US20140045746A1 - Antidiabetic tricyclic compounds - Google Patents

Antidiabetic tricyclic compounds Download PDF

Info

Publication number
US20140045746A1
US20140045746A1 US13/955,282 US201313955282A US2014045746A1 US 20140045746 A1 US20140045746 A1 US 20140045746A1 US 201313955282 A US201313955282 A US 201313955282A US 2014045746 A1 US2014045746 A1 US 2014045746A1
Authority
US
United States
Prior art keywords
alkyl
group
unsubstituted
substituted
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/955,282
Other languages
English (en)
Inventor
William K. Hagmann
Ravi P. Nargund
Timothy A. Blizzard
Hubert Josien
Purakkattle Biju
Christopher W. Plummer
Qun Dang
Bing Li
Linus S. Lin
Mingxiang Cui
Bin Hu
Jinglai Hao
Zhengxia Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Apptec BVI Inc
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2012/079558 external-priority patent/WO2014019186A1/en
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority to US13/955,282 priority Critical patent/US20140045746A1/en
Assigned to MERCK SHARP & DOHME CORP reassignment MERCK SHARP & DOHME CORP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WUXI APPTEC (BVI) INC.
Assigned to WUXI APPTEC (BVI) INC. reassignment WUXI APPTEC (BVI) INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WUXI APPTEC (SHANGHAI) CO., LTD.
Assigned to WUXI APPTEC (SHANGHAI) CO., LTD. reassignment WUXI APPTEC (SHANGHAI) CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, LINUS S., CHEN, Zhengxia, CUI, MINGXIANG, HAO, JINGLAI, HU, BIN
Assigned to MERCK SHARP & DOHME CORP reassignment MERCK SHARP & DOHME CORP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOSIEN, HUBERT, BIJU, PURAKKATTLE, BLIZZARD, TIMOTHY A., HAGMANN, WILLIAM K., LI, BING, NARGUND, RAVI P., PLUMMER, CHRISTOPHER W.
Assigned to MERCK SHARP & DOHME CORP reassignment MERCK SHARP & DOHME CORP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANG, QUN
Publication of US20140045746A1 publication Critical patent/US20140045746A1/en
Assigned to WUXI APPTEC CO., LTD reassignment WUXI APPTEC CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, Zhengxia, HU, BIN, LIN, LINUS S., CUI, MINGXIANG, HAO, JINGLAI
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WUXI APPTEC CO., LTD
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WUXI APPTEC (BVI) INC.
Assigned to WUXI APPTEC (BVI) INC. reassignment WUXI APPTEC (BVI) INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WUXI APPTEC CO., LTD
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANG, QUN, BIJU, PURAKKATTLE, JOSIEN, HUBERT, LI, BING, LI, DERUN, NARGUND, RAVI P., PLUMMER, CHRISTOPHER W., BLIZZARD, TIMOTHY A., HAGMANN, WILLIAM K.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4433Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/16Ring systems of three rings containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • Diabetes mellitus is a disease derived from multiple causative factors and characterized by elevated levels of plasma glucose (hyperglycemia) in the fasting state or after administration of glucose during an oral glucose tolerance test.
  • diabetes There are two generally recognized forms of diabetes.
  • IDDM insulin-dependent diabetes mellitus
  • Type 2 diabetes or noninsulin-dependent diabetes mellitus (NIDDM)
  • NIDDM noninsulin-dependent diabetes mellitus
  • Patients having Type 2 diabetes have a resistance to the effects of insulin in stimulating glucose and lipid metabolism in the main insulin-sensitive tissues, which are muscle, liver and adipose tissues.
  • Insulin resistance is not primarily caused by a diminished number of insulin receptors but rather by a post-insulin receptor binding defect that is not yet completely understood. This lack of responsiveness to insulin results in insufficient insulin-mediated activation of uptake, oxidation and storage of glucose in muscle, and inadequate insulin-mediated repression of lipolysis in adipose tissue and of glucose production and secretion in the liver.
