WO2011114774A1 - 半導体素子内蔵基板およびその製造方法 - Google Patents

半導体素子内蔵基板およびその製造方法 Download PDF

Info

Publication number
WO2011114774A1
WO2011114774A1 PCT/JP2011/051295 JP2011051295W WO2011114774A1 WO 2011114774 A1 WO2011114774 A1 WO 2011114774A1 JP 2011051295 W JP2011051295 W JP 2011051295W WO 2011114774 A1 WO2011114774 A1 WO 2011114774A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
surface side
chip
wiring
chip component
Prior art date
Application number
PCT/JP2011/051295
Other languages
English (en)
French (fr)
Inventor
森 健太郎
山道 新太郎
秀哉 村井
菊池 克
中島 嘉樹
大輔 大島
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/635,621 priority Critical patent/US8810008B2/en
Priority to JP2012505548A priority patent/JP5423874B2/ja
Publication of WO2011114774A1 publication Critical patent/WO2011114774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • H01L2224/251Disposition
    • H01L2224/2518Disposition being disposed on at least two different sides of the body, e.g. dual array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73259Bump and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • H05K1/187Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding the patterned circuits being prefabricated circuits, which are not yet attached to a permanent insulating substrate, e.g. on a temporary carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • H05K2203/1469Circuit made after mounting or encapsulation of the components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • the present invention relates to a semiconductor element built-in substrate and a method for manufacturing the same.
  • the technology that is expected to have the highest functionality and performance is the chip stacking technology using TSV.
  • this technology requires the TSV to be formed in an area where there is no LSI circuit, and there are many restrictions on the layout due to the keepout zone, and further logic LSIs tend to be smaller in chip size. There is a problem that it is difficult to increase the density.
  • TSV formation has a problem that the yield rate of TSV formation affects the yield rate of the entire chip including the LSI circuit formation step, whether it is performed before or after the LSI circuit formation step.
  • chip stacking technology that connects chips by wire bonding or solder bumps within a single package can achieve three-dimensionalization with a relatively high yield.
  • connection terminals on the chip are limited to the periphery of the chip, and in the case of connection by solder bumps, it is difficult to stack three or more chips. There is a problem that.
  • package stacking technology such as package-on-package is widely used mainly for mobile phone applications because of its ease of function combination and cost reduction.
  • the pin arrangement of the package mounted on the upper stage is limited to the peripheral, and thus the number of pins of the LSI chip in the lower package is limited.
  • the package stacking technique has a problem that the mounting height is higher than the chip stacking technique.
  • an LSI-embedded substrate in which an LSI chip is built in a package substrate has attracted attention as a technique for realizing a reduction in thickness, size, and number of pins. ing.
  • Patent Document 1 discloses a semiconductor device having a package structure in which a chip is mounted inside a wiring board.
  • the semiconductor device includes a core substrate having a conductor layer that is conductive on the front and back via a through hole, a chip mounted on the core substrate with a circuit surface facing upward, an insulating layer covering the chip, and the chip A wiring on the chip connected to the electrode, wiring on the upper surface side of the package connected to the wiring through a via, and a via connected to the conductor layer on the core substrate on the insulating layer on the side of the chip.
  • an insulating layer is provided on the lower surface side of the core substrate, a via that is electrically connected to the via on the side of the chip is provided on the insulating layer, and wiring that connects to the via is provided on the lower surface side of the package.
  • the semiconductor device described in the above-mentioned patent document has wirings on both surfaces, and vias are provided in the insulating layer on the side of the built-in chip in order to make these conductive. Since the height of the via is determined according to the height of the built-in chip, when the chip is thick, it is necessary to provide a via having a large diameter, and it is difficult to increase the density of the via. This high-density via can be achieved if a high-aspect-ratio via can be formed. However, when forming a via, the higher the aspect-ratio, the more difficult it is to form holes or the filling of conductive material into the holes. It becomes difficult.
  • the via formation process involves many steps such as laser processing, desmear treatment, seed layer formation, resist film formation, resist patterning, plating treatment, resist stripping, and seed layer removal.
  • steps such as laser processing, desmear treatment, seed layer formation, resist film formation, resist patterning, plating treatment, resist stripping, and seed layer removal.
  • the via is formed after the chip is built in, there is a problem that the yield of the via is directly connected to the yield of the chip built-in substrate.
  • An object of the present invention is to provide a small and thin semiconductor element-embedded substrate that can be manufactured at a high yield and a method for manufacturing the same.
  • a wiring board containing a semiconductor element is The semiconductor element; Chip parts, A peripheral insulating layer covering at least an outer peripheral side surface of the semiconductor element and the chip component; Upper surface side wiring provided on the upper surface side of the wiring board; Including lower surface side wiring provided on the lower surface side of the wiring board,
  • the semiconductor element has a terminal on the upper surface side, and the terminal is electrically connected to the upper surface side wiring,
  • the chip component is An upper surface side terminal electrically connected to the upper surface side wiring; A lower surface side terminal electrically connected to the lower surface side wiring;
  • a semiconductor element-embedded substrate is provided that has a through-chip via that penetrates the chip component and connects the upper surface side terminal and the lower surface side terminal.
  • a method of manufacturing a wiring board incorporating a semiconductor element A step of mounting a semiconductor element having a terminal on the upper surface side with its lower surface facing the support surface on the support; Mounting a chip component having terminals on the upper surface side and the lower surface side on the support; Forming a peripheral insulating layer covering the semiconductor element and the chip component; Removing the support; Forming a first wiring electrically connected to a lower surface side terminal of the chip component; Forming a second wiring electrically connected to the terminal of the semiconductor element and the upper surface side terminal of the chip component; A manufacturing method is provided in which the chip component has a through-chip via that penetrates the chip component and connects the upper surface side terminal and the lower surface side terminal.
  • This manufacturing method further includes a step of forming a base insulating layer on the support, and the semiconductor element and the chip component can be mounted on the base insulating layer.
  • the semiconductor element and the chip component can be mounted via an adhesive layer.
  • a method of manufacturing a wiring board incorporating a semiconductor element Forming at least a first wiring on the support; On the support, mounting a semiconductor element having a terminal on the upper surface side with the lower surface facing the support, Mounting a chip component having terminals on the upper surface side and the lower surface side on the support so that the terminals on the lower surface side are electrically connected to the first wiring; Forming a peripheral insulating layer covering the semiconductor element and the chip component; Removing the support; Forming a second wiring electrically connected to the terminal of the semiconductor element and the upper surface side terminal of the chip component;
  • a manufacturing method is provided in which the chip component has a through-chip via that penetrates the chip component and connects the upper surface side terminal and the lower surface side terminal.
  • a multilayer wiring structure including the first wiring as a wiring on the uppermost layer side and including wiring and insulating layers alternately provided on the support is formed.
  • the semiconductor element and the chip component can be mounted on the multilayer wiring structure, and the terminal on the lower surface side of the chip component can be electrically connected to the first wiring.
  • the lower surface side terminal of the chip component can be connected to the first wiring via a solder member.
  • the peripheral insulating layer may include a first insulating layer that surrounds outer peripheral side surfaces of the semiconductor element and the chip component, and a second insulating layer that covers upper surfaces of the semiconductor element and the chip component.
  • the first insulating layer can include a reinforcing material.
  • FIG. 1 is a cross-sectional view showing a semiconductor element built-in substrate according to a first embodiment of the present invention.
  • FIG. 3 is a plan view showing an arrangement example of embedded chips in the semiconductor element embedded substrate according to the first embodiment of the present invention.
  • FIG. 10 is a plan view showing another arrangement example of the built-in chip in the semiconductor element built-in substrate according to the first embodiment of the present invention.
  • FIG. 10 is a plan view showing another arrangement example of the built-in chip in the semiconductor element built-in substrate according to the first embodiment of the present invention.
  • FIG. 10 is a plan view showing another arrangement example of the built-in chip in the semiconductor element built-in substrate according to the first embodiment of the present invention.
  • FIG. 10 is a plan view showing an arrangement example of embedded chips and chip side vias in a semiconductor element embedded substrate according to a second embodiment of the present invention. It is sectional drawing for demonstrating the manufacturing method of the board
  • a substrate with a built-in semiconductor element includes a semiconductor element, a chip component, a peripheral insulating layer covering at least an outer peripheral side surface of the semiconductor element and the chip component, and an upper surface side provided on the upper surface side of the substrate. Wiring and lower surface side wiring provided on the lower surface side of the substrate.
  • the built-in semiconductor element has a terminal on its upper surface side, and this terminal is electrically connected to the upper surface side wiring.
  • the terminal of this semiconductor element can be connected to the upper surface side wiring through a via.
  • a semiconductor chip having a semiconductor circuit can be used as this semiconductor element.
  • the built-in chip component can be disposed on the side of the semiconductor element, and includes an upper surface side terminal electrically connected to the upper surface side wiring, a lower surface side terminal electrically connected to the lower surface side wiring,
  • the chip component has a through-chip via that penetrates the chip component and connects the upper surface side terminal and the lower surface side terminal.
  • the upper surface side terminal of this chip component can be connected to the upper surface side wiring through a via.
  • the lower surface side terminal of this chip component can be connected to the lower surface side wiring via a via or a solder member.
  • this chip component a semiconductor chip having no semiconductor circuit can be used.
  • the peripheral insulating layer includes a lower surface side insulating layer covering the lower surface of the built-in semiconductor element and the lower surface of the built-in chip component, a reinforcing insulating layer surrounding the outer peripheral side surface of the semiconductor element and the outer peripheral side surface of the chip component, An upper surface side insulating layer covering the upper surface of the semiconductor element and the upper surface of the chip component can be included.
  • the reinforcing insulating layer can contain a reinforcing material such as glass cloth.
  • a chip side via penetrating the peripheral insulating layer can be provided. This chip side via can be connected to the wiring on the upper surface side and the wiring on the lower surface side of the semiconductor element built-in substrate.
  • the outer diameter of the chip side via can be made larger than the outer diameter of the through-chip via.
  • power or ground can be transmitted to the thick chip side via, and a signal can be transmitted to the thin through-chip via.
  • via diameter In comparison of the outer diameter of the vias (hereinafter referred to as “via diameter”), when the via diameter is different in the direction perpendicular to the substrate plane (the direction from the upper end of the via to the lower end), the via diameter of one via A is the other via B.
  • the larger via diameter means that the smallest via diameter of via A is larger than the largest via diameter of via B.
  • via cross section When the cross section along the substrate plane direction of the via (hereinafter referred to as “via cross section”) is a polygon (in the case of a prism) or an ellipse, the maximum outer diameter in the via cross section is the via diameter of the via (for example, For rectangles and squares, the length of the diagonal line; for ellipses, the length of the major axis).
  • the plane area of the built-in chip component can be made larger than the plane area of the built-in semiconductor element.
  • the planar area means a projected area on the substrate plane.
  • a plurality of chip components may be incorporated, and in that case, the plurality of chip components can be arranged so as to surround the outer peripheral side surface of the semiconductor element to be incorporated.
  • the planar shape of the semiconductor element is a square or a rectangle
  • four chip components can be arranged on each side of the semiconductor element.
  • four chip components having the same shape and the same size can be arranged on the diagonal lines of the semiconductor element.
  • four chip components having the same shape and size can be arranged so as to face each side of the semiconductor element.
  • the distance between the built-in chip component and the semiconductor element adjacent to the chip component can be set to, for example, 500 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 10 ⁇ m or less from the viewpoint of miniaturization.
  • the distance between the chip component and the semiconductor element is preferably set to 1 ⁇ m or more.
  • interval of a chip component and a semiconductor element means the shortest distance which connects both in the board
