WO1997030034A1 - Quinazoline derivatives as antitumor agents - Google Patents
Quinazoline derivatives as antitumor agents Download PDFInfo
- Publication number
- WO1997030034A1 WO1997030034A1 PCT/GB1997/000344 GB9700344W WO9730034A1 WO 1997030034 A1 WO1997030034 A1 WO 1997030034A1 GB 9700344 W GB9700344 W GB 9700344W WO 9730034 A1 WO9730034 A1 WO 9730034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- formula
- alkoxy
- alkylamino
- amino
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/44—Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
- C07D213/46—Oxygen atoms
- C07D213/50—Ketonic radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/86—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
- C07D239/94—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/32—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/22—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- the invention relates to quinazoline derivatives, or pharmaceutically-acceptable salts thereof, which possess anti-proliferative activity such as anti-cancer activity and are accordingly useful in methods of treatment of the human or animal body.
- the invention also relates to processes for the manufacture of said quinazoline derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments for use in the production of an anti-proliferative effect in a warm-blooded animal such as man.
- Many of the current treatment regimes for cell proliferation diseases such as psoriasis and cancer utilise compounds which inhibit DNA synthesis. Such compounds are toxic to cells generally but their toxic effect on rapidly dividing cells such as tumour cells can be beneficial.
- Receptor tyrosine kinases are important in the transmission of biochemical signals which initiate cell replication. They are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growth factor (EGF) and an intracellular portion which functions as a kinase to phosphorylate tyrosine amino acids in proteins and hence to influence cell proliferation.
- EGF epidermal growth factor
- Various classes of receptor tyrosine kinases are known (Wilks, Advances in Cancer Research. 1993, £0_, 43-73) based on families of growth factors which bind to different receptor tyrosine kinases.
- the classification includes Class I receptor tyrosine kinases comprising the EGF family of receptor tyrosine kinases such as the EGF, transforming growth factor ⁇ (TGF ⁇ ). NEU, erbB. Xmrk, DER and let23 receptors, Class II receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin, IGFI and insulin-related receptor (IRR) receptors and Class III receptor tyrosine kinases comprising the platelet-derived growth factor (PDGF) family of receptor tyrosine kinases such as the PDGF ⁇ , PDGF ⁇ and colony-stimulating factor 1 (CSF1) receptors.
- EGF EGF family of receptor tyrosine kinases
- TGF ⁇ transforming growth factor ⁇
- NEU erbB. Xmrk, DER and let23 receptors
- Class II receptor tyrosine kinases comprising the insulin family
- Class I kinases such as the EGF family of receptor tyrosine kinases are frequently present in common human cancers such as breast cancer (Sainsbury elal., Brit. J. Cancer. 1988, 5_8_, 458; Guerin et aL, Oncogene Res., 1988, 1, 21 and Klijn el al., Breast Cancer Res. Treat.. 1994, 22, 73), non-small cell lung cancers (NSCLCs) including adenocarcinomas (Cerny el al., Brit. J. Cancer. 1986, 5_4_, 265; Reubi el al., Int. J. Cancer. 1990, 4_5_, 269 and Rusch el al-, Cancer Research.
- NSCLCs non-small cell lung cancers
- EGF receptors which possesses tyrosine kinase activity are overexpressed in many human cancers such as brain, lung squamous cell, bladder, gastric, colorectal, breast, head and neck, oesophageal, gynaecological and thyroid tumours. Accordingly it has been recognised that an inhibitor of receptor tyrosine kinases should be of value as a selective inhibitor of the growth of mammalian cancer cells (Yaish el aL Science. 1988, 242. 933).
- EGF type receptor tyrosine kinases have also been implicated in non-malignant 0 proliferative disorders such as psoriasis (Elder el al., Science. 1989, 241, 811). It is therefore expected that inhibitors of EGF type receptor tyrosine kinases will be useful in the treatment of non-malignant diseases of excessive cellular proliferation such as psoriasis (where TGF ⁇ is believed to be the most important growth factor) and benign prostatic hypertrophy (BPH), atherosclerosis and restenosis. 5 It is known from European Patent Applications Nos.
- Q 2 nitrogen heteroatoms and optionally containing a further heteroatom selected from oxygen, nitrogen and sulphur, and Q 2 optionally bears up to 3 substituents selected from halogeno, trifluoromethyl, cyano, hydroxy, amino, nitro, carboxy, carbamoyl, (l-4C)alkoxycarbonyl, (l-4C)alkyl, (l-4C)alkoxy, (l-4C)alkylamino, di-[(l-4C)alkyl]amino, (2-4C)alkanoylamino,
- N-(l-4C)alkylcarbamoyl and N,N-di-(l-4C)alkylcarbamoyl, or Q is a group of the formula II
- X 2 is a group of the formula CO, C(R 3 ) 2 , CH(OR 3 ), C(R 3 ) 2 -C(R 3 ) 2 .
- C(R 3 ) C(R 3 ), C ⁇ C, CH(CN), O, S, SO, SO 2 , N(R 3 ), CON(R 3 ), SO 2 N(R 3 ), N(R 3 )CO, N(R 3 )SO 2 , OC(R 3 ) 2 , SC(R 3 ) 2 , C(R 3 ) 2 O or C(R 3 ) 2 S
- each R 3 is independently hydrogen or (l -4C)alkyl
- Q 3 is phenyl or naphthyl or a 5- or 6-membered heteroaryl moiety containing up to 3 heteroatoms selected from oxygen, nitrogen and sulphur, which heteroaryl moiety is a single ring or is fused to a benzo ring, and wherein said phenyl or naphthy
- alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as "propyl” are specific for the straight chain version only.
- R is a hydroxy-(2-4C)alkoxy group
- suitable values for this generic radical include 2-hydroxyethoxy, 2-hydroxypropoxy, l-hydroxyprop-2-yloxy and 3-hydroxypropoxy.
- An analogous convention applies to other generic terms.
- a quinazoline derivative of the formula I may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form which possesses anti-proliferative activity and is not to be limited merely to any one tautomeric form utilised within the formulae drawings.
- the quinazolines of the formula I are unsubstituted at the 2-position thus it is to be understood that the R 1 groups are located only on the benzo portion of the quinazoline ring. It is also to be understood that certain quinazoline derivatives of the formula I can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which possess anti-proliferative activity. Suitable values for the generic radicals referred to above include those set out below. i 2 3
- a suitable value for a substituent on Q , Q or Q , for a substituent on a CH 2 group within a substituent on Q 1 , or for R 1 , R , R or R when it is halogeno is, for example, fluoro, chloro, bromo or iodo; when it is (l-4C)alkyl is, for example, methyl, ethyl, propyl, isopropyl or butyl; when it is (l-4C)alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy or butoxy; when it is (l-4C)alky lamino is, for example, methylamino, ethylamino or propylamino; when it is di-[(l-4C)alkyl]amino is, for example, dimethylamino, diethylamino,
- N-ethyl-K-methylamino or dipropy lamino when it is (2-4C)alkanoy lamino is, for example, acetamido, propionamido or butyramido; when it is (l-4C)alkoxycarbonyl is, for example, methoxycarbonyl, ethoxy carbonyl, propoxy carbonyl, butoxcarbonyl or tert-butoxycarbony 1 : when it is N-(l-4C)alkylcarbamoyl is, for example, N_-methylcarbamoyl or N-ethylcarbamoyl; and when it is N,N-di-[(l-4C)alkyl]carbamoyl is, for example, N.,N-dimethylcarbamoyl, M-ethyl-N-methylcarbamoyl and H ⁇ i-diethylcarbamoyl.
- Suitable values for each substituent which may be present on Q l include, for example:- for (2-4C)alkenyloxy: vinyloxy and allyloxy; for (2-4C)alkynyloxy: 2-propynyloxy; for ( 1 -3 C)alky lenedioxy : methylenedioxy, ethylenedioxy and propylenedioxy; for 4-(l-4C)alkyl- piperazin- 1-yl: 4-methylpiperazin-l-yl and 4-ethylpiperazin- 1 -y 1 ; for amino-(l-4C)alkyl: aminomethyl, 2-aminoethyl and 3 -aminopropyl; for (l-4C)alkylamino-(l-4C)alkyl: methylaminomethyl, 2-methylaminoethyl and 3 -methy laminopropy 1 ; for di-[(l-4C)alkyl]amino-(l-4C)alkyl: di
- H-( 1 -4C)alkyl-( 1 -4C)alkoxy- (2-4C)aIkylamino N-methyl-M-(2-methoxyethyl)amino, N-methy l-H-(3 -methoxypropy l)amino and M-ethyl-K-(2-methoxyethyl)amino; for halogeno-(2-4C)alkanoy lamino: 2-chloroacetamido, 2-bromoacetamido, 3-chloropropionamido and 3-bromopropionamido; for hydroxy-(2-4C)alkanoylamino: 2-hydroxyacetamido, 3-hydroxypropionamido and 4-hydroxy buty ramido ;
- the R 1 substituent is preferably located at the 7-position of the quinazoline ring.
- Suitable substituents formed when any of the substituents on Q comprising a CH 2 group which is not attached to a halogeno, SO or SO 2 group or to a N, O or S atom bears on said CH 2 group a substituent selected from hydroxy, amino, (l-4C)alkoxy, (l ⁇ 4C)alkylamino and di-[(l-4C)alkyl]amino include, for example, substituted (l-4C)alkylamino-(2-4C)alkoxy or di-[(l-4C)alkyl]amino-(2-4C)alkoxy groups, for example hydroxy-( 1 -4C)alkylamino-(2-4C)alkoxy or hydroxy-di-[( 1 -4C)alkyl]amino-(2-4C)alkoxy groups such as 3-methylamino-2-hydroxypropoxy and 3-dimethyla
- a suitable value for Q and Q 3 when it is a naphthyl group is, for example, 1 -naphthyl or 2-naphthyl.
- a suitable value for Q when it is 9- or 10-membered bicyclic heterocyclic moiety containing 1 or 2 nitrogen heteroatoms and optionally containing a further heteroatom selected from nitrogen, oxygen and sulphur is, for example, a benzo-fused heterocyclic moiety such as indolyl, isoindolyl, indolizinyl, lH-benzimidazolyl, lH-indazolyl, benzoxazolyl, benzofcjisoxazoiyl, benzo[d]isoxazolyl, benzothiazolyl, benzo[c]isothiazolyl, benzo[d]isothiazolyl, lH-benzotriazolyl, benzo [c] furazanyl, benzo[c][2,l,3]thiadiazolyl, benzo[d][l,2,3]oxadiazolyl, benzo[d][l,2,3]thiadiazolyl, quinolyl
- the heterocyclic moiety may be attached through any available position including from either of the two rings of the bicyclic heterocyclic moiety.
- the heterocyclic moiety may bear a suitable substituent such as a (l-4C)alkyl substituent on an available nitrogen atom.
- X 1 is, for example, a group of the formula C(R ) 2 O, it is the C atom which is attached to the quinazoline ring and the O atom which is attached to Q .
- X is, for example, a group of the formula N(R 3 )SO 2
- X is, for example, a group of the formula CON(R 2 )
- it is the CO group which is attached to the quinazoline ring and the N atom which is attached to Q 1 .
- a suitable pharmaceutically-acceptable salt of a quinazoline derivative of the invention is, for example, an acid-addition salt of a quinazoline derivative of the invention which is sufficiently basic, for example, a mono- or di-acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid.
- a suitable pharmaceutically-acceptable salt of a quinazoline derivative of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, mo ⁇ holine or tris-(2-hydroxyethyl)amine.
- novel compounds of the invention include, for example, quinazoline derivatives of the formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Q 1 , X 1 , m, R 1 and Q has any of the meanings defined hereinbefore or in this section concerning particular compounds of the invention:- (a) X 1 is a direct link;
- X 1 is a group of the formula CH 2 , CH 2 CH 2 , O, S, SO, SO 2 , NH, NHCO, NHSO 2 , OCH 2 or NHCH 2 ;
- Q 1 is phenyl optionally substituted as defined hereinbefore;
- Q 1 is a 5- or 6-membered monocyclic heteroaryl moiety containing up to 3 heteroatoms selected from oxygen, nitrogen and sulphur which is optionally substituted as defined hereinbefore;
- Q 1 is furyl, pyrrolyl, thienyl, pyridyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, thiazoiyi, isothiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,2,3-triazolyl or 1 ,2,4-triazolyl which is attached from any available position including from a nitrogen atom and which is optionally substituted as defined hereinbefore;
- Q bears 1 or 2 substituents selected from halogeno, hydroxy, amino, trifluoromethoxy, trifluoromethyl, cyano, nitro, (l-4C)alkyl, (l-4C)alkoxy, (l-4C)alkylamino, di-[(l-4C)alkyl]amino and (2-4C)alkanoy lamino;
- Q ' bears a substituent selected from amino-( 1 -4C)alkyl, ( 1 -4C)alky lamino-
- (l-4C)alkyl di-[(l-4C)alkyl]amino-(l-4C)alkyl, pyrrolidin-l-yl-(l-4C)alkyl, piperidino-(l-4C)alkyl, mo ⁇ holino-(l-4C)alkyl, piperazin- l-yl-(l-4C)alkyl and 4-( 1 -4C)alkylpiperazin- 1 -y l-( 1 -4C)alkyl;
- Q is phenyl which is optionally substituted as defined hereinbefore;
- X is a group of the formula CO, CH 2 , CH(OH), S, SO 2 NH or OCH 2
- Q 3 is phenyl or pyridyl which optionally bears 1 or 2 substituents selected from halogeno, (l-4C)alkyl and (l-4C)alkoxy, n is 1 and R 4 is hydrogen, halogeno, (l-4C)alkyl or (l-4C)alkoxy;
- Q is a group of the formula II wherein X 2 is a group of the formula CO, Q 3 is phenyl which optionally bears 1 or 2 substituents selected from halogeno, ( 1 -4C)alkyl and ( 1 -4C)alkoxy, n is 1 and R is hydrogen, halogeno or (l-4C)alkyl; and (o) Q 2 is a group of the formula II wherein X 2 is a group of the formula OCH 2 , Q 3 is pyridyl, n is 1 and R is hydrogen, halogeno or (l-4C)alkyl; provided that when Q 1 is optionally-substituted phenyl, X 1 is not N(R 2 )CO, N(R 2 )SO 2 ,
- a preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link or a group of the formula CH 2 , CH 2 CH 2 , NH, NHCO, NHSO 2 ,
- OCH 2 , SCH 2 NHCH 2 , CH 2 O or CH 2 S;
- Q' is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-oxazolyl,
- 5-isothiazolyl or 1 ,2,3-triazol-4-yl which optionally bears a substituent selected from methyl, aminomethyl, 2-aminoethyl, methylaminomethyl, 2-methylaminoethyl, dimethylaminomethyl, 2-dimethylaminoethyl, pyrrolidin-1-ylmethyl, 2-pyrrolidin-l-ylethyl, piperidinomethyl, 2-piperidinoethyl, mo ⁇ holinomethyl, 2-mo ⁇ holinoethyl, piperazin- 1-ylmethyl, 2-piperazin-l-ylethyl, 4-methylpiperazin-l-ylmethyl and
- X is a group of the formula CO or OCH 2
- Q is phenyl or 2-pyridyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, methyl and methoxy
- n is 1 and R is hydrogen, fluoro, chloro, bromo or methyl; or a pharmaceutically-acceptable acid-addition salt thereof.
- a further preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link or a group of the formula NHCO, OCH 2 or NHCH 2 ; Q l is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-oxazolyl, 5-isoxazolyl or
- 4-imidazolyl which optionally bears a substituent selected from aminomethyl, mo ⁇ holinomethyl and 2-mo ⁇ holinoethyl; m is 1 and R 1 is hydrogen or methoxy; and Q 2 is phenyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo and methyl; or a pharmaceutically-acceptable acid-addition salt thereof.
- a specific especially preferred compound of the invention is the quinazoline derivative of the formula I:- 4-(3-chloro-4-fluoroanilino)-6-(3-furyl)quinazoline,
- a further preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link;
- Q is thienyl which bears a substituent selected from amino-(l-4C)alkyl, (l-4C)alkylamino- (l-4C)alkyl, di-[(l-4C)alkyl]amino-(l-4C)alkyl, pyrrolidin-l-yl-(l-4C)alkyl, piperidino-(l-4C)alkyl, mo ⁇ holino-(l-4C)alkyi, piperazin- l-yl-(l-4C)alkyl and
- a further preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link;
- Q is 2-thienyl which optionally bears a substituent selected from methyl, aminomethyl, 2-aminoethyl, methylaminomethyl, 2-methylaminoethyl, dimethylaminomethyl, 2-dimethylaminoethyl, pyrrolidin-1-ylmethyl, 2-pyrrolidin-l-ylethyl, piperidinomethyl, 2-piperidinoethyl, mo ⁇ holinomethyl, 2-mo ⁇ holinoethyl, piperazin- 1-ylmethyl, 2-piperazin-l-ylethyl, 4-methylpiperazin- 1-ylmethyl and 2-(4-methylpiperazin-l-yl)ethyl; m is 1 and R 1 is hydrogen or methoxy; and Q is phenyl which optionally bears 1, 2 or 3 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl and methoxy; or a pharmaceutically-acceptable acid-
- a further preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link;
- Q is 2-thienyl which optionally bears a substituent selected from aminomethyl, mo ⁇ holinomethyl and 2-mo ⁇ holinoethyl; m is 1 and R is hydrogen or methoxy; and Q is phenyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo and methyl; or a pharmaceutically-acceptable acid-addition salt thereof.
- a further specific especially preferred compound of the invention is the quinazoline derivative of the formula I:- 4-(3-chloro-4-fluoroanilino)-6-[5-(2-mo ⁇ holinoethyl)thien-2-yl]quinazoline; or a pharmaceutically-acceptable acid-addition salt thereof.
- a further preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link or a group of the formula O;
- Q is phenyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, amino, cyano, nitro, aminomethyl, methylaminomethyl, dimethylaminomethyl, diethylaminomethyl, pyrrolidin- 1-ylmethyl, piperidinomethyl, mo ⁇ holinomethyl, piperazin- 1-ylmethyl and 4-methylpiperazin- 1-ylmethyl; m is 1 and R is hydrogen or methoxy; and
- Q is phenyl which optionally bears 1 , 2 or 3 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl and methoxy, or Q 2 is a group of the formula II wherein X 2 is a group of the formula OCH 2 , Q 3 is 2-pyridyl, n is 1 and R 4 is hydrogen, fluoro, chloro or methyl; or a pharmaceutically-acceptable acid-addition salt thereof.
- a further preferred compound of the invention is a quinazoline derivative of the formula I wherein X 1 is a direct link or a group of the formula O;
- Q 1 is phenyl which optionally bears 1 or 2 substituents selected from amino, aminomethyl, diethylaminomethyl, pyrrolidin- 1-ylmethyl, piperidinomethyl and mo ⁇ holinomethyl; m is 1 and R 1 is hydrogen; and Q is phenyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and methyl; or a pharmaceutically-acceptable acid-addition salt thereof.
- a further specific especially preferred compound of the invention is the quinazoline derivative of the formula I:- 4-(3-methylanilino)-6-phenylquinazoline,
- 6-(4-aminomethylphenyl)-4-(3-chloro-4-fluoroanilino)quinazoline 6-(4-aminophenoxy)-4-(3-chloro-4-fluoroanilino)quinazoline, 6-(4-aminomethylphenoxy)-4-(3-chloro-4-fluoroanilino)quinazoline or 4-(3-chloro-4-fluoroanilino)-6-(4-mo ⁇ holinomethylphenoxy)quinazoline; or a pharmaceutically-acceptable acid-addition salt thereof.
- a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes include, for example, those illustrated in European Patent Applications Nos. 0520722, 0566226, 0602851, 0635507 and 0635498, and Intemational Patent Applications WO 96/15118 and WO 96/16960.
- Z is a displaceable group, with an aniline of the formula Q -NH 2 .
- a suitable base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, mo ⁇ holine,
- H-methylmo ⁇ holine or diazabicyclo[5.4.0]undec-7-ene or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide, or, for example, an alkali metal hydride, for example sodium hydride.
- a suitable displaceable group Z is, for example, a halogeno, alkoxy, aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group.
- the reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example an alkanol or ester such as methanol, ethanol. isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as N.,H-dimethylformamide, N,N_-dimethylacetamide, N.-methylpyr ⁇ oIidin-2-one or dimethylsulphoxide.
- a suitable inert solvent or diluent for example an alkanol or ester such as methanol, ethanol. isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride
- the reaction is conveniently carried out at a temperature in the range, for example, 10 to 250°C, preferably in the range 40 to 80°C.
- the quinazoline derivative of the formula I may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-Z wherein Z has the meaning defined hereinbefore.
- the salt may be treated with a suitable base, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, mo ⁇ holine, N_-methylmo ⁇ holine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide.
- a suitable base for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, mo ⁇ holine, N_-methylmo ⁇ holine or diazabicyclo[5.4.0]undec-7-ene
- an alkali or alkaline earth metal carbonate or hydroxide for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium
- Z is a displaceable group as defined hereinbefore, with an organoboron reagent of the ffoorrmmuullaa QQ''--BB((LL')(L 2 ) wherein each L 1 and L 2 , which may be the same or different, is a suitable ligand.
- a suitable value for the ligands L and L which are present on the boron atom include, for example, a hydroxy, (l-4C)alkoxy or (l-6C)alkyl ligand, for example a hydroxy, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methyl, ethyl, propyl, isopropyl or butyl ligand.
- the ligands L 1 and L 2 may be linked such that, together with the boron atom to which they are attached, they form a ring.
- L and L together may define an oxy-(2-4C)alkylene-oxy group, for example an oxyethyleneoxy or oxytrimethyleneoxy group such that, together with the boron atom to which they are attached, they form a cyclic boronic acid ester group.
- Particularly suitable organoboron reagents include, for example, compounds of the formulae Q'-B(OH) 2 , Q'-B(OPr') 2 and Q'-B(Et) 2 .
- a suitable catalyst for the reaction includes, for example, a metallic catalyst such as a palladium(O), palladium(II), nickel(O) or nickel(II) catalyst, for example tetrakis(triphenylphosphine)palladium(0), palladium(II) chloride, palladium(II) bromide, bis(triphenylphosphine)palladium(II) chloride, tetrakis(triphenylphosphine)nickel(0), nickel(II) chloride. nickel(II) bromide or bis(triphenylphosphine)nickel(II) chloride.
- a free radical initiator may conveniently be added, for example an azo compound such as azo(bisisobutyronitrile).
- the reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example an ether such as tetrahydrofuran, 1 ,4-dioxan or 1 ,2-dimethoxyethane, an aromatic solvent such as benzene, toluene or xylene, or an alcohol such as methanol or ethanol, and the reaction is conveniently carried out at a temperature in the range, for example 10 to 250°C, preferably in the range 60 to 120°C.
- a suitable inert solvent or diluent for example an ether such as tetrahydrofuran, 1 ,4-dioxan or 1 ,2-dimethoxyethane, an aromatic solvent such as benzene, toluene or xylene, or an alcohol such as methanol or ethanol
- Organoboron reagents of the formula Q -B(L )(L ) may be obtained by standard procedures of organic chemistry which are within the ordinary skill of an organic chemist, for example by the reaction of an organometallic compound of the formula Q'-M, wherein M is, for example, lithium or the magnesium halide portion of a Grignard reagent, with an ⁇ organoboron compound of the formula Z-B(L )(L ) wherein Z is a displaceable group as defined hereinbefore.
- the compound of the formula Z-B(L')(L 2 ) is, for example, boric acid or a tri-(l-4C)alkyl borate such as tri-isopropyl borate.
- the organoboron compound of the formula Q -B(L )(L ) may be obtained by standard procedures of organic chemistry which are within the ordinary skill of an organic chemist, for example by the reaction of an organometallic compound of the formula Q'-M, wherein M
- Q -B(L )(L ) may be replaced with an organometallic compound of the formula Q'-M wherein M is a metal atom or a metallic group (i.e. a metal atom bearing suitable ligands).
- M is a metal atom or a metallic group (i.e. a metal atom bearing suitable ligands).
- Suitable values for the metal atom include, for example, lithium and copper.
- Suitable values for the metallic group include, for example, groups which contain a tin, silicon, zirconium, aluminium, magnesium or mercury atom.
- Suitable ligands within such a metallic group include, for example, hydroxy groups, (l-6C)alkyl groups such as methyl, ethyl, propyl, isopropyl and butyl groups, halogeno groups such as chloro, bromo and iodo groups, and (l-6C)alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy and butoxy groups.
- a particular organometallic compound of the formula Q -M is, for example, an organotin compound such as a compound of the formula Q -SnBu 3 , an organosilicon compound such as a compound of the formula Q'-Si(Me)F 2 , an organozirconium compound such as a compound of the formula Q'-ZrCl 3 , an organoaluminium compound such as a compound of the formula Q -AIEt 2 , an organomagnesium compound such as a compound of the formula Q'-MgBr, or an organomercury compound such as a compound of the formula Q -HgBr.
- an organotin compound such as a compound of the formula Q -SnBu 3
- an organosilicon compound such as a compound of the formula Q'-Si(Me)F 2
- an organozirconium compound such as a compound of the formula Q'-ZrCl 3
- an organoaluminium compound such
- each of L and L which may be the same or different, is a suitable ligand as defined hereinbefore, with a compound of the formula Q -Z wherein Z is a displaceable group as defined hereinbefore.
- the reaction is conveniently carried out in a suitable inert solvent or diluent and at a suitable temperature in an analogous manner to the conditions described in paragraph (b) hereinbefore.
- the quinazoline of the formula V may conveniently be obtained by analogous procedures to those described hereinbefore for the preparation of the organoboron reagent of the formula Q'-BfL'XL 2 ).
- a suitable reactive derivative of a carboxylic acid of the formula Q 1 -CO 2 H is, for example, an acyl halide, for example an acyl chloride formed by the reaction of the acid and an inorganic acid chloride, for example thionyl chloride; a mixed anhydride, for example an anhydride formed by the reaction of the acid and a chloroformate such as isobutyl chloroformate; an active ester, for example an ester formed by the reaction of the acid and a phenol such as pentafluorophenol, an ester such as pentafluorophenyl trifluoroacetate or an alcohol such as methanol, ethanol, isopropanol, butanol or H-hydroxybenzotriazole; an acyl azide.
- an acyl halide for example an acyl chloride formed by the reaction of the acid and an inorganic acid chloride, for example thionyl chloride
- a mixed anhydride for example an anhydr
- an azide formed by the reaction of the acid and azide such as diphenylphosphoryl azide
- an acyl cyanide for example a cyanide formed by the reaction of an acid and a cyanide such as diethylphosphoryl cyanide
- the product of the reaction of the acid and a carbodiimide such as dicyclohexylcarbodiimide.
- Analogously suitable reactive derivatives of the sulphonic acid of the formula Q -SO 2 OH may be obtained.
- the reaction is conveniently carried out in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0 to 120°C, preferably at or near ambient temperature.
- reaction is conveniently carried out in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 10 to 150°C, preferably at or near 80°C.
- Z is a displaceable group as defined hereinbefore.
- reaction is conveniently carried out in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0 to 150°C, preferably in the range 20 to 70°C.
- a suitable reducing agent is, for example, an alkali metal aluminium hydride such as lithium aluminium hydride.
- the reduction is conveniently carried out in a suitable inert solvent or diluent such as diethyl ether or tetrahydrofuran and at a temperature in the range, for example,
- 0 to 80°C preferably in the range 15 to 50°C.
- the reduction may conveniently be carried out by any of the many procedures known for such a transformation.
