WO2007135946A1 - ポリブタジエンの製造方法 - Google Patents

ポリブタジエンの製造方法 Download PDF

Info

Publication number
WO2007135946A1
WO2007135946A1 PCT/JP2007/060122 JP2007060122W WO2007135946A1 WO 2007135946 A1 WO2007135946 A1 WO 2007135946A1 JP 2007060122 W JP2007060122 W JP 2007060122W WO 2007135946 A1 WO2007135946 A1 WO 2007135946A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
group
compound
catalyst
polybutadiene
Prior art date
Application number
PCT/JP2007/060122
Other languages
English (en)
French (fr)
Inventor
Koji Shiba
Michinori Suzuki
Masato Murakami
Yuji Matsudaira
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to DE602007012344T priority Critical patent/DE602007012344D1/de
Priority to JP2008516636A priority patent/JP5375092B2/ja
Priority to EP07743557A priority patent/EP2028196B1/en
Priority to US12/227,521 priority patent/US7868103B2/en
Priority to CN2007800187514A priority patent/CN101448861B/zh
Priority to KR1020087030739A priority patent/KR101324845B1/ko
Priority to BRPI0713099-6A priority patent/BRPI0713099A2/pt
Publication of WO2007135946A1 publication Critical patent/WO2007135946A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/10Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof

