基板及びその製造方法
CN106783632A (zh) * 2016-12-22 2017-05-31 深圳中科四合科技有限公司 一种三极管的封装方法及三极管
CN106783631A (zh) * 2016-12-22 2017-05-31 深圳中科四合科技有限公司 一种二极管的封装方法及二极管
JP2017135364A (ja) * 2016-01-29 2017-08-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. 印刷回路基板およびこれを具備した電子素子パッケージ
CN108022732A (zh) * 2016-10-28 2018-05-11 三星电机株式会社 电感器、主体及制造电感器的方法
JP2019101630A (ja) * 2017-11-30 2019-06-24 凸版印刷株式会社 タッチパネル
WO2024048713A1 (ja) * 2022-08-31 2024-03-07 京セラ株式会社 印刷配線板及びその製造方法

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195786B1 (ko) 2008-05-09 2012-11-05 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 칩 사이즈 양면 접속 패키지의 제조 방법
JP4833307B2 (ja) * 2009-02-24 2011-12-07 インターナショナル・ビジネス・マシーンズ・コーポレーション 半導体モジュール、端子板、端子板の製造方法および半導体モジュールの製造方法
US8710669B2 (en) * 2009-05-20 2014-04-29 Nec Corporation Semiconductor device manufacture in which minimum wiring pitch of connecting portion wiring layer is less than minimum wiring pitch of any other wiring layer
JP2011096900A (ja) * 2009-10-30 2011-05-12 Fujitsu Ltd 導電体およびプリント配線板並びにそれらの製造方法
WO2011089936A1 (ja) * 2010-01-22 2011-07-28 日本電気株式会社 機能素子内蔵基板及び配線基板
US8232643B2 (en) * 2010-02-11 2012-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lead free solder interconnections for integrated circuits
JP5692217B2 (ja) * 2010-03-16 2015-04-01 日本電気株式会社 機能素子内蔵基板
JP5715835B2 (ja) * 2011-01-25 2015-05-13 新光電気工業株式会社 半導体パッケージ及びその製造方法
US8709933B2 (en) * 2011-04-21 2014-04-29 Tessera, Inc. Interposer having molded low CTE dielectric
US20120286416A1 (en) * 2011-05-11 2012-11-15 Tessera Research Llc Semiconductor chip package assembly and method for making same
US11127664B2 (en) * 2011-10-31 2021-09-21 Unimicron Technology Corp. Circuit board and manufacturing method thereof
US8957518B2 (en) * 2012-01-04 2015-02-17 Mediatek Inc. Molded interposer package and method for fabricating the same
KR20130097481A (ko) * 2012-02-24 2013-09-03 삼성전자주식회사 인쇄회로기판(pcb) 및 그 pcb를 포함한 메모리 모듈
TWI508249B (zh) * 2012-04-02 2015-11-11 矽品精密工業股份有限公司 封裝件、半導體封裝結構及其製法
US9236322B2 (en) * 2012-04-11 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for heat spreader on silicon
WO2014050081A1 (ja) * 2012-09-25 2014-04-03 株式会社デンソー 電子装置
US9035194B2 (en) * 2012-10-30 2015-05-19 Intel Corporation Circuit board with integrated passive devices
JP5285819B1 (ja) * 2012-11-07 2013-09-11 太陽誘電株式会社 電子回路モジュール
US20140167900A1 (en) 2012-12-14 2014-06-19 Gregorio R. Murtagian Surface-mount inductor structures for forming one or more inductors with substrate traces
TWI489176B (zh) 2012-12-14 2015-06-21 Elan Microelectronics Corp 行動電子裝置的螢幕控制模組及其控制器
KR101420543B1 (ko) * 2012-12-31 2014-08-13 삼성전기주식회사 다층기판
KR101995276B1 (ko) * 2013-01-18 2019-07-02 메이코 일렉트로닉스 컴파니 리미티드 부품내장기판 및 그 제조방법
US8884427B2 (en) 2013-03-14 2014-11-11 Invensas Corporation Low CTE interposer without TSV structure
US9165878B2 (en) 2013-03-14 2015-10-20 United Test And Assembly Center Ltd. Semiconductor packages and methods of packaging semiconductor devices
