WO2005056663A1 - ビニル・シス-ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物 - Google Patents

ビニル・シス-ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物 Download PDF

Info

Publication number
WO2005056663A1
WO2005056663A1 PCT/JP2004/018417 JP2004018417W WO2005056663A1 WO 2005056663 A1 WO2005056663 A1 WO 2005056663A1 JP 2004018417 W JP2004018417 W JP 2004018417W WO 2005056663 A1 WO2005056663 A1 WO 2005056663A1
Authority
WO
WIPO (PCT)
Prior art keywords
cis
polybutadiene
rubber
vinyl
polybutadiene rubber
Prior art date
Application number
PCT/JP2004/018417
Other languages
English (en)
French (fr)
Inventor
Yoshio Asakura
Yasuyoshi Okabe
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to BRPI0417479-8A priority Critical patent/BRPI0417479A/pt
Priority to EP04801641.4A priority patent/EP1693411B1/en
Priority to US10/596,242 priority patent/US7700691B2/en
Priority to CA2546564A priority patent/CA2546564C/en
Priority to JP2005516182A priority patent/JP3981841B2/ja
Publication of WO2005056663A1 publication Critical patent/WO2005056663A1/ja
Priority to US12/714,964 priority patent/US7863385B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a novel polybutadiene having a high melting point of 170 ° C. or higher, a polybutadiene having a high melting point, a polyisoprene or a polybutadiene having a low melting point, which are coexistently dispersed in a matrix of cis-polybutadiene rubber. And a butadiene rubber composition using the vinyl 'cis-polybutadiene rubber.
  • Polybutadiene has a so-called microstructure consisting of a bond formed by polymerization at the 1,4 position (1,4 structure) and a bond formed by polymerization at the 1,2 position (1,2 structure). And coexist in the molecular chain.
  • the 1,4-structure is further divided into two types: cis and trans.
  • the 1,2-structure has a structure in which a vinyl group is a side chain.
  • a method for producing a vinyl cis-polybutadiene rubber composition has been carried out using an aromatic hydrocarbon such as benzene, toluene, xylene, and an inert organic solvent such as a halogenated aromatic hydrocarbon such as chlorobenzene.
  • an aromatic hydrocarbon such as benzene, toluene, xylene
  • an inert organic solvent such as a halogenated aromatic hydrocarbon such as chlorobenzene.
  • the water in an inert organic solvent soluble cobaltation compound of the general formula AIR n X 3 _ n (where R is an alkyl group having 1 to 6 carbon atoms, phenyl group or chopsticks Is a cycloalkyl group, X is a halogen element, and n is a number from 1.5 to 2)
  • 1,3-butadiene is polymerized into 1,4-butadiene using a catalyst obtained from an organoaluminum chloride.
  • 1,3-butadiene in the presence of a syndiotactic 1,2 polymerization catalyst obtained from an organoaluminum compound represented by an alkyl group, a phenyl group or a cycloalkyl group 6) and carbon disulfide.
  • a syndiotactic 1,2 polymerization catalyst obtained from an organoaluminum compound represented by an alkyl group, a phenyl group or a cycloalkyl group 6
  • carbon disulfide carbon disulfide.
  • a method of performing tic 1,2 polymerization hereinafter abbreviated as "1,2 polymerization" (for example, see Japanese Patent Publication No. S49-17666 (Patent Document 1) and Japanese Patent Publication No. S49-17667 (Patent Document 2)) Is known.
  • Patent Document 3 Japanese Patent Publication No. 62-171 (Patent Document 3), Japanese Patent Publication No. 63-36324 (Patent Document 4), Japanese Patent Publication No. 2-37927 (Patent Document 5), Japanese Patent Publication No. 2-33 No. 8081 (Patent Document 6) and Japanese Examined Patent Publication No. 3-63566 (Patent Document 7) show that cis-1,4 polymerization of 1,3-butadiene is carried out in the presence or absence of carbon disulfide. And methods for separating and recovering 1,3-butadiene and carbon disulfide after production, and circulating 1,3-butadiene substantially free of carbon disulfide and the above-mentioned inert organic solvent. ing.
  • Patent Document 8 discloses that a vulcanized product having a low die-sell ratio is a rubber composition having excellent tensile stress and flex crack growth resistance suitable as a tire side wall. The thing is described.
  • JP 2000- the 44633 Patent Document 9
  • n-butane n-butane
  • a method for preparation in a solvent is described.
  • the 1,2-polybutadiene contained in the rubber composition by this method is a short fiber crystal, and the distribution of the major axis length of the short fiber crystal is 98% or more of the fiber length is less than 0.6 ⁇ m, It is described that 70% or more is less than 0.1 ⁇ m, and the obtained rubber composition is cis-1,4-polybutadiene. It is described that the formability, tensile stress, tensile strength, flex crack growth resistance, and the like of the rubber are improved.
  • Patent Document 1 JP-B-49666
  • Patent Literature 2 Japanese Patent Publication No. 491-17667
  • Patent Document 3 Japanese Patent Publication No. 62-171
  • Patent Document 4 Japanese Patent Publication No. 63-36324
  • Patent Document 5 Japanese Patent Publication No. 2-37927
  • Patent Document 6 Japanese Patent Publication No. 2-38081
  • Patent Document 7 Japanese Patent Publication No. 3-63566
  • Patent Document 8 Japanese Patent Publication No. 4-4881-5
  • Patent Document 9 JP 2000-44633 A Disclosure of the Invention
  • the present invention has a small die-to-jewel ratio and exhibits excellent extrusion workability and workability in the production of tires and the like, and also has excellent fracture resistance required for tire side treads and the like when vulcanized.
  • the vinyl 'cis-polybutadiene rubber which exhibits properties, abrasion resistance, sliding friction resistance, etc. and gives a butadiene rubber composition that is a highly rigid vulcanizate with very good flex crack growth resistance and high rigidity. It is another object of the present invention to provide a butadiene rubber composition having the above-mentioned excellent properties, particularly a butadiene rubber composition for tires.
  • the present invention has achieved the above object by the following constitutions.
  • Polybutadiene rubber is a matrix component of a rubber, in a physically and / or chemically adsorbed state.
  • the 1,2-polybutadiene and the high-molecular substance are dispersed in the form of short crystalline fibers, Z or particles.
  • the vinyl'cis-polybutadiene rubber as described in 1 above.
  • the 1,2-polybutadiene is 1,2-polybutadiene having a melting point of 170 ° C. or higher, and the polymer substance is polyisoprene, crystalline polybutadiene having a melting point of 150 ° C. or lower, liquid polybutadiene, and the like.
  • the cis-polybutadiene rubber which is a matrix component of the vinyl cis-polybutadiene rubber, the 1,2-polybutadiene is in the form of short crystalline fibers, and the polymer material is dispersed in the form of particles.
  • the vinyl 'cis-polybutadiene rubber according to any one of the above items 1 to 9, wherein short crystalline fibers of 2,4-polybutadiene are dispersed in the particles of the polymer substance.
  • the short crystalline fibers of the 1,2-polybutadiene are not contained in the particles of the polymer substance but are also dispersed in the cis-polybutadiene rubber, which is the matrix component, and are substantially dispersed in the matrix.
  • the long axis of the short crystal fiber is in the range of 0.2 to 1,000 jUm, and the length of the short crystal fiber of the 1,2-polybutadiene dispersed in the particles of the polymer substance.
  • the vinyl cis-polybutadiene rubber described in 1 or 2 above was selected from natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, or a blend of at least two of these rubbers.
  • a butadiene rubber composition comprising 100 to 300 parts by weight of rubber and 100 to 300 parts by weight of rubber.
  • a butadiene rubber composition for a tire comprising the vinyl cis-polybutadiene rubber described in 1 to 11 above and / or the butadiene rubber composition described in 13 above.
  • 1,3-Butadiene is subjected to cis-1,4 polymerization in a hydrocarbon solvent using a cis-1,4 polymerization catalyst, and then 1,2 polymerization is performed in the resulting polymerization reaction mixture.
  • 1,3-butadiene undergoes one or two polymerizations to form a 1,3-butadiene having a melting point of 170 ° C or higher.
  • 2-- Polybutadiene is produced, and then, in the method for producing vinyl 'cis-polybutadiene rubber obtained by separating and recovering vinyl' cis-polybutadiene rubber produced from the obtained polymerization reaction mixture, at least one A method for producing a vinyl 'cis-polybutadiene rubber, comprising a step of adding a polymer substance having an unsaturated double bond into a production system for a vinyl' cis-polybutadiene rubber.
  • the above-mentioned 1 characterized in that the polymer substance is at least one selected from polyisoprene, crystalline polybutadiene having a melting point of 0 ° C to 150 ° C, liquid polybutadiene, and derivatives thereof. 4. The method for producing a vinyl 'cis-polybutadiene rubber according to 4.
  • the amount of the polymer substance added into the production system is in the range of 0.01 to 50% by mass relative to the obtained vinyl 'cis-polybutadiene rubber.
  • the step of adding the high-molecular substance into the production system includes the step of performing the cis 1,4 polymerization, the step of adding 1,2, At any time before the step of separating and recovering one polybutadiene rubber, the polymerization is carried out in the polymerization reaction mixture. Production method.
  • VCR vinyl cis-polybutadiene rubber
  • VCR vinyl cis-polybutadiene rubber
  • 1,2-polybutadiene is a 1,2-polybutadiene having a melting point of 170 ° C. or more.
  • 2,4-Polybutadiene has a lower melting point and a polymer substance having at least one unsaturated double bond per repeating unit (hereinafter sometimes abbreviated as "unsaturated polymer substance").
  • 1,2-polybutadiene having a melting point of 170 ° C. or higher comprising at least one selected from crystalline polybutadiene having a melting point of less than 170 ° C., liquid polybutadiene, and derivatives thereof;
  • This is a new VCR in which a polymer substance coexists and is dispersed in a matrix of cis-polybutadiene rubber.
  • the VCR according to the present invention a very strong interaction between polymers is developed, and 1,2-polybutadiene having a high melting point, which is an excellent reinforcing component, and an unsaturated polymer having a relatively low melting point, such as polyisoprene.
  • the dispersibility of the high melting point 1,2-polybutadiene in the cis-polybutadiene rubber, which is the matrix component is higher than in the conventional VCR due to the compatibility effect of the unsaturated polymer that coexists.
  • the content of high-melting 1,2-polybutadiene, an excellent reinforcing component can be increased.
  • the characteristics of the VCR according to the present invention as described above make it possible to significantly improve various properties strongly required in the manufacture of tire products and other uses.
  • the VCR according to the present invention when used for a butadiene rubber composition for tires, the composition has a small die ⁇ : c ratio (ratio of a mixture of a compound at the time of extrusion and a diameter of a die orifice) in tire production. It shows excellent extrusion workability, workability, etc.
  • the vulcanized product of the composition has excellent fracture resistance, which is required mainly for tires such as side treads. Shows properties, abrasion resistance, sliding friction resistance, etc.
  • a tire using the VCR according to the present invention as a material for a side tread or the like exhibits excellent running stability and high-speed durability, and enables low fuel consumption.
  • Fig. 1 is a conceptual diagram showing the dispersion of unsaturated polymer substances in relation to 1,2-polybutadiene crystal fibers having a melting point of 170 ° C or higher.
  • Figure 2 is another conceptual diagram of the dispersion of unsaturated polymer in relation to 1,2-polybutadiene crystal fiber having a melting point of 170 ° C or higher.
  • FIG. 3 is still another conceptual diagram of the dispersion mode of the unsaturated polymer substance in relation to the crystalline fiber of 1,2-polybutadiene having a melting point of 170 ° C. or more.
  • FIG. 4 is still another conceptual diagram of the dispersion mode of the unsaturated polymer substance in relation to the crystalline fiber of 1,2-polybutadiene having a melting point of 170 ° C. or more.
  • FIG. 5 is a view of the fine structure of the vinyl cis-polybutadiene rubber obtained in Comparative Example 1 as viewed with an electron microscope.
  • FIG. 6 is a view of the microstructure of the vinyl 'cis-polybutadiene rubber obtained in Example 1 as viewed with an electron microscope.
  • FIG. 7 is a view through an electron microscope showing a fine structure of the vinyl cis-polybutadiene rubber obtained in Example 3.
  • FIG. 8 is a view through an electron microscope showing a microstructure of the vinyl cis-polybutadiene rubber obtained in Example 4.
  • reference numeral 1 denotes a matrix
  • 2 denotes crystal fibers of 1,2-polybutadiene having a melting point of 170 ° C or higher
  • 3 denotes fine particles of an unsaturated polymer substance.
  • the VCR of the present invention generally has the following configuration. That is, generally, (1) 1 to 50 parts by mass of 1,2-polybutadiene having a melting point of 170 ° C. or more, (2) 100 parts by mass of cis-polybutadiene rubber, and (3) the above (1) And 0.02% by mass based on the total amount of (2) and 50% by mass.
  • the melting point of component (1) is not less than 170 ° C.
  • Polybutadiene is a crystal fiber in which the average short-axis length of monodisperse fiber crystals is 0 or less, the aspect ratio is 10 or less, and the average number of monodisperse fiber crystals is 10 or more. Is formed.
  • the average short axis length of monodisperse fiber crystal is 0.2 jt / m or less, preferably 0.1 im or less.
  • the fiber ratio is 10 or less, preferably 8 or less, and the average number of monodisperse fiber crystals is 10 or more, preferably 15 or more, and the melting point is 170 ° C or more.
  • the temperature is 190 to 220 ° C.
  • the cis-polybutadiene rubber of the component (2) desirably has the following characteristics. That is, the viscosity is preferably 10 to 50, and more preferably 10 to 40 (ML 1 + 4100 ° C., hereinafter abbreviated as “ML”). By doing so, effects such as improvement in workability at the time of compounding and improvement in dispersibility of the above component (1) in the component (2) are obtained.
  • the cis-polybutadiene rubber of the component (2) preferably has the following characteristics.
  • the viscosity of the toluene solution is preferably from 10 to 150, more preferably from 10 to 100, and [77] (intrinsic viscosity) is 1. It is desirably 0 to 5.0, preferably 1.0 to 4.0. It is desirable that the content of the 1,4-cis structure is 80% by mass or more, and preferably 90% by mass or more, and it is substantially free of a gel component.
  • “contains substantially no gel content” means that the toluene-insoluble content is 0.5% by mass or less.
  • the terminal and / or main chain of the polybutadiene rubber obtained by the above cis-1,4 polymerization may be modified.
  • a modifier at least an amino group and an alkoxy group
  • An organic silicon compound containing the compound, an organic silicon compound containing an alkoxy group, an unsaturated carboxylic acid or a derivative thereof, a halogen compound, and a hetero three-membered ring compound can be used.
  • the modifying agent is used in an amount of 0.01 to 150 mmol with respect to the produced polybutadiene (polybutadiene rubber) lOOg. If the amount of the modifying agent used is small, the modifying effect is less likely to appear.
  • the Mooney viscosity of the modified product is increased by 1 or more as compared with that before the modification.
  • Organic peroxides can be added to accelerate the reaction.
  • 80% by mass or more of the repeating units have a cis 1,4 structure and a Mooney viscosity (ML 1 + 4 , 100 ° C) in the range of 20 to 80.