Definitions

  • the present invention relates to a reinforced polybutadiene rubber (hereinafter abbreviated as VCR) with reduced odor, which also has a cis 1,4 polymer and syndiotactic 1,2 polymer power by polymerizing 1,3 butadiene. It relates to a manufacturing method.
  • VCR reinforced polybutadiene rubber
  • Patent Document 1 Japanese Patent Publication No. 49-17666 (Patent Document 1) and Japanese Patent Publication No. 49-17667 (Patent Document 2), as a method of producing VCR, 1, 3 butadiene is added to water in an inert organic solvent.
  • syndiota is obtained from a soluble cobalt compound, an organoaluminum compound represented by the general formula A1R, and carbon dioxide.
  • a method for syndiotactic 1,2 polymerization of 1,3 butadiene in the presence of a tactic 1,2 polymerization catalyst is known.
  • Japanese Patent Publication No. 62-171 Patent Document 3
  • Japanese Patent Publication No. 63-36324 Patent Document 4
  • Japanese Patent Publication No. 2-37927 Patent Document 5
  • Japanese Patent Publication No. 2-38081 Publication No. 6 Patent Document 6
  • Japanese Patent Publication No. 3-63566 Patent Document 7
  • Japanese Patent Publication No. 4-48815 discloses a VCR having a low tensile strength and a flex crack growth resistance suitable for a tire sidewall because its vulcanizate has a small die swell ratio. It is written.
  • Patent Document 9 discloses 1,3 butadiene, a halogen-containing organoaluminum compound, a soluble cobalt compound, and an inert organic solvent mainly composed of a C4 fraction.
  • a soluble conoleate compound In the polymerization reaction mixture obtained by cis 1,4 polymerization using a hydrodynamic catalyst system, a soluble conoleate compound, a trialkylaluminum compound and carbon dioxide disulfide
  • a method for producing a novel VCR by polymerizing syndiotactic 1,2 in the presence of a syndiotactic 1-1,2 polymerization catalyst.
  • the obtained VCR is composed of 3-30% by weight of boiling n-hexane insolubles and 97-70% by weight of boiling n-hexane solubles, and the boiling n-hexane insolubles are short. It is a syndiotactic 1,2-polybutadiene having a dispersed form of fiber crystals, and is a VCR yarn composed of cis 1,4 polybutadiene having a cis structure force S of 90% or more in the boiling n-hexane soluble content. It is disclosed.
  • JP-A-2000-154215 Patent Document 10
  • JP-A-2000-159836 Patent Document 11
  • 1,3 butadiene as a meta-orthocene complex of (A) a transition metal compound, and (B) cis 1,4 polymerization using an ionic compound of a non-coordinating cation and a cation and a catalyst obtained from Z or an aluminoxane
  • F Isocyanic acid compound, and disulfuric acid carbon power selected in the presence of a catalyst obtained from at least one compound, syndiotactic 1, 2 polymerization and novel
  • a method of manufacturing a VCR is provided.
  • Patent Document 12 discloses that syndiotactic 1,2-polybutadiene obtained using a catalyst containing carbon disulfide as a catalyst component is treated with hydrogen peroxide. A method for producing rubber yarns and articles with improved odor is disclosed. However, the double bond of polybutadiene or residual butadiene monomer may be oxidized by hydrogen peroxide, which is not preferable.
  • Patent Document 1 Japanese Patent Publication No. 49 17666
  • Patent Document 2 Japanese Patent Publication No.49-17667
  • Patent Document 3 Japanese Patent Publication No. 62 171
  • Patent Document 4 Japanese Patent Publication No. 63-36324
  • Patent Document 5 Japanese Patent Publication No. 2-37927
  • Patent Document 6 Japanese Patent Publication No. 2-38081
  • Patent Document 7 Japanese Patent Publication No. 3-63566
  • Patent Document 8 Japanese Patent Publication No. 4-48815
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2000-44633
  • Patent Document 10 Japanese Unexamined Patent Publication No. 2000-154215
  • Patent Document 11 Japanese Unexamined Patent Publication No. 2000-159836
  • Patent Document 12 US Pat. No. 6956093
  • the problem to be solved by the present invention is to reinforced polybutadiene rubber with reduced odor by polymerizing 1,3 butadiene, which also has the power of cis-1,4 polymer and syndiotactic 1-1,2 polymer. (Hereinafter often abbreviated as VCR).
  • the present invention relates to a method for producing polybutadiene in which 1,3 butadiene is polymerized cis 1,4 and then syndiotactic 1,2 polymerized in this polymerization system. After polymerization, the following general formula (I):
  • M ′ represents a metal or hydrogen atom
  • X ′ represents a halogen atom selected from chlorine, bromine and iodine
  • O represents an oxygen atom
  • q represents an integer of 1 to 4
  • Z ′ Represents an anion capable of binding to M
  • r represents an integer of 1 or more
  • r + s represents the number of acids of M,).
  • X ′ of the compound represented by the general formula (I) is chlorine.
  • the compound represented by the general formula (I) is preferably hypochlorous acid or hypochlorite.
  • the present invention can be used as a method for producing a reinforced polybutadiene rubber with reduced odor, using polybutadiene polymerized by the following method.
  • cis-1,4 polymerization catalytic power Reinforced polybutadiene rubber with reduced odor is produced using polybutadiene produced using a catalyst comprising a cobalt compound, an organoaluminum compound, and water. be able to.
  • 1,3 butadiene is converted to meta-cene-cene complexes of transition metal compounds, ionic compounds of non-coordinating cation and cation, and Z or Can produce a reinforced polybutadiene rubber with reduced odor by using polybutadiene obtained by polymerizing cis-1,4 using a catalyst capable of obtaining aluminoxane power.
  • the organoaluminum compound is R 1 A1 (wherein R 1 has 1 to
  • R 2 represents a hydrocarbon group having 1 to 10 carbon atoms
  • X represents a halogen
  • n represents a number of 1 to 2).
  • the catalytic power of cis 1,4 polymerization is obtained by aging a component selected from a group 3 metal compound, an alkylaluminum compound, an idride compound, butadiene, methylaluminoxane, and a chlorine-containing compound. It is preferable that it is a catalyst.
  • Rl, R2, R3 represent hydrogen or a hydrocarbon group having 1 to 12 carbon atoms
  • O represents an oxygen atom
  • Y represents an yttrium atom
  • the present invention also relates to a reinforced polybutadiene comprising the above polybutadiene strength (1) boiling n-hexane insoluble content 3 to 30% by weight and (2) boiling n-hexane soluble content 97 to 70% by weight.
  • the present invention relates to a method for producing a reinforced polybutadiene having reduced odor.
  • cis-1,4 polymer and syndiotactic — 1, 2 with reduced odor can be obtained by polymerizing 1,3 butadiene and then adding halogen acid or halogen acid salt.
  • a method for producing a reinforced polybutadiene rubber having a polymer strength is provided.
  • M ′ represents a metal or hydrogen atom
  • X ′ represents a halogen atom selected from chlorine, bromine and iodine
  • O represents an oxygen atom
  • q represents an integer of 1 or more and 4 or less
  • Z ' represents an anion capable of binding to M
  • r represents an integer of 1 or more
  • r + s represents the number of acids of M,
  • M ′ include hydrogen, lithium, sodium, potassium, magnesium, canolethium, strontium, norium, yttrium, nonadium, iron, cobalt, nickel, copper, zinc, boron, aluminum, and the like.
  • M is preferably hydrogen, lithium, sodium, potassium, magnesium, calcium or aluminum, particularly preferably hydrogen, sodium, potassium, magnesium or strength, and more preferably sodium or calcium. .
  • X ' is preferably chlorine among the powers including chlorine, bromine and iodine.
  • Z ' is an anion other than a halogenate ion, and is not particularly limited as long as it can bind as much as possible to neutralize the positive charge of M that has not been neutralized by the halogenate ion.
  • halogen ions such as chlorine, bromine and iodine, hydroxide ions, oxide ions, nitrite ions, nitrate ions, sulfate ions, phosphite ions, phosphate ions, borate ions, carboxylic acids
  • An ion, an alkoxy ion, etc. can be mentioned.
  • chlorine ions and hydroxide ions are particularly preferred.
  • r represents the number of halide ions bonded to M, which is a positive sum not exceeding the oxidation number of M, and s represents the number of Z bonded to M. Therefore, r + s represents the acid number of M.
  • hypochlorous acid chlorous acid, chloric acid, perchloric acid, hypobromite, bromite, bromate , Perbrominated acid, hypoiodous acid, iodic acid, iodic acid, periodic acid, lithium hypochlorite, sodium hypochlorite, magnesium hypochlorite, calcium hypochlorite, chlorohypochlorous acid Calcium, hydroxide, calcium hypochlorite, etc.
  • Sodium hypochlorite, calcium hypochlorite, calcium hypochlorite, calcium hydroxide hypochlorite Especially hypochlorous acid Sodium acid is preferred.
  • Solvents used in the production of the polybutadiene of the present invention include linear aliphatic hydrocarbons such as n-hexane, butane, heptane and pentane, cyclic aliphatic hydrocarbons such as cyclopentane and cyclohexane, 1-butene, cis 2-butene, trans 2-butene, etc.
  • a solvent containing cyclohexane is preferably used.
  • cyclohexane and mixtures with C4 fractions such as cis 2-butene and trans 2 butene are preferably used.
  • a catalyst comprising a cobalt compound, an organoaluminum compound, and water can be used.
  • organoaluminum compounds include R 1 Al (
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 A1X a trialkylaluminum compound represented by R 2 A1X (wherein R 2 is a hydrocarbon group having 1 to 10 carbon atoms, and X is a halogen atom)
  • N is a number from 1 to 2.
  • a cobalt salt complex is preferably used as the component of the conoleto compound used in the cis 1,4 polymerization catalyst.
  • cobalt salts such as cobalt salt, cobalt bromide, conol nitrate, cobalt octylate, cobalt naphthenate, cobalt acetate and cobalt malonate, and cobalt bisacetylacetonate and trisulfate.
  • organic base complexes such as cetylacetonate, acetoacetic acid ethyl ester cobalt, cobalt halide triarylphosphine complex, trialkylphosphine complex, pyridine complex and picoline complex, or ethyl alcohol complex.
  • R 1 A1 as a component (wherein R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms)
  • trialkylaluminum compound represented by) examples include triethylaluminum, trimethylaluminum, triisobutylaluminum, trihexylaluminum, and trioctylaluminum. Of these, triethylaluminum is preferable.
  • R 2 A1X (wherein R 2 is a hydrocarbon group having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms, X is
  • n is a number from 1 to 2.
  • dialkylaluminum halides such as dialkylaluminum chloride and dialkylaluminum bromide, alkylaluminum sesquichloride, alkylaluminum sesquihalides such as umsesquibromide, alkylaluminum Examples thereof include alkylaluminum dihalides such as mudichloride and alkylaluminum dibromide.
  • the compound examples include jetyl aluminum monochloride, dimethyl aluminum monobromide, dibutyl aluminum monochloride, ethyl aluminum urea sesquichloride, ethyl aluminum dichloride, dicyclohexyl aluminum monochloride, diphenyl aluminum monochloride, and the like. Is mentioned. Of these, jet aluminum monochloride is preferred!
  • the amount of cobalt compound used is usually 1 X of cobalt compound per mole of butadiene.
  • the amount of the trialkylaluminum used is usually in the range of 10 to 500,000, preferably 50 to: LOOO moles per mole of the cobalt compound.
  • the amount of the halogen-containing aluminum compound used in the halogen-containing aluminum compound It (X / Al) force between the X atom of A and the A1 atom in the trialkylaluminum and halogen-containing aluminum ⁇ ) to 1, preferably ⁇ to 0.1 to 0.9, particularly preferably to ⁇ to 0.225-0 75.
  • the amount of water used is 0.1 to 1.45 mol, preferably 0.2 to 1.2 mol, of water relative to 1 mol of the aluminum compound.
  • the order of addition of the catalyst components is not particularly limited, it is preferable to mix and age trialkylaluminum and halogen-containing aluminum in an inert solvent. Aging time is
  • the aging temperature is preferably 0 to 80 ° C.
  • the above ripening solution is further ripened by adding water.
  • Aging time is preferably 0.1-24 hours.
  • the aging temperature is preferably 0-80 ° C! /.
  • a group 3 metal compound of a periodic table an alkylaluminum hydride compound, butadiene, methylaluminoxane, and a chlorine-containing compound are obtained by aging selected components.
  • a catalyst can also be used.
  • the metal constituting the group 3 metal compound of the periodic table which is a component of the catalyst system, is an atom belonging to group 3 of the periodic table, and examples thereof include lanthanum series elements and actinium series elements.
  • rare earth elements are used. Specifically, neodymium, praseodymium, cerium, lanthanum, gadolinium, or a mixture thereof. Particularly preferred is neodymium.
  • the group 3 metal compound of the periodic table includes carboxylates, alkoxides, ⁇ -diketone complexes, phosphates, phosphites, etc. Of these, phosphates are preferred, and carboxylates are particularly preferred.
  • the carboxylate of group 3 metal of the periodic table is represented by the general formula (RCO) ⁇ (where ⁇ is the periodic table 3)
  • R is a hydrocarbon group having 1 to 20 carbon atoms. ).
  • R is a saturated or unsaturated alkyl group and is linear, branched or cyclic, and the carboxyl group CO is bonded to a primary, secondary or tertiary carbon atom.
  • alkoxy group represented by RO examples include 2-ethylhexyloxy, oleyloxy, stearyloxy, phenoxy and benzyloxy groups. Of these, 2-ethylhexyloxy and benzyloxy groups are preferred.
  • Examples of ⁇ -diketone complexes of Group 3 metals of the periodic table include acetylylacetone, benzoylacetone, propionitrylacetone, valerylacetone and ethylacetylacetone complexes of Group 3 metals of the Periodic Table. Of these, acetylacetone and ethylacetyl acetone complexes are preferred.
  • the group 3 metal phosphate or phosphite of the periodic table includes bis (2-ethylhexyl phosphate), bis (1-methylheptyl) phosphate, phosphorus Bis ( ⁇ -norphyl) acid, bis (polyethylene glycol ⁇ -noylphenol), phosphoric acid (1-methylheptyl) (2-ethylhexyl), phosphoric acid (2-ethylhexyl) ( ⁇ -norphenyl), 2-ethylhexylphosphonic acid mono-2-ethylhexyl, 2-ethylhexylphosphonic acid mono-l-2-norphenyl, bis (2-ethylhexyl) phosphinic acid Bis (1 methylheptyl) phosphinic acid, bis ( ⁇ -norphenyl) phosphinic acid, (1-methylheptyl) (2-ethylhexyl) phosphinic acid, (2-
  • bis (2-ethylhexyl) phosphate bis (1-methylheptyl) phosphate, 2-ethylhexylphosphonate mono-2-ethylhexyl, bis (2-ethylhexyl) phosphinic acid Prefer salt, etc.
  • neodymium phosphate or neodymium carboxylate is particularly preferable, and carboxylates such as neodymium 2-ethylhexane salt and neodymium bathate are the most preferable. I like it.
  • examples of the catalyst-based alkylaluminum hydride compound include jetylmium hydride, dipropylaluminum hydride, di- ⁇ -butylethylminum hydride, diisobutylaluminum hydride, and diphenylaluminum hydride. Is mentioned.
  • alkylaluminum chloride is exemplified.
  • dialkylaluminum halides such as dialkylaluminum chlorides and dialkylaluminum bromides, alkylaluminum sesquichlorides, alkylaluminum sesquihalides such as alkylaluminum sesquibromides, alkylaluminums such as alkylaluminum dichloride and alkylaluminum dibromides.
  • Specific compounds include: jetyl aluminum monochloride, jetyl aluminum monobromide, dibutyl aluminum monochloride, ethyl aluminum sesqui-chloride, ethyl aluminum dichloride, dicyclohexyl aluminum monochloride, diphenyl aluminum monochloride. Etc.
  • the components of the above-mentioned catalyst are preferably as follows.
  • the catalyst system is preferably used after aging.
  • the aging time is preferably 1 to 150 minutes.
  • the aging temperature is preferably 10 ° C ⁇ 60 ° C!
  • Examples of the meta-orthocene complex of the transition metal compound of component (a) include a meta-orthocene complex of a transition metal compound in Groups 4 to 8 of the periodic table.
  • a meta-octene complex of a Group 4 transition metal such as titanium or zirconium (for example, CpTiCl), a Group 5 transition gold such as vanadium, niobium, or tantalum.
  • a Group 4 transition metal such as titanium or zirconium (for example, CpTiCl)
  • a Group 5 transition gold such as vanadium, niobium, or tantalum.
  • Meta-orthocene complexes of the genus group 6 transition metal meta-orthocene complexes such as chromium, and group 8 transition metal meta-orthocene complexes such as cobalt and nickel. [0055] Among them, a meta-orthocene complex of a Group 5 transition metal in the periodic table is preferably used.
  • n is 1 or 2
  • a is 0, 1 or 2).
  • RM * La, RMX3′La, RM (0) X2′La, and the like are preferable.
  • M is preferably a Group 5 transition metal compound in the periodic table. Specifically, it is vanadium (V), niobium (Nb), or tantalum (Ta), and a preferred metal is vanadium.
  • R represents a cyclopentagel group, a substituted cyclopentagel group, an indur group, a substituted dul group, a fluorenyl group, or a substituted fluorenyl group.
  • Examples of the substituent in the substituted cyclopentagel group, the substituted benzyl group, and the substituted fluorenyl group include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec butyl, t-butyl, and hexyl.
  • Linear aliphatic hydrocarbon groups such as straight chain or branched aliphatic hydrocarbon groups, aromatic hydrocarbon groups such as fur, tolyl, naphthyl and benzyl, hydrocarbon groups containing a key atom such as trimethylsilyl, etc. It is done.
  • a cyclopentagel ring and a part of X are bonded to each other by a bridging group such as dimethylsilyl, dimethylmethylene, methylphenylmethylene, diphenylmethylene, ethylene or substituted ethylene are also included.
  • substituted cyclopentagel group examples include a methylcyclopentagel group, a 1,2 dimethylcyclopentagel group, a 1,3 dimethylcyclopentagel group, a 1,3- Examples thereof include di (t-butyl) cyclopentagel group and 1,2,3 trimethylcyclopentagel group.
  • X represents hydrogen, halogen, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or an amino group. Show. All Xs may be the same or different from each other.
  • X hydrogen, fluorine atom, chlorine atom, bromine atom, methyl, ethyl, butyl, methoxy, ethoxy, dimethylamidodecylamino and the like are preferable.
  • L is a Lewis base, and is a Lewis basic general inorganic or organic compound capable of coordinating to a metal.
  • compounds having no active hydrogen are particularly preferred. Specific examples include ethers, esters, ketones, amines, phosphines, silyloxy compounds, olefins, gens, aromatic compounds, alkynes, and the like.
  • NR ' is an imide group, and R' is a hydrocarbon substituent having 1 to 25 carbon atoms.
  • a vanadium compound in which M is vanadium is preferable.
  • RV'La, RVX'La, R2V-La, RVX2-La, R2VX'La, RVX3'La, RV (0) X2'La and the like are preferable.
  • RV'La and RVX3'La are preferable.
  • RM'La that is, a periodic group 5 transition metal compound having an oxidation number + 1 having a ligand of a cycloalkadiene group includes cyclopentadienyl (benzene) vanadium, cyclopentadiene -Ru (toluene) vanadium, cyclopentagel (xylene) vanadium, cyclopentagel (trimethylbenzene) vanadium, cyclopentagel (hexamethylbenzene) vanadium, cyclopentagel (phenol) As an example, mention may be made of vanadium), methylcyclopentagel (benzene) vanadium, and the like.
  • n 1, that is, when having one cycloalkadienyl group as a ligand, as another sigma-binding ligand, a hydrogen atom , Halogen atoms such as chlorine, bromine and iodine, hydrocarbon groups such as methyl group, phenyl group, benzyl group, neopentyl group, trimethylsilyl group and bistrimethylsilylmethyl group, carbonization such as methoxy group, ethoxy group and isopropoxy group It may have a hydrocarbon amino group such as a hydrogenoxy group, a dimethylamino group, a dimethylamino group, a diisopropylamino group, or a dioctylamino group.
  • the other ligand may have a neutral Lewis base such as amamine, amide, phosphine, ether, ketone, ester, olefin, gen, aromatic hydrocarbon, alkyne and the like.
  • Lewis base is preferred without active hydrogen.
  • each cycloalkadiene ring is 2Si groups, dimethylmethylene groups, methylphenylmethylene groups, diphenylmethylene groups, ethylene groups, substituted ethylene groups and the like are also included.
  • n 1, that is, specific examples of Group 5 transition metal compounds of the periodic table having one oxidation number + 2 having one cycloalkadienyl group as a ligand
  • Examples include chlorocyclopentagel (tetrahydrofuran) vanadium, chlorocyclopentagel (trimethylphosphine) vanadium, chlorocyclopentagelbis (trimethylphosphine) vanadium, and the like.
  • n 2
  • specific examples of Group 5 transition metal compounds in the periodic table having two oxidation numbers + 2 having a cycloalkadienyl group as a ligand examples include biscyclopentagel vanadium, bis (methylcyclopentagel) vanadium, bis (1,2 dimethylcyclopentagel) vanadium, bis (1,3 dimethylcyclopentadiene. -Le) Vanadium and the like can be mentioned.
  • RMX3 Specific compounds represented by RMX3 include the following.
  • Cyclopentagel vanadium trichloride Mono-substituted cyclopentagel vanadium trichloride, for example, methylcyclopentagel vanadium trichloride, ethylcyclopentagel vanadium trichloride, provircyclopenta taganyl vanadium trichloride, etc. .
  • l, 2 disubstituted cyclopentagel vanadium trichloride for example, (1, 2 dimethylcyclopentagel) vanadium trichloride, (1-ethyl 2-methylcyclo Pentagel) vanadium trichloride, (1 methyl-2-propyl cyclopentagel) vanadium trichloride, (1-butyl-2-methylcyclopentagel) vanadium trichloride, (1-methyl-2) And bis (trimethylsilyl) methylcyclopentadienyl) vanadium trichloride.
  • cyclopentagel vanadium trichloride for example, (1, 2 dimethylcyclopentagel) vanadium trichloride, (1-ethyl 2-methylcyclo Pentagel) vanadium trichloride, (1 methyl-2-propyl cyclopentagel) vanadium trichloride, (1-butyl-2-methylcyclopentagel) vanadium trichloride, (1-
  • RM (O) X Specific examples of the compound represented by RM (O) X include cyclopentage-loxovanadi.
  • Examples include um dichloride and methylcyclopentagel-oxovanadium dichloride.
  • the methyl body which substituted the chlorine atom of each said compound with the methyl group is also mentioned.
  • RnMX3-n (NR ') Specific examples include cyclopentagel (methylimide) vanadium dichloride.
  • examples of the non-coordinating cation constituting the ionic compound of the non-coordinating cation and the cation include, for example, tetra (phenyl) borane. Tetrakis (fluorophenol) borate, tetrakis (difluorophenol) borate, tetrakis (trifluorophenol) borate, tetrakis (tetrafluorophenol) borate, tetrakis (pentafluor mouth file) Examples thereof include borate and tetrakis (3,5-bistrifluoromethylphenol) borate.
  • examples of the cation include a carbo cation, an oxo cation, an ammonium cation, a phospho cation, a cycloheptyl aryl cation, and a phium cation cation having a transition metal.
  • carbonium cation examples include triphenyl carbonate cation, tris ( Mention may be made of trisubstituted carbonium cations, such as (substituted-phenol) carbom cations. Specific examples of the tris (substituted phenol) carbocation are tri (methylphenol) carbocation and tris (dimethylphenol) carbocation.
  • ammonium cation examples include trialkyl ammonium cation such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation, tributyl ammonium cation, and tri (n-butyl) ammonium cation.
  • trialkyl ammonium cation such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation, tributyl ammonium cation, and tri (n-butyl) ammonium cation.
  • Umcatione N, N dimethyla-lium cation.
  • phosphonium cations include triphosphoryl cation such as triphenylphosphonium cation, tri (methylphenol) phosphonium cation, and tri (dimethylphenol) phosphonium cation. .
  • ionic compound those which are arbitrarily selected and combined from the non-coordinating cation and cation exemplified above can be preferably used.
  • triphenyl carbonate tetrakis (pentafluoro-oral-fuel) borate triphenyl carbonate tetrakis (fluorophenol) borate
  • N, N-dimethylayuyl-tetrakis (penta) Fluorophore) borate 1, 1'-dimethyl ferrocerum tetrakis (pentafluorophenol) borate, etc.
  • triphenyl carbonate tetrakis (pentafluoro-oral-fuel) borate triphenyl carbonate tetrakis (fluorophenol) borate
  • N, N-dimethylayuyl-tetrakis (penta) Fluorophore) borate 1, 1'-dimethyl ferrocerum tetrakis (pentafluorophenol) borate, etc.
  • the ionic compounds may be used alone or in combination of two or more.
  • alumoxane can be used as the component (b).
  • the alumoxane is obtained by bringing an organic aluminum compound and a condensing agent into contact with each other, and is a chain aluminoxane represented by the general formula (Al (R ′) O—) n, or a cyclic aluminoxane.
  • R ′ is a hydrocarbon group having 1 to 10 carbon atoms, including those partially substituted with a halogen atom and Z or an alkoxy group.
  • N is the degree of polymerization and is 5 or more, preferably 10 or more) .
  • R ′ examples include a methyl group, an ethyl group, a propyl group, and an isobutyl group, and a methyl group and an ethyl group are preferable.
  • the organic aluminum compound used as a starting material for aluminoxane include trialkylaluminums such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and mixtures thereof. [0090] Alumoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used.
  • water can be cited as a typical example.
  • any condensating reaction of the trialkylaluminum for example, an adsorbed water diol such as an inorganic substance can be used.
  • an organometallic compound of a group 1 to 3 element of the periodic table may be added.
  • organoaluminum compounds, organolithium compounds, organomagnesium compounds, organozinc compounds, organoboron compounds and the like can be mentioned.
  • the compound include methyl lithium, butyl lithium, phenol lithium, benzyl lithium, neopentyl lithium, bistrimethylsilylmethyl lithium, dibutyl magnesium, dihexyl magnesium, and jetyl zinc trimethylaluminum.
  • organometallic halogen compounds such as ethylmagnesium chloride, butylmagnesium chloride, dimethylaluminum chloride, jetylaluminum chloride, sesquiethylaluminum chloride, ethylaluminum dichloride, and jetylaluminum-hydride.
  • organometallic hydrides such as sesquiethylaluminum hydride.
  • organometallic compound of group 1 to 3 elements of the periodic table of component (c) in the above organic aluminum compounds are preferred.
  • specific examples of the organoaluminum compounds include trialkylaluminum such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, dimethylaluminum chloride, dimethylaluminum chloride, sesquiethylaluminum chloride, and ethylaluminum.
  • organoaluminum halogen compounds such as dichloride, organoaluminum hydride compounds such as jetyl aluminum hydride and sesquiethylaluminum hydride.
  • Two or more of the above organometallic compounds can be used in combination.
  • the molar ratio of the (a) component meta-orthocene complex to the (b) component ionic compound is preferably 1: 0.1 to 1:10, more preferably 1: 0.0. 2 to 1: 5.