  • the substrate with a built-in semiconductor element according to the present embodiment can have a protective insulating film that covers the upper surface side wiring, the protective insulating film has an opening, and an external terminal that is an exposed portion of the upper surface side wiring in the opening, Alternatively, an external terminal made of a conductive portion provided in this opening can be provided.
  • the semiconductor element-embedded substrate according to the present embodiment can have a protective insulating film that covers the lower surface side wiring, and has an opening in the protective insulating film, and an external terminal consisting of an exposed portion of the lower surface side wiring in the opening, Alternatively, an external terminal made of a conductive portion provided in this opening can be provided.
  • the semiconductor element built-in substrate according to the present embodiment can have a multilayer wiring structure including wirings and insulating layers alternately provided on the upper surface side of the substrate.
  • the lowermost layer wiring of this multilayer wiring structure corresponds to the upper surface side wiring.
  • an insulating layer having an opening is provided on the uppermost layer side of the multilayer wiring structure, and an external terminal composed of an exposed portion of the wiring in the opening or an external terminal composed of a conductive portion provided in the opening is provided. it can.
  • the semiconductor element built-in substrate according to the present embodiment can have a multilayer wiring structure including wiring and insulating layers alternately provided on the lower surface side of the substrate.
  • the wiring on the uppermost layer side of this multilayer wiring structure corresponds to the lower surface side wiring.
  • an insulating layer having an opening is provided on the lowermost layer side of the multilayer wiring structure, and an external terminal composed of an exposed portion of the wiring in the opening or an external terminal composed of a conductive portion provided in the opening is provided. it can.
  • the pitch of the terminals of the built-in semiconductor element and chip component can be made narrower than the pitch of the external terminals on both sides of the semiconductor element built-in substrate.
  • a substrate with a built-in semiconductor element includes a semiconductor element (hereinafter, “IC chip”, for example, an LSI chip) that includes a semiconductor circuit (for example, an LSI circuit) and has terminals on one side, and a through-chip via ( Chip components (hereinafter “TSV chips”) having terminals connected to the TSVs on both sides.
  • IC chip for example, an LSI chip
  • TSV chips through-chip via
  • This TSV chip can be handled as a “chip component having a via function”, and can be embedded in an insulating layer in the same manner as an IC chip.
  • TSV chip can electrically connect the upper surface side wiring and the lower surface side wiring of the semiconductor element built-in substrate via the TSV in the chip, vias (hereinafter referred to as “hereinafter referred to as“ vias ”provided in the insulating layer on the side of the IC chip”). Chip side vias ”). As a result, the semiconductor element built-in substrate can be manufactured with a high yield.
  • the TSV in this TSV chip can be reduced in pitch, increased in aspect ratio, and reduced in diameter as compared with a chip side via, a multi-pin, narrow pitch IC chip (for example, a CPU class LSI chip) ) Can be easily incorporated, and as a result, the electronic device can be reduced in size and thickness.
  • a multi-pin, narrow pitch IC chip for example, a CPU class LSI chip
  • the TSV chip can be arranged in a desired area around the IC chip, various sizes of TSVs can be arranged at a desired place. As a result, the degree of freedom in wiring design is increased, and a high-functional and high-performance semiconductor element-embedded substrate can be provided.
  • the TSV chip By arranging the TSV chip around the IC chip, the stress from the side surface of the IC chip is reduced, and the warpage of the IC chip when the IC chip is thinned can be reduced.
  • the TSV of the TSV chip can be easily increased in aspect ratio, it is not necessary to reduce the thickness of the built-in IC chip from the viewpoint of TSV formation, and the yield deterioration and warping due to the reduced handling property due to the thinner IC chip are eliminated. Reduced.
  • an electrical characteristic such as a power supply characteristic is obtained by using a wiring structure in which a signal is transmitted through a small-diameter TSV and a power supply and a ground are transmitted through a large-diameter chip side via. Can be improved.
  • the wiring distance from the IC chip terminal to the via area can be shortened, so that the signal characteristics can be improved.
  • Semiconductor substrates (base materials) used for IC chips are, for example, silicon, germanium, gallium arsenide (GaAs), gallium arsenide phosphorus, gallium nitride (GaN), silicon carbide (SiC), zinc oxide (ZnO), and other compounds.
  • a substrate made of a semiconductor (II-VI group compound, III-V group compound, VI group compound), diamond, or the like can be used, but is not limited thereto.
  • a chip using a silicon substrate can be suitably used as the IC chip.
  • the base material of the TSV chip it is preferable to use a semiconductor substrate of the same type as the semiconductor substrate used for the IC chip, from the viewpoint of reducing the difference in thermal expansion coefficient and reducing warpage. Moreover, it is preferable to use a material with high thermal conductivity from the viewpoint of heat dissipation, and a silicon material is particularly preferable.
  • the TSV chip can be manufactured by applying a normal method for forming a via penetrating the semiconductor chip.
  • a TSV chip can be formed as follows. First, a hole is formed on the upper surface side of the wafer (chip base material). Next, the hole is filled with a conductive material to form a plug. Thereafter, the lower surface of the wafer is ground and thinned so that the lower end of each plug is exposed. As a result, a plug penetrating the wafer, that is, a TSV is obtained. Then, by dicing this wafer, a chip (TSV chip) including TSV can be obtained.
  • FIG. 1 is a cross-sectional view showing a substrate with a built-in semiconductor element according to a first embodiment of the present invention.
  • a semiconductor element built-in substrate 23 includes an LSI chip 11 having a terminal 13 on the upper surface and a TSV chip 12 having a terminal 14 on the upper surface and a terminal 15 on the lower surface. 16 is covered.
  • a wiring 18a is provided on the upper surface side of the semiconductor element built-in substrate, and a wiring 18b is provided on the lower surface side.
  • the terminal 13 of the LSI chip is electrically connected to the wiring 18a on the upper surface side through the via 17a.
  • the terminal 14 on the upper surface side of the TSV chip 12 is electrically connected to the wiring 18a on the upper surface side via the via 17b, and the terminal 15 on the lower surface side is electrically connected to the wiring 18b on the lower surface side via the via 17c.
  • An LSI circuit (not shown) is provided on the upper surface side of the LSI chip 11.
  • TSV through via
  • FIG. 2 to 5 are plan views showing examples of the arrangement and planar shape of the built-in LSI chip 11 and TSV chip 12.
  • LSI chips 11 and TSV chips 12 having the same shape and size are arranged side by side. Each chip can be arranged in a desired region, can be arranged with a high degree of design freedom and improved electrical characteristics. Further, as shown in FIG. 2, by making the size and shape of the LSI chip 11 and the TSV chip 12 the same, the mounting accuracy of each chip is improved and the cost can be reduced. When the planar shape of the chip is square, the mounting accuracy can be improved as compared with other shapes.
  • the size of the LSI chip 11 is smaller than the size of the TSV chip 12.
  • a semiconductor device-embedded substrate that can be constructed with an LSI chip suitable for the trend toward smaller chips due to miniaturization and a TSV chip suitable for the trend toward higher pins and higher density, and can be mounted at low cost and at high density.
  • the size of the LSI chip 11 may be larger than the size of the TSV chip 12. In that case, a plurality of small-sized TSV chips can be arranged, and the degree of freedom in design can be increased.
  • a plurality of TSV chips 12 are arranged around the LSI chip 11.
  • the stress exerted on the LSI chip 11 from the insulating layer 16 around the LSI chip 11 can be reduced, and the warpage can be reduced.
  • a material having higher thermal conductivity than the insulating layer 16 is disposed around the LSI chip 11, the heat dissipation characteristics of the semiconductor element built-in substrate 23 are improved.
  • the planar shape of the TSV chip 12 and the LSI chip 11 can be a rectangle and a square, respectively.
  • the terminal pitch of the TSV chip 12 can be loosened according to the length in the longitudinal direction, and the number of terminals arranged can be reduced. For example, it becomes easy to form a single row. As a result, a loose wiring rule can be applied to the wiring between the LSI chip 11 and the TSV chip 12, and the wiring yield can be improved.
  • the upper surface side wiring and the lower surface side wiring are each one layer, but as shown in FIG. 6, the upper surface side wiring and the lower surface side wiring are each provided with two or more layers through the insulating layer 16d. It is good also as a structure.
  • the upper and lower upper side wirings can be connected via vias 17d, and the upper and lower lower side wirings can be connected via vias 17e. In that case, the power supply characteristics and the ground characteristics can be improved as the number of wiring layers increases.
  • the lower surface side wiring 18b of the semiconductor element-embedded substrate and the lower surface side terminal 15 of the TSV chip are connected via vias 17c, but as shown in FIG. It may be connected. In that case, the electrical connection with the wiring 18b is facilitated in the process of mounting the TSV chip, which is advantageous for cost reduction. On the other hand, as shown in FIG. 1, connection reliability is further improved when connecting vias without using solder balls or the like.
  • the insulating layer covering the LSI chip 11 and the TSV chip 12 may have a laminated structure as shown in FIG.
  • this insulating layer includes an insulating layer 16c that covers the lower surface side of the chip, a chip side insulating layer 16b that is provided on the chip and covers the periphery of the chip, and covers the upper surface side of the chip that is provided thereon.
  • the insulating layer 16a is used. Warping can be reduced by forming the chip side insulating layer 16b with a highly rigid insulating resin including a reinforcing material such as glass cloth.
  • Finer wiring can be formed by lowering the wiring formation surfaces of the upper and lower insulating layers 16a and 16c, and the built-in LSI chip 11 and TSV chip 12 can be made narrower and have more pins.
  • This roughening can be performed by performing wet etching with a chemical solution or dry etching with plasma on the surface of the insulating layer. Or it can implement by pressing the member with a low roughening surface on the surface of an insulating layer, and transferring a low roughening surface.
  • the chip is more firmly fixed on the adhesive layer, Reliability in cycle tests can be improved.
  • the adhesive layer may be provided on either the LSI chip 11 or the TSV chip 12, but is preferably provided on both.
  • the thickness (length in the direction perpendicular to the substrate plane) of the LSI chip 11 and the TSV chip 12 can be set according to a predetermined thickness of the semiconductor element built-in substrate.
  • the thickness of each chip can be set to 50 to 100 ⁇ m.
  • the size of one side is determined in terms of processing accuracy and the like.
  • 0.2 mm or more preferably 1 mm or more, and preferably 15 mm or less, more preferably 12 mm or less from the viewpoint of miniaturization and the like.
  • the circumference is preferably 0.8 mm or more, more preferably 4 mm or more, preferably 60 mm or less, and more preferably 50 mm or less.
  • the number of LSI chips 11 and the number of TSV chips 12 are one each, but a plurality of them may be used.
  • one LSI chip 11 and one TSV chip 12 are provided.
  • the LSI chip 11 is provided with an LSI circuit.
  • the TSV chip is not provided with an LSI circuit, and a TSV 24 is provided inside the silicon base material.
  • TSV can be formed with a narrow pitch, a high aspect ratio, and a small diameter.
  • the TSV 24 penetrates the silicon base material and conducts the terminal 14 on the upper surface side of the chip and the terminal 15 on the lower surface side.
  • the outer diameter of TSV can be appropriately set in the range of 0.1 ⁇ m to 100 ⁇ m, for example. From the viewpoint of yield, it is preferably 1 ⁇ m or more, and more preferably 10 ⁇ m or more. From the viewpoint of the TSV accommodation rate, it is also possible to set it to 10 ⁇ m or less. Typically, for example, the outer diameter of TSV can be set to 10 to 50 ⁇ m, and the pitch can be set to 80 to 200 ⁇ m.
  • the plane area of the TSV chip is preferably larger than the plane area of the LSI chip from the viewpoint of miniaturization of the LSI chip and the TSV accommodation rate.
  • the planar area of the TSV chip can be appropriately set within a range of 2 to 100 times the planar area of the LSI chip. 10 times or more is preferable from the viewpoint of miniaturization of the LSI chip and the TSV accommodation rate, etc., and 50 times or less is preferable and 20 times or less is more preferable from the viewpoint of miniaturization and yield of the wiring board.
  • a photosensitive or non-photosensitive organic material can be used as the material of the insulating layer.
  • the organic material include an epoxy resin, an epoxy acrylate resin, a urethane acrylate resin, a polyester resin, a phenol resin, a polyimide resin, BCB (benzocycle), PBO (polybenzoxole), and polynorbornene resin.
  • a material obtained by impregnating these organic materials into a reinforcing material such as a woven fabric or a non-woven fabric formed of glass cloth or aramid fiber can be used.
  • an epoxy resin that is a non-photosensitive resin can be suitably used as the material of the insulating layer 16.
  • Examples of materials for wiring, chip terminals, vias, and TSV include copper, silver, gold, nickel, aluminum, titanium, molybdenum, tungsten, and palladium, and one kind of metal selected from these, or selected from these.
  • An alloy containing at least one kind as a main component can be used.
  • copper is desirable from the viewpoint of electrical resistance and cost.
  • copper can be suitably used as the material for the wiring, terminals, vias, and TSV.
  • the semiconductor element-embedded substrate described above may be provided with a capacitor serving as a circuit noise filter at a desired position in each layer.
  • the dielectric material constituting the capacitor include metal oxides such as titanium oxide, tantalum oxide, Al 2 O 3 , SiO 2 , ZrO 2 , HfO 2 , and Nb 2 O 5 ; BST (Ba x Sr 1-x TiO 3 ), PZT (PbZr x Ti 1 -x O 3) or PLZT (Pb 1-y La y Zr x Ti 1-x O 3) perovskite such material (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1); A Bi-based layered compound such as SrBi 2 Ta 2 O 9 is preferred.
