WO2014050081A1 - 電子装置 - Google Patents

電子装置 Download PDF

Info

Publication number
WO2014050081A1
WO2014050081A1 PCT/JP2013/005647 JP2013005647W WO2014050081A1 WO 2014050081 A1 WO2014050081 A1 WO 2014050081A1 JP 2013005647 W JP2013005647 W JP 2013005647W WO 2014050081 A1 WO2014050081 A1 WO 2014050081A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
surface side
wiring
land
electronic device
Prior art date
Application number
PCT/JP2013/005647
Other languages
English (en)
French (fr)
Inventor
祐紀 眞田
典久 今泉
慎也 内堀
今田 真嗣
俊浩 中村
英二 藪田
竹中 正幸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112013004691.1T priority Critical patent/DE112013004691T5/de
Priority to CN201380049977.6A priority patent/CN104685619A/zh
Priority to US14/427,458 priority patent/US9686854B2/en
Publication of WO2014050081A1 publication Critical patent/WO2014050081A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20854Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor

Definitions

  • the present disclosure relates to an electronic apparatus in which a conductive heat dissipation path is provided in the thickness direction of a substrate so that heat is radiated from a heating element on one surface side of the substrate to the other surface side of the substrate.
  • the surface wiring on the one surface side of the substrate and the surface wiring on the other surface side are connected by conductive vias extending in the thickness direction of the substrate, and a heat dissipation path is constituted by these both surface wirings and vias. Is.
  • the heat of the heating element mounted on the one surface side of the substrate is radiated to the other surface side of the substrate through the heat dissipation path.
  • an external heat radiating member is connected to the other surface of the substrate so that heat from the heat radiating path is further released to the heat radiating member.
  • This external heat radiating member is a conductive material such as a heat sink. It is normal to use those.
  • the heat dissipation path is conductive, and the potential of the heating element is exposed to the other surface of the substrate by the surface wiring on the other surface of the substrate. Therefore, it becomes difficult to connect the above-described external heat radiating member on the other surface of the substrate. That is, it becomes difficult to perform heat dissipation through the heat dissipation path without exposing the potential of the heat generating element to the other surface of the substrate.
  • An object of the present invention is to enable heat dissipation to be appropriately performed on the other surface side of the substrate without exposing the potential of the heating element on the one surface side of the substrate to the other surface side of the substrate through the heat dissipation path. .
  • the inventor of the present invention pays attention to the need to provide an electrically insulating insulating layer in the thickness direction of the substrate, and to insulate the heat dissipation path by this insulating layer, and wherever the insulating layer is provided in the thickness direction of the substrate. We have intensively studied whether it is good.
  • Such an insulating layer to some extent, is inferior in thermal conductivity as compared to a conductive material such as Cu used for substrate electrodes and wiring. Therefore, the heat of the heat generating element is efficiently released when the insulating layer is provided on the terminal side of the heat dissipation path far from the heat generating element, rather than the portion near the heat generating element in the heat dissipation path. Accordingly, the present disclosure has been created by considering that an insulating layer may be provided on the other surface of the substrate farthest from the heating element.
  • an electronic device includes a substrate having one surface and the other surface, a heating element mounted on one surface of the substrate, and from one surface side of the substrate to the other surface side within the substrate.
  • a conductive heat dissipation path that is provided so as to extend continuously and dissipates heat generated in the heat generating element to the other surface side of the substrate.
  • the heating element and the heat dissipation path are directly connected on one side of the board, and the other side of the board is composed of an insulating layer on the other side having electrical insulation, and the other side is insulated directly under the heating element.
  • a conductive other side electrode connected to an external heat radiating member is provided on the surface of the layer.
  • the end of the heat radiating path extends to the other side insulating layer, and the heat radiating path Since the other-surface-side insulating layer is interposed between the terminal and the other-surface side electrode, the end of the heat dissipation path and the other-surface-side electrode are electrically insulated.
  • the other surface side insulating layer constituting the other surface of the substrate does not expose the end of the heat dissipation path to the other surface of the substrate, the potential of the heating element on the one surface side of the substrate is passed through the heat dissipation path.
  • heat can be appropriately radiated on the other surface side of the substrate without being exposed to the other surface side of the substrate.
  • the substrate is made of a resin, and the mold resin that seals the heating element and the one surface of the substrate is provided on one surface side of the substrate.
  • the other surface of the substrate is exposed from the mold resin, and the other surface of the substrate is provided with a solder resist film that covers and protects the other surface of the substrate. It is thicker than the other surface side electrode located immediately below, and the other surface side electrode is disposed around the other surface side electrode while being exposed, and the portion of the substrate immediately below the heating element is one surface of the substrate By bending so that the other surface of the substrate is convex, the central portion side of the other surface side electrode protrudes compared to the peripheral portion side.
  • the substrate is bent by the molding pressure of the mold resin so as to fill as much as possible the step formed between the other side electrode and the solder resist film caused by the thicker solder resist film.
  • the central part of the projection protrudes. Therefore, when connecting the other surface side electrode and the external heat radiating member through a heat conductive bonding material such as solder, the protrusion of the other surface side electrode and the thickness of the heat conductive bonding material may be made as thin as possible. it can.
  • the heat radiation path extends in the plate surface direction of the substrate and is located on the one surface side of the substrate and located on the one surface side inner layer wiring.
  • the other side inner layer wiring that extends in the plate surface direction of the substrate and is located inside the substrate on the other side of the substrate, and extends between the one side inner layer wiring and the other side inner layer wiring in the thickness direction of the substrate.
  • a blind via for connecting is provided.
  • the one-surface-side inner layer wiring and the other-surface-side inner-layer wiring may have a size in the plate surface direction of the substrate larger than a size in the plate surface direction of the substrate in the heating element. . Thereby, wider heat dissipation can be performed with respect to the plate surface direction of the substrate.
  • an electronic device includes an electrically insulating substrate having one surface and another surface, one surface-side wiring provided on one surface of the substrate, and one surface-side wiring provided on one surface of the substrate. And one surface side land patterned together, a heating element mounted on one surface of the substrate, another element mounted together with the heating element on one surface of the substrate, and one surface of the substrate inside the substrate immediately below the heating element And a conductive heat dissipation path for continuously dissipating heat generated in the heat generating element to the other surface side of the substrate.
  • the heat generating element and the one-side land are directly bonded to each other on one surface of the substrate via the conductive bonding material, so that the heat radiation path and the heating element starting from the one-surface land and the conductive bonding material are directly connected. It is connected.
  • the one-side land is present in the entire projected area of the heating element on one surface of the substrate immediately below the heating element, and the dimension of the board surface direction of the board in the one-side land is larger than the dimension of the board surface direction of the heating element. large.
  • the other surface side of the substrate is constituted by the other surface side insulating layer as a part of the electrically insulating substrate provided in the whole plate surface direction of the substrate.
  • a conductive other surface side land is provided on the other surface of the substrate directly below the heating element.
  • Other surface wiring is provided on the other surface of the substrate, and the other surface side land is patterned together with the other surface wiring, and is electrically independent from the other surface wiring.
  • the end of the heat dissipation path extends to the other surface side insulating layer, and the end of the heat dissipation path is the other surface side inner layer wiring as a heat diffusion layer.
  • the other surface side inner layer wiring is interposed between the other surface side inner layer wiring and the other surface side land, and the other surface side inner layer wiring and the other surface side land are electrically insulated.
  • the thermal diffusion insulating portion is constituted by the wiring, the other surface side land, and the other surface side insulating layer interposed therebetween.
  • both the other side inner layer wiring and the other side land exist in the entire projected area of the heating element on one surface of the substrate immediately below the heating element, and the other side inner layer wiring and the other side land
  • the dimension in the plate surface direction of the substrate is larger than the dimension in the plate surface direction of the substrate in the heat generating element.
  • the other surface side insulating layer constituting the other surface of the substrate does not expose the end of the heat dissipation path to the other surface of the substrate, the potential of the heating element on the one surface side of the substrate is passed through the heat dissipation path.
  • heat can be appropriately radiated on the other surface side of the substrate without being exposed to the other surface side of the substrate.
  • an electronic device is mounted with an electrically insulating substrate having one surface and the other surface, a heating element mounted on one surface of the substrate, and the heating element on one surface of the substrate.
  • Other elements one-surface wiring provided on one surface of the substrate, one conductive-side land land provided on one surface of the substrate and patterned together with the one-surface wiring, and another surface provided on the other surface of the substrate A side wiring and a conductive other surface side land provided on the other surface of the substrate, patterned together with the other surface side wiring, and electrically independent from at least a part of the other surface side wiring.
  • the heating element has a bonding surface for electrically bonding to the one-side land, the one-side land has a bonded surface for electrically bonding the heating element, and the bonded surface is at least
  • the conductive bonding material is present in the entire projection region in the plate thickness direction of the substrate on the bonding surface, and directly bonds the bonding surface and the bonded surface to each other in the entire projection region.
  • the other surface side substrate insulating layer is further provided on the other surface side of the substrate as a part of the electrically insulating substrate provided in the whole plate surface direction of the substrate.
  • the first surface side land and the conductive bonding material are used as starting points, and are provided so as to continuously extend from one surface side of the substrate to the other surface side substrate insulating layer, and the heat generated in the heating element is transferred to the other surface of the substrate.
  • a conductive heat dissipation path for radiating heat is provided on the side, and the end of the heat dissipation path is constituted by a conductive other-surface inner layer wiring provided inside the substrate.
  • the other side substrate insulating layer Is interposed between the other surface side inner layer wiring and the other surface side land in the heat dissipation contribution region to electrically insulate the other surface side inner layer wiring from the other surface side land, and at least one of the other surface side inner layer wirings.
  • a heat diffusion insulating portion is configured by the other surface side inner layer wiring, the other surface side land, and the other surface side substrate insulating layer.
  • the end of the heat dissipation path is not exposed to the other surface of the substrate by the other surface side substrate insulating layer constituting the other surface of the substrate, the potential of the heating element on the one surface side of the substrate is changed to the heat dissipation path.
  • heat can be appropriately radiated on the other surface side of the substrate without being exposed to the other surface side of the substrate.
  • FIG. 1 is a schematic cross-sectional view of an electronic device according to a first embodiment of the present disclosure. It is a schematic sectional drawing of the electronic device concerning 2nd Embodiment of this indication.
  • FIG. 6 is a schematic cross-sectional view of an electronic device according to a third embodiment of the present disclosure. It is a schematic sectional drawing of the electronic device concerning 4th Embodiment of this indication. It is a schematic sectional drawing of the electronic device concerning 5th Embodiment of this indication. It is a schematic sectional drawing of the electronic device concerning 6th Embodiment of this indication, and shows the state before sealing by mold resin.
  • FIG. 1 It is a schematic sectional drawing of the electronic device concerning 6th Embodiment, and shows the completion state after sealing with mold resin. It is a schematic sectional view of an electronic device concerning a 7th embodiment of this indication. It is a schematic plan view which shows the 1st example of the other surface electrode part in the electronic device shown by FIG. It is a schematic plan view which shows the 2nd example of the other surface electrode part in the electronic device shown by FIG. It is a schematic sectional drawing of the electronic device concerning 8th Embodiment of this indication. It is a schematic sectional drawing of the electronic device concerning 9th Embodiment of this indication. It is a schematic sectional view showing an important section of an electronic device concerning a 10th embodiment of this indication.
  • FIG. 38 is a schematic cross-sectional view of an electronic device according to an eleventh embodiment of the present disclosure. It is a schematic sectional drawing showing the important section of the electronic device concerning a 12th embodiment of this indication. It is a schematic sectional drawing which shows the principal part of the electronic device as another example concerning 12th Embodiment. It is a schematic sectional drawing showing the important section of the electronic device concerning a 14th embodiment of this indication. It is a schematic sectional drawing which shows the principal part of the electronic apparatus as another example concerning 14th Embodiment. It is a schematic sectional drawing showing the important section of the electronic device concerning other embodiments of this indication. It is a schematic sectional drawing showing the important section of the electronic device concerning other embodiments of this indication.
  • FIG. 1 shows a state in which the electronic device S1 is connected to an external heat radiating member 60 through a heat conductive bonding material 50.
  • the electronic device S1 is applied to, for example, an electronic device mounted on an automobile.
  • the electronic device S1 of the present embodiment is broadly divided into the substrate 10, the heating element 30 mounted on the one surface 11 of the substrate 10, and the heat generated in the heating element 30 on the other surface 12 of the substrate 10. And a conductive heat radiation path 40 that radiates heat to the side.
  • the substrate 10 is made of a resin having a plate shape in which one surface (first surface) 11 and the other surface (second surface) 12 are in a relationship between the front and back plate surfaces 11 and 12.
  • the substrate 10 is a laminated substrate including a plate-like core 20 made of an epoxy resin or the like and electrically insulating insulating layers 21 and 22 made of an epoxy resin or the like on both surfaces of the core 20. , 21 and 22 configurations.
  • the resin constituting the other-surface-side insulating layer 22 has higher thermal conductivity than the resin constituting the core 20 and the one-surface-side insulating layer 21. This can be easily realized, for example, by changing the amount of the heat conductive filler contained in the resin or changing the type of the epoxy resin between the former resin and the latter resin.
  • the surface of the one-side insulating layer 21 located on the one surface 11 side of the substrate 10 with respect to the core 20 corresponds to the one surface 11 of the substrate 10, and the other surface of the substrate 10 than the core 20.
  • the surface of the other surface side insulating layer 22 located on the surface 12 side corresponds to the other surface 12 of the substrate 10.
  • a one-surface electrode 23 made of Cu or the like exposed on the one surface 11 is provided on one surface 11 of the substrate 10.
  • the heat generating element 30 is mounted on the one surface side electrode 23 on the one surface 11 of the substrate 10, and the heat generating element 30 (here, the element back surface) via a conductive bonding material 23 a such as solder or a conductive adhesive. Side) and the one-surface-side electrode 23 are thermally connected and electrically connected.
  • the heating element 30 generates heat when driving a power transistor, IGBT, or the like.
  • circuit constituent conductors such as wirings and electrodes constituting the circuit are provided, and the surface side of the heating element 30 is a wire These circuit conductors are connected by bonding or the like.
  • a conductive other surface side electrode 24 made of Cu or the like exposed on the other surface 12 is provided.
  • This other surface side electrode 24 is provided electrically independently with respect to all the conductive elements other than the said other surface side electrode 24 in the board
  • this electronic apparatus S1 is connected to the external heat radiating member 60 through the heat conductive joining material 50 by this other surface side electrode 24.
  • FIG. As the heat conductive bonding material 50, a conductive material such as solder or silver paste may be used in addition to the insulating heat radiation grease such as silicon grease.
  • the external heat radiating member 60 is a heat sink such as Cu or Fe, or a casing such as Al.
  • one-surface-side inner layer wiring 25 made of conductive Cu or the like and extending in the plate surface direction of the substrate 10 is provided.
  • another surface side inner layer wiring 26 made of conductive Cu or the like and extending in the plate surface direction of the substrate 10 is provided.
  • the one-side insulating layer 21 is provided with a laser via 27 made of Cu or the like extending through the one-side insulating layer 21 and extending in the thickness direction of the substrate 10. Are connected so as to be capable of conducting heat.
  • the laser via 27 is formed by making a hole in the one-side insulating layer 21 with a laser and filling the hole with Cu plating or the like.
  • the core 20 is provided with a blind via 28 that penetrates the core 20 and extends in the thickness direction of the substrate 10, and the one-surface-side inner layer wiring 25 and the other-surface-side inner-layer wiring 26 are interposed through the blind via 28. And are connected so as to be able to conduct heat.
  • the blind via 28 is composed of a Cu plating 28a formed on a side surface of a through hole provided in the core 20 and an electrically insulating filler 28b such as an epoxy resin filled inside the Cu plating 28a.
  • Such a blind via 28 is formed by an ordinary method of sequentially performing drilling of the core 20, Cu plating on the side of the hole, filling of the filler 28b, and lid plating.
  • These laser vias 27 and blind vias 28 are arranged in a planar dot matrix, for example, immediately below the heating element 30.
  • the heat dissipation path 40 includes the conductive bonding material 23a, the one-surface-side electrode 23, the laser via 27, the one-surface-side inner-layer wiring 25, the blind via 28, and the other-surface-side that are connected in an electrically continuous manner.
  • the inner layer wiring 26 is used. That is, the starting end of the continuous heat dissipation path 40 is the conductive bonding material 23 a, and the end is the other surface side inner layer wiring 26.
  • the heating element 30 is directly connected to the conductive bonding material 23a on the one surface 11 of the substrate 10, whereby the heating element 30 and the heat radiation path 40 are directly connected.
  • the heat of the heating element 30 is transmitted from the conductive bonding material 23a to the inner surface wiring 26 on the other surface side and released.
  • the heat from the other surface side inner layer wiring 26 is released from the other surface side insulating layer 22 to the external heat radiation member 60 via the other surface side electrode 24.
  • the heat generating element 30 and the heat dissipation path 40 are also electrically connected, the back surface potential of the heat generating element 30 that is in contact with the conductive bonding material 23 a and the other surface side inner layer wiring 26 that is the terminal end of the heat dissipation path 40.
  • the potential is the same.
  • the other surface 12 of the substrate 10 is constituted by the other-surface insulating layer 22 having electrical insulation.
  • the other surface side electrode 24 connected to the external heat radiating member 60 is provided on the surface of the other surface side insulating layer 22 immediately below the heating element 30 as shown in FIG.
  • the other surface side insulating layer 22 is interposed between the surface side inner layer wiring 26 and the other surface side electrode 24. Thereby, the other surface side inner layer wiring 26 and the other surface side electrode 24 are electrically insulated.