  • the molar ratio of the (a) meta-orthocene complex to the (c) organometallic compound is preferably 1: 0.1 to 1: 1000, more preferably 1:10 to 1: 1000. More preferably, it is 1: 10-1: 500.
  • the molar ratio (c) / (d) between the organometallic compound of component (c) and the water of component (d) is preferably 0.66 to 5, more preferably 0.75 to 1.5, Specially [more] [preferably ⁇ or 0.8 to 1.5].
  • the addition order of the catalyst components is not particularly limited! /, But can be performed, for example, in the following order.
  • the component (d) is added to the conjugation compound monomer to be polymerized or a mixture of the monomer and the solvent, the component (c) is added, and then the components (a) and (b) are added in any order. You may hesitate.
  • the component (d) and the component (c) is added to the conjugation compound monomer to be polymerized or a mixture of the monomer and the solvent, add the components (a) and (b) in any order. .
  • the conjugated diene compound monomer to be polymerized may be the whole amount or a part thereof.
  • the above contact mixture can be mixed with the remaining monomer or the remaining monomer solution.
  • the molecular weight is adjusted by polymerizing the synergistic compound using the above catalyst, preferably in the presence of hydrogen.
  • the amount of hydrogen present is preferably 500 mmol or less, or 12 L or less, more preferably 50 mmol or less, or 20 ° C 1 atm. 1.2 L or less, and more preferably 0.005 to 20 mmol, or 0.0001 to 0.48 L at 20 ° C 1 atmospheric pressure. Further, hydrogen may be continuously introduced into the polymerization tank.
  • the polymerization temperature is preferably in the range of 100 to 120 ° C, particularly preferably in the range of 50 to 100 ° C.
  • the polymerization time is preferably in the range of 10 minutes to 12 hours, particularly preferably 30 minutes to 6 hours.
  • a known anti-gelling agent can be used.
  • polybutadiene having an intrinsic viscosity of 0.1 to 20 measured in toluene at 30 ° C.
  • the weight average molecular weight obtained from GPC using polystyrene as a standard substance is 10,000 to 4,000,000.
  • One viscosity (ML1 + 4, 100. C, hereinafter abbreviated as ML) is 10 to 130, preferably 15 to 80, and a matrix polybutadiene containing substantially no gel content can be produced.
  • the third cis-1,4 polymerization catalyst includes (A) an yttrium compound, (B) an ionic compound comprising a non-coordinating cation and a cation, and (C ) Organometallic compounds of elements selected from Groups 2, 12, and 13 of the Periodic Table, and powerful catalysts can be used.
  • a yttrium salt complex is preferably used as the yttrium compound as the component (A) in the above catalyst system. Particularly preferred are yttrium trichloride, yttrium tribromide, yttrium triiodide, yttrium nitrate, yttrium sulfate, yttrium trifluoromethanesulfonate, yttrium acetate, yttrium trifluoroacetate, yttrium malonate, octyl acid (ethyl) (Hexanoic acid) yttrium, yttrium naphthenate, yttrium versatic acid, yttrium neodecanoate, yttrium trimethoxide, yttrium triethoxide, yttrium triisopropoxide, yttrium tributoxide, yttrium trif
  • R, R and R represent hydrogen or a substituent having 1 to 12 carbon atoms, O represents an oxygen atom,
  • R, R, and R include hydrogen, a methyl group, an ethyl group, a bur group, and n-propyl.
  • an yttrium salt complex is preferably used as the yttrium compound. Particularly preferred are tris (acetylacetonato) yttrium, tris (hexanionato) yttrium, tris (heptanedioto) yttrium, tris (dimethylheptanedioto) yttrium, tris (trimethylheptanionato) yttrium, tris.
  • yttrium compounds such as (tetramethylheptanedioto) yttrium, tris (pentamethylheptanedioto) yttrium, tris (hexamethylheptanedioto) yttrium, and trisacetatoyttrium.
  • the non-coordinating cation includes, for example, tetra ( (Phenyl) borate , Tetra (fluorophenol) borate, tetrakis (difluorophenol) borate, tetrakis (trifluorophenol) borate, tetrakis (tetrafluorophenol) borate, tetrakis (pentafluorophenol) Borate, tetrakis (3,5-bistrifluoromethylphenol) borate, tetrakis (tetrafluoromethylphenol) borate, tetra (tolyl) borate, tetra (xylyl) borate, triphenyl (penta) Fluorophore) borate, tris (pentafluorophenyl) borate, tridecahydride 7,8-dicarboxylic compound borate
  • examples of the cation include a carbo cation, an oxo cation, an ammonium cation, a phospho cation, a cycloheptatri cation, and a ferrocecum cation.
  • carbo cation examples include tri-substituted carbo cation such as tri-phenyl cation and tri-substituted carboxylic cation.
  • tri-substituted phenolic cation examples include tri (methylphenol) carbocation and tri (dimethylphenol) cation.
  • ammonium cation examples include trialkyl ammonium cations such as trimethyl ammonium cation, triethyl ammonium cation, tripropyl ammonium cation, tributyl ammonium cation, and tri (n-butyl) ammonium cation.
  • phosphorous cation examples include triphenylphosphonium cation, tetraphenylphosphonium cation, tri (methylphenol) phosphonium cation, tetra (methylphenol) phosphonium cation, and tri (dimethylphenol). And arylphosphonium cations such as phosphonium cations and tetra (dimethylphenol) phosphonium cations.
  • ionic compound those arbitrarily selected and combined from the non-coordinating cation and cation exemplified above can be preferably used.
  • ionic compounds triphenyl carbonate tetrakis (pentafluor mouth-peel) borate, triphenyl carbonate tetrakis (fluorophenol) borate, N, N dimethylaureum tetrakis (pentafur) Olofol) borate, 1, 1'-dimethyl ferroacetate tetrakis (pentafluorophenol) borate, etc. are preferred.
  • An ionic compound may be used alone or in combination of two or more.
  • alumoxane may be used as the component (B).
  • Alumoxane is obtained by bringing an organic aluminum compound and a condensing agent into contact with each other.
  • n is a chain aluminoxane or cyclic aluminoxane.
  • R ′ is a hydrocarbon group having 1 to 10 carbon atoms, including those partially substituted with a halogen atom and / or an alkoxy group.
  • N is the degree of polymerization and is 5 or more, preferably 10 or more.
  • o R ' is preferably a methyl group, including methyl, ethyl, propyl, and isobutyl groups.
  • organoaluminum compounds used as aluminoxane raw materials include trialkylaluminums such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and mixtures thereof.
  • alumoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used.
  • a typical condensing agent there is a typical force that can be water.
  • a typical force that can be water.
  • any one that causes a condensation reaction of the trialkylaluminum for example, an adsorbed water diol such as an inorganic substance.
  • organometallic compounds of Group 2, 12 and 13 of the periodic table that are component (C) of the catalyst system include organic magnesium, organic zinc, and organic aluminum.
  • the Preferred among these compounds are dialkyl magnesium, alkyl magnesium chloride, alkyl magnesium bromide, dialkyl zinc, trialkyl aluminum, dialkyl aluminum chloride, dialkyl aluminum bromide, alkyl aluminum sesquichloride, alkyl aluminum sesquibromide, Alkylalkylene dichloride, dialkylaluminum hydride and the like.
  • the compound include alkyl magnesium halides such as methyl magnesium chloride, ethyl magnesium chloride, butyl magnesium chloride, hexyl magnesium chloride, octyl magnesium magnesium iodide, and hexyl magnesium iodide. .
  • trialkyl zinc such as dimethyl zinc, jetyl zinc, diisobutyl zinc, dihexyl zinc, dioctyl zinc, didecyl zinc and the like can be mentioned.
  • trialkylaluminums such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, and tridecylaluminum can be mentioned.
  • dialkyl aluminum chloride such as dimethylaluminum chloride and jetylaluminum chloride
  • organoaluminum halogen compounds such as ethylaluminum sesquichloride, ethylaluminum dichloride, jetylaluminum hydride, diisobutylaluminum hydride
  • organoaluminum hydride compounds such as ethylaluminum sesquihydride.
  • organometallic compounds of Group 2, 12 and 13 elements of the periodic table can be used alone or in combination of two or more.
  • the molecular weight regulator of the polybutadiene obtained is (1) hydrogen, (b)
  • Metal hydride compounds (3) Hydrogenated organometal compounds, and power compounds can be used.
  • the (2) metal hydride compound of the molecular weight regulator in this case includes lithium hydride, sodium hydride, potassium hydride, magnesium hydride, calcium hydride, borane, aluminum hydride, gallium hydride, Silane, germane, lithium borohydride, sodium hydrogen hydride, lithium aluminum hydride, sodium aluminum hydride, and the like.
  • hydrogenated organometallic compounds as molecular weight regulators include alkylboranes such as methylborane, ethylborane, propylborane, butylborane, and phenylborane, dimethylborane, jetylborane, dipropylborane, dibutylborane, and diphenylborane.
  • Alkyl aluminum dihydrides such as dialkylborane, methylaluminum dihydride, ethyl aluminum dihydride, propylaluminum dihydride, butylaluminum dihydride, full aluminum dihydride, dimethylaluminum dihydride, jetylaluminum hydride , Dipropylaluminum hydride, dibutylaluminum hydride, diphenylaluminum hydride, etc.
  • Silanes such as um hydride, methyl silane, ethyl silane, propyl silane, butyl silane, phenyl silane, dimethyl silane, jetyl silane, diprovir silane, dibutyl silane, diphenyl silane, trimethyl silane, triethyl silane, triprovir silane, tributyl silane, triphenyl silane, Methylgermane, ethylgermane, propylgermane, butylgermane, feltgermane, dimethylgermane, jetylgermane, dipropylgermane, dibutylgermane, diphenylgermane, trimethylgermane, triethylgermane, tripropylgermane, tributylgermane, triphenylgermane And germanes.
  • diisobutylaluminum hydride and jetylaluminum hydride are preferable, and jetylaluminum hydride is particularly preferable.
  • the order of addition of the catalyst components is not particularly limited, but can be performed in the following order, for example.
  • Each component may be used after aging. Among these, it is preferable to age components (A) and (C).
  • the components (A) and (C) are mixed in an inert solvent in the presence or absence of the butadiene monomer to be polymerized.
  • the aging temperature is 50 to 80 ° C, preferably 10 to 50 ° C, and the aging time is 0.01 to 24 hours, preferably 0.05 to 5 hours, particularly preferably 0.1 to 1 hour. is there.
  • each catalyst component is used by being supported on an inorganic compound or an organic polymer compound.
  • molecular weight modifiers for example, non-conjugated gens such as hydrogen, cyclotactene, and allene, or ethylene, propylene, butene.
  • A-olefins such as 1 can be used.
  • the polymerization temperature during the polymerization of polybutadiene using the first catalyst is preferably from -30 to LOO ° C, particularly preferably from 30 to 80 ° C.
  • the polymerization time is preferably in the range of 10 minutes to 12 hours, particularly preferably 30 minutes to 6 hours.
  • the polymerization pressure is carried out under normal pressure or a pressure up to about 10 atmospheres (gauge pressure).
  • the cis-1,4 polymerization is preferably carried out so that the polymer concentration after the cis-1,4 polymerization is 5 to 26% by weight.
  • the polymerization tank is conducted by connecting one tank or two or more tanks. Polymerization is performed by stirring and mixing the solution in a polymerization tank (polymerizer).
  • a polymerization tank used for polymerization a polymerization tank equipped with a high-viscosity liquid stirring apparatus, for example, an apparatus described in JP-B-40-2645 can be used.
  • Cis-1,4 Structure content is generally 90% or more, especially 95% or more, and Mu-one viscosity (MLl + 4, 100 ° C, hereinafter abbreviated as ML) 10 to 130, preferably 15 to 80 Yes, Contains virtually no gel content.
  • MLl + 4, 100 ° C, hereinafter abbreviated as ML Mu-one viscosity
  • the cis 1,4 polymerization reaction mixture obtained as described above may or may not be supplemented with 1,3 butadiene, but in this polymerization system, syndiotactic 1,2 Polymerize.
  • solvents used in the solution polymerization include aliphatic hydrocarbons such as butane, pentane, hexane, and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, and aromatics such as benzene, toluene, xylene, and ethylbenzene.
  • Olefin hydrocarbons such as aromatic hydrocarbons and the above olefin compounds such as cis-2-butene and trans-2-butene.
  • a mixture with 2-butene is preferably used.
  • the polymerization temperature is preferably in the range of 30 to 150 ° C, particularly preferably in the range of 30 to 100 ° C.
  • the polymerization time is preferably in the range of 1 minute to 12 hours, particularly preferably 5 minutes to 5 hours.
  • the polybutadiene obtained by force is preferably cis-1,4 polybutadiene having a cis1,4 structure of 90% or more, more preferably 92% or more, particularly preferably 96% or more.
  • the [7?] Of the conjugation polymer is preferably 0.1 to: LO, more preferably 1 to 7, and particularly preferably 1.5 to 5.
  • the polymerization tank is conducted by connecting one tank or two or more tanks. Polymerization is carried out by stirring and mixing the solution in a polymerization vessel (polymerizer).
  • a polymerization tank used for the polymerization a polymerization tank equipped with a high-viscosity liquid stirring apparatus, for example, an apparatus described in JP-B-40-2645 can be used.
  • a known anti-gelling agent can be used.
  • the cis-1,4 structure content is generally 90% or more, particularly 95% or more, and the mu-one viscosity (ML) is 10 to 130, preferably 15 to 80, and contains substantially no gel content. Is preferred.
  • Syndiotactic — 1, 2 polymerization catalyst is R 1 A1 (wherein R 1 has 1 to 10 carbon atoms)
  • a hydrocarbon group is shown.
  • Examples of the iodo compound include carbon disulfide, phenyl isothiocyanate, and xanthate compound. Among these, disulfur carbon is preferable.
  • R 1 A1 (In the formula, R 1., Which represents a hydrocarbon group having 1 to 10 carbon atoms) Toriarukirua represented by
  • Examples of the lumi-um compound and the cobalt compound include the compounds used in the cis 1,4 polymerization.
  • the trialkylaluminum compound is not less than 0.1 mmol, particularly not less than 0.5 to 50 mmol, per mole of 1,3 butadiene.
  • the xio compound is not particularly limited, but preferably does not contain moisture.
  • the concentration of Xio compound is 20 mmol ZL or less, particularly preferably 0.01 to 10 mmol ZL.
  • 1,2 Polymerization temperature is 0 ° C to 100 ° C, preferably 10 to 100 ° C, more preferably 20 to 100 ° C. .
  • 1 to 50 parts by weight, preferably 1 to 20 parts by weight of 1,3 butadiene is added per 100 parts by weight of the above cis polymerization solution.
  • the yield of 1,2 polybutadiene can be increased.
  • the polymerization time (average residence time) is preferably in the range of 10 minutes to 2 hours. It is preferable to perform 1,2 polymerization so that the polymer concentration after 1,2 polymerization is 9 to 29% by weight.
  • the polymerization tank is performed by connecting one tank or two or more tanks.
  • Polymerization is carried out by stirring and mixing the polymerization solution in a polymerization vessel (polymerizer).
  • a polymerization tank used for 1,2 polymerization a higher viscosity is obtained during the 1,2 polymerization, and the polymer easily adheres, so a polymerization tank equipped with a high-viscosity liquid stirring device, for example, an apparatus described in JP-B-40-2645 Can be used.
  • the above-described halogen acid or halogen acid salt is added to terminate the polymerization. It is preferable to add the halogen acid or the halogen acid salt as a solution, and it is particularly preferable to add it as an aqueous solution or an alcohol solution such as methanol or ethanol. Further, a surfactant can be coexisted in order to improve dispersibility in the polymer solution.
  • the amount of halogenated acid or halogenated salt added is 0.001 to 1 mole of sulfur compound.
  • Mono to 10 mono preferably 0.002 to 5 mono, more preferably 0.005 to 2 mono.
  • the mixing time after the addition is 5 seconds to 1 hour, preferably 10 seconds to 30 minutes, more preferably 20 seconds to 10 minutes.
  • Anti-aging agents include phenolic 2,6 di-tert-butyl p-taresol (BHT), phosphorus-based tri-n-phenol phosphite (TNP), sulfur-based dilauryl 3, 3, monothiodipropiate.
  • BHT phenolic 2,6 di-tert-butyl p-taresol
  • TNP phosphorus-based tri-n-phenol phosphite
  • SNP sulfur-based dilauryl 3, 3, monothiodipropiate.
  • Onee HTPL phenolic 2,6 di-tert-butyl p-taresol
  • TNP phosphorus-based tri-n-phenol phosphite
  • sulfur-based dilauryl 3, 3, monothiodipropiate Onee HTPL.
  • the amount of anti-aging agent that can be used alone or in combination of two or more is 0.001 to 5 parts by weight per 100 parts by weight of VCR.
  • halogen acid or halogen acid salt Prior to the separation and purification, when halogen acid or halogen acid salt remains in the reaction system, the remaining halogen acid or halogen acid salt is sulfite, sulfite, thiosulfate, nitrite, It can be killed by contact with an aqueous solution containing a reducing agent such as oxalic acid or oxalate. As a result, oxidation of the obtained VCR can be prevented.
  • a reducing agent such as oxalic acid or oxalate
  • an auxiliary agent that is usually added to a rubber composition such as an antioxidant, is added so that the residual halogen acid or acid salt due to the halogen acid salt does not occur. In this way, prevention of oxidation is achieved.
  • an antioxidant known ones such as hindered phenols can be used.
  • the VCR thus obtained was composed of (I) 3-30% by weight of boiling n-hexane insoluble matter (HI) and (iii) 97-70% by weight of boiling n-hexane soluble content.
  • Boiling n-hexane solubles are cis-1,4 polybutadiene with a microstructure of more than 80%.
  • HI is SPBD having a melting point of 180-215 ° C.
  • ML at 100 ° C is 20 to 150, preferably 25 to L00.
  • the syndiotactic 1,2 polybutadiene dispersed in the VCR is uniformly dispersed as fine crystals in the cis 1,4 polybutadiene matrix.
  • the VCR obtained by the present invention is blended alone or blended with other synthetic rubber or natural rubber, and if necessary, oil-extended with process oil, and then a filler such as carbon black, a vulcanizing agent, Vulcanization accelerators and other conventional compounding agents are added to vulcanize and are useful for tires.
  • a filler such as carbon black, a vulcanizing agent, Vulcanization accelerators and other conventional compounding agents are added to vulcanize and are useful for tires.
  • a filler such as carbon black, a vulcanizing agent, Vulcanization accelerators and other conventional compounding agents are added to vulcanize and are useful for tires.
  • a filler such as carbon black, a vulcanizing agent, Vulcanization accelerators and other conventional compounding agents are added to vulcanize and are useful for tires.
  • a filler such as carbon black, a vulcanizing agent, Vulcanization accelerators and other conventional compounding agents are added to vulcanize and are useful for tires.
  • HLC-802A type manufactured by Tosohichi Corporation
  • column GMH6000
  • eluent tetrahydrofuran
  • eluent flow rate 1. OmlZ min
  • measuring temperature column bath 40 ° C
  • detector 40 ° C sample concentration: 0.25gZL
  • sample injection volume 0.5ml
  • the boiling n-hexane soluble content obtained by the above method was dissolved in toluene so as to be 5% by weight, and a Cannon-Fenske viscometer was measured at 25 ° C.
  • the measurement was performed according to the measurement method defined in JIS-K-6300.
  • Polymerization was carried out in the same manner as in Example 1 except that the amount of sodium hypochlorite aqueous solution added was 3.72 ml.
  • the resulting polybutadiene rubber had a yield of 99.2 g and a mu-one viscosity of 8.9 (MLl + 4, 100 ° C.). Also, it almost did not feel odor.
  • Polymerization was carried out in the same manner as in Example 1 except that water was added instead of the aqueous sodium hypochlorite solution when the polymerization was stopped.
  • the obtained polybutadiene rubber had a yield of 99.7 g and a Mooney viscosity of 8.5 (MLl + 4, 100 ° C.). Further, the obtained rubber had an unpleasant odor.
  • Example 3 (Cis 1, 4 monopolymerization) Content 1.
  • the inside of the 5L autoclave is purged with nitrogen and charged with 7 OOmL of a solution containing 33wt% butahexane, 16wt% cyclohexane and 51wt% 2-butene in advance at room temperature.
  • Polymerization was then started, and polymerization was carried out at 70 ° C for 15 minutes.
  • Boiling n-hexane insoluble matter had a reduced viscosity of 1.4 and had a peak at 201.2 ° C on the endothermic curve by DSC.
  • Boiling n-hexane soluble fraction has mu-one viscosity of 32 (MLl + 4, 100 ° C), toluene solution viscosity of 82, weight average molecular weight of 40,000, and the ratio of cis 1,4 structure is The ratio of 98.5%, trans 1,4 structure was 0.7%, and 1,2 structure ratio was 0.8%.
  • Polybutadiene was synthesized in the same manner as in Example 3 except that 3 wt% bleached powder (CaCl (OCl)) suspension water was added when the polymerization was stopped. The resulting rubber had almost no odor.
  • Example 5 Polybutadiene was synthesized in the same manner as in Example 3 except that 3 wt% highly bleached powder (calcium hypochlorite) suspended water was added when the polymerization was stopped. The resulting rubber had almost no odor.
  • highly bleached powder calcium hypochlorite
  • Polybutadiene was synthesized in the same manner as in Example 3 except that a 3 wt% potassium chlorate aqueous solution was added when the polymerization was stopped. The resulting rubber is almost a foul odor-free o
  • Polybutadiene was synthesized in the same manner as in Example 3 except that the sodium hypochlorite aqueous solution was not added when the polymerization was stopped. The resulting rubber had an unpleasant odor.
  • the content of boiling n-hexane insolubles is 14% by weight, the content of boiling n-hexane solubles The rate was 86% by weight. Boiling n-hexane insoluble matter had a reduced viscosity of 1.6 and had a peak of 202.4 ° C on the endothermic curve by DSC.
  • Boiling n-hexane soluble fraction has a mu-one viscosity of 23 (MLl + 4, 100 ° C), a toluene solution viscosity of 91, a weight average molecular weight of 600,000, and the ratio of cis-1,4 structure is The ratio of 98.2%, trans 1,4 structure was 0.9%, and the ratio of 1,2 structure was 0.9%.
  • Polybutadiene was synthesized in the same manner as in Example 7 except that the sodium hypochlorite aqueous solution was not added when the polymerization was stopped.
  • the resulting rubber has a slightly unpleasant odor and
  • Polymerization of the matrix was carried out for 30 minutes.
  • Boiling n-hexane insoluble matter had a reduced viscosity of 1.5, and had a peak at 204 ° C in the endothermic curve by DSC.
  • Boiling n-hexane soluble component has a mu-one viscosity of 27 (MLl + 4, 100 ° C), a toluene solution viscosity of 84, and the ratio of cis 1,4 structure is 88.9%, trans 1 , 4 structure ratio was 0.8%, 1, 2 structure ratio was 10.5% o
  • Polybutadiene was synthesized in the same manner as in Example 8 except that 3 wt% bleached powder (CaCl (OCl)) suspension water was added when the polymerization was stopped. The resulting rubber had almost no odor.
  • Polybutadiene was synthesized in the same manner as in Example 8 except that 3 wt% highly bleached powder (calcium hypochlorite) suspended water was added at the time of polymerization termination. The resulting rubber had almost no odor.
  • Polybutadiene was synthesized in the same manner as in Example 8 except that a 3 wt% potassium chlorate aqueous solution was added when the polymerization was stopped. The resulting rubber is almost a foul odor-free o
  • Polybutadiene was synthesized in the same manner as in Example 8 except that the sodium hypochlorite aqueous solution was not added when the polymerization was stopped.
  • the resulting rubber has a slightly unpleasant odor and
  • Triphenyl Carbium Tetrakis pentafluorophenol Polymerization was started by adding 0.18 ml of a borate solution in toluene (0.43 mol / L), and polymerization was carried out at 40 ° C. for 30 minutes.
  • the polymerization solution was treated according to a conventional method to recover polybutadiene rubber.
  • the resulting polybutadiene rubber had a yield of 100 g and a mu-one viscosity of 82 (MLl + 4, 100 ° C.). Further, the obtained rubber hardly felt odor.
  • Polybutadiene was synthesized in the same manner as in Example 12 except that 3 wt% bleached powder (CaCl (OCl)) suspension water was added when the polymerization was stopped. The resulting rubber had almost no odor.
  • Polybutadiene was synthesized in the same manner as in Example 12 except that 3 wt% highly bleached powder (calcium hypochlorite) suspended water was added when the polymerization was stopped. The rubber obtained was almost odorless! /.
  • Polybutadiene was synthesized in the same manner as in Example 12 except that a 3 wt% potassium chlorate aqueous solution was added when the polymerization was stopped.
  • the resulting rubber has almost no odor, and it is a good one.
  • Polybutadiene was synthesized in the same manner as in Example 12 except that the sodium hypochlorite aqueous solution was not added when the polymerization was stopped. The resulting rubber had an unpleasant odor. [0198] [Table 1]
  • the polymer was kept at the target temperature in an air atmosphere, and the time until heat generation due to oxidative degradation was observed was measured. It shows that the longer the time until the exotherm is generated, the less the acid and acid deterioration of the polymer occurs.
  • Example 17 Polymerization was stopped by adding an aqueous sodium hypochlorite solution, followed by polymerization in the same manner as in Example 1 except that Irga noxl520 was added as an anti-oxidation agent so that lOOOppm remained in the polymer. went.
  • the obtained polybutadiene rubber was measured for acid / acid deterioration characteristics at 140 ° C., 145 ° C., and 150 ° C. Table 2 shows the measurement results. [0204] (Example 17)
  • Example 16 when the addition amount of the acid prevention agent is not sufficient, the same amount of acid solution as when the sodium hypochlorite aqueous solution was not added was used. Even when compared with Comparative Example 6 with the addition of an inhibitor, the ability to cause an equivalent or slightly inferior acid / sodium deterioration is obtained by adding a sufficient amount of the acid / anti-oxidant as in Examples 17 to 19 Even when compared with the case where sodium chlorite was not added, it was clearly shown that there was an effect of preventing decomposition.
  • VCR obtained by the present invention has an extremely reduced odor. Therefore, various types of VCRs can be obtained by singly or other synthetic rubbers and various additives added as necessary. Used in rubber applications that require mechanical properties and wear resistance, such as tires, hoses, belts, and other various industrial products. Also used as a plastics modifier. It can also be used. Therefore, the present invention provides industrially useful technology.

