WO2009150938A1 - 合成石英ガラス基板用研磨剤 - Google Patents

合成石英ガラス基板用研磨剤 Download PDF

Info

Publication number
WO2009150938A1
WO2009150938A1 PCT/JP2009/059676 JP2009059676W WO2009150938A1 WO 2009150938 A1 WO2009150938 A1 WO 2009150938A1 JP 2009059676 W JP2009059676 W JP 2009059676W WO 2009150938 A1 WO2009150938 A1 WO 2009150938A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
synthetic quartz
quartz glass
mass
Prior art date
Application number
PCT/JP2009/059676
Other languages
English (en)
French (fr)
Inventor
大実 原田
正樹 竹内
由紀夫 柴野
修平 上田
厚 渡部
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008152964A external-priority patent/JP5071678B2/ja
Priority claimed from JP2008152924A external-priority patent/JP5369506B2/ja
Priority claimed from JP2008152940A external-priority patent/JP5407188B2/ja
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN200980100696A priority Critical patent/CN101821058A/zh
Priority to EP09762368.0A priority patent/EP2289667B1/en
Priority to US12/678,058 priority patent/US20100243950A1/en
Publication of WO2009150938A1 publication Critical patent/WO2009150938A1/ja
Priority to US14/511,065 priority patent/US9919962B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/0056Control means for lapping machines or devices taking regard of the pH-value of lapping agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention is mainly used for a synthetic quartz glass substrate used for a semiconductor-related electronic material, a nanoimprint-related material or a display-related material, particularly for a semiconductor-related electronic material application for a state-of-the-art application or a synthetic quartz glass substrate for a liquid crystal-related material application.
  • the present invention relates to an abrasive for a synthetic quartz glass substrate.
  • the quality of the synthetic quartz glass substrate includes defect size and defect density on the substrate, flatness, surface roughness, photochemical stability of the material, chemical stability of the surface, and the like. Among these, the quality related to defects on the substrate is becoming more and more severe with the trend of higher definition of ICs and larger display panels.
  • the defect quality of the synthetic quartz glass substrate has been improved year by year.
  • a substrate having a concave defect having a size of about 0.3 ⁇ m or less has been used as a semiconductor substrate. This is because of the visual inspection at the illuminance that does not pose a sanitary problem with the condenser lamp, or the automatic defect described in JP-A-63-200043 (Patent Document 1) and JP-A-63-208746 (Patent Document 2).
  • the defect detection probability of a size of 0.5 ⁇ m or less is particularly low, leading to a delay in measures for improving the substrate quality.
  • Patent Document 3 describes a method of precisely mirror-finishing a glass substrate by polishing it with colloidal silica. Analysis of the defects confirmed the presence of fine irregularities, which proved inadequate as a method for suppressing microdefects.
  • Patent Document 4 colloidal silica is cited as an abrasive for aluminum disks and glass hard disks. A more preferable SiO 2 concentration range is described as 1 to 30% by mass, and in the examples, polishing is performed with an abrasive having an SiO 2 concentration of 10% by mass or 14% by mass.
  • Patent Document 5 Japanese Patent No. 2987171
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2001-3036
  • Patent Document 6 which describe a colloidal silica abrasive as a silicon wafer abrasive substantially dilute the colloidal silica abrasive.
  • SiO 2 concentration 10% by mass or less, it is not preferable as an abrasive for a glass substrate for a photomask.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-98278
  • colloidal silica of the nature range is stable even if it is a high-purity product with sufficiently low impurities such as metals, as it is gelled, thickened, or the particle size distribution of abrasive grains is displaced as polishing is repeated. Practically impossible to use.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a polishing agent for a synthetic quartz glass substrate capable of suppressing the generation of defects and improving the yield in the production of semiconductor devices or display panels. To do.
  • an abrasive comprising a colloidal solution such as colloidal silica and a polycarboxylic acid polymer, an acidic amino acid, a phenol, or a glucosaminoglycan is the subject. It has been found that the present invention is effective in solving the above problem, and has led to the present invention.
  • the present invention provides the following abrasive for a synthetic quartz glass substrate.
  • synthetic quartz glass such as a synthetic quartz glass substrate for a photomask used in an optical lithography method that is important for the production of ICs and the like
  • a high-sensitivity defect inspection apparatus on the surface of the synthetic quartz glass substrate.
  • generation of defects is suppressed, yield is expected to be improved in semiconductor device manufacturing, and the semiconductor industry is further refined.
  • generation of defects in polishing can be suppressed and yield can be improved.
  • the abrasive for synthetic quartz glass substrate of the present invention contains a colloid solution and one or more components selected from polycarboxylic acid polymers, acidic amino acids, phenols and glucosaminoglycans.
  • the colloidal solution used in the present invention preferably contains fine colloidal particles, and the primary particle diameter is preferably 5 to 500 nm, more preferably 10 to 200 nm, and particularly preferably 20 to 150 nm. If the particle size is too small, colloidal particles are likely to adhere to the substrate surface, which may result in poor cleaning properties. If the particle size is too large, the surface roughness of the polished substrate will be deteriorated, which is not preferable as a polishing agent for final precision polishing. There is a case.
  • the particle diameter is a value measured by a dynamic light scattering method.
  • the concentration of the colloidal solution is 20 to 50% by mass, preferably 35 to 45% by mass. If the concentration is less than 20% by mass, fine scratches are generated on the glass surface, and if it exceeds 50% by mass, the abrasive becomes unstable, thickens and cannot be polished.
  • the particle size distribution may be monodispersed to polydispersed, or may have a plurality of particle size peaks.
  • Colloidal silica, colloidal ceria, colloidal zirconia, etc. are mentioned as the type of colloidal particles, but colloidal silica is particularly preferable.
  • the particle shape examples include colloidal silica dispersed in various colloidal shapes such as a spherical shape, a saddle shape, and a connected type. Among them, spherical colloidal silica is particularly preferable.
  • Colloidal silica has various production methods, for example, granulated from water glass, hydrolyzed organic silicate compounds such as alkoxysilane, etc.
  • the pH of the dispersion medium is usually from the viewpoint of storage stability Most of them are alkaline, but they can be neutral or acidic. Among them, the pH is preferably in the range of 3 to 5, or the pH is preferably in the range of 8 to 11. More preferably, the pH is in the range of 9 to 10.5. When the pH is near neutral, the abrasive tends to be unstable, and when the alkali is too strong, surface roughness may occur in the polished glass.
  • the abrasive abrasive silica is usually used dispersed in water, but it may be dispersed in an organic solvent such as methanol, isopropanol, ethylene glycol, methyl ethyl ketone, toluene, xylene, or a mixture thereof. . Further, water-soluble ones of these organic solvents or mixtures thereof may be mixed with water at an arbitrary ratio.
  • colloidal silica dispersion commercially available products can be used.
  • COMPOL-50, COMPOL-80, COMPOL-120, COMPOL-EXIII manufactured by Fujimi Incorporated, ST manufactured by Nissan Chemical Industries, Ltd. -XL, ST-YL, ST-ZL, DUTON SYTON, Nita Haas Co., Ltd. NALCO series, Fuso Chemical Industry Co., Ltd. GP series, etc. can be used.
  • one or more selected from polycarboxylic acid polymers, acidic amino acids, phenols, and glycosaminoglycans are added to the abrasive.
  • the number of defects detected by the high-sensitivity defect inspection apparatus can be suppressed.
  • the inventors of the present invention have made research on the defect generation mechanism on the assumptions as follows. That is, the abrasive grains in the polishing agent cause condensation between the abrasive grains due to the work by the polishing action, or cause condensation between the glass components removed from the surface to be polished and the abrasive grains, causing defects. It is important that the stability of the abrasive grains in the abrasive is important because it is thought that these particles are condensed and adhered to the surface or end face or chamfered surface by the polishing action, or that scratches are generated on the surface. Recognized that there was.
  • the end face or chamfered surface of the large-sized photomask synthetic quartz glass substrate used for display is not mirror-finished compared to the front and back surfaces of the substrate, and the polishing slurry is polished during polishing as the thickness of the substrate increases. Has a strong tendency to stick to dryness.
  • the substrate is polished by a method in which both sides are polished simultaneously or one side at a time.
  • the polishing time for a large synthetic quartz glass substrate is at least several tens of minutes or more, and in some cases, it may take ten or more hours.
  • the surface to be polished is always in contact with the abrasive and wet, for example, in the case of double-sided polishing, the end surface and the chamfered surface, in the case of single-sided polishing, the end surface, the chamfered surface and the back surface are not polished, Abrasive adhesion and drying continue intermittently for a long time. Then, the polished front and back surfaces are caused by adhesion of the abrasive for a long time, and the unpolished surface is intermittently adhered and dried, resulting in a fixed article that is difficult to fall off. This fixed substance is not completely removed in the cleaning step after polishing, and falls off, causing surface defects, or flowing from the end surface to the surface during cleaning, resulting in dry dirt (flow dirt).
  • the method of polishing using high-purity colloidal silica in the neutral region is more effective than the colloidal silica having a pH of about 10 in the stable region. Since the zeta potential is low, the electrical repulsive force between the particles is weak, and adhesion of chemically reactive particles on the glass surface may be suppressed, but the abrasive grains are condensed by the mechanical action of polishing. As a result, it was confirmed that it gelled or thickened immediately and could not be used in practice. Even if the polishing pressure is suppressed to suppress the instability as much as possible, the work of the shearing force by the polishing platen shifts the particle size distribution to the higher side and causes scratches on the surface.
  • the abrasive abrasive in the abrasive it is possible to prevent the grains from approaching and condensing, and it is possible to prevent the particles produced by the condensation of the abrasive grains from condensing on the surface of the glass substrate to be polished or from colliding and generating scratches.
  • a polyacrylic acid polymer As a kind of polycarboxylic acid-type polymer, a polyacrylic acid polymer, a polymaleic acid polymer, and a polyphthalic acid polymer are preferable.
  • the concentration of the polycarboxylic acid polymer is preferably 0.001 to 1.0% by mass, particularly 0.01 to 0.5% by mass, based on the solid content of the colloidal solution, particularly the mass of silica. If the concentration is too low, a sufficient effect for suppressing scratches may not be obtained. If the concentration is too high, it may be difficult to stably supply the abrasive to the polishing machine due to the high viscosity of the polymer. is there.
  • the weight average molecular weight of the polycarboxylic acid polymer is preferably 1000 to 100 million, particularly preferably 10,000 to 10 million. If the molecular weight is too small, a sufficient effect for suppressing scratches may not be obtained. If the molecular weight is too large, the viscosity becomes high, and it may be difficult to stably supply the abrasive to the polishing machine.
  • a weight average molecular weight is a measured value by polystyrene conversion using gel permeation chromatography (GPC).
  • water-soluble polymers other than polycarboxylic acid-based polymers include cellulose derivatives, polyvinyl alcohol, polyvinyl pyrodrine, polyacrylamide, etc., but these water-soluble polymers can also prevent condensation of particles and generation of scratches.