US9087777B2 (en) 2013-03-14 2015-07-21 United Test And Assembly Center Ltd. Semiconductor packages and methods of packaging semiconductor devices
US9119313B2 (en) * 2013-04-25 2015-08-25 Intel Corporation Package substrate with high density interconnect design to capture conductive features on embedded die
KR102031967B1 (ko) 2013-05-07 2019-10-14 엘지이노텍 주식회사 발광 소자 패키지
JP2015028986A (ja) * 2013-07-30 2015-02-12 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
KR101548421B1 (ko) * 2013-08-27 2015-08-28 삼성전기주식회사 다층인쇄회로기판의 제조방법
US9613930B2 (en) * 2013-10-25 2017-04-04 Infineon Technologies Ag Semiconductor device and method for manufacturing a semiconductor device
US9443758B2 (en) 2013-12-11 2016-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Connecting techniques for stacked CMOS devices
US9553059B2 (en) 2013-12-20 2017-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Backside redistribution layer (RDL) structure
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
KR101634067B1 (ko) * 2014-10-01 2016-06-30 주식회사 네패스 반도체 패키지 및 그 제조방법
US9406629B2 (en) * 2014-10-15 2016-08-02 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor package structure and manufacturing method thereof
JP5778331B1 (ja) * 2014-12-26 2015-09-16 古河電気工業株式会社 絶縁電線およびコイル
JP5778332B1 (ja) * 2014-12-26 2015-09-16 古河電気工業株式会社 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
KR102356810B1 (ko) * 2015-01-22 2022-01-28 삼성전기주식회사 전자부품내장형 인쇄회로기판 및 그 제조방법
TWI562299B (en) * 2015-03-23 2016-12-11 Siliconware Precision Industries Co Ltd Electronic package and the manufacture thereof
JP6299657B2 (ja) * 2015-04-22 2018-03-28 京セラドキュメントソリューションズ株式会社 インクジェット記録装置
JP6620989B2 (ja) * 2015-05-25 2019-12-18 パナソニックIpマネジメント株式会社 電子部品パッケージ
US10090241B2 (en) * 2015-05-29 2018-10-02 Taiwan Semiconductor Manufacturing Co., Ltd. Device, package structure and method of forming the same
JP2017017238A (ja) * 2015-07-03 2017-01-19 株式会社ジェイデバイス 半導体装置及びその製造方法
TW201719824A (zh) * 2015-11-20 2017-06-01 恆勁科技股份有限公司 封裝基板
CN106783795A (zh) * 2015-11-20 2017-05-31 恒劲科技股份有限公司 封装基板
DE102016103585B4 (de) * 2016-02-29 2022-01-13 Infineon Technologies Ag Verfahren zum Herstellen eines Package mit lötbarem elektrischen Kontakt
US9875958B1 (en) * 2016-11-09 2018-01-23 International Business Machines Corporation Trace/via hybrid structure and method of manufacture
CN108307581A (zh) 2017-01-12 2018-07-20 奥特斯奥地利科技与系统技术有限公司 具有嵌入式部件承载件的电子设备
US10181447B2 (en) 2017-04-21 2019-01-15 Invensas Corporation 3D-interconnect
WO2018217188A1 (en) * 2017-05-23 2018-11-29 Intel Corporation High density package substrate formed with dielectric bi-layer
US10892671B2 (en) * 2017-07-25 2021-01-12 GM Global Technology Operations LLC Electrically conductive copper components and joining processes therefor
JP2019041041A (ja) * 2017-08-28 2019-03-14 新光電気工業株式会社 配線基板、半導体装置、配線基板の製造方法及び半導体装置の製造方法