Abstract

 1,3-ブタジエンを、触媒を用いてシス-1,4重合し、次いでこの重合系でシンジオタクチック-1,2重合するポリブタジエンの製造方法において、重合後にハロゲン酸又はハロゲン酸塩を添加することを特徴とするポリブタジエンの製造方法。

Description

明 細 書
ポリブタジエンの製造方法
技術分野
[0001] 本発明は、 1, 3 ブタジエンを重合して、シス 1, 4重合体とシンジオタクチック 1, 2重合体力もなる、臭気の低減された補強ポリブタジエンゴム(以下、 VCRと略す) の製造方法に関する。
背景技術
[0002] 特公昭 49— 17666号公報 (特許文献 1)、特公昭 49— 17667号公報 (特許文献 2 )には、 VCRの製造方法として、不活性有機溶媒中で 1, 3 ブタジエンを、水、可溶 性コバルト化合物及び一般式 AIR X で表せる有機アルミニウムクロライドから得ら
n 3-n
れた触媒を用いてシス 1, 4重合し、次いでこの重合系に可溶性コバルト化合物と 一般式 A1Rで表せる有機アルミニウム化合物と二硫ィ匕炭素とから得られるシンジオタ
3
クチック 1, 2重合触媒を存在させて 1, 3 ブタジエンをシンジオタクチック 1, 2 重合する方法が知られて ヽる。
[0003] また、特公昭 62— 171号公報 (特許文献 3)、特公昭 63— 36324号公報 (特許文 献 4)、特公平 2— 37927号公報 (特許文献 5)、特公平 2— 38081号公報 (特許文 献 6)、特公平 3— 63566号公報 (特許文献 7)には VCRの製造法として二硫ィ匕炭素 の存在下又は不在下に 1, 3 ブタジエンをシス 1, 4重合して VCRを製造したり、 VCRを製造した後に 1 , 3 ブタジエンと二硫ィ匕炭素を分離 ·回収して二硫化炭素を 実質的に含有しな 、 1 , 3 ブタジエンや不活性有機溶媒を循環させたりする方法な どが記載されている。更に、特公平 4— 48815号公報 (特許文献 8)には配合物のダ イスゥエル比が小さぐその加硫物がタイヤのサイドウォールとして好適な引張応力と 耐屈曲亀裂成長性に優れた VCRが記載されて ヽる。
[0004] 特開 2000— 44633号公報 (特許文献 9)には、 C4留分を主成分とする不活性有 機溶媒中で 1, 3 ブタジエンを、ハロゲン含有有機アルミニウム化合物、可溶性コバ ルト化合物及び水力ゝらなる触媒系を用いてシス 1, 4重合し、得られた重合反応混 合物中に可溶性コノ レト化合物、トリアルキルアルミニウム化合物及び二硫ィ匕炭素と 力 得られるシンジオタクチック一 1, 2重合触媒を存在させて、シンジォタクチック一 1, 2重合して新規な VCRを製造する方法が提供されている。そして、得られた VCR は、沸騰 n—へキサン不溶分が 3〜30重量%と沸騰 n—へキサン可溶分 97〜70重 量%とからなり、該沸騰 n—へキサン不溶分が短繊維結晶の分散形態を有するシン ジオタクチック 1, 2—ポリブタジエンであり、該沸騰 n—へキサン可溶分のシス構造 力 S90%以上のシス 1, 4 ポリブタジエンからなる VCR糸且成物であることが開示さ れている。
[0005] 特開 2000— 154215号公報(特許文献 10)、特開 2000— 159836号公報(特許 文献 11)には、 1, 3 ブタジエンを (A)遷移金属化合物のメタ口セン型錯体、並びに 、 (B)非配位性ァ-オンとカチオンとのイオン性ィ匕合物及び Z又はアルミノキサンか ら得られる触媒を用いてシス 1, 4重合し、得られた重合反応混合物中に (E)コバ ルト化合物 (F)イソシアン酸ィ匕合物、及び二硫ィ匕炭素力も選ばれた、少なくとも一つ の化合物から得られる触媒を存在させて、シンジオタクチック 1, 2重合して新規な VCRを製造する方法が提供されて ヽる。
[0006] しかしながら、 1, 3 ブタジエンのシンジオタクチック 1, 2重合においては、重合 条件によっては硫黄ィ匕合物に由来する悪臭が発生することがあり、改良が望まれて いた。
[0007] 米国特許第 6956093号 (特許文献 12)には、二硫化炭素を触媒成分として含む 触媒を用いて得られたシンジオタクチック 1, 2—ポリブタジエンを、過酸化水素で 処理することにより、臭気の改善されたゴム糸且成物を製造する方法が開示されている 。しかしながら、過酸化水素によりポリブタジエンあるいは残留ブタジエンモノマーの 二重結合が酸ィ匕される恐れがあり、好ましくない。
[0008] 特許文献 1:特公昭 49 17666号公報
特許文献 2:特公昭 49— 17667号公報
特許文献 3 :特公昭 62 171号公報
特許文献 4:特公昭 63 - 36324号公報
特許文献 5:特公平 2— 37927号公報
特許文献 6:特公平 2 - 38081号公報 特許文献 7:特公平 3— 63566号公報
特許文献 8:特公平 4— 48815号公報
特許文献 9:特開 2000— 44633号公報
特許文献 10 :特開 2000— 154215号公報
特許文献 11 :特開 2000— 159836号公報
特許文献 12:米国特許第 6956093号
発明の開示
[0009] 本発明の解決しょうとする課題は、 1, 3 ブタジエンを重合して、シス一 1, 4重合 体とシンジォタクチック一 1, 2重合体力もなる、臭気の低減された補強ポリブタジエン ゴム(以下、しばしば VCRと略す)の製造方法を提供することである。
[0010] 本発明は、 1, 3 ブタジエンをシス 1, 4重合し、次いでこの重合系でシンジオタ クチック 1, 2重合するポリブタジエンの製造方法において、重合後に以下の一般 式 (I) :
Μ,(Χ,0 ) Ζ' (I)
q r s
(但し、 M'は金属あるいは水素原子を表し、 X'は塩素、臭素、ヨウ素から選ばれるハ ロゲン原子を表し、 Oは酸素原子を表し、 qは 1以上 4以下の整数を表し、 Z'は M,に 結合しうる陰イオンを表し、 rは 1以上の整数を表し、 r+sは M,の酸ィ匕数を表す。)で 示されるハロゲン酸又はハロゲン酸塩を添加することを特徴とする、臭気の低減され たポリブタジエンの製造方法に関する。
[0011] 本発明にお 、て、一般式 (I)で示される化合物の X'が塩素であることが好ま U、。
[0012] 本発明にお ヽて、一般式 (I)で示される化合物は次亜塩素酸または次亜塩素酸塩 であることが好ましい。
[0013] 本発明は、以下の方法により重合されたポリブタジエンを使用した、臭気の低減さ れた補強ポリブタジエンゴムの製造方法として使用可能である。即ち、第 1に、シス— 1, 4重合の触媒力 コバルト化合物、有機アルミニウム化合物、及び水からなる触媒 を用いて製造されたポリブタジエンを使用して、臭気の低減された補強ポリブタジェ ンゴムを製造することができる。第 2に、 1, 3 ブタジエンを、遷移金属化合物のメタ 口セン型錯体、並びに、非配位性ァ-オンとカチオンとのイオン性ィ匕合物及び Z又 はアルミノキサン力も得られる触媒を用いてシス一 1, 4重合して得られたポリブタジェ ンを使用して、臭気の低減された補強ポリブタジエンゴムを製造することができる。第 3に、シス— 1, 4重合の触媒として、(A)イットリウム化合物、(B)非配位性ァ-オンと カチオンとからなるイオン性ィ匕合物、並びに (C)周期律表第 2族、 12族及び 13族か ら選ばれる元素の有機金属化合物力 得られる触媒を用いて得られるポリブタジエン を使用して、臭気の低減された補強ポリブタジエンゴムを製造することができる。
[0014] 本発明に係る方法において、第 1に、シス 1, 4重合の触媒力 コバルト化合物、 有機アルミニウム化合物、及び水からなる触媒を用いて製造されたポリブタジエンを 使用するに際に、上記の有機アルミニウム化合物は、 R1 A1 (式中、 R1は炭素数 1〜
3
10の炭化水素基を示す。)で表されるトリアルキルアルミニウム化合物及び R2 A1X
3- n n
(式中、 R2は炭素数 1〜10の炭化水素基、 Xはハロゲンを示し、 nは 1〜2の数であ る。 )で表されるハロゲン含有アルミニウム化合物であることが好ま 、。
[0015] また、シス 1, 4重合の触媒力 周期律表 3族金属の化合物、アルキルアルミニゥ ムノ、イドライドィ匕合物、ブタジエン、メチルアルミノキサン、及び塩素含有化合物から 選ばれる成分を熟成して得られる触媒であることが好ましい。
[0016] 第 2に、シス 1, 4重合の触媒力 遷移金属化合物のメタ口セン型錯体、非配位性 ァ-オンとカチオンとのイオン性ィヒ合物、周期律表第 1〜3族元素の有機金属化合 物、及び水 (但し、(周期律表第 1〜3族元素の有機金属化合物) Z (水) =0. 66〜5 (モル比)である。 )力も得られる触媒であることも好ま 、。
[0017] また、イットリウム化合物を触媒としたものを使用する場合には、下記の一般式:
[0018] [化 1]
Figure imgf000005_0001
(但し、 Rl, R2, R3は水素、または炭素数 1〜12の炭化水素基を表し、 Oは酸素原 子を表し、 Yはイットリウム原子を表す。)で表される嵩高い配位子を有するイットリウム 化合物が好適に使用される。
[0019] なお、上記のシンジオタクチック 1, 2重合の触媒として、コバルトィ匕合物、アルキ ルアルミニウム化合物、及びィォゥ化合物を用いることが好まし 、。
[0020] また、本発明は、上記のポリブタジエン力 (1)沸騰 n キサン不溶分 3〜30重 量%と(2)沸騰 n—へキサン可溶分 97〜70重量%とからなる補強ポリブタジエンで あることを特徴とする、臭気の低減された補強ポリブタジエンの製造方法に関する。
[0021] 本発明によれば、 1, 3 ブタジエンを重合したのちハロゲン酸あるいはハロゲン酸 塩を添加することによる、臭気の低減された、シス一 1, 4重合体とシンジォタクチック — 1, 2重合体力もなる補強ポリブタジエンゴムの製造方法を提供する。
発明を実施するための最良の形態
[0022] 本発明における、 1, 3 ブタジエンをシス 1, 4重合し、次いでこの重合系でシン ジオタクチック 1, 2重合するポリブタジエンの製造方法において、重合後に臭気低 減のため添加される物質としては、以下の一般式 (I):
Μ,(Χ,0 ) Ζ' (I)
Q r s
(但し、式中、 M'は金属あるいは水素原子を表し、 X'は塩素、臭素、ヨウ素力 選 ばれるハロゲン原子を表し、 Oは酸素原子を表し、 qは 1以上 4以下の整数を表し、 Z' は M,に結合しうる陰イオンを表し、 rは 1以上の整数を表し、 r+sは M,の酸ィ匕数を表 す。)で示されるハロゲン酸又はハロゲン酸塩において、 M'は、水素、リチウム、ナト リウム、カリウム、マグネシウム、カノレシゥム、ストロンチウム、ノ リウム、イットリウム、ノ ナジゥム、鉄、コバルト、ニッケル、銅、亜鉛、ホウ素、アルミニウム、等をあげることが できる。 M,は、好ましくは、水素、リチウム、ナトリウム、カリウム、マグネシウム、カルシ ゥム、アルミニウムであり、特に好ましくは水素、ナトリウム、カリウム、マグネシウム、力 ルシゥムであり、さらに好ましくは、ナトリウム、カルシウムである。
[0023] X'としては、塩素、臭素、ヨウ素が挙げられる力 中でも塩素が好ましい。
[0024] qは 1以上 4以下の整数を表し、好ましくは q= 1又は 2であり、特に好ましくは q= lで ある。 [0025] Z'は、ハロゲン酸イオン以外の陰イオンであり、ハロゲン酸イオンで中和しきれてい な ヽ Mの正電荷を中和できる分だけ結合できるものであれば特に制限はな 、が、例 えば、塩素、臭素、ヨウ素などのハロゲンイオン、水酸ィ匕物イオン、酸化物イオン、亜 硝酸イオン、硝酸イオン、硫酸イオン、亜リン酸イオン、リン酸イオン、ホウ酸イオン、 カルボン酸イオン、アルコキシイオンなどを挙げることができる。これらの中で特に好 ましくは、塩素イオン、水酸化物イオンである。
[0026] rは M,に結合したハロゲン酸イオンの数を表し、 M,の酸化数を超えな 、正の和で あり、 sは M,に結合した Zの数を表す。従って r+sは M,の酸ィ匕数を表す。
[0027] 上述したハロゲン酸、ある!/、はハロゲン酸塩の具体例としては、次亜塩素酸、亜塩 素酸、塩素酸、過塩素酸、次亜臭素酸、亜臭素酸、臭素酸、過臭素酸、次亜ヨウ素 酸、亜ヨウ素酸、ヨウ素酸、過ヨウ素酸、次亜塩素酸リチウム、次亜塩素酸ナトリウム、 次亜塩素酸マグネシウム、次亜塩素酸カルシウム、塩化次亜塩素酸カルシウム、水 酸ィ匕次亜塩素酸カルシウムなどが挙げられる力 次亜塩素酸ナトリウム、次亜塩素酸 カルシウム、塩化次亜塩素酸カルシウム、水酸化次亜塩素酸カルシウムが好ましぐ 特に次亜塩素酸ナトリウムが好ま 、。
[0028] 本発明のポリブタジエンの製造に用いられる溶媒としては、 n—へキサン、ブタン、 ヘプタン、ペンタン等の直鎖状脂肪族炭化水素、シクロペンタン、シクロへキサン等 の環状脂肪族炭化水素、 1ーブテン、シス 2—ブテン、トランス 2—ブテン等の C 4留分のォレフイン系炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン等の炭 化水素系溶媒や、塩化メチレン等のハロゲンィ匕炭化水素系溶媒等が挙げられる。単 独で用いてもよぐまた、混合して用いてもよい。中でも、シクロへキサンを含有する溶 媒が好ましく用いられる。特に、シクロへキサン並びにシス 2—ブテン及びトランス 2 ブテンなどの C4留分との混合物などが好適に用いられる。
[0029] 第 1のシス 1, 4重合の触媒としては、コバルト化合物、有機アルミニウム化合物、 及び水からなる触媒を用いることができる。有機アルミニウム化合物としては、 R1 Al (
3 式中、 R1は炭素数 1〜10の炭化水素基を示す。)で表されるトリアルキルアルミ-ゥ ム化合物および R2 A1X (式中、 R2は炭素数 1〜10の炭化水素基、 Xはハロゲン
3-n n
を示し、 nは 1〜2の数である。)で表されるハロゲン含有アルミニウム化合物の混合物 を用いることができる。
[0030] シス 1, 4重合の触媒で用いられる成分のコノ レト化合物としては、コバルトの塩 ゃ錯体が好ましく用いられる。特に好ましいものは、塩ィ匕コバルト、臭化コバルト、硝 酸コノルト、ォクチル酸コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバル ト等のコバルト塩や、コバルトのビスァセチルァセトネートやトリスァセチルァセトネート 、ァセト酢酸ェチルエステルコバルト、ハロゲン化コバルトのトリアリールフォスフィン 錯体、トリアルキルフォスフィン錯体、ピリジン錯体ゃピコリン錯体等の有機塩基錯体 、もしくはエチルアルコール錯体等が挙げられる。
[0031] 成分の R1 A1 (式中、 R1は炭素数 1〜10、好ましくは炭素数 2〜8の炭化水素基を
3
示す。)で表されるトリアルキルアルミニウム化合物としては、トリェチルアルミニウム、 トリメチルアルミニウム、トリイソブチルアルミニウム、トリへキシルアルミニウム、トリオク チルアルミニウムなどが挙げられる。中でも、トリェチルアルミニウムが好ましい。
[0032] R2 A1X (式中、 R2は炭素数 1〜10、好ましくは炭素数 2〜8の炭化水素基、 Xは
3- n n
ハロゲンを示し、 nは 1〜2の数である。)で表されるハロゲン含有アルミニウム化合物 として、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイドなどのジ アルキルアルミニウムハライド、アルキルアルミニウムセスキク口ライド、アルキルアルミ -ゥムセスキブロマイドなどのアルキルアルミニウムセスキハライド、アルキルアルミ- ゥムジクロライド、アルキルアルミニウムジブロマイド等のアルキルアルミニウムジハラ イド等が挙げられる。具体的化合物としては、ジェチルアルミニウムモノクロライド、ジ ェチルアルミニウムモノブロマイド、ジブチルアルミニウムモノクロライド、ェチルアルミ ユウムセスキク口ライド、ェチルアルミニウムジクロライド、ジシクロへキシルアルミ-ゥ ムモノクロライド、ジフエ-ルアルミニウムモノクロライド等が挙げられる。中でも、ジェ チルアルミニウムモノクロライドが好まし!/、。
[0033] コバルトィ匕合物の使用量は、ブタジエン 1モルに対し、通常、コバルト化合物が 1 X
10— 7〜1 X 10— 4モル、好ましくは 1 X 10— 6〜1 X 10— 5モルの範囲である。
[0034] トリアルキルアルミニウムの使用量は、コバルト化合物 1モルに対し、通常、 10〜50 00モル、好ましくは 50〜: LOOOモルの範囲である。
[0035] ハロゲン含有アルミニウム化合物の使用量は、ハロゲン含有アルミニウム化合物中 の X原子と、トリアルキルアルミニウム及びハロゲン含有アルミニウム中の A1原子との it (X/Al)力^)〜 1、好ましく ίま 0. 1〜0. 9、特に好ましく ίま 0. 25-0. 75である。
[0036] 水の使用量は、アルミニウム化合物 1モルに対して、水が 0. 1〜1. 45モル、好まし くは 0. 2〜1. 2モルである。
[0037] 触媒成分の添加順序は特に制限はな ヽが、不活性溶媒中でトリアルキルアルミ- ゥムとハロゲン含有アルミニウムとを混合熟成して用いることが好まし 、。熟成時間は
0. 1〜24時間が好ましい。熟成温度は 0〜80°Cが好ましい。
[0038] 上記の熟成液に、更に、水を添加して熟成することが好ましい。熟成時間は 0. 1〜 24時間が好まし 、。熟成温度は 0〜80°Cが好まし!/、。
[0039] また、シス 1, 4重合の触媒として、周期律表 3族金属の化合物、アルキルアルミ -ゥムハイドライド化合物、ブタジエン、メチルアルミノキサン、及び塩素含有化合物 力 選ばれる成分を熟成して得られる触媒を用いることもできる。
[0040] 上記の触媒系の成分である周期律表 3族金属の化合物を構成する金属は、周期 律表 3族に属する原子であり、ランタン系列元素、アクチニウム系列元素などが挙げ られる。好ましくは、希土類元素が挙げられる。具体的には、ネオジゥム、プラセォジ ゥム、セリウム、ランタン、ガドリニウム又はこれらの混合物である。特に好ましくは、ネ ォジゥムが挙げられる。
[0041] 周期律表 3族金属の化合物としては、周期律表 3族金属のカルボン酸塩、アルコキ サイド、 βージケトン錯体、リン酸塩また亜リン酸塩などが挙げられる力 中でもカル ボン酸塩、リン酸塩が好ましぐ特にカルボン酸塩が好ましい。
[0042] 周期律表 3族金属のカルボン酸塩は、一般式 (RCO ) Μ (式中、 Μは周期律表 3
2 3
族金属であり、 Rは炭素数 1〜20の炭化水素基である。)で表される化合物である。
[0043] Rは、飽和又は不飽和のアルキル基であり、かつ直鎖状、分岐状又は環状であり、 カルボキシル基 COは 1級、 2級又は 3級の炭素原子に結合している。具体的には、
2
オクタン酸、 2—ェチルーへキサン酸、ォレイン酸、ステアリン酸、安息香酸、ナフテン 酸及びバーサチック酸 (シェルィ匕学の商品名であって、カルボキシル基が 3級炭素 原子に結合しているカルボン酸である)などの塩が挙げられる。中でも、 2—ェチル— へキサン酸及びバ サチック酸が好まし 、。 [0044] 周期律表 3族金属のアルコキサイドは、一般式 (RO) M (式中、 Mおよび Rは前記
3
と同じである。)で表される化合物である。 ROで表されるアルコキシ基の例として、 2 ーェチルーへキシルォキシ、ォレイルォキシ、ステアリルォキシ、フエノキシ及びベン ジルォキシ基が挙げられる。なかでも、 2—ェチルーへキシルォキシ及びベンジルォ キシ基が好ましい。
[0045] 周期律表 3族金属の βージケトン錯体としては、周期律表 3族金属のァセチルァセ トン、ベンゾィルアセトン、プロピオ二トリルアセトン、バレリルアセトン及びェチルァセ チルアセトン錯体などが挙げられる。なかでもァセチルアセトン及びェチルァセチル アセトン錯体が好ましい。
[0046] 周期律表 3族金属のリン酸塩又は亜リン酸塩としては、周期律表 3族金属のリン酸 ビス( 2 -ェチルへキシル)、リン酸ビス ( 1 -メチルヘプチル)、リン酸ビス(ρ -ノ-ル フエ-ル)、リン酸ビス(ポリエチレングリコール ρ ノユルフェ-ル)、リン酸(1ーメチ ルヘプチル)(2—ェチルへキシル)、リン酸(2—ェチルへキシル)(ρ ノ-ルフエ- ル)、 2—ェチルへキシルホスホン酸モノ— 2—ェチルへキシル、 2—ェチルへキシ ルホスホン酸モノ一 2—ノ-ルフエ-ル、ビス(2—ェチルへキシル)ホスフィン酸、ビ ス(1 メチルヘプチル)ホスフィン酸、ビス(ρ ノ-ルフエ-ル)ホスフィン酸、(1ーメ チルヘプチル)(2—ェチルへキシル)ホスフィン酸、(2—ェチルへキシル)(ρ ノ- ルフエ-ル)ホスフィン酸などの塩が挙げられる。中でも、リン酸ビス(2—ェチルへキ シル)、リン酸ビス ( 1—メチルヘプチル)、 2 -ェチルへキシルホスホン酸モノ— 2—ェ チルへキシル、ビス(2—ェチルへキシル)ホスフィン酸などの塩が好まし 、。
[0047] 以上の例示した中でも、特に好ましいのはネオジゥムのリン酸塩又はネオジゥムの カルボン酸塩であり、さらにネオジゥムの 2—ェチルーへキサン塩及びネオジゥムの バ サチック酸塩などのカルボン酸塩が最も好まし 、。
[0048] また、上記触媒系のアルキルアルミニウムハイドライドィ匕合物としては、ジェチルァ ルミ-ゥムハイドライド、ジプロピルアルミニウムハイドライド、ジー η—ブチルェチルァ ルミニゥムハイドライド、ジイソブチルアルミニウムハイドライド、ジフ ニルアルミニウム ハイドライドなどが挙げられる。