  • the weight average molecular weight by the gel permeation method be in the range of 200,000 to 1,000,000.
  • the content of the vinyl structure in the microstructure is preferably 15% by mass or less.
  • Toluene-insoluble matter 1 Og of sample rubber and 400 ml of toluene are put in a triangular flask and completely dissolved at RT (25 ° C), and then filtered using a filter equipped with a 200-mesh wire mesh. The above solution is filtered, and the gel content attached to the wire netting after filtration is referred to.
  • the above ratio refers to a value obtained by vacuum-drying the wire netting to which the gel is attached, measuring the attached amount, and measuring the percentage with respect to the sample rubber.
  • the ratio of the 1,2-polybutadiene crystal fiber of the component (1) to the cis-polybutadiene rubber of the component (2) is based on 100 parts by mass of the cis-polybutadiene rubber of the component (2). It is desirable that the amount of the component 1,2-polybutadiene crystal fiber is 1 to 50 parts by mass, preferably 1 to 30 parts by mass.
  • the content when the content is within the above range, when the amount exceeds 50 parts by mass, the short fiber crystals of 1,2-polybutadiene crystal fibers in the cis-polybutadiene rubber become large, and the dispersibility thereof deteriorates.
  • a small amount of less than 1 part by mass it is possible to avoid a decrease in the reinforcing properties due to short fiber crystals, and therefore, it is difficult to develop the characteristic elastic modulus ⁇ bending crack growth resistance-oxidative deterioration property, etc. This is preferable because problems such as deterioration of the image hardly occur.
  • the proportion of the unsaturated polymer substance as the component (3) is desirably 0.01 to 50% by mass, preferably 0.01 to 30% by mass of the VCR. It is preferable to be within the above-mentioned range in terms of suppression of a decrease in dispersibility due to agglomeration of the 1,2-polybutadiene crystal fiber of the component (1), and suppression of a decrease in various physical properties of the VCR associated therewith.
  • the ratio of the 1,2-polybutadiene having a melting point of the component (1) of 170 ° C. or higher to the unsaturated polymer substance of the component (3) is 100 parts by mass as described above.
  • 1,3-butadiene is generally polymerized using a hydrocarbon solvent.
  • a hydrocarbon solvent having a solubility parameter (hereinafter abbreviated as “SP value”) of 9.0 or less is preferable, and a hydrocarbon solvent of 8.4 or less is more preferable.
  • the hydrocarbon solvent having a solubility parameter of 9.0 or less include, for example, n-hexan (SP value: 7.2) and n-pentane (SP value: 7.0) which are aliphatic hydrocarbons and alicyclic hydrocarbons.
  • N-octane (SP value: 7.5), shik Mouth hexane (SP value: 8.1), n-butane (SP value: 6.6) and the like.
  • SP value: 7.5 N-octane
  • SP value: 8.1 shik Mouth hexane
  • SP value: 8.1 shik Mouth hexane
  • SP value: 6.6 n-butane
  • cyclohexane is preferred.
  • the dispersion state of the short fiber crystals of 1,2-polybutadiene crystal fiber in the cis-polybutadiene rubber is formed as expected in the present invention, and the excellent die-swell property and the like are obtained.
  • High tensile stress, tensile strength, and high bending are preferable because they exhibit crack growth performance.
  • 1,3-butadiene is mixed with the solvent, and then the concentration of water in the obtained solution is adjusted.
  • Moisture is preferably 0.1 to 1.0 mol, particularly preferably 0.2 to 1.0 mol, per mol of the organoaluminum chloride used as a cis-1,4 polymerization catalyst in the solution. Range. Within this range, sufficient catalyst activity can be obtained and a suitable cis-1,4 structure content and molecular weight can be obtained, and at the same time, the generation of gel during polymerization can be suppressed to prevent gel from adhering to the polymerization tank. This is preferable because the continuous polymerization time can be extended.
  • a known method can be applied as a method for adjusting the concentration of water.
  • a method of adding and dispersing through a porous filter medium Japanese Patent Publication No. 85304/1991 is also effective.
  • organoaluminum chloride is added as one of the cis-1,4 polymerization catalysts.
  • organic aluminum chloride a compound represented by the general formula AIR n X 3 —n is preferably used, and specific examples thereof include getyl aluminum monochloride, getyl aluminum monobromide, disobutyl aluminum monochloride, and dicycloalkyl aluminum. Hexyl aluminum monochloride, diphenyl aluminum monochloride, getyl aluminum sesquichloride and the like can be preferably mentioned.
  • the amount of the organoaluminum chloride to be used is preferably 0.1 mmol or more, more preferably 0.5 to 50 mmol, per 1 mol of the total amount of 1,3-butadiene.
  • a soluble cobalt compound is added to the mixed solution to which the organoaluminum chloride has been added as another cis-1,4 polymerization catalyst, and "I, 3-butadiene is cis-1,4 polymerized.
  • the cobalt compound is a compound which is soluble in the hydrocarbon solvent or liquid 1,3-butadiene used or can be uniformly dispersed, for example, cobalt (II) acetyl acetate, cobalt (HI) calcium.
  • Organic carboxylic acids with 6 or more carbon atoms such as cobalt / 3 diketone complex such as cetyl acetate, ⁇ -keto acid ester complex such as cobalt acetate ethyl ester complex, cobalt octoate, cobalt naphthenate, and cobalt benzoate
  • Halogenated cobalt salts such as cobalt salts, cobalt chloride pyridine complex and cobalt chloride ethyl alcohol complex
  • the amount of the soluble cobalt compound used is preferably 0.001 mmol or more, more preferably 0.005 mmol or more, per mole of 1,3-butadiene, and more preferably 0.005 mmol or more.
  • the molar ratio of the organoaluminum chloride to AI (Co) is preferably at least 10 and more preferably at least 50.
  • an organic carboxylate of nickel, an organic complex of nickel, and an organic lithium salt may be used. It is also possible to use a compound, an organic carboxylate of neodymium, or an organic complex of neodymium.
  • the temperature of the cis-1,4 polymerization is generally in the range from a temperature above 0 ° C. to 100 ° C., preferably from 10 to 100 ° C., more preferably from 20 to 100 ° C.
  • the polymerization time (average residence time) is preferably in the range of 10 minutes to 2 hours.
  • the cis-1,4 polymerization is preferably carried out so that the polymer concentration after the cis-1,4 polymerization becomes 5 to 26% by mass.
  • the polymerization tank is performed by connecting one tank or two or more tanks.
  • the polymerization is carried out by stirring and mixing the solution in a polymerization tank (polymerization vessel).
  • a polymerization tank equipped with a high-viscosity liquid stirring device for example, an apparatus described in Japanese Patent Publication No. 40-2645 can be used.
  • a known molecular weight regulator for example, a non-co-polymer such as Shiku Taishi Tajagen, arene or methylarene (1,2-butadiene) is used during cis-1,4 polymerization. It is possible to use rolegens or olefins such as ethylene, propylene, and butene-11. In order to further suppress the formation of a gel at the time of polymerization, a known gelling inhibitor can be used.
  • the cis-1,4 structure content of the polymerization product is generally 80% by mass or more, preferably 90% by mass or more, and is ML10-50. Is not contained.
  • 1,3-butadiene is polymerized once or twice to produce VCR. At this time, 1,3-butadiene may be added to the polymerization reaction mixture, or unreacted 1,3-butadiene may be reacted without adding 1,3-butadiene.
  • the organoaluminum compound represented by the general formula AIR 3 can be trimethyl aluminum, Bok Li ethyl aluminum, triisobutyl aluminum, tri-n- hexyl Arumini ⁇ beam, be mentioned such as a suitably triphenyl aluminum.
  • the amount of the organic aluminum compound is 0.1 mmol or more, especially 0.5 to 50 mmol or more per 1,3-butadiene.
  • the carbon disulfide is not particularly limited, but preferably does not contain water.
  • the concentration of carbon disulfide is not more than 20 mmol ZL, particularly preferably 0.01 to 10 mmol ZL.
  • a known phenyldixanthate compound of isothiosocyanate may be used as a substitute for carbon disulfide.
  • the temperature of the 1,2 polymerization is generally in the range of 0 to 100 ° C, preferably 10 to 100 ° C, more preferably 20 to 100 ° C.
  • 1 to 50 parts by mass, preferably 1 to 20 parts by mass of 1,3-butadiene is added per 100 parts by mass of the cis-1,4 polymerization reaction mixture. This can increase the yield of 1,2-polybutadiene during 1,2 polymerization.
  • the polymerization time (average residence time) is preferably in the range of 10 minutes to 2 hours. It is preferable to carry out the 1,2 polymerization so that the polymer concentration after the 1,2 polymerization becomes 9 to 29% by mass.
  • the polymerization tank is carried out by connecting one or more tanks.
  • the polymerization is carried out by stirring and mixing the polymerization solution in a polymerization tank (polymerization vessel).
  • Polymerization tanks used for 1 and 2 polymerizations are described in Japanese Patent Publication No. 40-2645, for example, in polymerization tanks equipped with a high-viscosity liquid stirring device because the viscosity becomes higher during the 1 and 2 polymerizations and the polymer easily adheres. Can be used.
  • At least one unsaturated double bond per repeating unit having a low melting point is required to produce a VCR by performing cis-1,4 polymerization and then 1,2 polymerization as described above.
  • a step of adding a polymer substance having a bond into a VCR production system Even after adding the VCR, for example, at the time of compounding, the effects of the present invention cannot be obtained.
  • the unsaturated polymer substance may be added to the production system at any time between the time when the cis-1,4 polymerization is carried out and the time when the above 1,2 polymerization is carried out. It is preferable to carry out one or two polymerizations.
  • the unsaturated polymer substance is preferably at least one selected from polyisoprene, crystalline polybutadiene having a melting point of less than 170 ° C., liquid polybutadiene, a polymer compound containing an oxygen bond, and derivatives thereof.
  • polyisoprene examples include ordinary synthetic polyisoprenes (eg, cis-1,4-polyisoprene having a cis structure of 90% by mass or more), liquid polyisoprene, and trans-polyisoprene.
  • ordinary synthetic polyisoprenes eg, cis-1,4-polyisoprene having a cis structure of 90% by mass or more
  • liquid polyisoprene e.g., polyis-1,4-polyisoprene having a cis structure of 90% by mass or more
  • trans-polyisoprene trans-polyisoprene
  • the crystalline polybutadiene having a melting point of less than 170 ° C is preferably a crystalline polybutadiene having a melting point of 0 ° C to 150 ° C, and examples thereof include low-melting point 1,2-polybutadiene and trans-polybutadiene.
  • the high molecular compound containing an oxygen bond is preferably a compound containing an ether group, an epoxy group, a carboxyl group, an ester group, a hydroxyl group, and a carboxyl group.
  • Specific compounds include, for example, phenolic resins, nylon resins, polyurethanes, polyethylene glycols, epoxidized polybutadienes, polyesters, epoxidized styrene butadiene copolymers, polyaryl ethers, aryl ethers And copolymers.
  • the interface affinity between cis-polybutadiene, which is a matrix component of vinyl.cis-polybutadiene rubber, and 1,2-polybutadiene crystal fiber is changed. It is effective for monodispersing fiber crystals of 2-butadiene crystal fiber and improving various physical properties of vinyl'cispolybutadiene rubber.
  • Examples of these derivatives include, for example, isoprene'isobutylene copolymer, isoprene'styrene copolymer, styrene-isoprene-styrene block copolymer, liquid epoxidized polybutadiene, liquid carboxyl-modified polybutadiene, and the like. And hydrogenated products.
  • isoprene isoprene, styrene 'isoprene' styrene block copolymer, and 1,2-polybutadiene having a melting point of 70 ° C to 110 ° C are preferably used. Further, each of the above unsaturated polymer substances can be used alone or in combination of two or more.
  • the melting point of 1,2-polybutadiene having a melting point of 170 ° C or more is reduced.
  • the dispersibility of the matrix component in the cis-polybutadiene rubber is remarkably improved, and the resulting VCR has excellent characteristics.
  • the amount of the unsaturated polymer added is preferably in the range of 0.01 to 50% by mass, and more preferably in the range of 0.01 "to 30% by mass, based on the obtained vinyl 'cis-polybutadiene rubber. In addition, at any time of addition, it is preferable to stir for 10 minutes to 3 hours after addition, and more preferable to stir for 10 minutes to 30 minutes. In the case of a polymer compound containing an oxygen bond, the amount added is preferably in the range of 0.01 to 20% by mass, more preferably 0.01 to 10% by mass, based on the obtained vinyl cis polybutadiene rubber.
  • the organic compound containing an oxygen bond is preferably a compound containing an ether group, an epoxy group, a carboxyl group, an ester group, a hydroxyl group, or a carboxy group.
  • the organic compound containing an oxygen bond is preferably a compound containing an ether group, an epoxy group, a carboxyl group, an ester group, a hydroxyl group, or a carboxy group.
  • acid anhydrides, aliphatic alcohols, aromatic compounds Aliphatic alcohols, aliphatic ethers, aromatic ethers, aliphatic carboxylic acids, aromatic carboxylic acid-unsaturated carboxylic acids, aliphatic carboxylic acid esters, aromatic carboxylic acid esters, unsaturated carboxylic acid esters, etc. .
  • the amount of addition is preferably in the range of 0.01 to 20% by mass, more preferably in the range of 0.01 to 10% by mass, based on the obtained vinyl 'cis-polybutadiene rubber.
  • the method of addition is not particularly limited, and may be at the time of cis 1, 4 polymerization or 1, 2 polymerization to produce vinyl cis polybutadiene rubber, or at the end of polymerization of Z or vinyl cis polybutadiene rubber.
  • it is added at the time of 1 or 2 polymerization.
  • the mixture is preferably stirred for 10 minutes to 3 hours. Preferably, it is 10 minutes to 30 minutes.
  • a known antioxidant can be added according to a conventional method.
  • anti-aging agents include phenol-based 2,6-di-tert-butyl-p-cresol (BHT), phosphorus-based trinonylphenylphosphite (T NP), and sulfur-based 4.6-bis (o).
  • BHT 2,6-di-tert-butyl-p-cresol
  • T NP phosphorus-based trinonylphenylphosphite
  • sulfur-based 4.6-bis (o) Octylthiomethyl) -1o-cresol, dilauryl-1,3,3′-thiodipropionate (TPL).
  • the antioxidant may be used alone or in combination of two or more kinds.
  • the addition amount of the antioxidant is 0.01 to 5 parts by mass per 100 parts by mass of VCR.
  • a polymerization terminator is added to the polymerization system to terminate the polymerization reaction.
  • the polymerization reaction mixture is supplied to a polymerization stop tank, and a large amount of a polar solvent such as alcohol or water such as methanol or ethanol is added to the polymerization reaction mixture.
  • a polar solvent such as alcohol or water such as methanol or ethanol
  • the VCR generated according to the usual method is separated and collected, washed and dried to obtain the desired VCR.
  • the VCR of the present invention obtained in this manner generally has a ratio of each component, that is, a ratio of 1,2-polybutadiene, cis-polybutadiene rubber, and an unsaturated polymer substance having a melting point of 170 ° C. or more.
  • the microstructure of cis-polybutadiene rubber is such that 80% by mass or more is cis-1,4-polybutadiene, with the balance being trans-1,4-polybutadiene and vinyl-1,2-polybutadiene. It is polybutadiene.
  • the cis-polybutadiene rubber and the unsaturated polymer substance when used alone (that is, in an unreacted state), are boiling n-hexane soluble components and have a melting point of 1,2- Physically and chemically adsorbed polybutadiene and its unsaturated polymer substance are boiling n-hexane insolubles (hereinafter abbreviated as “HI”).