  • polycarboxylic acid polymers negatively charged carboxyl ions repel each other and promote the spread of the network, so it is easy to include abrasive grains and have a negative charge. The effect is particularly high because the surface of the glass substrate, which is an object to be polished, repels.
  • colloidal particles that are electrically charged are preferable.
  • the size of the abrasive grains that are easily included in the network is 5 to 500 nm, more preferably 10 to 200 nm, and particularly preferably 20 to 150 nm.
  • the electrical stability of the colloidal silica abrasive can be enhanced by adding an acidic amino acid to the abrasive.
  • acidic amino acids having a small isoelectric point have a large negative surface charge in a basic solution having a large pH value, and can prevent the abrasive grains from approaching and condensing in the abrasive. It is possible to prevent particles generated by condensation between the particles from condensing and adhering to the surface of the glass substrate to be polished, or from colliding and generating scratches.
  • the concentration of the acidic amino acid is preferably 0.05 to 10.0% by mass, particularly 0.5 to 3.0% by mass, based on the solid content of the colloidal solution, particularly the mass of silica. If the concentration is too low, a sufficient effect for suppressing scratches may not be obtained, and if it is too high, the ion concentration of the abrasive becomes high, the colloid tends to salt out, and may become unstable instead. .
  • amino acids other than acidic amino acids include asparagine, serine, threonine, lysine and the like. Although these amino acids can be expected to have a certain effect on particle condensation adhesion and generation of scratches, This is particularly effective because it has a large negative charge in the aqueous solution and tends to repel the negatively charged abrasive particles and the surface of the glass substrate that is the object to be polished.
  • phenols dissociate from protons and exist as phenolates in aqueous solution, and negatively charged phenolates can enhance the electrical stability of colloidal silica abrasives. That is, the abrasive grains in the polishing agent can be prevented from approaching and condensing with each other, and the particles produced by the condensation of the abrasive grains can condense on the surface of the glass substrate to be polished or collide to generate scratches. Can be prevented.
  • phenol, cresol, xylenol, naphthol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol and salts thereof are preferable.
  • catechol, resorcinol, and hydroquinone are preferable from the viewpoints of solubility of an aqueous solvent in an abrasive and charge.
  • the concentration of phenols is preferably 0.05 to 10.0% by mass, particularly 0.5 to 3.0% by mass, based on the solid content of the colloidal solution, particularly the mass of silica. If the concentration is too low, a sufficient effect for suppressing scratches may not be obtained. If the concentration is too high, phenols are not completely dissolved.
  • alcohols such as methanol and ethanol can be exemplified as compounds similar to phenols. However, since alcohols have low acidity, they do not ionize in solution and do not exhibit the electrical stability that phenols have.
  • the electrical stability of the colloidal silica abrasive is enhanced by its strongly negatively charged physical properties, and the abrasive grains are included in the network structure of the polymer sol-gel.
  • the abrasive grains in the abrasive can be prevented from approaching and condensing, and the particles produced by condensation of the abrasive grains can condense on the surface of the glass substrate to be polished or collide with each other. It can be prevented from generating scratches.
  • glycosaminoglycan As the type of glycosaminoglycan, hyaluronic acid, heparan sulfate, chondroitin sulfate, ketalan sulfate and salts thereof are preferable.
  • concentration of glycosaminoglycan is preferably 0.001 to 1.0% by mass, particularly 0.01 to 0.5% by mass, based on the solid content of the colloidal solution, particularly the mass of silica. If the concentration is too low, a sufficient effect may not be obtained to suppress scratches, and if it is too high, the viscosity of the glycosaminoglycan may be high, making it difficult to stably supply the abrasive to the polishing machine. There is.
  • the weight average molecular weight of the glycosaminoglycan is preferably from 1,000 to 100 million, particularly preferably from 10,000 to 10,000,000. If the molecular weight is too small, a sufficient effect for suppressing scratches may not be obtained. If the molecular weight is too large, the viscosity becomes high, and it may be difficult to stably supply the abrasive to the polishing machine.
  • a weight average molecular weight is a measured value by polystyrene conversion using gel permeation chromatography (GPC).
  • water-soluble polymers other than glycosaminoglycans include cellulose derivatives, polyvinyl alcohol, polyvinyl pyrodrine, polyacrylamide, and the like, but these water-soluble polymers can also prevent condensation of particles and generation of scratches.
  • glycosaminoglycans negatively charged carboxyl groups and sulfate groups repel each other and promote the spread of the network, so it is easy to include abrasive grains, and negative charges Since the glass substrate surface, which is an object to be polished, is repelled, the effect is particularly high. Furthermore, due to the strong water-retaining action of glycosaminoglycan, when the glass substrate is taken out from the polishing machine after polishing, an effect of preventing drying and sticking of the abrasive on the substrate surface can be expected.
  • additives such as a pH adjuster, a buffering agent, and a rust inhibitor may be added.
  • a pH adjuster such as a buffering agent, and a rust inhibitor.
  • alkali metal hydroxides alkaline earth metal hydroxides, basic salts, amines, and ammonia can be used.
  • examples include potassium hydroxide, sodium hydroxide, calcium hydroxide, sodium borate, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and the like.
  • the exemplified additives may be used alone or in combination. Of these, diethanolamine or triethanolamine is preferred.
  • the pH adjuster is preferably added in an amount such that the pH of the abrasive is in the range of 9 to 10.5. Since it is important that the pH of the polishing agent during polishing does not deviate from this range, it is preferable to add the pH adjusting agent last after adding other additives first. If the pH of the abrasive varies during polishing, a pH adjuster may be added at an appropriate time to adjust the pH to 9 to 10.5. In the case of a strong base having a large dissociation constant such as an alkali metal hydroxide, it is difficult to adjust the pH range because the pH fluctuates greatly even with a small difference in addition amount. In this respect, the pH adjuster is preferably a medium base diethanolamine or triethanolamine. When the pH is near neutral, colloidal silica tends to become unstable, resulting in inconvenience in continuous polishing. If the pH is too high, surface roughness may occur in the polished quartz glass.
  • carboxylic acid and its salts can be used as an additive other than the pH adjuster.
  • a chain structure carboxylic acid having a molecular weight of 100 or more and an aromatic carboxylic acid are preferred.
  • the exemplified additives may be used alone or in combination. Since these molecules are water-soluble and bulky, when added to an abrasive, the molecules coordinate to the colloidal particles and have the effect of stabilizing the colloidal state.
  • the synthetic quartz glass substrate to be polished according to the present invention is obtained by molding, annealing, slicing, lapping, and rough polishing of a synthetic quartz glass ingot. Then, in the precision polishing step for determining the final surface quality, polishing is performed using the abrasive for synthetic quartz glass substrate of the present invention.
  • batch-type double-side polishing is generally used, but single-side polishing or single-wafer polishing may be used.
  • the synthetic quartz glass substrate polished using the abrasive of the present invention can be used for semiconductor-related electronic materials and liquid crystals, and can be particularly suitably used for photomasks.
  • the thickness is 152 mm ⁇ 152 mm and the thickness is about 6.35 mm.
  • the size of the substrate is assumed to be various due to the nature that the nanoimprint technology is suitable for the production of a small variety of products.
  • the thickness is 152 mm ⁇ 152 mm and the thickness is 6
  • Examples include a wafer substrate having a diameter of 150 mm and a thickness of 0.5 to 1.0 mm in addition to a wafer having a thickness of approximately 35 mm, a thickness of approximately 65 mm ⁇ 65 mm and a thickness of approximately 6.35 mm.
  • the thickness in the case of 330 mm ⁇ 450 mm is 5 mm
  • the thickness in the case of 800 mm ⁇ 920 mm is 8 mm or 10 mm
  • the thickness in the case of 1220 mm ⁇ 1400 mm is 13 mm
  • the thickness in the case of 1600 to 1800 mm ⁇ 1700 to 1900 mm The thickness is 16 to 20 mm.
  • the particle diameter is a value measured by a dynamic light scattering method.
  • Example 1 After wrapping the sliced silica synthetic quartz glass substrate raw material (6 inches), rough polishing and final precision polishing were performed by a double-side polishing apparatus. Using a soft suede polishing cloth, sodium polyacrylate (weight average molecular weight 250,000) as a polishing agent in a colloidal silica aqueous dispersion (manufactured by Fujimi Incorporated, primary particle diameter 78 nm) having a SiO 2 concentration of 40% by mass. ⁇ 700,000: Wako Pure Chemical Industries, Ltd.) was added at 0.5% by mass, and diethanolamine was added to adjust the pH to 10.0. The polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • a defect inspection was performed using a laser confocal optical system high-sensitivity defect inspection apparatus (manufactured by Lasertec Corporation). The average number of defects having a size of 0.15 ⁇ m or more was 4.0. Met.
  • Example 2 When the defect inspection was performed in the same manner as in Example 1 except that sodium polyacrylate in Example 1 was replaced with sodium polymaleate (weight average molecular weight 1000: manufactured by Toagosei Co., Ltd.), the average number of defects was 7 It was one.
  • Example 3 A defect inspection was conducted in the same manner as in Example 1 except that the sodium polyacrylate of Example 1 was replaced with an acrylic acid / maleic acid copolymer (weight average molecular weight 60,000; manufactured by Nippon Shokubai Co., Ltd.). The average number of defects was 4.4.
  • Example 4 Except that the sodium polyacrylate of Example 1 was replaced with 0.5% by mass of sodium polyacrylate (weight average molecular weight 20,000 to 700,000: manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5% by mass of benzoic acid. When the defect inspection was performed in the same manner as in Example 1, the average number of defects was 3.2.
  • Example 5 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 4.3.
  • Example 6 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 2.3.
  • Example 7 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the pH was adjusted to 10.0 by adding 0.5% by mass of sodium polyacrylate (weight average molecular weight 250,000 to 700,000: manufactured by Wako Pure Chemical Industries, Ltd.) to 104 nm in diameter, and further adding diethanolamine. A thing was used.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step. Polishing was continued until just before the surface of the polishing cloth became rough and could not be used.
  • defect inspection was performed in the same manner as in Example 1, the number of defects was 3.3 on the average for substrates polished in the initial stage of polishing and 3.5 on the average for substrates polished in the final stage of polishing.
  • Example 8 The sliced silica synthetic quartz glass substrate raw material (1220 mm ⁇ 1400 mm ⁇ 13 mmt) was lapped, rough polished by a single-side polishing machine, and then final precision polished by a double-side polishing apparatus.
  • the surface roughness (Ra) of the substrate end face at this time was 0.2 ⁇ m.
  • a high-purity colloidal silica aqueous dispersion originally produced by hydrolyzing alkoxysilane as a polishing agent using a soft suede polishing cloth (pH7, SiO 2 concentration 40 mass%, manufactured by Fuso Chemical Industries, Ltd., primary particles)
  • the pH was adjusted to 10.0 by adding 0.5% by mass of sodium polyacrylate (weight average molecular weight 250,000 to 700,000: manufactured by Wako Pure Chemical Industries, Ltd.) to 104 nm in diameter, and further adding diethanolamine.