  • the other-surface-side inner layer wiring 26 that is the end of the heat dissipation path 40 is not exposed to the other surface 12 of the substrate 10 by the other-surface-side insulating layer 22.
  • the back surface potential of the element 30 is not exposed to the other surface 12 of the substrate 10 through the heat dissipation path 40. Therefore, even if the external heat radiating member 60 is conductive, the other surface side electrode 24 and the heat radiating member 60 can be connected without any problem.
  • the thermally conductive bonding material 50 for thermally connecting the external heat radiation member 60 and the other surface side electrode 24.
  • an electrically insulating material but also a conductive material such as solder having relatively excellent thermal conductivity can be employed.
  • the heat dissipation path 40 of the present embodiment extends in the plate surface direction of the substrate 10, the one-layer inner layer wiring 25 positioned on the one surface 11 side of the substrate 10, and extends in the plate surface direction of the substrate 10 and the other surface 12 of the substrate 10.
  • the other side inner layer wiring 26 located on the side, and the blind via 28 for connecting the inner layer wirings 25 and 26 are provided. Therefore, heat can be widely dissipated not only in the direction directly below the heating element 30 but also in the plate surface direction of the substrate 10.
  • the substrate 10 according to the present embodiment is manufactured by a typical method for manufacturing a laminated substrate in which the layers 20, 21, and 22 are plated and punched, and the layers 20 to 22 are laminated. It can be done.
  • the dimension in the plate surface direction of the substrate 10 in the one-side inner layer wiring 25 and the other-side inner layer wiring 26 extending in the plate surface direction of the substrate 10 inside the substrate 10 is It is further enlarged compared to the first embodiment.
  • the dimension in the plate surface direction of the substrate 10 in both the inner layer wirings 25 and 26 is slightly larger than the dimension in the plate surface direction of the substrate 10 in the heating element 30. In the form, the degree is greatly increased. According to the present embodiment, wider heat dissipation can be performed with respect to the plate surface direction of the substrate 10.
  • control element 31 such as a microcomputer that does not require heat dissipation, or a passive element such as a resistor or a capacitor, on the one surface 11 of the substrate 10. 32 is installed.
  • the present embodiment further includes elements 31 and 32 that do not require heat dissipation, and can be applied in combination with the second embodiment.
  • FIG. 4 An electronic device S4 according to a fourth embodiment of the present disclosure will be described with reference to FIG.
  • one surface 11 of the substrate 10 and components mounted on the one surface 11 are sealed with the mold resin 70, and the other surface 12 of the substrate 10 is exposed from the mold resin 70. It has a half mold structure.
  • the mounted components and the connecting portions thereof are protected, and the other surface 12 side of the substrate 10 is exposed to be suitable for heat dissipation.
  • this embodiment since this embodiment only adds the mold resin 70, it is applicable in combination with each said embodiment.
  • FIG. 5 An electronic device S5 according to a fifth embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 5, the electronic device S5 itself of this embodiment is the same as the electronic device S3 shown in the third embodiment. In the present embodiment, a state is provided in which the electronic device S ⁇ b> 5 is connected to the external heat radiating member 60 via the heat conductive bonding material 50.
  • FIGS. 6A and 6B An electronic device S6 according to a sixth embodiment of the present disclosure will be described with reference to FIGS. 6A and 6B. As shown in FIG. 6B, the electronic device S6 is deformed by adding a solder resist film 80 to the electronic device S4 (see FIG. 4) of the fourth embodiment and bending a part of the substrate 10. However, it is different, and this difference will be mainly described.
  • the substrate 10 is made of a resin such as an epoxy resin.
  • a mold resin 70 for sealing the heating element 30 and the one surface 11 of the substrate 10 is provided on the one surface 11 side of the substrate 10, and the other surface 12 of the substrate 10 is molded. The half mold structure is exposed from the resin 70.
  • the other surface 12 of the substrate 10 is provided with a solder resist film 80 that covers and protects the other surface 12 of the substrate 10.
  • the solder resist film 80 covers and protects the other surface side wiring 24a and the like, which are circuit constituent conductors provided on the other surface 12 of the substrate 10, and is made of a normal solder resist material.
  • the solder resist film 80 is disposed around the other surface side electrode 24 while exposing the other surface side electrode 24 located immediately below the heating element 30. Further, the solder resist film 80 is thicker than the other surface side electrode 24.
  • the portion of the substrate 10 immediately below the heating element 30 is bent such that one surface 11 of the substrate 10 is recessed and the other surface 12 of the substrate 10 is convex.
  • the central part side of the other surface side electrode 24 protrudes compared with the peripheral part side at a level not exceeding the surface of the solder resist film 80.
  • the deflection of the substrate 10 is caused by a molding pressure applied to the one surface 11 side of the substrate 10 when the mold resin 70 is sealed.
  • the solder resist film 80 is thicker than the other surface side electrode 24.
  • the solder resist film 80 protrudes between the solder resist film 80 and the other surface side electrode 24, and there is a step D between the two.
  • the sealing of the mold resin 70 is performed by placing the workpiece shown in FIG. 6A into a mold and molding the resin. At this time, on the other surface 12 side of the substrate 10, the workpiece is supported by the surface of the solder resist film 80 coming into contact with the mold, but because of the step D, the other surface side electrode 24 floats from the mold. It becomes a state.
  • the electronic device S6 of this embodiment as shown in FIG. 6B is completed.
  • the projecting level on the central portion side of the other surface side electrode 24 is equal to or less than the surface of the solder resist film 80.
  • the substrate 10 is formed so as to fill as much as possible the step D generated between the other surface side electrode 24 and the solder resist film 80 due to the solder resist film 80 being thicker.
  • the center part of the other surface side electrode 24 protrudes by bending.
  • the thickness of the heat conductive bonding material 50 can be made as thin as possible. As a result, effects such as a reduction in the amount of use of the heat conductive bonding material 50 and suppression of an increase in thermal resistance by the heat conductive bonding material 50 can be expected.
  • the solder resist film 80 is provided on the other surface 12 of the substrate 10, and the portion of the substrate 10 corresponding to the other surface side electrode 24 exposed from the solder resist film 80 is bent.
  • the embodiments other than the fourth embodiment can be applied in combination.
  • FIGS. 7, 8A, and 8B An electronic apparatus S7 according to a seventh embodiment of the present disclosure will be described with reference to FIGS. 7, 8A, and 8B. As shown in FIGS. 7, 8A, and 8B, the electronic device S7 is partially formed on the surface of the other-side electrode 24 with respect to the electronic device S6 (see FIG. 6B) of the sixth embodiment. A solder resist film 81 is formed.
  • the solder resist film 81 is formed of the same material as the solder resist film 80, but is referred to as a partial resist film 81 in order to distinguish it from the solder resist film 80.
  • the planar shape of the partial resist film 81 may be a shape that partially exists on the other surface side electrode 24, may be a dot shape as shown in FIG. 8A, may be a lattice shape as shown in FIG. 8B, Other shapes are also possible.
  • the partial resist film 81 In the state where the partial resist film 81 is provided, when the mold resin 70 is sealed in the same manner as in the sixth embodiment, the deflection of the substrate 10 is suppressed in the portion of the partial resist film 81. As described above, the partial resist film 81 suppresses the deflection of the substrate 10 and can be expected to prevent the substrate 10 from being damaged due to the degree of the deflection being too large.
  • the electronic device S8 according to an eighth embodiment of the present disclosure is also broadly divided into the substrate 10, the heating element 30 mounted on the one surface 11 of the substrate 10, and the heat generated in the heating element 30 on the other surface 12 of the substrate 10. And a conductive heat radiation path 40 that radiates heat to the side.
  • the substrate 10 is such that the one surface 11 and the other surface 12 are front and back, and the electrically insulating three layers 20 to 22, that is, the one surface side insulating layer 21, the core 20 as a core layer, The other surface side insulating layer 22 is laminated.
  • the surface of the one-side insulating layer 21 corresponds to one surface 11 of the substrate 10
  • the surface of the other-side insulating layer 22 corresponds to the other surface 12 of the substrate 10. More specifically, the one-side insulating layer 21 and the other-side insulating layer 22 correspond to the one-side substrate insulating layer and the other-side substrate insulating layer, respectively, which are part of the substrate.
  • the one surface 11 of the substrate 10 is provided with one surface side electrode 23 and one surface side wiring 23b.
  • the one surface side electrode 23 is configured as a land on which the heat generating element 30 is mounted, that is, one surface side land, and the one surface side wiring 23b is made of, for example, Cu and is configured as a circuit constituent conductor.
  • the one-surface electrode 23 is patterned into a predetermined shape by etching, printing or the like together with the one-surface wiring 23b. Further, both the one-side electrode 23 and the one-side wiring 23b are conductive.
  • a control element 31 and a passive element 32 are mounted together with the heating element 30.
  • Each of these elements 30 to 32 is mounted on the one surface side electrode 23 as one surface side land for mounting the elements.
  • a heating element 30 is an element that generates heat when driving a power transistor or IGBT, and more specifically, a vertical element having a back electrode.
  • the heating element 30 includes a general packaged heating component.
  • a conductive heat dissipation path 40 that dissipates heat generated in the heat generating element 30 to the other surface 12 side of the substrate 10 is provided in the substrate 10 immediately below the heat generating element 30. It has been. That is, the heat dissipation path 40 is located at a position in a direction in which the heating element 30 is projected onto the one surface 11 of the substrate 10, that is, directly below the heating element 30, and continuously extends from the one surface 11 side to the other surface 12 side. Yes.
  • the heating element 30 and the one-side electrode 23 are directly bonded to each other on one surface of the substrate 10 via the conductive bonding material 23a.
  • the one-surface-side electrode 23 and the conductive bonding material 23 a are the starting ends of the heat dissipation path 40, and the starting ends of the heat-dissipating paths 40 and the heat-generating elements 30 are connected by such direct bonding between the heat-generating elements 30 and the one-surface-side electrodes 23. Connected directly.
  • the one surface side electrode 23 as the one surface side land exists in the entire projected area of the heat generating element 30 with respect to the one surface 11 of the substrate 10 immediately below the heat generating element 30. That is, the one-surface electrode 23 does not have a portion lacking by a hole or the like in a region overlapping the entire projected area of the heat generating element 30, but overlaps the entire projected area of the heat generating element 30.
  • the dimension in the plate surface direction of the substrate 10 in the one-surface electrode 23 is larger than the dimension in the plate surface direction of the substrate 10 in the heating element 30.
  • the heating element 30 is a planar rectangle
  • the one-surface electrode 23 is a planar rectangle that is slightly larger than that.
  • the other surface side insulating layer 22 is an electrically insulating layer that constitutes the other surface 12 side of the substrate 10 as a part of the substrate 10. That is, the other surface side insulating layer 22 is provided on the entire other surface 12 side of the substrate 10 in the plate surface direction of the substrate 10 and is configured as a part of the substrate 10. Thereby, the surface of the other surface side insulating layer 22 is made into the other surface 12 of the board
  • the substrate 10 has an electrical insulating property having a laminated structure of an electrically insulating core 20 and an electrically insulating other surface side insulating layer 22 laminated on the core 20 on the other surface 12 side of the substrate 10. It can be said that this is a substrate.
  • a conductive other surface side electrode 24 is provided on the other surface 12 of the substrate 10, that is, on the surface of the other surface side insulating layer 22 immediately below the heating element 30.
  • the other surface side electrode 24 functions as the other surface side land that radiates heat to the outside by being connected to the heat radiating member 60.
  • the other surface 12 of the substrate 10 is provided with another surface side wiring 24a made of, for example, Cu and configured as a circuit constituent conductor.
  • the other surface side electrode 24 is patterned into a predetermined shape by etching or printing together with the other surface side wiring 24a.
  • the other surface side electrode 24 and the other surface side wiring 24a are electrically independent. That is, as described above, the other surface side electrode 24 is electrically independent of all the conductive elements other than itself on the substrate 10 and is set to the GND potential by, for example, body ground. In the present embodiment, the other surface side electrode 24 may be electrically independent from a part of the other surface side wiring 24a.
  • the end of the heat dissipation path 40 extends to the other surface side insulating layer 22.
  • the end of the heat dissipation path 40 is the other side inner layer wiring 26 as a heat diffusion layer.
  • the heat diffusion layer has a function of diffusing heat not only in the thickness direction of the substrate 10 but also in the plate surface direction. Since the other surface side inner layer wiring 26 extends in the plate surface direction of the substrate 10, it functions as a heat diffusion layer.
  • the other surface side insulating layer 22 which is a part of the board
  • substrate 10 interposes between the other surface side inner layer wiring 26 and the other surface side electrode 24, and the other surface side inner layer wiring 26 and the other surface side electrode 24 are electrically connected. Is electrically insulated.
  • the heat diffusion insulating portion 40a is configured by the other surface side inner layer wiring 26, the other surface side electrode 24, and the other surface side insulating layer 22 interposed therebetween.
  • the part corresponding to the other surface side inner layer wiring 26 in the other surface side insulating layer 22 is thinner than the other parts.
  • both the other surface side inner layer wiring 26 and the other surface side electrode 24 are located immediately below the heat generating element 30, and the heat generation with respect to the one surface 11 of the substrate 10 immediately below the heat generating element 30. It exists in the entire projected area of the element 30.
  • the dimension of the other surface side inner layer wiring 26 and the other surface side electrode 24 in the plate surface direction of the substrate 10 is larger than the dimension of the heating element 30 in the plate surface direction of the substrate 10.
  • the heat dissipation path 40 is not exposed to the other surface 12 of the substrate 10, insulation is ensured, and heat diffusion in the plate surface direction of the substrate 10 on the other surface 12 side is ensured. Is done.
  • the other-surface-side inner layer wiring 26 and the other-surface-side electrode 24 are one-dimensionally larger than that.
  • the heating element 30 has a bonding surface (lower surface of the heating element in FIG. 9) 301 for electrical bonding to the one-surface electrode 23 as the one-surface land.
  • the one-surface side electrode 23 has a surface to be bonded (upper surface of the one-surface side electrode in FIG. 9) 231 to which the heating element 30 is electrically bonded.
  • the to-be-joined surface 231 exists in all the projection areas to the plate
  • the bonding surface 231 is the entire lower surface of the heating element 30, but is not limited to this. For example, in the case of a heat generating element having a plurality of divided bonding surfaces, the bonding surface only needs to exist in the entire projection area of the bonding surface for each of the plurality of bonding surfaces. Further, as an aspect shown in FIG.
  • the bonded surface 231 is larger than the planar size of the heating element 30, but is not limited to this.
  • the plane size of the bonded surface may be smaller than the plane size of the heat generating element.
  • the total area of the bonded surfaces 231 is larger than the total area of the bonding surfaces 301 and may be smaller or larger than the area of the heating element in the plate surface direction of the substrate 10.
  • the other surface side inner layer wiring 26 and the other surface side electrode 24 are both located immediately below the heating element 30 and exist in the entire projected area of the heating element 30.
  • the other-surface-side inner layer wiring 26 and the other-surface-side electrode 24 are assumed to be larger than the heating element 30 with respect to the dimension in the plate surface direction of the substrate 10.
  • the thermal diffusion insulating portion 40a of the present embodiment is not limited to the configuration described above, and may be configured as follows.
  • the plane size of the heating element 30 in the direction of the plate surface of the substrate 10 is further expanded outward by the thickness t of the substrate 10 over the entire circumference of the heating element 30.
  • This area is referred to as a heat dissipation contribution area Z.
  • the heat of the heating element 30 diffuses in a direction of 45 ° from the one surface 11 side to the other surface 12 side of the substrate 10. For this reason, the thermal diffusion in the substrate 10 is performed in a region expanded from the heating element 30 by the thickness t of the substrate 10. For this reason, this region is defined as a heat dissipation contribution region Z that contributes to heat dissipation.
  • the other-surface-side insulating layer 22 is interposed between the other-surface-side inner-layer wiring 26 and the other-surface-side electrode 24 in the heat dissipation contribution region Z, and the other-surface-side inner layer.
  • the wiring 26 and the other surface side electrode 24 are electrically insulated.
  • the heat diffusion insulating portion 40a at least a part of the other surface side inner layer wiring 26 and at least a part of the other surface side electrode 24 are in the heat radiation contributing region Z from the area in the plate surface direction of the substrate 10 in the heating element 30. Constitute a heat diffusion layer pair having a large total area.
  • the heat diffusion insulating portion 40 a is formed by the other surface side inner layer wiring 26, the other surface side electrode 24, and the other surface side insulating layer 22 on the other surface 12 side of the substrate 10.
  • the other side inner layer wiring 26 and the other side electrode 24 may be entirely or partly in the heat dissipation contribution region Z, and the total area is a portion existing in the heat dissipation contribution region Z. Is the total area.
  • the other surface side inner layer wiring 26 and the other surface side electrode 24 do not necessarily have to be directly under the projection region of the heat generating element 10, that is, directly under the heat generating element 30 It may have.
  • the other surface side inner layer that is the end of the heat radiation path 40 is formed by the other surface side insulating layer 22 that forms the other surface 12 of the substrate 10.
  • the wiring 26 is not exposed to the other surface 12 of the substrate 10. Therefore, heat is appropriately radiated on the other surface 12 side of the substrate 10 without exposing the potential of the heating element 30 on the one surface 11 side of the substrate 10 to the other surface 12 side of the substrate 10 via the heat radiation path 40. be able to.
  • the heat of the heat generating element 30 is transmitted to the front side of the other surface side insulating layer 22, diffuses in the plate surface direction of the substrate 10 through the other surface side insulating layer 22, and is radiated by the other surface side electrode 24. , Heat dissipation is improved.
  • the insulation is ensured by the other surface side insulating layer 22 which is a part of the substrate 10, it is possible to reduce the size of the substrate 10 and facilitate manufacturing compared to the case where a separate insulating layer or the like is provided on the substrate 10. In addition to being excellent, it is easy to guarantee insulation.
  • the heating element 30 is directly joined to the one surface side electrode 23 which is the starting end of the heat radiation path 40 via the conductive joining material 23a. Thereby, it can be avoided that the heat of the heating element 30 is stored on the one surface 11 side of the substrate 10 due to the presence of a metal body such as a heat spreader, for example. That is, the heat of the heating element 30 is transmitted to the other surface 12 side through the heat dissipation path, and is diffused and radiated in the direction of the plate surface of the substrate 10 on the other surface 12 side. Therefore, it is possible to suppress the heat of the heating element 30 from interfering with the other elements 31 and 32 mounted on the one surface 11 of the substrate 10.
  • the one-surface electrode 23 is present in the entire projected area of the heating element 30 and has a larger planar size than the heating element 30.
  • the bonded surface 231 exists at least in the entire projection region in the thickness direction of the substrate 10 on the bonding surface 301, and the conductive property for directly bonding the bonding surface 301 and the bonded surface 231 to each other in the entire projection region. It is the structure which has the joining material 23a. According to these configurations, the heat distribution to the other surface 12 side of the substrate 10 can be ensured, and the temperature distribution of the heating element 30 can be made uniform to avoid local stress concentration on the heating element 30.