  • HI 1,2- Physically and chemically adsorbed polybutadiene and its unsaturated polymer substance are boiling n-hexane insolubles
  • the 1,2-polybutadiene having a melting point of 170 ° C. or higher generally has a melting point of 170 to 220 ° C., and is a short fiber crystal fiber as described above.
  • the ML of the cis-polybutadiene rubber is 10 to 50, preferably 20 to 40 as described above.
  • the VCR of the present invention is obtained by uniformly dispersing 1,2-polybutadiene having an melting point of 170 ° C. or more and an unsaturated polymer substance in a matrix of cis-polybutadiene rubber. It is.
  • 1,2-polybutadiene having a melting point of 170 ° C. or higher is dispersed as the crystal fiber as described above.
  • the unsaturated polymer material can be dispersed in various modes in relation to 1,2-polybutadiene crystal fibers having a melting point of 170 ° C. or higher.
  • this dispersion mode as conceptually shown in FIG. 1, in a matrix 1, crystal fibers 2 of 1,2-polybutadiene having a melting point of 170 ° C. or more and fine particles 3 of an unsaturated polymer substance are As shown conceptually in FIG.
  • the particles are dispersed in a matrix 1 in a state in which the particles of the unsaturated polymer substance 3 are attached to the crystal fibers 2 of the force 1,2-polybutadiene 2.
  • the matrix 1 in the matrix 1, the crystal fibers of 1,2-polybutadiene
  • 1, 2 are contained in the fine particles 3 of the unsaturated polymer substance in the matrix 1.
  • examples include an embodiment in which the polybutadiene crystal fiber 2 is included and dispersed in a dispersed state, and an embodiment in which two or more of the dispersion embodiments shown in FIGS.
  • 1 to 4 are mixed. 1 to 4, 1 represents a matrix, 2 represents 1,2-polybutadiene crystal fiber having a melting point of 170 ° C. or higher, and 3 represents fine particles of an unsaturated polymer substance.
  • the mother liquor of the polymerization reaction mixture containing the remaining unreacted 1,3-butadiene, a hydrocarbon solvent, carbon disulfide, etc. Distillation to separate 1,3-butadiene and hydrocarbon solvents, and separation and removal of carbon disulfide by adsorption separation of carbon disulfide or separation of carbon disulfide adduct.
  • the 1,3-butadiene and the hydrocarbon solvent which are substantially not contained are recovered.
  • three components may be recovered from the mother liquor of the polymerization reaction mixture by distillation, and carbon disulfide may be separated and removed from the distillate by the above-mentioned adsorption separation or carbon disulfide deposit separation treatment. It is also possible to recover 1,3-butadiene and hydrocarbon solvents that do not substantially contain carbon sulfide.
  • the carbon dioxide and the hydrocarbon-based solvent recovered as described above can be reused by mixing newly replenished 1,3-butadiene.
  • the polystyrene-equivalent mass average molecular weight of the boiling n-hexane soluble component in the VCR of the present invention is preferably 300,000 to 800,000, more preferably 300,000, because monodisperse fiber crystallization can be easily performed. ⁇ 600,000.
  • the relationship between the toluene solution viscosity (T-CP) and the viscosity (ML) of the boiling n-hexane-soluble component of VCR is preferably 1 or more, more preferably 1 or more. 1 to 4.
  • the VCR of the present invention can be produced continuously and for a long time, with excellent operability of the catalyst component, high catalyst efficiency and industrially advantageous.
  • It can be continuously produced industrially and advantageously at a high conversion rate without adhering to the inner wall in the polymerization tank, the stirring blade, and other parts where the stirring is slow.
  • the VCR of the present invention is compounded alone or blended with another synthetic rubber or natural rubber, and if necessary, oil-extended with a process oil, and then a filler such as carbon black, a vulcanizing agent, and a vulcanization accelerator.
  • a filler such as carbon black, a vulcanizing agent, and a vulcanization accelerator.
  • Other ordinary compounding agents are added and vulcanized to be useful for tires.
  • Tire members are not particularly limited, and may be sidewalls or treads, stiffeners, bead fillers, inner liners, carcass, tire cord coatings.
  • the types of tires are not particularly limited, such as high-hardness tires, passenger car tires, large vehicle tires such as buses and trucks, forklift tires, van "light truck tires, SUV (for 4X4) tires, motors, and base treads.
  • Cycle tires studless tires, radial tires, etc., hoses, belts, golf balls, etc. It is used in rubber applications that require mechanical properties and abrasion resistance, such as shoe soles, adhesives, vibration-isolating rubber, sound-insulating materials, other polymer-based composite materials, and other industrial products. It can also be used as a modifier for plastics.
  • composition obtained by adding the above compounding agent to the VCR of the present invention and kneading the compound has a dice-to-geel ratio reduced to 20 or less in terms of exponent (the lower the value, the better) as compared with the conventional VCR obtained by the conventional method. Excellent extrudability.
  • VCR composition (formulation) of the present invention when the VCR composition (formulation) of the present invention is vulcanized, hardness and tensile stress are improved. In particular, 100% improvement in tensile stress is remarkable, and it increases by around 40 (exponentially, the value increases) in index conversion as compared with the conventional VCR obtained by the conventional method, and the reinforcing effect is greatly improved. . Furthermore, the growth of flex cracks is remarkably improved, and increases by about 30 (exponentially increases as the value increases) in index conversion, and exhibits the effect of suppressing flex cracks.
  • the gas permeability of oxygen and the like is similarly reduced by about 5 in index conversion compared to the conventional VCR obtained by the conventional method (when the value decreases, Excellent) and an effect of suppressing heat generation accompanying oxidation deterioration.
  • the 1,2-polybutadiene crystal fibers dispersed in the VCR are monodispersed as fine crystals in Mad Jox of cis-polybutadiene rubber (hereinafter abbreviated as “BR”). It is preferable that the polybutadiene crystal fibers coexist with large 1,2-polybutadiene crystal fibers having a partially dispersed form and a cohesive structure.
  • the monodispersed 1,2-polybutadiene crystal fiber in the BR matrix has an average monodisperse fiber crystal minor axis length of 0.2 / m or less, an aspect ratio of 10 or less, and It is preferably a short fiber having an average number of monodisperse fiber crystals of 10 or more and a melting point of 170 ° C or more.
  • the unsaturated polymer substance is dispersed in a BR matrix in addition to the 1,2-polybutadiene crystal fiber having a melting point of 170 ° C. or higher.
  • This unsaturated polymer substance has a high affinity for 1,2-polybutadiene crystal fiber in the BR matrix, and is dispersed in the vicinity of the crystal fiber while being physically and chemically adsorbed. (Dispersion modes in FIGS. 2 to 4) are preferable.
  • the 1,2-polybutadiene crystal fiber having a melting point of 170 ° C or higher and the unsaturated polymer substance coexist and are dispersed in the BR matrix, so that the above-mentioned various physical properties become excellent. ,preferable.
  • the rubber composition obtained by blending the VCR according to the present invention with another synthetic rubber or natural rubber will be described in detail.
  • This rubber composition is obtained by blending the VCR of the present invention with 100 to 300 parts by mass of natural rubber, synthetic rubber or a blended rubber of any ratio thereof, preferably from 50 to 200 parts by mass. A mixture of parts by mass is appropriate.
  • Preferred examples of the synthetic rubber include polyisoprene rubber and styrene-butadiene copolymer rubber.
  • a butadiene rubber composition for a tire can be suitably produced using the above-mentioned VCR and / or a butadiene rubber composition containing the same.
  • the rubber composition of the present invention can be obtained by kneading the above-mentioned components using a conventional Banbury, oven roll, kneader, twin-screw kneader or the like.
  • the rubber composition of the present invention may contain, if necessary, a compounding agent usually used in the rubber industry, such as a vulcanizing agent, a vulcanizing aid, an antioxidant, a filler, a process oil, zinc white, and stearic acid. It may be kneaded.
  • vulcanizing agent known vulcanizing agents, for example, sulfur, organic peroxides, resin vulcanizing agents, metal oxides such as magnesium oxide and the like are used.
  • vulcanization aid known vulcanization aids such as aldehydes, ammonias, amines, guanidines, thiopereas, thiazoles, thiurams, dithiocarbamates, and xanthates are used.
  • anti-aging agent examples include an amine-ketone type, an imidazole type, an amine type, a phenol type, a sulfur type and a phosphorus type.
  • fillers examples include inorganic fillers such as silicic anhydride, calcium carbonate, magnesium carbonate, talc, iron oxide, iron oxide, bentonite, zinc white, diatomaceous earth, clay, clay, alumina, titanium oxide, silica, carbon black, and the like. And organic fillers such as recycled rubber and powdered rubber.
  • inorganic fillers such as silicic anhydride, calcium carbonate, magnesium carbonate, talc, iron oxide, iron oxide, bentonite, zinc white, diatomaceous earth, clay, clay, alumina, titanium oxide, silica, carbon black, and the like.
  • organic fillers such as recycled rubber and powdered rubber.
  • any of aromatics, naphthenes, and paraffins may be used.
  • Example 1 As the process oil, any of aromatics, naphthenes, and paraffins may be used.
  • IR polyisoprene
  • the polymerization product liquid is added to 18 L of methanol containing 1% by mass of 4,6-bis (octylthiomethyl) -10-cresol to precipitate and precipitate a rubbery polymer, and the rubbery polymer is separated. Then, after washing with methanol, it was vacuum-dried at room temperature. The yield of the vinyl 'cis-polybutadiene rubber thus obtained was 80%. Thereafter, the vinyl 'cis-polybutadiene rubber was treated with boiling n-hexane, and the insoluble and soluble components were separated and dried.
  • the ML of the obtained boiling n-hexane-soluble polymer was 31 and Tc was 57, the T-cp / ML relationship was about 1.8, the microstructure was vinyl-1,2 structure 1.0% by mass, and the trans The 1,1 structure was 0.9% by mass and the cis-1,4 structure was 98.1% by mass.
  • the polystyrene equivalent mass average molecular weight was 42 ⁇ 10 4 , and [] was 1.7.
  • the number of short-dispersion fiber crystals having a minor axis length of 0.2 m or less contained in vinyl 'cis-polybutadiene rubber was 100 or more per 400 / m 2 , the aspect ratio was 10 or less, and the melting point was 202 ° C.
  • VCR rubber thus obtained was compounded as shown below and in Table 1, and subjected to physical property evaluation. Evaluation items and implementation conditions; Kneading method
  • Kneading device Bumpari mixer (capacity 1.7L)
  • the dumped material was continuously wound on a 10-inch roll for 1 minute, rounded three times, and then taken out. After the compound was cooled for 2 hours or more, secondary compounding was performed according to the following procedure.
  • Kneading device 10 inch roll
  • Microstructure was performed by infrared absorption spectroscopy. The microstructure was calculated from the absorption intensity ratio of cis 740 cm- 1 , transformer 967 cm- 1 and vinyl 91 Ocm- 1 . The viscosity (ML 1 + 4 ) was measured according to JIS K6300.
  • Toluene solution viscosity (Tcp) is determined by dissolving 2.28 g of polymer in 50 ml of toluene, using a standard solution for calibration of viscometer (JIS Z8809) as a standard solution, and using a Cannon-Fenske viscometer No. 400. And measured at 25 ° C.
  • T B Tensile strength at break of a vulcanized rubber sample
  • the melting point of 1,2-polybutadiene crystal fiber was determined by the peak point of the endothermic curve of a differential scanning calorimeter (DSC).
  • Measuring device Monsanto processability measuring device (MPT)
  • the hardness, the rebound resilience and the tensile strength were measured according to the measurement method specified in JIS-K-6301.
  • the tanS of dynamic viscoelasticity was measured using RSA2 manufactured by Rheometrics Co., Ltd. under the conditions of a temperature of 70 ° C, a frequency of 10 Hz and a dynamic strain of 2%.
  • the exothermic characteristics and PS (permanent strain) were measured using a Goodrich Flexometer according to ASTM D623 under the conditions of 0.175 inch strain, 55 pounds load, 100 ° C for 25 minutes.
  • the compression set was measured at a temperature of 70 ° C for 22 hours using a compression set measuring device manufactured by Ueshima Seisakusho in accordance with JIS K6301 or ASTM D395, and the permanent set was measured.
  • the flex crack growth was measured by using a crack tester manufactured by Ueshima Seisakusho in accordance with ASTM D833, by measuring the number of times of bending until the crack of the test piece grew to a length of 15 mm or more.
  • Example 2 A vinyl cis-polybutadiene rubber was obtained in the same manner as in Example 1 except that the unsaturated polymer substance (additive) to be added was as shown in Table 2.
  • the unsaturated polymer substance (additive) was not added, or the unsaturated polymer substance was not added during polymerization, but was added during compounding after VCR rubber synthesis (the amount of unsaturated polymer substance added to VCR was Synthetic and compounding was carried out in the same manner as in Example 1 except that the amount was 10% by mass of the unsaturated polymer substance).
  • Table 2 shows raw rubber data of the vinyl cis-polybutadiene rubber composition.
  • the number of monodisperse fiber crystals was determined by observing crystals having a minor axis length of 0.2 ⁇ or less as monodisperse SPB fiber crystals, and using the number per 400 jU m 2 as an index.
  • the microstructure of the high melting point SPB in Comparative Example 1 was 98.8 mass of vinyl-1,2 structure. /. , Transformer 1,4 structure 0.6 mass. /.
  • the ratio between the matrix BR, which is a soluble n-hexane boiling component (A) and the boiling n-hexane insoluble component, (B) the high melting point SPB (AZB) was 88/12.
  • the Ty spZc of the boiling n-hexane insoluble polymer was 1.5. (77 s P Zc: A measure of the molecular weight of 1,2-polybutadiene crystal fiber, measurement temperature is 135 ° C, solvent used is ortho-dichlorobenzene)
  • IR is IR2200 (polyisoprene manufactured by JSR Corporation), and 1,2-PB is RB820 (1,2-polybutadiene manufactured by JSR Corporation).
  • a vinyl cis-polybutadiene rubber was obtained in the same manner as in Example 1, except that the polymer substance and the solvent to be added were as shown in Table 3.
  • IR is [R2200 (polyisoprene manufactured by JSR Corporation), liquid PB is hiker
  • GTBN1300X8 Liquid polybutadiene with a molecular weight of 3,500, manufactured by Ube Industries, Ltd.
  • epoxylated PB is Epporide PB3600 (Daicel Chemical Industries, Ltd., epoxidized polybutadiene with a viscosity of 45 ° C-33 Pascal second)
  • the aryl ether polymer is Marialim AWS-0851 (manufactured by Nippon Oil fl Gumi Co., Ltd., viscosity: 100 ° C-400 s!
  • Compression set 85 87 100
  • FIGS. 5 to 8 are views of the microstructure of the actually obtained vinyl cis-polybutadiene rubber as viewed with an electron microscope.
  • FIG. 5 shows the result of Comparative Example 1, and it can be seen that 1,2-polybutadiene having a melting point of 170 ° C. or more became mustache-like crystals and formed aggregates in the matrix.
  • FIG. 6 corresponds to Example 3
  • FIG. 7 corresponds to Example 2
  • FIG. 8 corresponds to Example 4.Each of the whisker-like crystals is smaller than FIG. You can see that it is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