- the reduction may be carrried out, for example, by the hydrogenation of a solution of the nitro compound in an inert solvent or diluent as defined hereinbefore in the presence of a suitable metal catalyst such as palladium or platinum.
- a further suitable reducing agent is, for example, an activated metal such as activated iron
- the reduction may be carried out by heating a mixture of the nitro compound and the activated metal in a suitable solvent or diluent such as a mixture of water and an alcohol, for example, methanol or ethanol, to a temperature in the range, for example,
- a suitable reducing agent is, for example, a hydride reducting agent, for example an alkali metal aluminium hydride such as lithium aluminium hydride or, preferably, an alkali metal borohydride such as sodium borohydride, sodium cyanoborohydride, sodium triethylborohydride, sodium trimethoxyborohydride and sodium triacetoxyborohydride.
- a hydride reducting agent for example an alkali metal aluminium hydride such as lithium aluminium hydride or, preferably, an alkali metal borohydride such as sodium borohydride, sodium cyanoborohydride, sodium triethylborohydride, sodium trimethoxyborohydride and sodium triacetoxyborohydride.
- the reaction is conveniently performed in a suitable inert solvent or diluent, for example tetrahydrofuran and diethyl ether for the more powerful reducing agents such as lithium aluminium hydride, and, for example, methylene chloride or a protic solvent such as methanol and ethanol for the less powerful reducing agents such as sodium triacetoxyborohydride and sodium cyanoborohydride.
- a suitable inert solvent or diluent for example tetrahydrofuran and diethyl ether for the more powerful reducing agents such as lithium aluminium hydride, and, for example, methylene chloride or a protic solvent such as methanol and ethanol for the less powerful reducing agents such as sodium triacetoxyborohydride and sodium cyanoborohydride.
- the coupling reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore, preferably in N_,N-dimethylformamide, N,N_-dimethylacetamide, N-methylpyrrolidin-2-one, dimethylsulphoxide or acetone, and at a temperature in the range, for example, 10 to 150°C, conveniently at or near 100°C.
- a pharmaceutically-acceptable salt of a quinazoline derivative of the formula I when required, for example a mono- or di-acid-addition salt, it may be obtained, for example, by reaction of said compound with, for example, a suitable acid using a conventional procedure.
- the quinazoline derivative defined in the present invention possesses anti-proliferative activity such as anti-cancer activity which is believed to arise from the Class I receptor tyrosine kinase inhibitory activity of the compound.
- anti-proliferative activity such as anti-cancer activity which is believed to arise from the Class I receptor tyrosine kinase inhibitory activity of the compound.
- Receptor tyrosine kinase was obtained in partially purified form from A-431 cells (derived from human vulval carcinoma) by the procedures described below which are related to those described by Ca ⁇ enter el a , J. Biol. Chem., 1979, 254, 4884, Cohen el a , J. Biol. Chem.. 1982, 2 ⁇ 2, 1523 and by Braun el al» J. Biol. Chem., 1984, 252, 2051.
- A-431 cells were grown to confluence using Dulbecco's modified Eagle's medium DMEM) containing 5% fetal calf serum (FCS). The obtained cells were homogenised in a hypotonic borate/EDTA buffer at pH 10.1. The homogenate was centrifuged at 400 g for 10 minutes at 0-4°C. The supernatant was centrifuged at 25,000 g for 30 minutes at 0-4°C.
- DMEM Dulbecco's modified Eagle's medium
- FCS fetal calf serum
- the pelleted material was suspended in 30 mM Hepes buffer at pH 7.4 containing 5% glycerol, 4 mM benzamidine and 1% Triton X-100, stirred for 1 hour at 0-4°C, and recentrifuged at 100,000 g for 1 hour at 0-4°C.
- test pu ⁇ oses 40 ⁇ l of the enzyme solution so obtained was added to a mixture of 400 ⁇ l of a mixture of 150 mM Hepes buffer at pH 7.4, 500 ⁇ M sodium orthovanadate, 0.1% Triton X-100, 10% glycerol, 200 ⁇ l water, 80 ⁇ l of 25 mM DTT and 80 ⁇ l of a mixture of 12.5 mM manganese chloride, 125 mM magnesium chloride and distilled water. There was thus obtained the test enzyme solution.
- test compound was dissolved in dimethylsulphoxide (DMSO) to give a 50 mM solution which was diluted with 40 mM Hepes buffer containing 0.1% Triton X-100, 10% glycerol and 10% DMSO to give a 500 ⁇ M solution. Equal volumes of this solution and a solution of epidermal growth factor (EGF; 20 ⁇ g/ml) were mixed.
- EGF epidermal growth factor
- [ ⁇ - 3 P]ATP 3000 Ci/mM, 250 ⁇ Ci
- test compound EGF mixture solution (5 ⁇ l) was added to the test enzyme solution (10 ⁇ l) and the mixture was incubated at 0-4°C for 30 minutes.
- the ATP/peptide mixture (10 ⁇ l) was added and the mixture was incubated at 25 °C for 10 minutes.
- the phosphorylation reaction was terminated by the addition of 5% trichloroacetic acid (40 ⁇ l) and bovine serum albumin (BSA; 1 mg/ml, 5 ⁇ l).
- BSA bovine serum albumin
- the strip was washed in 75 mM phosphoric acid (4 x 10 ml) and blotted dry. Radioactivity present in the filter paper was measured using a liquid scintillation counter (Sequence A). The reaction sequence was repeated in the absence of the EGF (Sequence B) and again in the absence of the test compound (Sequence C).
- Receptor tyrosine kinase inhibition was calculated as follows :-
- KB cells were seeded into wells at a density of 1 x 10 ⁇ - 1.5 x 10 ⁇ cells per well and grown for 24 hours in DMEM supplemented with 5% FCS (charcoal-stripped). Cell growth was determined after incubation for 3 days by the extent of metabolism of MTT tetrazolium dye to furnish a bluish colour. Cell growth was then determined in the presence of EGF (10 ng/ml) or in the presence of EGF (10 ng/ml) and a test compound at a range of concentrations. An IC 50 value could then be calculated.
- test compound (usually administered orally as a ball-milled suspension in 0.5% polysorbate) to inhibit the stimulation of liver hepatocyte growth caused by the administration of the growth factor TGF ⁇ (400 ⁇ g/kg subcutaneously, usually dosed twice, 3 and 7 hours respectively after the administration of the test compound).
- TGF ⁇ causes on average a 5-fold stimulation of liver hepatocyte growth.
- A-431 cells were maintained in culture in DMEM supplemented with 5% FCS and 2mM glutamine. Freshly cultured cells were harvested by trypsinization and injected subcutaneously (10 million cells/0.1 ml/mouse) into both flanks of a number of donor nude mice. When sufficient tumour material was available (after approximately 9 to 14 days), fragments of tumour tissue were transplanted into the flanks of recipient nude mice (test day 0). Generally, on the seventh day after transplantation (test day 7) groups of 7 to 10 mice with similar-sized tumours were selected and dosing of the test compound was commenced. Once-daily dosing of test compound was continued for a total of 13 days (test days 7 to 19 inclusive).
- Test (d) - 20 to 70% inhibition of tumour volume from a daily dose in the range, for example, 50 to 400 mg kg.
- the compound 4-(3-chloro-4-fluoroanilino)-6-[5-(2- mo ⁇ holinoethyl)thien-2-yl]quinazoline has an IC 50 of 0.04 ⁇ M in Test (a), an IC 50 of 0.19 ⁇ M in Test (b) and gives 64% inhibition in Test (d) at a dosage of 50 mg/kg/day.
- a pharmaceutical composition which comprises a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
- the composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.
- compositions may be prepared in a conventional manner using conventional excipients.
- the quinazoline derivative will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square meter body area of the animal, i.e. approximately 0.1-100 mg/kg, and this normally provides a therapeutically-effective dose.
- a unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient.
- Preferably a daily dose in the range of 1-100 mg/kg is employed.
- the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
- a quinazoline derivative of the formula I as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
- the compounds of the present invention possess anti-proliferative properties which are believed to arise from their Class I (EGF type) receptor tyrosine kinase inhibitory activity. Accordingly the compounds of the present invention are expected to be useful in the treatment of diseases or medical conditions mediated alone or in part by Class I receptor tyrosine kinase enzymes, i.e. the compounds may be used to produce a Class I receptor tyrosine kinase inhibitory effect in a warm-blooded animal in need of such treatment.
- the compounds of the present invention provide a method for treating the proliferation of malignant cells characterised by inhibition of Class I receptor tyrosine kinase enzymes, i.e.
- the compounds may be used to produce an anti-proliferative effect mediated alone or in part by the inhibition of Class I receptor tyrosine kinase. Accordingly the compounds of the present invention are expected to be useful in the treatment of cancer by providing an anti-proliferative effect, particularly in the treatment of Class I receptor tyrosine kinase sensitive cancers such as cancers of the breast, lung, colon, rectum, stomach, prostate, bladder, pancreas and ovary. The compounds of the present invention are also expected to be useful in the treatment of other cell-proliferation diseases such as psoriasis, benign prostatic hypertrophy, atherosclerosis and restenosis.
- other cell-proliferation diseases such as psoriasis, benign prostatic hypertrophy, atherosclerosis and restenosis.
- a quinazoline derivative of the formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the production of an anti-proliferative effect in a warm-blooded animal such as man.
- a method for producing an anti-proliferative effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinazoline derivative as defined immediately above.
- the size of the dose required for the therapeutic or prophylactic treatment of a particular cell-proliferation disease will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated.
- a unit dose in the range, for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged.
- the anti-proliferative treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the quinazoline derivative of the invention, conventional radiotherapy or one or more other anti-tumour substances, for example cytotoxic or cytostatic anti-tumour substances, for example those selected from, for example, mitotic inhibitors, for example vinblastine, vindesine and vinorelbine; alkyiating agents, for example cis-platin, carboplatin and cyclophosphamide; antimetabolites, for example 5-fluorouracil, tegafur, methotrexate, cytosine arabinoside and hydroxyurea, or, for example, one of the preferred antimetabolites disclosed in European Patent Application No.
- cytotoxic or cytostatic anti-tumour substances for example those selected from, for example, mitotic inhibitors, for example vinblastine, vindesine and vinorelbine
- alkyiating agents for example cis-platin, carboplatin and cyclophos
- antibiotics for example adriamycin, mitomycin and bleomycin
- enzymes for example asparaginase
- topoisomerase inhibitors for example etoposide and camptothecin
- biological response modifiers for example interferon
- anti-hormones for example antioestrogens such as tamoxifen, for example antiandrogens such as 4'-cyano-3-(4-fluorophenylsulphonyl)-2-hydroxy-2-methyl-3'- (trifluorornethyl)propionanilide or, for example LHRH antagonists or LHRH agonists such as goserelin, leuprorelin or buserelin and hormone synthesis inhibitors, for example
- the quinazoline derivative defined in the present invention is an effective anti-cancer agent, which property is believed to arise from its Class I (EGF type) receptor tyrosine kinase inhibitory properties.
- Class I EGF type
- Such a quinazoline derivative of the invention is expected to possess a wide range of anti-cancer properties as Class I receptor tyrosine kinases have been implicated in many common human cancers such as leukaemia and breast, lung, colon, rectal, stomach, prostate, bladder, pancreas and ovarian cancer.
- a quinazoline derivative of the invention will possess anti-cancer activity against these cancers.
- a quinazoline derivative of the present invention will possess activity against a range of leukaemias, lymphoid malignancies and solid tumours such as carcinomas and sarcomas in tissues such as the liver, kidney, prostate and pancreas. It is further expected that a quinazoline derivative of the present invention will possess activity against other cell-proliferation diseases such as psoriasis, benign prostatic hypertrophy, atherosclerosis and restenosis.
- a quinazoline derivative of the invention will be useful in the treatment of additional disorders of cellular growth in which aberrant cell signalling by way of receptor tyrosine kinase enzymes, including as yet unidentified receptor tyrosine kinase enzymes, are involved.
- Such disorders include, for example, inflammation, angiogenesis, vascular restenosis, immunological disorders, pancreatitis, kidney disease and blastocyte maturation and implantation.
- (v) melting points were determined using a Mettler SP62 automatic melting point apparatus, an oil-bath apparatus or a Koffier hot plate apparatus.
- Tetrakis(triphenylphosphine)palladium(0) (0.04 g) was added to a stirred mixture of 6-bromo-4-(3-chloro-4-fluoroanilino)quinazoline hydrochloride salt (0.25 g), a saturated aqueous sodium bicarbonate solution (1.5 ml), di-isopropyl 4-cyanophenylboronate and DME (10 ml). The resultant mixture was stirred and heated to reflux for 3 hours. The mixture was cooled to ambient temperature.
- Tetrakis(triphenylphosphine)palladium(0) (0.019 g) and a solution of phenylboronic acid (0.083 g) in ethanol (1 ml) were added in turn to a stirred mixture of 6-bromo-4-(3- methylanilino)quinazoline hydrochloride salt (European Patent Application No. 0520722, Example 9 thereof. 0.245 g), a saturated aqueous sodium carbonate solution (0.4 ml) and toluene ( 1.2 ml).
- the resultant mixture was stirred and heated to reflux for 6 hours.
- the mixture was cooled to ambient temperature and partitioned between methylene chloride and water.
- Example 3 Lithium aluminium hydride (IM in diethyl ether, 20 ml) was added dropwise to a stirred mixture of 4-(3-chloro-4-fluoroanilino)-6-(4-cyanophenyl)quinazoline (0.706 g), diethyl ether (25 ml) and THF (25 ml) and the resultant mixture was stirred at ambient temperature for 16 hours. The mixture was cooled to 0°C. Water (2 ml), 5M aqueous sodium hydroxide solution (2 ml) and water (6 ml) were added in turn and the mixture was allowed to warm to ambient temperature. The mixture was filtered and the filtrate was evaporated.
- Tetrakis(triphenylphosphine)palladium(0) (0.05 g) and a saturated aqueous sodium bicarbonate solution (5 ml) were added in turn to a stirred mixture of 6-bromo-4-(3-chloro-4- fluoroanilino)quinazoline hydrochloride salt (0.35 g), 3-furylboronic acid (J. Het. Chem.. 1975, 195; 0.208 g) and DME (15 ml).
- the resultant mixture was stirred and heated to reflux for 2 hours.
- the mixture was cooled to ambient temperature and partitioned between ethyl acetate and water.
- the organic phase was washed with water and with brine, dried (MgSO 4 ) and evaporated.
- Tetrakis(triphenylphosphine)palladium(0) (0.05 g) was added to a stirred mixture of
- 6-bromo-4-(3-chloro-4-fluoroaniIino)quinazoline hydrochloride salt (0.613 g), a saturated aqueous sodium bicarbonate solution (10 ml), di-isopropyl 2-furylboronate and DME (20 ml).
- the di-isopropyl 2-furylboronate used as a starting material was obtained as follows :- n-Butyllithium (1.6M in hexane, 2.75 ml) was added dropwise to a stirred solution of furan (0.25 g) in THF (10 ml) which had been cooled to 0°C. The resultant mixture was stirred at ambient temperature for 20 minutes. The mixture was cooled to -78°C and tri- isopropyl borate (1 ml) was added dropwise. The mixture was allowed to warm to ambient temperature and was stirred for 2 hours. The mixture was evaporated to give the required starting material which was used without further purification.
- the di-isopropyl 5-(2-mo ⁇ holinoethyl)thien-2-ylboronate used as a starting material was obtained as follows :- 2-(2-Thienyl)acetyl chloride (16 g) was added slowly to a stirred mixture of mo ⁇ holine (17.5 ml) and methylene chloride (150 ml). A further portion (5 ml) of mo ⁇ holine was added and the mixture was stirred at ambient temperature for 4 hours. The reaction mixture was washed in turn with 2M aqueous hydrochloric acid, a saturated aqueous sodium bicarbonate solution and brine. The organic phase was dried and evaporated.
- Example 9 Using an analogous procedure to that described in Example 5 except that the reaction mixture was heated to reflux for 2 hours, 6-bromo-4-(3-chloro-4- fluoroanilino)quinazoline hydrochloride salt was reacted with di-isopropyl 5- mo ⁇ holinomethylthien-3-ylboronate. The reaction mixture was cooled to ambient temperature and partitioned between methylene chloride and water. The organic phase was washed with brine, dried and evaporated. The residue was purified by column chromatography using a 25:1 mixture of methylene chloride and methanol as eluent. The resultant product was recrystallised from ethyl acetate.
- aqueous phase was basified by the addition of a saturated aqueous sodium bicarbonate solution and extracted with methylene chloride. The organic extract was dried (MgSO 4 ) and evaporated to give 4-bromo-2-mo ⁇ holinomethylthiophene (3.2 g); NMR Spectrum: 2.4 (t, 4H), 3.55 (t, 4H), 3.65 (s, 2H), 6.95 (d, IH), 7.5 (d, IH).
- Example 10 A mixture of 6-(2-chloroacetyl)-4-(3-chloro-4-fluoroanilino)quinazoline (0.5 g) and formamide (2 ml) was stirred and heated to 140°C for 2 hours. The mixture was cooled to ambient temperature and water was added. The precipitate was isolated and purified by column chromatography on a C18 reversed-phase silica column using decreasingly polar mixtures of water and methanol (containing 0.2% of trifluoroacetic acid) as eluent. There were thus obtained in turn:-
- Triphenylphosphine (0.063 g) was added to a stirred mixture of 6-bromo-4-(3- chloro-4-fluoroanilino)quinazoline hydrochloride salt (2.34 g), triethylamine (3.4 ml), (trimethylsilyl)acetylene (1.33 ml) palladium(II) chloride (0.021 g), cuprous iodide (0.045 g) and DMF (15 ml). The mixture was stirred and heated to 90°C for 2 hours. The mixture was evaporated and the residue was purified by column chromatography using increasingly polar mixtures of methylene chloride and methanol as eluent. There was thus obtained 4-(3-chloro- 4-fluoroanilino)-6-(2-trimethylsilylethynyl)quinazoline (2.2 g).
- Chlorine gas was led into a stirred mixture of 6-acetyl-4-(3-chloro-4-fluoroanilino)- quinazoline (0.1 1 g), methylene chloride (40 ml) and ethanol (60 ml) and the mixture was cooled to a temperature in the range 20 to 25°C. After 10 minutes the supply of chlorine was stopped and the reaction mixture was stirred at ambient temperature for 1 hour. The mixture was evaporated to give 6-(2-chloroacetyl)-4-(3-chloro-4-fluoroanilino)quinazoiine (0.1 14 g) which was used without further purification.
- Example 11 A mixture of 6-bromo-4-(3-chloro-4-fluoroanilino)quinazoline (0.5 g), 2-pyridyl-tri- n-butyltin ( J. Het. Chem.. 1990, 2165; 0.8 g), tetrakis(triphenylphosphine)palladium(0) (0.05 g) and THF (20 ml) was stirred and heated to 60°C for 4 days. The mixture was evaporated and the residue was purified by column chromatography using initially methylene chloride and then increasingly polar mixtures of methylene chloride and methanol as eluent.
- Diethyl-3-pyridylborane (0.176 g) was added to a mixture of 6-bromo-4-(3-chloro-4- fluoroanilino)quinazoline (0.53 g), powdered potassium hydroxide (0.202 g), tetra-n- butylammonium bromide (0.042 g), tetrakis(triphenylphosphine)palladium(0) (0.069 g) and THF (10 ml). The resultant mixture was stirred and heated to reflux for 16 hours. The mixture was evaporated and the residue was purified by column chromatography using initially methylene chloride and then increasingly polar mixtures of methylene chloride and methanol as eluent.
- the 2-fluoroimidazole 4-toluenesulphonic acid salt used as a starting material was obtained from 2-aminoimidazole using analogous procedures to those described in J. Het. CJieriL, 1978, 1227 and J. Amer. Chem. Soc. 1973, 4619.
- Example 15 l-Methylimidazole-4-sulphonyl chloride (0.181 g) was added to a stirred mixture of 6-amino-4-(3-methylanilino)quinazoline (0.25 g) and pyridine (10 ml) and the mixture was stirred at ambient temperature for 16 hours. The mixture was evaporated and the residual oily solid was washed with methylene chloride and with a saturated aqueous sodium bicarbonate solution. The solid was then washed with water and with acetone and dried. There was thus obtained 4-(3-methylanilino)-6-(l-methylimidazole-4-sulphonamido)quinazoline (0.07 g), m.p. >250°C;
- Example 17 Sodium cyanoborohydride (0.126 g) was added portionwise to a stirred mixture of
- 6-amino-4-(3-methylanilino)quinazoline (0.25 g), 2-imidazolecarbaldehyde (0.192 g), glacial acetic acid (0.114 ml) and ethanol (20 ml).
- the resultant mixture was stirred at ambient temperature for 3 hours.
- the mixture was basified by the addition of a saturated aqueous sodium bicarbonate solution and evaporated. The residue was washed with water and dried. There was thus obtained 6-(2-imidazolylmethylamino)-4-(3-methylanilino)quinazoline (0.096 g), m.p. 235-237°C;
- Lithium aluminium hydride (IM in diethyl ether, 7.1 ml) was added dropwise to a stirred mixture of 4-(3-chloro-4-fluoroanilino)-6-(thiophene-2-carboxamido)quinazoline hydrochloride salt (1 g) and THF (200 ml). The mixture was stirred at ambient temperature for 2 hours and then heated to 45 °C for 1 hour. The mixture was cooled to ambient temperature and glacial acetic acid (5 ml) was added to destroy the excess of reducing agent. The mixture was evaporated and the residue was partitioned between methylene chloride and a 5M aqueous sodium hydroxide solution. The organic phase was washed with brine, dried and evaporated.
- Example 22 Using an analogous procedure to that described in Example 18, 6-amino-4-(3- chloro-4-fluoroanilino)quinazoline was reacted with 5-isoxazolecarbonyl chloride to give 4- (3-chloro-4-fluoroanilino)-6-(isoxazole-5-carboxamido)quinazoline hydrochloride salt in 87% yield, m.p. >250°C; NMR Spectrum: 7.4 (d, IH), 7.5 (t, IH), 7.65 (m, 2H), 8.0 (m, 2H), 8.85 (d, IH), 8.9 (s, IH), 1 1.4 (s, IH);
- Example 23 M,N_' -Dicyclohexylcarbodiim.de (0.416 g) was added portionwise to a stirred mixture of l,2,3-triazole-4-carboxylic acid (0.226 g) and DMA (10 ml). The resultant mixture was stirred at ambient temperature for 2 hours. A solution of 6-amino-4-(3-chloro-4- fluoroanilino)quinazoline (0.576 g) in DMA (5 ml) was added and the mixture was stirred at ambient temperature for 16 hours. The mixture was evaporated and the residue was purified by column chromatography using a 9:1:0.2 mixture of methylene chloride: methanol: triethylamine as eluent. There was thus obtained 4-(3-chloro-4-fluoroanilino)-6-( 1,2,3- triazole-4-carboxamido)quinazoline (0.145 g);
- 3-Pyridinecarbonyl chloride hydrochloride salt (0.107 g) was added portionwise to a stirred mixture of 6-amino-4-(3-chloro-4-fluoroanilino)-7-methylaminoquinazoline (European Patent Application No. 0635507, within Example 3 thereof; 0.11 g), triethylamine (0.101 g) and DMA (1 ml). The mixture was heated to 100°C for 3 hours. The mixture was evaporated and the residue was purified by column chromatography using a Cl 8 reversed-phase silica column and decreasingly polar mixtures of water and methanol (containing 0.2% trifluoroacetic acid) as eluent.
- a concentrated aqueous ammonium hydroxide solution (30% weight/volume, 35 ml) ' was added to a stirred mixture of 6-acetoxy-4-(3-chloro-4-fluoroanilino)quinazoline (22 g) and methanol (200 ml) and the mixture was heated to reflux for 3 hours. The mixture was evaporated and water (300 ml) was added to the residue. The solid was isolated, washed in turn with water (100 ml) and ethanol (60 ml) and dried. There was thus obtained 4-(3-chloro- 4-fluoroanilino)-6-hydroxyquinazoline (16.1 g, 93%);
- Example 31 A mixture of 6-bromomethyl-4-(3-methylanilino)quinazoline (European Patent
- Example 33 Using an analogous procedure to that described in Example 32, 4-(3-chloro-4- fluoroanilino)-6-hydroxy-7-methoxyquinazoline was reacted with 3-chloromethylpyridine, hydrochloride salt to give 4-(3-chloro-4-fluoroanilino)-7-methoxy-6-(3-pyridylmethoxy)- quinazoline in 18% yield; NMR Spectrum: 3.93 (s, 3H), 5.28 (s, 2H), 7.16 (s, IH), 7.4 (m, 2H), 7.75 (m, IH), 7.95 (m, IH), 8.1 (m, 2H), 8.4 (s, IH), 8.6 (m, IH), 8.75 (m, IH); Elemental Analysis: Found C, 61.0; H, 3.9; N, 13.5; C 21 H 16 ClFN 4 O 2 requires C, 61.4; H, 3.9; N, 13.6%.
- Example 34 Example 34
- Example 39 Using an analogous procedure to that described in Example 5, 6-bromo-4-[3- methyl-4-(2-pyridylmethoxy)anilino]quinazoline dihydrochloride salt was reacted with di ⁇ isopropyl 3-furylboronate to give 6-(3-furyl)-4-[3-methyl-4-(2-pyridylmethoxy)anilino]- quinazoline in 55% yield, m.p.
- the di-isopropyl 3-furylboronate used as a starting material was obtained as follows:- n-Butyllithium (1.6M in hexane, 1 ml) was added dropwise to a stirred mixture of 3-bromofuran (0.21 g), tri-isopropyl borate (0.4 ml) and THF (5 ml) which had been cooled to -78°C. The mixture was stirred and allowed to warm to ambient temperature. The mixture was evaporated to give the required starting material which was used without further purification.
- the above formulations may be obtained by conventional procedures well known in the pharmaceutical art.