  • a dielectric material constituting the capacitor an organic material mixed with an inorganic material or a magnetic material may be used. In addition to the LSI chip and the capacitor, discrete components may be provided.
  • FIG. 10 is a cross-sectional view showing a substrate with a built-in semiconductor element according to a second embodiment of the present invention.
  • chip side vias 21 for connecting the wirings 18a and 18b on the front and back of the semiconductor element built-in substrate 23 are provided in the insulating layer 16 on the side of the LSI chip 11 and the TSV chip 12. Except for this, it is the same as the first embodiment.
  • FIG. 11 is a plan view showing an arrangement example of the built-in chips 11 and 12 and the chip side vias 21 in the semiconductor element built-in substrate according to the present embodiment.
  • the chip side via 21 can be disposed in a desired area around the LSI chip 11 and the TSV chip 12.
  • the chip side via 21 may be disposed between the LSI chip 11 and the TSV chip 12.
  • the wirings 18 a and 18 b on the front and back sides of the semiconductor element built-in substrate 23 can be electrically connected.
  • the heat dissipation characteristics are improved and the stress in the chip side surface direction (substrate plane direction) is reduced. It can be expected to reduce the warpage of the chip.
  • the chip side via 21 and the TSV 24 can be electrically connected to the terminals of the LSI chip via the wiring on the upper surface side, respectively.
  • Examples of the material of the chip side via 21 include copper, silver, gold, nickel, aluminum, titanium, molybdenum, tungsten, and palladium. One type of metal selected from these and at least one type selected from these are used. An alloy having a main component can be used. In particular, copper is desirable from the viewpoint of electrical resistance and cost. In the present embodiment, for example, copper can be suitably used as the material of the chip side via 21.
  • the height of the chip side via 21 (the length in the direction perpendicular to the substrate plane) is higher than the height of the built-in LSI chip 11 and TSV chip 12, and can be set to 60 to 110 ⁇ m, for example.
  • the outer diameter of the chip side via can be appropriately set within a range of 10 ⁇ m to 300 ⁇ m, for example. 50 ⁇ m or more is preferable from the viewpoint of yield, transmission of power and ground, etc., and 100 ⁇ m or more is more preferable, but 100 ⁇ m or less is preferable from the viewpoint of accommodation ratio of chip side vias.
  • the outer diameter of the chip side via can be set to 50 to 100 ⁇ m, and the pitch can be set to 150 to 500 ⁇ m.
  • the outer diameter of the chip side via can be set to about 2 to 100 times the outer diameter of the TSV, for example.
  • the pitch and via diameter of the chip side vias 21 can be made larger than the pitch and via diameter of the TSV 24.
  • a large-capacity power supply and ground can be transmitted through the large-diameter, slow-pitch chip side vias 21, and a multi-pin, fine-wiring signal can be transmitted through the small-diameter, narrow-pitch TSV24. it can.
  • the electrical characteristics of the substrate with a built-in semiconductor element can be improved by properly using the chip side via and the TSV according to the application.
  • FIGS. 12A to 12F are cross-sectional views showing an example of a manufacturing method of a semiconductor element built-in substrate in the order of steps. With this manufacturing method, the semiconductor element-embedded substrate shown in FIG. 8 can be manufactured.
  • an insulating layer 16c is formed on the support 22.
  • the support 22 is preferably a highly rigid material. It is preferable that a position mark for mounting the LSI chip 11 and the TSV chip 12 is provided on the support 22. As long as the position mark can be recognized with high accuracy through the insulating layer 16c and functions as a position mark, even a metal portion provided on the support 22 is a recess provided by wet etching or machining. There may be.
  • a copper plate having a thickness of 0.5 mm can be used as the support 22 and an epoxy resin layer having a thickness of 20 to 50 ⁇ m can be provided as the insulating layer 16c.
  • a nickel film can be formed on the support 22 by electrolytic plating. Can be formed.
  • the LSI chip 11 is mounted on the insulating layer 16c on the support 22 with the surface having the terminals 13 facing up with reference to the position mark. Then, the TSV chip 12 is mounted in the same manner. At this time, it is desirable that there is an adhesive layer between the LSI chip 11 and the insulating layer 16c, and between the TSV chip 12 and the insulating layer 16c, but the insulating layer 16c is made of uncured resin without providing an adhesive layer.
  • the upper surface can be used as an adhesive surface.
  • an insulating layer 16b that covers the periphery of the side surfaces of the LSI chip 11 and the TSV chip 12 is formed, and then, as shown in FIG. 12D, insulation that covers the upper surfaces of these chips is formed.
  • Layer 16a is formed.
  • the insulating layer 16b can include a reinforcing material such as a glass cloth, and can be prepared on the support 22 by providing an opening that can accommodate a chip.
  • a film-like insulating material may be provided so as to collectively cover the upper surface and the side of the LSI chip 11 and the TSV chip 12.
  • the insulating layer 16 covering the upper surface, side surfaces and lower surface of these chips can be formed as shown in FIG.
  • the semiconductor element-embedded substrate shown in FIG. 9 can be formed. At that time, the vias 17c and the wirings 18b on the lower surface side can be provided after the support substrate is removed.
  • the insulating layer can be formed using a transfer molding method, compression molding method, printing method, vacuum press, vacuum lamination, spin coating method, die coating method, curtain coating method, or the like.
  • a transfer molding method compression molding method, printing method, vacuum press, vacuum lamination, spin coating method, die coating method, curtain coating method, or the like.
  • a vacuum pressing method, a vacuum laminating method, or the like can be used.
  • a liquid resin is used, a molding method, a coating method, or the like can be used.
  • the insulating layers 16a and 16b can be laminated by vacuum lamination using an epoxy resin film as the insulating resin.
  • the support 22 is removed.
  • the support 22 can be removed using a technique such as wet etching, dry etching, physical peeling, and polishing.
  • a support made of a copper plate can be easily removed by wet etching.
  • vias 17a connected to the terminals 13 of the LSI chip 11 and vias 17b and 17c connected to the terminals 14 and 15 of the TSV chip 12 are provided, and the upper surface side is provided.
  • the wiring 18a and the lower surface side wiring 18b are formed.
  • the via hole can be formed by photolithography when the insulating layer forming the via hole is made of a photosensitive material.
  • the via hole can be formed by a laser processing method, a dry etching method, or a blast method. In this production example, via holes are formed by laser processing, for example.
  • the via hole is filled with the metal material, and a via connected to the terminal of the chip is formed.
  • electrolytic plating, electroless plating, a printing method, a molten metal suction method, or the like can be used as a method for filling the via hole with the metal material.
  • a metal post for energization is provided in advance on the terminals of these chips, and after forming an insulating layer covering these metal posts, the surface of the insulating layer is scraped off by polishing or the like. Vias may be formed by exposing the surface of the post.
  • the wiring 18a can be connected to the terminals of these chips without vias.
  • Wirings 18a and 18b can be formed by a subtractive method, a semi-additive method, a full additive method, or the like.
  • the subtractive method is a method in which a resist having a desired pattern is formed on a copper foil provided on a substrate, an unnecessary copper foil is etched, and then the resist is removed to obtain a desired pattern.
  • a power supply layer is formed by an electroless plating method, a sputtering method, a CVD (chemical vapor deposition) method, etc., a resist having an opening in a desired pattern is formed, and a metal by electrolytic plating is formed in the resist opening.
  • the power feeding layer is etched to obtain a desired wiring pattern.
  • a pattern is formed with a resist, and the catalyst is activated while leaving the resist as an insulating film.
  • a desired wiring pattern is obtained by precipitating a metal.
  • the wiring material the above metal materials can be used, and copper is particularly preferable from the viewpoint of electric resistance and cost.
  • a protective insulating film (not shown) made of a solder resist or the like having an opening through which a part of the wiring is exposed is provided on the upper surface side of the obtained semiconductor element-embedded substrate. It can be used as an external terminal.
  • a bump may be formed by providing a conductive material in the opening.
  • a protective insulating film (not shown) made of a solder resist or the like having an opening through which a part of the wiring is exposed is provided on the lower surface side of the obtained substrate with a built-in semiconductor element. Can be used as A bump may be formed by providing a conductive material in the opening.
  • a multilayer wiring structure may be provided by alternately providing insulating layers and wirings on the upper surface side of the obtained semiconductor element-embedded substrate.
  • a multilayer wiring structure may be provided by alternately providing insulating layers and wirings on the lower surface side of the obtained semiconductor element-embedded substrate. In this way, for example, the structure shown in FIG. 6 can be obtained.
  • FIG. 6 in each multilayer wiring structure, there are two wiring layers and one insulating layer, but three or more wiring layers and two or more insulating layers can be provided.
  • a protective insulating film such as a solder resist having an opening exposing a part of the wiring on the uppermost layer side of the multilayer wiring structure is provided on the upper surface side, and the exposed portion of the wiring in this opening is used as an external terminal.
  • a bump may be formed by providing a conductive material in the opening.
  • a protective insulating film such as a solder resist having an opening through which a part of the wiring on the lowermost layer side of the multilayer wiring structure is exposed is provided on the lower surface side, and the exposed portion of the wiring in this opening may be used as an external terminal. Good.
  • a bump may be formed by providing a conductive material in the opening.
  • FIGS. 13A to 13E are cross-sectional views showing another example of a method of manufacturing a semiconductor element embedded substrate in the order of steps.
  • a multilayer wiring structure including wiring 18b, via 17e, and insulating layer 16d is formed on the support 22.
  • the LSI chip 11 is mounted on the multilayer wiring structure on the support 22 via the adhesive layer 20.
  • the TSV chip 12 is mounted such that the terminal 15 on the lower surface side of the chip is connected to a predetermined conductive portion on the upper surface of the multilayer wiring structure via the solder ball 19. Since the lower surface side electrical connection is performed in the chip mounting process, the lower surface side via forming step is not required, and the manufacturing can be performed at low cost.
  • an insulating layer 16 that covers the upper and side surfaces of these chips is formed.
  • a via 17a connected to the terminal 13 of the LSI chip 11 and a via 17b connected to the terminal 14 of the TSV chip 12 are provided.
  • a multilayer wiring structure including the upper surface side wiring 18a, the insulating layer 16d, and the via 17d electrically connected to these vias is formed.
  • the support 22 is removed.
  • a barrier conductive film made of a material having a different etching rate from that of the support is formed between the wiring and the support.
  • the support can be selectively removed by wet etching. If the removal accuracy of the support is within a desired range, the support may be removed by dry etching or polishing without forming the barrier conductive film.
  • a solder resist 16e having an opening through which a part of the wiring on the uppermost layer side of the multilayer wiring structure on the upper surface side is exposed is provided.
  • the exposed portion of the wiring in this opening can be used as an external terminal.
  • a bump may be formed by providing a conductive material in the opening.
  • a solder resist 16e having an opening through which a part of the wiring on the lowermost layer side of the multilayer wiring structure on the lower surface side is exposed is provided.
  • the exposed portion of the wiring in this opening can be used as an external terminal.
  • a bump may be formed by providing a conductive material in the opening.
  • the semiconductor element built-in substrate can be efficiently manufactured.
  • FIGS. 14A to 14E are cross-sectional views showing another example of a method of manufacturing a semiconductor element embedded substrate in the order of steps.
  • a semiconductor element-embedded substrate provided with chip side vias 21 penetrating the insulating layers 16a, 16b and 16c can be manufactured.
  • This manufacturing example can be carried out in the same manner as in Manufacturing Example 1 except that the chip side via 21 is formed in the side of the LSI chip 11 and the TSV chip 12 so as to penetrate the insulating layers 16a, 16b and 16c.
  • chip side vias 21 penetrating the insulating layers 16a, 16b and 16c around the LSI chip 11 and the TSV chip 12 are formed.
  • the chip side via 21 can be formed by photolithography when these insulating layers are made of a photosensitive material.
  • the via hole can be formed by a laser processing method, a dry etching method, or a blast method. In this production example, via holes are formed by laser processing, for example.
  • the metal material is filled in the via hole to form a chip side via.
  • electrolytic plating As a method for filling the via hole with the metal material, electrolytic plating, electroless plating, a printing method, a molten metal suction method, or the like can be used. In this manufacturing example, for example, it is formed using electrolytic plating.
  • the vias 17b connected to the terminals 14 of the TSV chip 12 are formed, then the vias 17c connected to the terminals 15 on the lower surface side of the TSV chip 12 are formed, and the upper surface side wiring 18a and the lower surface side wiring 18b are formed.
  • the chip side via 21 may be formed simultaneously with the formation of the vias 17a and 17b on the upper surface side of the chip.
  • the step of scraping the insulating layer surface covering these metal posts to expose the metal post surface is performed after the chip side vias 21 are formed. You may go or you may go before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 半導体素子内蔵基板は、半導体素子と、チップ部品と、これらの少なくとも外周側面を覆う周辺絶縁層と、当該基板の上面側に設けられた上面側配線と、当該基板の下面側に設けられた下面側配線を含む。内蔵された半導体素子は、その上面側に端子を有し、この端子は前記上面側配線と電気的に接続される。内蔵されたチップ部品は、前記上面側配線と電気的に接続する上面側端子と、前記下面側配線と電気的に接続する下面側端子と、当該チップ部品を貫通し、その上面側端子と下面側端子とを接続するチップ貫通ビアを有する。