  • the conductive bonding material 23a exists in the entire projected region of the bonding surface 301, heat can be transferred from the bonding surface 301 without leaving the heat dissipation path starting from the conductive bonding material 23a.
  • the other-surface inner layer wiring 26 and the other-surface electrode 24 paired therewith are both present in the total projected area of the heating element 30 and have a planar size. It is larger than the heating element 30. Therefore, thermal diffusion can be performed in a wide region on the other surface 12 side of the substrate 10 with the other surface side insulating layer 22 interposed therebetween, which is preferable for improving heat dissipation.
  • the bonded surface 231 exists in the entire projected region of the bonding surface 301 in the plate thickness direction of the substrate 10, and the conductive bonding material 23 a is bonded to the bonded surface 301 in the entire projected region.
  • the surfaces 231 are directly joined to each other.
  • the bonding region by the conductive bonding material 23a has a great influence on the heat radiation to the back surface of the heat generating element 30, that is, the bonding surface 301, and is extremely inferior in heat dissipation when there is a region that is not bonded.
  • a region that cannot be bonded is likely to occur and heat dissipation is likely to be poor, but in this embodiment, such a problem can be avoided.
  • the heat dissipation path 40 extends in the plate surface direction of the substrate 10, extends on the one surface 11 side of the substrate 10 on the one surface side inner layer wiring 25 inside the substrate 10, and extends in the thickness direction of the substrate 10.
  • a blind via 28 is provided to connect between the one-surface-side inner layer wiring 25 and the other-surface-side inner-layer wiring 26.
  • the inner layer wirings 25 and 26 extending in the plate surface direction of the substrate 10 can spread and release heat in the plate surface direction of the substrate 10.
  • the heat dissipation path 40 further includes a laser via 27 that extends in the thickness direction of the substrate 10 and connects the one-surface-side electrode 23 and the one-surface-side inner layer wiring 25.
  • the one-surface-side inner layer wiring 25 and the other-surface-side inner-layer wiring 26 are provided between the one-surface-side insulating layer 21 and the core 20 and between the core 20 and the other-surface-side insulating layer 22, respectively.
  • the heat radiation path 40 is configured from the start end side by the same parts 23a, 23, 27, 25, 28, and 26 as described above.
  • the laser via 27 and the blind via 28 are respectively formed through the one-side insulating layer 21 and the core 20 as described above.
  • Each inner layer wiring 25, 26 is configured integrally with the lid plating of each via 27, 28.
  • the laser via 27 and the blind via 28 are positioned so as not to overlap each other in the plate surface direction of the substrate 10.
  • the portion where the blind via 28 is located in the inner surface side wiring 25 is a portion corresponding to the lid plating of the blind via 28, and is thinner than the portion other than the blind via 28.
  • the laser via 27 is connected to a thin portion of the one-layer inner layer wiring 25, resulting in a large transient thermal resistance.
  • the laser via 27 is connected to a thick portion at a position avoiding the blind via 28 in the inner surface side wiring 25, there is an advantage that the transient thermal resistance is reduced.
  • the blind vias 28 exist immediately below some of the laser vias 27 and the vias overlap each other. However, all the laser vias 27 and the blind vias 28 are separated from each other without overlapping each other. Of course, it may be a thing in.
  • the one-surface-side inner-layer wiring 25 exists in the entire projected area of the heating element 30 with respect to the one surface 11 of the substrate 10 immediately below the heating element 30.
  • the dimension in the plate surface direction of the substrate 10 in the one-side inner layer wiring 25 is larger than the dimension in the plate surface direction of the substrate 10 in the heating element 30. This is due to the dimensional relationship between the one-surface electrode 23, the other-surface inner-layer wiring 26 and the other-surface-side electrode 24, and the heating element 30, and the same reason.
  • the heating element 30 may be, for example, a passive element such as a resistance element or a coil element, in addition to the vertical element described above, as long as it is necessary to release heat generated during driving.
  • the heat radiating member 60 with respect to the other surface side electrode 24 through the heat conductive bonding material 50 and the like.
  • the thermally conductive bonding material 50 include a heat-dissipating gel, a heat-dissipating sheet, and a conductive adhesive containing a metal filler, in addition to heat-dissipating grease, solder, silver paste, and the like.
  • the eighth embodiment can be appropriately combined with the first to seventh embodiments as far as possible.
  • the one surface side electrode 23 and the one surface side inner layer wiring 25 have the same dimension in the plate surface direction of the substrate 10, that is, the planar size. Further, the dimension in the plate surface direction of each substrate 10 in the other surface side inner layer wiring 26 and the other surface side electrode 24 is larger than the dimension in the plate surface direction of each substrate 10 in the one surface side electrode 23 and the one surface side inner layer wiring 25. It is supposed to be big.
  • the heat diffuses in the plate surface direction of the substrate 10 as it goes to the other surface 12 side.
  • the diffusion of heat becomes remarkable around the other-side insulating layer 22, and an improvement in heat dissipation efficiency can be expected. Therefore, the heat dissipation path 40 preferable in terms of heat dissipation can be realized.
  • the dimension of the other surface side inner layer wiring 26 and the other surface side electrode 24 in the plate surface direction of the substrate 10 may be equal to each other, or the other surface side inner layer wiring 26 may be larger.
  • the dimension of the substrate 10 in the other surface side electrode 24 in the plate surface direction is the direction of the substrate surface of the substrate 10 in the other surface side inner layer wiring 26. It is desirable from the viewpoint of improving heat dissipation that it is larger than the above dimension. This is because heat diffusion on the other surface 12 side of the substrate 10 can be promoted as described above.
  • the layers 20 to 22 of the substrate 10 are made of resin, and the mold resin that seals the heating element 30, the other elements 31, 32, the one-side wiring 23b, and the one surface 11 of the substrate 10 on the one surface 11 side of the substrate 10. 70 is provided. The other surface 12 of the substrate 10 is exposed from the mold resin 70.
  • solder resist film 80 that covers and protects the other surface 12 of the substrate 10 is provided on the other surface 12 of the substrate 10.
  • the solder resist film 80 is arranged around the other surface side electrode 24 so as to cover the peripheral portion of the other surface side electrode 24 while exposing the other surface side electrode 24.
  • membranes 80 is made thinner than the site
  • the thickness t ⁇ b> 1 of the covering portion 80 a is thinner than the thickness t ⁇ b> 2 of a portion located on the other surface 12 of the substrate 10 around the other surface side electrode 24.
  • the step due to the solder resist film 80 can be reduced between the other surface side electrode 24 and the other surface 12 of the surrounding substrate 10. Therefore, similarly to the sixth embodiment (see FIG. 6B), the deformation of the substrate 10 due to the molding pressure when molding the mold resin 70 can be reduced, and damage to the substrate 10 can be reduced. Further, the shape of the portion of the solder resist film 80 between the covering portion 80a and the portion located on the other surface 12 of the substrate 10 around the other surface side electrode 24 is not particularly limited.
  • the portion of the solder resist film 80 between the covering portion 80 a and the portion located on the other surface 12 of the substrate 10 around the other surface side electrode 24 is tapered. It is desirable for the thickness to change as desired. According to this, since the level difference in the part can be eliminated as much as possible and a gentle taper can be formed, the molding pressure of the mold resin 70 can be easily relieved.
  • the portion adjacent to the other surface side electrode 24 on the other surface 12 of the substrate 10 is separated from the other surface side electrode 24.
  • the other surface side wiring 24a is provided.
  • the solder resist film 80 is continuously disposed from the periphery of the other surface side electrode 24 to the covering portion 80a while covering the other surface side wiring 24a.
  • solder resist film 80 only needs to cover at least the other surface 12 of the substrate 10, and may not cover the other surface side wiring 24a.
  • the tenth embodiment if the solder resist film 80 has the above-described characteristic configuration on the premise of a half-mold structure, the tenth embodiment is appropriately combined with those other than the sixth embodiment and the seventh embodiment. Can be combined.
  • the other surface side land 24 constituting the thermal diffusion insulating portion 40a is thinner than the total thickness of the other surface side wiring 24a and the solder resist film 80 covering the other surface side wiring 24a.
  • the portion corresponding to the heat dissipation contribution region Z is bent such that one surface 11 of the substrate 10 is recessed and the other surface 12 of the substrate 10 is convex, so that the central portion side of the portion protrudes compared to the peripheral portion side. Yes.
  • the solder resist shown in FIG. 6B According to this, the same effect as shown in FIG. 6B can be obtained.
  • solder resist film 80 that covers and protects the other surface 12 of the substrate 10 is provided on the other surface 12 of the substrate 10.
  • the solder resist film 80 is disposed away from the other surface side electrode 24 around the entire other surface side electrode 24 while the other surface side electrode 24 is exposed.
  • the thickness relationship between the other surface side electrode 24 and the other surface side wiring 24a is not limited, but the following configuration is more desirable.
  • the other surface side wiring 24 a is provided apart from the other surface side electrode 24. It is thicker than the other surface side wiring 24a. According to this, since the other surface side electrode 24 can be made to protrude from the surrounding other surface side wiring 24a, it is advantageous for connection to a planar external heat radiating member 60.
  • the other surface 12 of the substrate 10 is provided with a solder resist film 80 that covers and protects the other surface 12 of the substrate 10.
  • the solder resist film 80 covers the other surface side wiring 24a around the other surface side electrode 24 while the other surface side electrode 24 is exposed on the entire surface.
  • the other surface side electrode 24 is thicker than the total thickness of the other surface side wiring 24a and the solder resist film 80 covering the other surface side wiring 24a. According to this, since the other surface side electrode 24 can be made to protrude from the surrounding solder resist film 80, it is advantageous for connection to a planar external heat radiating member 60.
  • the substrate 10 includes a first inspection wiring 100 that draws the heat radiation path 40 to the one surface 11 of the substrate 10 and a second inspection wiring that pulls the other surface side electrode 24 to the one surface 11 of the substrate 10. 200.
  • the first inspection wiring 100 includes an inner layer wiring portion 101 led out from the inner surface side wiring 25 in the heat dissipation path 40, a conductor pad 103 provided on the first surface 11 of the substrate 10, and these inner layers.
  • the wiring part 101 and the laser via 102 connecting the conductor pad 103 are configured.
  • the conductor pad 103 is patterned together with the one-surface electrode 23 and the one-surface wiring 23b.
  • the inner layer wiring portion 101 is provided between the core 20 and the one surface side insulating layer 21 and is patterned together with the one surface side inner layer wiring 25.
  • the laser via 102 penetrates the one-side insulating layer 21 and is formed in the same manner as the laser via 27 of the heat dissipation path 40.
  • the second inspection wiring 200 includes a laser via 201, an inner layer wiring portion 202, a blind via 203, an inner layer wiring portion 204, a laser via 205, and a substrate connected from the other surface side electrode 24 to the other surface side electrode 24.
  • the conductor pads 206 provided on one surface 11 of the ten are connected in sequence.
  • the conductor pad 206 is patterned together with the one-surface electrode 23 and the one-surface wiring 23b.
  • the laser vias 201 and 205 are formed in the same manner as the laser via 27 of the heat dissipation path 40 in the one-side insulating layer 21 and the other-side insulating layer 22.
  • the inner layer wiring portions 202 and 204 are patterned together with the one-surface-side inner-layer wiring 25 and the other-surface-side inner-layer wiring 26, respectively. Further, the blind via 203 in the second inspection wiring 200 is formed in the same manner as the blind via 28 in the heat dissipation path 40.
  • the insulation test between the first inspection wiring 100 and the second inspection wiring 200 drawn out on the one surface 11 can be performed on the one surface 11 of the substrate 10. Therefore, it is possible to easily confirm the insulation guarantee between the heat radiation path 40 and the other surface side electrode 24.
  • FIG. 13 Another example of the electronic device S12 according to the twelfth embodiment will be described with reference to FIG.
  • an insulation test is performed to confirm the insulation guarantee between the heat radiation path 40 and the other surface side electrode 24 on the one surface 11 of the substrate 10.
  • this test is performed on the substrate 10.
  • the other surface 12 is used.
  • the substrate 10 is provided with inspection wiring 300 that draws the heat dissipation path 40 to the other surface 12 of the substrate 10.
  • the inspection wiring 300 shown in FIG. 14 includes an inner layer wiring portion 301 drawn from the other surface side inner layer wiring 26 in the heat radiation path 40, a conductor pad 303 provided on the other surface 12 of the substrate 10, and these inner layer wirings.
  • the laser via 302 connecting the part 301 and the conductor pad 303 is configured.
  • the conductor pad 303 in FIG. 14 is patterned together with the other surface side electrode 24 and the other surface side wiring 24a.
  • the inner layer wiring portion 301 is provided between the core 20 and the other surface side insulating layer 22 and is patterned together with the other surface side inner layer wiring 26.
  • the laser via 302 penetrates the other-surface insulating layer 22 and is formed by the same method as the laser via 27 of the heat dissipation path 40.
  • the insulation test between the test wiring 300 drawn to the other surface 12 and the other surface side electrode 24 can be performed on the other surface 12 of the substrate 10. Therefore, it is possible to easily confirm the insulation guarantee between the heat radiation path 40 and the other surface side electrode 24.
  • the drawing portion of the heat dissipation path 40 is shown in FIG. 13 is not limited to the example shown in FIG.
  • the first inspection wiring 100 may be pulled out from the other-surface inner layer wiring 26 in the heat dissipation path 40, and the inspection wiring 300 may be extracted from the one-surface inner layer wiring 25 in the heat dissipation path 40. Also good. Also in these cases, for example, the inspection wirings 100 and 300 are configured by appropriately forming inner layer wiring portions, laser vias, and blind vias.
  • the present embodiment has a configuration in which the above-described inspection wirings 100, 200, and 300 are added, it can be appropriately combined with all the above embodiments.
  • the substrate 10 includes the core 20 as a core layer located inside the substrate 10, and the one-surface-side insulation that is laminated on the one surface 11 side of the substrate 10 than the core 20 and constitutes the one surface 11 of the substrate 10.
  • the layer 21 is laminated on the other surface 12 side of the substrate 10 with respect to the core 20, and the other surface side insulating layer 22 constituting the other surface 12 of the substrate 10 is laminated.
  • the thermal conductivity of the one-side insulating layer 21 and the other-side insulating layer 22 be equal to or greater than the thermal conductivity of the core 20. According to this, it is possible to configure a substrate 10 with high heat dissipation at a low cost while keeping a relatively expensive heat dissipation material to a necessary minimum.
  • the thermal conductivity of the other surface side insulating layer 22 is larger than the thermal conductivity of the one surface side insulating layer 21. According to this, it is preferable in terms of improving the heat dissipation efficiency on the other surface 12 side of the substrate 10.
  • the one-side insulating layer 21 is desirably thicker than the other-side insulating layer 22. According to this, after ensuring the thickness of the substrate 10 with the thick one-side insulating layer 21, the thin other-side insulating layer 22 can be expected to improve the heat radiation characteristics on the other surface 12 of the substrate 10.
  • the heating element 30 is bonded to each one-side electrode 23 via a conductive bonding material 23 a.
  • the heat dissipation path 40 and the other surface side electrode 24 are provided directly under each heat generating element 30, respectively.
  • the other surface side electrode 24 may be one piece common to each heat radiation path 40.
  • the substrate 10 has a three-layer structure in which the one-side insulating layer 21, the core 20, and the other-side insulating layer 22 are sequentially stacked. It may be.
  • the substrate has a five-layer structure. .
  • each of the one-surface-side inner layer wiring and the other-surface-side inner-layer wiring has two layers.
  • the innermost layer wiring on the other surface side that contacts the insulating layer constituting the other surface 12 of the substrate 10 is the termination of the heat dissipation path, and this termination is exposed to the other surface 12 of the substrate 10.
  • FIG. 17 shows a case where the other-side insulating layer has two layers.
  • another other side insulating layer 22 b is interposed between the other side insulating layer 22 constituting the other side 12 of the substrate 10 and the core 20.
  • route 40 is comprised appropriately.
  • FIG. 18 shows another example in which the other surface side insulating layer has two layers.
  • the example of FIG. 18 is a partial modification of the example of FIG. 17, and the inner layer wiring 26 a that is the end of the heat dissipation path 40 and the other side inner layer wiring 26 are insulated through another other side insulating layer 22 b. Has been.
  • the laser via 27a is provided in the other insulating layer 22 on the other surface 12 side of the substrate 10 instead of the other insulating layer 22b on the other surface.
  • the surface side electrode 24 is connected. Thereby, also in FIG. 18, the thermal radiation path
  • the other surface side electrode 24 is configured to have the other surface side inner layer wiring 26 and the laser via 27a on the other surface 12 side of the substrate 10 than the inner layer wiring 26a which is the end of the heat radiation path 40.
  • the other-surface insulating layers 22 and 22b constituting the other surface 12 side of the substrate 10 as a part of the substrate 10 are not a single layer but are formed of multiple layers, there is no problem. Absent.
  • substrate 10 should just be comprised by the other surface side insulating layer 22 with a part of the other surface 12 side provided in the whole board surface direction of the board
  • the one-side electrode 23 may be provided on the blind via 28 on the surface of the core 20 that becomes the one surface 11 of the substrate 10.
  • the heat dissipation path 40 is not limited to the above-described configuration as long as it is provided immediately below the heat generating element 30.
  • the other surface side electrode 24 as the other surface side land is connected to the external heat radiating member 60.
  • the other surface side electrode 24 is connected to the external heat radiating member 60. It may be exposed to the outside without being connected to. In this case, for example, heat from the other surface side electrode 24 is radiated to the outside air.
  • the dimensions in the plate surface direction of the substrate 10 in the one surface side electrode 23, the one surface side inner layer wiring 25, the other surface side inner layer wiring 26, and the other surface side electrode 24 are described in the above embodiments. It is not limited to large and small relationships. That is, it is essential that each dimension of the one-surface side electrode 23, the other-surface side inner-layer wiring 26, and the other-surface-side electrode 24 is larger than the dimension of the heating element 30, but other than this, the magnitude relationship is appropriately changed. It doesn't matter.
  • the one surface side electrode 23 should just function as a land for joining the heat generating element 30, and the other surface side electrode 24 should just function as a land for radiating heat, It does not limit to what functions as an electrode.
  • the one surface 11 side of the substrate 10 is not sealed with the mold resin 70, but even in these cases, the one surface 11 side of the substrate 10 is sealed with the mold resin 70.
  • the other surface 12 side may be exposed from the mold resin 70.
  • each inner layer wiring 25 and 26 are integrated with the lid plating of the vias 27 and 28, but the present invention is not limited to this.
  • Each inner layer wiring may be a layer that does not have lid plating and has holes in the vias 27 and 28.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims.
  • the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible.
  • the above embodiments are not limited to the illustrated examples. Absent.
  • elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
  • numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 導電性の放熱経路(40)を基板(10)の厚さ方向に設けて、基板の一面(11)側の発熱素子(30)から基板の他面(12)側に放熱するようにした電子装置において、基板の一面側の発熱素子の電位を、放熱経路を介して基板の他面側に露出させることなく、基板の他面側にて、外部の放熱部材との接続を適切に行う。基板の一面にて、発熱素子と放熱経路の始端である導電性接合材(23a)とは直接接続されており、基板の他面は他面側絶縁層(22)により構成されている。発熱素子の直下にて他面側絶縁層の表面には、外部の放熱部材(60)と接続される導電性の他面側電極(24)が設けられ、基板の他面側では、放熱経路の終端である他面側内層配線(26)が他面側絶縁層まで延びるとともに、他面側絶縁層を介して他面側内層配線と他面側電極とは電気的に絶縁されている。