[0049] また、上記触媒系の塩素含有ィ匕合物としては、アルキルアルミニウムクロライドが挙 げられる力 中でも、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロ マイドなどのジアルキルアルミニウムハライド、アルキルアルミニウムセスキク口ライド、 アルキルアルミニウムセスキブロマイドなどのアルキルアルミニウムセスキハライド、ァ ルキルアルミニウムジクロライド、アルキルアルミニウムジブロマイド等のアルキルアル ミニゥムジノヽライド等が挙げられる。具体的化合物としては、ジェチルアルミニウムモノ クロライド、ジェチルアルミニウムモノブロマイド、ジブチルアルミニウムモノクロライド、 ェチルアルミニウムセスキク口ライド、ェチルアルミニウムジクロライド、ジシクロへキシ ルアルミニウムモノクロライド、ジフエ-ルアルミニウムモノクロライド等が挙げられる。
[0050] 上記の触媒の各成分は、割合としては、以下のものが好ましい。
(アルキルアルミニウムハイドライド化合物):(周期律表 3族金属の化合物) = 1: 1〜1 00 : 1 (モル比)
(ブタジエン): (周期律表 3族金属の化合物) =0. 5 : 1〜200: 1 (モル比)
(メチルアルミノキサン): (周期律表 3族金属の化合物) = 1: 1-1000 : 1 (モル比)
(塩素含有化合物): (周期律表 3族金属の化合物) = 1: 1〜10: 1 (モル比)
[0051] また、上記の触媒系は熟成して用いることが好ましい。熟成時間は 1分〜 150分が 好まし 、。熟成温度は 10°C〜60°Cが好まし!/、。
[0052] また、第 2のシス 1 , 4重合の触媒として、(a)遷移金属化合物のメタ口セン型錯体 、並びに、(b)非配位性ァ-オンとカチオンとのイオン性ィ匕合物及び Z又はアルミノ キサンから得られる触媒、あるいは (a)遷移金属化合物のメタ口セン型錯体、(b)非 配位性ァ-オンとカチオンとのイオン性ィ匕合物、(c)周期律表第 1〜3族元素の有機 金属化合物、及び (d)水(但し、 (c) / (d) =0. 66〜5 ( (モル比)である。)から得ら れる虫媒を用いることちでさる。
[0053] (a)成分の遷移金属化合物のメタ口セン型錯体としては、周期律表第 4〜8族遷移 金属化合物のメタ口セン型錯体が挙げられる。
[0054] 例えば、チタン、ジルコニウムなどの周期律表第 4族遷移金属のメタ口セン型錯体( 例えば、 CpTiClなど)、バナジウム、ニオブ、タンタルなどの周期律表第 5族遷移金
3
属のメタ口セン型錯体、クロムなどの第 6族遷移金属メタ口セン型錯体、コバルト、 -ッ ケルなどの第 8族遷移金属のメタ口セン型錯体が挙げられる。 [0055] 中でも、周期律表第 5族遷移金属のメタ口セン型錯体が好適に用いられる。
[0056] 上記の周期律表第 5族遷移金属化合物のメタ口セン型錯体としては、
(1) RM-La
(2) Rn MX2-n-La
(3) Rn MX3-n-La
(4) RMX3 -La
(5) RM (0)X2 -La
(6) RnMX3- n (NR')
などの一般式で表される化合物が挙げられる(式中、 nは 1又は 2、 aは 0、 1又は 2であ る)。
[0057] 中でも、 RM*La、 RMX3 'La、 RM (0)X2 ' Laなどが好ましく挙げられる。
[0058] Mは、周期律表第 5族遷移金属化合物が好ましい。具体的にはバナジウム (V)、二 ォブ (Nb)、またはタンタル (Ta)であり、好ましい金属はバナジウムである。
[0059] Rはシクロペンタジェ-ル基、置換シクロペンタジェ-ル基、インデュル基、置^ ンデュル基、フルォレニル基又は置換フルォレニル基を示す。
[0060] 置換シクロペンタジェ-ル基、置^ンデュル基又は置換フルォレニル基における 置換基としては、メチル、ェチル、プロピル、 iso プロピル、 n—ブチル、 iso ブチ ル、 sec プチル、 t プチル、へキシルなどの直鎖状脂肪族炭化水素基または分岐 状脂肪族炭化水素基、フ -ル、トリル、ナフチル、ベンジルなど芳香族炭化水素基 、トリメチルシリルなどのケィ素原子を含有する炭化水素基などが挙げられる。さらに 、シクロペンタジェ-ル環が Xの一部と互いにジメチルシリル、ジメチルメチレン、メチ ルフエ-ルメチレン、ジフエ-ルメチレン、エチレン、置換エチレンなどの架橋基で結 合されたものも含まれる。
[0061] 置換シクロペンタジェ-ル基の具体例としては、メチルシクロペンタジェ-ル基、 1, 2 ジメチルシクロペンタジェ-ル基、 1, 3 ジメチルシクロペンタジェ-ル基、 1, 3 ージ(tーブチル)シクロペンタジェ-ル基、 1, 2, 3 トリメチルシクロペンタジェ-ル 基などが挙げられる。
[0062] Xは水素、ハロゲン、炭素数 1から 20の炭化水素基、アルコキシ基、又はアミノ基を 示す。 Xはすべて同じであっても、互いに異なっていてもよい。
[0063] 以上の中でも、 Xとしては、水素、フッ素原子、塩素原子、臭素原子、メチル、ェチ ル、ブチル、メトキシ、エトキシ、ジメチルアミ入ジェチルァミノなどが好ましい。
[0064] Lは、ルイス塩基であり、金属に配位できるルイス塩基性の一般的な無機、有機化 合物である。その内、活性水素を有しない化合物が特に好ましい。具体例としては、 エーテル、エステル、ケトン、ァミン、ホスフィン、シリルォキシ化合物、ォレフィン、ジ ェン、芳香族化合物、アルキンなどが挙げられる。
[0065] NR'はイミド基であり、 R'は炭素数 1から 25の炭化水素置換基である。
[0066] (a)周期律表第 5族遷移金属化合物のメタ口セン型錯体としては、中でも、 Mがバ ナジゥムであるバナジウム化合物が好ましい。例えば、 RV'La、 RVX'La、 R2V-La 、 RVX2 -La, R2VX'La、 RVX3 'La、 RV(0)X2 'Laなどが好ましく挙げられる。特 に、 RV'La、 RVX3 'Laが好ましい。
[0067] RM'La、すなわち、シクロアルカジエ-ル基の配位子を有する酸化数 + 1の周期 律表第 5族遷移金属化合物としては、シクロペンタジェニル (ベンゼン)バナジウム、 シクロペンタジェ-ル(トルエン)バナジウム、シクロペンタジェ-ル(キシレン)バナジ ゥム、シクロペンタジェ-ル(トリメチルベンゼン)バナジウム、シクロペンタジェ-ル( へキサメチルベンゼン)バナジウム、シクロペンタジェ-ル(フエ口セン)バナジウム、メ チルシクロペンタジェ-ル(ベンゼン)バナジウムなどを挙げることができる。
[0068] RnMX2-n'Laで表わされる化合物のうち、 n= 1、すなわち、シクロアルカジエ-ル 基を配位子として一個有する場合には、他のシグマ結合性配位子として、水素原子 、塩素、臭素、沃素などのハロゲン原子、メチル基、フエニル基、ベンジル基、ネオペ ンチル基、トリメチルシリル基、ビストリメチルシリルメチル基などの炭化水素基、メトキ シ基、エトキシ基、イソプロポキシ基などの炭化水素ォキシ基、ジメチルァミノ基、ジェ チルァミノ基、ジイソプロピルアミノ基、ジォクチルァミノ基などの炭化水素アミノ基を 有することができる。
[0069] さらに、他の配位子としては、ァミン、アミド、ホスフィン、ェ一テル、ケトン、エステル 、ォレフィン、ジェン、芳香族炭化水素、アルキンなどの中性のルイス塩基を有するこ ともできる。活性水素のな 、ルイス塩基が好まし 、。 [0070] RnMX2-n'Laで表わされる化合物のうち、 n= 2、すなわち、シクロアルカジエ-ル 基を配位子として二個有する場合には、各々のシクロアルカジエ-ル環が互いに Me 2Si基、ジメチルメチレン基、メチルフエ-ルメチレン基、ジフエ-ルメチレン基、ェチ レン基、置換エチレン基等の架橋基で結合されたものも含まれる。
[0071] RnMX2-n'Laで表わされる化合物のうち、 n= 1、すなわち、シクロアルカジエ-ル 基を配位子として一個有する酸化数 + 2の周期律表第 5族遷移金属化合物の具体 例としては、クロロシクロペンタジェ-ル(テトラヒドロフラン)バナジウム、クロロシクロべ ンタジェ-ル(トリメチルホスフィン)バナジウム、クロロシクロペンタジェ-ルビス(トリメ チルホスフィン)バナジウムなどが挙げられる。
[0072] RnMX2-n'Laで表わされる化合物のうち、 n= 2、すなわちシクロアルカジエ-ル基 を配位子として二個有する酸化数 + 2の周期律表第 5族遷移金属化合物の具体例と しては、ビスシクロペンタジェ-ルバナジウム、ビス(メチルシクロペンタジェ -ル)バ ナジゥム、ビス(1, 2 ジメチルシクロペンタジェ -ル)バナジウム、ビス(1, 3 ジメチ ルシクロペンタジェ -ル)バナジウムなどが挙げられる。
[0073] RnMX3- n'Laで表される具体的な化合物のうち、 n= 1の化合物としては、シクロべ ンタジェ-ルバナジウムジクロライド、メチルシクロペンタジェ-ルバナジウムジクロラ イド、 (1, 3 ジメチルシクロペンタジェ -ル)バナジウムジクロライド、(1ーブチルー 3 ーメチルシクロペンタジェ -ル)バナジウムジクロライドなどが挙げられる。また、 RnM Χ3-η· Laで表される具体的な化合物のうち、 n= 2の化合物としては、ジシクロペンタ ジェ-ルバナジウムクロライド、ビス(メチルシクロペンタジェ -ル)バナジウムクロライ ドなどが挙げられる。
[0074] RMX3で示される具体的な化合物としては、以下のものが挙げられる。
[0075] (i)シクロペンタジェ-ルバナジウムトリクロライドが挙げられる。モノ置換シクロペン タジェ-ルバナジウムトリクロライド、例えば、メチルシクロペンタジェ-ルバナジウムト リク口ライド、ェチルシクロペンタジェ-ルバナジウムトリクロライド、プロビルシクロペン タジェ二ルバナジゥムトリクロライドなどが挙げられる。
[0076] (ii) l, 2 ジ置換シクロペンタジェ-ルバナジウムトリクロライド、例えば、(1, 2 ジ メチルシクロペンタジェ -ル)バナジウムトリクロライド、 ( 1 -ェチル 2—メチルシクロ ペンタジェ -ル)バナジウムトリクロライド、 ( 1 メチル - 2-プロビルシクロペンタジェ -ル)バナジウムトリクロライド、 ( 1 -ブチル― 2—メチルシクロペンタジェ -ル)バナジ ゥムトリクロライド、(1ーメチルー 2—ビス(トリメチルシリル)メチルシクロペンタジェ二 ル)バナジウムトリクロライドなどが挙げられる。
[0077] (iii) l, 2, 3 トリ置換シクロペンタジェ-ルバナジウムトリクロライド、例えば、(1, 2 , 3—トリメチルシクロペンタジェ -ル)バナジウムトリクロライドなどが挙げられる。
[0078] RM (O)Xで表される具体的な化合物としては、シクロペンタジェ -ルォキソバナジ
2
ゥムジクロライド、メチルシクロペンタジェ-ルォキソバナジウムジクロライドなどが挙げ られる。上記の各化合物の塩素原子をメチル基で置換したメチル体も挙げられる。
[0079] シクロペンタジェ-ルォキソバナジウムジメトキサイド、シクロペンタジェ-ルォキソ バナジウムジ i プロポキサイド、シクロペンタジェ-ルォキソバナジウムジ t ブトキサ イド、シクロペンタジェ-ルォキソバナジウムジフエノキサイド、シクロペンタジェ-ル ォキソバナジウムメトキシクロライド、シクロペンタジェ-ルォキソバナジウム i プロボ キシクロライド、シクロペンタジェ-ルォキソバナジウム t—ブトキシクロライド、シクロべ ンタジェ-ルォキソバナジウムフエノキシクロライドなどが挙げられる。上記の各化合 物の塩素原子をメチル基で置換したメチル体も挙げられる。
[0080] RnMX3-n (NR')で表される具体的な化合物としては、シクロペンタジェ-ル (メチ ルイミド)バナジウムジクロライドなどが挙げられる。
[0081] 上記の (b)成分のうち、非配位性ァ-オンとカチオンとのイオン性ィ匕合物を構成す る非配位性ァ-オンとしては、例えば、テトラ (フエニル)ボレ一ト、テトラ (フルオロフェ -ル)ボレート、テトラキス(ジフルオロフェ -ル)ボレート、テトラキス(トリフルオロフェ -ル)ボレ ト、テトラキス(テトラフルオロフェ -ル)ボレ ト、テトラキス(ペンタフルォ 口フエ-ル)ボレート、テトラキス(3, 5—ビストリフルォロメチルフエ-ル)ボレートなど が挙げられる。
[0082] 一方、カチオンとしては、カルボ-ゥムカチオン、ォキソユウムカチオン、アンモ-ゥ ムカチオン、ホスホ-ゥムカチオン、シクロへプチルトリエ-ルカチオン、遷移金属を 有するフエ口セ-ゥムカチオンなどを挙げることができる。
[0083] カルボ-ゥムカチオンの具体例としては、トリフエ-ルカルポ-ゥムカチオン、トリス( 置換フエ-ル)カルボ-ゥムカチオンなどの三置換カルボ-ゥムカチオンを挙げること 力 Sできる。トリス(置換フエ-ル)カルボ-ゥムカチオンの具体例としては、トリ(メチルフ ェ -ル)カルボ-ゥムカチオン、トリス(ジメチルフエ-ル)カルボ-ゥムカチオンを挙げ ることがでさる。
[0084] アンモ-ゥムカチオンの具体例としては、トリメチルアンモ-ゥムカチオン、トリェチ ルアンモ-ゥムカチオン、トリプロピルアンモ-ゥムカチオン、トリブチルアンモ -ゥム カチオン、トリ(n—ブチル)アンモ-ゥムカチオンなどのトリアルキルアンモ-ゥムカチ オン、 N, N ジメチルァ-リュウムカチオンを挙げることができる。
[0085] ホスホ-ゥムカチオンの具体例としては、トリフエ-ルホスホ-ゥムカチオン、トリ(メ チルフエ-ル)ホスホ-ゥムカチオン、トリ(ジメチルフエ-ル)ホスホ-ゥムカチオンな どのトリァリ一ルホスホ-ゥムカチオンを挙げることができる。
[0086] 該イオン性化合物は、上記で例示した非配位性ァ-オン及びカチオンの中から、 それぞれ任意に選択して組み合わせたものを好ましく用いることができる。
[0087] 中でも、イオン性ィ匕合物としては、トリフエ-ルカルポ-ゥムテトラキス(ペンタフルォ 口フエ-ル)ボレ ト、トリフエ-ルカルポ-ゥムテトラキス(フルオロフェ -ル)ボレート 、N, N—ジメチルァユリ-ゥムテトラキス(ペンタフルォロフエ-ル)ボレート、 1, 1'— ジメチルフエロセ-ゥムテトラキス(ペンタフルォロフエ-ル)ボレートなどが好まし 、。
[0088] イオン性ィ匕合物を単独で用いてもよぐ二種以上を組み合わせて用いてもよい。
[0089] また、(b)成分として、アルモキサンを用いることができる。アルモキサンとしては、有 機アルミニウム化合物と縮合剤とを接触させることによって得られるものであって、一 般式( Al (R ' ) O— ) nで示される鎖状アルミノキサン、ある 、は環状アルミノキサン が挙げられる。(R 'は炭素数 1〜10の炭化水素基であり、一部ハロゲン原子及び Z 又はアルコキシ基で置換されたものも含む。 nは重合度であり、 5以上、好ましくは 10 以上である)。 R'として、はメチル、ェチル、プロピル、イソブチル基が挙げられるが、 メチル基及びェチル基が好まし ヽ。アルミノキサンの原料として用いられる有機アルミ -ゥム化合物としては、例えば、トリメチルアルミニウム、トリェチルアルミニウム、トリイ ソブチルアルミニウムなどのトリアルキルアルミニウム及びその混合物などが挙げられ る。 [0090] トリメチルアルミニウムとトリブチルアルミニウムの混合物を原料として用いたアルモ キサンを好適に用いることができる。
[0091] また、縮合剤としては、典型的なものとして水が挙げられる力 この他に該トリアルキ ルアルミニウムが縮合反応する任意のもの、例えば無機物などの吸着水ゃジオール などが挙げられる。
[0092] 上記の (c)成分として、周期律表第 1〜3族元素の有機金属化合物を加えてもよい 。例えば、有機アルミニウム化合物、有機リチウム化合物、有機マグネシウム化合物、 有機亜鉛ィ匕合物、有機ホウ素化合物などが挙げられる。
[0093] 具体的な化合物としては、メチルリチウム、ブチルリチウム、フエ-ルリチウム、ベン ジルリチウム、ネオペンチルリチウム、ビストリメチルシリルメチルリチウム、ジブチルマ グネシゥム、ジへキシルマグネシウム、ジェチル亜鉛トリメチルアルミニウムなどを挙げ られる。
[0094] さらに、ェチルマグネシウムクロライド、ブチルマグネシウムクロライド、ジメチルアル ミニゥムクロライド、ジェチルアルミニウムクロライド、セスキエチルアルミニウムクロライ ド、ェチルアルミニウムジクロライドのような有機金属ハロゲン化合物、ジェチルアルミ -ゥムハイドライド、セスキエチルアルミニウムハイドライドのような水素化有機金属化 合物も含まれる。
[0095] 上記のおける (c)成分の周期律表第 1〜3族元素の有機金属化合物としては、有 機アルミニウム化合物が好まし 、。有機アルミニウム化合物の具体的な化合物として は、既に上述している力 トリメチルアルミニウム、トリェチルアルミニウム、トリイソブチ ルアルミニウムなどのトリアルキルアルミニウム、ジメチルアルミニウムクロライド、ジェ チルアルミニウムクロライド、セスキエチルアルミニウムクロライド、ェチルアルミニウム ジクロライドなどの有機アルミニウムハロゲン化合物、ジェチルアルミニウムハイドライ ド、セスキエチルアルミニウムハイドライドのような水素化有機アルミニウム化合物など が挙げられる。また、上記のアルモキサンを用いてもよい。上記の有機金属化合物は 、二種類以上併用することができる。
[0096] (a)成分のメタ口セン型錯体と (b)成分のイオン性ィ匕合物とのモル比は、好ましくは 1 : 0. 1〜1: 10、より好ましくは 1 : 0. 2〜1 : 5である。 [0097] (a)成分のメタ口セン型錯体と (c)成分の有機金属化合物とのモル比は、好ましくは 1 : 0. 1〜1: 1000、より好ましくは 1: 10〜1: 1000さらに好ましくは 1: 10〜1: 500で ある。
[0098] また、上記の触媒成分にカ卩えて、(d)成分として水を添加することが好ましい。(c) 成分の有機金属化合物と (d)成分の水とのモル比(c) / (d)は、好ましくは 0. 66〜5 であり、より好ましく ίま 0. 7〜1. 5、特【こさら【こ好ましく ίま 0. 8〜1. 5である。
[0099] 上記の触媒成分の添加順序は、特に、制限はな!/、が、例えば次の順序で行うこと ができる。例えば、重合すべき共役ジェン化合物モノマー又はモノマーと溶媒の混合 物に (d)成分を添加し、(c)成分を添加した後、(a)成分と (b)成分を任意の順序で 添カ卩してもよい。あるいは、重合すべき共役ジェン化合物モノマー又はモノマーと溶 媒の混合物に (d)成分と (c)成分を添加した後、 (a)成分と (b)成分を任意の順序で 添カロしてちょい。
[0100] ここで、重合すべき共役ジェン化合物モノマ とは、全量であっても一部であっても よい。モノマ—の一部の場合は、上記の接触混合物を残部のモノマ—あるいは残部 のモノマ一溶液と混合することができる。
[0101] 第一段の重合においては、上記の触媒を用いて、好ましくは水素の存在下に、共 役ジェン化合物を重合させて分子量を調節する。
[0102] 水素の存在量は、共役ジェン 1モルに対して、好ましくは 500ミリモル以下、あるい は、 20°C1気圧で 12L以下であり、より好ましくは 50ミリモル以下、あるいは、 20°C1 気圧で 1. 2L以下であり、さらに好ましくは 0. 005〜20ミリモル、あるいは、 20°C1気 圧で 0. 00001〜0. 48Lである。また、水素は連続的に重合槽に導入してもよい。
[0103] 重合温度は— 100〜120°Cの範囲が好ましぐ 50〜100°Cの範囲が特に好まし い。重合時間は 10分〜 12時間の範囲が好ましぐ 30分〜 6時間が特に好ましい。 又重合時のゲルの生成を更に抑制するために公知のゲルィ匕防止剤を使用すること ができる。
[0104] また、第 2の触媒系を使用することにより、トルエン中 30°Cで測定した固有粘度が 0 .1〜20であるポリブタジエンを製造することができる。この場合、ポリスチレンを標準 物質として用いた GPCから求めた重量平均分子量が、 1万〜 400万であり、ム一- 一粘度(ML1+4、 100。C、以下、 MLと略す) 10〜130、好ましくは 15〜80であり、 実質的にゲル分を含有しないマトリックスポリブタジエンを製造することができる。
[0105] また、第 3のシス— 1, 4重合の触媒としては、(A)イットリウム化合物、(B)非配位性 ァ-オンとカチオンとからなるイオン性ィ匕合物、並びに (C)周期律表第 2族、 12族及 び 13族から選ばれる元素の有機金属化合物、力 得られる触媒を用いることができ る。
[0106] 上記の触媒系における (A)成分であるイットリウム化合物としては、イットリウムの塩 ゃ錯体が好ましく用いられる。特に好ましいものは、三塩化イットリウム、三臭化イツトリ ゥム、三ヨウ化イットリウム、硝酸イットリウム、硫酸イットリウム、トリフルォロメタンスルホ ン酸イットリウム、酢酸イットリウム、トリフルォロ酢酸イットリウム、マロン酸イットリウム、 ォクチル酸(ェチルへキサン酸)イットリウム、ナフテン酸イットリウム、バーサチック酸 イットリウム、ネオデカン酸イットリウム等のイットリウム塩や、イットリウムトリメトキシド、ィ ットリウムトリエトキシド、イットリウムトリイソプロポキシド、イットリウムトリブトキシド、イット リウムトリフヱノキシドなどのアルコキシド、トリスァセチルァセトナトイットリウム、トリス( へキサンジォナト)イットリウム、トリス(ヘプタンジォナト)イットリウム、トリス(ジメチルへ ブタンジォナト)イットリウム、トリス (テトラメチルヘプタンジォナト)イットリウム、トリスァ セトァセタトイットリウム、シクロペンタジェ-ルイットリウムジクロライド、ジシクロペンタ ジェ-ルイットリウムクロライド、トリシクロペンタジェ-ルイットリウムなどの有機イツトリ ゥム化合物、イットリウム塩ピリジン錯体、イットリウム塩ピコリン錯体等の有機塩基錯 体、イットリウム塩水和物、イットリウム塩アルコール錯体などが挙げられる。
[0107] また、下記のイットリウム化合物を用いることができる。
[0108] [化 2]
Figure imgf000020_0001
(但し、式中、 R、 R、 Rは水素、または炭素数 1〜12の置換基を表し、 Oは酸素原