- the tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NZ330816A NZ330816A (en) | 1996-02-14 | 1997-02-10 | Quinazoline derivatives as antitumor agents |
| AU16126/97A AU707339B2 (en) | 1996-02-14 | 1997-02-10 | Quinazoline derivatives as antitumor agents |
| AT97902496T ATE293103T1 (de) | 1996-02-14 | 1997-02-10 | Chinazolinderivate als antitumormittel |
| JP52907397A JP4074342B2 (ja) | 1996-02-14 | 1997-02-10 | キナゾリン化合物 |
| DK97902496T DK0880507T3 (da) | 1996-02-14 | 1997-02-10 | Quinazolinderivater som antitumormidler |
| EP97902496A EP0880507B1 (en) | 1996-02-14 | 1997-02-10 | Quinazoline derivatives as antitumor agents |
| CA002242102A CA2242102C (en) | 1996-02-14 | 1997-02-10 | Quinazoline derivatives as antitumor agents |
| IL12568597A IL125685A (en) | 1996-02-14 | 1997-02-10 | Quinazoline derivatives, processes for their preparation, pharmaceutical compositions containing them and their use in the manufacture of medicaments for use in the production of an anti-proliferative effect in warm-blooded animals |
| DE69733008T DE69733008T2 (de) | 1996-02-14 | 1997-02-10 | Chinazolinderivate als antitumormittel |
| NO19983707A NO311936B1 (no) | 1996-02-14 | 1998-08-13 | Kinazolin-derivater som antitumor-midler og anvendelse derav, samt fremgangsmåte for fremstilling og farmasöytisk preparat |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9603095.2 | 1996-02-14 | ||
| GBGB9603095.2A GB9603095D0 (en) | 1996-02-14 | 1996-02-14 | Quinazoline derivatives |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997030034A1 true WO1997030034A1 (en) | 1997-08-21 |
Family
ID=10788732
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1997/000344 Ceased WO1997030034A1 (en) | 1996-02-14 | 1997-02-10 | Quinazoline derivatives as antitumor agents |
Country Status (17)
| Country | Link |
|---|---|
| US (3) | US5866572A (enExample) |
| EP (1) | EP0880507B1 (enExample) |
| JP (1) | JP4074342B2 (enExample) |
| KR (1) | KR100494824B1 (enExample) |
| CN (1) | CN1142919C (enExample) |
| AT (1) | ATE293103T1 (enExample) |
| AU (1) | AU707339B2 (enExample) |
| DE (1) | DE69733008T2 (enExample) |
| ES (1) | ES2239351T3 (enExample) |
| GB (1) | GB9603095D0 (enExample) |
| IL (1) | IL125685A (enExample) |
| MY (1) | MY119992A (enExample) |
| NO (1) | NO311936B1 (enExample) |
| NZ (1) | NZ330816A (enExample) |
| PT (1) | PT880507E (enExample) |
| WO (1) | WO1997030034A1 (enExample) |
| ZA (1) | ZA971231B (enExample) |
Cited By (313)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998002434A1 (en) * | 1996-07-13 | 1998-01-22 | Glaxo Group Limited | Fused heterocyclic compounds as protein tyrosine kinase inhibitors |
| WO1999035132A1 (en) * | 1998-01-12 | 1999-07-15 | Glaxo Group Limited | Heterocyclic compounds |
| WO2000044728A1 (en) * | 1999-01-27 | 2000-08-03 | Pfizer Products Inc. | Substituted bicyclic derivatives useful as anticancer agents |
| EP1029853A1 (en) * | 1999-01-27 | 2000-08-23 | Pfizer Products Inc. | Heteroaromatic bicyclic derivatives useful as anticancer agents |
| US6184225B1 (en) | 1996-02-13 | 2001-02-06 | Zeneca Limited | Quinazoline derivatives as VEGF inhibitors |
| WO2001021594A1 (en) * | 1999-09-21 | 2001-03-29 | Astrazeneca Ab | Quinazoline compounds and pharmaceutical compositions containing them |
| US6225318B1 (en) | 1996-10-17 | 2001-05-01 | Pfizer Inc | 4-aminoquinazolone derivatives |
| US6265411B1 (en) | 1996-05-06 | 2001-07-24 | Zeneca Limited | Oxindole derivatives |
| US6291455B1 (en) | 1996-03-05 | 2001-09-18 | Zeneca Limited | 4-anilinoquinazoline derivatives |
| US6294532B1 (en) | 1997-08-22 | 2001-09-25 | Zeneca Limited | Oxindolylquinazoline derivatives as angiogenesis inhibitors |
| US6344459B1 (en) | 1996-04-12 | 2002-02-05 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
| WO2001098277A3 (en) * | 2000-06-22 | 2002-06-13 | Pfizer Prod Inc | Substituted bicyclic derivatives for the treatment of abnormal cell growth |
| WO2002070008A1 (en) | 2001-03-02 | 2002-09-12 | Imclone Systems Incorporated | Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist |
| WO2003040108A1 (en) * | 2001-11-03 | 2003-05-15 | Astrazeneca Ab | Quinazoline derivatives as antitumor agents |
| WO2003045939A1 (en) * | 2001-11-30 | 2003-06-05 | Pfizer Products Inc. | Processes for the preparation of substituted bicyclic derivatives for the treatment of abnormal cell growth |
| WO2003049740A1 (en) * | 2001-12-12 | 2003-06-19 | Pfizer Products Inc. | Quinazoline derivatives for the treatment of abnormal cell growth |
| WO2003050108A1 (en) * | 2001-12-12 | 2003-06-19 | Pfizer Products Inc. | Salt forms of e-2-methoxy-n-(3-(4-(3-methyl-pyridin-3-yloxy)-phenylamino)-quinazolin-6-yl)-allyl)-acetamide, its preparation and its use against cancer |
| WO2003053958A1 (en) * | 2001-12-20 | 2003-07-03 | Celltech R & D Limited | Quinazolinedione derivatives |
| US6673803B2 (en) | 1996-09-25 | 2004-01-06 | Zeneca Limited | Quinazoline derivatives and pharmaceutical compositions containing them |
| US6713485B2 (en) | 1998-01-12 | 2004-03-30 | Smithkline Beecham Corporation | Heterocyclic compounds |
| WO2004056807A1 (en) | 2002-12-20 | 2004-07-08 | Pfizer Products Inc. | Pyrimidine derivatives for the treatment of abnormal cell growth |
| WO2004103306A2 (en) | 2003-05-19 | 2004-12-02 | Irm Llc | Immunosuppressant compounds and compositions |
| WO2005000833A1 (en) | 2003-05-19 | 2005-01-06 | Irm, Llc | Immunosuppressant compounds and compositions |
| US6849625B2 (en) | 2000-10-13 | 2005-02-01 | Astrazeneca Ab | Quinazoline derivatives with anti-tumour activity |
| WO2005012290A1 (en) * | 2003-07-29 | 2005-02-10 | Astrazeneca Ab | Piperidyl-quinazoline derivatives as tyrosine kinase inhibitors |
| WO2005016346A1 (en) | 2003-08-14 | 2005-02-24 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| WO2005026156A1 (en) * | 2003-09-16 | 2005-03-24 | Astrazeneca Ab | Quinazoline derivatives |
| WO2005026151A1 (en) * | 2003-09-16 | 2005-03-24 | Astrazeneca Ab | Quinazoline derivatives as tyrosine kinase inhibitors |
| US6933299B1 (en) | 1999-07-09 | 2005-08-23 | Smithkline Beecham Corporation | Anilinoquinazolines as protein tyrosine kinase inhibitors |
| US6939866B2 (en) | 2000-10-13 | 2005-09-06 | Astrazeneca Ab | Quinazoline derivatives |
| RU2262935C2 (ru) * | 1999-02-10 | 2005-10-27 | Астразенека Аб | Производные хиназолина в качестве ингибиторов ангиогенеза |
| WO2005080352A3 (en) * | 2004-02-19 | 2006-02-16 | Rexahn Corp | Quinazoline derivatives and therapeutic use thereof |
| US7049438B2 (en) | 2000-06-06 | 2006-05-23 | Astrazeneca Ab | Quinazoline derivatives for treatment of tumours |
| WO2006071017A1 (en) * | 2004-12-29 | 2006-07-06 | Hanmi Pharm. Co., Ltd. | Quinazoline derivatives for inhibiting cancer cell growth and method for the preparation thereof |
| US7084147B2 (en) | 1999-07-09 | 2006-08-01 | Smithkline Beecham Corporation | Anilinoquinazaolines as protein tyrosine kinase inhibitors |
| WO2006083458A2 (en) | 2004-12-30 | 2006-08-10 | Bioresponse Llc | Use of diindolylmethane-related indoles for the treatment and prevention of respiratory syncytial virus associates conditions |
| US7115615B2 (en) | 2000-08-21 | 2006-10-03 | Astrazeneca | Quinazoline derivatives |
| US7148230B2 (en) | 2003-07-29 | 2006-12-12 | Astrazeneca Ab | Quinazoline derivatives |
| US7160889B2 (en) | 2000-04-07 | 2007-01-09 | Astrazeneca Ab | Quinazoline compounds |
| US7173038B1 (en) | 1999-11-05 | 2007-02-06 | Astrazeneca Ab | Quinazoline derivatives as VEGF inhibitors |
| US7268230B2 (en) | 2002-02-01 | 2007-09-11 | Astrazeneca Ab | Quinazoline compounds |
| WO2007104560A1 (de) * | 2006-03-15 | 2007-09-20 | Grünenthal GmbH | Substituierte 4-amino-chinazolin-derivate als regulatoren von metab0tr0pischen glutamatrezeptoren und ihre verwendung zur herstellung von arzneimitteln |
| WO2008037477A1 (en) | 2006-09-29 | 2008-04-03 | Novartis Ag | Pyrazolopyrimidines as p13k lipid kinase inhibitors |
| WO2008020302A3 (en) * | 2006-08-17 | 2008-04-17 | Pfizer Prod Inc | Heteroaromatic quinoline-based compounds as phosphodiesterase (pde) inhibitors |
| EP1944026A2 (en) | 2002-05-16 | 2008-07-16 | Novartis AG | Use of EDG receptor binding agents in cancer |
| EP1804803A4 (en) * | 2004-10-28 | 2008-07-30 | Irm Llc | COMPOUNDS AND COMPOSITIONS AS HEDGEHOG WALK MODULATORS |
| EP1956010A1 (de) * | 2007-02-06 | 2008-08-13 | Boehringer Ingelheim Pharma GmbH & Co. KG | Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel,deren Verwendung und Verfahren zu ihrer Herstellung |
| WO2008095847A1 (de) * | 2007-02-06 | 2008-08-14 | Boehringer Ingelheim International Gmbh | Bicyclische heterocyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung |
| WO2008141843A1 (en) * | 2007-05-24 | 2008-11-27 | Bayer Schering Pharma Aktiengesellschaft | Novel sulphoximine-substituted quinazoline and quinazoline derivatives as kinase inhibitors |
| WO2008009078A3 (en) * | 2006-07-20 | 2008-12-24 | Gilead Sciences Inc | 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections |
| EP2022498A2 (en) | 2005-11-21 | 2009-02-11 | Novartis AG | Neuroendocrine tumour treatment |
| US7501427B2 (en) | 2003-08-14 | 2009-03-10 | Array Biopharma, Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| RU2350618C2 (ru) * | 2002-11-04 | 2009-03-27 | Астразенека Аб | ПРОИЗВОДНЫЕ ХИНАЗОЛИНА В КАЧЕСТВЕ ИНГИБИТОРОВ Src ТИРОЗИНКИНАЗЫ |
| EP2065368A1 (en) | 2004-04-07 | 2009-06-03 | Novartis Ag | Inhibitors of IAP |
| EP2072502A1 (de) * | 2007-12-20 | 2009-06-24 | Bayer Schering Pharma Aktiengesellschaft | Sulfoximid-substituierte Chinolin- und Chinazolinderivate als Kinase-Inhibitoren |
| EP1990337A4 (en) * | 2006-01-20 | 2009-07-22 | Shanghai Allist Pharmaceutical | CHINAZOLINE DERIVATIVES, METHOD OF MANUFACTURE AND USES THEREOF |
| US7569577B2 (en) | 2003-09-16 | 2009-08-04 | Astrazeneca Ab | Quinazoline derivatives as tyrosine kinase inhibitors |
| EP2100618A2 (en) | 2005-06-17 | 2009-09-16 | Imclone LLC | PDGFR-alpha antagonists for treatment of metastatic bone cancer |
| WO2009118292A1 (en) | 2008-03-24 | 2009-10-01 | Novartis Ag | Arylsulfonamide-based matrix metalloprotease inhibitors |
| US7625908B2 (en) | 2003-11-13 | 2009-12-01 | Astrazeneca Ab | Quinazoline derivatives |
| EP2021019A4 (en) * | 2006-05-15 | 2009-12-09 | Senex Biotechnology Inc | IDENTIFICATION OF CDKI PATH HAZARD |
| US7632840B2 (en) | 2004-02-03 | 2009-12-15 | Astrazeneca Ab | Quinazoline compounds for the treatment of hyperproliferative disorders |
| US7659279B2 (en) | 2003-04-30 | 2010-02-09 | Astrazeneca Ab | Quinazoline derivatives and their use in the treatment of cancer |
| BG65862B1 (bg) * | 1999-11-30 | 2010-03-31 | Pfizer Products Inc. | Нови производни на бензоимидазола, полезни като антипролиферативни средства |
| WO2010043050A1 (en) | 2008-10-16 | 2010-04-22 | Celator Pharmaceuticals Corporation | Combinations of a liposomal water-soluble camptothecin with cetuximab or bevacizumab |
| WO2010071794A1 (en) | 2008-12-18 | 2010-06-24 | Novartis Ag | New polymorphic form of 1- (4- { l- [ (e) -4-cyclohexyl--3-trifluoromethyl-benzyloxyimino] -ethyl) -2-ethyl-benzy l) -azetidine-3-carboxylic |
| WO2010080409A1 (en) | 2008-12-18 | 2010-07-15 | Novartis Ag | Hemifumarate salt of 1- [4- [1- ( 4 -cyclohexyl-3 -trifluoromethyl-benzyloxyimino ) -ethyl] -2 -ethyl-benzyl] -a zetidine-3-carboxylic acid |
| WO2010080455A1 (en) | 2008-12-18 | 2010-07-15 | Novartis Ag | New salts |
| WO2010083617A1 (en) | 2009-01-21 | 2010-07-29 | Oncalis Ag | Pyrazolopyrimidines as protein kinase inhibitors |
| WO2010088335A1 (en) | 2009-01-29 | 2010-08-05 | Novartis Ag | Substituted benzimidazoles for the treatment of astrocytomas |
| US7772243B2 (en) | 2004-05-06 | 2010-08-10 | Warner-Lambert Company Llc | 4-phenylamino-quinazolin-6-yl-amides |
| WO2010099364A2 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
| WO2010099138A2 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
| WO2010099137A2 (en) | 2009-02-26 | 2010-09-02 | Osi Pharmaceuticals, Inc. | In situ methods for monitoring the emt status of tumor cells in vivo |
| WO2010099139A2 (en) | 2009-02-25 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Combination anti-cancer therapy |
| WO2010099363A1 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
| WO2010107968A1 (en) | 2009-03-18 | 2010-09-23 | Osi Pharmaceuticals, Inc. | Combination cancer therapy comprising administration of an egfr inhibitor and an igf-1r inhibitor |
| US7820683B2 (en) | 2005-09-20 | 2010-10-26 | Astrazeneca Ab | 4-(1H-indazol-5-yl-amino)-quinazoline compounds as erbB receptor tyrosine kinase inhibitors for the treatment of cancer |
| US7838530B2 (en) | 2003-09-25 | 2010-11-23 | Astrazeneca Ab | Quinazoline derivatives as antiproliferative agents |
| EP2253319A1 (en) | 2001-05-16 | 2010-11-24 | Novartis AG | Combination comprising N-{5-[4-(4-methyl-piperazino-methyl)-benzoylamido]-2-methylphenyl}-4-(3-pyridyl)-2pyrimidine-amine and a chemotherapeutic agent. |
| EP2258700A1 (en) | 2006-05-09 | 2010-12-08 | Pfizer Products Inc. | Cycloalkylamino acid derivatives and pharmaceutical compositions thereof |
| WO2010149755A1 (en) | 2009-06-26 | 2010-12-29 | Novartis Ag | 1, 3-disubstituted imidazolidin-2-one derivatives as inhibitors of cyp 17 |
| EP2269603A1 (en) | 2001-02-19 | 2011-01-05 | Novartis AG | Treatment of solid tumours with rapamycin derivatives |
| EP2270008A1 (en) | 2005-05-20 | 2011-01-05 | Novartis AG | 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinases inhibitors |
| EP2272511A1 (en) | 2006-05-09 | 2011-01-12 | Novartis AG | Combination comprising an iron chelator and an anti-neoplastic agent and use thereof |
| WO2011015652A1 (en) | 2009-08-07 | 2011-02-10 | Novartis Ag | 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives as c-met tyrosine kinase modulators |
| WO2011018454A1 (en) | 2009-08-12 | 2011-02-17 | Novartis Ag | Heterocyclic hydrazone compounds and their uses to treat cancer and inflammation |
| WO2011022439A1 (en) | 2009-08-17 | 2011-02-24 | Intellikine, Inc. | Heterocyclic compounds and uses thereof |
| WO2011020861A1 (en) | 2009-08-20 | 2011-02-24 | Novartis Ag | Heterocyclic oxime compounds |
| WO2011023677A1 (en) | 2009-08-26 | 2011-03-03 | Novartis Ag | Tetra-substituted heteroaryl compounds and their use as mdm2 and/or mdm4 modulators |
| WO2011027249A2 (en) | 2009-09-01 | 2011-03-10 | Pfizer Inc. | Benzimidazole derivatives |
| WO2011029915A1 (en) | 2009-09-10 | 2011-03-17 | Novartis Ag | Ether derivatives of bicyclic heteroaryls |
| US7910731B2 (en) | 2002-03-30 | 2011-03-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them |
| EP2308855A1 (en) | 2002-03-15 | 2011-04-13 | Novartis AG | 2,4-Diaminopyrimidine derivatives |
| US7928109B2 (en) | 2007-04-18 | 2011-04-19 | Pfizer Inc | Sulfonyl amide derivatives for the treatment of abnormal cell growth |
| EP2314297A1 (en) | 2006-04-05 | 2011-04-27 | Novartis AG | Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer |
| WO2011053779A2 (en) | 2009-10-30 | 2011-05-05 | Bristol-Myers Squibb Company | Methods for treating cancer in patients having igf-1r inhibitor resistance |
| WO2011054828A1 (en) | 2009-11-04 | 2011-05-12 | Novartis Ag | Heterocyclic sulfonamide derivatives useful as mek inhibitors |
| WO2011058164A1 (en) | 2009-11-13 | 2011-05-19 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
| US7947676B2 (en) | 2004-12-14 | 2011-05-24 | Astrazeneca Ab | Pyrazolo[3,4-d]pyrimidine compounds as antitumor agents |
| WO2011063421A1 (en) | 2009-11-23 | 2011-05-26 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
| WO2011064211A1 (en) | 2009-11-25 | 2011-06-03 | Novartis Ag | Benzene-fused 6-membered oxygen-containing heterocyclic derivatives of bicyclic heteroaryls |
| EP2332990A1 (en) | 2004-03-19 | 2011-06-15 | Imclone LLC | Human anti-epidermal growth factor receptor antibody |
| WO2011070030A1 (en) | 2009-12-08 | 2011-06-16 | Novartis Ag | Heterocyclic sulfonamide derivatives |
| WO2011076786A1 (en) | 2009-12-22 | 2011-06-30 | Novartis Ag | Substituted isoquinolinones and quinazolinones |
| US7973164B2 (en) | 2006-03-02 | 2011-07-05 | Astrazeneca Ab | Quinoline derivatives |
| CZ302567B6 (cs) * | 2000-08-26 | 2011-07-13 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Aminochinazoliny, farmaceutický prostredek obsahující tyto slouceniny, jejich použití a zpusob jejich výroby |
| EP2348110A1 (en) | 2003-05-30 | 2011-07-27 | AstraZeneca UK Limited | Process |
| WO2011090940A1 (en) | 2010-01-19 | 2011-07-28 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
| EP2359818A1 (en) | 2007-02-15 | 2011-08-24 | Novartis AG | Combination of LBH589 with HSP 90 inhibitors for treating cancer |
| WO2011119995A2 (en) | 2010-03-26 | 2011-09-29 | Cerulean Pharma Inc. | Formulations and methods of use |
| EP2371822A1 (en) | 2006-03-14 | 2011-10-05 | Novartis AG | Heterobicyclic carboxamides as inhibitors for kinases |
| EP2389953A1 (en) | 2003-06-09 | 2011-11-30 | Samuel Waksal | Method of inhibiting receptor tyrosine kinases with an extracellular antagonist and an intracellular antagonist |
| US8080577B2 (en) | 2004-05-06 | 2011-12-20 | Bioresponse, L.L.C. | Diindolylmethane formulations for the treatment of leiomyomas |
| US8080558B2 (en) | 2007-10-29 | 2011-12-20 | Natco Pharma Limited | 4-(tetrazol-5-yl)-quinazoline derivatives as anti-cancer agent |
| WO2011157787A1 (en) | 2010-06-17 | 2011-12-22 | Novartis Ag | Biphenyl substituted 1,3-dihydro-benzoimidazol-2-ylideneamine derivatives |
| WO2011157793A1 (en) | 2010-06-17 | 2011-12-22 | Novartis Ag | Piperidinyl substituted 1,3-dihydro-benzoimidazol-2-ylideneamine derivatives |
| US8088782B2 (en) | 2008-05-13 | 2012-01-03 | Astrazeneca Ab | Crystalline 4-(3-chloro-2-fluoroanilino)-7 methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline difumarate form A |
| WO2012004299A1 (en) | 2010-07-06 | 2012-01-12 | Novartis Ag | Tetrahydro-pyrido-pyrimidine derivatives |
| EP2409969A1 (en) | 2004-06-24 | 2012-01-25 | Novartis AG | Pyrimidine urea derivatives as kinase inhibitors |
| US8129114B2 (en) | 2005-08-24 | 2012-03-06 | Bristol-Myers Squibb Company | Biomarkers and methods for determining sensitivity to epidermal growth factor receptor modulators |
| WO2012035078A1 (en) | 2010-09-16 | 2012-03-22 | Novartis Ag | 17α-HYDROXYLASE/C17,20-LYASE INHIBITORS |
| US8153643B2 (en) | 2004-10-12 | 2012-04-10 | Astrazeneca Ab | Quinazoline derivatives |
| WO2012052948A1 (en) | 2010-10-20 | 2012-04-26 | Pfizer Inc. | Pyridine- 2- derivatives as smoothened receptor modulators |
| WO2012066095A1 (en) | 2010-11-19 | 2012-05-24 | Novartis Ag | Crystalline form of an inhibitor of mdm2/4 and p53 interaction |
| EP2468883A1 (en) | 2010-12-22 | 2012-06-27 | Pangaea Biotech S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
| WO2012085815A1 (en) | 2010-12-21 | 2012-06-28 | Novartis Ag | Bi-heteroaryl compounds as vps34 inhibitors |
| EP2167092A4 (en) * | 2007-06-14 | 2012-07-25 | Glaxosmithkline Llc | QUINAZOLINE DERIVATIVES AS INHIBITORS OF PI3 KINASE |
| WO2012107500A1 (en) | 2011-02-10 | 2012-08-16 | Novartis Ag | [1, 2, 4] triazolo [4, 3 -b] pyridazine compounds as inhibitors of the c-met tyrosine kinase |
| WO2012112567A1 (en) * | 2011-02-15 | 2012-08-23 | Georgetown University | Small molecule inhibitors of agbl2 |
| EP2492688A1 (en) | 2011-02-23 | 2012-08-29 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
| WO2012116237A2 (en) | 2011-02-23 | 2012-08-30 | Intellikine, Llc | Heterocyclic compounds and uses thereof |
| WO2012120469A1 (en) | 2011-03-08 | 2012-09-13 | Novartis Ag | Fluorophenyl bicyclic heteroaryl compounds |
| WO2012129145A1 (en) | 2011-03-18 | 2012-09-27 | OSI Pharmaceuticals, LLC | Nscle combination therapy |
| WO2012149413A1 (en) | 2011-04-28 | 2012-11-01 | Novartis Ag | 17α-HYDROXYLASE/C17,20-LYASE INHIBITORS |
| WO2012149014A1 (en) | 2011-04-25 | 2012-11-01 | OSI Pharmaceuticals, LLC | Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment |
| WO2012146919A1 (en) | 2011-04-26 | 2012-11-01 | The Queen's University Of Belfast | Cxcr1 as a predictor of response to treatment with epidermal growth factor receptor therapeutic |
| WO2012168884A1 (en) | 2011-06-09 | 2012-12-13 | Novartis Ag | Heterocyclic sulfonamide derivatives |
| WO2012175487A1 (en) | 2011-06-20 | 2012-12-27 | Novartis Ag | Cyclohexyl isoquinolinone compounds |
| WO2012175520A1 (en) | 2011-06-20 | 2012-12-27 | Novartis Ag | Hydroxy substituted isoquinolinone derivatives |
| WO2013001445A1 (en) | 2011-06-27 | 2013-01-03 | Novartis Ag | Solid forms and salts of tetrahydro-pyrido-pyrimidine derivatives |
| WO2013033380A1 (en) | 2011-08-31 | 2013-03-07 | Genentech, Inc. | Diagnostic markers |
| WO2013038362A1 (en) | 2011-09-15 | 2013-03-21 | Novartis Ag | 6 - substituted 3 - (quinolin- 6 - ylthio) - [1,2,4] triazolo [4, 3 -a] pyradines as tyrosine kinase |
| WO2013042006A1 (en) | 2011-09-22 | 2013-03-28 | Pfizer Inc. | Pyrrolopyrimidine and purine derivatives |
| WO2013056069A1 (en) | 2011-10-13 | 2013-04-18 | Bristol-Myers Squibb Company | Methods for selecting and treating cancer in patients with igf-1r/ir inhibitors |
| WO2013055530A1 (en) | 2011-09-30 | 2013-04-18 | Genentech, Inc. | Diagnostic methylation markers of epithelial or mesenchymal phenotype and response to egfr kinase inhibitor in tumours or tumour cells |
| EP2591775A1 (en) | 2006-04-05 | 2013-05-15 | Novartis AG | Combinations comprising mtor inhibitors for treating cancer |
| WO2013080141A1 (en) | 2011-11-29 | 2013-06-06 | Novartis Ag | Pyrazolopyrrolidine compounds |
| WO2013096049A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013096055A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013096059A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013093850A1 (en) | 2011-12-22 | 2013-06-27 | Novartis Ag | Quinoline derivatives |
| WO2013093849A1 (en) | 2011-12-22 | 2013-06-27 | Novartis Ag | Dihydro-benzo-oxazine and dihydro-pyrido-oxazine derivatives |
| WO2013096060A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013096051A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| US20130165458A1 (en) * | 2011-12-27 | 2013-06-27 | Development Center For Biotechnology | Quinazoline compounds as kinase inhibitors |
| EP2628726A1 (en) | 2008-03-26 | 2013-08-21 | Novartis AG | Hydroxamate-based inhibitors of deacetylases b |
| WO2013143057A1 (zh) | 2012-03-26 | 2013-10-03 | 中国科学院福建物质结构研究所 | 喹唑啉衍生物及用途 |
| WO2013152252A1 (en) | 2012-04-06 | 2013-10-10 | OSI Pharmaceuticals, LLC | Combination anti-cancer therapy |
| WO2013149581A1 (en) | 2012-04-03 | 2013-10-10 | Novartis Ag | Combination products with tyrosine kinase inhibitors and their use |
| US8586621B2 (en) | 2006-10-27 | 2013-11-19 | Michael A. Zeligs | Anti-parasitic methods and compositions utilizing diindolylmethane-related indoles |
| WO2013175417A1 (en) | 2012-05-24 | 2013-11-28 | Novartis Ag | Pyrrolopyrrolidinone compounds |
| WO2013188763A1 (en) | 2012-06-15 | 2013-12-19 | The Brigham And Women's Hospital, Inc. | Compositions for treating cancer and methods for making the same |
| WO2013190089A1 (en) | 2012-06-21 | 2013-12-27 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting outcome in lung cancer |