Description

電子装置 関連出願の相互参照
 本開示は、2012年9月25日に出願された日本出願番号2012-211024号および2013年9月24日に出願された日本出願番号2013-196807号に基づくもので、ここにその記載内容を援用する。
 本開示は、導電性の放熱経路を基板の厚さ方向に設けて、基板の一面側の発熱素子から基板の他面側に放熱するようにした電子装置に関する。
 従来より、この種の電子装置としては、一面と他面とが表裏の関係にある基板と、基板の一面に搭載された発熱素子と、基板の内部にて基板の一面側から他面側へ連続して延びるように設けられ、発熱素子に発生する熱を基板の他面側に放熱する導電性の放熱経路と、を備えたものが提案されている(特許文献1参照)。
 このものは、基板の一面側の表面配線と他面側の表面配線との間を、基板厚さ方向に延びる導電性のビアで接続し、これら両表面配線とビアとにより放熱経路を構成するものである。そして、基板の一面側に搭載された発熱素子の熱を、放熱経路を介して基板の他面側に放熱するようにしている。
特開2004-95586号公報
 ここで、基板の他面にはたとえば外部の放熱部材を接続して、放熱経路からの熱を、さらに放熱部材に逃がすようにするのであるが、この外部の放熱部材は、ヒートシンク等の導電性のものが用いられるのが通常である。
 しかし、従来では、放熱経路は導電性であり、基板の他面の表面配線等によって、発熱素子の電位が基板の他面に露出している。そのため、基板の他面にて、上記した外部の放熱部材を接続することが困難になる。つまり、発熱素子の電位を基板の他面に露出させることなく、放熱経路を介した放熱を行うことが困難になる。
 本開示は、上記点に鑑みてなされたものであり、導電性の放熱経路を基板の厚さ方向に設けて、基板の一面側の発熱素子から基板の他面側に放熱するようにした電子装置において、基板の一面側の発熱素子の電位を、放熱経路を介して基板の他面側に露出させることなく、基板の他面側にて適切に放熱を行えるようにすることを目的とする。
 本発明者は、基板の厚さ方向に電気絶縁性の絶縁層を設け、この絶縁層により放熱経路を絶縁してやればよいことに着目し、基板の厚さ方向のどこに絶縁層を設けてやればよいかについて、鋭意検討を行った。
 このような絶縁層は、程度の差こそあれ、基板の電極や配線に用いられるCu等の導電性材料に比べて熱伝導性に劣るものである。そのため、放熱経路のうち発熱素子に近い部位よりも、発熱素子から遠い放熱経路の終端側に絶縁層を設けた方が、発熱素子の熱が効率良く逃がされる。そこで、発熱素子から最も遠い基板の他面に絶縁層を設けてやればよいと考え、本開示を創出するに至った。
 本開示の第一の態様によれば、電子装置は、一面と他面とを有する基板と、基板の一面に搭載された発熱素子と、基板の内部にて基板の一面側から他面側へ連続して延びるように設けられ、発熱素子に発生する熱を基板の他面側に放熱する導電性の放熱経路と、を備える。
 基板の一面にて、発熱素子と放熱経路とは直接接続されており、基板の他面は電気絶縁性を有する他面側絶縁層により構成されており、発熱素子の直下にて他面側絶縁層の表面には、外部の放熱部材と接続される導電性の他面側電極が設けられており、基板の他面側では、放熱経路の終端が他面側絶縁層まで延びるとともに、放熱経路の終端と他面側電極との間に他面側絶縁層が介在することで、放熱経路の終端と他面側電極とは電気的に絶縁されている。
 それによれば、基板の他面を構成する他面側絶縁層によって、放熱経路の終端が基板の他面に露出することは無いから、基板の一面側の発熱素子の電位を、放熱経路を介して基板の他面側に露出させることなく、基板の他面側にて、適切に放熱を行うことができる。
 本開示の第二の態様によれば、第一の態様にかかる電子装置において、基板は樹脂よりなり、基板の一面側には、発熱素子および基板の一面を封止するモールド樹脂が設けられており、基板の他面は、モールド樹脂より露出しており、基板の他面には、基板の他面を被覆して保護するソルダーレジスト膜が設けられており、このソルダーレジスト膜は、発熱素子の直下に位置する他面側電極よりも厚いものであって他面側電極は露出させつつ他面側電極の周囲に配置されており、基板のうち発熱素子の直下の部位は、基板の一面が凹み且つ基板の他面が凸となるようにたわむことにより、他面側電極の中央部側が周辺部側に比べて突出している。
 それによれば、ソルダーレジスト膜の方が厚いことに起因する他面側電極とソルダーレジスト膜との間に生じる段差を、極力埋めるように、モールド樹脂の成型圧によって基板がたわんで他面側電極の中央部が突出したものとなる。そのため、他面側電極と外部の放熱部材とをはんだ等の熱伝導性接合材を介して接続するにあたって、その他面側電極の突出分、当該熱伝導接合材の厚さを極力薄くすることができる。
 本開示の第三の態様によれば、第一又は第二の態様にかかる電子装置において、放熱経路は、基板の板面方向に延び基板の一面側にて基板内部に位置する一面側内層配線と、基板の板面方向に延びるとともに基板の他面側にて基板内部に位置する他面側内層配線と、基板の厚さ方向に延びて一面側内層配線と他面側内層配線との間を接続するブラインドビアと、を有する。
 それによれば、基板の板面方向に延びる各内層配線によって、基板の板面方向に熱を広げて逃がすことが可能となる。
 本開示の第四の態様によれば、一面側内層配線および他面側内層配線を、基板の板面方向の寸法が、発熱素子における基板の板面方向の寸法よりも大きいものにしてもよい。これにより、基板の板面方向に対して、より広い放熱が行える。
 本開示の第五の態様によれば、電子装置は、一面と他面とを有する電気絶縁性の基板と、基板の一面に設けられた一面側配線と、基板の一面に設けられ一面側配線とともにパターニングされた一面側ランドと、基板の一面に搭載された発熱素子と、基板の一面にて前記発熱素子とともに搭載された他の素子と、発熱素子の直下における基板の内部にて基板の一面側から他面側へ連続して延びるように設けられ、発熱素子に発生する熱を基板の他面側に放熱する導電性の放熱経路と、を備える。
 さらに、基板の一面にて、発熱素子と一面側ランドとが導電性接合材を介して直接接合されることにより、一面側ランドおよび導電性接合材を始端とする放熱経路と発熱素子とが直接接続されている。一面側ランドは、発熱素子の直下にて基板の一面に対する発熱素子の全投影面積に存在するとともに、一面側ランドにおける基板の板面方向の寸法が発熱素子における基板の板面方向の寸法よりも大きい。
基板の他面側は基板の板面方向の全体に設けられた電気絶縁性を有する基板の一部としての他面側絶縁層により構成されている。発熱素子の直下にて基板の他面には、導電性の他面側ランドが設けられている。基板の他面には、他面配線が設けられており、他面側ランドは、他面配線とともにパターニングされたものであって、他面配線とは電気的に独立している。基板の他面側において、放熱経路の終端が他面側絶縁層まで延びるとともに、放熱経路の終端は熱拡散層としての他面側内層配線とされている。
さらに、他面側内層配線と他面側ランドとの間に他面側絶縁層が介在し、他面側内層配線と他面側ランドとが電気的に絶縁されることで、他面側内層配線、他面側ランドおよびこれらの間に介在する他面側絶縁層により、熱拡散絶縁部が構成されている。熱拡散絶縁部は、他面側内層配線および他面側ランドが共に、発熱素子の直下にて基板の一面に対する発熱素子の全投影面積に存在するとともに、他面側内層配線および他面側ランドにおける基板の板面方向の寸法が、発熱素子における基板の板面方向の寸法よりも大きいものである。
 それによれば、基板の他面を構成する他面側絶縁層によって、放熱経路の終端が基板の他面に露出することは無いから、基板の一面側の発熱素子の電位を、放熱経路を介して基板の他面側に露出させることなく、基板の他面側にて、適切に放熱を行うことができる。
 本開示の第六の態様によれば、電子装置は、一面と他面とを有する電気絶縁性の基板と、基板の一面に搭載された発熱素子と、基板の一面にて発熱素子とともに搭載された他の素子と、基板の一面に設けられた一面側配線と、基板の一面に設けられ、一面側配線とともにパターニングされた導電性の一面側ランドと、基板の他面に設けられた他面側配線と、基板の他面に設けられ、他面側配線とともにパターニングされ、他面側配線の少なくとも一部と電気的に独立した導電性の他面側ランドと、を備える。
 発熱素子は、一面側ランドへ電気的に接合するための接合面を有し、一面側ランドは、発熱素子が電気的に接合されるための被接合面を有し、被接合面は、少なくとも接合面における基板の板厚方向への全投影領域に存在し、全投影領域にて接合面と被接合面とを互いを直接接合する導電性接合材を有する。
 本開示の第六の態様にかかる電子装置では、さらに、基板の他面側は、基板の板面方向の全体に設けられた電気絶縁性を有する基板の一部としての他面側基板絶縁層により構成されており、一面側ランドおよび導電性接合材を始端とし、基板の一面側から他面側基板絶縁層へ連続して延びるように設けられ、発熱素子に発生する熱を基板の他面側に放熱する導電性の放熱経路を備え、放熱経路の終端は、基板の内部に設けられた導電性の他面側内層配線にて構成されている。発熱素子を基準として、発熱素子における基板の板面方向の平面サイズからさらに基板の板厚分、発熱素子全周において外側へ拡大した領域を放熱寄与領域としたときに、他面側基板絶縁層が放熱寄与領域にて他面側内層配線と他面側ランドとの間に介在して他面側内層配線と他面側ランドとを電気的に絶縁するとともに、他面側内層配線の少なくとも一部および他面側ランドの少なくとも一部がともに放熱寄与領域にて発熱素子における基板の板面方向の面積よりも総面積の大きいことで熱拡散層対を構成することにより、基板の他面側にて、他面側内層配線、他面側ランド、および、他面側基板絶縁層による熱拡散絶縁部が構成されている。
 それによれば、基板の他面を構成する他面側基板絶縁層によって、放熱経路の終端が基板の他面に露出することは無いから、基板の一面側の発熱素子の電位を、放熱経路を介して基板の他面側に露出させることなく、基板の他面側にて、適切に放熱を行うことができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態にかかる電子装置の概略断面図である。 本開示の第2実施形態にかかる電子装置の概略断面図である。 本開示の第3実施形態にかかる電子装置の概略断面図である。 本開示の第4実施形態にかかる電子装置の概略断面図である。 本開示の第5実施形態にかかる電子装置の概略断面図である。 本開示の第6実施形態にかかる電子装置の概略断面図であり、モールド樹脂による封止前状態を示す。 第6実施形態にかかる電子装置の概略断面図であり、モールド樹脂による封止後の完成状態を示す。 本開示の第7実施形態にかかる電子装置の概略断面図である。 図7に示される電子装置における他面電極部分の第1の例を示す概略平面図である。 図7に示される電子装置における他面電極部分の第2の例を示す概略平面図である。 本開示の第8実施形態にかかる電子装置の概略断面図である。 本開示の第9実施形態にかかる電子装置の概略断面図である。 本開示の第10実施形態にかかる電子装置の要部を示す概略断面図である。 本開示の第11実施形態にかかる電子装置の概略断面図である。 本開示の第12実施形態にかかる電子装置の要部を示す概略断面図である。 第12実施形態にかかる他の例としての電子装置の要部を示す概略断面図である。 本開示の第14実施形態にかかる電子装置の要部を示す概略断面図である。 第14実施形態にかかる他の例としての電子装置の要部を示す概略断面図である。 本開示の他の実施形態にかかる電子装置の要部を示す概略断面図である。 本開示の他の実施形態にかかる電子装置の要部を示す概略断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 本開示の第1実施形態にかかる電子装置S1について、図1を参照して述べる。なお、図1では、本電子装置S1を熱伝導性接合材50を介して、外部の放熱部材60に接続した状態を示している。この電子装置S1は、たとえば自動車に搭載される電子装置等に適用される。
 本実施形態の電子装置S1は、大きくは、基板10と、基板10の一面11に搭載された発熱素子30と、基板10に設けられ、発熱素子30に発生する熱を基板10の他面12側に放熱する導電性の放熱経路40と、を備えて構成されている。
 基板10は、一面(第一面)11と他面(第二面)12とが表裏の板面11、12の関係にある板状をなす樹脂よりなるものである。この基板10は、エポキシ樹脂等よりなる板状のコア20と、このコア20の両面にエポキシ樹脂等よりなる電気絶縁性の絶縁層21、22とを備える積層基板であり、ここでは3層20、21、22構成とされている。
 ここで、コア20および一面側絶縁層21を構成する樹脂よりも、他面側絶縁層22を構成する樹脂の方が、熱伝導性が高いものであることが望ましい。このことは、たとえば、前者の樹脂と後者の樹脂とで、樹脂に含有される熱伝導フィラーの量を変えたり、エポキシ樹脂の種類を変えたりすることで、容易に実現できる。
 このような本実施形態の基板10においては、コア20よりも基板10の一面11側に位置する一面側絶縁層21の表面が基板10の一面11に相当し、コア20よりも基板10の他面12側に位置する他面側絶縁層22の表面が基板10の他面12に相当する。
 そして、基板10の一面11には、当該一面11にて露出するCu等よりなる一面側電極23が設けられている。そして、発熱素子30は、基板10の一面11にて一面側電極23上に搭載されており、はんだや導電性接着剤等の導電性接合材23aを介して、発熱素子30(ここでは素子裏面側)と一面側電極23とは、熱伝導可能且つ電気的に接続されている。
 この発熱素子30はパワートランジスタやIGBTなどの駆動時に発熱するものである。なお、基板10の表面11、12および内部には、通常の回路基板と同様、回路を構成する配線や電極等の図示しない回路構成導体が設けられており、発熱素子30の表面側は、ワイヤボンディング等により、これら回路導体に接続されている。
 また、基板10の他面12には、当該他面12にて露出するCu等よりなる導電性の他面側電極24が設けられている。この他面側電極24は、基板10における当該他面側電極24以外の全ての導電性要素に対して電気的に独立して設けられたものであり、外部の放熱部材60との接続用のものである。
 そして、本電子装置S1は、この他面側電極24にて、熱伝導性接合材50を介して、外部の放熱部材60に接続されるようになっている。この熱伝導性接合材50としては、シリコングリス等の絶縁性の放熱グリス以外にも、はんだや銀ペースト等の導電性材料を用いてもよい。また、外部の放熱部材60は、CuやFe等のヒートシンクや、Alなどの筺体等である。
 また、基板10の内部にて、一面側絶縁層21とコア20との間には、導電性のCu等よりなり基板10の板面方向に延びる一面側内層配線25が設けられ、コア20と他面側絶縁層22との間には、導電性のCu等よりなり基板10の板面方向に延びる他面側内層配線26が設けられている。
 また、一面側絶縁層21には、当該一面側絶縁層21を貫通し、基板10の厚さ方向に延びるCu等よりなるレーザビア27が設けられており、このレーザビア27を介して一面側電極23と一面側内層配線25とが熱伝導可能に接続されている。このレーザビア27は、一面側絶縁層21にレーザで孔開けを行い、その孔をCuメッキ等で充填することにより形成されるものである。
 また、コア20には、当該コア20を貫通し、基板10の厚さ方向に延びるブラインドビア28が設けられており、このブラインドビア28を介して一面側内層配線25と他面側内層配線26とが熱伝導可能に接続されている。
 このブラインドビア28は、コア20に設けられた貫通孔の側面に形成されたCuメッキ28aとこのCuメッキ28aの内側に充填されたエポキシ樹脂等の電気絶縁性充填材28bとよりなる。このようなブラインドビア28は、コア20の孔開け、孔側面のCuメッキ、充填材28bの充填、蓋メッキを順次行うという、通常の方法で形成されるものである。
 これらレーザビア27およびブラインドビア28は、発熱素子30の直下にて、たとえば平面ドットマトリクス状に複数個配置されている。
 ここで、放熱経路40は、上記した熱伝導可能且つ電気的に連続して接続された導電性接合材23a、一面側電極23、レーザビア27、一面側内層配線25、ブラインドビア28および他面側内層配線26により構成されている。つまり、連続する放熱経路40の始端は、導電性接合材23aであり、終端は他面側内層配線26である。
 そして、基板10の一面11にて、発熱素子30は導電性接合材23aに直接接続されることにより、発熱素子30と放熱経路40とは直接接続された構成となっている。これにより、発熱素子30の熱は、導電性接合材23a~他面側内層配線26まで、伝わって逃がされる。さらに、他面側内層配線26からの熱は、他面側絶縁層22から他面側電極24を介して外部の放熱部材60に逃がされる。
 また、発熱素子30と放熱経路40とは電気的にも接続されているので、導電性接合材23aに接する発熱素子30の裏面電位と、放熱経路40の終端である他面側内層配線26の電位とは同じとされる。
 ここで、上記したように、基板10の他面12は電気絶縁性を有する他面側絶縁層22により構成されている。そして、外部の放熱部材60と接続される上記他面側電極24は、図1に示されるように、発熱素子30の直下にて他面側絶縁層22の表面に設けられている。
 さらに言うならば、図1に示されるように、基板10の他面12側では、放熱経路40の終端である他面側内層配線26が他面側絶縁層22の内面まで延びるとともに、この他面側内層配線26と他面側電極24との間に他面側絶縁層22が介在している。これにより、他面側内層配線26と他面側電極24とは電気的に絶縁されている。
 このように、本実施形態の電子装置S1によれば、放熱経路40の終端である他面側内層配線26は、他面側絶縁層22によって、基板10の他面12に露出しないので、発熱素子30の上記裏面電位も放熱経路40を介して基板10の他面12に露出しない。このことから、外部の放熱部材60が導電性であっても問題無く、他面側電極24と放熱部材60とを接続できる。
 さらには、他面側電極24は、発熱素子30とは電気的に絶縁されるので、外部の放熱部材60と他面側電極24とを熱的に接続するための上記熱伝導性接合材50としては、上述したように、電気絶縁性材料だけでなく、比較的熱伝導性に優れた、はんだ等の導電性材料も採用することができる。
 特に、本実施形態の放熱経路40は、基板10の板面方向に延び基板10の一面11側に位置する一面側内層配線25と、基板10の板面方向にのびるとともに基板10の他面12側に位置する他面側内層配線26と、これら両内層配線25、26の間を接続するブラインドビア28とを備えている。そのため、発熱素子30の直下方向だけでなく、基板10の板面方向にも広く放熱を行うことができる。
 なお、本実施形態の基板10は、各層20、21、22に対して、メッキ加工、孔開け加工等を施すとともに、これら各層20~22を積層するという典型的な積層基板の製造方法によって製造できるものである。
 (第2実施形態)
 本開示の第2実施形態にかかる電子装置S2について、図2を参照して述べる。本実施形態では、上記第1実施形態との相違点を中心に述べることとする。
 図2に示されるように、本実施形態では、基板10の内部にて基板10の板面方向に延びる一面側内層配線25および他面側内層配線26における基板10の板面方向の寸法を、上記第1実施形態に比べて更に大きくしたものである。
 上記第1実施形態においても、これら両内層配線25、26における基板10の板面方向の寸法は、発熱素子30における基板10の板面方向の寸法よりも若干大きいものであったが、本実施形態では、その程度を大幅に大きくしている。本実施形態によれば、基板10の板面方向に対して、より広い放熱が行える。
 (第3実施形態)
 本開示の第3実施形態にかかる電子装置S3について、図3を参照して述べる。本実施形態では、上記第1実施形態との相違点を中心に述べることとする。
 図3に示されるように、本実施形態では、基板10の一面11上に、上記発熱素子30の他に、更に放熱を必要としないマイコン等の制御素子31や、抵抗やコンデンサ等の受動素子32を搭載している。
 この場合も、発熱素子30および放熱経路40に関する作用効果は、上記第1実施形態と同様であることは言うまでもない。また、本実施形態は、発熱素子30の他に、更に放熱が不要な素子31、32を搭載したものであるから、上記第2実施形態とも組み合わせて適用することが可能である。