  • the polishing load was 70.0 gf, and the machining allowance was polished for 4 hours for a sufficient amount (about 3 ⁇ m or more) to remove scratches introduced in the rough polishing step.
  • defect inspection was performed using a light scattering defect inspection device (Lasertec). No smearing occurred from the end face, and the average number of defects with a size of 0.3 ⁇ m or more was average. 0.5 pieces / 100 cm 2 .
  • Example 9 A defect inspection was conducted in the same manner as in Example 8 except that sodium polyacrylate in Example 8 was replaced with sodium polymaleate (weight average molecular weight 1000: manufactured by Toagosei Co., Ltd.). The number of defects having a size of 0.3 ⁇ m or more was 0.8 / 100 cm 2 on average.
  • Example 10 A defect inspection was performed in the same manner as in Example 8 except that the sodium polyacrylate of Example 8 was replaced with an acrylic acid / maleic acid copolymer (weight average molecular weight 60,000; manufactured by Nippon Shokubai Co., Ltd.). No fouling occurred from the end face, and the average number of defects having a size of 0.3 ⁇ m or more was 0.7 / 100 cm 2 .
  • an acrylic acid / maleic acid copolymer weight average molecular weight 60,000; manufactured by Nippon Shokubai Co., Ltd.
  • Example 11 Except that the sodium polyacrylate of Example 8 was replaced with 0.5% by mass of sodium polyacrylate (weight average molecular weight: 20,000 to 700,000; manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5% by mass of benzoic acid.
  • weight average molecular weight 20,000 to 700,000; manufactured by Wako Pure Chemical Industries, Ltd.
  • benzoic acid 0.5% by mass of benzoic acid.
  • Example 12 The sliced silica synthetic quartz glass substrate raw material (1600 mm ⁇ 1700 mm ⁇ 18 mmt) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 70.0 gf, and the machining allowance was polished by a sufficient amount (about 3 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • a sufficient amount about 3 ⁇ m or more
  • Example 13 Originally produced by hydrolyzing alkoxysilane as an abrasive, pH 7 and a high-purity colloidal silica aqueous dispersion having a SiO 2 concentration of 40% by mass (manufactured by Fuso Chemical Industry Co., Ltd., primary particle size 104 nm) were mixed with sodium polyacrylate ( A weight average molecular weight of 250,000 to 700,000: manufactured by Wako Pure Chemical Industries, Ltd.) was added at 0.5% by mass, and diethanolamine was added to adjust the pH to 10.0.
  • sodium polyacrylate A weight average molecular weight of 250,000 to 700,000: manufactured by Wako Pure Chemical Industries, Ltd.
  • the polishing load was 70 0.0 gf, and the machining allowance was the same as in Example 12 except that a sufficient amount (about 3 ⁇ m or more) was removed to remove scratches introduced in the rough polishing step.
  • a sufficient amount about 3 ⁇ m or more was removed to remove scratches introduced in the rough polishing step.
  • Example 14 Originally produced by hydrolyzing alkoxysilane as an abrasive, pH 7 and a high-purity colloidal silica aqueous dispersion having a SiO 2 concentration of 40% by mass (manufactured by Fuso Chemical Industry Co., Ltd., primary particle size 104 nm) were mixed with sodium polyacrylate ( Weight average molecular weight 250,000 to 700,000: Wako Pure Chemical Industries, Ltd.) 0.5% by mass was added, and diethanolamine was added to adjust the pH to 10.0. The polishing load was 70.0 gf, and the machining allowance was polished by a sufficient amount (about 3 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • Polishing was the same as Example 12 except that polishing was continuously performed until just before the surface of the polishing cloth became rough and could not be used.
  • defect inspection was carried out in the same manner as in Example 1, no flow contamination occurred from the end face, the number of defects was 0.5 / 100 cm 2 on the average for the substrates polished in the initial stage of polishing, and polished in the final stage of polishing. The average number of substrates was 1.2 / 100 cm 2 .
  • Example 1 In Example 1, all were performed on the same conditions as Example 1 except grind
  • the polishing agent became slightly thickened in the 4th batch after polishing and became difficult to polish, and in the 6th batch, polishing was practically impossible.
  • defect inspection was performed in the same manner as in Example 1, the number of defects was 10.9 on average for substrates polished in the initial stage of polishing and 265 on average for substrates polished in the final stage of polishing (sixth batch). .
  • Example 8 In Example 8, all was performed on the same conditions as Example 8 except grind
  • the polishing agent slightly thickened in the first batch after polishing and became difficult to polish, and in the second batch, polishing became virtually impossible.
  • flow contamination from the end face occurred, and the average number of defects having a size of 0.3 ⁇ m or more was 84/100 cm 2 .
  • Example 15 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing. Aspartic acid (Wako Pure Chemical Industries, Ltd.) was added to a colloidal silica aqueous dispersion (manufactured by Fujimi Incorporated, primary particle size 78 nm) having a SiO 2 concentration of 40% by mass as a polishing agent using a soft suede polishing cloth. 1.0% by mass) was added, and diethanolamine was further added to adjust the pH to 10.0. The polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • Aspartic acid (Wako Pure Chemical Industries, Ltd.) was added to a colloidal silica aqueous dispersion (manufactured by Fujimi Incorporated, primary particle size 78 nm) having a SiO 2 concentration of 40% by mass as a polish
  • defect inspection was performed using a laser confocal optical system high-sensitivity defect inspection apparatus (manufactured by Lasertec). The average number of defects was 4.7.
  • Example 16 When the defect inspection was conducted in the same manner as in Example 15 except that glutamic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of aspartic acid in Example 15, the average number of defects was 4.8.
  • Example 17 A defect inspection was conducted in the same manner as in Example 15 except that 1.0% by mass of aspartic acid and 0.5% by mass of benzoic acid were used instead of aspartic acid in Example 15, and the average number of defects was 2.2. Met.
  • Example 18 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the one with 1.0% by mass of aspartic acid added to a diameter of 104 nm was used (the pH of the abrasive became 4.7 by adding aspartic acid).
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 7.8.
  • Example 19 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 2.9.
  • Example 20 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • Polishing was continued until just before the surface of the polishing cloth became rough and could not be used.
  • defect inspection was performed in the same manner as in Example 15, the number of defects was 1.9 on the average for the substrates polished in the initial stage of polishing and 6.7 on the average for the substrates polished in the final stage of polishing.
  • Example 21 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • Catechol manufactured by Wako Pure Chemical Industries, Ltd.
  • aqueous colloidal silica dispersion manufactured by Fujimi Incorporated, primary particle size 78 nm having a SiO 2 concentration of 40% by mass as a polishing agent, using a soft suede polishing cloth.
  • diethanolamine was further added to adjust the pH to 10.0.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • defect inspection was performed using a laser confocal optical system high-sensitivity defect inspection apparatus (manufactured by Lasertec). The number of defects was 5.1 on average.
  • Example 22 When the defect inspection was performed in the same manner as in Example 21 except that the catechol in Example 21 was replaced with resorcinol (manufactured by Wako Pure Chemical Industries, Ltd.), the average number of defects was 5.8.
  • Example 23 When the defect inspection was performed in the same manner as in Example 21 except that the catechol of Example 21 was changed to 1.0% by mass of catechol and 0.5% by mass of benzoic acid, the average number of defects was 3.4. It was.
  • Example 24 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 7.3.
  • Example 25 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • a material having a pH adjusted to 10.0 by adding 1.0% by mass of catechol to 104 nm in diameter and further adding diethanolamine was used.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the number of defects was 2.0 on average.
  • Example 26 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • a material having a pH adjusted to 10.0 by adding 1.0% by mass of catechol to 104 nm in diameter and further adding diethanolamine was used.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • Polishing was continued until just before the surface of the polishing cloth became rough and could not be used.
  • defect inspection was performed in the same manner as in Example 21, the number of defects was 2.6 on the average for the substrates polished in the initial stage of polishing and 5.2 on the average for the substrates polished in the final stage of polishing.
  • Example 27 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing. Using a soft suede abrasive cloth, sodium hyaluronate (Wako Pure Chemical Industries, Ltd.) as a polishing agent in an aqueous colloidal silica dispersion (manufactured by Fujimi Incorporated, primary particle size 78 nm) having a SiO 2 concentration of 40% by mass. )) was added in an amount of 0.025% by mass, and diethanolamine was further added to adjust the pH to 10.0. The polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • sodium hyaluronate (Wako Pure Chemical Industries, Ltd.) as a polishing agent in an aqueous colloidal silica dispersion (manufactured by Fujimi Incorporated, primary particle size
  • a defect inspection was performed using a laser confocal optical system high-sensitivity defect inspection apparatus (manufactured by Lasertec Corporation), and the average number of defects was 4.5.
  • Example 28 Defect inspection was carried out in the same manner as in Example 27 except that sodium hyaluronate in Example 27 was replaced with chondroitin sulfate (manufactured by Wako Pure Chemical Industries, Ltd.). The average number of defects was 4.8. It was.
  • Example 29 A defect inspection was performed in the same manner as in Example 27 except that sodium hyaluronate in Example 27 was replaced with 0.025% by mass of sodium hyaluronate and 0.5% by mass of benzoic acid. There were zero.
  • Example 30 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 4.3.
  • Example 31 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the diameter was adjusted to 10.0 by adding 0.025% by mass of sodium hyaluronate to 104 nm) and further adding diethanolamine.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • the average number of defects was 2.9.
  • Example 32 The sliced silica synthetic quartz glass substrate raw material (6 inches) was lapped and coarsely polished, and then introduced into the final precision polishing.
  • the diameter was adjusted to 10.0 by adding 0.025% by mass of sodium hyaluronate to 104 nm) and further adding diethanolamine.
  • the polishing load was 100 gf, and the removal allowance was polished in a sufficient amount (about 1 ⁇ m or more) to remove the scratches introduced in the rough polishing step.
  • Polishing was continued until just before the surface of the polishing cloth became rough and could not be used.
  • defect inspection was performed in the same manner as in Example 27, the number of defects was 2.6 on average for the substrates polished in the initial stage of polishing and 4.7 on the average for substrates polished in the final stage of polishing.
  • Example 5 In Example 1, everything was performed under the same conditions as in Example 1 except that polishing was performed without adding other additives to the polishing agent used for final polishing. As a result, when defect inspection was performed in the same manner using a laser confocal optical system high-sensitivity defect inspection apparatus, the average number of defects was 52.
  • the polishing agent became slightly thickened in the 4th batch after polishing and became difficult to polish, and in the 6th batch, polishing was practically impossible.
  • defect inspection was performed in the same manner as in Example 1, the number of defects was 10.9 on average for substrates polished in the initial stage of polishing and 265 on average for substrates polished in the final stage of polishing (sixth batch). .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 コロイド濃度が20~50質量%であるコロイダルシリカ等のコロイド溶液と、ポリカルボン酸系ポリマー、酸性アミノ酸、フェノール類又はグリコサミノグリカンとを含むことを特徴とする合成石英ガラス基板用研磨剤。