  • Persistent or uncontrolled hyperglycemia that occurs with diabetes is associated with increased and premature morbidity and mortality. Often abnormal glucose homeostasis is associated both directly and indirectly with obesity, hypertension, and alterations of the lipid, lipoprotein and apolipoprotein metabolism, as well as other metabolic and hemodynamic disease. Patients with Type 2 diabetes mellitus have a significantly increased risk of macrovascular and microvascular complications, including atherosclerosis, coronary heart disease, stroke, peripheral vascular disease, hypertension, nephropathy, neuropathy, and retinopathy. Therefore, therapeutic control of glucose homeostasis, lipid metabolism, obesity, and hypertension are critically important in the clinical management and treatment of diabetes mellitus.
  • a patient having Metabolic Syndrome is characterized as having three or more symptoms selected from the following group of five symptoms: (1) abdominal obesity; (2) hypertriglyceridemia; (3) low high-density lipoprotein cholesterol (HDL); (4) high blood pressure; and (5) elevated fasting glucose, which may be in the range characteristic of Type 2 diabetes if the patient is also diabetic.
  • Type 2 diabetes There are several available treatments for Type 2 diabetes, each of which has its own limitations and potential risks. Physical exercise and a reduction in dietary intake of calories often dramatically improve the diabetic condition and are the usual recommended first-line treatment of Type 2 diabetes and of pre-diabetic conditions associated with insulin resistance. Compliance with this treatment is generally very poor because of well-entrenched sedentary lifestyles and excess food consumption, especially of foods containing high amounts of fat and carbohydrates.
  • hepatic glucose production biguanides, such as phenformin and metformin
  • insulin resistance PPAR agonists, such as rosiglitazone, troglitazone, engliazone, balaglitazone, MCC-555, netoglitazone, T-131, LY-300512, LY-818 and pioglitazone
  • insulin secretion sulfonylureas, such as tolbutamide, glipizide and glimipiride
  • incretin hormone mimetics GLP-1 derivatives and analogs, such as exenatide and liraglitide
  • DPP-4 inhibitors such as sitagliptin, alogliptin, vildagliptin, linagliptin, denagliptin, and saxagliptin).
  • the biguanides are a class of drugs that are widely used to treat Type 2 diabetes.
  • the two best known biguanides, phenformin and metformin cause some correction of hyperglycemia.
  • the biguanides act primarily by inhibiting hepatic glucose production, and they also are believed to modestly improve insulin sensitivity.
  • the biguanides can be used as monotherapy or in combination with other anti-diabetic drugs, such as insulin or an insulin secretagogue, without increasing the risk of hypoglycemia.
  • phenformin and metformin can induce lactic acidosis and nausea/diarrhea. Metformin has a lower risk of side effects than phenformin and is widely prescribed for the treatment of Type 2 diabetes.
  • the glitazones are a newer class of compounds that can ameliorate hyperglycemia and other symptoms of Type 2 diabetes.
  • the glitazones that are currently marketed are agonists of the peroxisome proliferator activated receptor (PPAR) gamma subtype.
  • PPAR peroxisome proliferator activated receptor
  • the PPAR-gamma agonists substantially increase insulin sensitivity in muscle, liver and adipose tissue in several animal models of Type 2 diabetes, resulting in partial or complete correction of elevated plasma glucose levels without the occurrence of hypoglycemia.
  • PPAR-gamma agonism is believed to be responsible for the improved insulin sensititization that is observed in human patients who are treated with the glitazones.
  • New PPAR agonists are currently being developed. Many of the newer PPAR compounds are agonists of one or more of the PPAR alpha, gamma and delta subtypes. Compounds that are agonists of both the PPAR alpha and PPAR gamma subtypes (PPAR alpha/gamma dual agonists) have been made and tested, but so far none have been approved by the regulatory authorities.
  • the currently marketed PPAR gamma agonists are modestly effective in reducing plasma glucose and HemoglobinA1C.
  • SPPARM Selective PPAR Gamma Partial Agonists
  • insulin secretagogues such as the sulfonylureas (e.g. tolbutamide, glipizide, and glimepiride).
  • sulfonylureas e.g. tolbutamide, glipizide, and glimepiride.
  • these drugs increase the plasma level of insulin by stimulating the pancreatic ⁇ -cells to secrete more insulin.