Description

半導体素子内蔵基板およびその製造方法
 本発明は、半導体素子内蔵基板およびその製造方法に関する。
 近年、電子機器の小型化、薄型化、高機能化、高性能化を実現するために、パッケージ内にチップを積層して実装する3次元実装技術が用いられている。
 LSIデバイスの3次元化のためには、LSIチップに設けた貫通ビア(TSV:Through Silicon Via)でチップ間を接続するチップ積層技術、単一パッケージ内でワイヤーボンディング又は半田バンプでチップ間を接続するチップ積層技術、複数のパッケージをパッケージレベルで積層するパッケージ積層技術など様々な手法がある。
 上記技術の中で、最も高機能化、高性能化が期待される技術は、TSVを用いたチップ積層技術である。しかしながら、この技術は、LSI回路が存在しない領域にTSVを形成する必要があり、キープアウトゾーンによる配置上の制約が多く、さらに今後のロジックLSIはチップサイズが小さくなる傾向にあるため、TSVの高密度化が困難であるという問題がある。また、TSVの形成は、LSI回路形成工程の前後のどちらで行っても、TSV形成の歩留まり率が、LSI回路形成工程を含んだチップ全体の歩留まり率に影響を及ぼすという問題がある。
 これに対して、単一パッケージ内でワイヤーボンディング又は半田バンプでチップ間を接続するチップ積層技術は、比較的高歩留まりで3次元化が実現できる。しかしながら、ワイヤーボンディングによる接続の場合はチップ上の接続端子がチップ周辺に限定され、半田バンプによる接続の場合は3チップ以上の積層が困難であり、これらのチップ積層技術には高密度実装が困難であるという問題がある。
 一方で、パッケージオンパッケージなどのパッケージ積層技術は、機能の組合せ易さや、低コスト化に有利な点から携帯電話用途を中心に広く利用されている。しかしながら、現在、実用化されているパッケージオンパッケージでは、上段に搭載するパッケージのピン配置がペリフェラルに限定されるため、下段パッケージのLSIチップのピン数には制限があった。また、パッケージ積層技術は、チップ積層技術に比べて取り付け高さが高くなるという問題があった。
 そこで、パッケージレベルの3次元構造体において、特にパッケージオンパッケージの下段構造体において、薄型化、小型化、多ピン化を実現する手法として、LSIチップをパッケージ基板に内蔵させるLSI内蔵基板が注目されている。
 特許文献1には、配線基板の内部にチップが実装されたパッケージ構造を有する半導体装置が開示されている。この半導体装置は、表裏にスルーホールを経由して導通する導体層を有するコア基板と、このコア基板上に、回路面を上側にして搭載されたチップと、このチップ覆う絶縁層と、このチップの電極に接続されたチップ上の配線と、この配線にビアを介して接続されたパッケージ上面側の配線と、チップ側方の絶縁層にコア基板上の導体層と接続するビアを含む。さらに、コア基板の下面側には絶縁層が設けられ、この絶縁層にはチップ側方の前記ビアと導通するビアが設けられ、パッケージ下面側にはこのビアと接続する配線が設けられている。
特開2005-311240号公報
 上記の特許文献に記載の半導体装置は、両面に配線を有し、これらを導通させるために内蔵されたチップの側方の絶縁層にビアを設けている。このビアの高さは、内蔵するチップの高さに応じて決定するため、チップが厚い場合は、大径サイズのビアを設ける必要があり、ビアの高密度化が困難になる。このビアの高密度化は、高アスペクト比のビアが形成できれば実現できるものの、ビアを形成する際、高アスペクト比であるほど、ホールの形成が困難になったり、ホール内への導電材の充填が困難になったりする。
 さらに、一般的に、ビア形成プロセスにおいては、レーザー加工、デスミア処理、シード層形成、レジスト成膜、レジストパターニング、めっき処理、レジスト剥離、シード層除去等の多くの工程を経るため、ビアの高密度化のために高アスペクト比に加えて狭ピッチ化や小径化を行うと、いずれの工程においてもより高いレベルの最適化が求められ、歩留まりが低下しやすくなる。
 また、ビアの形成はチップを内蔵した後に行うため、ビアの歩留まりがチップ内蔵基板の歩留まりに直結するという問題がある。
 本発明の目的は、高歩留まりで製造可能な小型で薄型の半導体素子内蔵基板およびその製造方法を提供することにある。
 本発明の一態様によれば、
 半導体素子を内蔵する配線基板であって、
 前記配線基板は、
  前記半導体素子と、
  チップ部品と、
  該半導体素子および該チップ部品の少なくとも外周側面を覆う周辺絶縁層と、
  当該配線基板の上面側に設けられた上面側配線と、
  当該配線基板の下面側に設けられた下面側配線とを含み、
 前記半導体素子は、その上面側に端子を有し、該端子は前記上面側配線と電気的に接続され、
 前記チップ部品は、
  前記上面側配線と電気的に接続する上面側端子と、
  前記下面側配線と電気的に接続する下面側端子と、
  当該チップ部品を貫通し、該上面側端子と該下面側端子とを接続するチップ貫通ビアとを有する、半導体素子内蔵基板が提供される。
 本発明の他の態様によれば、
 半導体素子を内蔵する配線基板の製造方法であって、
 支持体上に、上面側に端子を有する半導体素子をその下面を支持体側に向けて搭載する工程と、
 前記支持体上に、上面側および下面側に端子を有するチップ部品を搭載する工程と、
 前記半導体素子および前記チップ部品を覆う周辺絶縁層を形成する工程と、
 前記支持体を除去する工程と、
 前記チップ部品の下面側端子に電気的に接続する第1配線を形成する工程と、
 前記半導体素子の端子および前記チップ部品の上面側端子に電気的に接続する第2配線を形成する工程を含み、
 前記チップ部品は、当該チップ部品を貫通し、前記上面側端子と前記下面側端子とを接続するチップ貫通ビアを有している、製造方法が提供される。
 この製造方法は、前記支持体上に下地絶縁層を形成する工程をさらに含み、該下地絶縁層上に、前記半導体素子および前記チップ部品を搭載することができる。
 また、この製造方法において、前記半導体素子および前記チップ部品は、それぞれ接着層を介して搭載することができる。
 本発明の他の態様によれば、
 半導体素子を内蔵する配線基板の製造方法であって、
 支持体上に、少なくとも第1配線を形成する工程と、
 前記支持体上に、上面側に端子を有する半導体素子をその下面を支持体側に向けて搭載する工程と、
 前記支持体上に、上面側および下面側に端子を有するチップ部品を、該下面側の端子が前記第1配線に電気的に接続するように搭載する工程と、
 前記半導体素子および前記チップ部品を覆う周辺絶縁層を形成する工程と、
 前記支持体を除去する工程と、
 前記半導体素子の端子および前記チップ部品の上面側端子に電気的に接続する第2配線を形成する工程を含み、
 前記チップ部品は、当該チップ部品を貫通し、前記上面側端子と前記下面側端子とを接続するチップ貫通ビアを有している、製造方法が提供される。
 この製造方法は、前記第1配線を形成する工程において、該第1配線を最上層側の配線として含み、前記支持体上に交互に設けられた配線および絶縁層を含む多層配線構造を形成してもよく、この場合、該多層配線構造上に前記半導体素子および前記チップ部品が搭載でき、該チップ部品の下面側の端子が該第1配線に電気的に接続することができる。
 また、この製造方法において、前記チップ部品の下面側端子は、半田部材を介して前記第1配線に接続することができる。
 前記の周辺絶縁層は、前記半導体素子および前記チップ部品の外周側面を取り囲む第1絶縁層と、前記半導体素子および前記チップ部品の上面を覆う第2絶縁層を含むことができる。この第1絶縁層は補強材を含むことができる。
 本発明によれば、高歩留まりで製造可能な小型で薄型の半導体素子内蔵基板およびその製造方法を提供することができる。
本発明の第1実施形態による半導体素子内蔵基板を示す断面図である。 本発明の第1実施形態による半導体素子内蔵基板において、内蔵チップの配置例を示す平面図である。 本発明の第1実施形態による半導体素子内蔵基板において、内蔵チップの他の配置例を示す平面図である。 本発明の第1実施形態による半導体素子内蔵基板において、内蔵チップの他の配置例を示す平面図である。 本発明の第1実施形態による半導体素子内蔵基板において、内蔵チップの他の配置例を示す平面図である。 本発明の第1実施形態による半導体素子内蔵基板の変形例を示す断面図である。 本発明の第1実施形態による半導体素子内蔵基板の他の変形例を示す断面図である。 本発明の第1実施形態による半導体素子内蔵基板の他の変形例を示す断面図である。 本発明の第1実施形態による半導体素子内蔵基板の他の変形例を示す断面図である。 本発明の第2実施形態による半導体素子内蔵基板を示す断面図である。 本発明の第2実施形態による半導体素子内蔵基板において、内蔵チップ及びチップ側方ビアの配置例を示す平面図である。 本発明の一実施形態による半導体素子内蔵基板の製造方法を説明するための断面図である。 本発明の他の実施形態による半導体素子内蔵基板の製造方法を説明するための断面図である。 本発明の他の実施形態による半導体素子内蔵基板の製造方法を説明するための断面図である。
 本発明の一実施形態による半導体素子内蔵基板は、半導体素子と、チップ部品と、この半導体素子およびこのチップ部品の少なくとも外周側面を覆う周辺絶縁層と、当該基板の上面側に設けられた上面側配線と、当該基板の下面側に設けられた下面側配線とを含む。
 内蔵される半導体素子は、その上面側に端子を有し、この端子は上面側配線と電気的に接続されている。この半導体素子の端子は、ビアを介して上面側配線に接続することができる。この半導体素子として、半導体回路を有する半導体チップを用いることができる。
 内蔵されるチップ部品は、上記の半導体素子の側方に配置することができ、上面側配線と電気的に接続する上面側端子と、下面側配線と電気的に接続する下面側端子と、当該チップ部品を貫通し、この上面側端子とこの下面側端子とを接続するチップ貫通ビアとを有している。このチップ部品の上面側端子は、ビアを介して上面側配線と接続することができる。このチップ部品の下面側端子は、ビア又は半田部材を介して下面側配線と接続することができる。このチップ部品として、半導体回路を有しない半導体チップを用いることができる。
 上記の周辺絶縁層は、内蔵される半導体素子の下面および内蔵されるチップ部品の下面を覆う下面側絶縁層と、この半導体素子の外周側面およびこのチップ部品の外周側面を取り囲む補強絶縁層と、この半導体素子の上面およびこのチップ部品の上面を覆う上面側絶縁層を含むことができる。補強絶縁層にはガラスクロス等の補強材を含むことができる。これらの絶縁層は同種の材料で形成して一体化してもよいし、隣接する層間において互いに異なる材料で形成して積層構造としてもよい。
 内蔵された半導体素子およびチップ部品の周囲の領域には、上記の周辺絶縁層を貫通するチップ側方ビアを設けることができる。このチップ側方ビアは、当該半導体素子内蔵基板の上面側の配線および下面側の配線と接続することができる。
 このチップ側方ビアの外径は、前記のチップ貫通ビアの外径より大きくすることができる。この場合、太いチップ側方ビアには電源またはグランドを伝送し、細いチップ貫通ビアには信号を伝送することができる。
 なお、ビアの外径(以下「ビア径」)の比較において、基板平面に垂直方向(ビア上端から下端への方向)においてビア径が異なる場合、一方のビアAのビア径が他方のビアBのビア径より大きいとは、ビアAの最小のビア径がビアBの最大のビア径より大きいことを意味する。ビアの基板平面方向に沿った断面(以下「ビア断面」)が多角形の場合(角柱の場合)や楕円の場合は、ビア断面における最大の外径を当該ビアのビア径とする(例えば、矩形および正方形の場合は対角線の長さとし、楕円の場合は長径の長さとする)。
 内蔵されるチップ部品の平面面積は、内蔵される半導体素子の平面面積より大きくすることができる。ここで平面面積とは、基板平面への投影面積を意味する。
 複数のチップ部品を内蔵してもよく、その場合、複数のチップ部品が、内蔵される半導体素子の外周側面を囲むように配置することができる。半導体素子の平面形状が正方形または矩形の場合、四つのチップ部品を半導体素子の四方にそれぞれ配置することができる。例えば図4に示すように、四つの同形状かつ同サイズのチップ部品をそれぞれ半導体素子の対角線の延長線上に配置することができる。あるいは、四つの同形状かつ同サイズのチップ部品をそれぞれ半導体素子の各辺と対向するように配置することができる。これにより、半導体素子の側壁に発生する絶縁樹脂層からの応力が低減できるため、半導体素子の低反り化が期待できる。
 内蔵されるチップ部品と、このチップ部品と隣り合う半導体素子との間隔は、小型化の点から、例えば500μm以下に設定でき、100μm以下が好ましく、さらに10μm以下にすることができる。この間隔を狭くすることにより、配線基板の小型化に加えて、半導体素子の側壁に発生する絶縁樹脂層からの応力が低減できるため、薄化された半導体素子の低反り化が期待できる。この間隔が大きいと、チップ間の配線距離が長くなり、配線設計の自由度が高くでき、また配線幅や配線ピッチを大きくできる等のメリットがあるため、これらのメリットも考慮して設定することができる。これらのメリット及びチップの搭載精度等の点から、チップ部品と半導体素子との間隔は1μm以上に設定することが好ましい。なお、チップ部品と半導体素子との間隔とは、基板平面方向における両者を結ぶ最短距離を意味する。
 本実施形態による半導体素子内蔵基板は、前記上面側配線を覆う保護絶縁膜を有することができ、この保護絶縁膜が開口を有し、この開口内の上面側配線の露出部からなる外部端子、またはこの開口に設けられた導電部からなる外部端子を備えることができる。
 本実施形態による半導体素子内蔵基板は、前記下面側配線を覆う保護絶縁膜を有することができ、この保護絶縁膜に開口を有し、この開口内の下面側配線の露出部からなる外部端子、またはこの開口に設けられた導電部からなる外部端子を備えることができる。
 本実施形態による半導体素子内蔵基板は、当該基板の上面側に交互に設けられた配線と絶縁層を含む多層配線構造を有することができる。この多層配線構造の最下層側の配線は、前記上面側配線に相当する。また、この多層配線構造の最上層側に開口をもつ絶縁層を有し、この開口内の配線の露出部からなる外部端子、またはこの開口に設けられた導電部からなる外部端子を備えることができる。