| US8673929B2 (en) | 2006-07-20 | 2014-03-18 | Gilead Sciences, Inc. | 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections |
| US8710104B2 (en) | 2008-11-07 | 2014-04-29 | Triact Therapeutics, Inc. | Catecholic butanes and use thereof for cancer therapy |
| WO2014071402A1 (en) | 2012-11-05 | 2014-05-08 | Dana-Farber Cancer Institute, Inc. | Xbp1, cd138, and cs1, pharmaceutical compositions that include the peptides, and methods of using such petides and compositions |
| US8735424B2 (en) | 2008-09-02 | 2014-05-27 | Novartis Ag | Bicyclic kinase inhibitors |
| WO2014102630A1 (en) | 2012-11-26 | 2014-07-03 | Novartis Ag | Solid form of dihydro-pyrido-oxazine derivative |
| WO2014115077A1 (en) | 2013-01-22 | 2014-07-31 | Novartis Ag | Substituted purinone compounds |
| WO2014115080A1 (en) | 2013-01-22 | 2014-07-31 | Novartis Ag | Pyrazolo[3,4-d]pyrimidinone compounds as inhibitors of the p53/mdm2 interaction |
| WO2014130657A1 (en) | 2013-02-20 | 2014-08-28 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
| WO2014128612A1 (en) | 2013-02-20 | 2014-08-28 | Novartis Ag | Quinazolin-4-one derivatives |
| WO2014135876A1 (en) | 2013-03-06 | 2014-09-12 | Astrazeneca Ab | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
| WO2014151147A1 (en) | 2013-03-15 | 2014-09-25 | Intellikine, Llc | Combination of kinase inhibitors and uses thereof |
| WO2014147246A1 (en) | 2013-03-21 | 2014-09-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and pharmaceutical composition for use in the treatment of chronic liver diseases associated with a low hepcidin expression |
| WO2014155268A2 (en) | 2013-03-25 | 2014-10-02 | Novartis Ag | Fgf-r tyrosine kinase activity inhibitors - use in diseases associated with lack of or reduced snf5 activity |
| US8859570B2 (en) | 2003-12-24 | 2014-10-14 | Astrazeneca Ab | Maleate salts of a quinazoline derivative useful as an antiangiogenic agent |
| WO2014184778A1 (en) | 2013-05-17 | 2014-11-20 | Novartis Ag | Pyrimidin-4-yl)oxy)-1h-indole-1-carboxamide derivatives and use thereof |
| WO2015010641A1 (en) | 2013-07-24 | 2015-01-29 | Novartis Ag | Substituted quinazolin-4-one derivatives |
| WO2015022663A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
| WO2015022664A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
| WO2015022662A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
| WO2015042078A2 (en) | 2013-09-22 | 2015-03-26 | Calitor Sciences, Llc | Substituted aminopyrimidine compounds and methods of use |
| WO2015075598A1 (en) | 2013-11-21 | 2015-05-28 | Pfizer Inc. | 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders |
| WO2015084804A1 (en) | 2013-12-03 | 2015-06-11 | Novartis Ag | Combination of mdm2 inhibitor and braf inhibitor and their use |
| WO2015128873A1 (en) * | 2014-02-27 | 2015-09-03 | Council Of Scientific & Industrial Research | "6-aryl-4-phenylamino-quinazoline analogs as phosphoinositide-3-kinase inhibitors" |
| US9134297B2 (en) | 2011-01-11 | 2015-09-15 | Icahn School Of Medicine At Mount Sinai | Method and compositions for treating cancer and related methods |
| WO2015145388A2 (en) | 2014-03-27 | 2015-10-01 | Novartis Ag | Methods of treating colorectal cancers harboring upstream wnt pathway mutations |
| WO2015156674A2 (en) | 2014-04-10 | 2015-10-15 | Stichting Het Nederlands Kanker Instituut | Method for treating cancer |
| WO2015155624A1 (en) | 2014-04-10 | 2015-10-15 | Pfizer Inc. | Dihydropyrrolopyrimidine derivatives |
| WO2015166373A1 (en) | 2014-04-30 | 2015-11-05 | Pfizer Inc. | Cycloalkyl-linked diheterocycle derivatives |
| WO2016001789A1 (en) | 2014-06-30 | 2016-01-07 | Pfizer Inc. | Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer |
| WO2016011956A1 (en) | 2014-07-25 | 2016-01-28 | Novartis Ag | Combination therapy |
| WO2016016822A1 (en) | 2014-07-31 | 2016-02-04 | Novartis Ag | Combination therapy |
| US9381246B2 (en) | 2013-09-09 | 2016-07-05 | Triact Therapeutics, Inc. | Cancer therapy |
| US9408885B2 (en) | 2011-12-01 | 2016-08-09 | Vib Vzw | Combinations of therapeutic agents for treating melanoma |
| EP3064502A1 (en) | 2012-01-26 | 2016-09-07 | Novartis AG | Imidazopyrrolidinone compounds |
| WO2017009751A1 (en) | 2015-07-15 | 2017-01-19 | Pfizer Inc. | Pyrimidine derivatives |
| US9585850B2 (en) | 2011-12-23 | 2017-03-07 | Duke University | Methods of treatment using arylcyclopropylamine compounds |
| WO2017044434A1 (en) | 2015-09-11 | 2017-03-16 | Sunshine Lake Pharma Co., Ltd. | Substituted heteroaryl compounds and methods of use |
| US9738643B2 (en) | 2012-08-06 | 2017-08-22 | Duke University | Substituted indazoles for targeting Hsp90 |
| US9834575B2 (en) | 2013-02-26 | 2017-12-05 | Triact Therapeutics, Inc. | Cancer therapy |
| WO2018039203A1 (en) | 2016-08-23 | 2018-03-01 | Oncopep, Inc. | Peptide vaccines and durvalumab for treating multiple myeloma |
| WO2018039205A1 (en) | 2016-08-23 | 2018-03-01 | Oncopep, Inc. | Peptide vaccines and durvalumab for treating breast cancer |
| WO2018064076A1 (en) | 2016-09-27 | 2018-04-05 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules |
| EP3312164A1 (en) | 2014-03-28 | 2018-04-25 | Calitor Sciences, LLC | Substituted heteroaryl compounds and methods of use |
| WO2018078143A1 (en) | 2016-10-28 | 2018-05-03 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Means and methods for determining efficacy of anti-egfr inhibitors in colorectal cancer (crc) therapy |
| US9988376B2 (en) | 2013-07-03 | 2018-06-05 | Glaxosmithkline Intellectual Property Development Limited | Benzothiophene derivatives as estrogen receptor inhibitors |
| US9993514B2 (en) | 2013-07-03 | 2018-06-12 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
| US10000469B2 (en) | 2014-03-25 | 2018-06-19 | Duke University | Heat shock protein 70 (hsp-70) receptor ligands |
| WO2018119183A2 (en) | 2016-12-22 | 2018-06-28 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2018217651A1 (en) | 2017-05-22 | 2018-11-29 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| US10207998B2 (en) | 2016-09-29 | 2019-02-19 | Duke University | Substituted benzimidazole and substituted benzothiazole inhibitors of transforming growth factor-β kinase and methods of use thereof |
| US10206924B2 (en) | 2014-12-15 | 2019-02-19 | The Regents Of The University Of Michigan | Small molecule inhibitors of EGFR and PI3K |
| WO2019051291A1 (en) | 2017-09-08 | 2019-03-14 | Amgen Inc. | Inhibitors of kras g12c and methods of using the same |
| WO2019067328A1 (en) | 2017-09-26 | 2019-04-04 | Cero Therapeutics, Inc. | CHIMERIC ENGINEERING RECEPTOR MOLECULES AND METHODS OF USE |
| WO2019083960A1 (en) | 2017-10-24 | 2019-05-02 | Oncopep, Inc. | PEPTIDE VACCINES AND HDAC INHIBITORS FOR THE TREATMENT OF MULTIPLE MYELOMA |
| WO2019083962A1 (en) | 2017-10-24 | 2019-05-02 | Oncopep, Inc. | PEPTIDE AND PEMBROLIZUMAB VACCINES FOR THE TREATMENT OF BREAST CANCER |
| US10285990B2 (en) | 2015-03-04 | 2019-05-14 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| WO2019099311A1 (en) | 2017-11-19 | 2019-05-23 | Sunshine Lake Pharma Co., Ltd. | Substituted heteroaryl compounds and methods of use |
| WO2019119486A1 (zh) | 2017-12-21 | 2019-06-27 | 中国科学院合肥物质科学研究院 | 一类嘧啶类衍生物激酶抑制剂 |
| WO2019143874A1 (en) | 2018-01-20 | 2019-07-25 | Sunshine Lake Pharma Co., Ltd. | Substituted aminopyrimidine compounds and methods of use |
| US10370342B2 (en) | 2016-09-02 | 2019-08-06 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| US10426753B2 (en) | 2014-04-03 | 2019-10-01 | Invictus Oncology Pvt. Ltd. | Supramolecular combinatorial therapeutics |
| WO2019191340A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Cellular immunotherapy compositions and uses thereof |
| WO2019191334A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
| WO2019191339A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Expression vectors for chimeric engulfment receptors, genetically modified host cells, and uses thereof |
| WO2019213526A1 (en) | 2018-05-04 | 2019-11-07 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2019213516A1 (en) | 2018-05-04 | 2019-11-07 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2019217691A1 (en) | 2018-05-10 | 2019-11-14 | Amgen Inc. | Kras g12c inhibitors for the treatment of cancer |
| WO2019232419A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2019241157A1 (en) | 2018-06-11 | 2019-12-19 | Amgen Inc. | Kras g12c inhibitors for treating cancer |
| WO2020023628A1 (en) | 2018-07-24 | 2020-01-30 | Hygia Pharmaceuticals, Llc | Compounds, derivatives, and analogs for cancer |
| WO2020050890A2 (en) | 2018-06-12 | 2020-03-12 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2020070239A1 (en) | 2018-10-04 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Egfr inhibitors for treating keratodermas |
| US10640499B2 (en) | 2016-09-02 | 2020-05-05 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| WO2020102730A1 (en) | 2018-11-16 | 2020-05-22 | Amgen Inc. | Improved synthesis of key intermediate of kras g12c inhibitor compound |
| WO2020106640A1 (en) | 2018-11-19 | 2020-05-28 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2020106647A2 (en) | 2018-11-19 | 2020-05-28 | Amgen Inc. | Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers |
| WO2020132648A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Kif18a inhibitors |
| WO2020132651A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Kif18a inhibitors |
| WO2020132649A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Heteroaryl amides useful as kif18a inhibitors |
| WO2020132653A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Heteroaryl amides useful as kif18a inhibitors |
| EP3699290A1 (en) | 2014-12-24 | 2020-08-26 | F. Hoffmann-La Roche AG | Therapeutic, diagnostic, and prognostic methods for cancer |
| WO2020180768A1 (en) | 2019-03-01 | 2020-09-10 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
| WO2020180770A1 (en) | 2019-03-01 | 2020-09-10 | Revolution Medicines, Inc. | Bicyclic heterocyclyl compounds and uses thereof |
| WO2021026098A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
| WO2021026099A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
| WO2021026100A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Pyridine derivatives as kif18a inhibitors |
| WO2021026101A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
| US10927083B2 (en) | 2016-09-29 | 2021-02-23 | Duke University | Substituted benzimidazoles as inhibitors of transforming growth factor-β kinase |
| WO2021067875A1 (en) | 2019-10-03 | 2021-04-08 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
| WO2021081212A1 (en) | 2019-10-24 | 2021-04-29 | Amgen Inc. | Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer |
| US10994015B2 (en) | 2016-12-23 | 2021-05-04 | Arvinas Operations, Inc. | EGFR proteolysis targeting chimeric molecules and associated methods of use |
| WO2021091967A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2021091982A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2021092115A1 (en) | 2019-11-08 | 2021-05-14 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
| WO2021091956A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2021097207A1 (en) | 2019-11-14 | 2021-05-20 | Amgen Inc. | Improved synthesis of kras g12c inhibitor compound |
| WO2021097212A1 (en) | 2019-11-14 | 2021-05-20 | Amgen Inc. | Improved synthesis of kras g12c inhibitor compound |
| WO2021097256A1 (en) | 2019-11-14 | 2021-05-20 | Cohbar, Inc. | Cxcr4 antagonist peptides |
| WO2021108683A1 (en) | 2019-11-27 | 2021-06-03 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
| WO2021142026A1 (en) | 2020-01-07 | 2021-07-15 | Revolution Medicines, Inc. | Shp2 inhibitor dosing and methods of treating cancer |
| WO2021185844A1 (en) | 2020-03-16 | 2021-09-23 | Pvac Medical Technologies Ltd | Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof |
| WO2021233534A1 (en) | 2020-05-20 | 2021-11-25 | Pvac Medical Technologies Ltd | Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof |
| WO2021257736A1 (en) | 2020-06-18 | 2021-12-23 | Revolution Medicines, Inc. | Methods for delaying, preventing, and treating acquired resistance to ras inhibitors |
| US11220515B2 (en) | 2018-01-26 | 2022-01-11 | Yale University | Imide-based modulators of proteolysis and associated methods of use |
| US11236091B2 (en) | 2019-05-21 | 2022-02-01 | Amgen Inc. | Solid state forms |
| WO2022029220A1 (en) | 2020-08-05 | 2022-02-10 | Ellipses Pharma Ltd | Treatment of cancer using a cyclodextrin-containing polymer-topoisomerase inhibitor conjugate and a parp inhibitor |
| WO2022036265A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Chimeric tim receptors and uses thereof |
| WO2022036285A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase |
| WO2022036287A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Anti-cd72 chimeric receptors and uses thereof |
| US11261187B2 (en) | 2016-04-22 | 2022-03-01 | Duke University | Compounds and methods for targeting HSP90 |
| WO2022060836A1 (en) | 2020-09-15 | 2022-03-24 | Revolution Medicines, Inc. | Indole derivatives as ras inhibitors in the treatment of cancer |
| WO2022060583A1 (en) | 2020-09-03 | 2022-03-24 | Revolution Medicines, Inc. | Use of sos1 inhibitors to treat malignancies with shp2 mutations |
| US11286257B2 (en) | 2019-06-28 | 2022-03-29 | Gilead Sciences, Inc. | Processes for preparing toll-like receptor modulator compounds |
| WO2022123316A1 (en) | 2020-12-09 | 2022-06-16 | Takeda Pharmaceutical Company Limited | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
| WO2022140427A1 (en) | 2020-12-22 | 2022-06-30 | Qilu Regor Therapeutics Inc. | Sos1 inhibitors and uses thereof |
| US11396509B2 (en) | 2019-04-17 | 2022-07-26 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
| US11426404B2 (en) | 2019-05-14 | 2022-08-30 | Amgen Inc. | Dosing of KRAS inhibitor for treatment of cancers |
| WO2022183072A1 (en) | 2021-02-26 | 2022-09-01 | Kelonia Therapeutics, Inc. | Lymphocyte targeted lentiviral vectors |
| WO2022235864A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2022235870A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Ras inhibitors for the treatment of cancer |
| WO2022235866A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
| WO2023010097A1 (en) | 2021-07-28 | 2023-02-02 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
| US11583531B2 (en) | 2019-04-17 | 2023-02-21 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
| WO2023060253A1 (en) | 2021-10-08 | 2023-04-13 | Revolution Medicines, Inc. | Ras inhibitors |
| US11673876B2 (en) | 2020-12-22 | 2023-06-13 | Mekanistic Therapeutics Llc | Substituted aminobenzyl heteroaryl compounds as EGFR and/or PI3K inhibitors |
| WO2023114954A1 (en) | 2021-12-17 | 2023-06-22 | Genzyme Corporation | Pyrazolopyrazine compounds as shp2 inhibitors |
| EP4227307A1 (en) | 2022-02-11 | 2023-08-16 | Genzyme Corporation | Pyrazolopyrazine compounds as shp2 inhibitors |
| WO2023172940A1 (en) | 2022-03-08 | 2023-09-14 | Revolution Medicines, Inc. | Methods for treating immune refractory lung cancer |
| WO2023240263A1 (en) | 2022-06-10 | 2023-12-14 | Revolution Medicines, Inc. | Macrocyclic ras inhibitors |
| WO2024030441A1 (en) | 2022-08-02 | 2024-02-08 | National University Corporation Hokkaido University | Methods of improving cellular therapy with organelle complexes |
| WO2024081916A1 (en) | 2022-10-14 | 2024-04-18 | Black Diamond Therapeutics, Inc. | Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives |
| US11999964B2 (en) | 2020-08-28 | 2024-06-04 | California Institute Of Technology | Synthetic mammalian signaling circuits for robust cell population control |
| WO2024206858A1 (en) | 2023-03-30 | 2024-10-03 | Revolution Medicines, Inc. | Compositions for inducing ras gtp hydrolysis and uses thereof |
| WO2024211712A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
| WO2024211663A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
| WO2024216016A1 (en) | 2023-04-14 | 2024-10-17 | Revolution Medicines, Inc. | Crystalline forms of a ras inhibitor |
| WO2024216048A1 (en) | 2023-04-14 | 2024-10-17 | Revolution Medicines, Inc. | Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof |
| WO2024229406A1 (en) | 2023-05-04 | 2024-11-07 | Revolution Medicines, Inc. | Combination therapy for a ras related disease or disorder |
| US12194002B2 (en) | 2011-08-17 | 2025-01-14 | Dennis Brown | Compositions and methods to improve the therapeutic benefit of suboptimally administered chemical compounds including substituted hexitols such as dibromodulcitol |
| WO2025034702A1 (en) | 2023-08-07 | 2025-02-13 | Revolution Medicines, Inc. | Rmc-6291 for use in the treatment of ras protein-related disease or disorder |
| US12239711B2 (en) | 2014-04-14 | 2025-03-04 | Arvinas Operations, Inc. | Cereblon ligands and bifunctional compounds comprising the same |
| WO2025080946A2 (en) | 2023-10-12 | 2025-04-17 | Revolution Medicines, Inc. | Ras inhibitors |
| US12312316B2 (en) | 2015-01-20 | 2025-05-27 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
| WO2025137507A1 (en) | 2023-12-22 | 2025-06-26 | Regor Pharmaceuticals, Inc. | Sos1 inhibitors and uses thereof |
| US12359208B2 (en) | 2020-04-15 | 2025-07-15 | California Institute Of Technology | Thermal control of T-cell immunotherapy through molecular and physical actuation |
| WO2025171296A1 (en) | 2024-02-09 | 2025-08-14 | Revolution Medicines, Inc. | Ras inhibitors |
| US12459896B2 (en) | 2022-03-07 | 2025-11-04 | Amgen Inc. | Process for preparing 4-methyl-2-propan-2-yl-pyridine-3-carbonitrile |
| WO2025240847A1 (en) | 2024-05-17 | 2025-11-20 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2025255438A1 (en) | 2024-06-07 | 2025-12-11 | Revolution Medicines, Inc. | Methods of treating a ras protein-related disease or disorder |
Families Citing this family (226)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7772432B2 (en) * | 1991-09-19 | 2010-08-10 | Astrazeneca Ab | Amidobenzamide derivatives which are useful as cytokine inhibitors |
| US7060808B1 (en) * | 1995-06-07 | 2006-06-13 | Imclone Systems Incorporated | Humanized anti-EGF receptor monoclonal antibody |
| GB9603095D0 (en) * | 1996-02-14 | 1996-04-10 | Zeneca Ltd | Quinazoline derivatives |
| AR012634A1 (es) * | 1997-05-02 | 2000-11-08 | Sugen Inc | Compuesto basado en quinazolina, composicion famaceutica que lo comprende, metodo para sintetizarlo, su uso, metodos de modulacion de la funcion deserina/treonina proteinaquinasa con dicho compuesto y metodo in vitro para identificar compuestos que modulan dicha funcion |
| US20030224001A1 (en) * | 1998-03-19 | 2003-12-04 | Goldstein Neil I. | Antibody and antibody fragments for inhibiting the growth of tumors |
| ZA200007412B (en) * | 1998-05-15 | 2002-03-12 | Imclone Systems Inc | Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases. |
| WO2000020402A1 (en) | 1998-10-01 | 2000-04-13 | Astrazeneca Ab | Chemical compounds |
| HUP0201480A3 (en) * | 1999-05-14 | 2009-03-30 | Imclone Systems Inc | Treatment of refractory human tumors with epidermal growth factor receptor antagonists |
| MEP45508A (en) | 1999-06-21 | 2011-02-10 | Boehringer Ingelheim Pharma | Bicyclic heterocycles, medicaments containing these compounds, their use and methods for the production thereof |
| US6521618B2 (en) | 2000-03-28 | 2003-02-18 | Wyeth | 3-cyanoquinolines, 3-cyano-1,6-naphthyridines, and 3-cyano-1,7-naphthyridines as protein kinase inhibitors |
| US6627634B2 (en) * | 2000-04-08 | 2003-09-30 | Boehringer Ingelheim Pharma Kg | Bicyclic heterocycles, pharmaceutical compositions containing them, their use, and processes for preparing them |
| AU2001295002B2 (en) * | 2000-08-09 | 2007-05-31 | Imclone Systems Incorporated | Treatment of hyperproliferative diseases with epidermal growth factor receptor antagonists |
| US7019012B2 (en) * | 2000-12-20 | 2006-03-28 | Boehringer Ingelheim International Pharma Gmbh & Co. Kg | Quinazoline derivatives and pharmaceutical compositions containing them |
| US20080008704A1 (en) * | 2001-03-16 | 2008-01-10 | Mark Rubin | Methods of treating colorectal cancer with anti-epidermal growth factor antibodies |
| GB0126433D0 (en) * | 2001-11-03 | 2002-01-02 | Astrazeneca Ab | Compounds |
| JP4492849B2 (ja) * | 2001-11-19 | 2010-06-30 | インターリューキン ジェネティックス インコーポレイテッド | 転写および炎症性疾患および感染症に対する感受性に影響するインターロイキン−1遺伝子座の機能的多型 |
| CN1627944A (zh) * | 2002-01-17 | 2005-06-15 | 神经能质公司 | 取代的喹唑啉-4-基胺类似物作为辣椒辣素调节剂 |
| TW200813014A (en) * | 2002-03-28 | 2008-03-16 | Astrazeneca Ab | Quinazoline derivatives |
| IL164167A0 (en) * | 2002-03-30 | 2005-12-18 | Boehringer Ingelheim Pharma | 4-(N-phenylamino)-quinazolines/ quinolines as tyrosine kinase inhibitors |
| DE10221018A1 (de) * | 2002-05-11 | 2003-11-27 | Boehringer Ingelheim Pharma | Verwendung von Hemmern der EGFR-vermittelten Signaltransduktion zur Behandlung von gutartiger Prostatahyperplasie (BPH)/Prostatahypertrophie |
| JP4703183B2 (ja) | 2002-07-15 | 2011-06-15 | シンフォニー エボルーション, インク. | 受容体型キナーゼモジュレーターおよびその使用方法 |
| JP2006501269A (ja) * | 2002-09-16 | 2006-01-12 | アルコン マニュファクチャリング,リミティド | 血管新生を処置するためのpdeivインヒビターの使用 |
| JP2006515847A (ja) * | 2002-12-13 | 2006-06-08 | ニューロジェン・コーポレーション | カプサイシン受容体調節剤としてのカルボン酸、ホスフェート又はホスホネート置換キナゾリン−4−イルアミン類縁体 |
| US7223749B2 (en) * | 2003-02-20 | 2007-05-29 | Boehringer Ingelheim International Gmbh | Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them |
| EP1622941A2 (en) * | 2003-03-20 | 2006-02-08 | ImClone Systems Incorporated | Method of producing an antibody to epidermal growth factor receptor |
| BRPI0409580A (pt) * | 2003-04-16 | 2006-04-18 | Hoffmann La Roche | compostos de quinazolina |
| GB0309009D0 (en) * | 2003-04-22 | 2003-05-28 | Astrazeneca Ab | Quinazoline derivatives |
| CA2536964A1 (en) * | 2003-04-25 | 2004-11-11 | Ortho-Mcneil Pharmaceutical, Inc. | C-fms kinase inhibitors |
| US7329664B2 (en) * | 2003-07-16 | 2008-02-12 | Neurogen Corporation | Substituted (7-pyridyl-4-phenylamino-quinazolin-2-yl)-methanol analogues |
| AU2004270740A1 (en) * | 2003-09-09 | 2005-03-17 | Neurogen Corporation | 4 - heterobicyclyamino - substituted quinazolines and analogues therof as capsaicin - antagonists |
| PL1667992T3 (pl) * | 2003-09-19 | 2007-05-31 | Astrazeneca Ab | Pochodne chinazoliny |
| WO2005028470A1 (en) * | 2003-09-19 | 2005-03-31 | Astrazeneca Ab | Quinazoline derivatives |
| US20070043010A1 (en) * | 2003-09-25 | 2007-02-22 | Astrazeneca Uk Limited | Quinazoline derivatives |
| ES2651730T3 (es) * | 2003-09-26 | 2018-01-29 | Exelixis, Inc. | Moduladores c-Met y métodos de uso |
| US7456189B2 (en) * | 2003-09-30 | 2008-11-25 | Boehringer Ingelheim International Gmbh | Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation |
| EP1713484A2 (en) * | 2004-01-23 | 2006-10-25 | Amgen Inc. | Compounds and methods of use |
| EP1711495A2 (en) | 2004-01-23 | 2006-10-18 | Amgen Inc. | Quinoline, quinazoline, pyridine and pyrimidine counds and their use in the treatment of inflammation, angiogenesis and cancer |
| JP2008513426A (ja) * | 2004-09-20 | 2008-05-01 | バイオリポックス エービー | 炎症の治療に有用なピラゾール化合物 |