本発明は、1,2−ポリブタジエンと、該1,2−ポリブタジエンより融点の低い、繰り返し単位当たり少なくとも1個の不飽和二重結合を有する高分子物質とを含有するビニル・シス−ポリブタジエンゴムであって、ビニル・シス−ポリブタジエンゴムのマトリックス成分であるシス−ポリブタジエンゴム中に、1,2−ポリブタジエンと高分子物質とが物理的及び/又は化学的に吸着した状態で分散していることを特徴とするビニル・シス−ポリブタジエンゴム、及びその製造方法に関するものであり、これによりダイスウェル比が小さくて、優れた押し出し加工性、作業性などを示し、タイヤのサイド・トレッド等において求められる優れた特性を示す加硫物を与えることができる。

Description

明 細 書
ビニル 'シス一ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物 技術分野
本発明は、融点 1 70°C以上の高融点の 1, 2—ポリブタジエンと、ポリイソプ レンや低融点のポリブタジエンなどと力《、シス一ポリブタジエンゴムのマトリック ス中に共存して分散してなる新規なビニル 'シス一ポリブタジエンゴムに関し、 更に、該ビニル'シス一ポリブタジエンゴムを用いたブタジエンゴム組成物に関 する。 背景技術
ポリブタジエンは、いわゆるミクロ構造として、 1,4一位での重合で生成した結 合部分(1,4一構造)と 1 ,2—位での重合で生成した結合部分(1,2—構造)とが 分子鎖中に共存する。 1,4一構造は、更にシス構造とトランス構造の二種に分 けられる。一方、 1 ,2—構造は、ビニル基を側鎖とする構造をとる。
従来、ビニル■シス一ポリブタジエンゴム組成物の製造方法は、ベンゼン、ト ルェン、キシレンなどの芳香族炭化水素、及びこれらのハロゲン化族炭化水素、 例えばクロルベンゼンなどの不活性有機溶媒で行われてきた。しかし、芳香族 炭化水素、ハロゲン化炭化水素などの溶媒を用いると重合溶液の粘度が高く 撹拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必 要であった。又、芳香族炭化水素、ハロゲン化炭化水素系の溶媒は毒性の為、 発癌作用の為に環境にとって非常に危険性のあるものであった。
上記の製造方法としては、前記の不活性有機溶媒中で水、可溶性コバルト化 合物と一般式 AIRnX3_n (但し Rは炭素数 1〜6のアルキル基、フエニル基又はシ クロアルキル基であり、 Xはハロゲン元素であり、 nは 1 . 5〜2の数字)で表せ る有機アルミニウムクロライドから得られた触媒を用いて 1, 3—ブタジエンをシ スー 1, 4重合してシス一ポリブタジエンゴムを製造して、次いでこの重合系に 1, 3—ブタジエン及び Z又は前記溶媒を添加するか或いは添加しないで可溶性コ バルト化合物と一般式 AIR3 (但し Rは炭素数 1〜6のアルキル基、フエ二ル基又 はシクロアルキル基である)で表せる有機アルミニウム化合物と二硫化炭素と から得られるシンジオタクチック 1 ,2重合触媒を存在させて 1, 3—ブタジエンを シンジオタクチック 1 ,2重合(以下「1,2重合」と略す)する方法(例えば、特公昭 49一 1 7666号公報(特許文献 1 )、特公昭 49一 1 7667号公報(特許文献 2 ) 参照)は公知である。
また、例えば、特公昭 62— 1 7 1号公報(特許文献 3 )、特公昭 63— 36324 号公報(特許文献 4)、特公平 2— 37927号公報(特許文献 5)、特公平 2— 3 808 1号公報(特許文献 6)、特公平 3— 63566号公報 (特許文献 7 )には、二 硫化炭素の存在下又は不在下に 1, 3—ブタジエンをシス一 1, 4重合して製造 したり、製造した後に 1, 3—ブタジエンと二硫化炭素を分離 '回収して二硫化 炭素を実質的に含有しない 1 , 3—ブタジエンや前記の不活性有機溶媒を循環 させる方法などが記載されている。更に特公平 4一 4881 5号公報(特許文献 8 )には配合物のダイスゥェル比が小さぐその加硫物がタイヤのサイドウォー ルとして好適な引張応力と耐屈曲亀裂成長性に優れたゴム組成物が記載され ている。
また、特開 2000— 44633号公報(特許文献 9 )には、 n—ブタン、シス一 2 ーブテン、トランス一 2—ブテン、及びブテン一 1などの 04留分を主成分とする 不活性有機溶媒中で製造する方法が記載されている。この方法でのゴム組成 物が含有する 1 ,2—ポリブタジエンは短繊維結晶であり、短繊維結晶の長軸長 さの分布が繊維長さの 98 %以上が 0. 6〃m未満であり、 70 %以上が 0. Ζ μ m未満であることが記載され、得られたゴム組成物はシス一 1, 4—ポリブタジ ェンゴムの成形性や引張応力、引張強さ、耐屈曲亀裂成長性などを改良され ることが記載されている。
し力、しながら、用途によっては、種々の特性が改良されたゴム組成物が求め られていた。
特許文献 1 特公昭 49 - Ί 7666号公報
特許文献 2 特公昭 49一 Ί 7667号公報
特許文献 3 特公昭 62一 1 71号公報
特許文献 4 特公昭 63 - 36324号公報
特許文献 5 特公平 2— 37927号公報
特許文献 6 特公平 2— 38081号公報
特許文献 7 特公平 3— 63566号公幸艮
特許文献 8 特公平 4一 4881 5号公報
特許文献 9 特開 2000— 44633号公報 発明の開示
本発明は、タイヤなどの製造に際し、ダイスゥエル比が小さくて、優れた押し 出し加工性、作業性などを示し、また、加硫したときに、タイヤのサイド'トレッド 等において求められる優れた耐破壊特性、耐摩耗性、滑り摩擦抵抗性などを 示し、更に耐屈曲亀裂成長性が非常に良好で、且つ高剛性である加硫物とな るブタジエンゴム組成物を与えるビニル 'シス一ポリブタジエンゴムを提供する ことを目的とし、更に、上記優れた特性を有するブタジエンゴム組成物、特にタ ィャ用ブタジエンゴム組成物を提供することを目的とする。
本発明は、下記構成により、上記目的を達成した。
1 . 1 , 2—ポリブタジエンと、該 1, 2—ポリブタジエンより融点の低い、繰り返 し単位当たり少なくとも 1個の不飽和二重結合を有する高分子物質とを含有す るビニル 'シス一ポリブタジエンゴムであって、ビニル 'シス一ポリブタジエンゴ ムのマトリックス成分であるシス一ポリブタジエンゴム中に、 1, 2—ポリブタジ ェンと高分子物質とが物理的及び 又は化学的に吸着した状態で分散してい ることを特徴とするビニル 'シス一ポリブタジエンゴム。
2. ビニル 'シス一ポリブタジエンゴムのマトリックス成分であるシス一ポリブタ ジェンゴム中に、前記 1, 2—ポリブタジエン、及び前記高分子物質が短い結晶 繊維状及び Z又は粒子状で分散していることを特徴とする上記 1 .に記載のビ ニル'シス一ポリブタジエンゴム。
3. 前記 1 , 2—ポリブタジエンが融点 1 70°C以上の 1, 2—ポリブタジエンで あり、前記高分子物質がポリイソプレン、融点 1 50°C以下の結晶性ポリブタジ ェン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも 1種か らなることを特徴とする上記 1 .または 2.に記載のビニル 'シス一ポリブタジェ ンゴム。
4. 前記不飽和高分子物質を 1,2—ポリブタジエンの結晶繊維とシスーポリブ タジェンゴムの合計に対して 0.01〜50質量%の範囲で含まれていることを特 徴とする上記 1 . ~ 3.のいずれかに記載のビニル 'シス一ポリブタジエンゴム。
5. 前記マトリックス成分であるシス一ポリブタジエンゴムの 25°Cにおけるト ルェン溶液粘度が 1 0〜 1 50の範囲にあることを特徴とする上記 1 .〜4.のい ずれかに記載のビニル■シス一ポリブタジエンゴム。
6. 前記マトリックス成分であるシス一ポリブタジエンゴムの [ 7? ]が 1 . 0〜5. 0の範囲にあることを特徴とする上記 1 .〜5.のいずれかに記載のビニル 'シ ス一ポリブタジエンゴム。
7. 前記マトリックス成分であるシス一ポリブタジエンゴムの 1, 4一シス構造 含有率が 80質量%以上の範囲にあることを特徴とする上記 1 . ~ 6.のいずれ かに記載のビニル 'シス一ポリブタジエンゴム。 8. ビニル■シス一ポリブタジエンゴムのマトリヅクス成分であるシス一ポリブタ ジェンゴムのムーニー粘度が 1 0〜50の範囲にあることを特徴とする上記 1 . 〜7.のいずれかに記載のビニル 'シス一ポリブタジエンゴム。
9. 高分子物質が沸騰 n—へキサン不溶解分であることを特徴とする上記 1 . 〜8.のいずれかに記載のビニル 'シス一ポリブタジエンゴム。
1 0. ビニル 'シス一ポリブタジエンゴムのマトリックス成分であるシスーポリブ タジェンゴム中に、前記 1 , 2—ポリブタジエンが短い結晶繊維状で、前記高分 子物質が粒子状で分散しており、且つ、前記 1, 2—ポリブタジエンの短い結晶 繊維が前記高分子物質の粒子の中に分散していることを特徴とする上記 1 . 〜 9.のいずれかに記載のビニル 'シス一ポリブタジエンゴム。
1 1 . 前記 1, 2—ポリブタジエンの短い結晶繊維が、前記高分子物質の粒子 に含有されずに前記マトリックス成分であるシス一ポリブタジエンゴム中にも分 散しており、概マトリックス中に分散している短い結晶繊維の長軸長が 0. 2〜1 , 000 jU mの範囲であり、かつ、該高分子物質の粒子中に分散している前記 1, 2—ポリブタジエンの短い結晶繊維の長軸長が 0. 01 - 0. 5 / mの範囲であ ることを特徴とする上記 1 1に記載のビニル 'シス一ポリブタジエンゴム。
1 2. 上記 1 .又は 2.に記載のビニル 'シス一ポリブタジエンゴムを、天然ゴム、 ポリイソプレンゴム、スチレン一ブタジエン共重合体ゴム、又はこれらの少なくと も 2種のブレンドゴムから選ばれたゴム 1 00重量部に対して、 1 0〜300重量 部配合したことを特徴とするブタジエンゴム組成物。
1 3. 上記 1 .〜1 1 .に記載のビニル 'シス一ポリブタジエンゴム、及び 又は 上記 1 3.に記載のブタジエンゴム組成物を用いたことを特徴とするタイヤ用ブ タジェンゴム組成物。
1 4. 1 , 3—ブタジエンを、炭化水素系溶媒中にて、シス一 1, 4重合触媒を用 いてシス一 1, 4重合させ、次いで、得られた重合反応混合物中に 1, 2重合触 媒を共存させて、 1, 3—ブタジエンを 1, 2重合させて、融点が 1 70°C以上の 1 , 2—ポリブタジエンを生成せしめ、しかる後、得られた重合反応混合物より生成 したビニル 'シス一ポリブタジエンゴムを分離回収して取得するビニル 'シス一 ポリブタジエンゴムの製造方法において、繰り返し単位当たり少なくとも 1個の 不飽和二重結合を有する高分子物質を、ビニル 'シス一ポリブタジエンゴムの 製造系内に添加する工程を含むことを特徴とするビニル 'シス一ポリブタジエン ゴムの製造方法。
1 5. 前記高分子物質が、ポリイソプレン、融点 0°C〜1 50°Cの結晶性ポリブ タジェン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも 1 種であることを特徴とする上記 1 4. に記載のビニル 'シス一ポリブタジエンゴム の製造方法。
1 6. 前記高分子物質の前記製造系内への添加量が、取得されるビニル 'シ スーポリブタジエンゴムに対して 0. 01〜50質量%の範囲であることを特徴と する上記 1 4. 又は 1 5. に記載のビニル 'シス一ポリブタジエンゴムの製造方法。
1 7. 前記高分子物質を前記製造系内に添加する工程が、前記シス一 1 , 4重 合を行う工程から、 1, 2重合終了後の得られた重合反応混合物より生成した ビニル,シス一ポリブタジエンゴムを分離回収する工程までの間の任意の時点 で、重合反応混合物中に行われることを特徴とする上記 1 4. - 1 6. のいずれ かに記載のビニル 'シス一ポリブタジエンゴムの製造方法。
1 8. 前記炭化水素系溶媒が、溶解パラメーターが 9. 0以下の炭化水素系溶 媒であることを特徴とする上記 1 4. 〜1 7. のいずれかに記載のビニル 'シス一 ポリブタジエンゴムの製造方法。
1 9. 上記 1 4. 〜1 8. のいずれかに記載の製造方法で得られたビニル 'シス 一ポリブタジエンゴムを、天然ゴム、ポリイソプレンゴム、スチレン一ブタジエン 共重合体ゴム、又はこれらの少なくとも 2種のブレンドゴムから選ばれたゴム 1 00質量部に対して、 1 0〜300質量部配合したことを特徴とするブタジエンゴ ム組成物。 20. 上記 1 4.〜1 8.のいずれかに記載の製造方法で得られたビニル 'シス
—ポリブタジエンゴム、及び/又は上記 1 2、 1 3または 1 9に記載のブタジエン ゴム組成物を用いたことを特徴とするタイヤ用ブタジエンゴム組成物。 本発明のビニル■シス一ポリブタジエンゴム(以下「VCR」と略す)は、好まし い態様では、 1, 2—ポリブタジエンが、融点 1 70°C以上の 1 , 2—ポリブタジェ ンであり、この 1, 2—ポリブタジエンより融点の低し、、繰り返し単位当たり少な くとも 1個の不飽和二重結合を有する高分子物質(以下「不飽和高分子物質」と 略すことがある)が、ポリイソプレン、融点 1 70°C未満の結晶性ポリブタジエン、 液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも 1種からなる ものであって、該融点 1 70°C以上の 1 , 2—ポリブタジエンと、該不飽和高分子 物質とが、シス一ポリブタジエンゴムのマトリックス中に共存して分散してなる 新規な VCRである。
この本発明に係る VCRでは、非常に強固なポリマー間の相互作用を発現し、 優れた補強成分である高融点の 1, 2—ポリブタジエンと、ポリイソプレンなどの 比較的低融点の不飽和高分子物質とが共存する結果、従来の VCRに比べて、 共存する不飽和高分子物質の相溶効果により、高融点の 1 , 2—ポリブタジェ ンの、マトリックス成分であるシス一ポリブタジエンゴムへの分散性が著しく向 上され、その結果、優れた補強成分である高融点の 1, 2—ポリブタジエンの含 有量を増加することが可能となる。
上記の如き本発明に係る VCRの特性は、タイヤ製品の製造やその他の用途 において強く要望される諸物性を著しく向上させることを可能にする。特に本発 明に係る VCRをタイヤ用ブタジエンゴム組成物に用いると、該組成物は、タイ ャ製造において、ダイスゥ: cル比(押出し時の配合物の怪とダイオリフィス径の 比〉が小さくて、優れた押し出し加工性、作業性などを示す。また、該組成物の 加硫物は、タイヤの主にサイド'トレッド等において求められる優れた耐破壊持 性、耐摩耗性、滑り摩擦抵抗性などを示す。更に、耐屈曲亀裂成長性が非常に 良好で、且つ高剛性であるので、カーボンやシリカ等の補強材の使用量を低減 することができ、タイヤの軽量化による低燃費化を可能にする。従って、本発明 に係る VCRをサイド'トレッド等の素材として使用したタイヤは、優れた走行安 定性、高速耐久性を示し、且つ低燃費化を可能にする。 図面の簡単な説明
図 1は不飽和高分子物質の、融点が 1 70°C以上の 1, 2—ポリブタジエンの 結晶繊維との関連における分散態様の一つの概念図である。
図 2は不飽和高分子物質の、融点が 1 70°C以上の 1, 2—ポリブタジエンの 結晶繊維との関連における分散態様の他の一つの概念図である。
図 3は不飽和高分子物質の、融点が 1 70°C以上の 1 , 2—ポリブタジエンの 結晶繊維との関連における分散態様の更に他の一つの概念図である。
図 4は不飽和高分子物質の、融点が 1 70°C以上の 1 , 2—ポリブタジエンの 結晶繊維との関連における分散態様のなお更に他の一つの概念図である。 図 5は比較例 1で得られたビニル■シス一ポリブタジエンゴムの微細構造を示 す電子顕微鏡で見た図である。
図 6は実施例 1で得られたビニル 'シス一ポリブタジエンゴムの微細構造を示 す電子顕微鏡で見た図である。
図 7は実施例 3で得られたビニル 'シス一ポリブタジエンゴムの微細構造を示 す電子顕微鏡で見た図である。
図 8は実施例 4で得られたビニル■シス一ポリブタジエンゴムの微細構造を示 す電子顕微鏡で見た図である。
なお、図中の符号 1はマトリックス、 2は融点が 1 70°C以上の 1, 2—ポリブタ ジェンの結晶繊維、 3は不飽和高分子物質の微粒子である。 発明を実施するための最良の形態
本発明の VCRは、一般に次のような構成となっている。即ち、一般に、(1 )融 点が 1 70°C以上である 1 ,2—ポリブタジエンが 1〜50質量部、(2)シス一ポリ ブタジエンゴム 1 00質量部、及び(3)上記(1 )と(2)の総量に対して 0.0 "!〜 5 0質量%の不飽和高分子物質からなっている。また、一般に、(1 )成分の融点 が 1 70°C以上である 1,2—ポリブタジエンは、平均の単分散繊維結晶の短軸 長が 0. 以下、アスペクト比が 1 0以下であり、且つ平均の単分散繊維結 晶数が 1 0以上の短繊維状であるところの結晶繊維を形成している。
上記(1 )成分の 1 ,2 -ポリブタジエンの結晶繊維としては、平均の単分散繊 維結晶の短軸長が 0.2 jt/ m以下、好ましくは、 0.1 i m以下であり、また、ァス ぺク卜比が 1 0以下、好ましくは、 8以下であり、且つ平均の単分散繊維結晶数 が 1 0以上、好ましくは、 1 5以上の短繊維状であり、かつ、融点が 1 70°C以上、 好ましくは、 1 90〜220°Cであることが望ましい。
上記く 2)成分のシス一ポリブタジエンゴムとしては、下記の特性を有すること が望ましい。即ち、厶一二一粘度(ML1+4 1 00°C、以下「ML」と略す)が好ましく は 1 0〜50、好ましくは 1 0〜40のものとする。そうすることにより、配合時の作 業性が向上し、また、上記(1 )成分の(2)成分への分散性が向上するなどの 効果が得られる。また、(2)成分のシス一ポリブタジエンゴムは、次の特性を有 することが望ましい。即ち、トルエン溶液粘度 (センチボイズ /25°C、以下 ΓΤ- cp」と略す)が好ましくは 1 0〜1 50、より好ましくは 1 0~ 1 00であり、 [ 77 ] (固有 粘度)が 1 . 0〜5. 0、好ましくは 1 . 0〜4. 0であることが望ましい。また、 1, 4 —シス構造含有率が 80質量%以上、好ましくは 90質量%以上であり、実質的 にゲル分を含有しないことが望ましい。ここで、実質的にゲル分を含有しないと は、トルエン不溶解分が 0. 5質量%以下であることを意味する。
上記のシス一1 , 4重合によって得られたポリブタジエンゴムの末端及び 又 は主鎖を変性してもよい。変性剤として、少なくともァミノ基とアルコキシ基とを 含有する有機珪素化合物、アルコキシ基を含有する有機珪素化合物、不飽和 カルボン酸あるいはその誘導体、ハロゲン系化合物、ヘテロ三員環化合物など を用いることができる。変性剤の使用量は、生成したポリブタジエン (ポリブタジ ェンゴム) l OOgに対して 0. 01 ~ 1 50ミリモル、変性剤の使用量が少ないと、 変性効果が現れにくい。また、使用量が多すぎると、ポリブタジエン中に未反応 変性剤が残存しやすくなリ、その除去に手間がかかるので、好ましくない。なお、 変性物のムーニー粘度が変性前と比較して 1以上増加していることが好ましい。 反応を促進するために、有機過酸化物を添加することができる。上記の方法に より得られる変性ポリブタジエンは、その繰り返し単位の 80質量%以上がシス 1 , 4構造を持ち、ムーニー粘度(ML1+4、 1 00°C)が 20~ 80の範囲にあり、ゲ ルパーミエ一シヨン法による重量平均分子量が 200, 000〜1, 000, 000の 範囲にあることが望ましい。また、ミクロ構造中のビニル構造含有量が 1 5質 量%以下であることが好ましい。