 本実施形態による半導体素子内蔵基板は、当該基板の下面側に交互に設けられた配線と絶縁層を含む多層配線構造を有することができる。この多層配線構造の最上層側の配線は、前記下面側配線に相当する。また、この多層配線構造の最下層側に開口をもつ絶縁層を有し、この開口内の配線の露出部からなる外部端子、またはこの開口に設けられた導電部からなる外部端子を備えることができる。
 内蔵される半導体素子およびチップ部品の端子のピッチは、半導体素子内蔵基板の両面の外部端子のピッチより狭くすることができる。
 上記の通り、本発明の一実施形態による半導体素子内蔵基板は、半導体回路(例えばLSI回路)を備え片面に端子を有する半導体素子(以下「ICチップ」、例えばLSIチップ)と、チップ貫通ビア(以下「TSV」)を有し両面にこのTSVに接続する端子を有するチップ部品(以下「TSVチップ」)を含む。
 このTSVチップは、「ビアの機能を有したチップ部品」として取り扱うことができ、ICチップと同様に絶縁層に埋め込んで内蔵することができる。
 このようなTSVチップは、このチップ内のTSVを介して、半導体素子内蔵基板の上面側配線と下面側配線とを電気的に接続できるため、ICチップ側方の絶縁層に設けるビア(以下「チップ側方ビア」)に代えることができる。結果、半導体素子内蔵基板を高歩留まりで製造できる。
 さらに、このTSVチップにおけるTSVは、チップ側方ビアと比べて、狭ピッチ化、高アスペクト比化、小径化が可能であるため、多ピン・狭ピッチのICチップ(例えば、CPU級のLSIチップ)を内蔵することが容易となり、結果、電子機器の小型化・薄型化を行うことができる。
 TSVチップは、ICチップの周囲の所望の領域に配置できるため、所望の箇所に大小様々なTSVを配置することができる。これにより、配線設計の自由度が高くなり、高機能・高性能な半導体素子内蔵基板を提供できる。
 TSVチップとICチップを別々のウエハを用いて製造し、検査し、これらを内蔵することで、TSVを有するLSIチップを含む構造体と比べて、高歩留まりで製造でき、低コスト化が実現できる。
 TSVチップをICチップの周辺に配置することで、ICチップ側面からの応力が低減され、ICチップを薄化した際のICチップの反りを低減できる。
 TSVチップのTSVは高アスペクト比化が容易であるため、TSV形成の観点からは内蔵するICチップを薄型化する必要がなくなり、ICチップの薄型化による、ハンドリング性低下による歩留まり劣化、及び反りが低減される。
 本発明の他の実施形態として、信号を小径のTSVを介して伝送し、電源及びグランドを大径のチップ側方ビアを介して伝送する配線構造にすることにより、電源特性等の電気的特性を向上することができる。
 ICチップ周辺のビアエリアをTSVチップに集約させることで、得られた空き領域に銅ベタ膜等の支持体を設けることができるため、半導体素子内蔵基板の低反り化を図ることができる。
 また、ICチップ周辺のビアエリアをTSVチップに集約させることで、ICチップの端子からビアエリアまでの配線距離を短くできるため、信号特性を向上できる。
 ICチップに用いられる半導体基板(母材)は、例えば、シリコン、ゲルマニウム、ガリウム砒素(GaAs)、ガリウム砒素リン、窒化ガリウム(GaN)、炭化珪素(SiC)、酸化亜鉛(ZnO)、その他の化合物半導体(II-VI族化合物、III-V族化合物、VI族化合物)、ダイアモンド等からなる基板を用いることができるが、これらに限定されない。ICチップとして、シリコン基板を用いたチップを好適に用いることができる。
 TSVチップの母材には、熱膨張係数の差を小さくして反りを低減する観点から、ICチップに用いられた半導体基板と同種の半導体基板を用いることが好ましい。また、放熱性の観点から熱伝導率の高い材料を用いることが好ましく、特にシリコン材料が好ましい。
 TSVチップは、半導体チップを貫通するビアを形成するための通常の方法を適用して作製することができる。例えば、次のようにしてTSVチップを形成することができる。まず、ウエハ(チップ母材)の上面側にホールを形成する。次に、このホール内に導電材料を充填してプラグを形成する。その後、各プラグの下端が露出するようにウエハの下面を研削・薄化する。結果、ウエハを貫通するプラグ、すなわちTSVが得られる。そして、このウエハをダイシングすることにより、TSVを含むチップ(TSVチップ)を得ることができる。
 以下、本発明の実施形態について図面を参照して具体的に説明する。
 第1の実施形態
 図1は、本発明の第1の実施形態の半導体素子内蔵基板を示す断面図である。
 図1に示すように、半導体素子内蔵基板23は、上面に端子13を有するLSIチップ11と、上面に端子14及び下面に端子15を夫々有するTSVチップ12を内蔵し、これらのチップは絶縁層16に覆われている。この半導体素子内蔵基板の上面側には配線18aが設けられ、下面側には配線18b設けられている。LSIチップの端子13はビア17aを介して上面側の配線18aと電気的に接続している。TSVチップ12の上面側の端子14はビア17bを介して上面側の配線18aと電気的に接続し、下面側の端子15はビア17cを介して下面側の配線18bと電気的に接続している。LSIチップ11の上面側にはLSI回路(図示せず)が設けられている。TSVチップ12内には、上面側の端子14と下面側の端子15とを接続する貫通ビア(TSV)24が設けられている。
 図2から図5は、内蔵されたLSIチップ11とTSVチップ12の配置および平面形状の例を示す平面図である。これらの図において、LSIチップ及びTSVチップは透視され、これらの上方に配置された構成部材は省略されている。
 図2においては、同形状および同サイズのLSIチップ11とTSVチップ12が、横並びに配置されている。各チップは、所望の領域に配置することができ、設計自由度が高く、電気特性が向上する配置にすることができる。さらに、図2に示すように、LSIチップ11とTSVチップ12のサイズ及び形状を同じとすることで、各チップの搭載精度が向上し、低コスト化が可能となる。チップの平面形状が正方形の場合は、他の形状の場合よりも搭載精度を向上できる。
 図3においては、LSIチップ11のサイズがTSVチップ12のサイズよりも小さい。これにより、微細化による小チップ化傾向に見合ったLSIチップと、多ピン及び高密度化の傾向に見合ったTSVチップを備えた構造にでき、低コストかつ高密度実装が可能な半導体素子内蔵基板を提供できる。図3に示す例とは反対に、LSIチップ11のサイズがTSVチップ12のサイズよりも大きくても構わない。その場合、小チップのTSVチップを複数配置することが可能となり、設計自由度を高めることができる。
 図4においては、LSIチップ11の周囲に複数個のTSVチップ12が配置されている。これにより、LSIチップ11の周囲の絶縁層16からLSIチップ11に及ぼす応力を低減することが可能となり、反りを低減できる。さらに、LSIチップ11の周辺に絶縁層16と比較して熱伝導率が高い材料が配置されるため、半導体素子内蔵基板23の放熱特性が向上する。
 図5に示すように、TSVチップ12及びLSIチップ11の平面形状は、それぞれ長方形及び正方形にすることができる。TSVチップ12が長方形の場合、その長辺側をLSIチップ11へ向けて配置したときは、その長手方向の長さに応じて、TSVチップ12の端子ピッチを緩くでき、端子の配列数を少なく、例えば単列にすることが容易になる。結果、LSIチップ11とTSVチップ12と間の配線は、緩い配線ルールを適用でき、配線歩留まりを向上することができる。
 図1に示す例では、上面側配線および下面側配線はそれぞれ一層であるが、図6に示すように、上面側配線および下面側配線をそれぞれ絶縁層16dを介して2層以上設けた多層配線構造としてもよい。上下の上面側配線間はビア17dを介して接続され、上下の下面側配線間はビア17eを介して接続することができる。その場合、配線層数の増加に伴って電源特性及びグランド特性を向上できる。
 図1に示す例では、半導体素子内蔵基板の下面側配線18bとTSVチップの下面側端子15とはビア17cを介して接続されているが、図7に示すように、半田ボール19を介して接続されていてもよい。その場合、TSVチップを搭載する工程で配線18bと電気的な接続が容易となるため、低コスト化に有利である。一方で、図1に示すように、半田ボール等を使用せず、ビアで接続する場合は、接続信頼性がより向上する。
 図1に示す構造の他の変形例として、図8に示すように、LSIチップ11とTSVチップ12を覆う絶縁層は積層構造を有していてもよい。図8に示す例では、この絶縁層は、チップの下面側を覆う絶縁層16cと、この上に設けられチップ周囲を覆うチップ側方絶縁層16bと、この上に設けられチップ上面側を覆う絶縁層16aから構成されている。チップ側方絶縁層16bをガラスクロス等の補強材を含む高剛性の絶縁樹脂で形成することで反りが低減できる。上下層の絶縁層16a、16cの配線形成面を低粗化することでファインな配線が形成でき、内蔵されるLSIチップ11とTSVチップ12の狭ピッチ、多ピン化が実現できる。この低粗化は、絶縁層表面を薬液によるウェットエッチング又はプラズマによるドライエッチングを行うことで実施できる。または、低粗化面をもつ部材を絶縁層表面に押し当てて低粗化面を転写することで実施できる。
 図1に示す構造の他の変形例として、図9に示すように、LSIチップ11及びTSVチップ12の下面に接着層20を設けることで、接着層上にチップがより強固に固定され、熱サイクル試験等での信頼性を向上できる。接着層は、LSIチップ11及びTSVチップ12のいずれか一方に設けてもよいが、両方に設けることが好ましい。
 LSIチップ11とTSVチップ12の厚さ(基板平面に垂直方向の長さ)は、半導体素子内蔵基板の所定の厚さに応じて設定することができる。例えば、それぞれのチップの厚さを50~100μmに設定できる。
 LSIチップ及びTSVチップのサイズとしては、平面形状(基板平面への投影形状)が正方形や矩形(長方形)等の多角形(凸多角形)の場合、一辺のサイズは、加工精度等の点から、0.2mm以上が好ましく、1mm以上がより好ましく、小型化等の点から、15mm以下が好ましく、12mm以下がより好ましい。この場合、周長は0.8mm以上が好ましく、4mm以上がより好ましく、60mm以下が好ましく、50mm以下がより好ましい。
 図1に示す例では、LSIチップ11とTSVチップ12の数はそれぞれ一つずつだが、それぞれ複数個でも構わない。本実施形態では、内蔵されるLSIチップ11とTSVチップ12はそれぞれ一つとした。このLSIチップ11にはLSI回路が設けられている。TSVチップは、LSI回路は設けず、シリコン母材内部にTSV24を設けている。TSVは、狭ピッチ、高アスペクト比、小径で形成することができる。TSV24は、シリコン母材を貫通し、チップ上面側の端子14と下面側の端子15を導通している。
 TSVの外径は、例えば、0.1μm~100μmの範囲で適宜設定することができる。歩留まりの点から1μm以上が好ましく、10μm以上がより好ましい。TSVの収容率の点から、10μm以下に設定することも可能である。典型的には、例えば、TSVの外径は10~50μmに設定でき、ピッチは80~200μmに設定できる。
 TSVチップの平面面積は、LSIチップの微細化およびTSVの収容率等の点から、LSIチップの平面面積より大きくすることが好ましい。例えば、TSVチップの平面面積は、LSIチップの平面面積の2倍~100倍の範囲で適宜設定することができる。LSIチップの微細化およびTSVの収容率等の点から、10倍以上が好ましく、配線基板の小型化および歩留まりの点から50倍以下が好ましく20倍以下がより好ましい。
 絶縁層の材料は、例えば、感光性又は非感光性の有機材料を用いることができる。この有機材料としては、例えば、エポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)、ポリノルボルネン樹脂が挙げられる。また、ガラスクロスやアラミド繊維などで形成された織布や不織布等の補強材にこれらの有機材料を含浸させた材料を用いることができる。本実施形態では、絶縁層16の材料として、例えば、非感光性樹脂であるエポキシ樹脂を好適に用いることができる。
 配線、チップの端子、ビア及びTSVの材料は、例えば、銅、銀、金、ニッケル、アルミニウム、チタン、モリブデン、タングステン、パラジウムが挙げられ、これらから選ばれる1種の金属や、これらから選ばれる少なくとも1種を主成分とする合金を用いることができる。特に、電気抵抗値及びコストの観点から銅が望ましい。本実施形態では、配線、端子、ビア及びTSVの材料として、例えば、銅を好適に用いることができる。
 以上に説明した半導体素子内蔵基板には、各層の所望の位置に、回路のノイズフィルターの役割を果たすコンデンサが設けられていてもよい。コンデンサを構成する誘電体材料としては、酸化チタン、酸化タンタル、Al、SiO、ZrO、HfO、Nb等の金属酸化物;BST(BaSr1-xTiO)、PZT(PbZrTi1-x)又はPLZT(Pb1-yLaZrTi1-x)等のペロブスカイト系材料(0<x<1、0<y<1);SrBiTa等のBi系層状化合物であることが好ましい。また、コンデンサを構成する誘電体材料として、無機材料や磁性材料を混合した有機材料等を使用してもよい。また、LSIチップやコンデンサ以外に、ディスクリート部品を設けても構わない。
 第2の実施形態
 図10は、本発明の第2の実施形態の半導体素子内蔵基板を示す断面図である。本実施形態の半導体素子内蔵基板は、LSIチップ11とTSVチップ12の側方の絶縁層16に、半導体素子内蔵基板23の表裏の配線18a、18bを接続するチップ側方ビア21が設けられている以外は第1の実施形態と同様である。
 図11は、本実施形態による半導体素子内蔵基板において、内蔵チップ11、12及びチップ側方ビア21の配置例を示す平面図である。チップ側方ビア21は、LSIチップ11とTSVチップ12の周囲の所望の領域に配置することができる。チップ側方ビア21は、LSIチップ11とTSVチップ12間に配置してもよい。