US10886263B2 (en) * 2017-09-29 2021-01-05 Advanced Semiconductor Engineering, Inc. Stacked semiconductor package assemblies including double sided redistribution layers
US10849239B2 (en) * 2018-01-19 2020-11-24 Ncc Nano, Llc Method for curing solder paste on a thermally fragile substrate
JP7046639B2 (ja) * 2018-02-21 2022-04-04 新光電気工業株式会社 配線基板及びその製造方法
US11315891B2 (en) * 2018-03-23 2022-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming semiconductor packages having a die with an encapsulant
WO2020121813A1 (ja) * 2018-12-13 2020-06-18 株式会社村田製作所 樹脂基板、電子機器、および樹脂基板の製造方法
US11101226B2 (en) 2019-02-22 2021-08-24 DustPhotonics Ltd. Method for conveying high frequency module and a high-frequency module
US10985118B2 (en) * 2019-02-22 2021-04-20 Xsight Labs Ltd. High-frequency module
JP2021150311A (ja) 2020-03-16 2021-09-27 キオクシア株式会社 半導体装置
US11715699B2 (en) 2020-03-17 2023-08-01 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor devices and methods of manufacturing semiconductor devices
TW202201673A (zh) 2020-03-17 2022-01-01 新加坡商安靠科技新加坡控股私人有限公司 半導體裝置和製造半導體裝置的方法
KR20220001634A (ko) * 2020-06-30 2022-01-06 삼성전기주식회사 인쇄회로기판
JP2023043862A (ja) * 2021-09-16 2023-03-29 方略電子股▲ふん▼有限公司 電子装置
US20240130040A1 (en) * 2022-10-12 2024-04-18 Innolux Corporation Conductive film and test component
CN116417356B (zh) * 2023-06-12 2023-09-05 甬矽半导体(宁波)有限公司 芯片封装方法、芯片封装模块和内埋衬底式芯片封装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235544A (ja) * 1992-02-19 1993-09-10 Ibiden Co Ltd 複合プリント配線板の製造方法
JP2000236150A (ja) * 1999-02-16 2000-08-29 Nec Kansai Ltd 配線基板およびその製造方法
JP2004022999A (ja) * 2002-06-19 2004-01-22 Ibiden Co Ltd 多層化回路基板およびその製造方法
JP2004288795A (ja) * 2003-03-20 2004-10-14 Tdk Corp 電子部品の製造方法および電子部品
JP2005064470A (ja) * 2003-07-30 2005-03-10 Tdk Corp 半導体ic内蔵モジュール及びその製造方法
JP2006332346A (ja) * 2005-05-26 2006-12-07 Tdk Corp 基板、電子部品、及び、これらの製造方法
WO2007126090A1 (ja) * 2006-04-27 2007-11-08 Nec Corporation 回路基板、電子デバイス装置及び回路基板の製造方法
JP2008159973A (ja) * 2006-12-26 2008-07-10 Nec Corp 電子部品モジュールおよびこれを内蔵した部品内蔵回路基板

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044762C (zh) * 1993-09-22 1999-08-18 松下电器产业株式会社 印刷电路板及其制造方法
US5457605A (en) * 1993-11-23 1995-10-10 Motorola, Inc. Electronic device having coplanar heatsink and electrical contacts
US6147869A (en) * 1997-11-24 2000-11-14 International Rectifier Corp. Adaptable planar module
CN1199536C (zh) * 1999-10-26 2005-04-27 伊比登株式会社 多层印刷配线板及多层印刷配线板的制造方法
JP4749563B2 (ja) 2000-02-25 2011-08-17 イビデン株式会社 多層プリント配線板および多層プリント配線板の製造方法
JP4854846B2 (ja) 2000-02-25 2012-01-18 イビデン株式会社 多層プリント配線板の製造方法
JP4854845B2 (ja) 2000-02-25 2012-01-18 イビデン株式会社 多層プリント配線板
JP4656737B2 (ja) 2000-06-23 2011-03-23 イビデン株式会社 多層プリント配線板および多層プリント配線板の製造方法
JP4562881B2 (ja) 2000-08-18 2010-10-13 イビデン株式会社 半導体モジュールの製造方法
JP4931283B2 (ja) 2000-09-25 2012-05-16 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