 (第4実施形態)
 本開示の第4実施形態にかかる電子装置S4について、図4を参照して述べる。図4に示されるように、本実施形態は、基板10の一面11および当該一面11に搭載されている部品をモールド樹脂70で封止するとともに、基板10の他面12はモールド樹脂70より露出するハーフモールド構造のものである。
 この構造によれば、基板10の一面11側では、搭載部品やその接続部の保護がなされるとともに、基板10の他面12側を露出させて放熱に適した構成となる。なお、本実施形態は、モールド樹脂70を付加するだけのものであるから、上記各実施形態と組み合わせて適用が可能である。
 (第5実施形態)
 本開示の第5実施形態にかかる電子装置S5について、図5を参照して述べる。図5に示されるように、本実施形態の電子装置S5自身は、上記第3実施形態に示した電子装置S3と同様である。本実施形態では、この電子装置S5を、熱伝導性接合材50を介して外部の放熱部材60に接続した状態を提供する。
 (第6実施形態)
 本開示の第6実施形態にかかる電子装置S6について、図6A,6Bを参照して述べる。図6Bに示されるように、本電子装置S6は、上記第4実施形態の電子装置S4(図4参照)に対して、ソルダーレジスト膜80を付加し、基板10の一部がたわんで変形したところが相違するものであり、この相違点を中心に述べることとする。
 本実施形態においても、基板10はエポキシ樹脂等の樹脂よりなる。また、上記第4実施形態と同様、基板10の一面11側には、発熱素子30および基板10の一面11を封止するモールド樹脂70が設けられており、基板10の他面12は、モールド樹脂70より露出したハーフモールド構造とされている。
 ここで、図6Bに示されるように、基板10の他面12には、基板10の他面12を被覆して保護するソルダーレジスト膜80が設けられている。このソルダーレジスト膜80は、基板10の他面12に設けられている回路構成導体である他面側配線24a等を被覆、保護しており、通常のソルダーレジスト材料よりなる。
 そして、このソルダーレジスト膜80は、発熱素子30の直下に位置する上記他面側電極24は露出させつつ他面側電極24の周囲に配置されている。また、このソルダーレジスト膜80は、他面側電極24よりも厚いものとされている。
 そして、図6Bに示されるように、基板10のうち発熱素子30の直下の部位は、基板10の一面11が凹み且つ基板10の他面12が凸となるようにたわんでいる。それにより、ソルダーレジスト膜80の表面を超えないレベルで、他面側電極24の中央部側が周辺部側に比べて突出している。
 この基板10のたわみは、モールド樹脂70の封止時に基板10の一面11側に加わる成形圧により生じる。上述したが、ソルダーレジスト膜80は、他面側電極24よりも厚い。
 そのため、モールド樹脂70の封止前では、図6Aに示されるように、ソルダーレジスト膜80と他面側電極24とでは、ソルダーレジスト膜80の方が突出し、両者間に段差Dが存在する。
 モールド樹脂70の封止は、この図6Aに示されるワークを、金型に入れて、樹脂成形することにより行う。このとき、基板10の他面12側では、ソルダーレジスト膜80の表面が金型に接触することで、ワークが支持されるが、上記段差Dのため、他面側電極24は金型から浮いた状態となる。
 この状態で、モールド樹脂70が金型に充填されると、基板10の一面11側が樹脂70の圧力(成形圧)で押さえられるため、金型から浮いている他面側電極24の部分で、基板10のたわみ変形が発生するのである。
 そして、これにより、図6Bに示されるような本実施形態の電子装置S6ができあがる。なお、このようなメカニズムで基板10にたわみが形成されるので、他面側電極24の中央部側の突出レベルは、ソルダーレジスト膜80の表面と同等かそれ未満のレベルとなる。
 このように、本実施形態によれば、ソルダーレジスト膜80の方が厚いことに起因する他面側電極24とソルダーレジスト膜80との間に生じる段差Dを、極力埋めるように、基板10がたわんで他面側電極24の中央部が突出したものとなる。
 そのため、本実施形態によれば、他面側電極24と外部の放熱部材60とを、はんだ等の熱伝導性接合材50を介して接続するにあたって、その他面側電極24の突出の分、当該熱伝導接合材50の厚さを極力薄くすることができる。結果的に、熱伝導接合材50の使用量節減、熱伝導接合材50による熱抵抗増加の抑制等の効果が期待できる。
 なお、本実施形態は、基板10の他面12にソルダーレジスト膜80を設け、このソルダーレジスト膜80から露出する他面側電極24に対応する基板10の部分をたわませたものであるから、上記第4実施形態以外の上記各実施形態についても組み合わせて適用が可能である。
 (第7実施形態)
 本開示の第7実施形態にかかる電子装置S7について、図7、図8A,8Bを参照して述べる。図7、図8A,8Bに示されるように、本電子装置S7は、上記第6実施形態の電子装置S6(図6B参照)に対して、さらに、他面側電極24の表面に部分的にソルダーレジスト膜81を形成したものである。
 このソルダーレジスト膜81は、上記ソルダーレジスト膜80と同様の材質のものとして形成されるが、上記ソルダーレジスト膜80と区別するため部分レジスト膜81と称することにする。この部分レジスト膜81の平面形状は、他面側電極24上に部分的に存在する形状であればよく、図8Aのようにドット状でもよいし、図8Bのように格子状でもよいし、それ以外の形状でもよい。
 この部分レジスト膜81を設けた状態で、上記第6実施形態と同様にモールド樹脂70の封止を行うと、部分レジスト膜81の部分では、上記基板10のたわみが抑制される。このように、部分レジスト膜81は、上記基板10のたわみを抑制するものであり、当該たわみの度合が大きすぎて基板10にダメージが発生するのを防止するという効果が期待できる。
 以下の各実施形態では、上記各実施形態と多少重複するところもあるが、上記各実施形態との相違点を中心に述べることとする。
 (第8実施形態)
 本開示の第8実施形態にかかる電子装置S8について、図9を参照して述べる。本実施形態の電子装置S8も、大きくは、基板10と、基板10の一面11に搭載された発熱素子30と、基板10に設けられ、発熱素子30に発生する熱を基板10の他面12側に放熱する導電性の放熱経路40と、を備えて構成されている。
 本実施形態において、基板10は、一面11と他面12とが表裏の関係にあるものであり、電気絶縁性の3層20~22、すなわち一面側絶縁層21、コア層としてのコア20、他面側絶縁層22が積層された構成をなしている。この基板10においても、一面側絶縁層21の表面が基板10の一面11に相当し、他面側絶縁層22の表面が基板10の他面12に相当する。さらに言うならば、一面側絶縁層21、他面側絶縁層22は、それぞれ基板の一部である一面側基板絶縁層、他面側基板絶縁層に相当する。
 ここで、基板10の一面11には、一面側電極23および一面側配線23bが設けられている。一面側電極23は、発熱素子30を搭載するランド、すなわち一面側ランドとして構成されるものであり、一面側配線23bは、たとえばCu等よりなり、回路構成導体として構成されたものである。そして、一面側電極23は、一面側配線23bとともに、エッチングや印刷等により所定の形状にパターニングされたものである。また、これら一面側電極23、一面側配線23bはともに導電性である。
 また、基板10の一面11には、発熱素子30とともに、制御素子31や受動素子32等の他の素子31、32が搭載されている。これら各素子30~32は、素子搭載の用をなす一面側ランドとしての一面側電極23上に搭載されている。このような発熱素子30は、パワートランジスタやIGBTなどの駆動時に発熱するもの、更に言えば、裏面電極を有する縦型素子などである。また、発熱素子30としては一般的なパッケージされた発熱部品も含む。
 そして、本実施形態においても、上記同様、発熱素子30の直下における基板10の内部にて、発熱素子30に発生する熱を基板10の他面12側に放熱する導電性の放熱経路40が設けられている。つまり、放熱経路40は、発熱素子30を基板10の一面11に投影した方向の位置、すなわち発熱素子30の直下に位置し、基板10の一面11側から他面12側へ連続して延びている。
 そして、基板10の一面にて、発熱素子30と一面側電極23とが導電性接合材23aを介して直接接合されている。ここで、一面側電極23および導電性接合材23aは放熱経路40の始端であり、このような発熱素子30と一面側電極23との直接接合により、放熱経路40の始端と発熱素子30とが直接接続されている。
 また、一面側ランドとしての一面側電極23は、発熱素子30の直下にて基板10の一面11に対する発熱素子30の全投影面積に存在する。つまり、一面側電極23は、発熱素子30の当該全投影面積に重なる領域にて孔等により欠けた部分を持つものではなく、発熱素子30の当該全投影面積に対してオーバーラップしている。
 それとともに、一面側電極23における基板10の板面方向の寸法が発熱素子30における基板10の板面方向の寸法よりも大きいものとされている。限定するものではないが、たとえば発熱素子30が平面矩形である場合、一面側電極23はそれよりも一回り大きい平面矩形のものとなる。
 また、他面側絶縁層22は、基板10の一部として基板10の他面12側を構成する電気絶縁性を有する層である。つまり、他面側絶縁層22は、基板10の他面12側にて基板10の板面方向の全体に設けられ、基板10の一部として構成されている。これにより、上記同様、他面側絶縁層22の表面が基板10の他面12とされている。
 さらに言えば、基板10は、電気絶縁性のコア20と当該基板10の他面12側にてコア20に積層された電気絶縁性の他面側絶縁層22との積層構成を有する電気絶縁性の基板であると言える。
 ここで、発熱素子30の直下にて基板10の他面12つまり他面側絶縁層22の表面には、導電性の他面側電極24が設けられている。この他面側電極24は、上記放熱部材60に接続されるなどにより外部に放熱する他面側ランドとして機能する。
 また、基板10の他面12には、たとえばCu等よりなり、回路構成導体として構成される他面側配線24aが設けられている。ここで、他面側電極24は、さらに言えば、他面側配線24aとともに、エッチングや印刷等により所定の形状にパターニングされたものである。
 そして、他面側電極24と他面側配線24aとは電気的に独立したものである。つまり、上述のように、他面側電極24は、基板10における自身以外のすべての導電性要素に対して電気的に独立したものであり、たとえばボディアース等によりGND電位とされている。なお、本実施形態においては、他面側電極24は、他面側配線24aの一部と電気的に独立したものであってもよい。
 そして、基板10の他面12側において、放熱経路40の終端が他面側絶縁層22まで延びている。この放熱経路40の終端は熱拡散層としての他面側内層配線26とされている。ここで、熱拡散層とは、基板10の厚さ方向のみでなく板面方向へも熱を拡散する機能を持つ。他面側内層配線26は、基板10の板面方向に延びるものであるため、熱拡散層として機能する。
 そして、他面側内層配線26と他面側電極24との間に基板10の一部である他面側絶縁層22が介在し、他面側内層配線26と他面側電極24とが電気的に絶縁されている。こうすることで、他面側内層配線26、他面側電極24およびこれらの間に介在する他面側絶縁層22により、熱拡散絶縁部40aが構成されている。ここで、図9に示されるように、他面側絶縁層22のうち他面側内層配線26に対応する部位は、それ以外の部位よりも薄くなっている。
 また、この熱拡散絶縁部40aにおいては、他面側内層配線26および他面側電極24が共に、発熱素子30の直下に位置し、当該発熱素子30の直下にて基板10の一面11に対する発熱素子30の全投影面積に存在する。
 それとともに、他面側内層配線26および他面側電極24における基板10の板面方向の寸法が、発熱素子30における基板10の板面方向の寸法よりも大きいものとされている。このように熱拡散絶縁部40aにおいては、放熱経路40の基板10の他面12への露出がなく、絶縁が保証されるとともに、当該他面12側における基板10の板面方向への熱拡散が行われる。限定するものではないが、たとえば発熱素子30が平面矩形である場合、他面側内層配線26および他面側電極24はそれよりも一回り大きい平面矩形のものとなる。
 さらに言えば、本実施形態では、発熱素子30は、一面側ランドとしての一面側電極23へ電気的に接合するための接合面(図9における発熱素子の下面)301を有する。一方、一面側電極23は、発熱素子30が電気的に接合されるための被接合面(図9における一面側電極の上面)231を有する。
 そして、被接合面231は、少なくとも接合面301における基板10の板厚方向への全投影領域に存在し、この全投影領域にて接合面301と被接合面とを互いを直接接合する導電性接合材23aを有する構成とされている。また、図9に示す態様としては、接合面231は、発熱素子30の下面全域としたが、これに限定されない。たとえば、分割された複数の接合面を有する発熱素子の場合、複数の接合面それぞれに対して、被接合面が接合面の全投影領域に存在していればよい。また、図9に示す態様としては、被接合面231が発熱素子30の平面サイズよりも大きいが、これに限定されることはない。被接合面の平面サイズは、発熱素子の平面サイズよりも小さい態様であってもよい。換言すると、被接合面231の総面積は、接合面301の総面積よりも大きく、発熱素子の基板10の板面方向の面積に対しては小さくても大きくてもよい。
 また、上記した熱拡散絶縁部40aにおいては、他面側内層配線26および他面側電極24が共に、発熱素子30の直下に位置して、発熱素子30の全投影面積に存在した。それとともに、上記基板10の板面方向の寸法について、他面側内層配線26および他面側電極24が、発熱素子30よりも大きいものとされていた。しかし、本実施形態の熱拡散絶縁部40aは、上記した構成に限定されず、次のような構成でもよい。
 ここで、図9に示されるように、発熱素子30を基準として、発熱素子30における基板10の板面方向の平面サイズからさらに基板10の板厚t分、発熱素子30全周において外側へ拡大した領域を、放熱寄与領域Zとする。
 発熱素子30の熱は、おおよそ基板10の一面11側から他面12側へ向かって45°の方向に拡散する。そのため、基板10における熱拡散は、発熱素子30からおおよそ基板10の厚さt分、拡がった領域で行われる。このため、この領域を放熱に寄与する放熱寄与領域Zとした。
 このとき、本実施形態の熱拡散絶縁部40aでは、他面側絶縁層22が放熱寄与領域Zにて他面側内層配線26と他面側電極24との間に介在して他面側内層配線26と他面側電極24とを電気的に絶縁している。
 それとともに、熱拡散絶縁部40aでは、他面側内層配線26の少なくとも一部および他面側電極24の少なくとも一部が放熱寄与領域Zにて発熱素子30における基板10の板面方向の面積よりも総面積の大きい熱拡散層対を構成する。こうすることにより、基板10の他面12側にて、他面側内層配線26、他面側電極24、および、他面側絶縁層22による熱拡散絶縁部40aが構成されているのである。
 熱拡散絶縁部40aとしては、他面側内層配線26および他面側電極24は全体もしくは一部が放熱寄与領域Zにあればよく、上記の総面積とはこの放熱寄与領域Zに存在する部分の総面積である。つまり、他面側内層配線26および他面側電極24は、放熱寄与領域Zに位置するものであれば、必ずしも発熱素子10の投影領域すなわち発熱素子30の直下に無くてもよく、また、溝を有するものであってもよい。
 ところで、本実施形態によれば、上記第1実施形態にて述べたのと同様、基板10の他面12を構成する他面側絶縁層22によって、放熱経路40の終端である他面側内層配線26が基板10の他面12に露出することは無い。そのため、基板10の一面11側の発熱素子30の電位を、放熱経路40を介して基板10の他面12側に露出させることなく、基板10の他面12側にて、適切に放熱を行うことができる。
 さらに、この本実施形態の効果について詳述する。本実施形態では、発熱素子30の熱が他面側絶縁層22の手前まで伝わり、他面側絶縁層22を介して基板10の板面方向に拡散して他面側電極24で放熱するので、放熱性が向上する。
 また、基板10の一部である他面側絶縁層22により絶縁性が確保されるので、基板10に別途、絶縁層等を設ける場合に比べて、基板10の小型化、製造の容易化に優れるとともに、絶縁性の保証も容易となる。
 また、発熱素子30は、放熱経路40の始端である一面側電極23に導電性接合材23aを介して直接接合されている。これにより、発熱素子30の熱が、たとえば、ヒートスプレッダなどの金属体が介在することによる基板10の一面11側において蓄熱されることを避けることができる。つまり、発熱素子30の熱は、放熱経路を経由して他面12側へ伝わって、他面12側にて基板10の板面方向に拡散して放熱される。そのため、発熱素子30の熱が、基板10の一面11に搭載されている他の素子31、32に干渉するのを抑制できる。
 また、一面側電極23は発熱素子30の上記全投影面積に存在し、且つ、平面サイズが発熱素子30よりも大きいものである。また、被接合面231は、少なくとも接合面301における基板10の板厚方向への全投影領域に存在し、この全投影領域にて接合面301と被接合面231とを互いに直接接合する導電性接合材23aを有する構成である。これらの構成によれば、基板10の他面12側への放熱性を確保しつつ、発熱素子30の温度分布を均一化して発熱素子30への局所的な応力集中を回避することができる。また、導電性接合材23aが接合面301の全投影領域にて存在するので、導電性接合材23aを始端とする放熱経路へ余すことなく接合面301から熱を伝えることができる。
 また、図9に示される例では、他面側内層配線26およびこれと対をなす他面側電極24についても、いずれも、発熱素子30の上記全投影面積に存在し、且つ、平面サイズが発熱素子30よりも大きいものである。そのため、基板10の他面12側にて、他面側絶縁層22を挟んで広い領域で熱拡散を行うことができ、放熱性向上に好ましい。
 また、上述したが、被接合面231は、接合面301における基板10の板厚方向への全投影領域に存在し、導電性接合材23aは、この全投影領域にて接合面301と被接合面231とを互いを直接接合している。導電性接合材23aによる接合領域は、発熱素子30の裏面、つまり接合面301への放熱に多大に影響があり、接合されない領域が存在する場合は非常に放熱性に劣る。たとえば、スルーホールタイプの接合の場合、接合できていない領域が発生しやすく、放熱性に劣りやすくなるが、本実施形態では、そのような問題を回避できる。
 また、本実施形態の放熱経路40の特徴事項について、さらに述べる。放熱経路40は、上記各実施形態と同様、基板10の板面方向に延び基板10の一面11側にて基板10内部に位置する一面側内層配線25と、基板10の厚さ方向に延びて一面側内層配線25と他面側内層配線26との間を接続するブラインドビア28と、を有する。これにより、基板10の板面方向に延びる各内層配線25、26によって、基板10の板面方向に熱を広げて逃がすことが可能となる。
 放熱経路40は、さらに、基板10の厚さ方向に延びて一面側電極23と一面側内層配線25との間を接続するレーザビア27、を有する。ここで一面側内層配線25、他面側内層配線26は、上記同様それぞれ、一面側絶縁層21とコア20との間、コア20と他面側絶縁層22との間に設けられている。このように、放熱経路40は、始端側から、上記同様の各部23a、23、27、25、28、26より構成されている。
 また、レーザビア27、ブラインドビア28は、上記同様それぞれ、一面側絶縁層21、コア20を貫通してなるものである。そして、各内層配線25、26は、各ビア27、28の蓋メッキと一体とされて構成されている。
 ここにおいて、基板10の板面方向においてレーザビア27とブラインドビア28とは重ならずに外れた位置にあることが、放熱性の点では、好ましい。図9に示されるように、一面側内層配線25においてブラインドビア28が位置する部分は、ブラインドビア28の蓋メッキに相当する部分であり、ブラインドビア28以外の部分に比べて薄いものとなる。