 チップ側方ビア21を設けることにより、半導体素子内蔵基板23の表裏の配線18a、18bを電気的に接続できることに加えて、放熱特性の向上や、チップ側面方向(基板平面方向)の応力の低減によるチップの低反り化が期待できる。
 チップ側方ビア21およびTSV24は、それぞれ、上面側の配線を介してLSIチップの端子に電気的に接続することができる。
 チップ側方ビア21の材料は、例えば、銅、銀、金、ニッケル、アルミニウム、チタン、モリブデン、タングステン、パラジウムが挙げられ、これらから選ばれる1種の金属や、これらから選ばれる少なくとも1種を主成分とする合金を用いることができる。特に、電気抵抗値及びコストの観点から銅が望ましい。本実施形態では、チップ側方ビア21の材料として、例えば、銅を好適に用いることができる。
 チップ側方ビア21の高さ(基板平面に垂直方向の長さ)は、内蔵するLSIチップ11とTSVチップ12の高さよりも高くし、例えば、60~110μmに設定できる。
 チップ側方ビアの外径は、例えば、10μm~300μmの範囲で適宜設定することができる。歩留まりや電源およびグランドの伝送等の点から50μm以上が好ましく、100μm以上がより好ましいが、チップ側方ビアの収容率等の点から100μm以下が好ましい。典型的には、例えば、チップ側方ビアの外径は50~100μmに設定でき、ピッチは150~500μmに設定できる。チップ側方ビアの外径は、例えばTSVの外径の2倍~100倍程度に設定することができる。チップ側方ビアの歩留まりや電源およびグランドの伝送等の点から5倍以上が好ましく、10倍以上がより好ましく、チップ側方ビアの収容率等の点から50倍以下が好ましく、10倍以下に設定してもよい。
 本実施形態では、チップ側方ビア21のピッチ及びビア径を、TSV24のピッチ及びビア径よりも大きくできる。この場合、大容量の電源およびグランドを、大径、緩ピッチのチップ側方ビア21を介して伝送させ、多ピン・微細配線の信号を、小径、狭ピッチのTSV24を介して伝送させることができる。このように、用途に応じてチップ側方ビアとTSVを使い分けることで、半導体素子内蔵基板の電気特性を向上できる。
 以下に、半導体素子内蔵基板の製造方法について説明する。
 第1の製造例
 図12(a)から(f)は、半導体素子内蔵基板の製造方法の一例を工程順に示す断面図である。この製造方法により、図8に示す半導体素子内蔵基板を製造することができる。
 まず、図12(a)に示すように、支持体22上に絶縁層16cを形成する。支持体22は、高剛性の材料であることが望ましい。支持体22上には、LSIチップ11とTSVチップ12を搭載するための位置マークが設けられていることが好ましい。位置マークは、絶縁層16cを通して高精度に認識でき、位置マークとしての機能を果たしているのであれば、支持体22上に設けた金属部であっても、ウェットエッチングや機械加工により設けた窪みであってもよい。例えば、支持体22として0.5mm厚の銅板を使用し、絶縁層16cとして20~50μm厚のエポキシ樹脂層を設けることができ、位置マークとしては、支持体22上に電解めっきによりニッケル膜からなるマークを形成できる。
 次に、図12(b)に示すように、支持体22上の絶縁層16c上に位置マークを基準として、LSIチップ11をその端子13がある面を上に向けて搭載する。そして、TSVチップ12を同様に搭載する。この際、LSIチップ11と絶縁層16cの間、TSVチップ12と絶縁層16cの間には、接着層があることが望ましいが、接着層を設けなくても、絶縁層16cを未硬化樹脂で形成し、その上面を接着面として利用できる。
 次に、LSIチップ11とTSVチップ12の側方及び上方を絶縁層で覆う。まず、図12(c)に示すように、LSIチップ11とTSVチップ12の側面周囲を覆う絶縁層16b形成し、その後、図12(d)に示すように、これらのチップの上面を覆う絶縁層16aを形成する。絶縁層16bにはガラスクロス等の補強材を含むことができ、チップを収容できる開口を設けたもの用意し、これを支持体22上に設けることができる。
 この方法に代えて、LSIチップ11とTSVチップ12の上面と側方とを一括で覆うようにフィルム状の絶縁材料を設けてもよい。この場合、支持体22上の絶縁層16cと同じ材料で覆うと、図1に示すように、これらチップの上面、側面および下面を覆う絶縁層16を形成することができる。また、支持体22上に絶縁層16cを設けないで、接着層20を介してこれらのチップを設けた場合、図9に示す半導体素子内蔵基板を形成することができる。その際、下面側のビア17c及び配線18bは、支持基板を除去した後に設けることができる。
 絶縁層の形成は、トランスファーモールディング法、圧縮形成モールド法、印刷法、真空プレス、真空ラミネート、スピンコート法、ダイコート法、カーテンコート法などを用いて行うことができる。フィルム状の絶縁樹脂を用いる場合は、真空プレス法や真空ラミネート法等を用いることができ、液状の樹脂を用いる場合はモールド法やコーティング法等を用いることができる。例えば、絶縁樹脂としてエポキシ樹脂フィルムを用いて、真空ラミネートにて絶縁層16a、16bを積層することができる。
 次に、図12(e)に示すように、支持体22を除去する。支持体22の除去は、ウェットエッチング、ドライエッチング、物理的な剥離、研磨などの手法を用いて行うことができる。例えば、銅板からなる支持体はウェットエッチングにて容易に除去できる。
 次に、図12(f)に示すように、LSIチップ11の端子13に接続するビア17aと、TSVチップ12の端子14及び端子15にそれぞれ接続するビア17b、17cを設け、そして、上面側配線18a及び下面側配線18bを形成する。
 ビア孔の形成は、このビア孔を形成する絶縁層が感光性材料からなる場合、フォトリソグラフィーにより形成することができる。絶縁層が非感光性材料からなる場合又は感光性材料ではあるがパターン解像度が低い材料からなる場合、ビア孔は、レーザー加工法、ドライエッチング法又はブラスト法により形成できる。本製造例においては、例えば、レーザー加工法によりビア孔を形成する。次に、このビア孔内には前記の金属材料を充填し、チップの端子に接続するビアを形成する。ビア孔内への金属材料の充填方法は、電解めっき、無電解めっき、印刷法、溶融金属吸引法等で行うことができる。
 上記のビア形成方法に代えて、これらのチップの端子上に予め通電用の金属ポストを設けておき、これらの金属ポストを覆う絶縁層を形成した後、研磨等により絶縁層表面を削って金属ポストの表面を露出させることによってビアを形成してもよい。このような形成方法により、低コスト化、高歩留まり化が実現できる。
 絶縁層16aを設けないで配線18aを設けることも可能であり、この場合は、ビアを介することなく配線18aとこれらのチップの端子と接続することも可能である。
 配線18a、18bは、サブトラクティブ法、セミアディティブ法又はフルアディティブ法等により形成できる。サブトラクティブ法は、基板上に設けられた銅箔上に所望のパターンのレジストを形成し、不要な銅箔をエッチングした後に、レジストを剥離して所望のパターンを得る方法である。セミアディティブ法は、無電解めっき法、スパッタ法、CVD(chemical vapor deposition)法等で給電層を形成した後、所望のパターンに開口されたレジストを形成し、レジスト開口部内に電解めっき法による金属を析出させ、レジストを除去した後に給電層をエッチングして所望の配線パターンを得る方法である。フルアディティブ法は、基板上に無電解めっき触媒を吸着させた後に、レジストでパターンを形成し、このレジストを絶縁膜として残したまま触媒を活性化し、無電解めっき法によりレジスト絶縁膜の開口部に金属を析出させることで所望の配線パターンを得る方法である。配線材料としては、前記の金属材料を用いることができるが、特に、電気抵抗値及びコストの観点から銅が好ましい。
 必要に応じて、得られた半導体素子内蔵基板の上面側に、配線の一部が露出する開口を持つソルダーレジスト等からなる保護絶縁膜(不図示)を設け、この開口における配線の露出部分を外部端子として利用することができる。この開口に導電材料を設けてバンプを形成してもよい。同様に、得られた半導体素子内蔵基板の下面側に、配線の一部が露出する開口を持つソルダーレジスト等からなる保護絶縁膜(不図示)を設け、この開口における配線の露出部分を外部端子として利用することができる。この開口に導電材料を設けてバンプを形成してもよい。
 必要に応じて、得られた半導体素子内蔵基板の上面側に、絶縁層および配線を交互に設けて多層配線構造を設けてもよい。同様に、得られた半導体素子内蔵基板の下面側に、絶縁層および配線を交互に設けて多層配線構造を設けてもよい。このようにして、例えば図6に示す構造を得ることができる。図6においては、各多層配線構造において配線は2層、絶縁層は1層であるが、3層以上の配線および2層以上の絶縁層を設けることができる。さらに、この場合、上面側に、多層配線構造の最上層側の配線の一部が露出する開口を持つソルダーレジスト等の保護絶縁膜を設け、この開口における配線の露出部分を外部端子として利用してもよい。この開口に導電材料を設けてバンプを形成してもよい。同様に、下面側に、多層配線構造の最下層側の配線の一部が露出する開口を持つソルダーレジスト等の保護絶縁膜を設け、この開口における配線の露出部分を外部端子として利用してもよい。この開口に導電材料を設けてバンプを形成してもよい。
 第2の製造例
 図13(a)から(e)は、半導体素子内蔵基板の製造方法の他の例を工程順に示す断面図である。
 まず、図13(a)に示すように、支持体22上に、配線18b、ビア17e、絶縁層16dを含む多層配線構造を形成する。
 次に、図13(b)に示すように、支持体22上の多層配線構造上に接着層20を介してLSIチップ11を搭載する。TSVチップ12は、チップ下面側の端子15が半田ボール19を介して多層配線構造上面の所定の導電部へ接続するように搭載する。チップ搭載工程で下面側の電気的な接続を行うため、下面側ビアの形成工程が不要になり、低コストで製造可能になる。
 次に、図13(c)に示すように、これらのチップの上面および側面を覆う絶縁層16を形成する。
 次に、図13(d)に示すように、LSIチップ11の端子13に接続するビア17aと、TSVチップ12の端子14に接続するビア17bを設ける。これらのビアに電気的に接続する上面側配線18a、絶縁層16d及びビア17dを含む多層配線構造を形成する。
 次に、図13(e)に示すように、支持体22を除去する。支持体と支持体上の配線とが同じ材料(例えば銅)で形成されている場合は、支持体の材料とエッチングレートの異なる材料からなるバリア導電膜を配線と支持体との間に形成しておくことで、ウェットエッチングにより支持体を選択的に除去することができる。支持体の除去精度が所望の範囲にあれば、バリア導電膜を形成することなく、ドライエッチングや研磨によって支持体を除去してもよい。
 その後、上面側の多層配線構造の最上層側の配線の一部が露出する開口を持つソルダーレジスト16eを設ける。この開口における配線の露出部分を外部端子として利用できる。この開口に導電材料を設けてバンプを形成してもよい。同様に、下面側の多層配線構造の最下層側の配線の一部が露出する開口を持つソルダーレジスト16eを設ける。この開口における配線の露出部分を外部端子としてできる。この開口に導電材料を設けてバンプを形成してもよい。
 本実施形態の製造方法によれば、半導体素子内蔵基板を効率よく作製できる。
 第3の製造例
 図14(a)から(e)は、半導体素子内蔵基板の製造方法の他の例を工程順に示す断面図である。この製造方法により、図8に示す構造において、絶縁層16a、16b及び16cを貫通するチップ側方ビア21が設けられた半導体素子内蔵基板を製造することができる。
 本製造例は、LSIチップ11とTSVチップ12の側方に絶縁層16a、16b及び16cを貫通するにチップ側方ビア21を形成する以外は製造例1と同様に実施することができる。
 まず、製造例1と同様にして、図14(a)に示す構造を経由して、図14(b)に示す構造を得る。
 次に、図14(c)に示すように、LSIチップ11とTSVチップ12の周囲の絶縁層16a、16b及び16cを貫通するチップ側方ビア21を形成する。チップ側方ビア21は、これらの絶縁層が感光性材料からなる場合、フォトリソグラフィーにより形成することができる。これらの絶縁層が非感光性材料からなる場合又は感光性材料ではあるがパターン解像度が低い材料からなる場合、ビア孔は、レーザー加工法、ドライエッチング法又はブラスト法により形成できる。本製造例においては、例えば、レーザー加工法によりビア孔を形成する。次に、ビア孔内には前記の金属材料を充填し、チップ側方ビアを形成する。ビア孔内への金属材料の充填方法は、電解めっき、無電解めっき、印刷法、溶融金属吸引法等で行うことができる。本製造例では、例えば、電解めっきを用いて形成する。
 次に、図14(d)に示すように支持体22を除した後、図14(e)に示すように、製造例1と同様にして、LSIチップ11の端子13に接続するビア17aと、TSVチップ12の端子14に接続するビア17bを形成し、次いで、TSVチップ12の下面側の端子15に接続するビア17cを形成し、そして、上面側配線18a及び下面側配線18bを形成する。チップの上面側のビア17a、17bの形成と同時に、チップ側方ビア21を形成してもよい。
 チップ11、12上のビア17a、17bを金属ポストを用いて形成する場合、これらの金属ポストを覆う絶縁層表面を削って金属ポスト表面を露出させる工程は、チップ側方ビア21を形成した後に行ってもよいし、前に行ってもよい。
 以上、実施例を参照して本発明を説明したが、本発明は上記実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年3月18日に出願された日本出願特願2010-062776を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11 LSIチップ
 12 TSVチップ
 13 端子
 14 端子
 15 端子
 16、16a、16b、16c、16d 絶縁層
 16e ソルダーレジスト
 17a、17b、17c、17d、17e ビア
 18a、18b 配線
 19 半田ボール
 20 接着層
 21 チップ側方ビア
 22 支持体
 23 半導体素子内蔵基板
 24 TSV