| US20070054916A1 (en) * | 2004-10-01 | 2007-03-08 | Amgen Inc. | Aryl nitrogen-containing bicyclic compounds and methods of use |
| MX2007006230A (es) * | 2004-11-30 | 2007-07-25 | Amgen Inc | Quinolinas y analogos de quinazolinas y su uso como medicamentos para tratar cancer. |
| US20090155247A1 (en) * | 2005-02-18 | 2009-06-18 | Ashkenazi Avi J | Methods of Using Death Receptor Agonists and EGFR Inhibitors |
| US20060188498A1 (en) * | 2005-02-18 | 2006-08-24 | Genentech, Inc. | Methods of using death receptor agonists and EGFR inhibitors |
| CA2599328C (en) | 2005-02-23 | 2012-04-17 | Shionogi & Co., Ltd. | Quinazoline derivative having tyrosine kinase inhibitory activity |
| MX2007010399A (es) * | 2005-02-26 | 2007-09-25 | Astrazeneca Ab | Derivados de quinazolina en la forma de inhibidores de cinasa de tirosina. |
| JO2787B1 (en) * | 2005-04-27 | 2014-03-15 | امجين إنك, | Alternative amide derivatives and methods of use |
| GB0508715D0 (en) * | 2005-04-29 | 2005-06-08 | Astrazeneca Ab | Chemical compounds |
| DE112005003498T5 (de) * | 2005-05-12 | 2008-03-27 | Wenlin Huang | Herstellungsverfahren für Chinazolinderivate und Anwendung zur Herstellung zur Behandlung von Tumorerkrankungen |
| CN101175732B (zh) * | 2005-05-12 | 2010-06-16 | 黄文林 | 一种喹唑啉衍生物的制备方法及用作制备治疗肿瘤疾病药物的应用 |
| CN101175734B (zh) * | 2005-05-12 | 2011-10-12 | 黄文林 | 一种作为抗肿瘤药物的喹唑啉衍生物及其制备方法 |
| CN101175733A (zh) * | 2005-05-12 | 2008-05-07 | 黄文林 | 一种酪氨酸激酶抑制剂、其制备方法及作为抗肿瘤药物的应用 |
| US20070049592A1 (en) * | 2005-08-22 | 2007-03-01 | Geuns-Meyer Stephanie D | Bis-aryl urea compounds and methods of use |
| TW200800911A (en) * | 2005-10-20 | 2008-01-01 | Biolipox Ab | Pyrazoles useful in the treatment of inflammation |
| TW200732320A (en) * | 2005-10-31 | 2007-09-01 | Biolipox Ab | Pyrazoles useful in the treatment of inflammation |
| EP1943234A1 (en) * | 2005-10-31 | 2008-07-16 | Biolipox AB | Triazole compounds as lipoxygenase inhibitors |
| WO2007052000A1 (en) * | 2005-11-01 | 2007-05-10 | Biolipox Ab | Pyrazoles useful in the treatment of inflammation |
| EP3173084B1 (en) | 2005-11-11 | 2019-10-23 | Boehringer Ingelheim International GmbH | Quinazoline derivatives for the treatment of cancer diseases |
| DE602006009968D1 (de) | 2005-11-15 | 2009-12-03 | Array Biopharma Inc | N4-phenyl-chinazolin-4-aminderivate und verwandte verbindungen als inhibitoren der erbb-typ-i-rezeptortyrosinkinase zur behandlung hyperproliferativer krankheiten |
| EP1994024A2 (en) * | 2006-03-02 | 2008-11-26 | AstraZeneca AB | Quinoline derivatives |
| US20070231298A1 (en) * | 2006-03-31 | 2007-10-04 | Cell Genesys, Inc. | Cytokine-expressing cancer immunotherapy combinations |
| KR100929146B1 (ko) * | 2006-06-28 | 2009-12-01 | 한미약품 주식회사 | 암세포 성장 억제 효과를 갖는 퀴나졸린 유도체 |
| WO2008002039A1 (en) * | 2006-06-28 | 2008-01-03 | Hanmi Pharm. Co., Ltd. | Quinazoline derivatives for inhibiting the growth of cancer cell |
| ES2372217T3 (es) | 2006-09-12 | 2012-01-17 | Genentech, Inc. | Procedimientos y composiciones para el diagnóstico y tratamiento del cáncer de pulmón utilizando el gen de pdgfra, kit o kdr como marcador genético. |
| SI2068880T1 (sl) * | 2006-09-18 | 2012-08-31 | Boehringer Ingelheim Int | Postopek za zdravljenje raka, ki vsebuje mutacije EGFR |
| US8236823B2 (en) * | 2006-10-27 | 2012-08-07 | Amgen Inc. | Multi-cyclic compounds and methods of use |
| EP1921070A1 (de) * | 2006-11-10 | 2008-05-14 | Boehringer Ingelheim Pharma GmbH & Co. KG | Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstelllung |
| WO2008066498A1 (en) * | 2006-12-01 | 2008-06-05 | Agency For Science, Technology And Research | Cancer-related protein kinases |
| CA2703257C (en) * | 2007-10-29 | 2013-02-19 | Amgen Inc. | Benzomorpholine derivatives and methods of use |
| WO2009067543A2 (en) * | 2007-11-19 | 2009-05-28 | The Regents Of The University Of Colorado | Treatment of histone deacetylase mediated disorders |
| TWI472339B (zh) | 2008-01-30 | 2015-02-11 | Genentech Inc | 包含結合至her2結構域ii之抗體及其酸性變異體的組合物 |
| WO2009098061A1 (de) * | 2008-02-07 | 2009-08-13 | Boehringer Ingelheim International Gmbh | Spirocyclische heterocyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung |
| US8648191B2 (en) * | 2008-08-08 | 2014-02-11 | Boehringer Ingelheim International Gmbh | Cyclohexyloxy substituted heterocycles, pharmaceutical compositions containing these compounds and processes for preparing them |
| CA2758030C (en) | 2009-01-16 | 2019-01-08 | Exelixis, Inc. | Malate salt of n-(4-{[6,7-bis(methyloxy)quin0lin-4-yl]oxy}phenyl)-n'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms thereof for the treatment of cancer |
| AR075896A1 (es) | 2009-03-20 | 2011-05-04 | Genentech Inc | Anticuerpos anti-her (factor de crecimiento epidermico) |
| HRP20191005T1 (hr) | 2009-07-06 | 2019-08-23 | Boehringer Ingelheim International Gmbh | Postupak sušenja bibw2992, njegovih soli i čvrstih farmaceutskih formulacija koje sadrže taj djelatni sastojak |
| UA108618C2 (uk) | 2009-08-07 | 2015-05-25 | Застосування c-met-модуляторів в комбінації з темозоломідом та/або променевою терапією для лікування раку | |
| CA2780319A1 (en) | 2009-11-12 | 2011-05-19 | Genentech, Inc. | A method of promoting dendritic spine density |
| KR20140015162A (ko) | 2010-01-12 | 2014-02-06 | 에프. 호프만-라 로슈 아게 | 트라이사이클릭 헤테로사이클릭 화합물, 조성물 및 이의 사용 방법 |
| SG183333A1 (en) | 2010-02-18 | 2012-09-27 | Genentech Inc | Neuregulin antagonists and use thereof in treating cancer |
| JP2013522267A (ja) | 2010-03-17 | 2013-06-13 | エフ.ホフマン−ラ ロシュ アーゲー | イミダゾピリジン化合物、組成物、および使用法 |
| KR20130058672A (ko) | 2010-04-16 | 2013-06-04 | 제넨테크, 인크. | PI3K/AKT 키나제 경로 억제제 효능에 대한 예측 바이오마커로서의 FOXO3a |
| JP2013537966A (ja) | 2010-08-31 | 2013-10-07 | ジェネンテック, インコーポレイテッド | バイオマーカー及び治療の方法 |
| CN103209695A (zh) | 2010-09-15 | 2013-07-17 | 弗·哈夫曼-拉罗切有限公司 | 氮杂苯并噻唑化合物、组合物及应用方法 |
| JP2013542966A (ja) | 2010-11-19 | 2013-11-28 | エフ.ホフマン−ラ ロシュ アーゲー | ピラゾロピリジンならびにtyk2阻害剤としてのピラゾロピリジン及びそれらの使用 |
| CN102485735B (zh) * | 2010-12-02 | 2014-09-24 | 东莞南方医大代谢医学研发有限公司 | 6-果糖氨-4-芳胺基喹唑啉衍生物及其用途 |
| WO2012085176A1 (en) | 2010-12-23 | 2012-06-28 | F. Hoffmann-La Roche Ag | Tricyclic pyrazinone compounds, compositions and methods of use thereof as janus kinase inhibitors |
| CN102153519B (zh) * | 2011-02-18 | 2012-10-24 | 上海长林化学科技有限公司 | 一类喹唑啉衍生物的制备方法 |
| WO2013007765A1 (en) | 2011-07-13 | 2013-01-17 | F. Hoffmann-La Roche Ag | Fused tricyclic compounds for use as inhibitors of janus kinases |
| WO2013007768A1 (en) | 2011-07-13 | 2013-01-17 | F. Hoffmann-La Roche Ag | Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors |
| HK1199255A1 (en) | 2011-08-12 | 2015-06-26 | F. Hoffmann-La Roche Ag | Indazole compounds, compositions and methods of use |
| CA2842375A1 (en) | 2011-08-17 | 2013-02-21 | Erica Jackson | Neuregulin antibodies and uses thereof |
| WO2013041539A1 (en) | 2011-09-20 | 2013-03-28 | F. Hoffmann-La Roche Ag | Imidazopyridine compounds, compositions and methods of use |
| CN103086984A (zh) * | 2011-11-03 | 2013-05-08 | 南京大学 | 一类4-苯氨基喹唑啉类衍生物及其制备方法与用途 |
| EP2785864A2 (en) | 2011-11-30 | 2014-10-08 | F. Hoffmann-La Roche AG | Erbb3 mutations in cancer |
| TWI557109B (zh) * | 2011-12-29 | 2016-11-11 | 財團法人生物技術開發中心 | 喹唑啉化合物作為激酶抑制劑及其應用 |
| CN103360382B (zh) * | 2012-03-26 | 2016-04-27 | 中国科学院福建物质结构研究所 | 喹唑啉衍生物及其用途 |
| CA2865082A1 (en) | 2012-03-27 | 2013-10-03 | Genentech, Inc. | Diagnosis and treatments relating to her3 inhibitors |
| CN102924387B (zh) * | 2012-06-13 | 2015-07-01 | 黄唯燕 | 4-(3-氯-4-甲氧基苯胺基)-6-(3,4-取代苯基)喹唑啉及盐和制法与应用 |
| CN102702179A (zh) * | 2012-06-13 | 2012-10-03 | 华南理工大学 | 4-(3-氯-4-甲氧基苯胺基)-6-(呋喃-2-基)喹唑啉类化合物或其药学上可接受的盐和制备方法与应用 |
| CN102702116B (zh) * | 2012-06-13 | 2014-12-31 | 华南理工大学 | 4-(3-氯-4-甲氧基苯胺基)-6-(3-胺基苯基)喹唑啉类化合物或其药学上可接受的盐和制备方法与应用 |
| WO2014128235A1 (en) | 2013-02-22 | 2014-08-28 | F. Hoffmann-La Roche Ag | Methods of treating cancer and preventing drug resistance |
| HK1213180A1 (zh) | 2013-03-06 | 2016-06-30 | 豪夫迈‧罗氏有限公司 | 治疗和预防癌症药物抗性的方法 |
| US10035801B2 (en) | 2013-03-13 | 2018-07-31 | Genentech, Inc. | Pyrazolo compounds and uses thereof |
| JP2016515132A (ja) | 2013-03-14 | 2016-05-26 | ジェネンテック, インコーポレイテッド | Mek阻害剤化合物のher3/egfr阻害剤化合物との組み合わせ及び使用方法 |
| HK1220916A1 (zh) | 2013-03-14 | 2017-05-19 | 基因泰克公司 | 治疗癌症和预防癌症药物抗性的方法 |
| RU2015143437A (ru) | 2013-03-15 | 2017-04-27 | Дженентек, Инк. | Способы лечения рака и предотвращения устойчивости к лекарственным препаратам для лечения рака |
| CA2922925A1 (en) | 2013-09-05 | 2015-03-12 | Genentech, Inc. | Antiproliferative compounds |
| AR097894A1 (es) | 2013-10-03 | 2016-04-20 | Hoffmann La Roche | Inhibidores terapéuticos de cdk8 o uso de los mismos |
| WO2015058132A2 (en) | 2013-10-18 | 2015-04-23 | Genentech, Inc. | Anti-rspo antibodies and methods of use |
| FI3083686T4 (fi) | 2013-12-17 | 2023-05-09 | Menetelmiä syöpien hoitamiseksi käyttäen pd-1-akselia sitovia antagonisteja ja taksaaneja | |
| BR112016013963A2 (pt) | 2013-12-17 | 2017-10-10 | Genentech Inc | terapia de combinação compreendendo agonistas de ligação de ox40 e antagonistas de ligação do eixo de pd-1 |
| TWI624461B (zh) * | 2013-12-19 | 2018-05-21 | 財團法人生物技術開發中心 | 喹唑啉化合物,其製備方法及用途 |
| US9382331B2 (en) | 2013-12-27 | 2016-07-05 | Development Center For Biotechnology | Alpha-enolase specific antibodies and methods of uses in cancer therapy |
| US9242965B2 (en) | 2013-12-31 | 2016-01-26 | Boehringer Ingelheim International Gmbh | Process for the manufacture of (E)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors |
| CN107002119A (zh) | 2014-03-24 | 2017-08-01 | 豪夫迈·罗氏有限公司 | 使用c‑met拮抗剂的癌症治疗及前者与hgf表达的关联 |
| JP6588461B2 (ja) | 2014-03-31 | 2019-10-09 | ジェネンテック, インコーポレイテッド | 抗血管新生剤及びox40結合アゴニストを含む併用療法 |
| PE20161571A1 (es) | 2014-03-31 | 2017-02-07 | Genentech Inc | Anticuerpos anti-ox40 y metodos de uso |
| CN107074823B (zh) | 2014-09-05 | 2021-05-04 | 基因泰克公司 | 治疗性化合物及其用途 |
| CN107073125A (zh) | 2014-09-19 | 2017-08-18 | 基因泰克公司 | Cbp/ep300和bet抑制剂用于治疗癌症的用途 |
| EP3204379B1 (en) | 2014-10-10 | 2019-03-06 | Genentech, Inc. | Pyrrolidine amide compounds as histone demethylase inhibitors |
| CA2966523A1 (en) | 2014-11-03 | 2016-05-12 | Genentech, Inc. | Assays for detecting t cell immune subsets and methods of use thereof |
| SG11201703521UA (en) | 2014-11-03 | 2017-05-30 | Genentech Inc | Methods and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment |
| KR20170072343A (ko) | 2014-11-06 | 2017-06-26 | 제넨테크, 인크. | Ox40 결합 효능제 및 tigit 억제제를 포함하는 병용 요법 |
| MA40943A (fr) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | Pyrrolopyridines substituées utilisées en tant qu'inhibiteurs de bromodomaines |
| MA40940A (fr) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | Pyrrolopyridines substituées utilisées en tant qu'inhibiteurs de bromodomaines |
| EP3218376B1 (en) | 2014-11-10 | 2019-12-25 | Genentech, Inc. | Bromodomain inhibitors and uses thereof |
| EP3221360A1 (en) | 2014-11-17 | 2017-09-27 | F. Hoffmann-La Roche AG | Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists |
| JP6771464B2 (ja) | 2014-11-27 | 2020-10-21 | ジェネンテック, インコーポレイテッド | Cbpおよび/またはep300インヒビターとしての、4,5,6,7−テトラヒドロ−1h−ピラゾロ[4,3−c]ピリジン−3−アミン化合物 |
| HK1243141A1 (zh) | 2014-12-23 | 2018-07-06 | 豪夫迈.罗氏有限公司 | 用於治疗和诊断化学疗法抗性癌症的组合物和方法 |
| JP2018503373A (ja) | 2014-12-30 | 2018-02-08 | ジェネンテック, インコーポレイテッド | がんの予後診断及び治療のための方法及び組成物 |
| JP6659703B2 (ja) | 2015-01-09 | 2020-03-04 | ジェネンテック, インコーポレイテッド | ピリダジノン誘導体および癌の処置におけるそれらの使用 |
| WO2016112251A1 (en) | 2015-01-09 | 2016-07-14 | Genentech, Inc. | 4,5-dihydroimidazole derivatives and their use as histone demethylase (kdm2b) inhibitors |
| JP6855379B2 (ja) | 2015-01-09 | 2021-04-07 | ジェネンテック, インコーポレイテッド | 癌の処置のためのヒストンデメチラーゼkdm2bのインヒビターとしての(ピペリジン−3−イル)(ナフタレン−2−イル)メタノン誘導体および関連化合物 |
| JP6709792B2 (ja) | 2015-01-29 | 2020-06-17 | ジェネンテック, インコーポレイテッド | 治療用化合物およびその使用 |
| CN107438593B (zh) | 2015-01-30 | 2020-10-30 | 基因泰克公司 | 治疗化合物及其用途 |
| MA41598A (fr) | 2015-02-25 | 2018-01-02 | Constellation Pharmaceuticals Inc | Composés thérapeutiques de pyridazine et leurs utilisations |
| KR20180002653A (ko) | 2015-04-07 | 2018-01-08 | 제넨테크, 인크. | 효능작용 활성을 갖는 항원 결합 복합체 및 사용 방법 |
| RS61152B2 (sr) | 2015-05-12 | 2024-06-28 | Hoffmann La Roche | Terapeutski i dijagnostički postupci za lečenje raka |
| HK1248773A1 (zh) | 2015-05-29 | 2018-10-19 | 豪夫迈‧罗氏有限公司 | 用於癌症的治疗和诊断方法 |
| JP2018521019A (ja) | 2015-06-08 | 2018-08-02 | ジェネンテック, インコーポレイテッド | 抗ox40抗体を使用して癌を治療する方法 |
| JP2018518483A (ja) | 2015-06-08 | 2018-07-12 | ジェネンテック, インコーポレイテッド | 抗ox40抗体及びpd−1軸結合アンタゴニストを使用して癌を治療する方法 |
| IL256080B2 (en) | 2015-06-17 | 2025-06-01 | Genentech Inc | Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes |
| JP6946270B2 (ja) | 2015-08-26 | 2021-10-06 | ファンダシオン デル セクトル プーブリコ エスタタル セントロ ナショナル デ インベスティゲーショネス オンコロジカス カルロス 3(エフ エス ピー クニオ) | タンパク質キナーゼ阻害剤としての縮合三環化合物 |
| KR20230125094A (ko) | 2015-09-25 | 2023-08-28 | 제넨테크, 인크. | 항-tigit 항체 및 이의 이용 방법 |
| HRP20220227T1 (hr) | 2015-12-16 | 2022-04-29 | Genentech, Inc. | Postupak priprave tricikličnih spojeva inhibitora p13k i postupci upotrebe navedenih spojeva u liječenju raka |
| ES2837428T3 (es) | 2016-01-08 | 2021-06-30 | Hoffmann La Roche | Procedimientos de tratamiento de cánceres positivos para CEA usando antagonistas de unión al eje PD-1 y anticuerpos biespecíficos anti-CEA/anti-CD3 |
| KR102500659B1 (ko) | 2016-02-29 | 2023-02-16 | 제넨테크, 인크. | 암에 대한 치료 및 진단 방법 |
| US20170319688A1 (en) | 2016-04-14 | 2017-11-09 | Genentech, Inc. | Anti-rspo3 antibodies and methods of use |
| CA3020718A1 (en) | 2016-04-15 | 2017-10-19 | Genentech, Inc. | Methods for monitoring and treating cancer |
| WO2017180581A1 (en) | 2016-04-15 | 2017-10-19 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
| JP7503887B2 (ja) | 2016-04-15 | 2024-06-21 | ジェネンテック, インコーポレイテッド | がんを監視及び治療するための方法 |
| WO2017205536A2 (en) | 2016-05-24 | 2017-11-30 | Genentech, Inc. | Therapeutic compounds and uses thereof |
| WO2017205538A1 (en) | 2016-05-24 | 2017-11-30 | Genentech, Inc. | Pyrazolopyridine derivatives for the treatment of cancer |
| CN109312407A (zh) | 2016-06-08 | 2019-02-05 | 豪夫迈·罗氏有限公司 | 用于癌症的诊断和治疗方法 |
| EP3478674B1 (en) * | 2016-06-30 | 2020-05-13 | Gilead Sciences, Inc. | 4,6-diaminoquinazolines as cot modulators and methods of use thereof |
| JP2019530434A (ja) | 2016-08-05 | 2019-10-24 | ジェネンテック, インコーポレイテッド | アゴニスト活性を有する多価及び多重エピトープ抗体ならびに使用方法 |
| JP7250674B2 (ja) | 2016-08-08 | 2023-04-03 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | がんの治療及び診断方法 |
| MX2019003934A (es) | 2016-10-06 | 2019-07-10 | Genentech Inc | Métodos terapéuticos y de diagnóstico para el cáncer. |
| JP2019535250A (ja) | 2016-10-29 | 2019-12-12 | ジェネンテック, インコーポレイテッド | 抗mic抗体及び使用方法 |
| US10202357B2 (en) | 2016-11-09 | 2019-02-12 | RenoTarget Therapeutics, Inc. | Class of quinolone heterocyclic aromatic molecules for cancer treatment |
| ES2953595T3 (es) | 2017-03-01 | 2023-11-14 | Hoffmann La Roche | Procedimientos diagnósticos y terapéuticos para el cáncer |
| BR112019021411A2 (pt) | 2017-04-13 | 2020-05-05 | Hoffmann La Roche | métodos para tratar ou retardar a progressão do câncer e para melhorar a função, usos de um imunoconjugado, de um agonista, de um antagonista, composições, kit e invenção |
| IL271888B2 (en) | 2017-07-21 | 2024-09-01 | Genentech Inc | Therapeutic and diagnostic methods for cancer |
| CN111295394B (zh) | 2017-08-11 | 2024-06-11 | 豪夫迈·罗氏有限公司 | 抗cd8抗体及其用途 |
| KR102811888B1 (ko) | 2017-09-08 | 2025-05-27 | 에프. 호프만-라 로슈 아게 | 암의 진단 및 치료 방법 |
| US11369608B2 (en) | 2017-10-27 | 2022-06-28 | University Of Virginia Patent Foundation | Compounds and methods for regulating, limiting, or inhibiting AVIL expression |
| CA3077664A1 (en) | 2017-11-06 | 2019-05-09 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
| AU2019207535B2 (en) | 2018-01-15 | 2021-12-23 | Epiaxis Therapeutics Pty Ltd | Agents and methods for predicting response to therapy |
| CA3092108A1 (en) | 2018-02-26 | 2019-08-29 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
| JP2021524744A (ja) | 2018-05-21 | 2021-09-16 | ナノストリング テクノロジーズ,インコーポレイティド | 分子遺伝子シグネチャーとその使用方法 |
| AU2019288728A1 (en) | 2018-06-23 | 2021-01-14 | Genentech, Inc. | Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor |
| TW202011991A (zh) | 2018-07-18 | 2020-04-01 | 美商建南德克公司 | 用pd-1軸結合拮抗劑、抗代謝劑及鉑劑治療肺癌之方法 |
| TW202024023A (zh) | 2018-09-03 | 2020-07-01 | 瑞士商赫孚孟拉羅股份公司 | 治療性化合物及其使用方法 |
| CN112955747A (zh) | 2018-09-19 | 2021-06-11 | 豪夫迈·罗氏有限公司 | 膀胱癌的治疗和诊断方法 |
| ES2955032T3 (es) | 2018-09-21 | 2023-11-28 | Hoffmann La Roche | Métodos de diagnóstico para el cáncer de mama triple negativo |
| AU2019362972A1 (en) | 2018-10-17 | 2021-05-20 | The University Of Queensland | Epigenetic biomarker and uses therefor |
| AU2019361983A1 (en) | 2018-10-18 | 2021-05-20 | Genentech, Inc. | Diagnostic and therapeutic methods for sarcomatoid kidney cancer |
| EP3898626A1 (en) | 2018-12-19 | 2021-10-27 | Array Biopharma, Inc. | Substituted pyrazolo[1,5-a]pyridine compounds as inhibitors of fgfr tyrosine kinases |
| JP2022515197A (ja) | 2018-12-19 | 2022-02-17 | アレイ バイオファーマ インコーポレイテッド | がんを治療するためのfgfr阻害剤としての7-((3,5-ジメトキシフェニル)アミノ)キノキサリン誘導体 |
| EP3921443A1 (en) | 2019-02-08 | 2021-12-15 | F. Hoffmann-La Roche AG | Diagnostic and therapeutic methods for cancer |
| JP2022521773A (ja) | 2019-02-27 | 2022-04-12 | ジェネンテック, インコーポレイテッド | 抗tigit抗体と抗cd20抗体又は抗cd38抗体とによる処置のための投薬 |
| CA3131268A1 (en) | 2019-02-27 | 2020-09-03 | Epiaxis Therapeutics Pty Ltd | Methods and agents for assessing t-cell function and predicting response to therapy |
| WO2020223233A1 (en) | 2019-04-30 | 2020-11-05 | Genentech, Inc. | Prognostic and therapeutic methods for colorectal cancer |
| KR20220004744A (ko) | 2019-05-03 | 2022-01-11 | 제넨테크, 인크. | 항-pd-l1 항체를 이용하여 암을 치료하는 방법 |
| CN112300279A (zh) | 2019-07-26 | 2021-02-02 | 上海复宏汉霖生物技术股份有限公司 | 针对抗cd73抗体和变体的方法和组合物 |
| EP4025608A1 (en) | 2019-09-04 | 2022-07-13 | F. Hoffmann-La Roche AG | Cd8 binding agents and uses thereof |
| CR20220127A (es) | 2019-09-27 | 2022-05-27 | Genentech Inc | Administración de dosis para tratamiento con anticuerpos antagonistas anti-tigit y anti-pd-l1 |
| CN114728936A (zh) | 2019-10-29 | 2022-07-08 | 豪夫迈·罗氏有限公司 | 用于治疗癌症的双功能化合物 |
| US20220389103A1 (en) | 2019-11-06 | 2022-12-08 | Genentech, Inc. | Diagnostic and therapeutic methods for treatment of hematologic cancers |
| WO2021097110A1 (en) | 2019-11-13 | 2021-05-20 | Genentech, Inc. | Therapeutic compounds and methods of use |
| KR20220113790A (ko) | 2019-12-13 | 2022-08-16 | 제넨테크, 인크. | 항-ly6g6d 항체 및 사용 방법 |
| WO2021127404A1 (en) | 2019-12-20 | 2021-06-24 | Erasca, Inc. | Tricyclic pyridones and pyrimidones |
| WO2021154761A1 (en) | 2020-01-27 | 2021-08-05 | Genentech, Inc. | Methods for treatment of cancer with an anti-tigit antagonist antibody |
| WO2021194481A1 (en) | 2020-03-24 | 2021-09-30 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
| WO2021177980A1 (en) | 2020-03-06 | 2021-09-10 | Genentech, Inc. | Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist |
| WO2021202959A1 (en) | 2020-04-03 | 2021-10-07 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
| EP4143345A1 (en) | 2020-04-28 | 2023-03-08 | Genentech, Inc. | Methods and compositions for non-small cell lung cancer immunotherapy |
| CA3181820A1 (en) | 2020-06-16 | 2021-12-23 | Genentech, Inc. | Methods and compositions for treating triple-negative breast cancer |
| WO2021257124A1 (en) | 2020-06-18 | 2021-12-23 | Genentech, Inc. | Treatment with anti-tigit antibodies and pd-1 axis binding antagonists |
| US11787775B2 (en) | 2020-07-24 | 2023-10-17 | Genentech, Inc. | Therapeutic compounds and methods of use |
| WO2022031749A1 (en) | 2020-08-03 | 2022-02-10 | Genentech, Inc. | Diagnostic and therapeutic methods for lymphoma |
| EP4196612A1 (en) | 2020-08-12 | 2023-06-21 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
| MX2023003338A (es) | 2020-09-23 | 2023-06-14 | Erasca Inc | Piridonas y pirimidonas tricíclicas. |
| JP2023544407A (ja) | 2020-10-05 | 2023-10-23 | ジェネンテック, インコーポレイテッド | 抗FcRH5/抗CD3二重特異性抗体による処置のための投与 |
| US20230107642A1 (en) | 2020-12-18 | 2023-04-06 | Erasca, Inc. | Tricyclic pyridones and pyrimidones |
| WO2022171745A1 (en) | 2021-02-12 | 2022-08-18 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydroazepine derivatives for the treatment of cancer |
| KR20240026948A (ko) | 2021-05-25 | 2024-02-29 | 에라스카, 아이엔씨. | 황 함유 헤테로방향족 트리사이클릭 kras 억제제 |
| US20240293558A1 (en) | 2021-06-16 | 2024-09-05 | Erasca, Inc. | Kras inhibitor conjugates |
| EP4384522A1 (en) | 2021-08-10 | 2024-06-19 | Erasca, Inc. | Selective kras inhibitors |
| JP2024541508A (ja) | 2021-11-24 | 2024-11-08 | ジェネンテック, インコーポレイテッド | 治療用インダゾール化合物およびがんの治療における使用方法 |
| US12275745B2 (en) | 2021-11-24 | 2025-04-15 | Genentech, Inc. | Therapeutic compounds and methods of use |
| WO2023191816A1 (en) | 2022-04-01 | 2023-10-05 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
| CA3251472A1 (en) | 2022-05-11 | 2023-11-16 | Genentech, Inc. | DOSAGE FOR TREATMENT WITH ANTI-FCRH5/ANTI-CD3 BISPECIFIC ANTIBODIES |
| KR20250022049A (ko) | 2022-06-07 | 2025-02-14 | 제넨테크, 인크. | 항-pd-l1 길항제 및 항-tigit 길항제 항체를 포함하는, 폐암 치료의 효율을 결정하는 방법 |
| CN119585308A (zh) | 2022-07-13 | 2025-03-07 | 基因泰克公司 | 针对用抗fcrh5/抗cd3双特异性抗体进行的治疗的给药 |
| EP4558524A1 (en) | 2022-07-19 | 2025-05-28 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
| KR20250048020A (ko) | 2022-08-11 | 2025-04-07 | 에프. 호프만-라 로슈 아게 | 바이시클릭 테트라히드로티아제핀 유도체 |
| MA71727A (fr) | 2022-08-11 | 2025-05-30 | F. Hoffmann-La Roche Ag | Dérivés bicycliques de tétrahydrothiazépine |
| TW202417001A (zh) | 2022-08-11 | 2024-05-01 | 瑞士商赫孚孟拉羅股份公司 | 雙環四氫吖呯衍生物 |
| TW202417439A (zh) | 2022-08-11 | 2024-05-01 | 瑞士商赫孚孟拉羅股份公司 | 雙環四氫噻吖呯衍生物 |
| WO2024085242A2 (en) | 2022-10-21 | 2024-04-25 | Kawasaki Institute Of Industrial Promotion | Non-fouling or super stealth vesicle |
| WO2024091991A1 (en) | 2022-10-25 | 2024-05-02 | Genentech, Inc. | Therapeutic and diagnostic methods for multiple myeloma |
| WO2024173842A1 (en) | 2023-02-17 | 2024-08-22 | Erasca, Inc. | Kras inhibitors |
| AU2024270495A1 (en) | 2023-05-05 | 2025-10-09 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
| WO2024254455A1 (en) | 2023-06-08 | 2024-12-12 | Genentech, Inc. | Macrophage signatures for diagnostic and therapeutic methods for lymphoma |
| WO2025024257A1 (en) | 2023-07-21 | 2025-01-30 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
| WO2025049277A1 (en) | 2023-08-25 | 2025-03-06 | Genentech, Inc. | Methods and compositions for treating non-small cell lung cancer comprising an anti-tigit antagonist antibody and a pd-1 axis binding antagonist |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1992020642A1 (en) * | 1991-05-10 | 1992-11-26 | Rhone-Poulenc Rorer International (Holdings) Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
| EP0520722A1 (en) * | 1991-06-28 | 1992-12-30 | Zeneca Limited | Therapeutic preparations containing quinazoline derivatives |
| EP0566226A1 (en) * | 1992-01-20 | 1993-10-20 | Zeneca Limited | Quinazoline derivatives |
| EP0602851A1 (en) * | 1992-12-10 | 1994-06-22 | Zeneca Limited | Quinazoline derivatives |
| EP0635507A1 (en) * | 1993-07-19 | 1995-01-25 | Zeneca Limited | Tricyclic derivatives and their use as anti-cancer agents |