  • Insulin secretion in the pancreatic ⁇ -cell is under strict regulation by glucose and an array of metabolic, neural and hormonal signals. Glucose stimulates insulin production and secretion through its metabolism to generate ATP and other signaling molecules, whereas other extracellular signals act as potentiators or inhibitors of insulin secretion through GPCR's present on the plasma membrane.
  • Sulfonylureas and related insulin secretagogues act by blocking the ATP-dependent K+ channel in ⁇ -cells, which causes depolarization of the cell and the opening of the voltage-dependent Ca2+ channels with stimulation of insulin release.
  • This mechanism is non-glucose dependent, and hence insulin secretion can occur regardless of the ambient glucose levels. This can cause insulin secretion even if the glucose level is low, resulting in hypoglycemia, which can be fatal in severe cases.
  • the administration of insulin secretagogues must therefore be carefully controlled.
  • the insulin secretagogues are often used as a first-line drug treatment for Type 2 diabetes.
  • Dipeptidyl peptidase IV (DPP-4) inhibitors e.g., sitagliptin, vildagliptin, alogliptin, linagliptin, denagliptin, and saxagliptin
  • DPP-4 is a cell surface protein with broad tissue distribution that has been implicated in a wide range of biological functions.
  • DPP-4 is identical to the T-cell activation marker CD26 and can cleave a number of immunoregulatory, endocrine, and neurological peptides in vitro.
  • GLP-1 glucagon-like peptide-1
  • GIP glycose-dependent insulinotropic peptide; also known as gastric inhibitory peptide
  • endocrine cells that are located in the epithelium of the small intestine. When these endocrine cells sense an increase in the concentration of glucose in the lumen of the digestive tract, they act as the trigger for incretin release. Incretins are carried through the circulation to beta cells in the pancreas and cause the beta cells to secrete more insulin in anticipation of an increase of blood glucose resulting from the digesting meal.
  • DPP-4 inhibition increases the steady state concentrations of GLP-1 and GIP, resulting in improved glucose tolerance. Inactivation of these peptides by DPP-4 may also play a role in glucose homeostasis. DPP-4 inhibitors therefore have utility in the treatment of Type 2 diabetes and in the treatment and prevention of the numerous conditions that often accompany Type 2 diabetes, including Metabolic Syndrome, reactive hypoglycemia, and diabetic dyslipidemia. GLP-1 has other effects that help to lower blood glucose and contribute to glucose homeostasis. GLP-1 inhibits glucagon secretion from the liver. Glucagon is a hormone that increases blood glucose levels by stimulating glucose production from glycogen stores in the liver.
  • GLP-1 also delays stomach emptying, which helps to spread glucose absorption out over time, and thus limit hyperglycemia. Also, studies in animals have shown that GLP-1 can increase the number of beta cells, either through promoting growth or by inhibiting apoptosis. Thus, potentiation of GLP-1 action by preventing its degradation offers several mechanisms to attenuate hyperglycemia associated with Type 2 diabetes.
  • GPCR G-protein coupled receptors
  • GPR40 As a potential target for the treatment of Type 2 diabetes.
  • the limited tissue distribution of GPR40 suggests that there would be less chance for side effects associated with GPR40 activity in other tissues.
  • G-protein-coupled receptor 40 may be useful to treat type 2 diabetes mellitus, obesity, hypertension, dyslipidemia, cancer, and metabolic syndrome, as well as cardiovascular diseases, such as myocardial infarction and stroke, by improving glucose and lipid metabolism and by reducing body weight.
  • cardiovascular diseases such as myocardial infarction and stroke, by improving glucose and lipid metabolism and by reducing body weight.
  • potent GPR40 agonists that have pharmacokinetic and pharmacodynamic properties suitable for use as human pharmaceuticals.
  • Benzimidazole compounds are disclosed in WO 2010/051206; WO 2010/051176; WO 2010/047982; WO 2010/036613; WO 93/07124; WO 95/29897; WO 98/39342; WO 98/39343; WO 00/03997; WO 00/14095; WO 01/53272; WO 01/53291; WO 02/092575; WO 02/40019; WO 03/018061; WO 05/002520; WO 05/018672; WO 06/094209; U.S. Pat. No. 6,312,662; U.S. Pat. No. 6,489,476; US 2005/0148643; DE 3 316 095; JP 6 298 731; EP 0 126 030; EP 0 128 862; EP 0 129 506; and EP 0 120 403.