JP4618919B2 (ja) 2000-12-15 2011-01-26 イビデン株式会社 半導体素子を内蔵する多層プリント配線板の製造方法
US6873529B2 (en) * 2002-02-26 2005-03-29 Kyocera Corporation High frequency module
JP2005150553A (ja) * 2003-11-18 2005-06-09 Ngk Spark Plug Co Ltd 配線基板およびその製造方法
JP2005236039A (ja) 2004-02-19 2005-09-02 Tdk Corp 半導体ic内蔵基板及びその製造方法、並びに、半導体ic内蔵モジュール
TWI269423B (en) * 2005-02-02 2006-12-21 Phoenix Prec Technology Corp Substrate assembly with direct electrical connection as a semiconductor package
JP4016039B2 (ja) 2005-06-02 2007-12-05 新光電気工業株式会社 配線基板および配線基板の製造方法
JP2007096185A (ja) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd 回路基板
US7737368B2 (en) * 2005-09-30 2010-06-15 Sanyo Electric Co., Ltd. Circuit board and method of manufacturing circuit board
JP2007180105A (ja) * 2005-12-27 2007-07-12 Sanyo Electric Co Ltd 回路基板、回路基板を用いた回路装置、及び回路基板の製造方法
JP4476226B2 (ja) * 2006-02-24 2010-06-09 三洋電機株式会社 回路基板および回路基板の製造方法
TWI298941B (en) 2006-04-19 2008-07-11 Advanced Semiconductor Eng Method of fabricating substrate with embedded component therein
JP4758869B2 (ja) * 2006-11-08 2011-08-31 新光電気工業株式会社 半導体装置の製造方法
KR100811034B1 (ko) * 2007-04-30 2008-03-06 삼성전기주식회사 전자소자 내장 인쇄회로기판의 제조방법
JP2009016818A (ja) * 2007-07-04 2009-01-22 Samsung Electro-Mechanics Co Ltd 多層印刷回路基板及びその製造方法
US7893527B2 (en) * 2007-07-24 2011-02-22 Samsung Electro-Mechanics Co., Ltd. Semiconductor plastic package and fabricating method thereof
JP5404010B2 (ja) * 2007-11-22 2014-01-29 味の素株式会社 多層プリント配線板の製造方法及び多層プリント配線板
JP5284146B2 (ja) * 2008-03-13 2013-09-11 日本特殊陶業株式会社 多層配線基板、及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235544A (ja) * 1992-02-19 1993-09-10 Ibiden Co Ltd 複合プリント配線板の製造方法
JP2000236150A (ja) * 1999-02-16 2000-08-29 Nec Kansai Ltd 配線基板およびその製造方法
JP2004022999A (ja) * 2002-06-19 2004-01-22 Ibiden Co Ltd 多層化回路基板およびその製造方法
JP2004288795A (ja) * 2003-03-20 2004-10-14 Tdk Corp 電子部品の製造方法および電子部品
JP2005064470A (ja) * 2003-07-30 2005-03-10 Tdk Corp 半導体ic内蔵モジュール及びその製造方法
JP2006332346A (ja) * 2005-05-26 2006-12-07 Tdk Corp 基板、電子部品、及び、これらの製造方法
WO2007126090A1 (ja) * 2006-04-27 2007-11-08 Nec Corporation 回路基板、電子デバイス装置及び回路基板の製造方法
JP2008159973A (ja) * 2006-12-26 2008-07-10 Nec Corp 電子部品モジュールおよびこれを内蔵した部品内蔵回路基板

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192801B2 (en) * 2008-12-08 2019-01-29 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming vertical interconnect structure in substrate for IPD and baseband circuit separated by high-resistivity molding compound
US20120175784A1 (en) * 2008-12-08 2012-07-12 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Vertical Interconnect Structure in Substrate for IPD and Baseband Circuit Separated by High-Resistivity Molding Compound
US8810008B2 (en) 2010-03-18 2014-08-19 Nec Corporation Semiconductor element-embedded substrate, and method of manufacturing the substrate
JP5423874B2 (ja) * 2010-03-18 2014-02-19 日本電気株式会社 半導体素子内蔵基板およびその製造方法