1 2 3
子を表し、 Yはイットリウム原子を表す。 )
[0109] R、 R、 Rの具体例としては、水素、メチル基、ェチル基、ビュル基、 n—プロピル
1 2 3
基、イソプロピル基、 1 プロべ-ル基、ァリル基、 n ブチル基、 s ブチル基、イソ ブチル基、 t ブチル基、 n ペンチル基、 1 メチルブチル基、 2—メチルブチル基 、 3—メチルブチル基、 1, 1—ジメチルプロピル基、 1, 2 ジメチルプロピル基、 2, 2 ージメチルプロピル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、 ゥンデシル基、ドデシル基、シクロへキシル基、メチルシクロへキシル基、ェチルシク 口へキシル基、フエ-ル基、ベンジル基、トルィル基、フエネチル基などが挙げられる 。さらに、それらにヒドロキシル基、カルボキシル基、カルボメトキシ基、カルボエトキシ 基、アミド基、アミノ基、アルコキシ基、フエノキシ基などが任意の位置に置換されてい るものも含まれる。
[0110] 上記のイットリウム化合物としては、イットリウムの塩ゃ錯体が好ましく用いられる。特 に好ましいものは、トリス (ァセチルァセトナト)イットリウム、トリス (へキサンジォナト)ィ ットリウム、トリス(ヘプタンジォナト)イットリウム、トリス(ジメチルヘプタンジォナト)イット リウム、トリス(トリメチルヘプタンジォナト)イットリウム、トリス (テトラメチルヘプタンジォ ナト)イットリウム、トリス (ペンタメチルヘプタンジォナト)イットリウム、トリス (へキサメチ ルヘプタンジォナト)イットリウム、トリスァセトァセタトイットリウム、などのイットリウム化 合物、などが挙げられる。
[0111] 上記の触媒系における(B)成分である非配位性ァ-オンとカチオンとからなるィォ ン性ィ匕合物において、非配位性ァ-オンとしては、例えば、テトラ (フエニル)ボレート 、テトラ(フルオロフェ -ル)ボレート、テトラキス(ジフルオロフェ -ル)ボレート、テトラ キス(トリフルオロフェ -ル)ボレート、テトラキス(テトラフルオロフェ -ル)ボレート、テト ラキス(ペンタフルォロフエ-ル)ボレート、テトラキス(3, 5—ビストリフルォロメチルフ ェ -ル)ボレート、テトラキス(テトラフルォロメチルフエ-ル)ボレート、テトラ(トルィル) ボレート、テトラ(キシリル)ボレート、トリフエ-ル(ペンタフルォロフエ-ル)ボレート、ト リス(ペンタフルォロフエ-ル)(フエ-ル)ボレート、トリデカハイドライド 7, 8—ジカ ルパウンデ力ボレート、テトラフルォロボレート、へキサフルォロホスフェートなどが挙 げられる。
[0112] 一方、カチオンとしては、カルボ-ゥムカチオン、ォキソユウムカチオン、アンモ-ゥ ムカチオン、ホスホ-ゥムカチオン、シクロヘプタトリエ-ルカチオン、フエロセ-ゥムカ チオンなどを挙げることができる。
[0113] カルボ-ゥムカチオンの具体例としては、トリフエ-ルカルポ-ゥムカチオン、トリ置 換フエ-ルカルポ-ゥムカチオンなどの三置換カルボ-ゥムカチオンを挙げることが できる。トリ置換フエ-ルカルボ-ゥムカチオンの具体例としては、トリ(メチルフエ-ル )カルボ-ゥムカチオン、トリ(ジメチルフエ-ル)カルボ-ゥムカチオンを挙げることが できる。
[0114] アンモ-ゥムカチオンの具体例としては、トリメチルアンモ-ゥムカチオン、トリェチ ルアンモ-ゥムカチオン、トリプロピルアンモ-ゥムカチオン、トリブチルアンモ -ゥム カチオン、トリ(n—ブチル)アンモ-ゥムカチオンなどのトリアルキルアンモ-ゥムカチ オン、 N, N ジメチルァ-リュウムカチオン、 N, N ジェチルァ-リュウムカチオン 、 N, N— 2, 4, 6 ペンタメチルァ-リュウムカチオンなどの N, N ジアルキルァ- リュウムカチオン、ジ(i—プロピル)アンモ-ゥムカチオン、ジシクロへキシルアンモ- ゥムカチオンなどのジアルキルアンモ-ゥムカチオンを挙げることができる。
[0115] ホスホ-ゥムカチオンの具体例としては、トリフエ-ルホスホ-ゥムカチオン、テトラフ ェ-ルホスホ-ゥムカチオン、トリ(メチルフエ-ル)ホスホ-ゥムカチオン、テトラ(メチ ルフエ-ル)ホスホ-ゥムカチオン、トリ(ジメチルフエ-ル)ホスホ-ゥムカチオン、テト ラ(ジメチルフエ-ル)ホスホ-ゥムカチオンなどのァリ一ルホスホ-ゥムカチオンを挙 げることができる。 [0116] 該イオン性化合物は、上記で例示した非配位性ァ-オン及びカチオンの中から、 それぞれ任意に選択して組み合わせたものを好ましく用いることができる。
[0117] 中でも、イオン性ィ匕合物としては、トリフエ-ルカルポ-ゥムテトラキス(ペンタフルォ 口フエ-ル)ボレ ト、トリフエ-ルカルポ-ゥムテトラキス(フルオロフェ -ル)ボレート 、N, N ジメチルァユリ-ゥムテトラキス(ペンタフルォロフエ-ル)ボレート、 1, 1'— ジメチルフエロセ-ゥムテトラキス(ペンタフルォロフエ-ル)ボレートなどが好まし 、。 イオン性ィ匕合物を単独で用いてもよく、二種以上を組み合わせて用いてもょ 、。
[0118] また、(B)成分として、アルモキサンを用いてもよい。アルモキサンとしては、有機ァ ルミ-ゥム化合物と縮合剤とを接触させることによって得られるものであって、一般式(
— A1(R')0— )nで示される鎖状アルミノキサン、あるいは環状アルミノキサンが挙げら れる。 (R'は炭素数 1〜10の炭化水素基であり、一部ハロゲン原子及び/又はアルコ キシ基で置換されたものも含む。 nは重合度であり、 5以上、好ましくは 10以上である ) o R'として、はメチル、ェチル、プロピル、イソブチル基が挙げられる力 メチル基が 好ま 、。アルミノキサンの原料として用いられる有機アルミニウム化合物としては、 例えば、トリメチルアルミニウム、トリェチルアルミニウム、トリイソブチルアルミニウムな どのトリアルキルアルミニウム及びその混合物などが挙げられる。
[0119] それらの中でも、トリメチルアルミニウムとトリブチルアルミニウムの混合物を原料とし て用いたアルモキサンを好適に用いることができる。
[0120] また、縮合剤としては、典型的なものとして水が挙げられる力 この他に該トリアルキ ルアルミニウムが縮合反応する任意のもの、例えば無機物などの吸着水ゃジオール などが挙げられる。
[0121] 上記の触媒系の (C)成分である周期律表第 2族、 12族、 13族元素の有機金属化 合物としては、例えば、有機マグネシウム、有機亜鉛、有機アルミニウム等が用いられ る。これらの化合物の内で好ましいのは、ジアルキルマグネシウム、アルキルマグネシ ゥムクロライド、アルキルマグネシウムブロマイド、ジアルキル亜鉛、トリアルキルアルミ ユウム、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキ ルアルミニウムセスキク口ライド、アルキルアルミニウムセスキブロマイド、アルキルアル ミニゥムジクロライド、ジアルキルアルミニウムハイドライド等である。 [0122] 具体的な化合物としては、メチルマグネシウムクロライド、ェチルマグネシウムクロラ イド、ブチルマグネシウムクロライド、へキシルマグネシウムクロライド、ォクチルマグネ ルマグネシウムアイオダイド、へキシルマグネシウムアイオダイドなどのアルキルマグ ネシゥムハライドを挙げることができる。
[0123] さらに、ジメチノレマグネシウム、ジェチノレマグネシウム、ジブチノレマグネシウム、ジへ キシルマグネシウム、ジォクチルマグネシウム、ェチルブチルマグネシウム、ェチルへ
[0124] さらに、ジメチル亜鉛、ジェチル亜鉛、ジイソブチル亜鉛、ジへキシル亜鉛、ジォク チル亜鉛、ジデシル亜鉛などのトリアルキル亜鉛を挙げることができる。
[0125] さらに、トリメチルアルミニウム、トリェチルアルミニウム、トリイソブチルアルミニウム、 トリへキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリ アルキルアルミニウムを挙げることができる。
[0126] さらに、ジメチルアルミニウムクロライド、ジェチルアルミニウムクロライドなどのジアル キルアルミニウムクロライド、ェチルアルミニウムセスキク口ライド、ェチルアルミニウム ジクロライドなどの有機アルミニウムハロゲン化合物、ジェチルアルミニウムハイドライ ド、ジイソブチルアルミニウムハイドライド、ェチルアルミニウムセスキハイドライドなど の水素化有機アルミニウム化合物も挙げることができる。
[0127] これらの周期律表第 2族、 12族、 13族元素の有機金属化合物は、単独で用いるこ ともできるが、 2種類以上併用することも可能である。
[0128] 第 3の方法において、得られるポリブタジエンの分子量調節剤としては、(1)水素、(
2)水素化金属化合物、(3)水素化有機金属化合物、力 選ばれる化合物を用いるこ とがでさる。
[0129] この場合の分子量調節剤の(2)水素化金属化合物としては、水素化リチウム、水素 化ナトリウム、水素化カリウム、水素化マグネシウム、水素化カルシウム、ボラン、水素 化アルミニウム、水素化ガリウム、シラン、ゲルマン、水素化ホウ素リチウム、水素化ホ ゥ素ナトリウム、水素化リチウムアルミニウム、水素化ナトリウムアルミニウム、などが挙 げられる。 [0130] また、分子量調節剤の(3)水素化有機金属化合物としては、メチルボラン、ェチル ボラン、プロピルボラン、ブチルボラン、フエニルボランなどのアルキルボラン、ジメチ ルボラン、ジェチルボラン、ジプロピルボラン、ジブチルボラン、ジフ ニルボランなど のジアルキルボラン、メチルアルミニウムジハイドライド、ェチルアルミニウムジハイドラ イド、プロピルアルミニウムジハイドライド、ブチルアルミニウムジハイドライド、フ -ル アルミニウムジハイドライドなどのアルキルアルミニウムジハイドライド、ジメチルアルミ ニゥムハイドライド、ジェチルアルミニウムハイドライド、ジプロピルアルミニウムハイドラ イド、ジブチルアルミニウムハイドライド、ジフ ニルアルミニウムハイドライドなどのジ アルキルアルミニウムハイドライド、メチルシラン、ェチルシラン、プロビルシラン、ブチ ルシラン、フエニルシラン、ジメチルシラン、ジェチルシラン、ジプロビルシラン、ジブ チルシラン、ジフエニルシラン、トリメチルシラン、トリェチルシラン、トリプロビルシラン 、トリブチルシラン、トリフエ-ルシランなどのシラン類、メチルゲルマン、ェチルゲルマ ン、プロピルゲルマン、ブチルゲルマン、フエ-ルゲルマン、ジメチルゲルマン、ジェ チルゲルマン、ジプロピルゲルマン、ジブチルゲルマン、ジフエ-ルゲルマン、トリメチ ルゲルマン、トリェチルゲルマン、トリプロピルゲルマン、トリブチルゲルマン、トリフエ -ルゲルマンなどのゲルマン類、などが挙げられる。
[0131] これらの中でも、ジイソブチルアルミニウムハイドライド、ジェチルアルミニウムハイド ライドが好ましく、ジェチルアルミニウムハイドライドが特に好まし 、。
[0132] 触媒成分の添加順序は、特に、制限はな 、が、例えば次の順序で行うことができる
[0133] (1)不活性有機溶媒中、重合すべきブタジエンモノマーの存在下又は不存在下に
(C)成分を添加し、 (A)成分と (B)成分を任意の順序で添加する。
[0134] (2)不活性有機溶媒中、重合すべきブタジエンモノマーの存在下又は不存在下に
(C)成分を添加し、上述した分子量調節剤を添加した後、(A)成分と (B)成分を任 意の順序で添加する。
[0135] (3)不活性有機溶媒中、重合すべきブタジエンモノマ—の存在下又は不存在に (A )成分を添加し、(C)成分と上述した分子量調節剤を任意の順序で添加した後、(B) 成分を添加する。 [0136] (4)不活性有機溶媒中、重合すべきブタジエンモノマーの存在下又は不存在に (B )成分を添加し、(C)成分と上述した分子量調節剤を任意の順序で添加した後、(A) 成分を添加する。
[0137] (5)不活性有機溶媒中、重合すべきブタジエンモノマーの存在下又は不存在下に
(C)成分を添加し、(A)成分と (B)成分を任意の順序で添加した後、上述した分子 量調節剤を添加する。
[0138] また、各成分をあらかじめ熟成して用いてもよい。中でも、(A)成分と (C)成分を熟 成することが好ましい。
[0139] 熟成条件としては、不活性溶媒中、重合すべきブタジエンモノマーの存在下又は 不存在に (A)成分と (C)成分を混合する。熟成温度は 50〜80°C、好ましくは 1 0〜50°Cであり、熟成時間は 0. 01〜24時間、好ましくは 0. 05〜5時間、特に好ま しくは 0. 1〜1時間である。
[0140] 本発明においては、各触媒成分を無機化合物、又は有機高分子化合物に担持し て用いることちでさる。
[0141] 第 1、および第 2の触媒を使用したポリブタジエンの重合時にも公知の分子量調節 剤、例えば、水素、シクロォクタジェン、アレンなどの非共役ジェン類、またはェチレ ン、プロピレン、ブテン一 1などの a—ォレフイン類を使用することができる。
[0142] 第 1の触媒を使用したポリブタジエンの重合時における、重合温度は— 30〜: LOO °Cの範囲が好ましぐ 30〜80°Cの範囲が特に好ましい。重合時間は 10分〜 12時間 の範囲が好ましぐ 30分〜 6時間が特に好ましい。また、重合圧は、常圧又は 10気 圧 (ゲージ圧)程度までの加圧下に行われる。シス 1, 4重合後のポリマー濃度は 5 〜26重量%となるようにシス— 1, 4重合を行うことが好ましい。重合槽は 1槽、又は 2 槽以上の槽を連結して行われる。重合は重合槽 (重合器)内にて溶液を攪拌混合し て行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽、例えば特公 昭 40 - 2645号に記載された装置を用いることができる。
[0143] 又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用すること ができる。シス—1, 4 構造含有率が一般に 90%以上、特に 95%以上で、ム一- 一粘度(MLl+4、 100°C、以下、 MLと略す) 10〜130、好ましくは 15〜80であり、 実質的にゲル分を含有しな ヽ。
[0144] 前記の如くして得られたシス 1, 4重合反応混合物に 1, 3 ブタジエンを添カロし ても添カ卩しなくてもよいが、次いでこの重合系でシンジオタクチック 1, 2重合する。
[0145] 第 3の触媒系を使用する重合方法においても、特に制限はなぐ 1, 3 ブタジエン モノマーそのものを重合溶媒とする塊状重合 (バルタ重合)、又は溶液重合などを適 用できる。溶液重合での溶媒としては、ブタン、ペンタン、へキサン、ヘプタン等の脂 肪族炭化水素、シクロペンタン、シクロへキサン等の脂環式炭化水素、ベンゼン、トル ェン、キシレン、ェチルベンゼン等の芳香族炭化水素、上記のォレフィン化合物ゃシ ス— 2—ブテン、トランス - 2-ブテン等のォレフィン系炭化水素等が挙げられる。
[0146] 中でも、ベンゼン、トノレェン、シクロへキサン、あるいは、シス 2 ブテンとトランス
2—ブテンとの混合物などが好適に用いられる。
[0147] 重合温度は— 30〜150°Cの範囲が好ましぐ 30〜100°Cの範囲が特に好ましい。
重合時間は 1分〜 12時間の範囲が好ましく、 5分〜 5時間が特に好まし 、。
[0148] 所定時間重合を行った後、重合槽内部を必要に応じて放圧し、洗浄、乾燥工程等 の後処理を行う。
[0149] 力べして得られるポリブタジエンとしては、好ましくは、シス 1, 4構造を 90%以上、 さらに好ましくは 92%以上、特に好ましくは 96%以上有するシス— 1, 4 ポリブタジ ェンが挙げられる。また、該共役ジェン重合体の [ 7? ]としては、好ましくは 0. 1〜: LO 、さらに好ましくは 1〜7、特に好ましくは 1.5〜5に制御することができる。
[0150] なお、この際、シス 1, 4重合後のポリマー濃度は 5〜26重量%となるようにシス 1, 4重合を行うことが好ましい。重合槽は 1槽、又は 2槽以上の槽を連結して行われ る。重合は重合槽 (重合器)内にて溶液を攪拌混合して行う。重合に用いる重合槽と しては高粘度液攪拌装置付きの重合槽、例えば特公昭 40— 2645号に記載された 装置を用いることができる。
[0151] 又重合時のゲルの生成を更に抑制するために公知のゲルィ匕防止剤を使用すること ができる。シス—1, 4 構造含有率が一般に 90%以上、特に 95%以上で、ム一- 一粘度(ML) 10〜130、好ましくは 15〜80であり、実質的にゲル分を含有しないこ とが好ましい。 [0152] シンジオタクチック— 1, 2重合の触媒としては、 R1 A1 (式中、 R1は炭素数 1〜10の
3
炭化水素基を示す。)で表されるトリアルキルアルミニウム化合物、ィォゥ化合物、及 び、必要ならコバルト化合物力 なる触媒系が用いられる。
[0153] ィォゥ化合物としては、二硫化炭素、イソチォシアン酸フエニル、キサントゲン酸ィ匕 合物などが挙げられる。中でも、二硫ィ匕炭素が好ましい。
R1 A1 (式中、 R1は炭素数 1〜10の炭化水素基を示す。)で表されるトリアルキルァ
3
ルミ-ゥム化合物、及び、コバルト化合物としては、前記シス 1, 4重合で用いたィ匕 合物が挙げられる。
[0154] トリアルキルアルミニウム化合物は 1, 3 ブタジエン 1モル当たり 0. 1ミリモル以上、 特に 0. 5〜50ミリモル以上である。ィォゥ化合物は特に限定されないが水分を含ま ないものであることが好ましい。ィォゥ化合物の濃度は 20ミリモル ZL以下、特に好ま しくは 0. 01〜10ミリモル ZLである。
[0155] 1, 2重合する温度は 0°C〜100°C、好ましくは 10〜100°C、更に好ましくは 20〜1 00°Cまでの温度範囲で 1, 3 ブタジエンを 1, 2重合する。 1, 2重合する際の重合 系には前記のシス重合液 100重量部当たり 1〜50重量部、好ましくは 1〜20重量部 の 1, 3 ブタジエンを添カ卩することで 1, 2重合時の 1, 2 ポリブタジエンの収量を増 大させることができる。重合時間(平均滞留時間)は 10分〜 2時間の範囲が好ましい 。 1, 2重合後のポリマー濃度は 9〜29重量%となるように 1, 2重合を行うことが好まし い。重合槽は 1槽、又は 2槽以上の槽を連結して行われる。重合は重合槽 (重合器) 内にて重合溶液を攪拌混合して行う。 1, 2重合に用いる重合槽としては 1, 2重合中 に更に高粘度となり、ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽 、例えば特公昭 40— 2645号公報に記載された装置を用いることができる。
[0156] 重合反応が所定の重合率に達した後、上述したハロゲン酸あるいはハロゲン酸塩 を添カ卩して重合を停止する。ハロゲン酸ある 、はハロゲン酸塩は溶液として添加する ことが好ましぐ特に、水溶液あるいはメタノール、エタノールなどのアルコール溶液と して添加することが好ましい。また、ポリマー溶液への分散性を向上するために界面 活性剤を共存させることもできる。
[0157] ハロゲン酸あるいはハロゲン酸塩の添カ卩量は、硫黄化合物 1モルに対して 0. 001 モノレ〜 10モノレ、好ましくは 0. 002〜5モノレ、更に好ましくは 0. 005〜2モノレである。 添加後の混合時間は 5秒〜 1時間、好ましくは 10秒〜 30分、更に好ましくは 20秒〜 10分である。
[0158] さらに、常法に従って公知の老化防止剤を添加することができる。老化防止剤とし てはフエノール系の 2, 6 ジ一 t—ブチル p—タレゾール(BHT)、リン系のトリノ- ルフエ-ルフォスファイト(TNP)、硫黄系のジラウリル 3, 3, 一チォジプロピオネー HTPL)などが挙げられる。単独でも 2種以上組み合わせて用いてもよぐ老化防止 剤の添カ卩は VCR100重量部に対して 0. 001〜5重量部である。次に重合停止剤を 重合系に加えて停止する。例えば重合反応終了後、重合停止槽に供給し、この重合 溶液にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入す る方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを 重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法 に従い生成した VCRを分離、洗浄、乾燥する。
[0159] なお、分離精製に先立ち、反応系中にハロゲン酸又はハロゲン酸塩が残存する場 合には、残存するハロゲン酸又はハロゲン酸塩は、亜硫酸、亜硫酸塩、チォ硫酸塩 、亜硝酸塩、シユウ酸、シユウ酸塩などの還元剤を含む水溶液と接触させることにより 死活させることができる。これにより、得られた VCRの酸ィ匕を防止することができる。
[0160] また、残存するハロゲン酸又はハロゲン酸塩による酸ィ匕が起こらな 、ように必要な 助剤、例えば酸ィ匕防止剤などの通常ゴム組成物に添加される助剤を添加することで 酸化の防止が達成される。酸ィ匕防止剤としてはヒンダードフエノール系などの公知の ものを使用することができる。
[0161] このようにして得られた VCRは、(I)沸騰 n—へキサン不溶分 (H. I. ) 3〜30重量 %と (Π)沸騰 n—へキサン可溶分 97〜70重量%とからなる。沸騰 n—へキサン可溶 分はミクロ構造が 80%以上のシス— 1, 4 ポリブタジエンである。 H. I.は融点が 18 0〜215°Cの SPBDである。 100°Cでの MLは 20〜150、好ましくは 25〜: L00である 。 VCR中に分散したシンジオタクチック 1, 2ポリブタジエンはシス 1, 4 ポリブタ ジエンマトリックス中に微細な結晶として均一に分散している。また、従来に比べて臭 気が低減している。 [0162] 本発明により得られる VCRは単独でまたは他の合成ゴム若しくは天然ゴムとブレン ドして配合し、必要ならばプロセス油で油展し、次いでカーボンブラックなどの充填剤 、加硫剤、加硫促進剤その他通常の配合剤を加えて加硫し、タイヤ用として有用であ り、トレッド、サイウォール、スティフナ一、ビードフイラ一、インナーライナ一、カーカス などに、その他、ホース、ベルトその他の各種工業用品等の機械的特性及び耐摩耗 性が要求されるゴム用途に使用される。また、プラスチックスの改質剤として使用する ことちでさる。