| EP0635498A1 (en) * | 1993-07-19 | 1995-01-25 | Zeneca Limited | Quinazoline derivatives and their use as anti-cancer agents |
| WO1996016960A1 (en) * | 1994-11-30 | 1996-06-06 | Zeneca Limited | Quinazoline derivatives |
Family Cites Families (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3266990A (en) * | 1963-09-24 | 1966-08-16 | Warner Lambert Pharmaceutical | Derivatives of quinazoline |
| DE1952867U (de) * | 1966-09-06 | 1967-01-05 | Robert Wolff Metalllwarenfabri | Gehaeuse aus isolierstoff zur aufnahme von schalter, fassungen und kabelverbindungen. |
| JPS5538325A (en) * | 1978-09-11 | 1980-03-17 | Sankyo Co Ltd | 4-anilinoquinazoline derivative and its preparation |
| US4343940A (en) * | 1979-02-13 | 1982-08-10 | Mead Johnson & Company | Anti-tumor quinazoline compounds |
| GB2160201B (en) * | 1984-06-14 | 1988-05-11 | Wyeth John & Brother Ltd | Quinazoline and cinnoline derivatives |
| EP0326307B1 (en) * | 1988-01-23 | 1994-08-17 | Kyowa Hakko Kogyo Co., Ltd. | Novel pyridazinone derivatives and pharmaceutical preparations containing them |
| IL89029A (en) * | 1988-01-29 | 1993-01-31 | Lilly Co Eli | Fungicidal quinoline and cinnoline derivatives, compositions containing them, and fungicidal methods of using them |
| ES2071484T3 (es) * | 1991-02-20 | 1995-06-16 | Pfizer | Derivados de 2,4-diaminoquinazolinas para aumentar la actividad antitumoral. |
| US5721237A (en) * | 1991-05-10 | 1998-02-24 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties |
| US5710158A (en) * | 1991-05-10 | 1998-01-20 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
| US6177401B1 (en) * | 1992-11-13 | 2001-01-23 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften | Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis |
| FR2707642B1 (fr) * | 1993-07-16 | 1995-10-13 | Electricite De France | Dérivés de polyéthers et d'hétérocycles pentacycliques, leurs polymères et leurs applications, notamment à la complexation d'ions métalliques. |
| CA2148082A1 (en) * | 1993-09-03 | 1995-03-09 | Daisuke Machii | Imidazoquinazoline derivatives |
| GB9325217D0 (en) * | 1993-12-09 | 1994-02-09 | Zeneca Ltd | Pyrimidine derivatives |
| US5700823A (en) * | 1994-01-07 | 1997-12-23 | Sugen, Inc. | Treatment of platelet derived growth factor related disorders such as cancers |
| IL112249A (en) * | 1994-01-25 | 2001-11-25 | Warner Lambert Co | Pharmaceutical compositions containing di and tricyclic pyrimidine derivatives for inhibiting tyrosine kinases of the epidermal growth factor receptor family and some new such compounds |
| IL112248A0 (en) * | 1994-01-25 | 1995-03-30 | Warner Lambert Co | Tricyclic heteroaromatic compounds and pharmaceutical compositions containing them |
| US5736534A (en) * | 1994-02-23 | 1998-04-07 | Pfizer Inc. | 4-heterocyclyl-substituted quinazoline derivatives, processes for their preparation and their use as anti-cancer agents |
| WO1995024190A2 (en) * | 1994-03-07 | 1995-09-14 | Sugen, Inc. | Receptor tyrosine kinase inhibitors for inhibiting cell proliferative disorders and compositions thereof |
| ES2109796T3 (es) * | 1994-05-03 | 1998-01-16 | Ciba Geigy Ag | Derivados de pirrolopirimidilo con efecto antiproliferante. |
| DE19503151A1 (de) | 1995-02-01 | 1996-08-08 | Thomae Gmbh Dr K | Pyrimido[5,4-d]pyrimidine, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung |
| TW414798B (en) * | 1994-09-07 | 2000-12-11 | Thomae Gmbh Dr K | Pyrimido (5,4-d) pyrimidines, medicaments comprising these compounds, their use and processes for their preparation |
| GB9510757D0 (en) * | 1994-09-19 | 1995-07-19 | Wellcome Found | Therapeuticaly active compounds |
| TW321649B (enExample) * | 1994-11-12 | 1997-12-01 | Zeneca Ltd | |
| WO1996029331A1 (de) * | 1995-03-20 | 1996-09-26 | Dr. Karl Thomae Gmbh | Imidazochinazoline, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung |
| CA2216796C (en) * | 1995-03-30 | 2003-09-02 | Pfizer Inc. | Quinazoline derivatives |
| JP4249804B2 (ja) * | 1995-04-03 | 2009-04-08 | ノバルティス・アクチエンゲゼルシャフト | ピラゾール誘導体およびその製造法 |
| GB9508537D0 (en) * | 1995-04-27 | 1995-06-14 | Zeneca Ltd | Quinazoline derivatives |
| GB9508538D0 (en) * | 1995-04-27 | 1995-06-14 | Zeneca Ltd | Quinazoline derivatives |
| GB9508565D0 (en) * | 1995-04-27 | 1995-06-14 | Zeneca Ltd | Quiazoline derivative |
| EP0824525B1 (en) * | 1995-04-27 | 2001-06-13 | AstraZeneca AB | Quinazoline derivatives |
| GB9508535D0 (en) * | 1995-04-27 | 1995-06-14 | Zeneca Ltd | Quinazoline derivative |
| IL117923A (en) * | 1995-05-03 | 2000-06-01 | Warner Lambert Co | Anti-cancer pharmaceutical compositions containing polysubstituted pyrido¬2,3-d¾pyrimidine derivatives and certain such novel compounds |
| ATE182148T1 (de) * | 1995-05-12 | 1999-07-15 | Neurogen Corp | Neue deazapurinderivate; eine neue klasse von crf1-spezifischen liganden |
| ATE247469T1 (de) * | 1995-06-07 | 2003-09-15 | Pfizer | Heterocyclische kondensierte pyrimidin-derivate |
| WO1996040648A1 (en) * | 1995-06-07 | 1996-12-19 | Sugen, Inc. | Quinazolines and pharmaceutical compositions |
| GB9514265D0 (en) * | 1995-07-13 | 1995-09-13 | Wellcome Found | Hetrocyclic compounds |
| GB9603095D0 (en) | 1996-02-14 | 1996-04-10 | Zeneca Ltd | Quinazoline derivatives |
| AR007857A1 (es) | 1996-07-13 | 1999-11-24 | Glaxo Group Ltd | Compuestos heterociclicos fusionados como inhibidores de proteina tirosina quinasa, sus metodos de preparacion, intermediarios uso en medicina ycomposiciones farmaceuticas que los contienen. |
| US6225318B1 (en) | 1996-10-17 | 2001-05-01 | Pfizer Inc | 4-aminoquinazolone derivatives |
-
1996
- 1996-02-14 GB GBGB9603095.2A patent/GB9603095D0/en active Pending
-
1997
- 1997-02-10 PT PT97902496T patent/PT880507E/pt unknown
- 1997-02-10 AT AT97902496T patent/ATE293103T1/de active
- 1997-02-10 JP JP52907397A patent/JP4074342B2/ja not_active Expired - Fee Related
- 1997-02-10 DE DE69733008T patent/DE69733008T2/de not_active Expired - Lifetime
- 1997-02-10 EP EP97902496A patent/EP0880507B1/en not_active Expired - Lifetime
- 1997-02-10 ES ES97902496T patent/ES2239351T3/es not_active Expired - Lifetime
- 1997-02-10 NZ NZ330816A patent/NZ330816A/xx not_active IP Right Cessation
- 1997-02-10 CN CNB97192242XA patent/CN1142919C/zh not_active Expired - Fee Related
- 1997-02-10 IL IL12568597A patent/IL125685A/en not_active IP Right Cessation
- 1997-02-10 AU AU16126/97A patent/AU707339B2/en not_active Ceased
- 1997-02-10 WO PCT/GB1997/000344 patent/WO1997030034A1/en not_active Ceased
- 1997-02-10 KR KR10-1998-0706321A patent/KR100494824B1/ko not_active Expired - Fee Related
- 1997-02-12 MY MYPI97000500A patent/MY119992A/en unknown
- 1997-02-13 ZA ZA9701231A patent/ZA971231B/xx unknown
- 1997-02-13 US US08/796,483 patent/US5866572A/en not_active Expired - Lifetime
-
1998
- 1998-08-13 NO NO19983707A patent/NO311936B1/no not_active IP Right Cessation
- 1998-09-11 US US09/152,070 patent/US6399602B1/en not_active Expired - Fee Related
-
2002
- 2002-05-02 US US10/136,276 patent/US6897214B2/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1992020642A1 (en) * | 1991-05-10 | 1992-11-26 | Rhone-Poulenc Rorer International (Holdings) Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
| EP0520722A1 (en) * | 1991-06-28 | 1992-12-30 | Zeneca Limited | Therapeutic preparations containing quinazoline derivatives |
| EP0566226A1 (en) * | 1992-01-20 | 1993-10-20 | Zeneca Limited | Quinazoline derivatives |
| EP0602851A1 (en) * | 1992-12-10 | 1994-06-22 | Zeneca Limited | Quinazoline derivatives |
| EP0635507A1 (en) * | 1993-07-19 | 1995-01-25 | Zeneca Limited | Tricyclic derivatives and their use as anti-cancer agents |
| EP0635498A1 (en) * | 1993-07-19 | 1995-01-25 | Zeneca Limited | Quinazoline derivatives and their use as anti-cancer agents |
| WO1996016960A1 (en) * | 1994-11-30 | 1996-06-06 | Zeneca Limited | Quinazoline derivatives |
Cited By (478)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6184225B1 (en) | 1996-02-13 | 2001-02-06 | Zeneca Limited | Quinazoline derivatives as VEGF inhibitors |
| US6291455B1 (en) | 1996-03-05 | 2001-09-18 | Zeneca Limited | 4-anilinoquinazoline derivatives |
| US6344459B1 (en) | 1996-04-12 | 2002-02-05 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
| US6602863B1 (en) | 1996-04-12 | 2003-08-05 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
| US7786131B2 (en) | 1996-04-12 | 2010-08-31 | Warner-Lambert Company | Pyrimido[5,4-d]pyrimidines derivatives as irreversible inhibitors of tyrosine kinases |
| US6265411B1 (en) | 1996-05-06 | 2001-07-24 | Zeneca Limited | Oxindole derivatives |
| US6828320B2 (en) | 1996-07-13 | 2004-12-07 | Smithkline Beecham Corporation | Heterocyclic compounds |
| WO1998002434A1 (en) * | 1996-07-13 | 1998-01-22 | Glaxo Group Limited | Fused heterocyclic compounds as protein tyrosine kinase inhibitors |
| US6391874B1 (en) | 1996-07-13 | 2002-05-21 | Smithkline Beecham Corporation | Fused heterocyclic compounds as protein tyrosine kinase inhibitors |
| USRE42353E1 (en) | 1996-09-25 | 2011-05-10 | Astrazeneca Uk Limited | Quinazoline derivatives and pharmaceutical compositions containing them |
| US6897210B2 (en) | 1996-09-25 | 2005-05-24 | Zeneca Limited | Quinazoline derivatives and pharmaceutical compositions containing them |
| US6673803B2 (en) | 1996-09-25 | 2004-01-06 | Zeneca Limited | Quinazoline derivatives and pharmaceutical compositions containing them |
| US6225318B1 (en) | 1996-10-17 | 2001-05-01 | Pfizer Inc | 4-aminoquinazolone derivatives |
| US6294532B1 (en) | 1997-08-22 | 2001-09-25 | Zeneca Limited | Oxindolylquinazoline derivatives as angiogenesis inhibitors |
| US7109333B2 (en) | 1998-01-12 | 2006-09-19 | Smithkline Beecham Corporation | Heterocyclic compounds |
| US6713485B2 (en) | 1998-01-12 | 2004-03-30 | Smithkline Beecham Corporation | Heterocyclic compounds |
| US6727256B1 (en) | 1998-01-12 | 2004-04-27 | Smithkline Beecham Corporation | Bicyclic heteroaromatic compounds as protein tyrosine kinase inhibitors |
| US8513262B2 (en) | 1998-01-12 | 2013-08-20 | Glaxosmithkline Llc | Bicyclic heteroaromatic compounds as protein tyrosine kinase inhibitors |
| US9199973B2 (en) | 1998-01-12 | 2015-12-01 | Novartis Ag | Bicyclic heteroaromatic compounds as protein tyrosine kinase inhibitors |
| WO1999035132A1 (en) * | 1998-01-12 | 1999-07-15 | Glaxo Group Limited | Heterocyclic compounds |
| US8912205B2 (en) | 1998-01-12 | 2014-12-16 | Glaxosmithkline Llc | Bicyclic heteroaromatic compounds as protein tyrosine kinase inhibitors |
| US6284764B1 (en) | 1999-01-27 | 2001-09-04 | Pfizer Inc. | Substituted bicyclic derivatives useful as anticancer agents |
| US6867201B2 (en) | 1999-01-27 | 2005-03-15 | Pfizer Inc | Heteroaromatic bicyclic derivatives useful as anticancer agents |
| US6541481B2 (en) | 1999-01-27 | 2003-04-01 | Pfizer Inc | Substituted bicyclic derivatives useful as anticancer agents |
| JP2002535391A (ja) * | 1999-01-27 | 2002-10-22 | ファイザー・プロダクツ・インク | 抗がん剤として有用な置換二環式誘導体類 |
| US6465449B1 (en) * | 1999-01-27 | 2002-10-15 | Pfizer Inc. | Heteroaromatic bicyclic derivatives useful as anticancer agents |
| AU775163B2 (en) * | 1999-01-27 | 2004-07-22 | Osi Pharmaceuticals, Inc. | Substituted bicyclic derivatives useful as anticancer agents |
| AP1307A (en) * | 1999-01-27 | 2004-09-10 | Pfizer Prod Inc | Substituted bicyclic derivatives useful as anticancer agents |
| JP2005002125A (ja) * | 1999-01-27 | 2005-01-06 | Pfizer Prod Inc | 抗がん剤として有用な置換二環式誘導体類 |
| EP1029853A1 (en) * | 1999-01-27 | 2000-08-23 | Pfizer Products Inc. | Heteroaromatic bicyclic derivatives useful as anticancer agents |
| WO2000044728A1 (en) * | 1999-01-27 | 2000-08-03 | Pfizer Products Inc. | Substituted bicyclic derivatives useful as anticancer agents |
| RU2262935C2 (ru) * | 1999-02-10 | 2005-10-27 | Астразенека Аб | Производные хиназолина в качестве ингибиторов ангиогенеза |
| US7074800B1 (en) | 1999-02-10 | 2006-07-11 | Astrazeneca Ab | Quinazoline derivatives as angiogenesis inhibitors |
| US8492560B2 (en) | 1999-02-10 | 2013-07-23 | Astrazeneca Ab | Quinazoline derivatives as angiogenesis inhibitors |
| US7265123B2 (en) | 1999-07-09 | 2007-09-04 | Smithkline Beecham Corporation | Heterocyclic compounds |
| US7507741B2 (en) | 1999-07-09 | 2009-03-24 | Smithkline Beecham Corporation | Heterocyclic compounds |
| US7189734B2 (en) | 1999-07-09 | 2007-03-13 | Smithkline Beecham Corporation | Anilinoquinazaolines as protein tyrosine kianse inhibitors |
| US7084147B2 (en) | 1999-07-09 | 2006-08-01 | Smithkline Beecham Corporation | Anilinoquinazaolines as protein tyrosine kinase inhibitors |
| US6933299B1 (en) | 1999-07-09 | 2005-08-23 | Smithkline Beecham Corporation | Anilinoquinazolines as protein tyrosine kinase inhibitors |
| JP2003509497A (ja) * | 1999-09-21 | 2003-03-11 | アストラゼネカ アクチボラグ | キナゾリン化合物とそれらを含有する医薬組成物 |
| WO2001021594A1 (en) * | 1999-09-21 | 2001-03-29 | Astrazeneca Ab | Quinazoline compounds and pharmaceutical compositions containing them |
| US7081461B1 (en) | 1999-09-21 | 2006-07-25 | Astrazeneca Ab | Quinazoline compounds and pharmaceutical compositions containing them |
| US9040548B2 (en) | 1999-11-05 | 2015-05-26 | Astrazeneca Ab | Quinazoline derivatives as VEGF inhibitors |
| US10457664B2 (en) | 1999-11-05 | 2019-10-29 | Genzyme Corporation | Quinazoline derivatives as VEGF inhibitors |
| US7173038B1 (en) | 1999-11-05 | 2007-02-06 | Astrazeneca Ab | Quinazoline derivatives as VEGF inhibitors |
| BG65862B1 (bg) * | 1999-11-30 | 2010-03-31 | Pfizer Products Inc. | Нови производни на бензоимидазола, полезни като антипролиферативни средства |
| US7160889B2 (en) | 2000-04-07 | 2007-01-09 | Astrazeneca Ab | Quinazoline compounds |
| US7696214B2 (en) | 2000-06-06 | 2010-04-13 | Astrazeneca Ab | Quinazoline derivatives for the treatment of tumours |
| US7049438B2 (en) | 2000-06-06 | 2006-05-23 | Astrazeneca Ab | Quinazoline derivatives for treatment of tumours |
| US6890924B2 (en) | 2000-06-22 | 2005-05-10 | Pfizer Inc | Substituted bicyclic derivatives for the treatment of abnormal cell growth |
| WO2001098277A3 (en) * | 2000-06-22 | 2002-06-13 | Pfizer Prod Inc | Substituted bicyclic derivatives for the treatment of abnormal cell growth |
| US7115615B2 (en) | 2000-08-21 | 2006-10-03 | Astrazeneca | Quinazoline derivatives |
| CZ302567B6 (cs) * | 2000-08-26 | 2011-07-13 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Aminochinazoliny, farmaceutický prostredek obsahující tyto slouceniny, jejich použití a zpusob jejich výroby |
| US6939866B2 (en) | 2000-10-13 | 2005-09-06 | Astrazeneca Ab | Quinazoline derivatives |
| US6849625B2 (en) | 2000-10-13 | 2005-02-01 | Astrazeneca Ab | Quinazoline derivatives with anti-tumour activity |
| EP2269604A1 (en) | 2001-02-19 | 2011-01-05 | Novartis AG | Treatment of solid tumours with rapamycin derivatives |
| EP3345602A1 (en) | 2001-02-19 | 2018-07-11 | Novartis AG | Rapamycin derivative for treating advanced solid tumours |
| EP3406249A1 (en) | 2001-02-19 | 2018-11-28 | Novartis AG | Treatment of breast tumors with a rapamycin derivative in combination with an aromatase inhibitor |
| EP3351246A1 (en) | 2001-02-19 | 2018-07-25 | Novartis AG | Rapamycin derivative for the treatment of a solid tumor associated with deregulated angiogenesis |
| EP2269603A1 (en) | 2001-02-19 | 2011-01-05 | Novartis AG | Treatment of solid tumours with rapamycin derivatives |
| EP3342411A1 (en) | 2001-02-19 | 2018-07-04 | Novartis AG | Rapamycin derivative for treating pancreas cancer |
| US8877771B2 (en) | 2001-02-19 | 2014-11-04 | Novartis Pharmaceuticals Corporation | Treatment of solid tumors with rapamycin derivatives |
| EP2783686A1 (en) | 2001-02-19 | 2014-10-01 | Novartis AG | Combination of a rapamycin derivative and letrozole for treating breast cancer |
| US8410131B2 (en) | 2001-02-19 | 2013-04-02 | Novartis Pharmaceuticals Corporation | Cancer treatment |
| EP2762140A1 (en) | 2001-02-19 | 2014-08-06 | Novartis AG | Treatment of solid brain tumours with a rapamycin derivative |
| EP2764865A2 (en) | 2001-02-19 | 2014-08-13 | Novartis AG | Cancer treatment |
| WO2002070008A1 (en) | 2001-03-02 | 2002-09-12 | Imclone Systems Incorporated | Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist |
| EP2253319A1 (en) | 2001-05-16 | 2010-11-24 | Novartis AG | Combination comprising N-{5-[4-(4-methyl-piperazino-methyl)-benzoylamido]-2-methylphenyl}-4-(3-pyridyl)-2pyrimidine-amine and a chemotherapeutic agent. |
| WO2003040108A1 (en) * | 2001-11-03 | 2003-05-15 | Astrazeneca Ab | Quinazoline derivatives as antitumor agents |
| WO2003045939A1 (en) * | 2001-11-30 | 2003-06-05 | Pfizer Products Inc. | Processes for the preparation of substituted bicyclic derivatives for the treatment of abnormal cell growth |
| EA007412B1 (ru) * | 2001-12-12 | 2006-10-27 | Пфайзер Продактс Инк. | Соли е-2-метокси-n-(3-(4-(3-метилпиридин-3-илокси)фениламино)хиназолин-6-ил-аллил)ацетамида, их получение и их применение против рака |
| US6844349B2 (en) | 2001-12-12 | 2005-01-18 | Pfizer Inc | Salt forms of E-2-methoxy-N-(3-{4-[3 methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quinazolin-6-yl}-allyl)-acetamide and method of production |
| WO2003050108A1 (en) * | 2001-12-12 | 2003-06-19 | Pfizer Products Inc. | Salt forms of e-2-methoxy-n-(3-(4-(3-methyl-pyridin-3-yloxy)-phenylamino)-quinazolin-6-yl)-allyl)-acetamide, its preparation and its use against cancer |
| WO2003049740A1 (en) * | 2001-12-12 | 2003-06-19 | Pfizer Products Inc. | Quinazoline derivatives for the treatment of abnormal cell growth |
| WO2003053958A1 (en) * | 2001-12-20 | 2003-07-03 | Celltech R & D Limited | Quinazolinedione derivatives |
| US8293902B2 (en) | 2002-02-01 | 2012-10-23 | Astrazeneca Ab | Quinazoline compounds |
| US7268230B2 (en) | 2002-02-01 | 2007-09-11 | Astrazeneca Ab | Quinazoline compounds |
| EP2308855A1 (en) | 2002-03-15 | 2011-04-13 | Novartis AG | 2,4-Diaminopyrimidine derivatives |
| US7910731B2 (en) | 2002-03-30 | 2011-03-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them |
| EP1944026A2 (en) | 2002-05-16 | 2008-07-16 | Novartis AG | Use of EDG receptor binding agents in cancer |
| EP1955696A2 (en) | 2002-05-16 | 2008-08-13 | Novartis AG | Use of EDG receptor binding agents in cancer |
| RU2350618C2 (ru) * | 2002-11-04 | 2009-03-27 | Астразенека Аб | ПРОИЗВОДНЫЕ ХИНАЗОЛИНА В КАЧЕСТВЕ ИНГИБИТОРОВ Src ТИРОЗИНКИНАЗЫ |
| WO2004056807A1 (en) | 2002-12-20 | 2004-07-08 | Pfizer Products Inc. | Pyrimidine derivatives for the treatment of abnormal cell growth |
| US7659279B2 (en) | 2003-04-30 | 2010-02-09 | Astrazeneca Ab | Quinazoline derivatives and their use in the treatment of cancer |
| WO2005000833A1 (en) | 2003-05-19 | 2005-01-06 | Irm, Llc | Immunosuppressant compounds and compositions |
| EP2514743A1 (en) | 2003-05-19 | 2012-10-24 | Irm Llc | Immunosuppressant Compounds and Compositions |
| EP2644195A1 (en) | 2003-05-19 | 2013-10-02 | Irm Llc | Immunosuppressant Compounds and Compositions |
| WO2004103306A2 (en) | 2003-05-19 | 2004-12-02 | Irm Llc | Immunosuppressant compounds and compositions |
| EP3272736A1 (en) | 2003-05-19 | 2018-01-24 | Novartis Ag | Immunosuppressant compounds and compositions |
| EP2348110A1 (en) | 2003-05-30 | 2011-07-27 | AstraZeneca UK Limited | Process |
| EP2389953A1 (en) | 2003-06-09 | 2011-11-30 | Samuel Waksal | Method of inhibiting receptor tyrosine kinases with an extracellular antagonist and an intracellular antagonist |
| WO2005012290A1 (en) * | 2003-07-29 | 2005-02-10 | Astrazeneca Ab | Piperidyl-quinazoline derivatives as tyrosine kinase inhibitors |
| US7148230B2 (en) | 2003-07-29 | 2006-12-12 | Astrazeneca Ab | Quinazoline derivatives |
| EP1660090A4 (en) * | 2003-08-14 | 2008-12-03 | Array Biopharma Inc | QUINAZOLIN ANALOGUES AS TYROSINE KINASE RECEPTOR INHIBITORS |
| US7501427B2 (en) | 2003-08-14 | 2009-03-10 | Array Biopharma, Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| US7452895B2 (en) | 2003-08-14 | 2008-11-18 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| EP2377539A1 (en) * | 2003-08-14 | 2011-10-19 | Array Biopharma, Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| KR100953246B1 (ko) * | 2003-08-14 | 2010-04-16 | 어레이 바이오파마 인크. | 수용체 티로신 키나아제 억제제로서의 퀴나졸린 유사체 |
| US10221194B2 (en) | 2003-08-14 | 2019-03-05 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| WO2005016346A1 (en) | 2003-08-14 | 2005-02-24 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| US7585975B2 (en) | 2003-08-14 | 2009-09-08 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| US9676791B2 (en) | 2003-08-14 | 2017-06-13 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| US8278314B2 (en) | 2003-08-14 | 2012-10-02 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| US11174273B2 (en) | 2003-08-14 | 2021-11-16 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| US7777032B2 (en) | 2003-08-14 | 2010-08-17 | Array Biopharma Inc. | Quinazoline analogs as receptor tyrosine kinase inhibitors |
| WO2005026151A1 (en) * | 2003-09-16 | 2005-03-24 | Astrazeneca Ab | Quinazoline derivatives as tyrosine kinase inhibitors |
| WO2005026156A1 (en) * | 2003-09-16 | 2005-03-24 | Astrazeneca Ab | Quinazoline derivatives |
| US7569577B2 (en) | 2003-09-16 | 2009-08-04 | Astrazeneca Ab | Quinazoline derivatives as tyrosine kinase inhibitors |
| US7838530B2 (en) | 2003-09-25 | 2010-11-23 | Astrazeneca Ab | Quinazoline derivatives as antiproliferative agents |
| US7625908B2 (en) | 2003-11-13 | 2009-12-01 | Astrazeneca Ab | Quinazoline derivatives |
| US8859570B2 (en) | 2003-12-24 | 2014-10-14 | Astrazeneca Ab | Maleate salts of a quinazoline derivative useful as an antiangiogenic agent |
| US9556151B2 (en) | 2003-12-24 | 2017-01-31 | Astrazeneca Ab | Maleate salts of a quinazoline derivative useful as an antiangiogenic agent |
| US9890140B2 (en) | 2003-12-24 | 2018-02-13 | Astrazeneca Ab | Maleate salts of a quinazoline derivative useful as an antiangiogenic agent |
| US7632840B2 (en) | 2004-02-03 | 2009-12-15 | Astrazeneca Ab | Quinazoline compounds for the treatment of hyperproliferative disorders |
| WO2005080352A3 (en) * | 2004-02-19 | 2006-02-16 | Rexahn Corp | Quinazoline derivatives and therapeutic use thereof |
| US7388014B2 (en) | 2004-02-19 | 2008-06-17 | Rexahn Pharmaceuticals, Inc. | Quinazoline derivatives and therapeutic use thereof |
| EP2650286A1 (en) * | 2004-02-19 | 2013-10-16 | Rexahn Pharmaceuticals, Inc. | Quinazoline derivatives and therapeutic use thereof |
| US8404698B2 (en) | 2004-02-19 | 2013-03-26 | Rexahn Pharmaceuticals, Inc. | Quinazoline derivatives and therapeutic use thereof |
| EP2332990A1 (en) | 2004-03-19 | 2011-06-15 | Imclone LLC | Human anti-epidermal growth factor receptor antibody |
| EP2253614A1 (en) | 2004-04-07 | 2010-11-24 | Novartis AG | Inhibitors of IAP |
| EP2065368A1 (en) | 2004-04-07 | 2009-06-03 | Novartis Ag | Inhibitors of IAP |
| US8080577B2 (en) | 2004-05-06 | 2011-12-20 | Bioresponse, L.L.C. | Diindolylmethane formulations for the treatment of leiomyomas |
| US7772243B2 (en) | 2004-05-06 | 2010-08-10 | Warner-Lambert Company Llc | 4-phenylamino-quinazolin-6-yl-amides |