Claims (24)

  1.  半導体素子を内蔵する配線基板であって、
     前記配線基板は、
      前記半導体素子と、
      チップ部品と、
      該半導体素子および該チップ部品の少なくとも外周側面を覆う周辺絶縁層と、
      当該配線基板の上面側に設けられた上面側配線と、
      当該配線基板の下面側に設けられた下面側配線とを含み、
     前記半導体素子は、その上面側に端子を有し、該端子は前記上面側配線と電気的に接続され、
     前記チップ部品は、
      前記上面側配線と電気的に接続する上面側端子と、
      前記下面側配線と電気的に接続する下面側端子と、
      当該チップ部品を貫通し、該上面側端子と該下面側端子とを接続するチップ貫通ビアとを有する、半導体素子内蔵基板。
  2.  前記半導体素子は、半導体回路を有する半導体チップであり、
     前記チップ部品は、半導体回路を有しない半導体チップである、請求項1に記載の半導体素子内蔵基板。
  3.  前記チップ部品の平面面積が、前記半導体素子の平面面積より大きい、請求項1又は2に記載の半導体素子内蔵基板。
  4.  複数の前記チップ部品が、前記半導体素子の外周側面を囲むように配置されている、請求項1から3のいずれか一項に記載の半導体素子内蔵基板。
  5.  前記半導体素子の端子は、ビアを介して前記上面側配線に接続され、
     前記チップ部品の上面側端子は、ビアを介して前記上面側配線と接続され、
     前記チップ部品の下面側端子は、ビアを介して前記下面側配線と接続されている、請求項1から4のいずれか一項に記載の半導体素子内蔵基板。
  6.  前記半導体素子の端子は、ビアを介して前記上面側配線に接続され、
     前記チップ部品の上面側端子は、ビアを介して前記上面側配線と接続され、
     前記チップ部品の下面側端子は、半田部材を介して前記下面側配線と接続されている、請求項1から4のいずれか一項に記載の半導体素子内蔵基板。
  7.  前記周辺絶縁層は、前記半導体素子の下面および前記チップ部品の下面を覆う下面側絶縁層と、該半導体素子の外周側面および該チップ部品の外周側面を取り囲む補強絶縁層と、該半導体素子の上面および該チップ部品の上面を覆う上面側絶縁層を含む、請求項1から6のいずれか一項に記載の半導体素子内蔵基板。
  8.  前記半導体素子および前記チップ部品の周囲の領域に、前記周辺絶縁層を貫通するチップ側方ビアが設けられている、請求項1から7のいずれか一項に記載の半導体素子内蔵基板。
  9.  前記チップ側方ビアの外径は、前記チップ貫通ビアの外径より大きい、請求項8に記載の半導体素子内蔵基板。
  10.  前記チップ側方ビアには電源またはグランドが伝送され、前記チップ貫通ビアには信号が伝送される、請求項9に記載の半導体素子内蔵基板。
  11.  前記上面側配線を覆う保護絶縁膜を有し、
     該保護絶縁膜は開口を有し、該開口内の該上面側配線の露出部からなる外部端子、または該開口に設けられた導電部からなる外部端子を備えた、請求項1から10のいずれか一項に記載の半導体素子内蔵基板。
  12.  前記配線基板の上面側に交互に設けられた配線と絶縁層を含む多層配線構造を有する、請求項1から10のいずれか一項に記載の半導体素子内蔵基板。
  13.  前記上面側の多層配線構造の最上層側に開口をもつ絶縁層を有し、該開口内の配線の露出部からなる外部端子、または該開口に設けられた導電部からなる外部端子を備えた、請求項12に記載の半導体素子内蔵基板。
  14.  前記配線基板の下面側に交互に設けられた配線と絶縁層を含む多層配線構造を有する、請求項1から13のいずれか一項に記載の半導体素子内蔵基板。
  15.  前記下面側の多層配線構造の最下層側に開口をもつ絶縁層を有し、該開口内の配線の露出部からなる外部端子、または該開口に設けられた導電部からなる外部端子を備えた、請求項14に記載の半導体素子内蔵基板。
  16.  前記下面側配線を覆う保護絶縁膜を有し、
     前記保護絶縁膜は開口を有し、該開口内の前記下面側配線の露出部からなる外部端子、または該開口に設けられた導電部からなる外部端子を備えた、請求項1から13のいずれか一項に記載の半導体素子内蔵基板。
  17.  半導体素子を内蔵する配線基板の製造方法であって、
     支持体上に、上面側に端子を有する半導体素子をその下面を支持体側に向けて搭載する工程と、
     前記支持体上に、上面側および下面側に端子を有するチップ部品を搭載する工程と、
     前記半導体素子および前記チップ部品を覆う周辺絶縁層を形成する工程と、
     前記支持体を除去する工程と、
     前記チップ部品の下面側端子に電気的に接続する第1配線を形成する工程と、
     前記半導体素子の端子および前記チップ部品の上面側端子に電気的に接続する第2配線を形成する工程を含み、
     前記チップ部品は、当該チップ部品を貫通し、前記上面側端子と前記下面側端子とを接続するチップ貫通ビアを有している、製造方法。
  18.  前記支持体上に下地絶縁層を形成する工程をさらに含み、該下地絶縁層上に、前記半導体素子および前記チップ部品を搭載する請求項17に記載の製造方法。
  19.  前記半導体素子および前記チップ部品は、それぞれ接着層を介して搭載される、請求項17又は18に記載の製造方法。
  20.  半導体素子を内蔵する配線基板の製造方法であって、
     支持体上に、少なくとも第1配線を形成する工程と、
     前記支持体上に、上面側に端子を有する半導体素子をその下面を支持体側に向けて搭載する工程と、
     前記支持体上に、上面側および下面側に端子を有するチップ部品を、該下面側の端子が前記第1配線に電気的に接続するように搭載する工程と、
     前記半導体素子および前記チップ部品を覆う周辺絶縁層を形成する工程と、
     前記支持体を除去する工程と、
     前記半導体素子の端子および前記チップ部品の上面側端子に電気的に接続する第2配線を形成する工程を含み、
     前記チップ部品は、当該チップ部品を貫通し、前記上面側端子と前記下面側端子とを接続するチップ貫通ビアを有している、製造方法。
  21.  前記第1配線を形成する工程において、該第1配線を最上層側の配線として含み、前記支持体上に交互に設けられた配線および絶縁層を含む多層配線構造を形成し、
     該多層配線構造上に前記半導体素子および前記チップ部品が搭載され、
     該チップ部品の下面側の端子が該第1配線に電気的に接続される、請求項20に記載の製造方法。
  22.  前記チップ部品の下面側端子は、半田部材を介して前記第1配線に接続される、請求項20又は21に記載の製造方法。
  23.  前記周辺絶縁層は、前記半導体素子および前記チップ部品の外周側面を取り囲む第1絶縁層と、前記半導体素子および前記チップ部品の上面を覆う第2絶縁層を含む、請求項17から22のいずれか一項に記載の製造方法。
  24.  前記第1絶縁層は補強材を含む、請求項23に記載の製造方法。
PCT/JP2011/051295 2010-03-18 2011-01-25 半導体素子内蔵基板およびその製造方法 WO2011114774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/635,621 US8810008B2 (en) 2010-03-18 2011-01-25 Semiconductor element-embedded substrate, and method of manufacturing the substrate
JP2012505548A JP5423874B2 (ja) 2010-03-18 2011-01-25 半導体素子内蔵基板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-062776 2010-03-18
JP2010062776 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114774A1 true WO2011114774A1 (ja) 2011-09-22

Family

ID=44648883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051295 WO2011114774A1 (ja) 2010-03-18 2011-01-25 半導体素子内蔵基板およびその製造方法

Country Status (3)