Description

合成石英ガラス基板用研磨剤
 本発明は、主に半導体関連電子材料、ナノインプリント関連材料又はディスプレイ関連材料に用いられる合成石英ガラス基板、特に最先端用途の半導体関連電子材料用途や、液晶関連材料用途の合成石英ガラス基板に用いられる合成石英ガラス基板用研磨剤に関する。
 合成石英ガラス基板の品質としては、基板上の欠陥サイズ及び欠陥密度、平坦度、面粗度、材質の光化学的安定性、表面の化学的安定性等が挙げられる。このうち、基板上の欠陥に関する品質はICの高精細化のトレンドやディスプレイパネルの大型化に伴ってますます厳しくなってきている。
 合成石英ガラス基板の欠陥品質も年々改良されてきたが、例えば半導体用基板としては、実質約0.3μm以下のサイズの凹欠陥が存在している基板が使用されてきた。これは集光ランプによる衛生上問題にならない照度での目視検査や、特開昭63-200043号公報(特許文献1)や特開昭63-208746号公報(特許文献2)に記載の自動欠陥検査装置による欠陥検査においては、特に0.5μm以下のサイズの欠陥検出確率が低いためで、基板の品質向上対策の遅れにつながっていた。
 このような背景の中、近年高感度の欠陥検査装置が開発され、同装置を用いた表面微細欠陥抑制のための研究が進んだ。特開昭64-40267号公報(特許文献3)によれば、ガラス基板上をコロイダルシリカで研磨することによって精密に鏡面化する方法が記載されているが、上記の高感度欠陥検査装置で表面欠陥を分析すると、微細な凹凸欠陥の存在が確認され、微小欠陥抑制方法としては不十分なことが分かった。特開2002-30274号公報(特許文献4)によれば、アルミニウムディスク及びガラス製ハードディスク用の研磨剤としてコロイダルシリカを挙げている。より好ましいSiO2の濃度範囲として1~30質量%と記載されており、実施例ではSiO2濃度が10質量%や14質量%の研磨剤での研磨を行っている。
 しかし、これらの濃度範囲で合成石英ガラス基板を研磨した場合、0.5μm以下のサイズの欠陥が大量に発生してしまう。同様に、シリコンウェーハー用研磨剤としてコロイダルシリカ研磨剤を記載した特許第2987171号公報(特許文献5)や特開2001-3036号公報(特許文献6)でも、実質的にコロイダルシリカ研磨剤を希釈し、SiO2濃度が10質量%以下で使用しているため、フォトマスク用ガラス基板の研磨剤としては好ましくなかった。
 また、特開2004-98278号公報(特許文献7)によれば、高純度のコロイダルシリカを中性付近で用いることで凸状の微小欠陥を無くすことができると記載されているが、こうした中性域のコロイダルシリカは、金属等の不純物が充分低い高純度品であっても、研磨を重ねるに従ってゲル化したり、増粘したり、又は研磨砥粒の粒度分布が変位したりして、安定的に使用することは事実上不可能である。
 従って、こうした方法の場合には、研磨剤を循環、繰り返し使用することが困難であり、必然的に掛け流し利用となって、経済的、環境的に好ましくないという重大な問題点があった。
 一方、例えば液晶用基板の場合、液晶パネルが大型化するに伴い、使用されるフォトマスク用合成石英ガラス基板も大型化してきており、更なる欠陥抑制が望まれている。
 本発明は上記事情に鑑みなされたものであり、欠陥の生成を抑制し、半導体デバイス又はディスプレイパネルの製造等における歩留まりを向上させることができる合成石英ガラス基板用研磨剤を提供することを目的とする。
 本発明者らは上記目的を達成するために鋭意検討した結果、コロイダルシリカ等のコロイド溶液と、ポリカルボン酸系ポリマー、酸性アミノ酸、フェノール類又はグルコサミノグリカンとを含む研磨剤が、前記課題の解決に有効であることを見出し、本発明をなすに至ったものである。
 即ち、本発明は、以下の合成石英ガラス基板用研磨剤を提供するものである。
(1)コロイド溶液と、ポリカルボン酸系ポリマー、酸性アミノ酸、フェノール類及びグリコサミノグリカンからなる群より選ばれるいずれかの物質とを含み、当該コロイド濃度が20~50質量%であることを特徴とする合成石英ガラス基板用研磨剤。
(2)前記コロイド溶液がコロイダルシリカ分散液であることを特徴とする(1)記載の合成石英ガラス基板用研磨剤。
(3)前記ポリカルボン酸系ポリマーが、ポリアクリル酸ポリマーであることを特徴とする(1)又は(2)記載の合成石英ガラス基板用研磨剤。
(4)前記酸性アミノ酸が、アスパラギン酸又はグルタミン酸であることを特徴とする(1)又は(2)記載の合成石英ガラス基板用研磨剤。
(5)前記フェノール類が、カテコール、レゾルシノール、ヒドロキノンのいずれかであることを特徴とする(1)又は(2)記載の合成石英ガラス基板用研磨剤。
(6)前記グリコサミノグリカンが、ヒアルロン酸であることを特徴とする(1)又は(2)記載の合成石英ガラス基板用研磨剤。
(7)pH9~10.5である(1)乃至(6)のいずれかに記載の合成石英ガラス基板用研磨剤。
(8)アルカリ金属水酸化物、アルカリ土類金属水酸化物、塩基性塩類、アミン類、アンモニアから選ばれる1種又は2種以上によりpHを調整した(7)記載の合成石英ガラス基板用研磨剤。
(9)合成石英ガラス基板が、フォトマスク用合成石英基板であることを特徴とする(1)乃至(8)のいずれかに記載の合成石英ガラス基板用研磨剤。
 本発明によれば、IC等の製造に重要な光リソグラフィー法において使用されるフォトマスク用合成石英ガラス基板等の合成石英ガラスの製造において、合成石英ガラス基板表面の高感度欠陥検査装置で検出される欠陥の生成が抑制され、半導体デバイス製造等において歩留まりの向上が期待され、かつ半導体工業の更なる高精細化につながる。
 また、ディスプレイ関連材料に用いられる厚みのある端面を有するフォトマスク用合成石英ガラス基板について、研磨における欠陥の発生を抑制し、歩留まりを向上させることができる。
 本発明の合成石英ガラス基板用研磨剤はコロイド溶液と、ポリカルボン酸系ポリマー、酸性アミノ酸、フェノール類及びグルコサミノグリカンから選ばれる1種又は2種以上の成分を含むものである。
 ここで、本発明で使用されるコロイド溶液は粒径の細かいコロイド粒子を含むことが好ましく、一次粒子径で5~500nmが好ましく、より好ましくは10~200nm、特に20~150nmが好ましい。粒径が小さすぎると、基板表面にコロイド粒子が付着し易いため洗浄性が悪くなる場合があり、大きすぎると研磨した基板の表面粗さが悪くなり、最終精密研磨用の研磨剤として好ましくない場合がある。なお、この粒子径は、動的光散乱法により測定した値である。
 また、コロイド溶液の濃度としては20~50質量%であり、好ましくは35~45質量%である。濃度が20質量%未満ではガラス表面に微小キズが発生し、50質量%を超えると研磨剤が不安定となり、増粘して研磨不能となる。
 更に、粒径分布は単分散から多分散のもの、又は複数の粒径ピークを持つものなどが挙げられる。
 コロイド粒子の種類としては、コロイダルシリカ、コロイダルセリア、コロイダルジルコニア等が挙げられるが、コロイダルシリカが特に好ましい。
 粒子の形状として球形、繭型、連結型等さまざまな形のコロイド状に分散したコロイダルシリカが挙げられるが、この中では特に球形のコロイダルシリカが好ましい。
 コロイダルシリカは様々な製法のものがあり、例えば水ガラスから造粒したものや、アルコキシシラン等の有機シリケート化合物などを加水分解したものなどがあり、分散媒のpHは保存安定性の観点から通常アルカリ性のものが多いが、中性又は酸性でも可能である。中でもpHが3~5の範囲か、もしくはpHが8~11の範囲が好ましい。更に好ましくはpHが9~10.5の範囲である。pHが中性付近では研磨剤が不安定化し易く、アルカリが強すぎると研磨したガラスに面粗れが発生する場合がある。
 更に、研磨砥粒シリカは通常は水に分散して使われるが、メタノール、イソプロパノール、エチレングリコール、メチルエチルケトン、トルエン、キシレン等の有機溶媒又はそれらの混合物に分散してあるものであっても構わない。更に、それらの有機溶媒又はその混合物のうち水溶性のものは、水と任意の割合で混合しても構わない。
 なお、コロイダルシリカの分散液としては、市販品を用いることができ、例えば(株)フジミインコーポレーテッド製COMPOL-50,COMPOL-80,COMPOL-120,COMPOL-EXIII、日産化学工業(株)製ST-XL,ST-YL,ST-ZL,Dupon製SYTON、ニッタ・ハース(株)製NALCOシリーズ、扶桑化学工業(株)製GPシリーズ等を用いることができる。
 以上のスラリー(研磨剤)を用いてガラス基板を研磨するに際して、研磨剤中にポリカルボン酸系ポリマー、酸性アミノ酸、フェノール類、グリコサミノグリカンから選ばれる1種又は2種以上を添加することで、高感度欠陥検査装置で検出される欠陥数を抑制することができる。
 本発明者らは欠陥生成機構に関して、以下のように仮定して研究を進めた。
 即ち、研磨剤中の研磨砥粒が研磨作用による仕事で砥粒表面間縮合を起こしたり、被研磨表面から除去されたガラス分と砥粒の間で縮合を起こしたりして、欠陥の原因となる活性な粒子を生成し、これが研磨作用によって表面又は端面や面取り面上に縮合付着したり、表面上にキズを生成させていると考え、研磨剤中の研磨砥粒の安定性が重要であるとの認識を持った。
 また、ディスプレイ用に用いられる大型のフォトマスク用合成石英ガラス基板の端面又は面取り面は、基板表裏面に比べて鏡面化処理がなされておらず、基板の厚みが増すにつれ、研磨中に研磨スラリーが固着乾固する傾向が強い。
 通常、基板の研磨は、両面同時に又は片面ずつ研磨する方法が採用されるが、大型合成石英ガラス基板の研磨時間は少なくとも数十分以上、場合によっては十数時間を要する場合がある。研磨される面は、常に研磨剤と接触して濡れた状態となるが、例えば両面研磨の場合では端面と面取り面、片面研磨の場合では端面と面取り面と裏面が研磨されていない面となり、研磨剤の付着と乾燥が長時間断続的に継続する。そして、研磨されている表裏面は長時間の研磨剤の付着により、また研磨されていない面は研磨剤の付着と乾燥が断続的に起こり、落ちにくい固着物となる。この固着物が研磨後の洗浄工程において完全に除去されず、脱落し表面欠陥の原因となったり又は洗浄中に端面から表面に流れこみ、乾き汚れ(流れ汚れ)となる。このようなことは、通常数十分、長くても1時間程度と研磨時間が短く、研磨工程中において常時研磨剤と接触して濡れている状態である従来の半導体用基板では問題にならなかったことで、大型合成石英ガラス基板の研磨の特殊性に起因するものである。そして、研磨されていない面について、縮合又は乾燥固着後の除去性の向上も重要であると認識した。
 例えば前述の特開2004-98278号公報に記載されているように、中性領域の高純度コロイダルシリカを用いて研磨する方法は、安定領域のpH10程度のアルカリ性コロイダルシリカに比べて、粒子表面のゼータ電位が低いため、粒子間の電気的反発力が弱くなっており、化学反応的な粒子のガラス表面上付着は抑制できるかもしれないが、研磨砥粒同士が研磨の機械作用で縮合してしまい、すぐにゲル化したり増粘したりすることが確認され、実際には使えない。研磨圧力を抑制して、極力不安定度を抑えたとしても、研磨定盤による剪断力の仕事で粒度分布が高いほうにシフトして表面上のキズの原因になる。
 この場合、研磨剤中にポリカルボン酸系ポリマーを添加して、保護コロイド作用を誘起したり、高分子ゾルゲルのネットワーク構造の中に砥粒を包括したりすることによって、研磨剤中の研磨砥粒相互の接近、縮合を阻止でき、また研磨砥粒同士が縮合して生成した粒子が被研磨ガラス基板表面上に縮合付着したり、衝突してキズを発生させたりすることを阻止できる。
 ポリカルボン酸系ポリマーの種類としては、ポリアクリル酸ポリマー、ポリマレイン酸ポリマー、ポリフタル酸ポリマーが好ましい。ポリカルボン酸系ポリマーの濃度は、コロイド溶液の固形分、特にシリカの質量に対し、0.001~1.0質量%、特に0.01~0.5質量%が好ましい。濃度が低すぎるとキズを抑制するのに十分な効果が得られない場合があり、高すぎると高分子ポリマーの粘度の高さにより、研磨剤の研磨機への安定供給が困難となる場合がある。また、ポリカルボン酸系ポリマーの重量平均分子量としては、1000~1億、特に1万~1000万が好ましい。分子量が小さすぎるとキズを抑制するのに十分な効果が得られない場合があり、大きすぎると粘度が高くなるため、研磨剤の研磨機への安定供給が困難となる場合がある。
 なお、重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)を用いたポリスチレン換算による測定値である。
 なお、ポリカルボン酸系ポリマー以外の水溶性高分子として、セルロース誘導体、ポリビニルアルコール、ポリビニルピロドリン、ポリアクリルアミド等が例示できるが、これらの水溶性高分子でも粒子の縮合付着やキズの発生に対して一定の効果を期待できるものの、ポリカルボン酸系ポリマーでは、負電荷のカルボキシルイオン同士がお互いに反発し合いネットワークの広がりを助長するため、研磨砥粒を包括し易く、また、負電荷を帯びた被研磨体であるガラス基板表面とも反発するため、特に効果が高い。
 ネットワークに包括され易い研磨砥粒としては、電気的に電荷を帯びているコロイド粒子が好ましい。ネットワークに包括され易い研磨砥粒のサイズとしては5~500nm、更に好ましくは10~200nmであり、特に20~150nmが好ましい。