| US8466165B2 (en) | 2004-05-06 | 2013-06-18 | Warner-Lambert Company Llc | 4-phenylamino-quinazolin-6-yl-amides |
| US8623883B2 (en) | 2004-05-06 | 2014-01-07 | Warner-Lambert Company Llc | 4-phenylamino-quinazolin-6-yl-amides |
| EP2409969A1 (en) | 2004-06-24 | 2012-01-25 | Novartis AG | Pyrimidine urea derivatives as kinase inhibitors |
| EP2418205A1 (en) | 2004-06-24 | 2012-02-15 | Novartis AG | Pyrimidine urea derivatives as kinase inhibitors |
| US8153643B2 (en) | 2004-10-12 | 2012-04-10 | Astrazeneca Ab | Quinazoline derivatives |
| EP1804803A4 (en) * | 2004-10-28 | 2008-07-30 | Irm Llc | COMPOUNDS AND COMPOSITIONS AS HEDGEHOG WALK MODULATORS |
| US7947676B2 (en) | 2004-12-14 | 2011-05-24 | Astrazeneca Ab | Pyrazolo[3,4-d]pyrimidine compounds as antitumor agents |
| RU2362773C2 (ru) * | 2004-12-29 | 2009-07-27 | Ханми Фарм.Ко., Лтд. | Производные хиназолина для торможения роста раковых клеток и способ их получения |
| US8003658B2 (en) | 2004-12-29 | 2011-08-23 | Hanmi Holdings Co., Ltd. | Quinazoline derivatives for inhibiting cancer cell growth and method for the preparation thereof |
| KR100735639B1 (ko) * | 2004-12-29 | 2007-07-04 | 한미약품 주식회사 | 암세포 성장 억제 효과를 갖는 퀴나졸린 유도체 및 이의제조방법 |
| WO2006071017A1 (en) * | 2004-12-29 | 2006-07-06 | Hanmi Pharm. Co., Ltd. | Quinazoline derivatives for inhibiting cancer cell growth and method for the preparation thereof |
| US8552052B2 (en) | 2004-12-30 | 2013-10-08 | Bioresponse, L.L.C. | Use of diindolylmethane-related indoles for the treatment and prevention of respiratory syncytial virus associated conditions |
| US7989486B2 (en) | 2004-12-30 | 2011-08-02 | Bioresponse, L.L.C. | Use of diindolylmethane-related indoles for the treatment and prevention of respiratory syncytial virus associated conditions |
| WO2006083458A2 (en) | 2004-12-30 | 2006-08-10 | Bioresponse Llc | Use of diindolylmethane-related indoles for the treatment and prevention of respiratory syncytial virus associates conditions |
| EP2270008A1 (en) | 2005-05-20 | 2011-01-05 | Novartis AG | 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinases inhibitors |
| EP2292617A1 (en) | 2005-05-20 | 2011-03-09 | Novartis AG | 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinase inhibitors |
| EP2505205A1 (en) | 2005-06-17 | 2012-10-03 | Imclone LLC | Anti-PDGFR Alpha Antibodies |
| EP2100614A2 (en) | 2005-06-17 | 2009-09-16 | Imclone LLC | PDGFR-alpha antagonists for treatment of metastatic bone cancer |
| EP2100618A2 (en) | 2005-06-17 | 2009-09-16 | Imclone LLC | PDGFR-alpha antagonists for treatment of metastatic bone cancer |
| US8129114B2 (en) | 2005-08-24 | 2012-03-06 | Bristol-Myers Squibb Company | Biomarkers and methods for determining sensitivity to epidermal growth factor receptor modulators |
| US7820683B2 (en) | 2005-09-20 | 2010-10-26 | Astrazeneca Ab | 4-(1H-indazol-5-yl-amino)-quinazoline compounds as erbB receptor tyrosine kinase inhibitors for the treatment of cancer |
| EP2022498A2 (en) | 2005-11-21 | 2009-02-11 | Novartis AG | Neuroendocrine tumour treatment |
| EP2275103A2 (en) | 2005-11-21 | 2011-01-19 | Novartis AG | mTOR inhibitors in the treatment of endocrine tumors |
| US8044063B2 (en) | 2006-01-20 | 2011-10-25 | Shanghai Allist Pharmaceuticals, Inc. | Quinazoline derivatives useful as anti-tumor medicament |
| US8309563B2 (en) | 2006-01-20 | 2012-11-13 | Shanghai Allist Pharmaceuticals, Inc. | Quinazoline derivatives useful as anti-tumor medicament |
| EP1990337A4 (en) * | 2006-01-20 | 2009-07-22 | Shanghai Allist Pharmaceutical | CHINAZOLINE DERIVATIVES, METHOD OF MANUFACTURE AND USES THEREOF |
| US7973164B2 (en) | 2006-03-02 | 2011-07-05 | Astrazeneca Ab | Quinoline derivatives |
| EP2371822A1 (en) | 2006-03-14 | 2011-10-05 | Novartis AG | Heterobicyclic carboxamides as inhibitors for kinases |
| WO2007104560A1 (de) * | 2006-03-15 | 2007-09-20 | Grünenthal GmbH | Substituierte 4-amino-chinazolin-derivate als regulatoren von metab0tr0pischen glutamatrezeptoren und ihre verwendung zur herstellung von arzneimitteln |
| EP2591775A1 (en) | 2006-04-05 | 2013-05-15 | Novartis AG | Combinations comprising mtor inhibitors for treating cancer |
| EP2314297A1 (en) | 2006-04-05 | 2011-04-27 | Novartis AG | Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer |
| EP2258700A1 (en) | 2006-05-09 | 2010-12-08 | Pfizer Products Inc. | Cycloalkylamino acid derivatives and pharmaceutical compositions thereof |
| EP2272511A1 (en) | 2006-05-09 | 2011-01-12 | Novartis AG | Combination comprising an iron chelator and an anti-neoplastic agent and use thereof |
| EP2021019A4 (en) * | 2006-05-15 | 2009-12-09 | Senex Biotechnology Inc | IDENTIFICATION OF CDKI PATH HAZARD |
| US9259426B2 (en) | 2006-07-20 | 2016-02-16 | Gilead Sciences, Inc. | 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections |
| WO2008009078A3 (en) * | 2006-07-20 | 2008-12-24 | Gilead Sciences Inc | 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections |
| US8673929B2 (en) | 2006-07-20 | 2014-03-18 | Gilead Sciences, Inc. | 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections |
| US10882851B2 (en) | 2006-07-20 | 2021-01-05 | Gilead Sciences, Inc. | 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections |
| US12049461B2 (en) | 2006-07-20 | 2024-07-30 | Gilead Sciences, Inc. | 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections |
| WO2008020302A3 (en) * | 2006-08-17 | 2008-04-17 | Pfizer Prod Inc | Heteroaromatic quinoline-based compounds as phosphodiesterase (pde) inhibitors |
| WO2008037477A1 (en) | 2006-09-29 | 2008-04-03 | Novartis Ag | Pyrazolopyrimidines as p13k lipid kinase inhibitors |
| US9663462B2 (en) | 2006-10-27 | 2017-05-30 | Bioresponse, L.L.C. | Anti-parasitic methods and compositions utilizing diindolylmethane-related indoles |
| US9353058B2 (en) | 2006-10-27 | 2016-05-31 | Bioresponse, L.L.C. | Anti-parasitic methods and compositions utilizing diindolylmethane-related indoles |
| US8586621B2 (en) | 2006-10-27 | 2013-11-19 | Michael A. Zeligs | Anti-parasitic methods and compositions utilizing diindolylmethane-related indoles |
| WO2008095847A1 (de) * | 2007-02-06 | 2008-08-14 | Boehringer Ingelheim International Gmbh | Bicyclische heterocyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung |
| EP1956010A1 (de) * | 2007-02-06 | 2008-08-13 | Boehringer Ingelheim Pharma GmbH & Co. KG | Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel,deren Verwendung und Verfahren zu ihrer Herstellung |
| US7998949B2 (en) | 2007-02-06 | 2011-08-16 | Boehringer Ingelheim International Gmbh | Bicyclic heterocycles, drugs containing said compounds, use thereof, and method for production thereof |
| EP2359818A1 (en) | 2007-02-15 | 2011-08-24 | Novartis AG | Combination of LBH589 with HSP 90 inhibitors for treating cancer |
| EP2491923A2 (en) | 2007-02-15 | 2012-08-29 | Novartis AG | Combinations of therapeutic agents for treating cancer |
| US8247411B2 (en) | 2007-04-18 | 2012-08-21 | Pfizer Inc | Sulfonyl amide derivatives for the treatment of abnormal cell growth |
| US8440822B2 (en) | 2007-04-18 | 2013-05-14 | Michael Joseph Luzzio | Sulfonyl amide derivatives for the treatment of abnormal cell growth |
| US7928109B2 (en) | 2007-04-18 | 2011-04-19 | Pfizer Inc | Sulfonyl amide derivatives for the treatment of abnormal cell growth |
| US10450297B2 (en) | 2007-04-18 | 2019-10-22 | Pfizer, Inc. | Sulfonyl amide derivatives for the treatment of abnormal cell growth |
| WO2008141843A1 (en) * | 2007-05-24 | 2008-11-27 | Bayer Schering Pharma Aktiengesellschaft | Novel sulphoximine-substituted quinazoline and quinazoline derivatives as kinase inhibitors |
| US8003787B2 (en) | 2007-05-24 | 2011-08-23 | Bayer Schering Pharma Ag | Sulphoximine-substituted quinoline and quinazoline derivatives as kinase inhibitors |
| EP2167092A4 (en) * | 2007-06-14 | 2012-07-25 | Glaxosmithkline Llc | QUINAZOLINE DERIVATIVES AS INHIBITORS OF PI3 KINASE |
| US8080558B2 (en) | 2007-10-29 | 2011-12-20 | Natco Pharma Limited | 4-(tetrazol-5-yl)-quinazoline derivatives as anti-cancer agent |
| WO2009080200A1 (en) * | 2007-12-20 | 2009-07-02 | Bayer Schering Pharma Aktiengesellschaft | Novel sulphoximide-substituted quinoline and quinazoline derivatives as kinase inhibitors |
| EP2072502A1 (de) * | 2007-12-20 | 2009-06-24 | Bayer Schering Pharma Aktiengesellschaft | Sulfoximid-substituierte Chinolin- und Chinazolinderivate als Kinase-Inhibitoren |
| WO2009118292A1 (en) | 2008-03-24 | 2009-10-01 | Novartis Ag | Arylsulfonamide-based matrix metalloprotease inhibitors |
| EP2628726A1 (en) | 2008-03-26 | 2013-08-21 | Novartis AG | Hydroxamate-based inhibitors of deacetylases b |
| US8088782B2 (en) | 2008-05-13 | 2012-01-03 | Astrazeneca Ab | Crystalline 4-(3-chloro-2-fluoroanilino)-7 methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline difumarate form A |
| US8735424B2 (en) | 2008-09-02 | 2014-05-27 | Novartis Ag | Bicyclic kinase inhibitors |
| WO2010043050A1 (en) | 2008-10-16 | 2010-04-22 | Celator Pharmaceuticals Corporation | Combinations of a liposomal water-soluble camptothecin with cetuximab or bevacizumab |
| US8710104B2 (en) | 2008-11-07 | 2014-04-29 | Triact Therapeutics, Inc. | Catecholic butanes and use thereof for cancer therapy |
| WO2010080409A1 (en) | 2008-12-18 | 2010-07-15 | Novartis Ag | Hemifumarate salt of 1- [4- [1- ( 4 -cyclohexyl-3 -trifluoromethyl-benzyloxyimino ) -ethyl] -2 -ethyl-benzyl] -a zetidine-3-carboxylic acid |
| WO2010071794A1 (en) | 2008-12-18 | 2010-06-24 | Novartis Ag | New polymorphic form of 1- (4- { l- [ (e) -4-cyclohexyl--3-trifluoromethyl-benzyloxyimino] -ethyl) -2-ethyl-benzy l) -azetidine-3-carboxylic |
| WO2010080455A1 (en) | 2008-12-18 | 2010-07-15 | Novartis Ag | New salts |
| WO2010083617A1 (en) | 2009-01-21 | 2010-07-29 | Oncalis Ag | Pyrazolopyrimidines as protein kinase inhibitors |
| WO2010088335A1 (en) | 2009-01-29 | 2010-08-05 | Novartis Ag | Substituted benzimidazoles for the treatment of astrocytomas |
| WO2010099139A2 (en) | 2009-02-25 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Combination anti-cancer therapy |
| WO2010099137A2 (en) | 2009-02-26 | 2010-09-02 | Osi Pharmaceuticals, Inc. | In situ methods for monitoring the emt status of tumor cells in vivo |
| WO2010099138A2 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
| WO2010099364A2 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
| WO2010099363A1 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
| WO2010107968A1 (en) | 2009-03-18 | 2010-09-23 | Osi Pharmaceuticals, Inc. | Combination cancer therapy comprising administration of an egfr inhibitor and an igf-1r inhibitor |
| WO2010149755A1 (en) | 2009-06-26 | 2010-12-29 | Novartis Ag | 1, 3-disubstituted imidazolidin-2-one derivatives as inhibitors of cyp 17 |
| WO2011015652A1 (en) | 2009-08-07 | 2011-02-10 | Novartis Ag | 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives as c-met tyrosine kinase modulators |
| WO2011018454A1 (en) | 2009-08-12 | 2011-02-17 | Novartis Ag | Heterocyclic hydrazone compounds and their uses to treat cancer and inflammation |
| WO2011022439A1 (en) | 2009-08-17 | 2011-02-24 | Intellikine, Inc. | Heterocyclic compounds and uses thereof |
| WO2011020861A1 (en) | 2009-08-20 | 2011-02-24 | Novartis Ag | Heterocyclic oxime compounds |
| WO2011023677A1 (en) | 2009-08-26 | 2011-03-03 | Novartis Ag | Tetra-substituted heteroaryl compounds and their use as mdm2 and/or mdm4 modulators |
| WO2011027249A2 (en) | 2009-09-01 | 2011-03-10 | Pfizer Inc. | Benzimidazole derivatives |
| WO2011029915A1 (en) | 2009-09-10 | 2011-03-17 | Novartis Ag | Ether derivatives of bicyclic heteroaryls |
| WO2011053779A2 (en) | 2009-10-30 | 2011-05-05 | Bristol-Myers Squibb Company | Methods for treating cancer in patients having igf-1r inhibitor resistance |
| WO2011054828A1 (en) | 2009-11-04 | 2011-05-12 | Novartis Ag | Heterocyclic sulfonamide derivatives useful as mek inhibitors |
| WO2011058164A1 (en) | 2009-11-13 | 2011-05-19 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
| WO2011063421A1 (en) | 2009-11-23 | 2011-05-26 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
| WO2011064211A1 (en) | 2009-11-25 | 2011-06-03 | Novartis Ag | Benzene-fused 6-membered oxygen-containing heterocyclic derivatives of bicyclic heteroaryls |
| WO2011070030A1 (en) | 2009-12-08 | 2011-06-16 | Novartis Ag | Heterocyclic sulfonamide derivatives |
| WO2011076786A1 (en) | 2009-12-22 | 2011-06-30 | Novartis Ag | Substituted isoquinolinones and quinazolinones |
| WO2011090940A1 (en) | 2010-01-19 | 2011-07-28 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
| WO2011119995A2 (en) | 2010-03-26 | 2011-09-29 | Cerulean Pharma Inc. | Formulations and methods of use |
| WO2011157787A1 (en) | 2010-06-17 | 2011-12-22 | Novartis Ag | Biphenyl substituted 1,3-dihydro-benzoimidazol-2-ylideneamine derivatives |
| WO2011157793A1 (en) | 2010-06-17 | 2011-12-22 | Novartis Ag | Piperidinyl substituted 1,3-dihydro-benzoimidazol-2-ylideneamine derivatives |
| WO2012004299A1 (en) | 2010-07-06 | 2012-01-12 | Novartis Ag | Tetrahydro-pyrido-pyrimidine derivatives |
| WO2012035078A1 (en) | 2010-09-16 | 2012-03-22 | Novartis Ag | 17α-HYDROXYLASE/C17,20-LYASE INHIBITORS |
| WO2012052948A1 (en) | 2010-10-20 | 2012-04-26 | Pfizer Inc. | Pyridine- 2- derivatives as smoothened receptor modulators |
| WO2012066095A1 (en) | 2010-11-19 | 2012-05-24 | Novartis Ag | Crystalline form of an inhibitor of mdm2/4 and p53 interaction |
| WO2012085815A1 (en) | 2010-12-21 | 2012-06-28 | Novartis Ag | Bi-heteroaryl compounds as vps34 inhibitors |
| WO2012085229A1 (en) | 2010-12-22 | 2012-06-28 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
| EP2468883A1 (en) | 2010-12-22 | 2012-06-27 | Pangaea Biotech S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
| US9134297B2 (en) | 2011-01-11 | 2015-09-15 | Icahn School Of Medicine At Mount Sinai | Method and compositions for treating cancer and related methods |
| US9494572B2 (en) | 2011-01-11 | 2016-11-15 | Icahn School Of Medicine At Mount Sinai | Method and compositions for treating cancer and related methods |
| WO2012107500A1 (en) | 2011-02-10 | 2012-08-16 | Novartis Ag | [1, 2, 4] triazolo [4, 3 -b] pyridazine compounds as inhibitors of the c-met tyrosine kinase |
| US9199918B2 (en) | 2011-02-15 | 2015-12-01 | Georgetown University | Small molecule inhibitors of AGBL2 |
| WO2012112567A1 (en) * | 2011-02-15 | 2012-08-23 | Georgetown University | Small molecule inhibitors of agbl2 |
| EP2492688A1 (en) | 2011-02-23 | 2012-08-29 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
| WO2012113819A1 (en) | 2011-02-23 | 2012-08-30 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
| WO2012116237A2 (en) | 2011-02-23 | 2012-08-30 | Intellikine, Llc | Heterocyclic compounds and uses thereof |
| WO2012120469A1 (en) | 2011-03-08 | 2012-09-13 | Novartis Ag | Fluorophenyl bicyclic heteroaryl compounds |
| WO2012129145A1 (en) | 2011-03-18 | 2012-09-27 | OSI Pharmaceuticals, LLC | Nscle combination therapy |
| WO2012149014A1 (en) | 2011-04-25 | 2012-11-01 | OSI Pharmaceuticals, LLC | Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment |
| US9823256B2 (en) | 2011-04-26 | 2017-11-21 | The Queen's University Of Belfast | CXCR1 as a predictor of response to treatment with epidermal growth factor receptor therapeutic |
| WO2012146919A1 (en) | 2011-04-26 | 2012-11-01 | The Queen's University Of Belfast | Cxcr1 as a predictor of response to treatment with epidermal growth factor receptor therapeutic |
| WO2012149413A1 (en) | 2011-04-28 | 2012-11-01 | Novartis Ag | 17α-HYDROXYLASE/C17,20-LYASE INHIBITORS |
| WO2012168884A1 (en) | 2011-06-09 | 2012-12-13 | Novartis Ag | Heterocyclic sulfonamide derivatives |
| WO2012175487A1 (en) | 2011-06-20 | 2012-12-27 | Novartis Ag | Cyclohexyl isoquinolinone compounds |
| WO2012175520A1 (en) | 2011-06-20 | 2012-12-27 | Novartis Ag | Hydroxy substituted isoquinolinone derivatives |
| WO2013001445A1 (en) | 2011-06-27 | 2013-01-03 | Novartis Ag | Solid forms and salts of tetrahydro-pyrido-pyrimidine derivatives |
| US12194002B2 (en) | 2011-08-17 | 2025-01-14 | Dennis Brown | Compositions and methods to improve the therapeutic benefit of suboptimally administered chemical compounds including substituted hexitols such as dibromodulcitol |
| WO2013033380A1 (en) | 2011-08-31 | 2013-03-07 | Genentech, Inc. | Diagnostic markers |
| WO2013038362A1 (en) | 2011-09-15 | 2013-03-21 | Novartis Ag | 6 - substituted 3 - (quinolin- 6 - ylthio) - [1,2,4] triazolo [4, 3 -a] pyradines as tyrosine kinase |
| WO2013042006A1 (en) | 2011-09-22 | 2013-03-28 | Pfizer Inc. | Pyrrolopyrimidine and purine derivatives |
| WO2013055530A1 (en) | 2011-09-30 | 2013-04-18 | Genentech, Inc. | Diagnostic methylation markers of epithelial or mesenchymal phenotype and response to egfr kinase inhibitor in tumours or tumour cells |
| WO2013056069A1 (en) | 2011-10-13 | 2013-04-18 | Bristol-Myers Squibb Company | Methods for selecting and treating cancer in patients with igf-1r/ir inhibitors |
| WO2013080141A1 (en) | 2011-11-29 | 2013-06-06 | Novartis Ag | Pyrazolopyrrolidine compounds |
| US9408885B2 (en) | 2011-12-01 | 2016-08-09 | Vib Vzw | Combinations of therapeutic agents for treating melanoma |
| WO2013093849A1 (en) | 2011-12-22 | 2013-06-27 | Novartis Ag | Dihydro-benzo-oxazine and dihydro-pyrido-oxazine derivatives |
| WO2013093850A1 (en) | 2011-12-22 | 2013-06-27 | Novartis Ag | Quinoline derivatives |
| WO2013096055A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| US9585850B2 (en) | 2011-12-23 | 2017-03-07 | Duke University | Methods of treatment using arylcyclopropylamine compounds |
| WO2013096049A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013096059A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013096060A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013096051A1 (en) | 2011-12-23 | 2013-06-27 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
| US8785459B2 (en) * | 2011-12-27 | 2014-07-22 | Development Center For Biotechnology | Quinazoline compounds as kinase inhibitors |
| US20130165458A1 (en) * | 2011-12-27 | 2013-06-27 | Development Center For Biotechnology | Quinazoline compounds as kinase inhibitors |
| EP3064502A1 (en) | 2012-01-26 | 2016-09-07 | Novartis AG | Imidazopyrrolidinone compounds |
| EP3272754A1 (en) | 2012-01-26 | 2018-01-24 | Novartis AG | Imidazopyrrolidinone compounds |
| WO2013143057A1 (zh) | 2012-03-26 | 2013-10-03 | 中国科学院福建物质结构研究所 | 喹唑啉衍生物及用途 |
| WO2013149581A1 (en) | 2012-04-03 | 2013-10-10 | Novartis Ag | Combination products with tyrosine kinase inhibitors and their use |
| EP3964513A1 (en) | 2012-04-03 | 2022-03-09 | Novartis AG | Combination products with tyrosine kinase inhibitors and their use |
| WO2013152252A1 (en) | 2012-04-06 | 2013-10-10 | OSI Pharmaceuticals, LLC | Combination anti-cancer therapy |
| WO2013175417A1 (en) | 2012-05-24 | 2013-11-28 | Novartis Ag | Pyrrolopyrrolidinone compounds |
| WO2013188763A1 (en) | 2012-06-15 | 2013-12-19 | The Brigham And Women's Hospital, Inc. | Compositions for treating cancer and methods for making the same |
| WO2013190089A1 (en) | 2012-06-21 | 2013-12-27 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting outcome in lung cancer |
| US9738643B2 (en) | 2012-08-06 | 2017-08-22 | Duke University | Substituted indazoles for targeting Hsp90 |
| US10927115B2 (en) | 2012-08-06 | 2021-02-23 | Duke University | Substituted heterocycles for targeting Hsp90 |
| US10442806B2 (en) | 2012-08-06 | 2019-10-15 | Duke University | Substituted heterocycles for targeting HSP90 |
| US10112947B2 (en) | 2012-08-06 | 2018-10-30 | Duke University | Substituted 6-aminopurines for targeting HSP90 |
| EP3919069A1 (en) | 2012-11-05 | 2021-12-08 | Dana-Farber Cancer Institute, Inc. | Xbp1, cd138, and cs1 peptides, pharmaceutical compositions that include the peptides, and methods of using such peptides and compositions |
| WO2014071402A1 (en) | 2012-11-05 | 2014-05-08 | Dana-Farber Cancer Institute, Inc. | Xbp1, cd138, and cs1, pharmaceutical compositions that include the peptides, and methods of using such petides and compositions |
| WO2014102630A1 (en) | 2012-11-26 | 2014-07-03 | Novartis Ag | Solid form of dihydro-pyrido-oxazine derivative |
| WO2014115077A1 (en) | 2013-01-22 | 2014-07-31 | Novartis Ag | Substituted purinone compounds |
| WO2014115080A1 (en) | 2013-01-22 | 2014-07-31 | Novartis Ag | Pyrazolo[3,4-d]pyrimidinone compounds as inhibitors of the p53/mdm2 interaction |
| WO2014128612A1 (en) | 2013-02-20 | 2014-08-28 | Novartis Ag | Quinazolin-4-one derivatives |
| EP3626741A1 (en) | 2013-02-20 | 2020-03-25 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
| WO2014130657A1 (en) | 2013-02-20 | 2014-08-28 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
| US9834575B2 (en) | 2013-02-26 | 2017-12-05 | Triact Therapeutics, Inc. | Cancer therapy |
| WO2014135876A1 (en) | 2013-03-06 | 2014-09-12 | Astrazeneca Ab | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
| US9066979B2 (en) | 2013-03-06 | 2015-06-30 | Astrazeneca Ab | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
| EP3342770A1 (en) | 2013-03-06 | 2018-07-04 | AstraZeneca AB | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
| US9718806B2 (en) | 2013-03-06 | 2017-08-01 | Astrazeneca Ab | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
| US9375432B2 (en) | 2013-03-06 | 2016-06-28 | Astrazeneca Ab | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
| WO2014151147A1 (en) | 2013-03-15 | 2014-09-25 | Intellikine, Llc | Combination of kinase inhibitors and uses thereof |
| WO2014147246A1 (en) | 2013-03-21 | 2014-09-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and pharmaceutical composition for use in the treatment of chronic liver diseases associated with a low hepcidin expression |
| WO2014155268A2 (en) | 2013-03-25 | 2014-10-02 | Novartis Ag | Fgf-r tyrosine kinase activity inhibitors - use in diseases associated with lack of or reduced snf5 activity |
| WO2014184778A1 (en) | 2013-05-17 | 2014-11-20 | Novartis Ag | Pyrimidin-4-yl)oxy)-1h-indole-1-carboxamide derivatives and use thereof |
| US9993514B2 (en) | 2013-07-03 | 2018-06-12 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
| US9988376B2 (en) | 2013-07-03 | 2018-06-05 | Glaxosmithkline Intellectual Property Development Limited | Benzothiophene derivatives as estrogen receptor inhibitors |
| WO2015010641A1 (en) | 2013-07-24 | 2015-01-29 | Novartis Ag | Substituted quinazolin-4-one derivatives |
| WO2015022662A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
| WO2015022663A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
| WO2015022664A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
| US9381246B2 (en) | 2013-09-09 | 2016-07-05 | Triact Therapeutics, Inc. | Cancer therapy |
| WO2015042078A2 (en) | 2013-09-22 | 2015-03-26 | Calitor Sciences, Llc | Substituted aminopyrimidine compounds and methods of use |
| WO2015042077A1 (en) | 2013-09-22 | 2015-03-26 | Calitor Sciences, Llc | Substituted aminopyrimidine compounds and methods of use |
| WO2015075598A1 (en) | 2013-11-21 | 2015-05-28 | Pfizer Inc. | 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders |
| WO2015084804A1 (en) | 2013-12-03 | 2015-06-11 | Novartis Ag | Combination of mdm2 inhibitor and braf inhibitor and their use |
| WO2015128873A1 (en) * | 2014-02-27 | 2015-09-03 | Council Of Scientific & Industrial Research | "6-aryl-4-phenylamino-quinazoline analogs as phosphoinositide-3-kinase inhibitors" |
| US20170015662A1 (en) * | 2014-02-27 | 2017-01-19 | Council Of Scientific & Industrial Research | 6-aryl-4-phenylamino-quinazoline analogs as phosphoinositide-3-kinase inhibitors |
| US10202374B2 (en) * | 2014-02-27 | 2019-02-12 | Council Of Scientific & Industrial Research | 6-aryl-4-phenylamino-quinazoline analogs as phosphoinositide-3-kinase inhibitors |
| US10000469B2 (en) | 2014-03-25 | 2018-06-19 | Duke University | Heat shock protein 70 (hsp-70) receptor ligands |
| WO2015145388A2 (en) | 2014-03-27 | 2015-10-01 | Novartis Ag | Methods of treating colorectal cancers harboring upstream wnt pathway mutations |
| EP3312164A1 (en) | 2014-03-28 | 2018-04-25 | Calitor Sciences, LLC | Substituted heteroaryl compounds and methods of use |
| EP3327006A1 (en) | 2014-03-28 | 2018-05-30 | Calitor Sciences, LLC | Substituted heteroaryl compounds and methods of use |
| US10426753B2 (en) | 2014-04-03 | 2019-10-01 | Invictus Oncology Pvt. Ltd. | Supramolecular combinatorial therapeutics |
| WO2015156674A2 (en) | 2014-04-10 | 2015-10-15 | Stichting Het Nederlands Kanker Instituut | Method for treating cancer |
| WO2015155624A1 (en) | 2014-04-10 | 2015-10-15 | Pfizer Inc. | Dihydropyrrolopyrimidine derivatives |
| US12239711B2 (en) | 2014-04-14 | 2025-03-04 | Arvinas Operations, Inc. | Cereblon ligands and bifunctional compounds comprising the same |
| EP3556757A1 (en) | 2014-04-30 | 2019-10-23 | Pfizer Inc | Cycloalkyl-linked diheterocycle derivatives |
| WO2015166373A1 (en) | 2014-04-30 | 2015-11-05 | Pfizer Inc. | Cycloalkyl-linked diheterocycle derivatives |
| WO2016001789A1 (en) | 2014-06-30 | 2016-01-07 | Pfizer Inc. | Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer |
| WO2016011956A1 (en) | 2014-07-25 | 2016-01-28 | Novartis Ag | Combination therapy |
| WO2016016822A1 (en) | 2014-07-31 | 2016-02-04 | Novartis Ag | Combination therapy |
| US10842791B2 (en) | 2014-12-15 | 2020-11-24 | The Regents Of The University Of Michigan | Small molecule inhibitors of EGFR and PI3K |
| US11607414B2 (en) | 2014-12-15 | 2023-03-21 | The Regents Of The University Of Michigan | Small molecule inhibitors of EGFR and PI3K |
| US10206924B2 (en) | 2014-12-15 | 2019-02-19 | The Regents Of The University Of Michigan | Small molecule inhibitors of EGFR and PI3K |
| EP3699290A1 (en) | 2014-12-24 | 2020-08-26 | F. Hoffmann-La Roche AG | Therapeutic, diagnostic, and prognostic methods for cancer |
| US12312316B2 (en) | 2015-01-20 | 2025-05-27 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
| US12377100B2 (en) | 2015-03-04 | 2025-08-05 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| US10285990B2 (en) | 2015-03-04 | 2019-05-14 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| WO2017009751A1 (en) | 2015-07-15 | 2017-01-19 | Pfizer Inc. | Pyrimidine derivatives |
| WO2017044434A1 (en) | 2015-09-11 | 2017-03-16 | Sunshine Lake Pharma Co., Ltd. | Substituted heteroaryl compounds and methods of use |
| US11261187B2 (en) | 2016-04-22 | 2022-03-01 | Duke University | Compounds and methods for targeting HSP90 |
| WO2018039203A1 (en) | 2016-08-23 | 2018-03-01 | Oncopep, Inc. | Peptide vaccines and durvalumab for treating multiple myeloma |
| WO2018039205A1 (en) | 2016-08-23 | 2018-03-01 | Oncopep, Inc. | Peptide vaccines and durvalumab for treating breast cancer |
| US10370342B2 (en) | 2016-09-02 | 2019-08-06 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| US10640499B2 (en) | 2016-09-02 | 2020-05-05 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| US11124487B2 (en) | 2016-09-02 | 2021-09-21 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| US11827609B2 (en) | 2016-09-02 | 2023-11-28 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| WO2018064076A1 (en) | 2016-09-27 | 2018-04-05 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules |
| EP4089116A1 (en) | 2016-09-27 | 2022-11-16 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules |
| US11655282B2 (en) | 2016-09-27 | 2023-05-23 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules |
| US10207998B2 (en) | 2016-09-29 | 2019-02-19 | Duke University | Substituted benzimidazole and substituted benzothiazole inhibitors of transforming growth factor-β kinase and methods of use thereof |
| US10927083B2 (en) | 2016-09-29 | 2021-02-23 | Duke University | Substituted benzimidazoles as inhibitors of transforming growth factor-β kinase |
| US11767298B2 (en) | 2016-09-29 | 2023-09-26 | Duke University | Substituted benzimidazoles as inhibitors of transforming growth factor-β kinase |
| WO2018078143A1 (en) | 2016-10-28 | 2018-05-03 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Means and methods for determining efficacy of anti-egfr inhibitors in colorectal cancer (crc) therapy |
| EP4001269A1 (en) | 2016-12-22 | 2022-05-25 | Amgen Inc. | Benzoisothiazole, isothiazolo[3,4-b]pyridine, quinazoline, phthalazine, pyrido[2,3-d]pyridazine and pyrido[2,3-d]pyrimidine derivatives as kras g12c inhibitors for treating lung, pancreatic or colorectal cancer |
| WO2018119183A2 (en) | 2016-12-22 | 2018-06-28 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| US10532042B2 (en) | 2016-12-22 | 2020-01-14 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| US11285135B2 (en) | 2016-12-22 | 2022-03-29 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| US10994015B2 (en) | 2016-12-23 | 2021-05-04 | Arvinas Operations, Inc. | EGFR proteolysis targeting chimeric molecules and associated methods of use |
| US10519146B2 (en) | 2017-05-22 | 2019-12-31 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| US11905281B2 (en) | 2017-05-22 | 2024-02-20 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| EP3974429A1 (en) | 2017-05-22 | 2022-03-30 | Amgen Inc. | Precursors of kras g12c inhibitors |
| WO2018217651A1 (en) | 2017-05-22 | 2018-11-29 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| EP4141005A1 (en) | 2017-09-08 | 2023-03-01 | Amgen Inc. | Inhibitors of kras g12c and methods of using the same |
| US10640504B2 (en) | 2017-09-08 | 2020-05-05 | Amgen Inc. | Inhibitors of KRAS G12C and methods of using the same |
| US11993597B2 (en) | 2017-09-08 | 2024-05-28 | Amgen Inc. | Inhibitors of KRAS G12C and methods of using the same |
| US11306087B2 (en) | 2017-09-08 | 2022-04-19 | Amgen Inc. | Inhibitors of KRAS G12C and methods of using the same |
| EP4403175A2 (en) | 2017-09-08 | 2024-07-24 | Amgen Inc. | Inhibitors of kras g12c and methods of using the same |
| WO2019051291A1 (en) | 2017-09-08 | 2019-03-14 | Amgen Inc. | Inhibitors of kras g12c and methods of using the same |
| US11708423B2 (en) | 2017-09-26 | 2023-07-25 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules and methods of use |
| WO2019067328A1 (en) | 2017-09-26 | 2019-04-04 | Cero Therapeutics, Inc. | CHIMERIC ENGINEERING RECEPTOR MOLECULES AND METHODS OF USE |
| WO2019083960A1 (en) | 2017-10-24 | 2019-05-02 | Oncopep, Inc. | PEPTIDE VACCINES AND HDAC INHIBITORS FOR THE TREATMENT OF MULTIPLE MYELOMA |
| WO2019083962A1 (en) | 2017-10-24 | 2019-05-02 | Oncopep, Inc. | PEPTIDE AND PEMBROLIZUMAB VACCINES FOR THE TREATMENT OF BREAST CANCER |
| WO2019099311A1 (en) | 2017-11-19 | 2019-05-23 | Sunshine Lake Pharma Co., Ltd. | Substituted heteroaryl compounds and methods of use |
| WO2019119486A1 (zh) | 2017-12-21 | 2019-06-27 | 中国科学院合肥物质科学研究院 | 一类嘧啶类衍生物激酶抑制剂 |
| US11602534B2 (en) | 2017-12-21 | 2023-03-14 | Hefei Institutes Of Physical Science, Chinese Academy Of Sciences | Pyrimidine derivative kinase inhibitors |
| WO2019143874A1 (en) | 2018-01-20 | 2019-07-25 | Sunshine Lake Pharma Co., Ltd. | Substituted aminopyrimidine compounds and methods of use |
| US11834460B2 (en) | 2018-01-26 | 2023-12-05 | Yale University | Imide-based modulators of proteolysis and associated methods of use |
| US11220515B2 (en) | 2018-01-26 | 2022-01-11 | Yale University | Imide-based modulators of proteolysis and associated methods of use |
| WO2019191339A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Expression vectors for chimeric engulfment receptors, genetically modified host cells, and uses thereof |
| WO2019191340A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Cellular immunotherapy compositions and uses thereof |
| US12303551B2 (en) | 2018-03-28 | 2025-05-20 | Cero Therapeutics Holdings, Inc. | Cellular immunotherapy compositions and uses thereof |
| WO2019191334A1 (en) | 2018-03-28 | 2019-10-03 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
| US11766436B2 (en) | 2018-05-04 | 2023-09-26 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| WO2019213526A1 (en) | 2018-05-04 | 2019-11-07 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| US12440491B2 (en) | 2018-05-04 | 2025-10-14 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| US11045484B2 (en) | 2018-05-04 | 2021-06-29 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| WO2019213516A1 (en) | 2018-05-04 | 2019-11-07 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| US11090304B2 (en) | 2018-05-04 | 2021-08-17 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| US10988485B2 (en) | 2018-05-10 | 2021-04-27 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| WO2019217691A1 (en) | 2018-05-10 | 2019-11-14 | Amgen Inc. | Kras g12c inhibitors for the treatment of cancer |
| WO2019232419A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| US11096939B2 (en) | 2018-06-01 | 2021-08-24 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| EP4268898A2 (en) | 2018-06-11 | 2023-11-01 | Amgen Inc. | Kras g12c inhibitors for treating cancer |
| WO2019241157A1 (en) | 2018-06-11 | 2019-12-19 | Amgen Inc. | Kras g12c inhibitors for treating cancer |
| WO2020050890A2 (en) | 2018-06-12 | 2020-03-12 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| US11285156B2 (en) | 2018-06-12 | 2022-03-29 | Amgen Inc. | Substituted piperazines as KRAS G12C inhibitors |
| US12083121B2 (en) | 2018-06-12 | 2024-09-10 | Amgen Inc. | Substituted piperazines as KRAS G12C inhibitors |
| WO2020023628A1 (en) | 2018-07-24 | 2020-01-30 | Hygia Pharmaceuticals, Llc | Compounds, derivatives, and analogs for cancer |
| WO2020070239A1 (en) | 2018-10-04 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Egfr inhibitors for treating keratodermas |
| US12391691B2 (en) | 2018-11-16 | 2025-08-19 | Amgen Inc. | Synthesis of key intermediate of KRAS G12C inhibitor compound |
| WO2020102730A1 (en) | 2018-11-16 | 2020-05-22 | Amgen Inc. | Improved synthesis of key intermediate of kras g12c inhibitor compound |
| EP4234546A2 (en) | 2018-11-16 | 2023-08-30 | Amgen Inc. | Improved synthesis of key intermediate of kras g12c inhibitor compound |
| US12391689B2 (en) | 2018-11-16 | 2025-08-19 | Amgen Inc. | Synthesis of key intermediate of KRAS G12C inhibitor compound |
| US11299491B2 (en) | 2018-11-16 | 2022-04-12 | Amgen Inc. | Synthesis of key intermediate of KRAS G12C inhibitor compound |
| US12280056B2 (en) | 2018-11-19 | 2025-04-22 | Amgen Inc. | Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers |
| US11918584B2 (en) | 2018-11-19 | 2024-03-05 | Amgen Inc. | Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers |
| WO2020106640A1 (en) | 2018-11-19 | 2020-05-28 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
| WO2020106647A2 (en) | 2018-11-19 | 2020-05-28 | Amgen Inc. | Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers |
| US11053226B2 (en) | 2018-11-19 | 2021-07-06 | Amgen Inc. | KRAS G12C inhibitors and methods of using the same |
| US11439645B2 (en) | 2018-11-19 | 2022-09-13 | Amgen Inc. | Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers |
| WO2020132649A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Heteroaryl amides useful as kif18a inhibitors |
| WO2020132653A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Heteroaryl amides useful as kif18a inhibitors |
| US12054476B2 (en) | 2018-12-20 | 2024-08-06 | Amgen Inc. | KIF18A inhibitors |
| WO2020132648A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Kif18a inhibitors |
| WO2020132651A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Kif18a inhibitors |
| US11236069B2 (en) | 2018-12-20 | 2022-02-01 | Amgen Inc. | KIF18A inhibitors |
| US12441736B2 (en) | 2018-12-20 | 2025-10-14 | Amgen Inc. | KIF18A inhibitors |
| US12441705B2 (en) | 2018-12-20 | 2025-10-14 | Amgen Inc. | KIF18A inhibitors |
| US12459932B2 (en) | 2018-12-20 | 2025-11-04 | Amgen Inc. | KIF18A inhibitors |
| WO2020180770A1 (en) | 2019-03-01 | 2020-09-10 | Revolution Medicines, Inc. | Bicyclic heterocyclyl compounds and uses thereof |
| WO2020180768A1 (en) | 2019-03-01 | 2020-09-10 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
| US11396509B2 (en) | 2019-04-17 | 2022-07-26 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
| US11583531B2 (en) | 2019-04-17 | 2023-02-21 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
| US11426404B2 (en) | 2019-05-14 | 2022-08-30 | Amgen Inc. | Dosing of KRAS inhibitor for treatment of cancers |
| US12421234B1 (en) | 2019-05-21 | 2025-09-23 | Amgen Inc. | Solid state forms |
| US11236091B2 (en) | 2019-05-21 | 2022-02-01 | Amgen Inc. | Solid state forms |
| US11827635B2 (en) | 2019-05-21 | 2023-11-28 | Amgen Inc. | Solid state forms |
| US12398133B2 (en) | 2019-05-21 | 2025-08-26 | Amgen Inc. | Solid state forms |
| US12415806B1 (en) | 2019-05-21 | 2025-09-16 | Amgen Inc. | Solid state forms |
| US11286257B2 (en) | 2019-06-28 | 2022-03-29 | Gilead Sciences, Inc. | Processes for preparing toll-like receptor modulator compounds |
| WO2021026098A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
| WO2021026100A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Pyridine derivatives as kif18a inhibitors |
| WO2021026099A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
| US12435058B2 (en) | 2019-08-02 | 2025-10-07 | Amgen Inc. | KIF18A inhibitors |
| WO2021026101A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
| WO2021067875A1 (en) | 2019-10-03 | 2021-04-08 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
| WO2021081212A1 (en) | 2019-10-24 | 2021-04-29 | Amgen Inc. | Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer |
| WO2021091956A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2021091967A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2021091982A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
| EP4656201A2 (en) | 2019-11-04 | 2025-12-03 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2021092115A1 (en) | 2019-11-08 | 2021-05-14 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
| EP4620531A2 (en) | 2019-11-08 | 2025-09-24 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
| US12466825B2 (en) | 2019-11-14 | 2025-11-11 | Amgen Inc. | Synthesis of KRAS G12C inhibitor compound |
| WO2021097207A1 (en) | 2019-11-14 | 2021-05-20 | Amgen Inc. | Improved synthesis of kras g12c inhibitor compound |
| WO2021097212A1 (en) | 2019-11-14 | 2021-05-20 | Amgen Inc. | Improved synthesis of kras g12c inhibitor compound |
| US12473281B2 (en) | 2019-11-14 | 2025-11-18 | Amgen Inc. | Synthesis of KRAS G12C inhibitor compound |
| WO2021097256A1 (en) | 2019-11-14 | 2021-05-20 | Cohbar, Inc. | Cxcr4 antagonist peptides |
| WO2021108683A1 (en) | 2019-11-27 | 2021-06-03 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
| WO2021142026A1 (en) | 2020-01-07 | 2021-07-15 | Revolution Medicines, Inc. | Shp2 inhibitor dosing and methods of treating cancer |
| WO2021185844A1 (en) | 2020-03-16 | 2021-09-23 | Pvac Medical Technologies Ltd | Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof |
| US12359208B2 (en) | 2020-04-15 | 2025-07-15 | California Institute Of Technology | Thermal control of T-cell immunotherapy through molecular and physical actuation |
| WO2021233534A1 (en) | 2020-05-20 | 2021-11-25 | Pvac Medical Technologies Ltd | Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof |
| WO2021257736A1 (en) | 2020-06-18 | 2021-12-23 | Revolution Medicines, Inc. | Methods for delaying, preventing, and treating acquired resistance to ras inhibitors |
| WO2022029220A1 (en) | 2020-08-05 | 2022-02-10 | Ellipses Pharma Ltd | Treatment of cancer using a cyclodextrin-containing polymer-topoisomerase inhibitor conjugate and a parp inhibitor |
| WO2022036287A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Anti-cd72 chimeric receptors and uses thereof |
| WO2022036265A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Chimeric tim receptors and uses thereof |
| WO2022036285A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase |
| US11999964B2 (en) | 2020-08-28 | 2024-06-04 | California Institute Of Technology | Synthetic mammalian signaling circuits for robust cell population control |
| WO2022060583A1 (en) | 2020-09-03 | 2022-03-24 | Revolution Medicines, Inc. | Use of sos1 inhibitors to treat malignancies with shp2 mutations |
| WO2022060836A1 (en) | 2020-09-15 | 2022-03-24 | Revolution Medicines, Inc. | Indole derivatives as ras inhibitors in the treatment of cancer |
| WO2022123316A1 (en) | 2020-12-09 | 2022-06-16 | Takeda Pharmaceutical Company Limited | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
| WO2022140427A1 (en) | 2020-12-22 | 2022-06-30 | Qilu Regor Therapeutics Inc. | Sos1 inhibitors and uses thereof |
| US11673876B2 (en) | 2020-12-22 | 2023-06-13 | Mekanistic Therapeutics Llc | Substituted aminobenzyl heteroaryl compounds as EGFR and/or PI3K inhibitors |
| WO2022183072A1 (en) | 2021-02-26 | 2022-09-01 | Kelonia Therapeutics, Inc. | Lymphocyte targeted lentiviral vectors |
| WO2022235864A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2022235870A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Ras inhibitors for the treatment of cancer |
| WO2022235866A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
| WO2023010097A1 (en) | 2021-07-28 | 2023-02-02 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
| WO2023060253A1 (en) | 2021-10-08 | 2023-04-13 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2023114954A1 (en) | 2021-12-17 | 2023-06-22 | Genzyme Corporation | Pyrazolopyrazine compounds as shp2 inhibitors |
| EP4227307A1 (en) | 2022-02-11 | 2023-08-16 | Genzyme Corporation | Pyrazolopyrazine compounds as shp2 inhibitors |
| US12459896B2 (en) | 2022-03-07 | 2025-11-04 | Amgen Inc. | Process for preparing 4-methyl-2-propan-2-yl-pyridine-3-carbonitrile |
| WO2023172940A1 (en) | 2022-03-08 | 2023-09-14 | Revolution Medicines, Inc. | Methods for treating immune refractory lung cancer |
| WO2023240263A1 (en) | 2022-06-10 | 2023-12-14 | Revolution Medicines, Inc. | Macrocyclic ras inhibitors |
| WO2024030441A1 (en) | 2022-08-02 | 2024-02-08 | National University Corporation Hokkaido University | Methods of improving cellular therapy with organelle complexes |
| WO2024081916A1 (en) | 2022-10-14 | 2024-04-18 | Black Diamond Therapeutics, Inc. | Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives |
| WO2024206858A1 (en) | 2023-03-30 | 2024-10-03 | Revolution Medicines, Inc. | Compositions for inducing ras gtp hydrolysis and uses thereof |
| WO2024211663A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
| WO2024211712A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
| WO2024216016A1 (en) | 2023-04-14 | 2024-10-17 | Revolution Medicines, Inc. | Crystalline forms of a ras inhibitor |
| WO2024216048A1 (en) | 2023-04-14 | 2024-10-17 | Revolution Medicines, Inc. | Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof |
| WO2024229406A1 (en) | 2023-05-04 | 2024-11-07 | Revolution Medicines, Inc. | Combination therapy for a ras related disease or disorder |
| WO2025034702A1 (en) | 2023-08-07 | 2025-02-13 | Revolution Medicines, Inc. | Rmc-6291 for use in the treatment of ras protein-related disease or disorder |
| WO2025080946A2 (en) | 2023-10-12 | 2025-04-17 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2025137507A1 (en) | 2023-12-22 | 2025-06-26 | Regor Pharmaceuticals, Inc. | Sos1 inhibitors and uses thereof |
| WO2025171296A1 (en) | 2024-02-09 | 2025-08-14 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2025240847A1 (en) | 2024-05-17 | 2025-11-20 | Revolution Medicines, Inc. | Ras inhibitors |
| WO2025255438A1 (en) | 2024-06-07 | 2025-12-11 | Revolution Medicines, Inc. | Methods of treating a ras protein-related disease or disorder |
Also Published As
| Publication number | Publication date |
|---|---|
| AU707339B2 (en) | 1999-07-08 |
| US6897214B2 (en) | 2005-05-24 |
| US20030018029A1 (en) | 2003-01-23 |
| JP4074342B2 (ja) | 2008-04-09 |
| ZA971231B (en) | 1997-08-14 |
| MY119992A (en) | 2005-08-30 |
| IL125685A (en) | 2002-11-10 |
| NO311936B1 (no) | 2002-02-18 |
| IL125685A0 (en) | 1999-04-11 |
| US6399602B1 (en) | 2002-06-04 |
| US5866572A (en) | 1999-02-02 |
| ATE293103T1 (de) | 2005-04-15 |
| EP0880507B1 (en) | 2005-04-13 |
| JP2000504713A (ja) | 2000-04-18 |
| DE69733008T2 (de) | 2006-02-16 |
| CN1211240A (zh) | 1999-03-17 |
| GB9603095D0 (en) | 1996-04-10 |
| KR19990082583A (ko) | 1999-11-25 |
| NO983707D0 (no) | 1998-08-13 |
| DE69733008D1 (de) | 2005-05-19 |
| ES2239351T3 (es) | 2005-09-16 |
| AU1612697A (en) | 1997-09-02 |
| NO983707L (no) | 1998-10-13 |
| CN1142919C (zh) | 2004-03-24 |
| NZ330816A (en) | 2000-05-26 |
| PT880507E (pt) | 2005-07-29 |
| EP0880507A1 (en) | 1998-12-02 |
| KR100494824B1 (ko) | 2005-11-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0880507B1 (en) | Quinazoline derivatives as antitumor agents | |
| US5814630A (en) | Quinazoline compounds | |
| EP0790986B1 (en) | Aniline derivatives | |
| EP0823900B1 (en) | Quinazoline derivatives | |
| EP0823901B1 (en) | Quinazoline derivative | |
| EP0824527B1 (en) | Quinazoline derivatives | |
| EP0824525B1 (en) | Quinazoline derivatives | |
| EP0824526B1 (en) | Quinazoline derivative | |
| WO1996016960A1 (en) | Quinazoline derivatives | |
| CA2242102C (en) | Quinazoline derivatives as antitumor agents | |
| HK1005371B (en) | Quinazoline derivatives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 97192242.X Country of ref document: CN |
|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1997902496 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 330816 Country of ref document: NZ |
|
| ENP | Entry into the national phase |
Ref document number: 2242102 Country of ref document: CA Ref document number: 2242102 Country of ref document: CA Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/A/1998/006040 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1019980706321 Country of ref document: KR |
|
| WWP | Wipo information: published in national office |
Ref document number: 1997902496 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: 1019980706321 Country of ref document: KR |
|
| WWR | Wipo information: refused in national office |
Ref document number: 1019980706321 Country of ref document: KR |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1997902496 Country of ref document: EP |