 レーザビア27の直下にブラインドビア28が存在すると、この一面側内層配線25における薄い部分にレーザビア27が接続されることになり、過渡熱抵抗が大きいものとなってしまう。その点、一面側内層配線25においてブラインドビア28を避けた位置にある厚い部分にレーザビア27を接続すれば、過渡熱抵抗が小さくなるという利点がある。なお、図9では、一部のレーザビア27の直下にブラインドビア28が存在して互いのビアが重なる位置にあるが、すべてのレーザビア27とブラインドビア28とが、互いに重ならずに外れた位置にあるものであってもよいことはもちろんである。
 また、本実施形態においても、一面側内層配線25は、発熱素子30の直下にて基板10の一面11に対する発熱素子30の全投影面積に存在することが望ましい。それとともに、一面側内層配線25における基板10の板面方向の寸法が、発熱素子30における基板10の板面方向の寸法よりも大きいことが望ましい。これは、上記した一面側電極23、他面側内層配線26および他面側電極24と、発熱素子30との寸法関係と、同様の理由による。
 なお、発熱素子30としては、上記した縦型素子等以外にも、駆動時の発熱を逃がす必要があるものであるならば、たとえば抵抗素子やコイル素子等の受動素子であってもよい。
 また、図9では、図示していないが、本実施形態においても、上記図1等に示されるように、上記熱伝導性接合材50等を介して他面側電極24に対し上記放熱部材60を接続してもよいことは、もちろんである。ここで、当該熱伝導性接合材50としては、放熱グリス、はんだや銀ペースト等以外にも、放熱ゲル、放熱シート、金属フィラーを含有する導電性接着剤等が挙げられる。
 なお、本第8実施形態は、可能な範囲で上記した第1~第7の各実施形態と適宜組み合わせが可能なことは言うまでもない。
 (第9実施形態)
 本開示の第9実施形態にかかる電子装置S9について、図10を参照して述べる。本実施形態は、上記第8実施形態を一部変形したものであり、本実施形態もその変形部分を中心に述べることとする。
 図10に示されるように、一面側電極23と一面側内層配線25とは、基板10の板面方向の寸法、つまり平面サイズが同等のものとされている。さらに、他面側内層配線26および他面側電極24におけるそれぞれの基板10の板面方向の寸法は、一面側電極23および一面側内層配線25におけるそれぞれの基板10の板面方向の寸法よりも大きいものとされている。
 これによれば、基板10の一面11から他面12に向かう方向、すなわち基板10の厚さ方向における放熱において、他面12側に行くにつれて熱が基板10の板面方向に拡散するものとなる。特に、他面側絶縁層22の周辺にて、熱の拡散が顕著となり、放熱効率の向上が期待できる。そのため、放熱性の点で好ましい放熱経路40を実現できる。
 ここで、他面側内層配線26と他面側電極24との基板10の板面方向の寸法については、両者同等でもよいし、他面側内層配線26の方が大きいものであってもよい。しかし、図10および上記各実施形態の各図にも示されているように、他面側電極24における基板10の板面方向の寸法は、他面側内層配線26おける基板10の板面方向の寸法よりも大きいことが、放熱性向上の点で望ましい。これは、上述のように、基板10の他面12側における熱拡散を促進できることによる。
 なお、本実施形態は、上述のように、放熱経路40における各部および他面側電極24の平面サイズを規定したものであるから、この平面サイズの関係を維持したうえで、上記各実施形態と適宜組み合わせ可能なことはもちろんである。
 (第10実施形態)
 本開示の第10実施形態にかかる電子装置S10について、図11を参照して、主として上記第8実施形態との相違点を述べる。図11に示されるように、本実施形態は、上記図6Bのものと同様、ハーフモールド構造を前提としたものである。
 すなわち、基板10の各層20~22は樹脂よりなり、基板10の一面11側には、発熱素子30、他の素子31、32、一面側配線23bおよび基板10の一面11を封止するモールド樹脂70が設けられている。そして、基板10の他面12は、モールド樹脂70より露出している。
 さらに、基板10の他面12には、基板10の他面12を被覆して保護するソルダーレジスト膜80が設けられている。ここにおいて、ソルダーレジスト膜80は、他面側電極24は露出させつつ他面側電極24の周辺部を被覆するように、他面側電極24の周囲に配置されている。
 そして、ソルダーレジスト膜80のうち他面側電極24の周辺部を被覆する被覆部80aは、他面側電極24の周囲の基板10の他面12に位置する部位よりも薄いものとされている。具体的には、図11において、被覆部80aの厚さt1は、他面側電極24の周囲の基板10の他面12に位置する部位の厚さt2よりも薄い。
 この構成によれば、他面側電極24とその周囲の基板10の他面12との間で、ソルダーレジスト膜80による段差を小さくすることができる。そのため、上記第6実施形態(図6B参照)と同様に、モールド樹脂70の成形時の成形圧による基板10の変形を小さくでき、基板10へのダメージを低減できる。また、ソルダーレジスト膜80のうち被覆部80aと他面側電極24の周囲の基板10の他面12に位置する部位との間の部分について、その形状は特に限定するものではない。
 しかし、図11に示されるように、更に、ソルダーレジスト膜80のうち被覆部80aと他面側電極24の周囲の基板10の他面12に位置する部分との間の部位は、テーパ状をなすように厚さが変化していることが望ましい。それによれば、当該部分における段差を極力無くしてなだらかなテーパ状にすることができるため、モールド樹脂70の上記成形圧を緩和しやすい。
 また、本実施形態では、上記図9等と同様、図11に示されるように、基板10の他面12にて他面側電極24と隣り合う部位には、他面側電極24とは離間して他面側配線24aが設けられている。そして、ソルダーレジスト膜80は、他面側配線24aを被覆しつつ他面側電極24の周囲から被覆部80aまで連続して配置されている。
 このように基板10の他面12において、他面側電極24の隣に他面側配線24aがある場合、これらをつなぐように連続してソルダーレジスト膜80を設ければ、ソルダーレジスト膜80に起因する段差低減がより顕著になる。
 なおソルダーレジスト膜80は、少なくとも基板10の他面12を被覆するものであればよく、他面側配線24aを被覆するものでなくてもよい。そして、本第10実施形態は、ハーフモールド構造を前提としてソルダーレジスト膜80が上記特徴構成を有するものであるならば、上記実施形態のうち第6実施形態、第7実施形態以外のものと適宜組み合わせ可能である。
 また、本実施形態でも、熱拡散絶縁部40aを構成する他面側ランド24は、他面側配線24aとこれを被覆するソルダーレジスト膜80との合計厚さよりも薄いものであり、基板10のうち放熱寄与領域Zに相当する部位は、基板10の一面11が凹み且つ基板10の他面12が凸となるようにたわむことにより、当該部位の中央部側がその周辺部側に比べて突出している。なお、図6Bに示すソルダーレジストの態様も同様に言える。これによれば、図6Bに示すものと同様の効果を奏することができる。
 (第11実施形態)
 本開示の第11実施形態にかかる電子装置S11について、図12を参照して、上記第8実施形態との相違点を中心に述べる。
 図12に示されるように、本実施形態においても、基板10の他面12には、基板10の他面12を被覆して保護するソルダーレジスト膜80が設けられている。ここにおいて、本実施形態では、ソルダーレジスト膜80は、他面側電極24は露出させつつ、他面側電極24の全周囲にて他面側電極24とは離間して配置されている。
 つまり、基板10の他面12にて、他面側電極24の全体がソルダーレジスト膜80より露出している。そのため、本実施形態によれば、基板10の他面12側にて外部への放熱面積を大きく取ることができる、という利点がある。
 ここで、他面側電極24と他面側配線24aとの厚さ関係を限定するものではないが、さらに次のような構成が望ましい。
 すなわち、基板10の他面12にて他面側電極24と隣り合う部位には、他面側電極24とは離間して他面側配線24aが設けられており、他面側電極24は、他面側配線24aよりも厚いものとされている。それによれば、他面側電極24がその周囲の他面側配線24aよりも突出したものにできるので、平面的な外部の放熱部材60への接続に有利である。
 これもまた、本実施形態を限定するものではないが、より望ましくは、次のような構成を採用することが望ましい。
 図12に示されるように、基板10の他面12には、基板10の他面12を被覆して保護するソルダーレジスト膜80が設けられている。そして、このソルダーレジスト膜80は、他面側電極24は全面で露出させつつ、他面側電極24の周囲にて他面側配線24aを被覆している。
 ここにおいて、さらに、他面側電極24は、他面側配線24aとこれを被覆するソルダーレジスト膜80との合計厚さよりも厚いものとされていることが望ましい。それによれば、他面側電極24がその周囲のソルダーレジスト膜80よりも突出したものにできるので、平面的な外部の放熱部材60への接続に有利である。
 なお、本第11実施形態は、他面側ランドとしての他面側電極24の全体をソルダーレジスト膜80より露出させる構成であるから、上記モールド樹脂70による封止構成であってもよい。つまり、本実施形態は、上記実施形態のうち第7実施形態、第10実施形態以外のものと適宜組み合わせ可能である。
 (第12実施形態)
 本開示の第12実施形態にかかる電子装置S12について、図13を参照して述べる。
 図13に示されるように、基板10には、放熱経路40を基板10の一面11に引き出す第1の検査配線100と、他面側電極24を基板10の一面11に引き出す第2の検査配線200と、が設けられている。
 図13の例では、第1の検査配線100は、放熱経路40における一面側内層配線25から引き出された内層配線部101と、基板10の一面11上に設けられた導体パッド103と、これら内層配線部101および導体パッド103を接続するレーザビア102とにより構成されている。
 ここで、導体パッド103は、上記一面側電極23や一面側配線23bとともにパターニングされたものである。また、内層配線部101は、コア20と一面側絶縁層21との間に設けられ、一面側内層配線25とともにパターニングされたものである。そして、レーザビア102は、一面側絶縁層21を貫通するもので、上記放熱経路40のレーザビア27と同様に形成されるものである。
 一方、第2の検査配線200は、他面側電極24側から当該他面側電極24に接続されたレーザビア201、内層配線部202、ブラインドビア203、内層配線部204、レーザビア205、および、基板10の一面11上に設けられた導体パッド206が順次接続されてなるものである。
 第2の検査配線200において、導体パッド206は、上記一面側電極23や一面側配線23bとともにパターニングされたものである。また、各レーザビア201、205は、一面側絶縁層21、他面側絶縁層22において上記放熱経路40のレーザビア27と同様の方法で形成されるものである。
 また、各内層配線部202、204は、それぞれ一面側内層配線25、他面側内層配線26とともにパターニングされたものである。さらに、第2の検査配線200におけるブラインドビア203は、上記放熱経路40のブラインドビア28と同様に形成されたものである。
 本実施形態によれば、基板10の一面11にて、当該一面11に引き出された第1の検査配線100と第2の検査配線200との間の絶縁性検査を行うことができる。そのため、放熱経路40と他面側電極24との間の絶縁保証の確認を容易に行うことができる。
 本第12実施形態にかかる電子装置S12の他の例について、図14を参照して述べる。図13の例では、基板10の一面11にて、放熱経路40と他面側電極24との間の絶縁保証を確認する絶縁性検査を行うが、図14の例では、この検査を基板10の他面12にて行うものである。
 図14の例では、基板10には、放熱経路40を基板10の他面12に引き出す検査配線300が設けられている。この図14に示される検査配線300は、放熱経路40における他面側内層配線26から引き出された内層配線部301と、基板10の他面12上に設けられた導体パッド303と、これら内層配線部301および導体パッド303を接続するレーザビア302とにより構成されている。
 ここで、図14における導体パッド303は、上記他面側電極24や他面側配線24aとともにパターニングされたものである。また、内層配線部301は、コア20と他面側絶縁層22との間に設けられ、他面側内層配線26とともにパターニングされたものである。そして、レーザビア302は、他面側絶縁層22を貫通するもので、上記放熱経路40のレーザビア27と同様の方法にて形成されるものである。
 そして、本実施形態によれば、基板10の他面12にて、当該他面12に引き出された検査配線300と他面側電極24との間の絶縁性検査を行うことができる。そのため、放熱経路40と他面側電極24との間の絶縁保証の確認を容易に行うことができる。
 なお、放熱経路40を基板10の一面11に引き出す第1の検査配線100、および、放熱経路40を基板10の他面12に引き出す検査配線30においては、放熱経路40の引き出し部分については、図13、図14に示される例に限定されるものではない。
 たとえば、第1の検査配線100については、放熱経路40における他面側内層配線26から引き出しを行ってもよいし、検査配線300については、放熱経路40における一面側内層配線25から引き出しを行ってもよい。これらの場合も、たとえば、内層配線部やレーザビア、ブラインドビアを適宜形成することで、検査配線100、300が構成される。
 また、本実施形態は、上記した検査配線100、200、300を追加する構成であるため、上記すべての実施形態と適宜組み合わせ可能である。
 (第13実施形態)
 本実施形態では、上記各実施形態の構成において、さらに、一面側絶縁層21、コア20、他面側絶縁層22の各層における物性や構成等の関係について述べる。
 上記各実施形態においては、基板10は、基板10の内部に位置するコア層としてのコア20と、コア20よりも基板10の一面11側に積層され基板10の一面11を構成する一面側絶縁層21と、コア20よりも基板10の他面12側に積層され基板10の他面12を構成する他面側絶縁層22と、積層されてなる。
 このような積層基板とされた基板10の構成において、一面側絶縁層21および他面側絶縁層22の熱伝導率は、コア20の熱伝導率と同等以上の大きさとされていることが望ましい。これによれば、比較的高価な放熱材料を必要最小限にとどめ、高放熱な基板10を安価に構成することが可能となる。
 さらにこの場合、他面側絶縁層22の熱伝導率は、一面側絶縁層21の熱伝導率よりも大きいことが望ましい。それによれば、基板10の他面12側における放熱効率の向上という点で好ましい。
 また、上記した一面側絶縁層21、コア20、他面側絶縁層22が順次積層された基板10においては、一面側絶縁層21は、他面側絶縁層22よりも厚いことが望ましい。それによれば、厚い一面側絶縁層21で基板10の厚みを確保したうえで、薄い他面側絶縁層22により、基板10の他面12における放熱特性の向上が期待できる。
 (第14実施形態)
 本開示の第14実施形態にかかる電子装置について図15を参照して述べる。上記各実施形態では、基板10の一面11に発熱素子30が1個設けられたものであったが、複数個であってもよい。
 すなわち、図15に示されるように、基板10の一面11にて一面側電極23は複数個あり、各一面側電極23に導電性接合材23aを介して発熱素子30が接合されている。そして、各発熱素子30の直下にそれぞれ放熱経路40および他面側電極24が設けられている。また、この場合、図16に示されるように、他面側電極24は、各放熱経路40に共通する1個のものであってもよい。
 (他の実施形態)
 なお、上記各実施形態では、基板10は、一面側絶縁層21、コア20、他面側絶縁層22が順次積層された3層構成のものであったが、たとえば、4層以上の基板10であってもよい。たとえば、コア20から基板10の一面11側に2層の絶縁層が積層され、コア20から基板10の他面12側に2層の絶縁層が積層された場合、5層構成の基板となる。
 この5層構成の場合でも、上記した内層配線25、26のような内層配線を各層間に設け、各層にレーザビア27、ブラインドビア28を設けて、一面側電極23から各内層配線を接続して放熱経路を構成してやればよい。このとき、一面側内層配線、他面側内層配線は、それぞれ2層ずつとなる。そして、この場合も、基板10の他面12を構成する絶縁層に接触する最も他面側の内層配線が、当該放熱経路の終端となり、この終端は基板10の他面12に露出することは無い。
 ここで、一例として、他面側絶縁層が2層の場合を、図17に示しておく。図17では、基板10の他面12を構成する他面側絶縁層22とコア20との間に、もう一つの他面側絶縁層22bが介在されている。
 この場合、コア20ともう一つの他面側絶縁層22bとの間に、ブラインドビア28に接続された内層配線26aが存在する。そして、当該もう一つの他面側絶縁層22bには、内層配線26aと放熱経路40の終端である他面側内層配線26とを接続するレーザビア27aが設けられている。これにより、図17においても、放熱経路40が適切に構成されている。
 また、他面側絶縁層が2層の場合のもう一つの例について、図18に示しておく。図18の例は図17の例を一部変形したもので、放熱経路40の終端である内層配線26aと他面側内層配線26とは、もう一つの他面側絶縁層22bを介して絶縁されている。
 そして、レーザビア27aは、もう一つの他面側絶縁層22bではなく、基板10の他面12側の他面側絶縁層22に設けられており、このレーザビア27aにより他面側内層配線26と他面側電極24とが接続されている。これにより、図18においても、放熱経路40が適切に構成されている。
 この場合、他面側電極24は、放熱経路40の終端である内層配線26aよりも基板10の他面12側に他面側内層配線26およびレーザビア27aを有するものとして、構成されている。このように、基板10の一部として基板10の他面12側を構成する他面側絶縁層22、22bが、単層ではなく、多層のものより構成された場合であっても、何らかまわない。
 また、基板10は、他面12側の一部が基板10の板面方向の全体に設けられた他面側絶縁層22で構成されたものであればよく、たとえば一面側絶縁層21は省略されたものであってもよい。この場合、たとえば基板10の一面11となるコア20の表面にて、ブラインドビア28の上に、一面側電極23を設けてやればよい。また、放熱経路40としては、発熱素子30の直下に設けられていればよく、上記した構成に限定されるものではない。
 また、上記各実施形態では、他面側ランドとしての他面側電極24は、外部の放熱部材60と接続されるものであったが、たとえば、他面側電極24は、外部の放熱部材60と接続されずに、そのまま外部に露出するものであってもよい。この場合、たとえば、他面側電極24からの熱は、外気に放熱されるものとなる。
 また、放熱経路40における、一面側電極23、一面側内層配線25、他面側内層配線26、他面側電極24において、これらの基板10の板面方向の寸法は、上記各実施形態に記載した大小関係に限定するものではない。つまり、一面側電極23、他面側内層配線26および他面側電極24の各寸法が発熱素子30の寸法よりも大きいことは必須であるが、これ以外は、適宜、大小関係を変更してもかまわない。
 また、一面側電極23は、発熱素子30を接合するためのランドとして機能するものであればよく、また、他面側電極24は放熱をするためのランドとして機能するものであればよく、それぞれ電極として機能するものに限定されない。
 また、上記各実施形態の図示例においては、基板10の一面11側がモールド樹脂70で封止されていないものもあるが、これらにおいても、基板10の一面11側をモールド樹脂70で封止し、他面12側をモールド樹脂70より露出させるようにしてもよい。
 また、上記各実施形態では、各内層配線25、26は、各ビア27、28の蓋メッキと一体とされているが、これに限定されるものではない。各内層配線は、蓋メッキを有さず、ビア27、28の穴を有する層であってもよい。
 また、本開示は上記した実施形態に限定されるものではなく、請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能であり、また、上記各実施形態は、上記の図示例に限定されるものではない。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。