実施例
[0163] 以下の実施例および比較例において、ブタジエンゴムについて以下の各項目の測 定は、次のようにして行った。
[0164] n—へキサン不溶分の還元粘度:
ポリブタジエンゴム 25gを沸騰 n—へキサン 1000ml中で還流し、沸騰 n—へキサン 不溶分と可溶分とに分離した。得られた沸騰 n—へキサン不溶分 0. 2gをテトラリン 1 00mlに溶解し、 130°Cの温度にてウベローデ粘度計にて測定した。
n—へキサン不溶分の融点:
DSCによる吸熱曲線力も測定した。
[0165] n—へキサン可溶分の重量平均分子量の測定:
ポリブタジエンゴム 25gを沸騰 n—へキサン 1000ml中で還流し、沸騰 n—へキサン 不溶分を濾別し、 n—へキサン溶液を回収した。得られた n—へキサン溶液カゝら n— へキサンを除去し、 n—へキサン可溶分を回収した。回収された n—へキサン可溶分 をテトラヒドロフランに溶解し、 GPCを用い、ポリスチレン換算分子量力も Mwを算出 した。測定は以下の条件で行った。
装置: HLC— 802A型(東ソ一株式会社製)、カラム: GMH6000、 2本並列、 溶 離液:テトラヒドロフラン、溶離液流量: 1. OmlZ分、測定温度:カラム槽 40°C、検出 器 40°C、サンプル濃度: 0. 25gZL、サンプル注入量: 0. 5ml
[0166] n—へキサン可溶分のミクロ構造:
上記の方法で得られた沸騰 n—へキサン可溶分にっ 、て、赤外線吸収スペクトル 法によってシス一 1, 4—構造 740cm- 1、トランス一 1, 4—構造 967cm- 1、 1, 2— 構造 (ビュル) 911cm-lの吸収強度比力もミクロ構造を算出した。
[0167] n—へキサン可溶分のトルエン溶液粘度 (T— cp):
上記の方法で得られた沸騰 n—へキサン可溶分を 5重量%になるようにトルエンに 溶解して、キャノンフェンスケ粘度計を 25°Cで測定した。
[0168] n—へキサン可溶分及び配合物のム一-一粘度:
JIS—K— 6300に規定されている測定方法に従って測定した。
[0169] 残存臭気の検査:
製造終了後に、製品の臭いをかいで、残存する臭気の程度を検査すると共に、客 観性を持たせるために、臭気物質が主として製品中の揮発性成分中に含まれること から、揮発性成分量を指標として採用し、以下の条件で揮発性成分量を測定した。 そして、臭覚により検査した臭気の程度との対比を行い、総合的に残存臭気の程度 を判断した。なお、その結果は、比較例 1で得られた揮発性成分量を 100として表示 したときの、相対的な数値として、後述の表 1に纏めて示す。
[0170] 容量 20mlのサンプル瓶に、各例に於いて得られたゴム成分 2. 5gを正確に秤取り
、 170°Cで 30分加熱した後、サンプル瓶中の気相部分 lmlを用い、 FPD検出器を 備えたガスクロマトグラフで、以下の条件で測定を行った。
FPDガスクロマトグラフ: Agilent6890型
カラム型: HP— 1、 60m (長さ) X O. 32mm (内径) X 5. (膜厚)
カラム条件: 40°C、 5分間保持後、毎分 15°Cの割合で 250°Cまで昇温、最後に 250 °Cで 11分保持。
測定時間: 30分
[0171] (実施例 1)
(シス 1, 4—重合)内容量 2. 0Lオートクレーブの内部を窒素置換し、シクロへキサ ン(350ml)、シス 2—ブテン(340ml)、 1, 3—ブタジエン(310ml)の割合からなる 溶液 (FB)を 1L注入し、 30分攪拌した後、次いで、二硫ィ匕炭素 19mg、水 (H 0) 26
2 mgを添加し、 30分攪拌溶解した。次いで、ジェチルアルミニウムクロライド (DEAC) を濃度が 2. 9mmolZLとなるように添加し、 3分後、チォジプロピオン酸ジラウリル 8 mg、シクロォクタジェン 1. 45mlをカ卩え、 50°Cまで昇温した後、ォクチル酸コバルト( Co (Oct) ) (30mgZmlのトルエン溶液) 0. 6mlを加え、重合温度 50°Cで 20分間マ
2
トリックス重合を行った。
(シンジオタクチック 1, 2重合)次に、トリェチルアルミニウム(TEA)を 3. 5mmol ZLとなるように添加し、 5分間攪拌後、ォクチル酸コバルトのトルエン溶液(30mgZ L) 0. 6mlを添カ卩し、 20分間重合させた。重合終了後、 0. 05molZLの次亜塩素酸 ナトリウム水溶液 1. 26mlを添加して、重合反応を停止させた後、重合溶液を常法に 従って処理し、ポリブタジエンゴムを回収した。得られたポリブタジエンゴムは、収量 力 7gであり、ム一-一粘度が 49. 4 (MLl+4、 100°C)であった。また、得られた ゴムは、感応検査では、ほとんど臭気を感じさせないものであった。
[0172] 沸騰 n—へキサン不溶分の含有率が 13重量%、沸騰 n—へキサン可溶分の含有 率は 87重量%であった。 DSCによる吸熱曲線に 201. 3°Cのピークを有していた。
[0173] (実施例 2)
次亜塩素酸ナトリウム水溶液の添加量を 3. 72mlとした以外は、実施例 1と同様に 重合を行った。得られたポリブタジエンゴムは、収量が 99. 2gであり、ム一-一粘度 力 8. 9 (MLl+4、 100°C)であった。また、ほとんど臭気を感じさせないものであつ た。
[0174] 沸騰 n—へキサン不溶分の含有率が 13. 5重量%、沸騰 n—へキサン可溶分の含 有率は 86. 5重量%であった。 DSCによる吸熱曲線に 201. 1°Cのピークを有してい た。
[0175] (比較例 1)
重合停止時に、次亜塩素酸ナトリウム水溶液に代え、水を添加した以外は、実施例 1と同様に重合を行った。得られたポリブタジエンゴムは、収量が 99. 7gであり、ムー ニー粘度力 8. 5 (MLl+4、 100°C)であった。また、得られたゴムは不快な臭気を 有していた。
[0176] 沸騰 n—へキサン不溶分の含有率が 12. 9重量%、沸騰 n—へキサン可溶分の含 有率は 87. 1重量%であった。 DSCによる吸熱曲線に 201. 3°Cのピークを有してい た。
[0177] (実施例 3) (シス 1, 4一重合)内容量 1. 5Lオートクレープの内部を窒素置換し、あらかじめブ タジェン 33wt%、シクロへキサン 16wt%および 2 ブテン 51wt%を混合した溶液 7 OOmLを仕込み、室温にて水(H O)を濃度が 3. 7mmolZLになるように添カ卩し、さ
2
らに、二硫化炭素を 30mgZL、 1, 5 シクロォクタジェンを 10. 2mmolZLになるよ うに添加し、 700rpmで 30分間強攪拌した。ジェチルアルミニウムクロライド (DEAC )とトリェチルアルミニウム(TEA)のシクロへキサン混合溶液(DEAC :TEA= 2: 1 ( モル比)、 A1濃度 lmolZL) 2. 4mlを添加し、室温で 5分間攪拌した。 60°Cに加温 し、ォクチル酸コバルト(Co (Oct) )のトルエン溶液(0. 005mol/L) l. 8mlを添カロ
2
して重合を開始し、 70°Cで 15分間重合させた。
(シンジオタクチック 1, 2重合)次に、トリェチルアルミニウム(TEA)のシクロへキ サン溶液(lmolZL)4. 2mlを添カ卩し、引き続き液化 1, 3 ブタジエン 140ml、水 3 6mg、ォクチル酸コバルト(Co (Oct) )のトルエン溶液(0. 05mol/L) l. 05mlを添
2
加し、さらに 60°Cで 15分間重合させた。 0. 2molZLの次亜塩素酸ナトリウム水溶液 2mlを添加後 5分間攪拌して重合反応を停止した後、重合溶液を常法に従って処理 し、ポリブタジエンゴムを回収した。得られたポリブタジエンゴムは、収量が 113gであ り、ム一-一粘度が 72 (MLl+4 、 100°C)であった。また、得られたゴムはほとんど臭 気を感じさせな!/、ものであった。
[0178] 沸騰 n—へキサン不溶分の含有率が 16. 6重量%、沸騰 n—へキサン可溶分の含 有率は 83. 4重量%であった。沸騰 n—へキサン不溶分は還元粘度が 1. 4であり、 D SCによる吸熱曲線に 201. 2°Cのピークを有していた。沸騰 n—へキサン可溶分はム 一-一粘度が 32 (MLl+4 、 100°C)、トルエン溶液粘度が 82、重量平均分子量が 4 0万であり、シス 1, 4構造の割合は 98. 5%、トランス 1, 4構造の割合は 0. 7%、 1, 2 構造の割合は 0. 8%であった。
[0179] (実施例 4)
重合停止時に、 3wt%さらし粉 (CaCl(OCl) )懸濁水を添加した以外は、実施例 3 と同様にポリブタジエンの合成を行った。得られたゴムはほとんど臭気を感じさせな ヽ ものであった。
[0180] (実施例 5) 重合停止時に、 3wt%高度さらし粉 (次亜塩素酸カルシウム)懸濁水を添加した以 外は、実施例 3と同様にポリブタジエンの合成を行った。得られたゴムはほとんど臭気 を感じさせな 、ものであった。
[0181] (実施例 6)
重合停止時に、 3wt%塩素酸カリウム水溶液を添加した以外は、実施例 3と同様に ポリブタジエンの合成を行った。得られたゴムはほとんど臭気を感じさせな ヽものであ つた o
[0182] (比較例 2)
重合停止時に、次亜塩素酸ナトリウム水溶液を添加しなカゝつた以外は、実施例 3と 同様にポリブタジエンの合成を行った。得られたゴムは不快な臭気を有して 、た。
[0183] (実施例 7)
(触媒の熟成)シクロへキサン 5. 2ml、ジイソブチルアルミニウムハイドライド 1. 5m mol (シクロへキサン溶液 0. 75ml)、ブタジエン 0. 31mmol及び NdV (ネオジムバ
3
ーサテート) 0. O5mmol (シクロへキサン溶液)を混合し、 50°Cで 5分間熟成した。さ らに、ジェチルアルミニウムクロライド 0. 15mmol (シクロへキサン溶液)を添カ卩し、 25 分間熟成した。
(シス 1, 4—重合)内部を窒素ガスで置換した容量 2リットルのオートクレープに、 1, 3—ブタジエン 25wt%及びシクロへキサン 75wt%力もなるブタジエン溶液を仕込ん だ。ジイソブチルアルミニウムハイドライド 2. 5mmol (シクロへキサン溶液 1. 25ml)、 及び上記の触媒熟成液全量を添加し、 60°Cで 30分間重合した。
(シンジォタクチック— 1, 2重合)上記のシス重合溶液に、二硫ィ匕炭素 15mg、トリエ チルアルミニウム 3. 5mmol、及びコバルトォクトエート 35mgをカ卩えて、 60°C、 15分 間攪拌を行い、残余の 1, 3—ブタジエンをシンジオタクチック一 1, 2重合した。 0. 2 molZLの次亜塩素酸ナトリウム水溶液 2mlを添加後 5分間攪拌して重合反応を停 止した後、重合溶液を常法に従って処理し、ポリブタジエンゴムを回収した。得られた ポリブタジエンゴムは、収量が 97gであり、ム一-一粘度が 51 (MLl+4、 100°C)で あった。また、得られたゴムはほとんど臭気を感じさせないものであった。
[0184] 沸騰 n—へキサン不溶分の含有率が 14重量%、沸騰 n—へキサン可溶分の含有 率は 86重量%であった。沸騰 n—へキサン不溶分は還元粘度が 1. 6であり、 DSCに よる吸熱曲線に 202. 4°Cのピークを有していた。沸騰 n—へキサン可溶分はム一- 一粘度が 23 (MLl+4、 100°C)、トルエン溶液粘度が 91、重量平均分子量が 60万 であり、シス—1, 4構造の割合は 98. 2%、トランス 1, 4構造の割合は 0. 9%、 1, 2 構造の割合は 0. 9%であった。
[0185] (比較例 3)
重合停止時に、次亜塩素酸ナトリウム水溶液を添加しなカゝつた以外は、実施例 7と 同様にポリブタジエンの合成を行った。得られたゴムはやや不快な臭気を有して 、た
[0186] (実施例 8)
(シス 1, 4一重合)内容量 5. 0Lのオートクレーブの内部を窒素置換し、シクロへキ サン(900ml) ,シス 2 ブテン(1200ml) , 1, 3 ブタジエン(900ml)の割合からな る溶液 (FB)を 3L注入し、 30分攪拌した後、カールフイシヤー水分計にて水分を測 定し平均 lOppmの水分値を得た。同様の操作を繰り返し、 FB3Lをオートクレーブに 受け、水素ガスを積算マスフロメ タ—で 20°C、 1気圧換算で 340ml注入した。次い で、二硫ィ匕炭素 45mg、水 (H 0) 56mgを添加し、 30分間撹拌溶解した。次いでトリ
2
ェチルアルミニウム(ImmolZmLのトルエン溶液)を 6ml添カ卩し、 3分後、シクロペン タジェ-ルバナジウムトリクロライド(CpVCl ) (0. 005mmolZmLのトルエン溶液) 3
3
mLをカ卩え、トリフエ-ルカルベ-ゥムテトラキス(ペンタフルォロフエ-ル)ボレート(P h CB(C F ) ) (0. 0025mmolZmLのトルエン溶液) 12mLをカ卩え、重合温度 40°C
3 6 5 4
で 30分間マトリックスの重合を行った。
(シンジオタクチック 1, 2重合)次に、コバルトォクトエート(0. ImmolZmlのトル ェン溶液)を 1. 7ml添加し 30分間重合を継続した。重合終了後、 0. 2molZLの次 亜塩素酸ナトリウム水溶液 2mlを添加して重合反応を停止した後、 5分間攪拌を続け 、重合溶液を常法に従って処理し、ポリブタジエンゴムを回収した。得られたポリブタ ジェンゴムは、収量が 190gであり、ム一-一粘度が 38 (MLl+4、 100°C)であった。 また、得られたゴムはほとんど臭気を感じさせな 、ものであった。
[0187] 沸騰 n—へキサン不溶分の含有率が 6重量%、沸騰 n—へキサン可溶分の含有率 は 94重量%であった。沸騰 n—へキサン不溶分は還元粘度が 1. 5であり、 DSCによ る吸熱曲線に 204°Cのピークを有していた。沸騰 n—へキサン可溶分はム一-一粘 度が 27 (MLl+4、 100°C)、トルエン溶液粘度が 84であり、シス 1, 4構造の割合 は 88. 9%、トランス 1, 4構造の割合は 0. 8%、 1, 2 構造の割合は 10. 5%であ つた o
[0188] (実施例 9)
重合停止時に、 3wt%さらし粉 (CaCl(OCl) )懸濁水を添加した以外は、実施例 8 と同様にポリブタジエンの合成を行った。得られたゴムはほとんど臭気を感じさせな ヽ ものであった。
[0189] (実施例 10)
重合停止時に、 3wt%高度さらし粉 (次亜塩素酸カルシウム)懸濁水を添加した以 外は、実施例 8と同様にポリブタジエンの合成を行った。得られたゴムはほとんど臭気 を感じさせな 、ものであった。
[0190] (実施例 11)
重合停止時に、 3wt%塩素酸カリウム水溶液を添加した以外は、実施例 8と同様に ポリブタジエンの合成を行った。得られたゴムはほとんど臭気を感じさせな ヽものであ つた o
[0191] (比較例 4)
重合停止時に、次亜塩素酸ナトリウム水溶液を添加しなカゝつた以外は、実施例 8と 同様にポリブタジエンの合成を行った。得られたゴムはやや不快な臭気を有して 、た
[0192] (実施例 12)
(シス 1, 4 重合)内容量 2Lのオートクレーブの内部を窒素置換し、トルエン 390m 1及びブタジエン 210ml力もなる溶液を仕込み、溶液の温度を 30°Cとした後、ジェチ ルアルミニウムヒドリド(DEAH)のトルエン溶液(2molZL) 0. 9mlを添カ卩し、毎分 55 0回転で 3分間攪拌した。次に、トリス(2, 2, 6, 6—テトラメチルヘプタン— 3, 5 ジ ォナト)イットリウムのトルエン溶液(20mmolZL) 1. 8mlを添カ卩して 40°Cまでカ卩温し た。 4分間攪拌したのち、トリフエ-ルカルベ-ゥムテトラキスペンタフルォロフエ-ル ボレートのトルエン溶液(0. 43mol/L) 0. 18mlを添カ卩して重合を開始し、 40°Cで 3 0分間重合を行った。
(シンジオタクチック 1, 2重合)次に、トリェチルアルミニウム(TEA)のトルエン溶 液(lmolZL) l. 8mlを添カ卩し、引き続き水を 0. 5mmolZLになるように添カ卩し、ォ クチル酸コバルト(Co (Oct) 2)のトルエン溶液(0. 05mol/L) l. 8ml、二硫化炭素 のトルエン溶液(lmolZL) O. 36mlを添カ卩して、さらに 40°Cで 10分間重合させた。 0. 2molZLの次亜塩素酸ナトリウム水溶液 2mlを添加後 5分間攪拌して重合反応を 停止した後、重合溶液を常法に従って処理し、ポリブタジエンゴムを回収した。得ら れたポリブタジエンゴムは、収量が 100gであり、ム一-一粘度が 82 (MLl+4、 100 °C)であった。また、得られたゴムはほとんど臭気を感じさせないものであった。
[0193] 沸騰 n—へキサン不溶分の含有率が 11. 2重量%、沸騰 n—へキサン可溶分の含 有率は 88. 8重量%であった。 DSCによる吸熱曲線に 203. 9°Cのピークを有してい た。
[0194] (実施例 13)
重合停止時に、 3wt%さらし粉 (CaCl(OCl) )懸濁水を添加した以外は、実施例 1 2と同様にポリブタジエンの合成を行った。得られたゴムはほとんど臭気を感じさせな いものであった。
[0195] (実施例 14)
重合停止時に、 3wt%高度さらし粉 (次亜塩素酸カルシウム)懸濁水を添加した以 外は、実施例 12と同様にポリブタジエンの合成を行った。得られたゴムはほとんど臭 気を感じさせな!/、ものであった。
[0196] (実施例 15)
重合停止時に、 3wt%塩素酸カリウム水溶液を添加した以外は、実施例 12と同様 にポリブタジエンの合成を行った。得られたゴムはほとんど臭気を感じさせな 、もので めつに。
[0197] (比較例 5)
重合停止時に、次亜塩素酸ナトリウム水溶液を添加しなカゝつた以外は、実施例 12と 同様にポリブタジエンの合成を行った。得られたゴムは不快な臭気を有して 、た。 [0198] [表 1]
Figure imgf000037_0001
[0199] 表 1に示した揮発性成分の測定結果と嗅覚による臭気検査の結果は、良く一致し ていた。
[0200] 以下の実施例 ·比較例は、重合停止後に得られたポリブタジエンゴムの酸ィ匕劣化 特性について、酸化防止剤の 1種として知られている Irganoxl 520を添カ卩して試験 した結果を示す。なお、酸ィ匕劣化特性を判断する指標として酸ィ匕劣化時間を測定し た。
[0201] 酸化劣化の測定:
DSC測定装置において、重合体を空気雰囲気下で目的の温度に保ち、酸化劣化 に基づく発熱が見られるまでの時間を測定した。発熱を生じるまでの時間が長いほど 、重合体の酸ィ匕劣化が起こりにくいことを示す。
[0202] (比較例 6)
重合停止後に酸化防止剤として Irganoxl 520を、重合体に lOOOppm残留するよ うに添加した他は、比較例 1と同様に重合を行った。得られたポリブタジエンゴムの酸 化劣化特性について、 140°C、 145°C、 150°Cにおいて測定し、その測定結果を表 2に示した。
[0203] (実施例 16)
次亜塩素酸ナトリウム水溶液を添加して重合を停止した後、酸ィ匕防止剤として Irga noxl520を、重合体に lOOOppm残留するように添カ卩した他は、実施例 1と同様に重 合を行った。得られたポリブタジエンゴムの酸ィ匕劣化特性について、 140°C、 145°C 、 150°Cにおいて測定し、その測定結果を表 2に示した。 [0204] (実施例 17)
Irganoxl520を、重合体に 1350ppm残留するように添カ卩した以外は、実施例 16 と同様に重合を行った。得られたポリブタジエンゴムの酸ィ匕劣化特性について、 140 。C、 145°C、 150°Cにおいて測定し、その測定結果を表 2に示した。
[0205] (実施例 18)
Irganoxl520を、重合体に 1700ppm残留するように添カ卩した以外は、実施例 16 と同様に重合を行った。得られたポリブタジエンゴムの酸ィ匕劣化特性について、 140 。C、 145°C、 150°Cにおいて測定し、その測定結果を表 2に示した。
[0206] (実施例 19)
Irganoxl520を、重合体に 2000ppm残留するように添カ卩した以外は、実施例 16 と同様に重合を行った。得られたポリブタジエンゴムの酸ィ匕劣化特性について、 140 。C、 145°C、 150°Cにおいて測定し、その測定結果を表 2に示した。
[0207] [表 2]
Figure imgf000038_0001
[0208] 以上の結果から、実施例 16のように、酸ィ匕防止剤の添加量が十分でない場合には 、次亜塩素酸ナトリウム水溶液を添加しな力つたときと同量の酸ィ匕防止剤を添加した 比較例 6と比較しても、同等〜やや劣る酸ィ匕劣化が起きる力 実施例 17〜19のよう に、十分な量の酸ィ匕防止剤を添加することにより、次亜塩素酸ナトリウム無添加の場 合と比較しても、明らかに分解の防止効果があることが示された。
産業上の利用可能性
[0209] 本発明により得られる VCRは、極めて臭気が低減されており、それ故、単独でまた は他の合成ゴム、必要に応じて添加される各種添加剤などをカ卩えることにより、各種 用途、例えば、タイヤ、ホース、ベルトその他の各種工業用品等の機械的特性及び 耐摩耗性が要求されるゴム用途に使用される。また、プラスチックスの改質剤として使 用することもできる。従って、本発明は、産業上有用な技術を提供するものである。