  • G-protein-coupled receptor 40 (GPR40) agonists are disclosed in WO 2007/136572, WO 2007/136573, WO 2009/058237, WO 2006/083612, WO 2006/083781, WO 2010/085522, WO 2010/085525, WO 2010/085528, WO 2010/091176, WO 2004/041266, EP 2004/1630152, WO 2004/022551, WO 2005/051890, WO 2005/051373, EP 2004/1698624, WO 2005/086661, WO 2007/213364, WO 2005/063729, WO 2005/087710, WO 2006/127503, WO 2007/1013689, WO 2006/038738, WO 2007/033002, WO 2007/106469, WO 2007/123225, WO 2008/001931, WO 2008/030618, WO 2008/054674, WO 2008/054675, WO 2008/066097, WO 2008/130514, WO 2009/048527
  • the present invention relates to novel substituted compounds of structural formula I:
  • the compounds of structural formula I, and embodiments thereof, are agonists of G-protein-coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases, disorders and conditions mediated by agonism of the G-protein-coupled receptor 40, such as Type 2 diabetes mellitus, insulin resistance, hyperglycemia, dyslipidemia, lipid disorders, obesity, hypertension, Metabolic Syndrome and atherosclerosis.
  • GPR40 G-protein-coupled receptor 40
  • the present invention also relates to pharmaceutical compositions comprising the compounds of the present invention and a pharmaceutically acceptable carrier.
  • the present invention also relates to methods for the treatment, control or prevention of disorders, diseases, and conditions that may be responsive to agonism of the G-protein-coupled receptor 40 in a subject in need thereof by administering the compounds and pharmaceutical compositions of the present invention.
  • the present invention also relates to the use of compounds of the present invention for manufacture of a medicament useful in treating diseases, disorders and conditions that may be responsive to the agonism of the G-protein-coupled receptor 40.
  • the present invention is also concerned with treatment of these diseases, disorders and conditions by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent that may be useful to treat the disease, disorder and condition.
  • the invention is further concerned with processes for preparing the compounds of this invention.
  • the present invention is concerned with novel compounds of structural Formula I:
  • X is selected from the group consisting of:
  • T is selected from the group consisting of: CH, N and N-oxide
  • U is selected from the group consisting of: CH, N and N-oxide
  • V is selected from the group consisting of: CH, N and N-oxide; provided that one or two of T, U and V is N or N-oxide
  • A is selected from the group consisting of:
  • A is unsubstituted or substituted with one to five substituents selected from R a ;
  • B is selected from the group consisting of:
  • R 1 is selected from the group consisting of:
  • R i is selected from the group consisting of:
  • R 3 is selected from the group consisting of:
  • each C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, and C 3-6 cycloalkyl is unsubstituted or substituted with one to three substituents selected from R L ;
  • R 4 is selected from the group consisting of:
  • R 5 is selected from the group consisting of:
  • R 6 is selected from the group consisting of:
  • R 5 and R 6 can together form oxo;
  • R a is selected from the group consisting of:
  • R b is independently selected from the group consisting of:
  • R b is unsubstituted or substituted with one to five substituents selected from R k ;
  • R c and R d are each independently selected from the group consisting of:
  • R c and R d together with the atom(s) to which they are attached form a cycloheteroalkyl ring of 4 to 7 members containing 0-2 additional heteroatoms independently selected from oxygen, sulfur and N—R g , and wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f ; each R e is independently selected from the group consisting of:
  • each R e is unsubstituted or substituted with one to three substituents selected from R h ; each R f is selected from the group consisting of:
  • each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 ; each R g is selected from the group consisting of:
  • each R h is selected from the group consisting of:
  • each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 ;
  • R i is independently selected from the group consisting of:
  • R j is independently selected from the group consisting of:
  • each R k is independently selected from the group consisting of:
  • each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl;
  • R L is selected from the group consisting of:
  • the invention has numerous embodiments, which are summarized below.
  • the invention includes the compounds as shown, and also includes individual diastereoisomers, enantiomers, and epimers of the compounds, and mixtures of diastereoisomers and/or enantiomers thereof including racemic mixtures.