Claims (48)

  1.  一面(11)と他面(12)とを有する基板(10)と、
     前記基板の一面に搭載された発熱素子(30)と、
     前記基板の内部にて前記基板の一面側から他面側へ連続して延びるように設けられ、前記発熱素子に発生する熱を前記基板の他面側に放熱する導電性の放熱経路(40)と、を備え、
     前記基板の一面にて、前記発熱素子と前記放熱経路とは直接接続されており、
     前記基板の他面は電気絶縁性を有する他面側絶縁層(22)により構成されており、
     前記発熱素子の直下にて前記他面側絶縁層の表面には、外部の放熱部材(60)と接続される導電性の他面側電極(24)が設けられており、
     前記基板の他面側では、前記放熱経路の終端(26)が前記他面側絶縁層まで延びるとともに、前記放熱経路の終端と前記他面側電極との間に前記他面側絶縁層が介在することで、前記放熱経路の終端と前記他面側電極とは電気的に絶縁されていることを特徴とする電子装置。
  2.  前記基板は樹脂よりなり、
     前記基板の一面側には、前記発熱素子および前記基板の一面を封止するモールド樹脂(70)が設けられており、
     前記基板の他面は、前記モールド樹脂より露出しており、
     前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記発熱素子の直下に位置する前記他面側電極よりも厚いものであって前記他面側電極は露出させつつ前記他面側電極の周囲に配置されており、
     前記基板のうち前記発熱素子の直下の部位は、前記基板の一面が凹み且つ前記基板の他面が凸となるようにたわむことにより、前記他面側電極の中央部側が周辺部側に比べて突出していることを特徴とする請求項1に記載の電子装置。
  3.  前記放熱経路は、前記基板の板面方向に延び前記基板の一面側にて前記基板内部に位置する一面側内層配線(25)と、
     前記基板の板面方向に延びるとともに前記基板の他面側にて前記基板内部に位置する他面側内層配線(26)と、
     前記基板の厚さ方向に延びて前記一面側内層配線と前記他面側内層配線との間を接続するブラインドビア(28)と、を有するものであることを特徴とする請求項1または2に記載の電子装置。
  4.  前記一面側内層配線および前記他面側内層配線は、前記基板の板面方向の寸法が、前記発熱素子における前記基板の板面方向の寸法よりも大きいことを特徴とする請求項3に記載の電子装置。
  5.  一面(11)と他面(12)とを有する電気絶縁性の基板(10)と、
     前記基板の一面に設けられた一面側配線(23b)と、
     前記基板の一面に設けられ前記一面側配線とともにパターニングされた一面側ランド(23)と、
     前記基板の一面に搭載された発熱素子(30)と、
     前記基板の一面に搭載された他の素子(31、32)と、
     前記発熱素子の直下における前記基板の内部にて前記基板の一面側から他面側へ連続して延びるように設けられ、前記発熱素子に発生する熱を前記基板の他面側に放熱する導電性の放熱経路(40)と、を備え、
     前記基板の一面にて、前記発熱素子と前記一面側ランドとが導電性接合材(23a)を介して直接接合されることにより、前記一面側ランドおよび前記導電性接合材を始端とする前記放熱経路と前記発熱素子とが直接接続されており、
     前記一面側ランドは、前記発熱素子の直下にて前記基板の一面に対する前記発熱素子の全投影面積に存在するとともに、前記一面側ランドにおける前記基板の板面方向の寸法が前記発熱素子における前記基板の板面方向の寸法よりも大きいものであり、
     前記基板の他面側は前記基板の板面方向の全体に設けられた電気絶縁性を有する前記基板の一部としての他面側絶縁層(22)により構成されており、
     前記発熱素子の直下にて前記基板の他面には、導電性の他面側ランド(24)が設けられており、
     前記基板の他面には、他面側配線(24a)が設けられており、前記他面側ランドは、前記他面側配線とともにパターニングされたものであって、前記他面側配線とは電気的に独立したものであり、
     前記基板の他面側において、前記放熱経路の終端が前記他面側絶縁層まで延びるとともに、前記放熱経路の終端は熱拡散層としての他面側内層配線(26)とされており、
     前記他面側内層配線と前記他面側ランドとの間に前記他面側絶縁層が介在し、前記他面側内層配線と前記他面側ランドとが電気的に絶縁されることで、前記他面側内層配線、前記他面側ランドおよびこれらの間に介在する前記他面側絶縁層により、熱拡散絶縁部(40a)が構成されており、
     前記熱拡散絶縁部は、前記他面側内層配線および前記他面側ランドが共に、前記発熱素子の直下にて前記基板の一面に対する前記発熱素子の全投影面積に存在するとともに、前記他面側内層配線および前記他面側ランドにおける前記基板の板面方向の寸法が、前記発熱素子における前記基板の板面方向の寸法よりも大きいものであることを特徴とする電子装置。
  6.  前記他面側ランドは、外部の放熱部材(60)と接続されるものであることを特徴とする請求項5に記載の電子装置。
  7.  前記放熱経路は、前記基板の板面方向に延び前記基板の一面側にて前記基板内部に位置する一面側内層配線(25)と、
     前記基板の厚さ方向に延びて前記一面側内層配線と前記他面側内層配線との間を接続するブラインドビア(28)と、を有するものであることを特徴とする請求項5または6に記載の電子装置。
  8.  前記放熱経路は、さらに、前記基板の厚さ方向に延びて前記一面側ランドと前記一面側内層配線との間を接続するレーザビア(27)、を有するものであり、
     前記基板の板面方向において前記レーザビアは、前記ブラインドビアとは重ならずに外れた位置にあることを特徴とする請求項7に記載の電子装置。
  9.  前記一面側内層配線は、前記発熱素子の直下にて前記基板の一面に対する前記発熱素子の全投影面積に存在するとともに、前記一面側内層配線における前記基板の板面方向の寸法が、前記発熱素子における前記基板の板面方向の寸法よりも大きいことを特徴とする請求項7または8記載の電子装置。
  10.  前記一面側ランドと前記一面側内層配線とは、前記基板の板面方向の寸法が同等のものであり、
     前記他面側内層配線および前記他面側ランドにおけるそれぞれの前記基板の板面方向の寸法は、前記一面側ランドおよび前記一面側内層配線におけるそれぞれの前記基板の板面方向の寸法よりも大きいことを特徴とする請求項7ないし9のいずれか1つに記載の電子装置。
  11.  前記他面側ランドにおける前記基板の板面方向の寸法は、前記他面側内層配線おける前記基板の板面方向の寸法よりも大きいことを特徴とする請求項10に記載の電子装置。
  12.  前記基板は樹脂よりなり、
     前記基板の一面側には、前記発熱素子、前記他の素子、前記一面側配線および前記基板の一面を封止するモールド樹脂(70)が設けられており、
     前記基板の他面は、前記モールド樹脂より露出しており、
     前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記他面側ランドは露出させつつ前記他面側ランドの周辺部を被覆するように、前記他面側ランドの周囲に配置されており、
     前記ソルダーレジスト膜のうち前記他面側ランドの周辺部を被覆する被覆部(80a)は、前記他面側ランドの周囲の前記基板の他面に位置する部位よりも薄いものとされていることを特徴とする請求項5ないし11のいずれか1つに記載の電子装置。
  13.  前記ソルダーレジスト膜のうち前記被覆部と前記他面側ランドの周囲の前記基板の他面に位置する部位との間の部位は、テーパ状をなすように厚さが変化していることを特徴とする請求項12に記載の電子装置。
  14.  前記ソルダーレジスト膜は、前記他面側配線を被覆しつつ前記他面側ランドの周囲から前記被覆部まで連続して配置されていることを特徴とする請求項12または13に記載の電子装置。
  15.  前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記他面側ランドは露出させつつ、前記他面側ランドの全周囲にて前記他面側ランドとは離間して配置されていることを特徴とする請求項5ないし11のいずれか1つに記載の電子装置。
  16.  前記他面側ランドは、前記他面側配線よりも厚いものとされていることを特徴とする請求項5ないし11のいずれか1つに記載の電子装置。
  17.  前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記他面側ランドは露出させつつ、前記他面側ランドの周囲にて前記他面側配線を被覆しており、
     前記他面側ランドは、前記他面側配線とこれを被覆する前記ソルダーレジスト膜との合計厚さよりも厚いものとされていることを特徴とする請求項16に記載の電子装置。
  18.  前記基板は樹脂よりなり、
     前記基板の一面側には、前記発熱素子、前記他の素子、前記一面側配線および前記基板の一面を封止するモールド樹脂(70)が設けられており、
     前記基板の他面は、前記モールド樹脂より露出していることを特徴とする請求項5ないし11および15ないし17のいずれか1つに記載の電子装置。
  19.  前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記発熱素子の直下に位置する前記他面側ランドよりも厚いものであって前記他面側ランドは露出させつつ前記他面側ランドの周囲に配置されており、
     前記基板のうち前記発熱素子の直下の部位は、前記基板の一面が凹み且つ前記基板の他面が凸となるようにたわむことにより、前記他面側ランドの中央部側が周辺部側に比べて突出していることを特徴とする請求項18に記載の電子装置。
  20.  前記他面側ランドは、前記基板における前記他面側ランド以外のすべての導電性要素に対して電気的に独立したものであることを特徴とする請求項5ないし19のいずれか1つに記載の電子装置。
  21.  前記基板には、前記放熱経路を前記基板の一面に引き出す第1の検査配線(100)と、前記他面側ランドを前記基板の一面に引き出す第2の検査配線(200)と、が設けられていることを特徴とする請求項5ないし20のいずれか1つに記載の電子装置。
  22.  前記基板には、前記放熱経路を前記基板の他面に引き出す検査配線(300)が設けられていることを特徴とする請求項5ないし20のいずれか1つに記載の電子装置。
  23.  前記基板は、前記基板の内部に位置するコア層(20)と、前記コア層よりも前記基板の一面側に積層され前記基板の一面を構成する一面側絶縁層(21)と、を備えるとともに、前記コア層よりも前記基板の他面側に前記他面側絶縁層が積層されてなるものであり、
     前記一面側絶縁層および前記他面側絶縁層の熱伝導率は、前記コア層の熱伝導率と同等以上の大きさとされていることを特徴とする請求項5ないし22のいずれか1つに記載の電子装置。
  24.  前記他面側絶縁層の熱伝導率は、前記一面側絶縁層の熱伝導率よりも大きいことを特徴とする請求項23に記載の電子装置。
  25.  前記基板は、前記基板の内部に位置するコア層(20)と、前記コア層よりも前記基板の一面側に積層され前記基板の一面を構成する一面側絶縁層(21)と、を備えるとともに、前記コア層よりも前記基板の他面側に前記他面側絶縁層が積層されてなるものであり、
     前記一面側絶縁層は、前記他面側絶縁層よりも厚いことを特徴とする5ないし22のいずれか1つに記載の電子装置。
  26.  一面(11)と他面(12)とを有する電気絶縁性の基板(10)と、
     前記基板の一面に搭載された発熱素子(30)と、
     前記基板の一面に搭載された他の素子(31、32)と、
     前記基板の一面に設けられた一面側配線(23b)と、
     前記基板の一面に設けられ、前記一面側配線とともにパターニングされた導電性の一面側ランド(23)と、
     前記基板の他面に設けられた他面側配線(24a)と、
     前記基板の他面に設けられ、前記他面側配線とともにパターニングされ、前記他面側配線の少なくとも一部と電気的に独立した導電性の他面側ランド(24)と、
     を備え、
     前記発熱素子は、前記一面側ランドへ電気的に接合するための接合面(301)を有し、
     前記一面側ランドは、前記発熱素子が電気的に接合されるための被接合面(231)を有し、
     前記被接合面は、少なくとも前記接合面における前記基板の板厚方向への全投影領域に存在し、
     前記全投影領域にて前記接合面と前記被接合面とを互いを直接接合する導電性接合材(23a)を有する電子装置であって、
     前記基板の他面側は、前記基板の板面方向の全体に設けられた電気絶縁性を有する前記基板の一部としての他面側基板絶縁層(22)により構成されており、
     前記一面側ランドおよび前記導電性接合材を始端とし、前記基板の一面側から前記他面側基板絶縁層へ連続して延びるように設けられ、前記発熱素子に発生する熱を前記基板の他面側に放熱する導電性の放熱経路(40)を備え、
     前記放熱経路の終端は、前記基板の内部に設けられた導電性の他面側内層配線(26)にて構成されており、
     前記発熱素子を基準として、前記発熱素子における前記基板の板面方向の平面サイズからさらに前記基板の板厚(t)分、前記発熱素子全周において外側へ拡大した領域を放熱寄与領域(Z)としたときに、
     前記他面側基板絶縁層が前記放熱寄与領域にて前記他面側内層配線と前記他面側ランドとの間に介在して前記他面側内層配線と前記他面側ランドとを電気的に絶縁するとともに、前記他面側内層配線の少なくとも一部および前記他面側ランドの少なくとも一部がともに前記放熱寄与領域にて前記発熱素子における前記基板の板面方向の面積よりも総面積の大きいことで熱拡散層対を構成することにより、前記基板の他面側にて、前記他面側内層配線、前記他面側ランド、および、前記他面側基板絶縁層による熱拡散絶縁部(40a)が構成されていることを特徴とする電子装置。
  27.  前記基板は樹脂よりなり、
     前記基板の一面側には、前記発熱素子、前記他の素子、前記一面側配線および前記基板の一面を封止するモールド樹脂(70)が設けられており、
     前記基板の他面は、前記モールド樹脂より露出しており、
     前記基板の他面には、前記熱拡散絶縁部を構成する他面側ランドの少なくとも一部を露出させつつ、前記他面側配線を被覆して保護するソルダーレジスト膜(80)が設けられており、
     前記熱拡散絶縁部を構成する前記他面側ランドは、前記他面側配線とこれを被覆する前記ソルダーレジスト膜との合計厚さよりも薄いものであって、
     前記基板のうち前記放熱寄与領域に相当する部位は、前記基板の一面が凹み且つ前記基板の他面が凸となるようにたわむことにより、当該部位の中央部側がその周辺部側に比べて突出していることを特徴とする請求項26に記載の電子装置。
  28.  前記他面側ランドは、外部の放熱部材(60)と接続されるものであることを特徴とする請求項26または27に記載の電子装置。
  29.  前記放熱経路は、前記基板の板面方向に延び前記基板の一面側にて前記基板内部に位置する一面側内層配線(25)と、
     前記基板の厚さ方向に延びて前記一面側内層配線と前記他面側内層配線との間を接続するブラインドビア(28)と、を有するものであることを特徴とする請求項26ないし28のいずれか1つに記載の電子装置。
  30.  前記放熱経路は、さらに、前記基板の厚さ方向に延びて前記一面側ランドと前記一面側内層配線との間を接続するレーザビア(27)、を有するものであり、
     前記基板の板面方向において前記レーザビアは、前記ブラインドビアとは重ならずに外れた位置にあることを特徴とする請求項29に記載の電子装置。
  31.  前記一面側内層配線は、その少なくとも一部が前記放熱寄与領域にて前記発熱素子における前記基板の板面方向の面積よりも総面積の大きい熱拡散層を構成していることを特徴とする請求項29または30に記載の電子装置。
  32.  前記一面側ランドと前記一面側内層配線とは、前記基板の板面方向の寸法が同等のものであり、
     前記他面側内層配線および前記他面側ランドにおけるそれぞれの前記基板の板面方向の寸法は、前記一面側ランドおよび前記一面側内層配線におけるそれぞれの前記基板の板面方向の寸法よりも大きいことを特徴とする請求項29ないし31のいずれか1つに記載の電子装置。
  33.  前記他面側ランドにおける前記基板の板面方向の寸法は、前記他面側内層配線おける前記基板の板面方向の寸法よりも大きいことを特徴とする請求項32に記載の電子装置。
  34.  前記基板は樹脂よりなり、
     前記基板の一面側には、前記発熱素子、前記他の素子、前記一面側配線および前記基板の一面を封止するモールド樹脂(70)が設けられており、
     前記基板の他面は、前記モールド樹脂より露出しており、
     前記基板の他面には、前記他面側配線を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記他面側ランドは露出させつつ前記他面側ランドの周辺部を被覆するように、前記他面側ランドの周囲に配置されており、
     前記ソルダーレジスト膜のうち前記他面側ランドの周辺部を被覆する被覆部(80a)は、前記他面側ランドの周囲の前記基板の他面に位置する部位よりも薄いものとされていることを特徴とする請求項26ないし33のいずれか1つに記載の電子装置。
  35.  前記熱拡散絶縁部を構成する他面側ランドは、前記他面側配線とこれを被覆する前記ソルダーレジスト膜との合計厚さよりも薄いものであって、
     前記基板のうち前記放熱寄与領域に相当する部位は、前記基板の一面が凹み且つ前記基板の他面が凸となるようにたわむことにより、当該部位の中央部側がその周辺部側に比べて突出していることを特徴とする請求項34に記載の電子装置。
  36.  前記ソルダーレジスト膜のうち前記被覆部と前記他面側ランドの周囲の前記基板の他面に位置する部位との間の部位は、テーパ状をなすように厚さが変化していることを特徴とする請求項34または35に記載の電子装置。
  37.  前記ソルダーレジスト膜は、前記他面側配線を被覆しつつ前記他面側ランドの周囲から前記被覆部まで連続して配置されていることを特徴とする請求項34ないし36のいずれか1つに記載の電子装置。
  38.  前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記他面側ランドは露出させつつ、前記他面側ランドの全周囲にて前記他面側ランドとは離間して配置されていることを特徴とする請求項26ないし33のいずれか1つに記載の電子装置。
  39.  前記他面側ランドは、前記他面側配線よりも厚いものとされていることを特徴とする請求項26ないし33のいずれか1つに記載の電子装置。
  40.  前記基板の他面には、前記基板の他面を被覆して保護するソルダーレジスト膜(80)が設けられており、
     このソルダーレジスト膜は、前記他面側ランドは露出させつつ、前記他面側ランドの周囲にて前記他面側配線を被覆しており、
     前記他面側ランドは、前記他面側配線とこれを被覆する前記ソルダーレジスト膜との合計厚さよりも厚いものとされていることを特徴とする請求項39に記載の電子装置。
  41.  前記基板は樹脂よりなり、
     前記基板の一面側には、前記発熱素子、前記他の素子、前記一面側配線および前記基板の一面を封止するモールド樹脂(70)が設けられており、
     前記基板の他面は、前記モールド樹脂より露出していることを特徴とする請求項38に記載の電子装置。
  42.  前記熱拡散絶縁部を構成する他面側ランドは、前記他面側配線とこれを被覆する前記ソルダーレジスト膜との合計厚さよりも薄いものであって、
     前記基板のうち前記放熱寄与領域に相当する部位は、前記基板の一面が凹み且つ前記基板の他面が凸となるようにたわむことにより、当該部位の中央部側がその周辺部側に比べて突出していることを特徴とする請求項41に記載の電子装置。
  43.  前記他面側ランドは、前記基板における前記他面側ランド以外のすべての導電性要素に対して電気的に独立したものであることを特徴とする請求項26ないし42のいずれか1つに記載の電子装置。
  44.  前記基板には、前記放熱経路を前記基板の一面に引き出す第1の検査配線(100)と、前記他面側ランドを前記基板の一面に引き出す第2の検査配線(200)と、が設けられていることを特徴とする請求項26ないし43のいずれか1つに記載の電子装置。
  45.  前記基板には、前記放熱経路を前記基板の他面に引き出す検査配線(300)が設けられていることを特徴とする請求項26ないし43のいずれか1つに記載の電子装置。
  46.  前記基板は、前記基板の内部に位置するコア層(20)と、前記コア層よりも前記基板の一面側に積層され前記基板の一面を構成する一面側基板絶縁層(21)と、を備えるとともに、前記コア層よりも前記基板の他面側に前記他面側基板絶縁層が積層されてなるものであり、
     前記一面側基板絶縁層および前記他面側基板絶縁層の熱伝導率は、前記コア層の熱伝導率と同等以上の大きさとされていることを特徴とする請求項26ないし45のいずれか1つに記載の電子装置。
  47.  前記他面側基板絶縁層の熱伝導率は、前記一面側基板絶縁層の熱伝導率よりも大きいことを特徴とする請求項46に記載の電子装置。
  48.  前記基板は、前記基板の内部に位置するコア層(20)と、前記コア層よりも前記基板の一面側に積層され前記基板の一面を構成する一面側基板絶縁層(21)と、を備えるとともに、前記コア層よりも前記基板の他面側に前記他面側基板絶縁層が積層されてなるものであり、
     前記一面側基板絶縁層は、前記他面側基板絶縁層よりも厚いことを特徴とする26ないし45のいずれか1つに記載の電子装置。
PCT/JP2013/005647 2012-09-25 2013-09-24 電子装置 WO2014050081A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013004691.1T DE112013004691T5 (de) 2012-09-25 2013-09-24 Elektronische Vorrichtung
CN201380049977.6A CN104685619A (zh) 2012-09-25 2013-09-24 电子装置
US14/427,458 US9686854B2 (en) 2012-09-25 2013-09-24 Electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-211024 2012-09-25
JP2012211024 2012-09-25
JP2013196807A JP5942951B2 (ja) 2012-09-25 2013-09-24 電子装置
JP2013-196807 2013-09-24