ごこで、トルエン不溶解分は、試料ゴム 1 Ogと 400mlのトルエンを三角フラス コに入れて RT (25°C)にて完全溶解させ、その後 200メッシュの金網を設置し た濾過器を用い上記溶液を濾過し、濾過後に金網に付着したゲル分を言い、 上記割合はゲルが付着した金網を真空乾燥し付着量を測定し、試料ゴムに対 する百分率で計測した値を指す。
また、 [ 77 ] (固有粘度)は試料ゴム 0. 1 gと 1 00mlのトルエンを三角フラスコ に入れ、 30°Cで完全溶解させ、その後 30°Cにコントロールされた恒温水槽中 で、キャノンフェンスケ動粘度計に 1 Omlの上記溶液を入れ、溶液の落下時間 (T)を測定し、下記式により求めた値を [ ]とする。
77 sp = T/T0- 1 (丁。:トルエンだけの落下時間)
η sp/c= [ 77 ] + k'[ ?7 ]2c
( ?7 sp :比粘度、k' :ハギンズ定数(0. 37)、C :試料濃度(gZml) ) 上記(1 )成分の 1 ,2—ポリブタジエン結晶繊維と(2)成分のシス一ポリブタジ ェンゴムの割合は、上記のとおり(2)成分のシス一ポリブタジエンゴム 1 00質 量部に対して(1 )成分の 1,2—ポリブタジエン結晶繊維が 1〜50質量部、好ま しくは、 1〜30質量部であることが望ましい。上記範囲内であると、 50質量部 を超えて多量の場合の、シス一ポリブタジエンゴム中の 1 ,2—ポリブタジエン結 晶繊維の短繊維結晶が大きくなリやす その分散性が悪くなることや、 1質量 部未満の少量の場合の、短繊維結晶による補強性が低下することを回避でき、 したがって、特長となる弾性率 '耐屈曲亀裂成長性-酸化劣化性等が発現し難 ぐまた加工性が悪化するなどの問題が起こりにくいため好ましい。また、(3) 成分の不飽和高分子物質の割合は、上記のとおり VCRの 0.01〜50質量%、 好ましくは 0. 01〜30質量%であることが望ましい。上記範囲内であることは、 上記(1 )成分の 1 , 2—ポリブタジエン結晶繊維の凝集による分散性低下抑制、 それに伴う VCRの諸物性の低下抑制などの点で好ましい。
また、(1 )成分の融点が 1 70°C以上である 1 ,2—ポリブタジエンと(3)成分の 不飽和高分子物質との割合は、上記のとおり(1 )成分 1 00質量部に対して
(3)成分 0. 02〜"! 00質量部、好ましくは 0. 05〜80質量部であることが望ま し また、(1 )成分と(3)成分の合計量力、上記のとおリマトリックス成分であ る(2)成分のシス一ポリブタジエンゴム 1 00質量部に対して 1 . 01〜1 00質量 部、好ましくは 1 . 03〜90質量部であることが望ましい。
以下に、本発明の VCRの製造方法について詳細に説明する。
本発明の VCRの製造においては、一般に炭化水素系溶媒を用いて 1, 3—ブ タジェンの重合を行う。この炭化水素系溶媒としは、溶解度パラメーター(以下 「SP値」と略す)が 9.0以下である炭化水素系溶媒が好まし 更に好ましくは 8. 4以下の炭化水素系溶媒である。溶解度パラメーターが 9.0以下である炭化水 素系溶媒としては、例えば、脂肪族炭化水素、脂環族炭化水素である n—へキ サン(SP値: 7.2)、 n—ペンタン(SP値: 7.0)、 n—オクタン(SP値: 7.5)、シク 口へキサン(SP値: 8.1 )、 n -ブタン(SP値: 6.6)等が挙げられる。中でも、シ クロへキサンなどが好ましい。
これらの溶媒の SP値は、ゴム工業便覧(第四版、社団法人:日本ゴム協会、 平成 6年 1月 20曰発行; 721頁)などの文献で公知である。
SP値が 9.0よりも小さい溶媒を使用することで、シス一ポリブタジエンゴム中 への 1 ,2—ポリブタジエン結晶繊維の短繊維結晶の分散状態が本発明で期待 する如く形成され、優れたダイスゥエル特性や高引張応力、引張強さ、高屈曲 亀裂成長性能を発現するので好ましい。
まず、 1 , 3—ブタジエンと前記溶媒とを混合し、次いで、得られた溶液中の水 分の濃度を調節する。水分は、該溶液中の、後記シス一 1, 4重合触媒として 用いられる有機アルミニウムクロライド 1モル当たり、好ましくは 0. 1〜1 . 0モ ル、特に好ましくは 0. 2〜1 . 0モルの範囲である。この範囲では充分な触媒活 性得られて好適なシス一 1, 4構造含有率や分子量が得られつつ、重合時のゲ ルの発生を抑制できることにより重合槽などへのゲルの付着を防ぐことができ、 連続重合時間を延ばすことができるので好ましい。水分の濃度を調節する方法 は公知の方法が適用できる。多孔質濾過材を通して添加'分散させる方法(特 開平 4一 85304号公報)も有効である。
水分の濃度を調節して得られた溶液には、シス一 1, 4重合触媒の一つとして、 有機アルミニウムクロライドを添加する。有機アルミニウムクロライドとしては、 一般式 AIRnX3nで表される化合物が好ましく用いられ、その具体例としては、 ジェチルアルミニウムモノクロライド、ジェチルアルミニウムモノブロマイド、ジィ ソブチルアルミニウムモノクロライド、ジシクロへキシルアルミニウムモノクロラ イド、ジフエニルアルミニウムモノクロライド、ジェチルアルミニウムセスキクロラ イドなどを好適に挙げることができる。有機アルミニウムクロライドの使用量の としては、 1 , 3—ブタジエンの全量 1モル当たり 0. 1ミリモル以上が好ましぐ 0. 5〜50ミリモルがより好ましい。 次いで、有機アルミニウムクロライドを添加した混合溶液に、シス一 1, 4重合 触媒の他の一つとして、可溶性コバルト化合物を添加して、 " I, 3—ブタジエン をシス一 1 , 4重合させる。可溶性コバルト化合物としては、用いる炭化水素系 溶媒又は液体 1 , 3—ブタジエンに可溶なものであるか、又は、均一に分散でき る、例えばコバルト(II)ァセチルァセトナート、コバルト(HI)ァセチルァセトナー トなどコバルトの /3ージケトン錯体、コバルトァセト酢酸ェチルエステル錯体の ようなコバルトの β—ケト酸エステル錯体、コバルトォクトエー卜、コバルトナフ テネート、コバルトベンゾエートなどの炭素数 6以上の有機カルボン酸のコバル ト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハ ロゲン化コバルト錯体などを挙げることができる。可溶性コバルト化合物の使 用量は、 1 , 3—ブタジエンの 1モル当たり 0. 001ミリモル以上力好まし 0. 005ミリモル以上であることがより好ましい。また可溶性コバルト化合物に対す る有機アルミニウムクロライドのモル比(AIZCo)は 1 0以上であり、特に 50以 上であることが好ましい。また、可溶性コバルト化合物以外にもニッケルの有機 カルボン酸塩、ニッケルの有機錯塩、有機リチウム化合物、ネオジゥ厶の有機 カルボン酸塩、ネオジゥムの有機錯塩を使用することも可能である。
シス一 1 , 4重合の温度は、一般に 0°Cを超える温度〜 1 00°C、好ましくは 1 0 〜1 00°C、更に好ましくは 20〜1 00°Cまでの温度範囲である。重合時間(平 均滞留時間)は、 1 0分〜 2時間の範囲が好ましい。シス一 1 , 4重合後のポリ マー濃度が 5〜26質量%となるようにシス一 1, 4重合を行うことが好ましい。 重合槽は 1槽、又は 2槽以上の槽を連結して行われる。重合は重合槽(重合 器)内にて溶液を攪拌混合して行う。重合に用いる重合槽としては高粘度液攪 拌装置付きの重合槽、例えぱ特公昭 40— 2645号に記載された装置を用いる ことができる。
本発明の VCRの製造では、シス一 1 , 4重合時に、公知の分子量調節剤、例 えぱシク口才クタジェン、アレン、メチルアレン(1, 2—ブタジエン)などの非共 役ジェン類、又はエチレン、プロピレン、ブテン一 1などの ーォレフイン類を使 用することができる。又重合時のゲルの生成を更に抑制するために、公知のゲ ル化防止剤を使用することができる。また、重合生成物のシス一 1 , 4構造含有 率は一般に 80質量%以上、好ましくは 90質量%以上で、 ML1 0- 50.好まし くは 1 0~40であり、実質的にゲル分を含有しないようにする。
そして、前記の如くして得られたシス一 1 , 4重合反応混合物に、 1, 2重合触 媒として、一般式 AIR3で表せる有機アルミニウム化合物と二硫化炭素、必要 なら前記の可溶性コバルト化合物を添加して、 1, 3—ブタジエンを 1, 2重合さ せて、 VCRを製造する。この際、該重合反応混合物に 1 , 3—ブタジエンを添加 してもよいし、添加せずに未反応の 1 , 3—ブタジエンを反応させてもよい。一般 式 AIR3で表せる有機アルミニウム化合物としては、トリメチルアルミニウム、卜 リエチルアルミニウム、トリイソブチルアルミニウム、トリ n—へキシルアルミニゥ ム、トリフエニルアルミニウムなどを好適に挙げることができる。有機アルミニゥ ム化合物は、 1 , 3—ブタジエン 1モル当たり 0. 1ミリモル以上、特に 0. 5〜50 ミリモル以上である。二硫化炭素は特に限定されないが水分を含まないもので あることが好ましい。二硫化炭素の濃度は 20ミリモル ZL以下、特に好ましくは 0. 01〜 1 0ミリモル ZLである。二硫化炭素の代替として公知のイソチオシァ ン酸フエ二ルゃキサントゲン酸化合物を使用してもよい。
1 , 2重合の温度は、一般に 0〜1 00°C、好ましくは 1 0〜1 00°C、更に好まし くは 20〜 1 00°Cの温度範囲である。 1 , 2重合を行う際の重合系には、前記の シス一 1 , 4重合反応混合物 1 00質量部当たり 1〜50質量部、好ましくは 1〜 20質量部の 1, 3—ブタジエンを添加することで、 1, 2重合時の 1 , 2—ポリブ タジェンの収量を増大させることができる。重合時間(平均滞留時間)は、 1 0分 〜2時間の範囲が好ましい。 1, 2重合後のポリマー濃度が 9 ~29質量%とな るように 1 , 2重合を行うことが好ましい。重合槽は 1槽、又は 2槽以上の糟を連 結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。 1 , 2重合に用いる重合槽としては、 1, 2重合中に更に高粘度となりポリマーが 付着しやすいので、高粘度液攪拌装置付きの重合槽、例えば特公昭 40— 26 45号公報に記載された装置を用いることができる。
本発明の VCRの製造においては、前記のようにシス一 1, 4重合、次いで 1, 2重合を行って VCRを製造するに当たり、融点の低い繰り返し単位当たり少な くとも 1個の不飽和二重結合を有する高分子物質を、 VCRの製造系内に添加 する工程を含む。 VCR製造後、たとえば配合時に添加しても本願発明の効果 は得られない。この不飽和高分子物質の製造系内への添加は、前記シス一 1, 4重合を行う際から、前記 1, 2重合を行う際までの間の任意の時点で重合反 応混合物中に添加することが好ましく 1 , 2重合を行うときがより好ましい。
上記不飽和高分子物質としては、ポリイソプレン、融点 1 70°C未満の結晶性 ポリブタジエン、液状ポリブタジエン、酸素結合を含有する高分子化合物、及び これらの誘導体から選ばれた少なくとも 1種が好ましい。
ポリイソプレンとしては、通常の合成ポリイソプレン(シス構造 90質量%以上 のシス一 1, 4一ポリイソプレン等)、液状ポリイソプレン、卜ランス一ポリイソプ レン等が挙げられる。
融点 1 70°C未満の結晶性ポリブタジエンは、好ましくは融点 0°C〜 1 50°Cの 結晶性ポリブタジエンであり、たとえば、低融点 1 , 2—ポリブタジエン、トランス 一ポリブタジエン等が挙げられる。
液状ポリブタジエンとしては、固有粘度 [ 77 ] = 1以下の極低分子のポリブタジ ェン等があげられる。
酸素結合を含有する高分子化合物としては、エーテル基、エポキシ基、カル ボキシル基、エステル基、水酸基、カルボ二ル基を含有する化合物であること が好ましい。具体的化合物として、例えばフエノール樹脂、ナイロン樹脂、ポリ ウレタン、ポリエチレングリコール、エポキシ化ポリブタジエン、ポリエステル、ェ ポキシ化スチレンブタジエン共重合体、ポリアリールエーテル、ァリルエーテル コポリマーなどが挙げられる。酸素結合を含有する高分子化合物を重合系に 添加することにより、ビニル.シスポリブタジエンゴムのマトリックス成分である シスポリブタジエンと 1,2—ポリブタジエン結晶繊維の界面親和性が変化し、結 果として 1,2—ポリブタジエン結晶繊維の繊維結晶の単分散化及びビニル 'シ スポリブタジエンゴムの諸物性の向上に効果がある。
また、これらの誘導体としては、たとえば、イソプレン'イソブチレン共重合体、 イソプレン'スチレン共重合体、スチレン-イソプレン-スチレンブロック共重合体、 液状エポキシ化ポリブタジエン、液状カルボキシル変性ポリブタジエン等及びこ れら誘導体の水添物等が挙げられる。
上記各不飽和高分子物質の中でも、イソプレン、スチレン'イソプレン 'スチレ ンブロック共重合体、融点 70°C〜1 1 0°Cの 1, 2—ポリブタジエンが好ましく用 いられる。また、上記各不飽和高分子物質は、単独で用いることも、 2種以上を 混合して用いることもできる。
上記のよう不飽和高分子物質を添加すると、前記のとおり、得られる VCRに おいて、不飽和高分子物質の相溶効果により、融点が 1 70°C以上の 1 , 2—ポ リブタジエンの、マ卜リックス成分のシス—ポリブタジエンゴム中への分散性が 著しく向上され、その結果得られる VCRの特性が優れたものとなる。
不飽和高分子物質の添加量は、取得されるビニル 'シス一ポリブタジエンゴ 厶に対して 0. 01〜50質量%の範囲であることが好ましく、 0. 0 "!〜 30質 量%の範囲であることが更に好ましい。また、いずれの時点での添加でも、添 加後 1 0分〜 3時間攪拌することが好まし《更に好ましくは 1 0分〜 30分間攪 拌することである。尚、酸素結合を含有する高分子化合物の場合、添加量は、 得られたビニル■シスポリブタジエンゴムに対して好ましくは 0.01〜20質量%、 より好ましくは 0.01〜10質量%の範囲である。その場合の添加方法は特に限 定するものでなく、ビニル■シスポリブタジエンゴムを製造するシス 1 , 4重合時 あるいは 1, 2重合時、及び Zまたは、ビニル 'シスポリブタジエンゴムの重合終 了時でも良い。好ましくは、 1, 2重合時の添加である。添加後、好ましくは、 10 分〜 3時間攪拌する。好ましくは、 10分〜 30分である。
上記不飽和高分子物質に加え、酸素結合を含有する有機化合物を添加する ことも好ましい。酸素結合を含有する有機化合物としては、エーテル基、ェポキ シ基、カルボキシル基、エステル基、水酸基、カルボ二ル基を含有する化合物 であることが好ましく、たとえば、酸無水物、脂肪族アルコール、芳香族アルコ ール、脂肪族エーテル'芳香族エーテル、脂肪族カルボン酸'芳香族カルボン 酸-不飽和カルボン酸、脂肪族カルボン酸エステル■芳香族カルボン酸エステ ル '不飽和カルボン酸エステル等があげられる。添加量は、得られたビニル 'シ スポリブタジエンゴムに対して好ましくは 0.01 -20質量%、より好ましくは 0.01 〜10質量%の範囲である。その場合の添加方法は特に限定するものでな ビニル 'シスポリブタジエンゴムを製造するシス 1, 4重合時あるいは 1, 2重合 時、及び Zまたは、ビニル 'シスポリブタジエンゴムの重合終了時でも良い。好 ましくは、 1 , 2重合時の添加である。添加後、好ましくは、 10分〜 3時間攪拌す る。好ましくは、 10分〜 30分である。
重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添 加することができる。老化防止剤の代表としては、フエノール系の 2, 6—ジー t —プチルー p—クレゾール(BHT)、リン系のトリノニルフエニルフォスファイト(T NP)、硫黄系の 4. 6—ビス (ォクチルチオメチル )一o—クレゾール、ジラウリル 一 3, 3'—チォジプロピオネート(TPL)などが挙げられる。単独でも 2種以上組 み合わせて用いてもよく、老化防止剤の添加は VCR1 00質量部に対して 0. 0 01〜5質量部である。次に、重合停止剤を重合系に加えて重合反応を停止さ せる。その方法としては、例えば、重合反応終了後、重合反応混合物を重合停 止槽に供給し、この重合反応混合物にメタノール、エタノールなどのアルコール、 水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安 息香酸などの有機酸、塩化水素ガスを重合反応混合物に導入する方法などの、 それ自体公知の方法が挙げられる。次いで、通常の方法に従い生成した VCR を分離回収し、洗浄、乾燥して目的の VCRを取得する。
このようにして取得される本発明の VCRは、一般に、その各成分比率、即ち 融点が 1 70°C以上である 1,2—ポリブタジエン、シス一ポリブタジエンゴム、及 び不飽和高分子物質の比率が前記のとおりであり、また、シスーポリブタジェ ンゴムのミクロ構造は、 80質量%以上がシス一 1, 4一ポリブタジエンであり、 その残余がトランス一 1, 4一ポリブタジエン及びビニルー 1, 2—ポリブタジェ ンである。そして、このシス一ポリブタジエンゴムと不飽和高分子物質は、それ ぞれ単独 (すなわち未反応状態)では、沸騰 n—へキサン可溶分であり、融点 が 1 70°C以上の 1, 2—ポリブタジエン及びそれに不飽和高分子物質が物理 的 化学的に吸着したものは、沸騰 n—へキサン不溶分(以下「H. I」と略す) である。この融点が 1 70°C以上の 1, 2—ポリブタジエンは、一般に融点が 1 7 0〜220°Cであり、前記のような短繊維状の結晶繊維である。また、シス一ポリ ブタジエンゴムの MLは、前記のように 1 0〜50、好ましくは 20~40である。 また、本発明の VCRは、前記のとおり、融点が 1 70°C以上の 1, 2—ポリブタ ジェンと不飽和高分子物質とが、シス一ポリブタジエンゴムのマトリックス中に 均一に分散されてなるものである。
本発明の VCRにおいては、一般に、融点が 1 70°C以上の 1 , 2—ポリブタジ ェンは前記のとおりの結晶繊維として分散されている。また、不飽和高分子物 質は、融点が 1 70°C以上の 1 , 2—ポリブタジエンの結晶繊維との関連におい て、種々の態様で分散され得る。この分散態様として、図 1に概念的に示すよう に、マトリックス 1中に、融点が 1 70°C以上の 1, 2—ポリブタジエンの結晶繊維 2と、不飽和高分子物質の微粒子 3とが、それぞれ別個に分散されている態様、 図 2に概念的に示すように、マトリックス 1中に、不飽和高分子物質の微粒子 3 力 1 , 2—ポリブタジエンの結晶繊維 2に付着した状態で分散されている態様、 図 3に概念的に示すように、マトリックス 1中に、 1 , 2—ポリブタジエンの結晶繊 維 2が不飽和高分子物質の微粒子 3に付着した状態で分散されている態様、 図 4に概念的に示すように、マトリックス 1中に、不飽和高分子物質の微粒子 3 中に 1, 2—ポリブタジエンの結晶繊維 2が包含、分散された状態で分散されて いる態様などが挙げられ、図 1〜4に示す分散態様の 2種又はそれ以上が混在 している態様もあり得る。図 1〜4中、 1はマトリックス、 2は融点が 1 70°C以上 の 1, 2—ポリブタジエンの結晶繊維、 3は不飽和高分子物質の微粒子を表す。 上記本発明の VCRの製造方法においては、生成した VCRを分離取得した残 余の、未反応の 1 , 3—ブタジエン、炭化水素系溶媒及び二硫化炭素などを含 有する重合反応混合物母液から、通常、蒸留により 1, 3—ブタジエン、炭化水 素系溶媒を分離し、また、二硫化炭素の吸着分離処理、あるいは二硫化炭素 付加物の分離処理によって二硫化炭素を分離除去し、二硫化炭素を実質的に 含有しない 1 , 3—ブタジエンと炭化水素系溶媒とを回収する。また、上記重合 反応混合物母液から、蒸留によって 3成分を回収して、この蒸留物から上記の 吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除 去することによつても、二硫化炭素を実質的に含有しない 1, 3—ブタジエンと 炭化水素系溶媒とを回収することもできる。前記のようにして回収されたニ硫 化炭素と炭化水素系溶媒とは新たに補充した 1 , 3—ブタジエンを混合して再 使用することができる。