 また、研磨剤中に酸性アミノ酸を添加することで、コロイダルシリカ研磨剤の電気的安定性を高めることができる。アミノ酸の中でも等電点の小さな酸性アミノ酸は、pH値の大きい塩基性の溶液中では負の表面電荷が大きくなり、研磨剤中の研磨砥粒相互の接近、縮合を阻止でき、また研磨砥粒同士が縮合して生成した粒子が被研磨ガラス基板表面上に縮合付着したり、衝突してキズを発生させたりすることを阻止できる。
 酸性アミノ酸の種類としては、アスパラギン酸又はグルタミン酸が好ましい。酸性アミノ酸の濃度は、コロイド溶液の固形分、特にシリカの質量に対し、0.05~10.0質量%、特に0.5~3.0質量%が好ましい。濃度が低すぎるとキズを抑制するのに十分な効果が得られない場合があり、高すぎると研磨剤のイオン濃度が高くなり、コロイドが塩析し易くなり、却って不安定化する場合がある。
 なお、酸性アミノ酸以外のアミノ酸として、アスパラギン、セリン、トレオニン、リシン等が例示できるが、これらのアミノ酸でも粒子の縮合付着やキズの発生に対して一定の効果を期待できるものの、酸性アミノ酸では、塩基性溶液において大きな負電荷を帯びて、負電荷を帯びた研磨剤粒子や被研磨体であるガラス基板表面と反発し易いため、特に効果が高い。
 更に、研磨剤中にフェノール類を添加することも有効である。水溶液中でフェノール類はプロトンと解離し、フェノラートとして存在することが知られており、負に帯電したフェノラートはコロイダルシリカ研磨剤の電気的安定性を高めることができる。即ち、研磨剤中の研磨砥粒相互の接近、縮合を阻止でき、また研磨砥粒同士が縮合して生成した粒子が被研磨ガラス基板表面上に縮合付着したり、衝突してキズを発生させたりすることを阻止できる。
 フェノール類の種類としては、フェノール、クレゾール、キシレノール、ナフトール、カテコール、レゾルシノール、ヒドロキノン、ピロガロール、フロログルシノール及びそれらの塩類が好ましい。特に水溶媒の研磨剤への溶解性や、電荷の観点からカテコール、レゾルシノール、ヒドロキノンが好ましい。フェノール類の濃度は、コロイド溶液の固形分、特にシリカの質量に対し、0.05~10.0質量%、特に0.5~3.0質量%が好ましい。濃度が低すぎるとキズを抑制するのに十分な効果が得られない場合があり、高すぎるとフェノール類が完全に溶解しない。
 なお、フェノール類と類似の化合物として、メタノールやエタノール等のアルコールが例示できるが、アルコールは酸性度が低いため、溶液中で電離せず、フェノール類の持つような電気的安定性を発揮しない。
 また、研磨剤中にグリコサミノグリカンを添加することで、その強く負に帯電した物性によりコロイダルシリカ研磨剤の電気的安定性を高めたり、高分子ゾルゲルのネットワーク構造の中に砥粒を包括したりすることによって、研磨剤中の研磨砥粒相互の接近、縮合を阻止でき、また研磨砥粒同士が縮合して生成した粒子が被研磨ガラス基板表面上に縮合付着したり、衝突してキズを発生させたりすることを阻止できる。
 グリコサミノグリカンの種類としては、ヒアルロン酸、ヘパラン硫酸、コンドロイチン硫酸、ケタラン硫酸及びそれらの塩類が好ましい。グリコサミノグリカンの濃度は、コロイド溶液の固形分、特にシリカの質量に対し、0.001~1.0質量%、特に0.01~0.5質量%が好ましい。濃度が低すぎるとキズを抑制するのに十分な効果が得られない場合があり、高すぎるとグリコサミノグリカンの粘度の高さにより、研磨剤の研磨機への安定供給が困難となる場合がある。
 グリコサミノグリカンの重量平均分子量としては、重量平均分子量1000~1億、特に1万~1000万が好ましい。分子量が小さすぎるとキズを抑制するのに十分な効果が得られない場合があり、大きすぎると粘度が高くなるため、研磨剤の研磨機への安定供給が困難となる場合がある。
 なお、重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)を用いたポリスチレン換算による測定値である。
 なお、グリコサミノグリカン以外の水溶性高分子として、セルロース誘導体、ポリビニルアルコール、ポリビニルピロドリン、ポリアクリルアミド等が例示できるが、これらの水溶性高分子でも粒子の縮合付着やキズの発生に対して一定の効果を期待できるものの、グリコサミノグリカンでは、負電荷を帯びたカルボキシル基や硫酸基がお互いに反発し合いネットワークの広がりを助長するため、研磨砥粒を包括し易く、また、負電荷を帯びた被研磨体であるガラス基板表面とも反発するため、特に効果が高い。更に、グリコサミノグリカンの強力な保水作用により、研磨終了後、研磨機からガラス基板を取り出した際に、基板表面上での研磨剤の乾燥や固着を防ぐ効果も期待できる。
 なお、以上例示した添加物に加えて、pH調整剤、緩衝剤、防錆剤等のその他の添加物を加えてもよい。特に、微小欠陥を抑制するには研磨剤のpH調整が重要であり、pHを9~10.5の範囲にするためにpH調整剤を添加するのが望ましい。
 pH調整剤としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、塩基性塩類、アミン類、アンモニアを使用することができる。例として、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、ホウ酸ナトリウム、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン等が挙げられる。例示した添加物は単独で用いても、複数を組み合わせて使用してもよい。中でもジエタノールアミンかトリエタノールアミンが好ましい。
 pH調整剤は、研磨剤のpHが9~10.5の範囲となる量を添加するのが好ましい。研磨中の研磨剤のpHがこの範囲から逸脱しないことが大切であるため、pH調整剤はそれ以外の添加物を先に添加した上で、最後に加えるのが好ましい。研磨中に研磨剤のpHが変動する場合は適時にpH調整剤を添加してpH9~10.5になるように調整してもよい。アルカリ金属の水酸化物のような解離定数の大きい強塩基の場合、当該pH域では少量の添加量の差でもpHが大きく変動するため、調整するのが難しい。この点で、pH調整剤としては、中程度の塩基であるジエタノールアミンかトリエタノールアミンが好ましい。pHが中性付近ではコロイダルシリカが不安定化し易く、連続的な研磨に不都合が生じる。pHが高すぎると研磨した石英ガラスに面粗れが発生する場合がある。
 pH調整剤以外の添加物としては、カルボン酸とその塩類を使用することもできる。具体的には、鎖状構造のカルボン酸のうち分子量100以上のものや芳香族カルボン酸が好ましい。例えばメタクリル酸、コハク酸、マレイン酸、フマル酸、酒石酸、リンゴ酸、アジピン酸、クエン酸、安息香酸、メチル安息香酸、t-ブチル安息香酸、サリチル酸、フタル酸、イソフタル酸、テレフタル酸、フェニル酢酸とそれらの塩類が挙げられる。例示した添加物は単独で用いても、複数を組み合わせて使用してもよい。これらの分子は水溶性でかさ高いため、研磨剤に添加することで、分子がコロイド粒子に配位して、コロイド状態を安定化させる効果がある。
 本発明の研磨対象である合成石英ガラス基板は、合成石英ガラスインゴットを成型、アニール、スライス加工、ラッピング、粗研磨加工をして得られる。そして、最終的な表面品質を決定する精密研磨工程において、本発明の合成石英ガラス基板用研磨剤を用いて研磨を行う。
 なお、本発明に係る研磨剤を用いた研磨方法としては、バッチ式の両面研磨が一般的であるが、片面研磨、枚葉式研磨でも構わない。
 本発明の研磨剤を用いて研磨される合成石英ガラス基板は、半導体関連電子材料や液晶に用いることができ、特にフォトマスク用として好適に使用することができる。
 例えば半導体用基板の場合、152mm×152mmで厚さは6.35mm程度である。また、ナノインプリント用基板の場合、ナノインプリント技術が少量多品種生産に向いている性格上、基板サイズも様々な大きさが想定されるが、例えば半導体用基板と同じく、152mm×152mmで厚さは6.35mm程度のものや、65mm×65mmで厚さは6.35mm程度のものの他、直径150mmで厚さ0.5~1.0mmのウェーハ基板が挙げられる。
 一方、液晶関連材料の場合、330mm×450mmの場合の厚みは5mm、800mm×920mmの場合の厚みは8mm又は10mm、1220mm×1400mmの場合の厚みは13mm、1600~1800mm×1700~1900mmの場合の厚みは16~20mmである。
 以下、実施例と比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、粒子径は動的光散乱法により測定した値である。
  [実施例1]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピングした後、両面ポリッシュ装置により粗研磨及び最終精密研磨を行った。軟質のスエード製研磨布を用い、研磨剤としてSiO2濃度が40質量%のコロイダルシリカ水分散液((株)フジミインコーポレーテッド製、一次粒子径78nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)を0.5質量%加え、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 研磨終了後、洗浄・乾燥してからレーザーコンフォーカル光学系高感度欠陥検査装置(レーザーテック社製)を用いて欠陥検査を行ったところ、サイズが0.15μm以上の欠陥数は平均4.0個であった。
  [実施例2]
 実施例1のポリアクリル酸ナトリウムをポリマレイン酸ナトリウム(重量平均分子量1000:東亞合成(株)製)に代えた以外は、実施例1と同様にして欠陥検査を行ったところ、欠陥数は平均7.1個であった。
  [実施例3]
 実施例1のポリアクリル酸ナトリウムをアクリル酸/マレイン酸共重合体(重量平均分子量6万:(株)日本触媒製)に代えた以外は、実施例1と同様にして欠陥検査を行ったところ、欠陥数は平均4.4個であった。
  [実施例4]
 実施例1のポリアクリル酸ナトリウムをポリアクリル酸ナトリウム(重量平均分子量2万~70万:和光純薬工業(株)製)0.5質量%と安息香酸0.5質量%に代えた以外は、実施例1と同様にして欠陥検査を行ったところ、欠陥数は平均3.2個であった。
  [実施例5]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)を0.5質量%添加したものを用いた(ポリアクリル酸ナトリウムを加えることで研磨剤のpHは7.6となった)。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例1と同様にして欠陥検査を行ったところ、欠陥数は平均4.3個であった。
  [実施例6]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)を0.5質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例1と同様にして欠陥検査を行ったところ、欠陥数は平均2.3個であった。
  [実施例7]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)0.5質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。研磨は研磨布表面が粗れて使えなくなる直前まで連続して行った。
 実施例1と同様にして欠陥検査を行ったところ、欠陥数は研磨初期に研磨された基板は平均3.3個、研磨末期に研磨された基板は平均3.5個であった。
  [実施例8]
 スライスされたシリカ合成石英ガラス基板原料(1220mm×1400mm×13mmt)をラッピング、片面研磨機により粗研磨を行った後、両面ポリッシュ装置により最終精密研磨を行った。この時の基板端面の面粗さ(Ra)は、0.2μmであった。
 軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)0.5質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は70.0gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約3μm以上)を4時間研磨した。
 研磨終了後、洗浄・乾燥してから光散乱式欠陥検査装置(レーザーテック社製)により欠陥検査を行ったところ、端面からの流れ汚れは発生せず、サイズが0.3μm以上の欠陥数は平均0.5個/100cm2であった。
  [実施例9]
 実施例8のポリアクリル酸ナトリウムをポリマレイン酸ナトリウム(重量平均分子量1000:東亞合成(株)製)に代えた以外は、実施例8と同様にして欠陥検査を行ったところ、端面からの流れ汚れは発生せず、サイズが0.3μm以上の欠陥数は平均0.8個/100cm2であった。
  [実施例10]
 実施例8のポリアクリル酸ナトリウムをアクリル酸/マレイン酸共重合体(重量平均分子量6万:(株)日本触媒製)に代えた以外は、実施例8と同様にして欠陥検査を行ったところ、端面からの流れ汚れは発生せず、サイズが0.3μm以上の欠陥数は平均0.7個/100cm2であった。
  [実施例11]
 実施例8のポリアクリル酸ナトリウムをポリアクリル酸ナトリウム(重量平均分子量2万~70万:和光純薬工業(株)製)0.5質量%と安息香酸0.5質量%に代えた以外は、実施例8と同様にして欠陥検査を行ったところ、端面からの流れ汚れは発生せず、サイズが0.3μm以上の欠陥数は平均0.4個/100cm2であった。