Claims

請求の範囲
[1] 1, 3 ブタジエンをシス 1, 4重合し,次いでこの重合系でシンジオタクチック 1 , 2重合するポリブタジエンの製造方法において、重合後に以下の一般式 (I): Μ,(Χ,0 ) Ζ' (I)
Q r s
(但し、式中、 M'は金属あるいは水素原子を表し、 X'は塩素、臭素、ヨウ素から選ば れるハロゲン原子を表し、 Oは酸素原子を表し、 qは 1以上 4以下の整数を表し、 Z'は M'に結合しうる陰イオンを表し、 rは 1以上の整数を表し、 r+sは M'の酸ィ匕数を表す 。)で示されるハロゲン酸又はハロゲン酸塩を添加することを特徴とするポリブタジェ ンの製造方法。
[2] X'が塩素であることを特徴とする請求項 1に記載のポリブタジエンの製造方法。
[3] 一般式 (I)で示される化合物が次亜塩素酸または次亜塩素酸塩であることを特徴と する請求項 1に記載のポリブタジエンの製造方法。
[4] シンジオタクチック 1, 2重合の触媒力 コバルトィ匕合物、アルキルアルミニウム化 合物、及びィォゥ化合物力 なる触媒であることを特徴とする請求項 1〜3のいずれ かに記載のポリブタジエンの製造方法。
[5] シス 1, 4重合の触媒が、コバルト化合物、有機アルミニウム化合物、及び水から なる触媒であることを特徴とする請求項 1〜4のいずれかに記載のポリブタジエンの 製造方法。
[6] 有機アルミニウム化合物が、 R1 A1 (式中、 R1は炭素数 1〜10の炭化水素基を示す
3
。;)で表されるトリアルキルアルミニウム化合物及び R2 A1X (式中、 R2は炭素数 1
3- n n
〜10の炭化水素基、 Xはハロゲンを示し、 nは 1〜2の数である。)で表されるハロゲ ン含有アルミニウム化合物であることを特徴とする請求項 5に記載のポリブタジエンの 製造方法。
[7] シス 1, 4重合の触媒力 周期律表 3族金属の化合物、アルキルアルミニウムノ、ィ ドライドィ匕合物、ブタジエン、メチルアルミノキサン、及び塩素含有化合物から選ばれ る成分を熟成して得られる触媒であることを特徴とする請求項 1〜4のいずれかに記 載のポリブタジエンの製造方法。
[8] シス— 1, 4重合の触媒が、遷移金属化合物のメタ口セン型錯体、非配位性ァ-ォ ンとカチオンとのイオン性化合物、周期律表第 1〜3族元素の有機金属化合物、及 び水 (但し、(周期律表第 1〜3族元素の有機金属化合物) Z (水) =0. 66〜5 (モル 比)である。)から得られる触媒であることを特徴とする請求項 1〜4のいずれかに記 載のポリブタジエンの製造方法。
[9] シス— 1, 4重合の触媒が、(A)イットリウム化合物、(B)非配位性ァ-オンとカチォ ンとからなるイオン性ィ匕合物、並びに (C)周期律表第 2族、 12族及び 13族から選ば れる元素の有機金属化合物力 得られる触媒であることを特徴とする請求項 1〜4の V、ずれかに記載のポリブタジエンの製造方法。
[10] 当該 (A)イットリウム化合物として、下記の一般式:
Figure imgf000041_0001
(但し、式中、 Rl, R2, R3は水素、または炭素数 1〜12の炭化水素基を表し、 Oは 酸素原子を表し、 Yはイットリウム原子を表す。)で表される嵩高い配位子を有するィ ットリウム化合物を用いることを特徴とする請求項 9に記載のポリブタジエンの製造方 法。
該ポリブタジエンが、(1)沸騰 n—へキサン不溶分 3〜30重量%と(2)沸騰 n—へキ サン可溶分 97〜70重量%とからなる補強ポリブタジエンであることを特徴とする請求 項 1〜10のいずれかに記載のポリブタジエンの製造方法。
PCT/JP2007/060122 2006-05-22 2007-05-17 ポリブタジエンの製造方法 WO2007135946A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE602007012344T DE602007012344D1 (de) 2006-05-22 2007-05-17 Verfahren zur herstellung von polybutadien
JP2008516636A JP5375092B2 (ja) 2006-05-22 2007-05-17 ポリブタジエンの製造方法
EP07743557A EP2028196B1 (en) 2006-05-22 2007-05-17 Method for producing polybutadiene
US12/227,521 US7868103B2 (en) 2006-05-22 2007-05-17 Method for producing polybutadiene
CN2007800187514A CN101448861B (zh) 2006-05-22 2007-05-17 聚丁二烯的制备方法
KR1020087030739A KR101324845B1 (ko) 2006-05-22 2007-05-17 폴리부타디엔의 제조방법
BRPI0713099-6A BRPI0713099A2 (pt) 2006-05-22 2007-05-17 processo para a produção de polibutadieno

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-141109 2006-05-22
JP2006141109 2006-05-22
JP2006166617 2006-06-15
JP2006-166617 2006-06-15
JP2006197862 2006-07-20
JP2006-197862 2006-07-20

Publications (1)

Publication Number Publication Date
WO2007135946A1 true WO2007135946A1 (ja) 2007-11-29

Family

ID=38723258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060122 WO2007135946A1 (ja) 2006-05-22 2007-05-17 ポリブタジエンの製造方法

Country Status (8)

Country Link
US (1) US7868103B2 (ja)
EP (1) EP2028196B1 (ja)
JP (1) JP5375092B2 (ja)
KR (1) KR101324845B1 (ja)
CN (1) CN101448861B (ja)
DE (1) DE602007012344D1 (ja)
TW (1) TWI389927B (ja)
WO (1) WO2007135946A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227524A (ja) * 2012-03-30 2013-11-07 Ube Industries Ltd ビニル・シス−ポリブタジエンの製造方法及びそれによって得られたビニル・シス−ポリブタジエン
CN104311762A (zh) * 2014-11-19 2015-01-28 中国科学院长春应用化学研究所 一种无规-间同立构嵌段聚丁二烯及其制备方法
JP2016540080A (ja) * 2013-12-03 2016-12-22 株式会社ブリヂストン シス−1,4−ポリブタジエンとシンジオタクチック1,2−ポリブタジエンのブレンドを調製するプロセス
JP2020139171A (ja) * 2015-01-28 2020-09-03 株式会社ブリヂストン 官能化ポリマーを調製するための方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776819B2 (ja) * 2008-12-19 2015-09-09 宇部興産株式会社 ポリブタジエンの製造方法
CN102906128B (zh) * 2010-02-19 2014-11-26 宇部兴产株式会社 聚丁二烯及改质聚丁二烯、其等的制造方法、及使用其等的橡胶强化苯乙烯系树脂组成物
ITMI20122203A1 (it) * 2012-12-20 2014-06-21 Versalis Spa Procedimento per la preparazione di (co)polimeri di dieni coniugati in presenza di un sistema catalitico comprendente un complesso osso-azotato di cobalto
ITMI20122199A1 (it) * 2012-12-20 2014-06-21 Versalis Spa Procedimento per la preparazione di (co)polimeri di dieni coniugati in presenza di un sistema catalitico comprendente un complesso bis-imminico di cobalto
ITMI20122201A1 (it) * 2012-12-20 2014-06-21 Versalis Spa Complesso osso-azotato di cobalto, sistema catalitico comprendente detto complesso osso-azotato e procedimento per la (co)polimerizzazione di dieni coniugati
ITMI20122206A1 (it) * 2012-12-20 2014-06-21 Versalis Spa Procedimento per la preparazione di (co)polimeri di dieni coniugati in presenza di un sistema catalitico comprendente un complesso bis-immino-piridinico di cobalto
JP6390610B2 (ja) * 2013-03-13 2018-09-19 宇部興産株式会社 共役ジエン重合用触媒及びそれを用いた共役ジエン重合体、変性共役ジエン重合体、それらの製造方法、タイヤ用ゴム組成物、並びにゴムベルト用ゴム組成物
ITMI20131828A1 (it) * 2013-11-05 2015-05-06 Versalis Spa Polibutadieni di-blocco stereoregolari a struttura 1,4-cis/1,2 sindiotattica da polimerizzazione stereospecifica
ITMI20131830A1 (it) * 2013-11-05 2015-05-06 Versalis Spa Polibutadieni di-blocco stereoregolari a struttura 1,4-cis/1,2 sindiotattica da polimerizzazione stereospecifica
TWI681982B (zh) * 2014-07-09 2020-01-11 日商宇部興產股份有限公司 共軛二烯聚合用觸媒、共軛二烯聚合物、改性共軛二烯聚合物、及聚丁二烯、以及含此等成分的組成物
WO2018048124A1 (ko) * 2016-09-08 2018-03-15 주식회사 유피케미칼 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2018188104A1 (zh) * 2017-04-15 2018-10-18 苏州大学张家港工业技术研究院 一种基于三茂稀土金属配合物制备硼酸酯的方法
KR101851969B1 (ko) * 2017-07-21 2018-04-25 금호석유화학 주식회사 신디오택틱 1,2-폴리부타디엔을 포함하는 고무 조성물의 제조방법
KR102060531B1 (ko) 2018-07-20 2020-02-11 금호석유화학 주식회사 고무 조성물의 제조방법

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917666B1 (ja) 1970-12-25 1974-05-02
JPS4917667B1 (ja) 1970-12-25 1974-05-02
JPS5430280A (en) * 1977-08-11 1979-03-06 Ube Ind Ltd Purification of polybutadiene
JPS5450088A (en) * 1977-09-29 1979-04-19 Ube Ind Ltd Purification of liquid polybutadiene
JPS5915413A (ja) * 1982-07-20 1984-01-26 Ube Ind Ltd 1,3―ブタジエンの重合方法
JPS5930839A (ja) * 1982-08-12 1984-02-18 Adeka Argus Chem Co Ltd 安定化された合成ゴム組成物
JPS6123611A (ja) * 1984-07-12 1986-02-01 Japan Synthetic Rubber Co Ltd 共役ジエンの重合方法
JPS62171B2 (ja) 1981-12-24 1987-01-06 Ube Industries
JPS6336324B2 (ja) 1981-12-24 1988-07-20 Ube Industries
JPH0237927B2 (ja) 1982-07-20 1990-08-28 Ube Industries Hokyohoributajennoseizoho
JPH0238081B2 (ja) 1983-03-08 1990-08-29 Ube Industries Hokyohoributajengomunoseizoho
JPH0363566B2 (ja) 1982-10-21 1991-10-01 Ube Industries
JPH0448815B2 (ja) 1984-09-19 1992-08-07 Ube Industries
JP2000044633A (ja) 1998-07-31 2000-02-15 Ube Ind Ltd 新規なビニル・シスーブタジエンゴムの製造方法及びビ ニル・シスーブタジエンゴム組成物
JP2000154215A (ja) 1998-11-19 2000-06-06 Ube Ind Ltd 共役ジエン重合体及びその製造方法
JP2000159836A (ja) 1998-11-26 2000-06-13 Ube Ind Ltd 共役ジエン重合体の製造方法
JP2000256507A (ja) * 1999-03-04 2000-09-19 Ube Ind Ltd ポリブタジエンゴム及びその製造方法。
JP2001294614A (ja) * 2000-04-13 2001-10-23 Ube Ind Ltd ポリブタジエンおよびその製造方法
US6956093B1 (en) 2004-10-29 2005-10-18 The Goodyear Tire & Rubber Company Preparation of syndiotactic polybutadiene, rubber composition and tire with rubber component
WO2006049016A1 (ja) * 2004-11-01 2006-05-11 Ube Industries, Ltd. 共役ジエン重合体の重合用触媒及びそれを用いた共役ジエン重合体の製造方法、タイヤ用ゴム組成物並びにゴルフボール用ゴム組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372399A (en) 1970-12-25 1974-10-30 Ube Industries Process for producing polybutadiene
JPS4917667A (ja) 1972-06-03 1974-02-16
JPS4917666A (ja) 1972-06-05 1974-02-16
CA1219994A (en) * 1981-12-24 1987-03-31 Nobunori Maehara Process for producing polybutadiene rubber with enhanced mechanical strength
JPS5968316A (ja) * 1982-10-14 1984-04-18 Ube Ind Ltd 1.3−ブタジエンの重合法
JPS62171A (ja) 1985-06-26 1987-01-06 Pioneer Electronic Corp 再生水平同期信号発生装置
JPS6336324A (ja) 1986-07-30 1988-02-17 Shin Kobe Electric Mach Co Ltd キ−入力装置
JPH0238081A (ja) 1988-07-28 1990-02-07 Oki Electric Ind Co Ltd プリンタの印字方法
JPH0237927A (ja) 1988-07-28 1990-02-07 Aida Eng Ltd ブランク搬送装置
JPH06103295B2 (ja) 1989-07-31 1994-12-14 株式会社島津製作所 分析装置の分析指示装置
JPH0448815A (ja) 1990-06-15 1992-02-18 Sharp Corp 増幅回路
DE4436059A1 (de) * 1994-10-10 1996-04-11 Bayer Ag Verfahren zur Herstellung von mittels Nd-Katalysatoren polymerisierten Dienkautschuken mit niedrigem cold-flow und geringem Eigengeruch
TW344744B (en) * 1995-05-02 1998-11-11 Ube Industries Improved process for producing syndiotactic-1,2-polybutadiene

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917666B1 (ja) 1970-12-25 1974-05-02
JPS4917667B1 (ja) 1970-12-25 1974-05-02
JPS5430280A (en) * 1977-08-11 1979-03-06 Ube Ind Ltd Purification of polybutadiene
JPS5450088A (en) * 1977-09-29 1979-04-19 Ube Ind Ltd Purification of liquid polybutadiene
JPS62171B2 (ja) 1981-12-24 1987-01-06 Ube Industries
JPS6336324B2 (ja) 1981-12-24 1988-07-20 Ube Industries
JPS5915413A (ja) * 1982-07-20 1984-01-26 Ube Ind Ltd 1,3―ブタジエンの重合方法
JPH0237927B2 (ja) 1982-07-20 1990-08-28 Ube Industries Hokyohoributajennoseizoho
JPS5930839A (ja) * 1982-08-12 1984-02-18 Adeka Argus Chem Co Ltd 安定化された合成ゴム組成物
JPH0363566B2 (ja) 1982-10-21 1991-10-01 Ube Industries
JPH0238081B2 (ja) 1983-03-08 1990-08-29 Ube Industries Hokyohoributajengomunoseizoho
JPS6123611A (ja) * 1984-07-12 1986-02-01 Japan Synthetic Rubber Co Ltd 共役ジエンの重合方法
JPH0448815B2 (ja) 1984-09-19 1992-08-07 Ube Industries
JP2000044633A (ja) 1998-07-31 2000-02-15 Ube Ind Ltd 新規なビニル・シスーブタジエンゴムの製造方法及びビ ニル・シスーブタジエンゴム組成物
JP2000154215A (ja) 1998-11-19 2000-06-06 Ube Ind Ltd 共役ジエン重合体及びその製造方法
JP2000159836A (ja) 1998-11-26 2000-06-13 Ube Ind Ltd 共役ジエン重合体の製造方法
JP2000256507A (ja) * 1999-03-04 2000-09-19 Ube Ind Ltd ポリブタジエンゴム及びその製造方法。
JP2001294614A (ja) * 2000-04-13 2001-10-23 Ube Ind Ltd ポリブタジエンおよびその製造方法
US6956093B1 (en) 2004-10-29 2005-10-18 The Goodyear Tire & Rubber Company Preparation of syndiotactic polybutadiene, rubber composition and tire with rubber component
JP2006124706A (ja) * 2004-10-29 2006-05-18 Goodyear Tire & Rubber Co:The シンジオタクチックポリブタジエン、ゴム組成物及びゴム成分を含むタイヤの製造
WO2006049016A1 (ja) * 2004-11-01 2006-05-11 Ube Industries, Ltd. 共役ジエン重合体の重合用触媒及びそれを用いた共役ジエン重合体の製造方法、タイヤ用ゴム組成物並びにゴルフボール用ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2028196A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227524A (ja) * 2012-03-30 2013-11-07 Ube Industries Ltd ビニル・シス−ポリブタジエンの製造方法及びそれによって得られたビニル・シス−ポリブタジエン
JP2016540080A (ja) * 2013-12-03 2016-12-22 株式会社ブリヂストン シス−1,4−ポリブタジエンとシンジオタクチック1,2−ポリブタジエンのブレンドを調製するプロセス
JP2019183164A (ja) * 2013-12-03 2019-10-24 株式会社ブリヂストン シス−1,4−ポリブタジエンとシンジオタクチック1,2−ポリブタジエンのブレンドを調製するプロセス
CN104311762A (zh) * 2014-11-19 2015-01-28 中国科学院长春应用化学研究所 一种无规-间同立构嵌段聚丁二烯及其制备方法
JP2020139171A (ja) * 2015-01-28 2020-09-03 株式会社ブリヂストン 官能化ポリマーを調製するための方法

Also Published As

Publication number Publication date
TW200801055A (en) 2008-01-01
KR20090018823A (ko) 2009-02-23
EP2028196A4 (en) 2009-10-28
CN101448861A (zh) 2009-06-03
DE602007012344D1 (de) 2011-03-17
JP5375092B2 (ja) 2013-12-25
TWI389927B (zh) 2013-03-21
EP2028196B1 (en) 2011-02-02
US20090143548A1 (en) 2009-06-04
US7868103B2 (en) 2011-01-11
JPWO2007135946A1 (ja) 2009-10-01
KR101324845B1 (ko) 2013-11-01
CN101448861B (zh) 2012-04-25
EP2028196A1 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
WO2007135946A1 (ja) ポリブタジエンの製造方法
EP1958971B1 (en) Process for producing conjugated diene polymer, conjugated diene polymer, and rubber composition
RU2560769C2 (ru) Функционализированные полимеры и способы их получения
KR101685232B1 (ko) 폴리디엔 제조를 위한 방법 및 촉매 시스템
WO2006049016A1 (ja) 共役ジエン重合体の重合用触媒及びそれを用いた共役ジエン重合体の製造方法、タイヤ用ゴム組成物並びにゴルフボール用ゴム組成物
JP5369816B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP5675040B2 (ja) ゴム組成物及びそれを用いたタイヤ、並びに変性共役ジエン系重合体及びその製造方法
JP4736772B2 (ja) ポリブタジエンの製造方法
KR20160060564A (ko) 공액 디엔의 중합용 촉매 조성물
RU2567756C1 (ru) Полимер и способ его получения, резиновая смесь, содержащая полимер, и шина, содержащая резиновую смесь
JP2011052103A (ja) タイヤ
JP4844111B2 (ja) 共役ジエン重合体変性物の製造法
JP5810763B2 (ja) ゴム組成物
CN109641482A (zh) 具有通过聚合物胶水的原位硅氢加成制备的多个硅烷官能团的顺式-1,4-聚二烯的制备
WO2016057985A1 (en) Polymerization catalyst composition and method of employing same
JP3887502B2 (ja) ゴム組成物
JP5266808B2 (ja) 共役ジエン重合体の製造方法
RU2436802C2 (ru) Способ получения полибутадиена
JP2019522100A (ja) ランタニドベース触媒組成物によって高シス−1,4−ポリジエンを製造するプロセス
JP6418227B2 (ja) 共役ジエンの重合用触媒溶液及びそれを用いた重合方法
WO2017040005A1 (en) Copolymerization of polyenes and alkenes
JP2009215430A (ja) 共役ジエン重合体の製造方法
JP2011042707A (ja) タイヤ
JP2005247951A (ja) 共役ジエン系重合体の製造方法および共役ジエン系重合体
JP2008285579A (ja) 共役ジエン重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018751.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008516636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4733/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087030739

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008150488

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12227521

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0713099

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081121