WO2011114774A1 (ja) * 2010-03-18 2011-09-22 日本電気株式会社 半導体素子内蔵基板およびその製造方法
JP2013041633A (ja) * 2011-08-11 2013-02-28 Dainippon Printing Co Ltd サスペンション用基板、サスペンション、素子付サスペンション、ハードディスクドライブ、およびサスペンション用基板の製造方法
JP5122018B1 (ja) * 2012-08-10 2013-01-16 太陽誘電株式会社 電子部品内蔵基板
JP2015103753A (ja) * 2013-11-27 2015-06-04 Tdk株式会社 Ic内蔵基板及びその製造方法
JP2015185773A (ja) * 2014-03-25 2015-10-22 新光電気工業株式会社 配線基板及びその製造方法
WO2015156141A1 (ja) * 2014-04-10 2015-10-15 株式会社村田製作所 部品内蔵多層基板
US9854680B2 (en) 2014-04-10 2017-12-26 Murata Manufacturing Co., Ltd. Multilayer substrate
JP5967335B2 (ja) * 2014-04-10 2016-08-10 株式会社村田製作所 部品内蔵多層基板
JP2017135364A (ja) * 2016-01-29 2017-08-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. 印刷回路基板およびこれを具備した電子素子パッケージ
CN108022732A (zh) * 2016-10-28 2018-05-11 三星电机株式会社 电感器、主体及制造电感器的方法
US10811182B2 (en) 2016-10-28 2020-10-20 Samsung Electro-Mechanics Co., Ltd. Inductor and method of manufacturing the same
CN106783632A (zh) * 2016-12-22 2017-05-31 深圳中科四合科技有限公司 一种三极管的封装方法及三极管
CN106783631A (zh) * 2016-12-22 2017-05-31 深圳中科四合科技有限公司 一种二极管的封装方法及二极管
JP2019101630A (ja) * 2017-11-30 2019-06-24 凸版印刷株式会社 タッチパネル
JP7062929B2 (ja) 2017-11-30 2022-05-09 凸版印刷株式会社 タッチパネル
WO2024048713A1 (ja) * 2022-08-31 2024-03-07 京セラ株式会社 印刷配線板及びその製造方法

Also Published As

Publication number Publication date
JPWO2010024233A1 (ja) 2012-01-26
TW201018347A (en) 2010-05-01
US20110155433A1 (en) 2011-06-30
US8692135B2 (en) 2014-04-08
TWI436717B (zh) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2010024233A1 (ja) 機能素子を内蔵可能な配線基板及びその製造方法
JPWO2008120755A1 (ja) 機能素子内蔵回路基板及びその製造方法、並びに電子機器
JP4343044B2 (ja) インターポーザ及びその製造方法並びに半導体装置
US20100044845A1 (en) Circuit substrate, an electronic device arrangement and a manufacturing process for the circuit substrate
US7122901B2 (en) Semiconductor device
US7595228B2 (en) Method for manufacturing electronic component-mounted board
JP5703010B2 (ja) 半導体パッケージ及びその製造方法
JP5879030B2 (ja) 電子部品パッケージ及びその製造方法
JP6358431B2 (ja) 電子部品装置及びその製造方法
US8445790B2 (en) Coreless substrate having filled via pad and method of manufacturing the same
TWI670803B (zh) 中介層、半導體裝置、中介層的製造方法及半導體裝置的製造方法
JP6247032B2 (ja) 配線基板、半導体装置及び配線基板の製造方法
KR102032171B1 (ko) 전자 부품 내장 기판 및 그 제조 방법
JP5367523B2 (ja) 配線基板及び配線基板の製造方法
WO2007077735A1 (ja) 半導体搭載用配線基板、その製造方法、及び半導体パッケージ
JP2010232636A (ja) 多層プリント配線板
JP2015053350A (ja) キャパシタ内蔵基板及びその製造方法、キャパシタ内蔵基板を用いた半導体装置
JP2015225895A (ja) プリント配線板および半導体パッケージ、ならびにプリント配線板の製造方法
JP4694007B2 (ja) 三次元実装パッケージの製造方法
KR102449368B1 (ko) 다층 인쇄회로기판
JP5176676B2 (ja) 部品内蔵基板の製造方法
JP4324732B2 (ja) 半導体装置の製造方法
JP2015018988A (ja) キャパシタ内蔵基板及びその製造方法、キャパシタ内蔵基板を用いた半導体装置
JP7052464B2 (ja) 微細配線層付きコアレス基板の製造方法、および半導体パッケージの製造方法
JP2008098202A (ja) 多層配線基板、多層配線基板構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526708

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13060990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809884

Country of ref document: EP

Kind code of ref document: A1