  [実施例12]
 スライスされたシリカ合成石英ガラス基板原料(1600mm×1700mm×18mmt)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)を0.5質量%添加したものを用いた(ポリアクリル酸ナトリウムを加えることで研磨剤のpHは7.6となった)。研磨荷重は70.0gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約3μm以上)を研磨した。
 実施例8と同様にして欠陥検査を行ったところ、端面からの流れ汚れは発生せず、サイズが0.3μm以上の欠陥数は平均0.5個/100cm2であった。
  [実施例13]
 研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)を0.5質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用い、研磨荷重は70.0gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約3μm以上)を研磨した以外は、実施例12と同じとした。
 実施例8と同様にして欠陥検査を行ったところ、端面からの流れ汚れは発生せず、サイズが0.3μm以上の欠陥数は平均0.5個/100cm2であった。
  [実施例14]
 研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウム(重量平均分子量25万~70万:和光純薬工業(株)製)0.5質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は70.0gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約3μm以上)を研磨した。研磨は研磨布表面が粗れて使えなくなる直前まで連続して行った以外は、実施例12と同じとした。
 実施例1と同様にして欠陥検査を行ったところ、端面からの流れ汚れは発生せず、欠陥数は研磨初期に研磨された基板は平均0.5個/100cm2、研磨末期に研磨された基板は平均1.2個/100cm2であった。
  [比較例1]
 実施例1において、最終研磨に使用する研磨剤にポリアクリル酸ナトリウムを添加しないで研磨すること以外、全て実施例1と同じ条件で行った。その結果、同様にしてレーザーコンフォーカル光学系高感度欠陥検査装置を用いて欠陥検査を行ったところ、欠陥数は平均52個であった。
  [比較例2]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造されたpH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウムを添加しないで用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 その結果、研磨を始めて4バッチ目で研磨剤が若干増粘して研磨しにくくなり、6バッチ目では事実上研磨不能となった。
 実施例1と同様にして欠陥検査を行ったところ、欠陥数は研磨初期に研磨された基板は平均10.9個、研磨末期(6バッチ目)に研磨された基板は平均265個であった。
  [比較例3]
 実施例8において、最終研磨に使用する研磨剤にポリアクリル酸ナトリウムを添加しないで研磨すること以外、全て実施例8と同じ条件で行った。その結果、光散乱式欠陥検査装置(レーザーテック社製)により欠陥検査を行ったところ、端面からの流れ汚れが発生し、サイズが0.3μm以上の欠陥数は平均50個/100cm2であった。
  [比較例4]
 スライスされたシリカ合成石英ガラス基板原料(1220mm×1400mm×13mmt)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造されたpH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にポリアクリル酸ナトリウムを添加しないで用いた。研磨荷重は70.0gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約3μm以上)を研磨した。
 その結果、研磨を始めて1バッチ目で研磨剤が若干増粘して研磨しにくくなり、2バッチ目では事実上研磨不能となった。
 また、実施例8と同様にして欠陥検査を行ったところ、端面からの流れ汚れが発生し、サイズが0.3μm以上の欠陥数は平均84個/100cm2であった。
  [実施例15]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてSiO2濃度が40質量%のコロイダルシリカ水分散液((株)フジミインコーポレーテッド製、一次粒子径78nm)にアスパラギン酸(和光純薬工業(株)製)を1.0質量%加え、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 研磨終了後、洗浄・乾燥してからレーザーコンフォーカル光学系高感度欠陥検査装置(レーザーテック社製)を用いて欠陥検査を行ったところ、欠陥数は平均4.7個であった。
  [実施例16]
 実施例15のアスパラギン酸をグルタミン酸(和光純薬工業(株)製)に代えた以外は、実施例15と同様にして欠陥検査を行ったところ、欠陥数は平均4.8個であった。
  [実施例17]
 実施例15のアスパラギン酸をアスパラギン酸1.0質量%と安息香酸0.5質量%に代えた以外は、実施例15と同様にして欠陥検査を行ったところ、欠陥数は平均2.2個であった。
  [実施例18]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にアスパラギン酸を1.0質量%添加したものを用いた(アスパラギン酸を加えることで研磨剤のpHは4.7となった)。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例15と同様にして欠陥検査を行ったところ、欠陥数は平均7.8個であった。
  [実施例19]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にアスパラギン酸を1.0質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例15と同様にして欠陥検査を行ったところ、欠陥数は平均2.9個であった。
  [実施例20]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にアスパラギン酸を1.0質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。研磨は研磨布表面が粗れて使えなくなる直前まで連続して行った。
 実施例15と同様にして欠陥検査を行ったところ、欠陥数は研磨初期に研磨された基板は平均1.9個、研磨末期に研磨された基板は平均6.7個であった。
  [実施例21]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてSiO2濃度が40質量%のコロイダルシリカ水分散液((株)フジミインコーポレーテッド製、一次粒子径78nm)にカテコール(和光純薬工業(株)製)を1.0質量%加え、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 研磨終了後、洗浄・乾燥してからレーザーコンフォーカル光学系高感度欠陥検査装置(レーザーテック社製)を用いて欠陥検査を行ったところ、欠陥数は平均5.1個であった。
  [実施例22]
 実施例21のカテコールをレゾルシノール(和光純薬工業(株)製)に代えた以外は、実施例21と同様にして欠陥検査を行ったところ、欠陥数は平均5.8個であった。
  [実施例23]
 実施例21のカテコールをカテコール1.0質量%と安息香酸0.5質量%に代えた以外は、実施例21と同様にして欠陥検査を行ったところ、欠陥数は平均3.4個であった。
  [実施例24]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にカテコールを1.0質量%添加したものを用いた(カテコールを加えることで研磨剤のpHは5.9となった)。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例21と同様にして欠陥検査を行ったところ、欠陥数は平均7.3個であった。
  [実施例25]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にカテコールを1.0質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例21と同様にして欠陥検査を行ったところ、欠陥数は平均2.0個であった。
  [実施例26]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にカテコールを1.0質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。研磨は研磨布表面が粗れて使えなくなる直前まで連続して行った。
 実施例21と同様にして欠陥検査を行ったところ、欠陥数は研磨初期に研磨された基板は平均2.6個、研磨末期に研磨された基板は平均5.2個であった。
  [実施例27]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてSiO2濃度が40質量%のコロイダルシリカ水分散液((株)フジミインコーポレーテッド製、一次粒子径78nm)にヒアルロン酸ナトリウム(和光純薬工業(株)製)を0.025質量%加え、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 研磨終了後、洗浄・乾燥してからレーザーコンフォーカル光学系高感度欠陥検査装置(レーザーテック社製)を用いて欠陥検査を行ったところ、欠陥数は平均4.5個であった。
  [実施例28]
 実施例27のヒアルロン酸ナトリウムをコンドロイチン硫酸(和光純薬工業(株)製)に代えた以外は、実施例27と同様にして欠陥検査を行ったところ、欠陥数は平均4.8個であった。
  [実施例29]
 実施例27のヒアルロン酸ナトリウムをヒアルロン酸ナトリウム0.025質量%と安息香酸0.5質量%に代えた以外は、実施例27と同様にして欠陥検査を行ったところ、欠陥数は平均3.0個であった。
  [実施例30]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にヒアルロン酸ナトリウムを0.025質量%添加したものを用いた(ヒアルロン酸ナトリウムを加えることで研磨剤のpHは7.3となった)。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例27と同様にして欠陥検査を行ったところ、欠陥数は平均4.3個であった。
  [実施例31]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にヒアルロン酸ナトリウムを0.025質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 実施例27と同様にして欠陥検査を行ったところ、欠陥数は平均2.9個であった。
  [実施例32]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造された元々pH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)にヒアルロン酸ナトリウムを0.025質量%添加し、更にジエタノールアミンを添加することでpHを10.0に調整したものを用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。研磨は研磨布表面が粗れて使えなくなる直前まで連続して行った。
 実施例27と同様にして欠陥検査を行ったところ、欠陥数は研磨初期に研磨された基板は平均2.6個、研磨末期に研磨された基板は平均4.7個であった。
  [比較例5]
 実施例1において、最終研磨に使用する研磨剤に他の添加剤を添加しないで研磨すること以外、全て実施例1と同じ条件で行った。その結果、同様にしてレーザーコンフォーカル光学系高感度欠陥検査装置を用いて欠陥検査を行ったところ、欠陥数は平均52個であった。
  [比較例6]
 スライスされたシリカ合成石英ガラス基板原料(6インチ)をラッピング、粗研磨を行った後、最終精密研磨に導入した。軟質のスエード製研磨布を用い、研磨剤としてアルコキシシランを加水分解して製造されたpH7、SiO2濃度40質量%の高純度コロイダルシリカ水分散液(扶桑化学工業(株)製、一次粒子径104nm)に他の添加剤を添加しないで用いた。研磨荷重は100gfで、取り代は粗研磨工程で入ったキズを除去するのに十分な量(約1μm以上)を研磨した。
 その結果、研磨を始めて4バッチ目で研磨剤が若干増粘して研磨しにくくなり、6バッチ目では事実上研磨不能となった。
 実施例1と同様にして欠陥検査を行ったところ、欠陥数は研磨初期に研磨された基板は平均10.9個、研磨末期(6バッチ目)に研磨された基板は平均265個であった。