尚、本発明の VCRにおける沸騰 n—へキサン可溶分のポリスチレン換算質量 平均分子量は、単分散繊維結晶化が容易に行えるため、好ましくは 30万〜 8 0万であり、より好ましくは 30万〜 60万である。また、 VCRの沸騰 n—へキサ ン可溶分のトルエン溶液粘度(T一 CP )とム一二一粘度(M L)の関係 T一 CPZ M Lが 1以上であることが好ましぐより好ましくは 1〜4である。
上記 VCRの製造方法によれば、触媒成分の操作性に優れ、高い触媒効率で 工業的に有利に本発明の VCRを連続的に長時間製造することができる。特に、 重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高 い転化率で工業的に有利に連続製造できる。
本発明の VCRは、単独で、又は他の合成ゴム若しくは天然ゴムとブレンドし て配合し、必要ならばプロセス油で油展し、次いでカーボンブラックなどの充填 剤、加硫剤、加硫促進剤その他通常の配合剤を加えて加硫し、タイヤ用として 有用であり、タイヤ部材としては特に限定されずサイドウォール、又は、トレッド、 スティフナ一、ビードフイラ一、インナーライナ一、カーカス、タイヤコードコーティ ング、ベーストレッドなどとして、タイヤの種類としては特に限定されず高硬度タ ィャ、乗用車タイヤ、バスやトラックなどの大型車両タイヤ、フォークリフトタイヤ、 バン "ライトトラックタイヤ、 SUV (4X4用)タイヤ、モーターサイクルタイヤ、スタ ッドレスタイヤ、ラジアルタイヤなどに、その他、ホース、ベルト、ゴルフボール、 靴底、接着剤、防振ゴム、防音材、その他ポリマー系複合材、その他の各種ェ 業用品等の機械的特性及ぴ耐摩耗性が要求されるゴム用途に使用される。ま た、プラスチックスの改質剤として使用することもできる。
本発明の VCRに前記の配合剤を加えて混練した組成物は、従来の方法で得 られた従来の VCRに比較してダイスゥエル比が指数換算で 20以下に低下 (値 が低下すると優れる)し、押出加工性に優れている。
また、本発明の VCR組成物(配合物)を加硫すると硬度や引張応力が向上す る。特に 1 00%引張応力の向上が著し 前記従来の方法で得られた従来の V CRに比較して指数換算で 40前後増加 (値が増加すると優れる)し、補強効果 が大幅に改善される。更に屈曲亀裂成長が著しく改善され、指数換算で 30前 後増加 (値が増加すると優れる)し、屈曲亀裂を抑制する効果を発現する。また、 ランフラットタイヤ等で要求される耐熱物性としては酸素等のガス透過性が、同 様に従来の方法で得られた従来の VCRに比較して指数換算で 5前後低下 (値 が低下すると優れる)し、酸化劣化に伴う発熱を抑制する効果を示す。 そして、上記の諸物性の発現には、 VCR中に分散した 1,2—ポリブタジエン 結晶繊維は、シス一ポリブタジエンゴム(以下「BR」と略す)のマド Jックス中に 微細な結晶として単分散化した形態で部分的に分散し、凝集構造を有する大き な 1 ,2—ポリブタジエン結晶繊維と共存していることが好ましい。即ち、 BRマト リックス中の単分散化 1 ,2—ポリブタジエン結晶繊維は、平均の単分散繊維結 晶の短軸長が 0.2 / m以下であり、また、アスペクト比が 1 0以下であり、且つ 平均の単分散繊維結晶数が 1 0以上の短繊維状であり、且つ、融点が 1 70°C 以上であることが好ましい。また、上記融点が 1 70°C以上の 1 ,2—ポリブタジェ ン結晶繊維に加えて、上記不飽和高分子物質が BRマトリックス中に分散して し、ることが好ましい。この不飽和高分子物質は、 BRマトリックス中に、 1 ,2—ポ リブタジエン結晶繊維と高い親和性を持し、該結晶繊維近傍に物理的、化学的 に吸着した状態で分散されていること(図 2〜4の分散態様)が好ましい。上記 のように、融点が 1 70°C以上の 1 ,2—ポリブタジエン結晶繊維と不飽和高分子 物質とが共存して BRマトリックス中に分散されることによって、上記の諸物性 が優れたものとなり、好ましい。
本発明に係る VCRを他の合成ゴム若しくは天然ゴムとブレンドして配合した ゴム組成物について詳記する。このゴム組成物は、本発明の VCRを、天然ゴ ム、合成ゴム若しくはこれらの任意の割合のブレンドゴム 1 00質量部に対して、 1 0〜300質量部配合したもの、好ましくは 50〜200質量部配合したものが適 当である。上記合成ゴムとしては、ポリイソプレンゴム、スチレン一ブタジエン共 重合体ゴムなどが好ましく挙げられる。また、上記 VCR及び 又はそれを配合 したブタジエンゴム組成物を用いてタイヤ用ブタジエンゴム組成物を好適に製 造できる。
本発明のゴム組成物は、前記各成分を通常行われているバンバリ一、オーブ ンロール、ニーダー、二軸混練り機などを用いて混練りすることで得ることがで さる。 本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、 充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられ る配合剤を混練してもよい。
加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、 酸化マグネシウムなどの金属酸化物などが用いられる。
加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、ァ ミン類、グァニジン類、チォゥレア類、チアゾール類、チウラム類、ジチォカーバ メイト類、キサンテート類などが用いられる。
老化防止剤としては、ァミン-ケ卜ン系、イミダゾール系、アミン系、フエノール 系、硫黄系及び燐系などが挙げられる。
充填剤としては、無水珪酸、炭酸カルシウム、炭酸マグネシウム、タルク、硫 化鉄、酸化鉄、ベントナイ卜、亜鉛華、珪藻土、白土、クレイ、アルミナ、酸化チ タン、シリカ、カーボンブラック等の無機充填材が挙げられ、また、再生ゴム、粉 末ゴム等の有機充填剤が挙げられる。
上記プロセスオイルとしては、ァロマティック系、ナフテン系、パラフィン系のい ずれを用いてもよい。 実施例
以下に本発明に基づく実施例について具体的に記載する。
実施例 1
窒素ガスで置換した内容 30Lの攪拌機付ステンレス製反応槽中に、脱水シ クロへキサン 1 8kgに 1 .3—ブタジエン 1 .6kgを溶解した溶液を入れ、コバルト ォクトエー卜 4mmol、ジェチルアルミニウムクロライド 84mmol及び 1 .5—シク ロォクタジェン 70mmolを混入、 25°Cで 30分間攪袢し、シス重合を行った。得 られたポリマーの MLは 33、 T-cpは 59、ミクロ構造は 1,2構造 0. 9質量%、卜 ランス一 1 , 4構造 0.9質量%、シス一 1 ,4構造 98. 2質量%であった。シス重合 後、得られた重合生成液に、ポリイソプレン(IR) (Mし = 87、シス一 1, 4構造 9 8質量1 ½)からなる不飽和高分子物質を 5質量。/。(得られるビニル 'シスーポリブ タジェンゴムに対する百分率)加え、 25°Cで 1時間攪袢を行った。その後直ち に重合液に卜リエチルアルミニウム 90mmol及び二硫化炭素 50mmolを加え、 25°Cで更に 60分間攪拌し、 1,2重合を行った。重合終了後、重合生成液を 4, 6一ビス(ォクチルチオメチル)一 0ークレゾール 1質量%を含むメタノール 1 8L に加えて、ゴム状重合体を析出沈殿させ、このゴム状重合体を分離し、メタノー ルで洗浄した後、常温で真空乾燥した。この様にして得られたビニル 'シス一ポ リブタジエンゴムの収率は 80%であった。その後、このビニル 'シス一ポリブタジ ェンゴムを沸騰 n—へキサンで処理、不溶分と可溶分を分離乾燥した。得られ た沸騰 n—へキサン可溶分ポリマーの MLは 31、 T-c は 57で T-cp/MLの関 係は約 1 .8、ミクロ構造はビニルー 1,2構造 1 .0質量%、トランス一 1,4構造 0.9 質量%、シス一 1,4構造 98.1質量%であった。また、ポリスチレン換算質量平均 分子量は 42 X 1 04、 [ ]は 1 .7であった。ビニル 'シス一ポリブタジエンゴムに 含まれる短軸長 0.2 m以下の短分散繊維結晶の数は 400 / m2あたり 1 00 個以上で、アスペクト比は 1 0以下、融点は 202°Cであった。
このようにして得られた VCRゴムを下記および表 1に記載のごとく配合して物 性評価に供した。 評価項目と実施条件 ; 混練方法
下記手順に準じて混練する。
[一次配合]
混練装置:バンパリ一ミキサー(容量 1 . 7L)
回転数: 77rpm
スター卜温度: 90°C 混練手順:
0分; VCRZNR (天然ゴム)投入
0分:フイラ一投入
3分;ラムを上げて掃除( 15秒)
5分;ダンプ
ダンプ物は引き続き 10インチロールにて 1分間巻き付け、 3回丸め通し後、シ 一卜出しした。コンパウンドは 2時間以上冷却後、次の手順に準じて二次配合を 行った。
[二次配合]
前記一次配合終了後、下記手順に準じて二次配合を行った。
混練装置: 10インチロール
ロール温度: 40〜50°C
ロール間隙: 2mm
混練手順:
(1) 0分;ダンプ物の巻き付け及び硫黄■加硫促進剤の投入
(2) 2分;切り返し
(3) 3分:三角取り'丸め通し後、シート出し
加硫時間
測定装置; JSRキュラストメーター 2F型
測定温度; 150°C
測定時間; t9。X2, X 3を加硫時間とした。
加硫条件
加硫装置;プレス加硫
加硫温度: 150°C
[素ゴム物性評価] ミクロ構造は、赤外吸収スペクトル分析によって行った。シス 740cm-1、トラ ンス 967cm一1、ビニル 91 Ocm— 1の吸収強度比からミクロ構造を算出した。 ム一二一粘度(ML1+4)は、 JIS K6300に準拠して測定した。
トルエン溶液粘度(Tcp)は、ポリマー 2. 28gをトルエン 50mlに溶解した後、 標準液として粘度計校正用標準液(JIS Z8809)を用し、、キャノンフェンスケ粘 度計 No.400を使用して、 25°Cで測定した。
M1(K):加硫ゴムの試料サンプルが伸び率 100<½を示したときの引張り応力
JIS K6301に準じて測定した値
TB:加硫ゴムの試料サンプルの破断時の引張り強さ
JIS K6301に準じて測定した値
1,2—ポリブタジエン結晶繊維の融点は、示差走査熱量計(DSC)の吸熱曲 線のピークポイントにより決定した。
[配合物物性]
ダイスゥエル
測定装置;モンサント社製加工性測定装置(MPT)
ダイ形状;円形
LZD;1 , 10(D = 1.5mm)
測定温度; 100°C
せん断速度; lOOsec一1
[加硫物物性]
硬度、反撥弾性及び引張強度は、 JIS-K-6301に規定されている測定法 に従って測定した。
動的粘弾性の tanSは、レオメトリックス社製 RSA2を用いて、温度 70°C、周 波数 10Hz、動歪 2%の条件で測定した。 発熱特性および PS (永久歪)はグッドリッチフレクソメーターを用い、 ASTM D623に従し、、歪み 0.175インチ、荷重 55ポンド、 1 00°C 25分の条件で測 定した。
圧縮永久歪は上島製作所製の圧縮永久歪測定器を用いて、 JIS K6301又 は ASTM D395に従し、、温度 70°Cで 22時間の条件で圧縮し、永久歪を測 定した。
屈曲亀裂成長性は上島製作所製の亀裂試験機を用いて、 ASTM D81 3に 従い、試験片の亀裂が 1 5mm以上の長さに成長するまでの屈曲回数を測定し た。
ガス透過性は JISK71 26に規定されている測定法に従って測定した。
動的粘弾性の Tan δ は、レオメトリックス社製 RSA 2を用いて、温度 70°C、 周波数 10HZ、動歪 2%の条件で測定した。 表 1
Figure imgf000027_0001
実施例 2 添加する不飽和高分子物質(添加剤)を表 2に示すようにしたこと以外は、実 施例 1と同様にしてビニル■シス一ポリブタジエンゴムを得た。
比較例"!〜 4
不飽和高分子物質(添加剤)を添加しなかったこと、あるいは不飽和高分子 物質を重合時に添加せず、 VCRゴム合成後の配合時に添加した(不飽和高分 子物質添加量は VCRに対して不飽和高分子物質 1 0質量%となるような量とし た)こと以外は、実施例 1と同様にして合成■配合を行った。
表 2にビニル■シス一ポリブタジエンゴム組成物の素ゴムデータを示した。表 中、単分散繊維結晶数は、観察して短軸長 0. 2 β 以下の結晶を単分散 SP B 繊維結晶とし、 400 jU m2あたりの数を指標とした。
尚、比較例 1における高融点 S PBのミクロ構造はビニルー 1 ,2構造 98. 8質 量。/。、トランスー1,4構造 0.6質量。/。、シス一 1 ,4構造 0.6質量%、沸騰 n—へキサ ン可溶分である(A)マトリックス BRと沸騰 n—へキサン不溶分である(B)高融 点 SPBとの比(AZB)は 88/ 1 2であった。また比較例 1において沸騰 n—へ キサン不溶分ポリマーの Ty spZcは 1 .5であった。(77 sPZc : 1,2—ポリブタ ジェン結晶繊維の分子量の尺度、測定温度は 1 35°C、使用溶媒はオルトジク ロルベンゼン)
表中、 IRは IR2200 (JSR (株)製ポリイソプレン)、 1 , 2— PBは RB820 ( JSR (株)製 1, 2—ポリブタジエン)である。
表 2
Figure imgf000029_0001
実施例 3〜12·比較例 3〜5
添加する高分子物質や溶媒を表 3に示すようにしたこと以外は、実施例 1と同 様にしてビニル■シス一ポリブタジエンゴムを得た。
表中、 IRは【R2200(JSR (株)製ポリイソプレン)、液状 PBはハイカー
GTBN1300X8(宇部興産 (株)製、分子量 3,500の液状ポリブタジエン、)、ェポ キシ化 PBはェポリード PB3600(ダイセル化学工業 (株)製、粘度: 45°C- 33パス カル秒のエポキシ化ポリブタジエン)、ァリルエーテルポリマーはマリアリム AWS- 0851(日本油 fl旨 (株)製、粘度 :100°C- 400ス! -ークス)である。
表 3
Figure imgf000030_0001
以下にビニル 'シス一ポリブタジエンゴム組成物の配合物及び加硫物データ を示した。但し、実施例 8〜1 2、比較例 4 ' 5については、一次配合時に VGR/NR=100/0、即ち NR (天然ゴム)を加えずに配合した。
100 sec 力'ス透過性、発熱特性、 PS、圧縮永久歪、 tan δは指数が少ない ほうが優れている。
硬度、 M100、 TB、 EB、 TR、ランホ' -ン摩耗、屈曲亀裂成長、反撥弾性は指数が 大きいほうが優れている。 表 4
実施例 1 実施例 2 実施例 3 実施例 4 比較例 1 比較例 2 配合物物性 (指数)
タ'イスゥエル L/D=1 L/D=1 L/D=1 L/D=1 L/D=1 L/D=1
100 sec"1 70 72 76 85 100 99 加硫物物性 (指数)
硬度 106 107 104 106 100 100
M100 140 139 138 136 100 101
TB 107 107 104 107 100 100
EB 102 100 101 100 100 100
TR 103 103 104 103 100 101 ランホ'ーン摩耗
112 109 108 100 100 99 (スリッ 率 20%)
屈曲亀裂成長 135 130 136 131 100 104 力'ス透過性- N2 95 95 95 95 100 100 力'ス透過性 ·ο2 93 92 93 92 100 100 反撥弾性 105 104 105 103 100 101 発熱特性 87 88 88 89 100 96
PS 82 83 83 84 100 96 圧縮永久歪 89 88 88 89 100 98 tan δ 86 85 83 84 100 98
表 5
実施例 5 実施例 6 実施例 7 比較例 3 配合物 ij勿性 (指数) タ'イスゥェル L/D=1 L/D=1 L/D=1 L/D=1
100 sec"1 77 78 80 100 加硫物 ij 性 (指数) 硬度 104 104 104 100
M100 141 140 140 100
TB 107 107 106 100
EB 102 102 102 100
TR 103 103 102 100 ランホ'ーン摩耗
112 112 109 100 (スリップ率 20%)
屈曲亀裂成長 143 139 139 100 力'ス透過性 ·Ν2 95 95 95 100 力'ス透過性 'ο2 93 93 93 100 反撥弾性 105 105 104 100 発熱特性 88 89 91 95
PS 82 81 83 94 圧縮永久歪 88 89 89 96 tan δ 86 87 86 93
表 6
実施例 8 実施例 9 実施例 10 比較例 4 配合物物性 (指数) タ'イスゥエル L/D=l L/D=1 L/D=1 L/D=1
100 sec"1 73 71 75 100
加硫物 性 (指数) 硬度 107 107 106 100
Μ100 138 139 140 100
ΤΒ 107 107 107 100
ΕΒ 102 100 100 100
TR 104 103 103 100 ランホ'ーン摩耗
105 106 106 100 (スリップ率 20%)
屈曲亀裂成長 135 129 132 100 力'ス透過性' Ν2 95 95 96 100 力'ス透過性 · ο2 93 92 94 100 反撥弾性 103 104 105 100 発熱特性 90 91 89 100
PS 82 83 82 100 圧縮永久歪 86 87 87 100 tan δ 86 83 84 100
実施例 1 1 実施例 1 2 比較例 5
配合物物性 (指数)
ダイスゥェル L/D=1 1/0=1 L/D=1
1 00 sec"' 70 73 1 00
to硫物物性 (指数)
硬度 107 107 100
100 141 1 38 100
TB 109 107 100
EB 101 102 100
TR 104 104 100
ランホ' -ン摩耗
(スリップ率 20%) 109 1 1 1 100
屈曲亀裂成長 133 1 35 100
力'ス透過性 · Ν2 95 95 100
力'ス透過性- 02 93 93 100
反撥弾性 108 107 100
発熱特性 86 86 100
PS 79 78 100
圧縮永久歪 85 87 100
tan δ 80 78 100 図 5~ 8は、実際に得られたビニル■シス一ポリブタジエンゴムの微細構造を 示す電子顕微鏡で見た図である。図 5は、比較例 1のものであり、融点が 1 7 0°C以上の 1 , 2—ポリブタジエンがヒゲ状の結晶となり、マトリックス中に凝集 を形成していることがわかる。図 6は実施例 3、図 7は実施例 2、図 8は実施例 4に相当するものであり、それぞれ、図 5と比べるとヒゲ状の結晶が形成する凝 集が小さぐ良好に分散していることがわかる。