Publications (1)

Publication Number Publication Date
WO2014050081A1 true WO2014050081A1 (ja) 2014-04-03

Family

ID=50387518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005647 WO2014050081A1 (ja) 2012-09-25 2013-09-24 電子装置

Country Status (5)

Country Link
US (1) US9686854B2 (ja)
JP (1) JP5942951B2 (ja)
CN (1) CN104685619A (ja)
DE (1) DE112013004691T5 (ja)
WO (1) WO2014050081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119248A1 (ja) * 2016-01-07 2018-10-04 株式会社村田製作所 多層基板、電子機器及び多層基板の製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026820A (ja) * 2013-06-18 2015-02-05 株式会社デンソー 電子装置
JP2015211204A (ja) * 2014-04-30 2015-11-24 イビデン株式会社 回路基板及びその製造方法
JP2016171202A (ja) * 2015-03-12 2016-09-23 株式会社デンソー 電子装置
JP6533680B2 (ja) * 2015-03-20 2019-06-19 新光電気工業株式会社 配線基板、半導体装置及び配線基板の製造方法
JP6516011B2 (ja) * 2015-07-24 2019-05-22 日本電気株式会社 無線機
DE112016005508B4 (de) * 2015-12-03 2021-08-19 Mitsubishi Electric Corporation Halbleitereinrichtung
US9960098B2 (en) * 2016-06-27 2018-05-01 Psemi Corporation Systems and methods for thermal conduction using S-contacts
KR101841836B1 (ko) * 2016-07-05 2018-03-26 김구용 다면 방열구조를 갖는 pcb 모듈, 및 이 모듈에 사용되는 방열 플레이트, 다층 pcb 어셈블리, 및 모듈 케이스
WO2018123480A1 (ja) * 2016-12-28 2018-07-05 タツタ電線株式会社 放熱基板、放熱回路構成体、及びその製造方法
WO2018185805A1 (ja) * 2017-04-03 2018-10-11 三菱電機株式会社 スイッチング素子駆動ユニット
JP6958274B2 (ja) * 2017-11-16 2021-11-02 富士電機株式会社 電力用半導体装置
JP6780792B2 (ja) * 2017-12-14 2020-11-04 株式会社オートネットワーク技術研究所 回路構成体及び電気接続箱
FR3076432A1 (fr) * 2017-12-29 2019-07-05 Eolie Circuit imprime dissipatif
US11350517B2 (en) * 2018-01-25 2022-05-31 Mitsubishi Electric Corporation Circuit device and power conversion device
JP7011372B2 (ja) * 2018-01-31 2022-01-26 日立Astemo株式会社 パワーモジュール
EP3588524B1 (en) * 2018-06-28 2020-08-05 Black & Decker Inc. Electronic switch module with an integrated flyback diode
US10658386B2 (en) 2018-07-19 2020-05-19 Psemi Corporation Thermal extraction of single layer transfer integrated circuits
WO2020053958A1 (ja) * 2018-09-11 2020-03-19 オリンパス株式会社 医療用ヒータ、処置具、及び処置具の製造方法
JP6945513B2 (ja) 2018-09-20 2021-10-06 日立Astemo株式会社 電子制御装置
WO2021010173A1 (ja) * 2019-07-12 2021-01-21 ソニーセミコンダクタソリューションズ株式会社 配線モジュール及び撮像装置
US11908786B2 (en) * 2022-02-18 2024-02-20 Advanced Semiconductor Engineering, Inc. Wiring structure
CN114938566A (zh) * 2022-06-14 2022-08-23 高创(苏州)电子有限公司 电路板及具有该电路板的显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321471A (ja) * 1994-05-25 1995-12-08 Oki Electric Ind Co Ltd 多層基板
JPH1056097A (ja) * 1996-08-12 1998-02-24 Nec Corp 半導体装置及びその製造方法
JP2007096009A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 積層回路基板及びこれを具えた携帯型電子機器
JP2011091152A (ja) * 2009-10-21 2011-05-06 Daikin Industries Ltd パワーモジュール
JP2011142162A (ja) * 2010-01-06 2011-07-21 Daikin Industries Ltd パワーモジュール、電力変換装置、及び冷凍装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279097A (ja) 1991-03-07 1992-10-05 Sony Corp プリント配線板の放熱構造
JPH05259669A (ja) 1992-03-16 1993-10-08 Fujitsu Ltd 印刷配線基板の放熱構造
JPH09153679A (ja) * 1995-11-30 1997-06-10 Kyocera Corp 積層ガラスセラミック回路基板
JPH10256429A (ja) * 1997-03-07 1998-09-25 Toshiba Corp 半導体パッケージ
JP3831173B2 (ja) 2000-03-21 2006-10-11 株式会社東芝 半導体モジュール
JP2003152317A (ja) * 2000-12-25 2003-05-23 Ngk Spark Plug Co Ltd 配線基板
JP3804861B2 (ja) 2002-08-29 2006-08-02 株式会社デンソー 電気装置および配線基板
JP4028474B2 (ja) 2003-11-20 2007-12-26 ミヨシ電子株式会社 高周波モジュール
JP3988764B2 (ja) 2004-10-13 2007-10-10 三菱電機株式会社 プリント配線板用基材、プリント配線板及びプリント配線板用基材の製造方法
JP4824397B2 (ja) * 2005-12-27 2011-11-30 イビデン株式会社 多層プリント配線板
JP2007288102A (ja) * 2006-04-20 2007-11-01 Cmk Corp プリント配線板及び多層プリント配線板並びにそれらの製造方法
JP4877779B2 (ja) 2006-11-09 2012-02-15 株式会社アキタ電子システムズ 発光ダイオード装置及びその製造方法
JP4962228B2 (ja) * 2006-12-26 2012-06-27 株式会社ジェイテクト 多層回路基板およびモータ駆動回路基板
US8207607B2 (en) * 2007-12-14 2012-06-26 Denso Corporation Semiconductor device with resin mold
JP5011088B2 (ja) 2007-12-26 2012-08-29 日新製鋼株式会社 放熱装置及びパワーモジュール
JP2009277726A (ja) 2008-05-12 2009-11-26 Jtekt Corp 積層回路基板、モータ制御装置および車両用操舵装置
US8692135B2 (en) * 2008-08-27 2014-04-08 Nec Corporation Wiring board capable of containing functional element and method for manufacturing same
JPWO2010064467A1 (ja) * 2008-12-05 2012-05-10 イビデン株式会社 多層プリント配線板、及び、多層プリント配線板の製造方法
JP2010199171A (ja) * 2009-02-24 2010-09-09 Shinko Electric Ind Co Ltd チップ部品実装配線基板
JP5113114B2 (ja) * 2009-04-06 2013-01-09 新光電気工業株式会社 配線基板の製造方法及び配線基板
JP5515586B2 (ja) * 2009-10-05 2014-06-11 株式会社デンソー 配線基板およびその製造方法
JP5077324B2 (ja) * 2009-10-26 2012-11-21 株式会社デンソー 配線基板
JP5442424B2 (ja) * 2009-12-25 2014-03-12 新光電気工業株式会社 半導体装置
JP5566200B2 (ja) * 2010-06-18 2014-08-06 新光電気工業株式会社 配線基板及びその製造方法
JP2012009608A (ja) * 2010-06-24 2012-01-12 Jtekt Corp 素子実装回路、および回路基板への半導体素子の実装方法
JP2012119509A (ja) 2010-12-01 2012-06-21 Sharp Corp 回路モジュールおよびそれを備えた照明機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321471A (ja) * 1994-05-25 1995-12-08 Oki Electric Ind Co Ltd 多層基板
JPH1056097A (ja) * 1996-08-12 1998-02-24 Nec Corp 半導体装置及びその製造方法
JP2007096009A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd 積層回路基板及びこれを具えた携帯型電子機器
JP2011091152A (ja) * 2009-10-21 2011-05-06 Daikin Industries Ltd パワーモジュール
JP2011142162A (ja) * 2010-01-06 2011-07-21 Daikin Industries Ltd パワーモジュール、電力変換装置、及び冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017119248A1 (ja) * 2016-01-07 2018-10-04 株式会社村田製作所 多層基板、電子機器及び多層基板の製造方法

Also Published As

Publication number Publication date
JP2014082474A (ja) 2014-05-08
US9686854B2 (en) 2017-06-20
US20150319840A1 (en) 2015-11-05
CN104685619A (zh) 2015-06-03
DE112013004691T5 (de) 2015-07-02
JP5942951B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5942951B2 (ja) 電子装置
JP6021504B2 (ja) プリント配線板、プリント回路板及びプリント回路板の製造方法
JP7441287B2 (ja) 半導体装置
US9795053B2 (en) Electronic device and method for manufacturing the electronic device
JP5469270B1 (ja) 電子機器
CN105006453A (zh) 封装结构
JP6618549B2 (ja) 半導体装置
JP2020004840A (ja) 電子ユニットおよびその製造方法
US20230260693A1 (en) MAGNETIC DEVICE and STACKED ELECTRONIC STRUCTURE
JP2010157663A (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JPWO2020071493A1 (ja) モジュール
JP5601430B2 (ja) 電子装置
JP5884611B2 (ja) 電子装置
WO2022252478A1 (zh) 电子元件封装体、电子元件封装组件及电子设备
JP2973646B2 (ja) ベアチップlsiの実装構造
JP2011077164A (ja) 半導体発光装置
WO2020162614A1 (ja) モジュール
WO2016047370A1 (ja) 電子部品の回路基板構造
JP6908278B2 (ja) 半導体装置および電子機器
JP2011003818A (ja) モールドパッケージ
JP6953859B2 (ja) 半導体装置
JP6806520B2 (ja) 半導体装置および配線基板の設計方法
JP4353131B2 (ja) 電子装置
CN104640350B (zh) 电路板模块
JP2007201251A (ja) 半導体パッケージ及び半導体パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013004691

Country of ref document: DE

Ref document number: 1120130046911

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842677

Country of ref document: EP

Kind code of ref document: A1