Claims (9)

  1.  コロイド溶液と、ポリカルボン酸系ポリマー、酸性アミノ酸、フェノール類及びグリコサミノグリカンからなる群より選ばれるいずれかの物質とを含み、当該コロイド濃度が20~50質量%であることを特徴とする合成石英ガラス基板用研磨剤。
  2.  前記コロイド溶液がコロイダルシリカ分散液であることを特徴とする請求項1記載の合成石英ガラス基板用研磨剤。
  3.  前記ポリカルボン酸系ポリマーが、ポリアクリル酸ポリマーであることを特徴とする請求項1又は2記載の合成石英ガラス基板用研磨剤。
  4.  前記酸性アミノ酸が、アスパラギン酸又はグルタミン酸であることを特徴とする請求項1又は2記載の合成石英ガラス基板用研磨剤。
  5.  前記フェノール類が、カテコール、レゾルシノール、ヒドロキノンのいずれかであることを特徴とする請求項1又は2記載の合成石英ガラス基板用研磨剤。
  6.  前記グリコサミノグリカンが、ヒアルロン酸であることを特徴とする請求項1又は2記載の合成石英ガラス基板用研磨剤。
  7.  pH9~10.5である請求項1乃至6のいずれか1項記載の合成石英ガラス基板用研磨剤。
  8.  アルカリ金属水酸化物、アルカリ土類金属水酸化物、塩基性塩類、アミン類、アンモニアから選ばれる1種又は2種以上によりpHを調整した請求項7記載の合成石英ガラス基板用研磨剤。
  9.  合成石英ガラス基板が、フォトマスク用合成石英基板であることを特徴とする請求項1乃至8のいずれか1項記載の合成石英ガラス基板用研磨剤。
PCT/JP2009/059676 2008-06-11 2009-05-27 合成石英ガラス基板用研磨剤 WO2009150938A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980100696A CN101821058A (zh) 2008-06-11 2009-05-27 合成石英玻璃基板用抛光剂
EP09762368.0A EP2289667B1 (en) 2008-06-11 2009-05-27 Polishing agent for synthetic quartz glass substrate
US12/678,058 US20100243950A1 (en) 2008-06-11 2009-05-27 Polishing agent for synthetic quartz glass substrate
US14/511,065 US9919962B2 (en) 2008-06-11 2014-10-09 Polishing agent for synthetic quartz glass substrate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008152964A JP5071678B2 (ja) 2008-06-11 2008-06-11 合成石英ガラス基板用研磨剤
JP2008152924A JP5369506B2 (ja) 2008-06-11 2008-06-11 合成石英ガラス基板用研磨剤
JP2008-152940 2008-06-11
JP2008-152964 2008-06-11
JP2008152940A JP5407188B2 (ja) 2008-06-11 2008-06-11 合成石英ガラス基板用研磨剤
JP2008-152924 2008-06-11
JP2008-152899 2008-06-11
JP2008152899 2008-06-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/678,058 A-371-Of-International US20100243950A1 (en) 2008-06-11 2009-05-27 Polishing agent for synthetic quartz glass substrate
US14/511,065 Division US9919962B2 (en) 2008-06-11 2014-10-09 Polishing agent for synthetic quartz glass substrate

Publications (1)

Publication Number Publication Date
WO2009150938A1 true WO2009150938A1 (ja) 2009-12-17

Family

ID=41416649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059676 WO2009150938A1 (ja) 2008-06-11 2009-05-27 合成石英ガラス基板用研磨剤

Country Status (7)

Country Link
US (2) US20100243950A1 (ja)
EP (1) EP2289667B1 (ja)
KR (1) KR101548756B1 (ja)
CN (1) CN101821058A (ja)
MY (1) MY155533A (ja)
TW (1) TWI557195B (ja)
WO (1) WO2009150938A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136388A (ja) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板の製造方法
CN102169284A (zh) * 2010-02-26 2011-08-31 深圳清溢光电股份有限公司 一种铬版的检查方法
EP2412687A1 (en) * 2010-07-26 2012-02-01 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate polishing slurry and manufacture of synthetic quartz glass substrate using the same
EP2559669A2 (en) 2011-08-18 2013-02-20 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass and making method
JP2013107153A (ja) * 2011-11-18 2013-06-06 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の製造方法
JP2014220512A (ja) * 2014-06-30 2014-11-20 信越化学工業株式会社 金型用基板及び金型用基板の検査方法
JPWO2021111860A1 (ja) * 2019-12-02 2021-06-10