Claims

1 .
1, 2—ポリブタジエンと、該 1 , 2—ポリブタジエンより融点の低し、、繰り返し 単位当たり少なくとも 1個の不飽和二重結合を有する高分子物質とを含有する ビニル■シス一ポリブタジエンゴムであって、ビニル■シス一ポリブタジエンゴム のマトリックス成分であるシス一ポリブタジエンゴム中に、 1 , 2—ポリブタジエン ミロ - 主月
と高分子物質とが物理的及び Ζ又は化学的に吸着した状態で分散しているこ とを特徴とするビニル 'シス一ポリブタジエンゴム。
2. 囲 ビニル 'シス一ポリブタジエンゴムのマトリックス成分であるシス一ポリブタジ ェンゴム中に、前記 1 , 2—ポリブタジエン、及び前記高分子物質が短い結晶繊 維状及び 又は粒子状で分散していることを特徴とする請求項 1に記載のビニ ル-シス一ポリブタジエンゴム。
3.
前記 1 , 2—ポリブタジエンが融点 1 70°C以上の 1 , 2—ポリブタジエンであり、 前記高分子物質がポリイソプレン、融点 1 50°C以下の結晶性ポリブタジエン、 液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも 1種からなる ことを特徴とする請求項 1または 2に記載のビニル 'シス一ポリブタジエンゴム。
4.
前記不飽和高分子物質を 1 ,2—ポリブタジエンの結晶繊維とシス一ポリブタ ジェンゴムの合計に対して 0.01〜50質量%の範囲で含まれていることを特徴 とする請求項 1〜3のいずれかに記載のビニル 'シス一ポリブタジエンゴム。
5.
前記マトリックス成分であるシス一ポリブタジエンゴムの 25°Cにおける卜ルェ ン溶液粘度が 1 0~ 1 50の範囲にあることを特徴とする請求項 1〜4のいずれ かに記載のビニル 'シス一ポリブタジエンゴム。
6.
前記マトリックス成分であるシス一ポリブタジエンゴムの [ 77 ]が 1 , 0〜5. 0の 範囲にあることを特徴とする請求項 1〜5のいずれかに記載のビニル 'シス一 ポリブタジエンゴム。
前記マトリックス成分であるシス一ポリブタジエンゴムの 1, 4一シス構造含有 率が 80質量%以上の範囲にあることを特徴とする請求項 1〜6のいずれかに 記載のビニル■シス一ポリブタジエンゴム。
8.
ビニル■シス一ポリブタジエンゴムのマトリックス成分であるシス一ポリブタジ ェンゴムのムーニー粘度が 1 0〜50の範囲にあることを特徴とする請求項 1〜 7のいずれかに記載のビニル■シス一ポリブタジエンゴム。
9.
高分子物質が沸騰 n—へキサン不溶解分であることを特徴とする請求項"!〜 8のいずれかに記載のビニル■シス一ポリブタジエンゴム。
1 0. ビニル■シス一ポリブタジエンゴムのマトリックス成分であるシス一ポリブタジ ェンゴム中に、前記 1 , 2—ポリブタジエンが短い結晶繊維状で、前記高分子物 質が粒子状で分散しており、且つ、前記 1, 2—ポリブタジエンの短い結晶繊維 が前記高分子物質の粒子の中に分散していることを特徴とする請求項 1〜9の いずれかに記載のビニル■シス一ポリブタジエンゴム。
1 1 .
前記 1 , 2—ポリブタジエンの短い結晶繊維力 前記高分子物質の粒子に含 有されずに前記マ卜リックス成分であるシス一ポリブタジエンゴム中にも分散し ており、概マトリックス中に分散している短い結晶繊維の長軸長が 0. 2〜1, 0 OO i mの範囲であり、かつ、該高分子物質の粒子中に分散している前記 1, 2 一ポリブタジエンの短い結晶繊維の長軸長が 0. 01 -0. 5 i mの範囲である ことを特徴とする請求項 1 1に記載のビニル 'シス一ポリブタジエンゴム。 1 2.
請求項 1又は 2に記載のビニル 'シス一ポリブタジエンゴムを、天然ゴム、ポリ イソプレンゴム、スチレン一ブタジエン共重合体ゴム、又はこれらの少なくとも 2 種のブレンドゴムから選ばれたゴム 1 00重量部に対して、 1 0〜300重量部配 合したことを特徴とするブタジエンゴム組成物。
1 3.
請求項 1〜1 1に記載のビニル 'シス一ポリブタジエンゴム、及び 又は請求 項 1 2に記載のブタジエンゴム組成物を用いたことを特徴とするタイヤ用ブタジ ェンゴム組成物。
1 4.
1 , 3—ブタジエンを、炭化水素系溶媒中にて、シス一 1 . 4重合触媒を用いて シス一 1 , 4重合させ、次いで、得られた重合反応混合物中に 1, 2重合触媒を 共存させて、 1, 3—ブタジエンを 1, 2重合させて、融点が 1 70°C以上の 1, 2 一ポリブタジエンを生成せしめ、しかる後、得られた重合反応混合物より生成し たビニル 'シス一ポリブタジエンゴムを分離回収して取得するビニル 'シスーポ リブタジエンゴムの製造方法において、繰り返し単位当たり少なくとも 1個の不 飽和二重結合を有する高分子物質を、ビニル 'シス—ポリブタジエンゴムの製 造系内に添加する工程を含むことを特徴とするビニル■シス一ポリブタジエンゴ ムの製造方法。
1 5.
前記高分子物質が、ポリイソプレン、融点 0°C~ 1 50°Cの結晶性ポリブタジェ ン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも 1種であ ることを特徴とする請求項 1 4に記載のビニル 'シス一ポリブタジエンゴムの製 造方法。
1 6.
前記高分子物質の前記製造系内への添加量が、取得されるビニル 'シス一 ポリブタジエンゴムに対して 0. 01 ~ 50質量%の範囲であることを特徴とする 請求項 1 4又は 1 5に記載のビニル ·シス一ポリブタジエンゴムの製造方法。
前記高分子物質を前記製造系内に添加する工程が、前記シス一 1 , 4重合を 行う工程から、 1, 2重合終了後の得られた重合反応混合物より生成したビニ ル-シス一ポリブタジエンゴムを分離回収する工程までの間の任意の時点で、 重合反応混合物中に行われることを特徴とする請求項 1 4〜 1 6のいずれかに 記載のビニル 'シス一ポリブタジエンゴムの製造方法。
1 8.
前記炭化水素系溶媒が、溶解パラメーターが 9. 0以下の炭化水素系溶媒で あることを特徴とする請求項 1 4〜 1 7のいずれかに記載のビニル 'シス一ポリ ブタジエンゴムの製造方法。
1 9.
請求項 1 4〜1 8のいずれかに記載の製造方法で得られたビニル 'シス一ポリ ブタジエンゴムを、天然ゴム、ポリイソプレンゴム、スチレン一ブタジエン共重合 体ゴム、又はこれらの少なくとも 2種のブレンドゴムから選ばれたゴム 1 00質量 部に対して、 1 0~ 300質量部配合したことを特徴とするブタジエンゴム組成物。 20.
請求項 1 4〜1 8のいずれかに記載の製造方法で得られたビニル 'シス—ポリ ブタジエンゴム、及び 又は請求項 1 2、 1 3、 1 9のいずれかに記載のブタジェ ンゴム組成物を用いたことを特徴とするタイヤ用ブタジエンゴム組成物。
PCT/JP2004/018417 2003-12-12 2004-12-02 ビニル・シス-ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物 WO2005056663A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0417479-8A BRPI0417479A (pt) 2003-12-12 2004-12-02 borracha de vinil-cis-polibutadieno e composição de borracha de butadieno usando a mesma
EP04801641.4A EP1693411B1 (en) 2003-12-12 2004-12-02 Vinyl-cis-polybutadiene rubber and butadiene rubber composition using same
US10/596,242 US7700691B2 (en) 2003-12-12 2004-12-02 Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
CA2546564A CA2546564C (en) 2003-12-12 2004-12-02 Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
JP2005516182A JP3981841B2 (ja) 2003-12-12 2004-12-02 ビニル・シス−ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物
US12/714,964 US7863385B2 (en) 2003-12-12 2010-03-01 Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2003-415353 2003-12-12
JP2003415354 2003-12-12
JP2003415353 2003-12-12
JP2003-415354 2003-12-12
JP2004-005918 2004-01-13
JP2004005918 2004-01-13
JP2004015251 2004-01-23
JP2004015252 2004-01-23
JP2004-015251 2004-01-23
JP2004-015252 2004-01-23
JP2004-303155 2004-10-18
JP2004303202 2004-10-18
JP2004-303202 2004-10-18
JP2004-303332 2004-10-18
JP2004303155 2004-10-18
JP2004-303286 2004-10-18
JP2004303286 2004-10-18
JP2004303231 2004-10-18
JP2004-303231 2004-10-18
JP2004303332 2004-10-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/596,242 A-371-Of-International US7700691B2 (en) 2003-12-12 2004-12-02 Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
US12/714,964 Division US7863385B2 (en) 2003-12-12 2010-03-01 Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same

Publications (1)

Publication Number Publication Date
WO2005056663A1 true WO2005056663A1 (ja) 2005-06-23

Family

ID=34682484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018417 WO2005056663A1 (ja) 2003-12-12 2004-12-02 ビニル・シス-ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物

Country Status (8)