Country Link
US (1) US8810008B2 (ja)
JP (1) JP5423874B2 (ja)
WO (1) WO2011114774A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022298A1 (en) * 2012-08-03 2014-02-06 Qualcomm Mems Technologies, Inc. Passives via bar
JP2014099526A (ja) * 2012-11-15 2014-05-29 Fujitsu Ltd 半導体装置、半導体装置の製造方法、電子装置及び電子装置の製造方法
JP2014103396A (ja) * 2012-11-21 2014-06-05 Intel Corp ビルドアップ層に埋め込まれたロジックダイ及びその他コンポーネント
JP2014146741A (ja) * 2013-01-30 2014-08-14 Fujitsu Ltd 半導体装置の製造方法及び導電性構造体
JP2014192235A (ja) * 2013-03-26 2014-10-06 Dainippon Printing Co Ltd 部品内蔵配線板、部品内蔵配線板の製造方法
CN104425682A (zh) * 2013-09-10 2015-03-18 菱生精密工业股份有限公司 芯片封装结构、其制造方法,及使用其的芯片封装模块
JP2015056655A (ja) * 2013-09-10 2015-03-23 菱生精密工業股▲分▼有限公司 半導体装置、当該半導体装置を使用した半導体モジュール、及び前記半導体装置の製造方法
JP2015070146A (ja) * 2013-09-30 2015-04-13 力成科技股▲分▼有限公司 半導体装置
JP2015130443A (ja) * 2014-01-08 2015-07-16 富士通株式会社 部品内蔵基板の製造方法
KR20150104033A (ko) * 2014-03-04 2015-09-14 제네럴 일렉트릭 컴퍼니 초박형 임베디드 반도체 소자 패키지 및 그 제조 방법
US10115671B2 (en) 2012-08-03 2018-10-30 Snaptrack, Inc. Incorporation of passives and fine pitch through via for package on package
CN111356302A (zh) * 2018-12-21 2020-06-30 深南电路股份有限公司 电路板及其制造方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422437B1 (ko) * 2011-05-13 2014-07-22 이비덴 가부시키가이샤 배선판 및 그 제조 방법
US20130193575A1 (en) * 2012-01-27 2013-08-01 Skyworks Solutions, Inc. Optimization of copper plating through wafer via
US9613917B2 (en) 2012-03-30 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package (PoP) device with integrated passive device in a via
US9165887B2 (en) 2012-09-10 2015-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with discrete blocks
US8975726B2 (en) 2012-10-11 2015-03-10 Taiwan Semiconductor Manufacturing Company, Ltd. POP structures and methods of forming the same
US9391041B2 (en) 2012-10-19 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out wafer level package structure
US9627338B2 (en) * 2013-03-06 2017-04-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming ultra high density embedded semiconductor die package
US9119313B2 (en) * 2013-04-25 2015-08-25 Intel Corporation Package substrate with high density interconnect design to capture conductive features on embedded die
US8928117B1 (en) * 2013-08-01 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-chip package structure and method of forming same
US9209151B2 (en) 2013-09-26 2015-12-08 General Electric Company Embedded semiconductor device package and method of manufacturing thereof
US9373527B2 (en) 2013-10-30 2016-06-21 Taiwan Semiconductor Manufacturing Company, Ltd. Chip on package structure and method
US9679839B2 (en) 2013-10-30 2017-06-13 Taiwan Semiconductor Manufacturing Company, Ltd. Chip on package structure and method
SG10201400390YA (en) * 2014-03-05 2015-10-29 Delta Electronics Int L Singapore Pte Ltd Package structure
US9735129B2 (en) * 2014-03-21 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and methods of forming the same
US9318452B2 (en) 2014-03-21 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and methods of forming the same
US10056352B2 (en) 2014-07-11 2018-08-21 Intel IP Corporation High density chip-to-chip connection
WO2016043761A1 (en) 2014-09-18 2016-03-24 Intel Corporation Method of embedding wlcsp components in e-wlb and e-plb
JP6048481B2 (ja) * 2014-11-27 2016-12-21 株式会社豊田自動織機 電子機器
KR102356810B1 (ko) * 2015-01-22 2022-01-28 삼성전기주식회사 전자부품내장형 인쇄회로기판 및 그 제조방법
DE102015104641A1 (de) 2015-03-26 2016-09-29 At & S Austria Technologie & Systemtechnik Ag Träger mit passiver Kühlfunktion für ein Halbleiterbauelement
SG10201504271YA (en) * 2015-05-29 2016-12-29 Delta Electronics Int’L Singapore Pte Ltd Power module
US9748227B2 (en) * 2015-07-15 2017-08-29 Apple Inc. Dual-sided silicon integrated passive devices
DE102015121044B4 (de) 2015-12-03 2020-02-06 Infineon Technologies Ag Anschlussblock mit zwei Arten von Durchkontaktierungen und elektronische Vorrichtung, einen Anschlussblock umfassend
US9852988B2 (en) 2015-12-18 2017-12-26 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US20170287838A1 (en) * 2016-04-02 2017-10-05 Intel Corporation Electrical interconnect bridge
US10446487B2 (en) 2016-09-30 2019-10-15 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10580735B2 (en) 2016-10-07 2020-03-03 Xcelsis Corporation Stacked IC structure with system level wiring on multiple sides of the IC die
TWI782939B (zh) * 2016-12-29 2022-11-11 美商英帆薩斯邦德科技有限公司 具有整合式被動構件的接合結構
WO2018169968A1 (en) 2017-03-16 2018-09-20 Invensas Corporation Direct-bonded led arrays and applications
WO2018183739A1 (en) 2017-03-31 2018-10-04 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
CN107170731A (zh) * 2017-05-05 2017-09-15 华为技术有限公司 嵌入式基板及其制造方法
US10886263B2 (en) * 2017-09-29 2021-01-05 Advanced Semiconductor Engineering, Inc. Stacked semiconductor package assemblies including double sided redistribution layers
US11508587B2 (en) * 2017-12-29 2022-11-22 Intel Corporation Microelectronic assemblies
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11276676B2 (en) 2018-05-15 2022-03-15 Invensas Bonding Technologies, Inc. Stacked devices and methods of fabrication
US10910344B2 (en) 2018-06-22 2021-02-02 Xcelsis Corporation Systems and methods for releveled bump planes for chiplets
US10490479B1 (en) * 2018-06-25 2019-11-26 Taiwan Semiconductor Manufacturing Co., Ltd. Packaging of semiconductor device with antenna and heat spreader
US11515291B2 (en) 2018-08-28 2022-11-29 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
KR102547250B1 (ko) * 2018-12-20 2023-06-23 삼성전자주식회사 반도체 패키지
US11901281B2 (en) 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
CN111682003B (zh) 2019-03-11 2024-04-19 奥特斯奥地利科技与系统技术有限公司 包括具有竖向贯通连接件的部件的部件承载件
US11296053B2 (en) 2019-06-26 2022-04-05 Invensas Bonding Technologies, Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US11139179B2 (en) * 2019-09-09 2021-10-05 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
CN116525567A (zh) * 2023-05-19 2023-08-01 深圳市芯友微电子科技有限公司 一种半导体封装结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418787A (ja) * 1990-03-30 1992-01-22 Toshiba Corp 印刷配線板の接続装置
JP2005285945A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 導電路形成方法
JP2010021368A (ja) * 2008-07-10 2010-01-28 Ngk Spark Plug Co Ltd 部品内蔵配線基板及びその製造方法
WO2010024233A1 (ja) * 2008-08-27 2010-03-04 日本電気株式会社 機能素子を内蔵可能な配線基板及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528018B2 (ja) 2004-04-26 2010-08-18 新光電気工業株式会社 半導体装置及びその製造方法
JP4575071B2 (ja) 2004-08-02 2010-11-04 新光電気工業株式会社 電子部品内蔵基板の製造方法
JP4976840B2 (ja) 2006-12-22 2012-07-18 株式会社東芝 プリント配線板、プリント配線板の製造方法および電子機器
US8586465B2 (en) * 2007-06-07 2013-11-19 United Test And Assembly Center Ltd Through silicon via dies and packages
US20090115026A1 (en) * 2007-11-05 2009-05-07 Texas Instruments Incorporated Semiconductor device having through-silicon vias for high current,high frequency, and heat dissipation
US8587129B2 (en) * 2009-07-31 2013-11-19 Stats Chippac Ltd. Integrated circuit packaging system with through silicon via base and method of manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418787A (ja) * 1990-03-30 1992-01-22 Toshiba Corp 印刷配線板の接続装置
JP2005285945A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 導電路形成方法
JP2010021368A (ja) * 2008-07-10 2010-01-28 Ngk Spark Plug Co Ltd 部品内蔵配線基板及びその製造方法
WO2010024233A1 (ja) * 2008-08-27 2010-03-04 日本電気株式会社 機能素子を内蔵可能な配線基板及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022298A1 (en) * 2012-08-03 2014-02-06 Qualcomm Mems Technologies, Inc. Passives via bar
US10115671B2 (en) 2012-08-03 2018-10-30 Snaptrack, Inc. Incorporation of passives and fine pitch through via for package on package
JP2014099526A (ja) * 2012-11-15 2014-05-29 Fujitsu Ltd 半導体装置、半導体装置の製造方法、電子装置及び電子装置の製造方法
JP2014103396A (ja) * 2012-11-21 2014-06-05 Intel Corp ビルドアップ層に埋め込まれたロジックダイ及びその他コンポーネント
JP2014146741A (ja) * 2013-01-30 2014-08-14 Fujitsu Ltd 半導体装置の製造方法及び導電性構造体
JP2014192235A (ja) * 2013-03-26 2014-10-06 Dainippon Printing Co Ltd 部品内蔵配線板、部品内蔵配線板の製造方法
JP2015056655A (ja) * 2013-09-10 2015-03-23 菱生精密工業股▲分▼有限公司 半導体装置、当該半導体装置を使用した半導体モジュール、及び前記半導体装置の製造方法
CN104425682A (zh) * 2013-09-10 2015-03-18 菱生精密工业股份有限公司 芯片封装结构、其制造方法,及使用其的芯片封装模块
JP2015070146A (ja) * 2013-09-30 2015-04-13 力成科技股▲分▼有限公司 半導体装置
JP2015130443A (ja) * 2014-01-08 2015-07-16 富士通株式会社 部品内蔵基板の製造方法
KR20150104033A (ko) * 2014-03-04 2015-09-14 제네럴 일렉트릭 컴퍼니 초박형 임베디드 반도체 소자 패키지 및 그 제조 방법
JP2015170855A (ja) * 2014-03-04 2015-09-28 ゼネラル・エレクトリック・カンパニイ 極薄埋め込み型半導体デバイスパッケージおよびその製造方法
KR102332362B1 (ko) * 2014-03-04 2021-12-01 제네럴 일렉트릭 컴퍼니 초박형 임베디드 반도체 소자 패키지 및 그 제조 방법
US11605609B2 (en) 2014-03-04 2023-03-14 General Electric Company Ultra-thin embedded semiconductor device package and method of manufacturing thereof
CN111356302A (zh) * 2018-12-21 2020-06-30 深南电路股份有限公司 电路板及其制造方法

Also Published As

Publication number Publication date
JP5423874B2 (ja) 2014-02-19
JPWO2011114774A1 (ja) 2013-06-27
US20130009325A1 (en) 2013-01-10
US8810008B2 (en) 2014-08-19

Similar Documents

Publication Publication Date Title
JP5423874B2 (ja) 半導体素子内蔵基板およびその製造方法
US20210020591A1 (en) Semiconductor device and manufacturing method thereof
JP5605429B2 (ja) 半導体素子内蔵配線基板
US8766440B2 (en) Wiring board with built-in semiconductor element
TWI402017B (zh) 半導體裝置及其製造方法
KR101412718B1 (ko) 반도체 패키지 및 적층형 반도체 패키지
JP4953132B2 (ja) 半導体装置
WO2010041630A1 (ja) 半導体装置及びその製造方法
JP5692217B2 (ja) 機能素子内蔵基板
JP4921354B2 (ja) 半導体パッケージ及びその製造方法
KR20140083657A (ko) 인터포저가 임베디드 되는 전자 모듈 및 그 제조방법
JP2005327984A (ja) 電子部品及び電子部品実装構造の製造方法
JP2011187473A (ja) 半導体素子内蔵配線基板
JP5310103B2 (ja) 半導体装置及びその製造方法
JP5413371B2 (ja) 半導体装置及びその製造方法
WO2010047228A1 (ja) 配線基板およびその製造方法
JPWO2011118572A1 (ja) 半導体装置の製造方法
JP5589735B2 (ja) 電子部品内蔵基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505548

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635621

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755964

Country of ref document: EP

Kind code of ref document: A1