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795843B2 (ja) * 2010-07-26 2015-10-14 東洋鋼鈑株式会社 ハードディスク基板の製造方法
JP5907081B2 (ja) * 2012-02-02 2016-04-20 信越化学工業株式会社 合成石英ガラス基板の製造方法
CN104620176B (zh) * 2012-09-26 2019-02-26 大日本印刷株式会社 玻璃再生处理方法、再生玻璃基板及使用其的光掩模坯料和光掩模
KR20150097484A (ko) * 2012-12-27 2015-08-26 호야 가부시키가이샤 마스크 블랭크용 기판처리장치, 마스크 블랭크용 기판처리방법, 마스크 블랭크용 기판의 제조방법, 마스크 블랭크의 제조방법 및 전사용 마스크의 제조방법
US9358659B2 (en) 2013-03-04 2016-06-07 Cabot Microelectronics Corporation Composition and method for polishing glass
JP6156207B2 (ja) 2013-04-02 2017-07-05 信越化学工業株式会社 合成石英ガラス基板の製造方法
SG11201606157VA (en) * 2014-01-31 2016-08-30 Basf Se A chemical mechanical polishing (cmp) composition comprising a poly(aminoacid)
MY180533A (en) 2014-03-17 2020-12-01 Shinetsu Chemical Co Methods for working synthetic quartz glass substrate having a mirror-like surface and method for sensing synthetic quartz glass substrate
KR101656414B1 (ko) * 2014-10-22 2016-09-12 주식회사 케이씨텍 분산성이 개선된 슬러리 조성물
JP6393231B2 (ja) 2015-05-08 2018-09-19 信越化学工業株式会社 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の研磨方法
MY186275A (en) * 2016-08-23 2021-07-02 Shinetsu Chemical Co Method for producing substrate
CN107286852A (zh) * 2017-04-14 2017-10-24 浙江晶圣美纳米科技有限公司 一种化学机械抛光液
US10676647B1 (en) * 2018-12-31 2020-06-09 Cabot Microelectronics Corporation Composition for tungsten CMP
CN112251146B (zh) * 2020-10-20 2021-08-24 德阳展源新材料科技有限公司 一种金刚石抛光液的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200043A (ja) 1987-02-14 1988-08-18 Hamamatsu Photonics Kk シ−ト状被検体の表面欠陥検出装置
JPS63208746A (ja) 1987-02-25 1988-08-30 Nikon Corp 欠陥検査装置
JPS6440267A (en) 1987-08-07 1989-02-10 Shinetsu Chemical Co Manufacture of precisely polished glass
JP2987171B2 (ja) 1990-06-01 1999-12-06 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ウエハーのファイン研磨用濃縮組成物
JP2001003036A (ja) 1998-06-22 2001-01-09 Fujimi Inc 研磨用組成物および表面処理用組成物
JP2002030274A (ja) 2000-05-12 2002-01-31 Nissan Chem Ind Ltd 研磨用組成物
JP2002110596A (ja) * 2000-10-02 2002-04-12 Mitsubishi Electric Corp 半導体加工用研磨剤およびこれに用いる分散剤、並びに上記半導体加工用研磨剤を用いた半導体装置の製造方法
JP2002241739A (ja) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
JP2004098278A (ja) 2002-08-19 2004-04-02 Hoya Corp マスクブランクス用ガラス基板の製造方法、マスクブランクスの製造方法、転写マスクの製造方法、及び半導体装置の製造方法、並びにマスクブランクス用ガラス基板、マスクブランクス、転写マスク
JP2005175437A (ja) * 2003-10-10 2005-06-30 Dupont Air Products Nanomaterials Llc Pvnoを有する化学的機械的平坦化組成物および関連使用方法
JP2006128552A (ja) * 2004-11-01 2006-05-18 Hitachi Chem Co Ltd Cmp用研磨液及び研磨方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889998A (en) * 1987-01-29 1989-12-26 Nikon Corporation Apparatus with four light detectors for checking surface of mask with pellicle
JPH0623392B2 (ja) 1987-04-27 1994-03-30 日本モンサント株式会社 ウエハーのファイン研磨用組成物
JP2714411B2 (ja) * 1988-12-12 1998-02-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ウェハーのファイン研摩用組成物
US5352277A (en) * 1988-12-12 1994-10-04 E. I. Du Pont De Nemours & Company Final polishing composition
JPH09137155A (ja) 1995-11-16 1997-05-27 Tokyo Ohka Kogyo Co Ltd 研磨用組成物および研磨方法
US6149696A (en) * 1997-11-06 2000-11-21 Komag, Inc. Colloidal silica slurry for NiP plated disk polishing
TW455626B (en) * 1998-07-23 2001-09-21 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
JP2001269859A (ja) * 2000-03-27 2001-10-02 Jsr Corp 化学機械研磨用水系分散体
US6872329B2 (en) * 2000-07-28 2005-03-29 Applied Materials, Inc. Chemical mechanical polishing composition and process
JP4885352B2 (ja) 2000-12-12 2012-02-29 昭和電工株式会社 研磨材スラリー及び研磨微粉
US7037352B2 (en) * 2000-12-12 2006-05-02 Showa Denko Kabushiki Kaisha Polishing particle and method for producing polishing particle
US7887714B2 (en) * 2000-12-25 2011-02-15 Nissan Chemical Industries, Ltd. Cerium oxide sol and abrasive
JP4707864B2 (ja) 2001-04-18 2011-06-22 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
JP2003031528A (ja) 2001-07-18 2003-01-31 Toshiba Corp Cmp用スラリーおよび半導体装置の製造方法
JP4025960B2 (ja) * 2001-08-08 2007-12-26 信越化学工業株式会社 角形ホトマスク基板の研磨方法、角形ホトマスク基板、ホトマスクブランクス及びホトマスク
JP4187497B2 (ja) * 2002-01-25 2008-11-26 Jsr株式会社 半導体基板の化学機械研磨方法
KR101004525B1 (ko) * 2002-08-19 2010-12-31 호야 가부시키가이샤 마스크 블랭크용 글래스 기판 제조 방법, 마스크 블랭크제조방법, 전사 마스크 제조 방법, 반도체 디바이스제조방법, 마스크 블랭크용 글래스 기판, 마스크 블랭크,및 전사 마스크
GB2395486B (en) * 2002-10-30 2006-08-16 Kao Corp Polishing composition
US7071105B2 (en) 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
JP2004323840A (ja) 2003-04-10 2004-11-18 Sumitomo Chem Co Ltd 研磨洗浄液組成物及び研磨洗浄方法
JP4202201B2 (ja) * 2003-07-03 2008-12-24 株式会社フジミインコーポレーテッド 研磨用組成物
JP2005103684A (ja) 2003-09-29 2005-04-21 Mimasu Semiconductor Industry Co Ltd コロイド分散型ラッピング剤及びその製造方法
JP4291665B2 (ja) 2003-10-15 2009-07-08 日本化学工業株式会社 珪酸質材料用研磨剤組成物およびそれを用いた研磨方法
JP2005217002A (ja) 2004-01-28 2005-08-11 Renesas Technology Corp 研磨装置、研磨方法並びに半導体装置の製造方法
JP2006130638A (ja) 2004-11-09 2006-05-25 Kao Corp 容器入り研磨材粒子分散液
JP2006193695A (ja) 2005-01-17 2006-07-27 Fujimi Inc 研磨用組成物
JP2007088226A (ja) 2005-09-22 2007-04-05 Fujifilm Corp カーボン配線用研磨液、及び、研磨方法
CN1986612B (zh) * 2005-12-22 2012-07-25 花王株式会社 玻璃基板用研磨液组合物
JP2007208219A (ja) 2006-02-06 2007-08-16 Fujifilm Corp 半導体デバイスの研磨方法
US20080220610A1 (en) * 2006-06-29 2008-09-11 Cabot Microelectronics Corporation Silicon oxide polishing method utilizing colloidal silica
KR101032504B1 (ko) * 2006-06-30 2011-05-04 주식회사 엘지화학 Cmp 슬러리
WO2008004534A1 (fr) 2006-07-04 2008-01-10 Hitachi Chemical Co., Ltd. Liquide de polissage pour le polissage mécano-chimique
JP4991217B2 (ja) 2006-09-05 2012-08-01 ライオン株式会社 浴室用液体洗浄剤組成物および浴室用液体洗浄剤製品
JP4569779B2 (ja) * 2006-09-07 2010-10-27 信越化学工業株式会社 合成石英ガラスインゴット及び合成石英ガラス部材の製造方法
JP2008074990A (ja) 2006-09-22 2008-04-03 Nihon Micro Coating Co Ltd 研磨スラリー及び方法
US20080096385A1 (en) * 2006-09-27 2008-04-24 Hynix Semiconductor Inc. Slurry composition for forming tungsten pattern and method for manufacturing semiconductor device using the same
KR101406487B1 (ko) 2006-10-06 2014-06-12 제이에스알 가부시끼가이샤 화학 기계 연마용 수계 분산체 및 반도체 장치의 화학 기계연마 방법
JP2008094982A (ja) 2006-10-12 2008-04-24 Kao Corp メモリーハードディスク基板用研磨液組成物
JP2008235481A (ja) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd 半導体ウエハ研磨用組成物、その製造方法、及び研磨加工方法
JP2009158810A (ja) * 2007-12-27 2009-07-16 Toshiba Corp 化学的機械的研磨用スラリーおよび半導体装置の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200043A (ja) 1987-02-14 1988-08-18 Hamamatsu Photonics Kk シ−ト状被検体の表面欠陥検出装置
JPS63208746A (ja) 1987-02-25 1988-08-30 Nikon Corp 欠陥検査装置
JPS6440267A (en) 1987-08-07 1989-02-10 Shinetsu Chemical Co Manufacture of precisely polished glass
JP2987171B2 (ja) 1990-06-01 1999-12-06 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ウエハーのファイン研磨用濃縮組成物
JP2001003036A (ja) 1998-06-22 2001-01-09 Fujimi Inc 研磨用組成物および表面処理用組成物
JP2002030274A (ja) 2000-05-12 2002-01-31 Nissan Chem Ind Ltd 研磨用組成物
JP2002110596A (ja) * 2000-10-02 2002-04-12 Mitsubishi Electric Corp 半導体加工用研磨剤およびこれに用いる分散剤、並びに上記半導体加工用研磨剤を用いた半導体装置の製造方法
JP2002241739A (ja) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
JP2004098278A (ja) 2002-08-19 2004-04-02 Hoya Corp マスクブランクス用ガラス基板の製造方法、マスクブランクスの製造方法、転写マスクの製造方法、及び半導体装置の製造方法、並びにマスクブランクス用ガラス基板、マスクブランクス、転写マスク
JP2005175437A (ja) * 2003-10-10 2005-06-30 Dupont Air Products Nanomaterials Llc Pvnoを有する化学的機械的平坦化組成物および関連使用方法
JP2006128552A (ja) * 2004-11-01 2006-05-18 Hitachi Chem Co Ltd Cmp用研磨液及び研磨方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2289667A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500517B2 (en) 2009-12-28 2013-08-06 Shin-Etsu Chemical Co., Ltd. Preparation of synthetic quartz glass substrates
TWI464125B (zh) * 2009-12-28 2014-12-11 Shinetsu Chemical Co 合成石英玻璃基板之製造方法
JP2011136388A (ja) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板の製造方法
KR101465829B1 (ko) * 2009-12-28 2014-11-26 신에쓰 가가꾸 고교 가부시끼가이샤 합성 석영 유리 기판의 제조 방법
CN102169284A (zh) * 2010-02-26 2011-08-31 深圳清溢光电股份有限公司 一种铬版的检查方法
JP2012024889A (ja) * 2010-07-26 2012-02-09 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板用研磨剤及びこれを用いた合成石英ガラス基板の製造方法
CN102516872A (zh) * 2010-07-26 2012-06-27 信越化学工业株式会社 合成石英玻璃基板抛光浆料和利用该抛光浆料制造合成石英玻璃基板
EP2412687A1 (en) * 2010-07-26 2012-02-01 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate polishing slurry and manufacture of synthetic quartz glass substrate using the same
CN102516872B (zh) * 2010-07-26 2015-12-16 信越化学工业株式会社 合成石英玻璃基板抛光浆料和利用该抛光浆料制造合成石英玻璃基板
EP2559669A2 (en) 2011-08-18 2013-02-20 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass and making method
US9346700B2 (en) 2011-08-18 2016-05-24 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass and making method
JP2013107153A (ja) * 2011-11-18 2013-06-06 Shin-Etsu Chemical Co Ltd 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の製造方法
JP2014220512A (ja) * 2014-06-30 2014-11-20 信越化学工業株式会社 金型用基板及び金型用基板の検査方法
JPWO2021111860A1 (ja) * 2019-12-02 2021-06-10
JP7342887B2 (ja) 2019-12-02 2023-09-12 東レ株式会社 感光性組成物、ネガ型感光性組成物、画素分割層および有機el表示装置

Also Published As

Publication number Publication date
KR101548756B1 (ko) 2015-08-31
US9919962B2 (en) 2018-03-20
US20100243950A1 (en) 2010-09-30
TW201002795A (en) 2010-01-16
EP2289667B1 (en) 2019-06-26
TWI557195B (zh) 2016-11-11
EP2289667A1 (en) 2011-03-02
MY155533A (en) 2015-10-30
CN101821058A (zh) 2010-09-01
EP2289667A4 (en) 2012-01-11
KR20110026406A (ko) 2011-03-15
US20150021292A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2009150938A1 (ja) 合成石英ガラス基板用研磨剤
KR101465829B1 (ko) 합성 석영 유리 기판의 제조 방법
JP5369506B2 (ja) 合成石英ガラス基板用研磨剤
JP5516184B2 (ja) 合成石英ガラス基板の製造方法
JPH11116942A (ja) 研磨用組成物
TW201736039A (zh) 研磨用組成物及矽基板之研磨方法
CN1861723A (zh) 硅单晶衬底材料抛光液及其制备方法
TW201930540A (zh) 研磨用組合物
JPH11140427A (ja) 研磨液および研磨方法
JP5673506B2 (ja) 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の製造方法
JP2016194003A (ja) 研磨物の製造方法
TWI808978B (zh) 研磨液組合物用氧化矽漿料
JP5407555B2 (ja) 合成石英ガラス基板用研磨剤
TW201742138A (zh) 研磨用組成物套組、前研磨用組成物及矽晶圓之研磨方法
JP5071678B2 (ja) 合成石英ガラス基板用研磨剤
JP2013103305A (ja) 基板の製造方法
JP5407188B2 (ja) 合成石英ガラス基板用研磨剤
JPWO2017061109A1 (ja) 磁気ディスク用研磨材及び磁気ディスクの製造方法
CN113861848B (zh) 一种再生晶圆化学机械抛光液及其制备方法
JP2014122358A (ja) 合成石英ガラス基板用研磨剤及びこれを用いた合成石英ガラス基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100696.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12678058

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009762368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107006926

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010001060

Country of ref document: MY

NENP Non-entry into the national phase

Ref country code: DE