Country Link
US (2) US7700691B2 (ja)
EP (1) EP1693411B1 (ja)
JP (1) JP3981841B2 (ja)
KR (1) KR100841792B1 (ja)
BR (1) BRPI0417479A (ja)
CA (1) CA2546564C (ja)
TW (1) TWI315315B (ja)
WO (1) WO2005056663A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052035A1 (ja) 2004-12-21 2006-05-18 Ube Industries, Ltd. ゴム組成物
JP2007063308A (ja) * 2005-08-29 2007-03-15 Ube Ind Ltd ゴム変性耐衝撃性ポリスチレン系樹脂組成物
JP2007099925A (ja) * 2005-10-05 2007-04-19 Ube Ind Ltd 防振ゴム組成物
JP2007119743A (ja) * 2005-09-27 2007-05-17 Ube Ind Ltd ビニル・シス−ポリブタジエン組成物の製造方法
JP2007126649A (ja) * 2005-10-05 2007-05-24 Ube Ind Ltd 防振ゴム組成物
JP2007126648A (ja) * 2005-10-05 2007-05-24 Ube Ind Ltd 防振ゴム組成物
JP2007302865A (ja) * 2006-04-11 2007-11-22 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
WO2008013060A1 (fr) * 2006-07-26 2008-01-31 Ube Industries, Ltd. Composition de caoutchouc pour semelle de chaussure et composition de mousse de caoutchouc
JP2008163162A (ja) * 2006-12-28 2008-07-17 Ube Ind Ltd ビニル・シスポリブタジエンゴムの製造方法
JP2008163161A (ja) * 2006-12-28 2008-07-17 Ube Ind Ltd ビニル・シスポリブタジエンゴムの製造方法
JP2008163144A (ja) * 2006-12-27 2008-07-17 Ube Ind Ltd ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム
JP2008163163A (ja) * 2006-12-28 2008-07-17 Ube Ind Ltd ビニル・シスポリブタジエンゴムの製造方法
US7884155B2 (en) 2004-12-20 2011-02-08 Ube Industries, Ltd. Process for producing polybutadiene rubber and rubber composition
JP2011094017A (ja) * 2009-10-29 2011-05-12 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2011184570A (ja) * 2010-03-09 2011-09-22 Ube Industries Ltd ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム
JP2012097280A (ja) * 2006-04-11 2012-05-24 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
JP2014224273A (ja) * 2014-09-08 2014-12-04 宇部興産株式会社 ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981841B2 (ja) * 2003-12-12 2007-09-26 宇部興産株式会社 ビニル・シス−ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物
DE102005044453A1 (de) * 2005-09-17 2007-03-22 Lanxess Deutschland Gmbh Peroxidisch vernetzte hydrierte Vinylpolybutadiene sowie deren Verwendung zur Herstellung von technischen Gummiartikeln mit gutem Rückverformungsverhalten über einen breiten Temperaturbereich
WO2007077788A1 (ja) * 2006-01-06 2007-07-12 Sumitomo Rubber Industries, Ltd. トレッド用ゴム組成物
WO2011102518A1 (ja) 2010-02-19 2011-08-25 宇部興産株式会社 ポリブタジエン及び変性ポリブタジエン並びにそれらの製造方法及びそれらを用いたゴム強化スチレン系樹脂組成物
EP2363303A1 (de) * 2010-02-19 2011-09-07 LANXESS Deutschland GmbH Bimodales NdBR
US20140148546A1 (en) * 2012-11-29 2014-05-29 The Goodyear Tire & Rubber Company Preparation of rubber compositions containing syndiotactic polybutadiene filament and tires with components
US9328224B2 (en) * 2013-09-17 2016-05-03 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9982115B2 (en) 2013-12-03 2018-05-29 Bridgestone Corporation Process for preparing blends of cis-1,4-polybutadiene and syndiotactic 1,2-polybutadiene
KR101709213B1 (ko) * 2015-12-01 2017-02-22 한국타이어 주식회사 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어
KR101851969B1 (ko) * 2017-07-21 2018-04-25 금호석유화학 주식회사 신디오택틱 1,2-폴리부타디엔을 포함하는 고무 조성물의 제조방법
KR102301667B1 (ko) 2018-02-07 2021-09-14 주식회사 엘지화학 고무 조성물
FR3081877B1 (fr) * 2018-05-31 2020-05-22 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345347A (en) * 1976-10-07 1978-04-24 Ube Ind Ltd Production of fiber-reinforced rubber composite
JPH05194658A (ja) * 1991-10-22 1993-08-03 Ube Ind Ltd ポリブタジエンゴム及びその組成物
JPH08311246A (ja) * 1995-05-19 1996-11-26 Toyo Tire & Rubber Co Ltd タイヤビードフィラー用ゴム組成物
JP2002338740A (ja) * 2001-03-15 2002-11-27 Ube Ind Ltd タイヤ用ゴム組成物

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935180A (en) * 1971-12-21 1976-01-27 Ube Industries, Ltd. Polybutadiene and process for producing same
JPS4917667A (ja) 1972-06-03 1974-02-16
JPS4917666A (ja) 1972-06-05 1974-02-16
JPS5341362A (en) 1976-09-22 1978-04-14 Sumitomo Electric Industries Method of extrusion molding tubular tetrafluoroethylene resin material
US4196406A (en) 1978-06-12 1980-04-01 General Electric Company Ultrasonic control device
JPS5531802A (en) 1978-08-25 1980-03-06 Ube Ind Ltd Preparation of reinforced rubber composition
JPS5554337A (en) 1978-10-18 1980-04-21 Bridgestone Corp Bead filler rubber composition
JPS56109205A (en) 1980-01-31 1981-08-29 Japan Synthetic Rubber Co Ltd Preparation of diene rubber
JPS5730856A (en) 1980-07-31 1982-02-19 Fuji Xerox Co Ltd Magnetic brush developing device
JPS58109512A (ja) 1981-12-24 1983-06-29 Ube Ind Ltd 補強ポリブタジエンゴムの製造法
JPS6173707A (ja) 1984-09-19 1986-04-15 Ube Ind Ltd ポリブタジエンゴム
JPS62171A (ja) 1985-06-26 1987-01-06 Pioneer Electronic Corp 再生水平同期信号発生装置
JPS6336324A (ja) 1986-07-30 1988-02-17 Shin Kobe Electric Mach Co Ltd キ−入力装置
JPH0237927A (ja) 1988-07-28 1990-02-07 Aida Eng Ltd ブランク搬送装置
JPH0238081A (ja) 1988-07-28 1990-02-07 Oki Electric Ind Co Ltd プリンタの印字方法
JPH0345609A (ja) 1989-07-14 1991-02-27 Ube Ind Ltd ポリブタジエンゴム及びその組成物
JPH06103295B2 (ja) 1989-07-31 1994-12-14 株式会社島津製作所 分析装置の分析指示装置
JP3073509B2 (ja) 1990-07-26 2000-08-07 日本ゼオン株式会社 シス1,4―ポリブタジエンの製造方法
JPH0625355A (ja) 1991-09-27 1994-02-01 Ube Ind Ltd ポリブタジエンゴム及びその組成物
JPH06228370A (ja) 1993-02-02 1994-08-16 Ube Ind Ltd ポリブタジエンゴム及びその組成物
DE69418364T2 (de) * 1993-02-09 1999-10-07 Ube Industries Verfahren zur Herstellung von Polybutadienzusammensetzungen
JP2662172B2 (ja) * 1993-09-29 1997-10-08 住友ゴム工業株式会社 タイヤのビード部補強用ゴム組成物
JPH07315014A (ja) 1994-05-26 1995-12-05 Bridgestone Corp 空気入りタイヤ
US5580919A (en) 1995-03-14 1996-12-03 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
US5559172A (en) 1995-05-11 1996-09-24 General Electric Company Vinyl aromatic resin compositions containing condensation product of halogenated aromatic diol and an alkylene dihalide
TW467942B (en) 1997-10-30 2001-12-11 Sumitomo Chemical Co Polybutadiene composition
FR2770849B1 (fr) 1997-11-10 1999-12-03 Michelin & Cie Composition de caoutchouc destinee a la fabrication d'enveloppes de pneumatiques a base d'elastomere comportant des fonctions oxygenees et de charge de type silice
US6300450B1 (en) 1997-11-25 2001-10-09 Ube Industries, Ltd. Conjugated diene compound polymerization catalyst process for the preparation of conjugated diene polymer in the presence thereof and polybutadiene thus prepared
JPH11240981A (ja) 1998-02-25 1999-09-07 Toyo Tire & Rubber Co Ltd タイヤのビードフィラー用ゴム組成物
JP3855480B2 (ja) 1998-07-31 2006-12-13 宇部興産株式会社 新規なビニル・シスーブタジエンゴムの製造方法及びビ ニル・シスーブタジエンゴム組成物
JP2000256507A (ja) 1999-03-04 2000-09-19 Ube Ind Ltd ポリブタジエンゴム及びその製造方法。
US6350807B1 (en) 1999-08-18 2002-02-26 The Goodyear Tire & Rubber Company Silica-reinforced tire tread rubber
JP2001294614A (ja) 2000-04-13 2001-10-23 Ube Ind Ltd ポリブタジエンおよびその製造方法
US6303692B1 (en) 2000-04-13 2001-10-16 Bridgestone Corporation Preparation of blends of syndiotactic 1,2-polybutadiene and rubbery elastomers with a molybdenum-based catalyst system
JP2001302730A (ja) 2000-04-19 2001-10-31 Ube Ind Ltd ポリブタジエンゴム及びその組成物
EP1162231B1 (en) 2000-06-08 2011-06-22 Ube Industries, Ltd. Polybutadiene and process for producing the same
US6807994B2 (en) * 2001-03-13 2004-10-26 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a rubber gel and syndiotatic 1,2-polybutadiene
JP4496683B2 (ja) 2001-07-30 2010-07-07 宇部興産株式会社 ホース用ゴム組成物
JP4810782B2 (ja) 2001-09-27 2011-11-09 Jsr株式会社 液状硬化性樹脂組成物
JP2005508428A (ja) 2001-11-05 2005-03-31 株式会社ブリヂストン シンジオタクチック1,2−ポリブタジエン及びゴム状エラストマーの混合物の製造方法
JP4048815B2 (ja) 2002-04-09 2008-02-20 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JP2004244427A (ja) 2003-02-10 2004-09-02 Ube Ind Ltd ポリブタジエン組成物およびその製造方法
JP2004059740A (ja) 2002-07-29 2004-02-26 Yokohama Rubber Co Ltd:The ゴム組成物及び空気入りタイヤ
JP4134823B2 (ja) 2003-06-20 2008-08-20 宇部興産株式会社 トレッド用ポリブタジエン組成物
JP3981841B2 (ja) 2003-12-12 2007-09-26 宇部興産株式会社 ビニル・シス−ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物
JP2005206702A (ja) 2004-01-22 2005-08-04 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物
CN101084266B (zh) * 2004-12-21 2011-03-16 宇部兴产株式会社 橡胶组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345347A (en) * 1976-10-07 1978-04-24 Ube Ind Ltd Production of fiber-reinforced rubber composite
JPH05194658A (ja) * 1991-10-22 1993-08-03 Ube Ind Ltd ポリブタジエンゴム及びその組成物
JPH08311246A (ja) * 1995-05-19 1996-11-26 Toyo Tire & Rubber Co Ltd タイヤビードフィラー用ゴム組成物
JP2002338740A (ja) * 2001-03-15 2002-11-27 Ube Ind Ltd タイヤ用ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1693411A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884155B2 (en) 2004-12-20 2011-02-08 Ube Industries, Ltd. Process for producing polybutadiene rubber and rubber composition
EP1829924A4 (en) * 2004-12-21 2009-09-09 Ube Industries RUBBER COMPOSITION
US7884154B2 (en) 2004-12-21 2011-02-08 Ube Industries, Ltd. Rubber composition
WO2006052035A1 (ja) 2004-12-21 2006-05-18 Ube Industries, Ltd. ゴム組成物
EP1829924A1 (en) * 2004-12-21 2007-09-05 Ube Industries, Ltd. Rubber composition
JP2007063308A (ja) * 2005-08-29 2007-03-15 Ube Ind Ltd ゴム変性耐衝撃性ポリスチレン系樹脂組成物
JP2007119743A (ja) * 2005-09-27 2007-05-17 Ube Ind Ltd ビニル・シス−ポリブタジエン組成物の製造方法
JP2007126648A (ja) * 2005-10-05 2007-05-24 Ube Ind Ltd 防振ゴム組成物
JP2007126649A (ja) * 2005-10-05 2007-05-24 Ube Ind Ltd 防振ゴム組成物
JP2007099925A (ja) * 2005-10-05 2007-04-19 Ube Ind Ltd 防振ゴム組成物
JP2007302865A (ja) * 2006-04-11 2007-11-22 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
JP2012097280A (ja) * 2006-04-11 2012-05-24 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
WO2008013060A1 (fr) * 2006-07-26 2008-01-31 Ube Industries, Ltd. Composition de caoutchouc pour semelle de chaussure et composition de mousse de caoutchouc
JP2008163144A (ja) * 2006-12-27 2008-07-17 Ube Ind Ltd ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム
JP2008163162A (ja) * 2006-12-28 2008-07-17 Ube Ind Ltd ビニル・シスポリブタジエンゴムの製造方法
JP2008163161A (ja) * 2006-12-28 2008-07-17 Ube Ind Ltd ビニル・シスポリブタジエンゴムの製造方法
JP2008163163A (ja) * 2006-12-28 2008-07-17 Ube Ind Ltd ビニル・シスポリブタジエンゴムの製造方法
JP2011094017A (ja) * 2009-10-29 2011-05-12 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2011184570A (ja) * 2010-03-09 2011-09-22 Ube Industries Ltd ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム
JP2014224273A (ja) * 2014-09-08 2014-12-04 宇部興産株式会社 ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム

Also Published As

Publication number Publication date
US20100152389A1 (en) 2010-06-17
KR100841792B1 (ko) 2008-06-27
CA2546564A1 (en) 2005-06-23
TWI315315B (en) 2009-10-01
US20080233399A1 (en) 2008-09-25
EP1693411A1 (en) 2006-08-23
US7863385B2 (en) 2011-01-04
JPWO2005056663A1 (ja) 2007-07-05
CA2546564C (en) 2011-04-05
US7700691B2 (en) 2010-04-20
EP1693411B1 (en) 2014-04-30
EP1693411A4 (en) 2009-11-11
TW200602357A (en) 2006-01-16
BRPI0417479A (pt) 2007-05-08
JP3981841B2 (ja) 2007-09-26
KR20060135655A (ko) 2006-12-29

Similar Documents

Publication Publication Date Title
JP3981841B2 (ja) ビニル・シス−ポリブタジエンゴム及びそれを用いたブタジエンゴム組成物
KR100907335B1 (ko) 고무 조성물
JP4013080B2 (ja) ポリブタジエンゴムの製造方法およびゴム組成物
JP4208037B2 (ja) ベルト用ゴム組成物及びゴムベルト
JP3855480B2 (ja) 新規なビニル・シスーブタジエンゴムの製造方法及びビ ニル・シスーブタジエンゴム組成物
JP4075911B2 (ja) ビニル・シス−ポリブタジエンゴムの製造方法
JP2005247899A (ja) ゴム組成物
JP2006249299A (ja) ビニル・シス−ポリブタジエンゴム
JP2007031569A (ja) ゴム組成物
JP2007031568A (ja) ビニス・シス−ポリブタジエンの製造方法
JP4353013B2 (ja) タイヤコードコーティング用ゴム組成物
JP4433910B2 (ja) 高硬度配合ゴム組成物
JP4151620B2 (ja) 乗用車タイヤ用ゴム組成物
JP4952168B2 (ja) ビニル・シス−ポリブタジエン組成物の製造方法
JP2009127034A (ja) 難燃性ベルト用ゴム組成物および難燃性ベルト
JP4151621B2 (ja) 大型車両タイヤ用ゴム組成物
JP4151629B2 (ja) サイドウォール用ゴム組成物
JP2006022243A (ja) シリカ配合用ゴム組成物
RU2338756C2 (ru) Винил·цис-полибутадиеновый каучук и бутадиеновая резиновая смесь на его основе
JP2008024952A (ja) ゴム組成物
JP2007314809A (ja) タイヤ用シリカ配合ゴム組成物
JP2009227696A (ja) クローラ用ゴム組成物
JP2006022245A (ja) ベーストレッド用ゴム組成物
JP2009040878A (ja) ゴルフボール用ゴム組成物及びゴルフボール
JP2006249296A (ja) ゴルフボール用ゴム組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037037.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516182

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2546564

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004801641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3100/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10596242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/006539

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006120472

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 1020067011564

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004801641

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067011564

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0417479

Country of ref document: BR