  • X is selected from the group consisting of: oxygen, and —NH. In a class of this embodiment, X is oxygen. In another class of this embodiment, X is NH.
  • T is selected from the group consisting of: CH, N and N-oxide. In a class of this embodiment, T is selected from the group consisting of: CH and N. In another class of this embodiment, T is CH. In another class of this embodiment, T is N or N-oxide. In another class of this embodiment, T is N.
  • U is selected from the group consisting of: CH, N and N-oxide. In a class of this embodiment, U is selected from the group consisting of: CH and N. In another class of this embodiment, U is CH. In another class of this embodiment, U is N or N-oxide. In another class of this embodiment, U is N.
  • V is selected from the group consisting of: CH, N and N-oxide. In a class of this embodiment, V is selected from the group consisting of: CH and N. In another class of this embodiment, V is CH. In another class of this embodiment, V is N or N-oxide. In another class of this embodiment, V is N.
  • T is CH, U is CH, and V is N or N-oxide.
  • T is CH, U is CH, and V is N.
  • T is CH, U is N or N-oxide, and V is CH.
  • T is CH, U is N, and V is CH.
  • T is N or N-oxide
  • U is CH
  • V is CH
  • T is N
  • U is CH
  • V is CH
  • T is CH, U is N or N-oxide, and V is N or N-oxide.
  • T is CH, U is N, and V is N.
  • T is N or N-oxide
  • U is CH
  • V is N or N-oxide
  • T is N
  • U is CH
  • V is N
  • T is N or N-oxide
  • U is N or N-oxide
  • V is CH.
  • T is N
  • U is N
  • V is CH.
  • A is selected from the group consisting of: aryl and heteroaryl, wherein A is unsubstituted or substituted with one to five substituents selected from R a .
  • A is unsubstituted or substituted with one to four substituents selected from R a .
  • A is unsubstituted or substituted with one to three substituents selected from R a .
  • A is unsubstituted or substituted with one to two substituents selected from R a .
  • A is selected from the group consisting of: phenyl and pyridine, wherein A is unsubstituted or substituted with one to five substituents selected from R a .
  • A is unsubstituted or substituted with one to four substituents selected from R a .
  • A is unsubstituted or substituted with one to three substituents selected from R a .
  • A is unsubstituted or substituted with one to two substituents selected from R a .
  • A is aryl, wherein A is unsubstituted or substituted with one to five substituents selected from R a .
  • A is unsubstituted or substituted with one to four substituents selected from R a .
  • A is unsubstituted or substituted with one to three substituents selected from R a .
  • A is unsubstituted or substituted with one to two substituents selected from R a .
  • A is phenyl, wherein A is unsubstituted or substituted with one to five substituents selected from R a .
  • A is unsubstituted or substituted with one to four substituents selected from R a .
  • A is unsubstituted or substituted with one to three substituents selected from R a .
  • A is unsubstituted or substituted with one to two substituents selected from R a .
  • A is heteroaryl, wherein A is unsubstituted or substituted with one to five substituents selected from R a .
  • A is unsubstituted or substituted with one to four substituents selected from R a .
  • A is unsubstituted or substituted with one to three substituents selected from R a .
  • A is unsubstituted or substituted with one to two substituents selected from R a .
  • A is pyridine, wherein A is unsubstituted or substituted with one to five substituents selected from R a .
  • A is unsubstituted or substituted with one to four substituents selected from R a .
  • A is unsubstituted or substituted with one to three substituents selected from R a .
  • A is unsubstituted or substituted with one to two substituents selected from R a .
  • B is selected from the group consisting of: aryl, aryl-O—, C 3-4 cycloalkyl-, C 3-6 cycloalkyl-C 1-10 alkyl-, C 3-6 cycloalkyl-C 1-10 alkyl-O—, C 2-5 cycloheteroalkyl-, heteroaryl, heteroaryl-O—, aryl-C 1-10 alkyl-, and heteroaryl-C 1-10 alkyl-, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b . In another class of this embodiment, B is unsubstituted or substituted with one to two substituents selected from R b .
  • B is selected from the group consisting of: aryl, and heteroaryl, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is selected from the group consisting of phenyl, pyridine, pyrimidine, thiazole, benzimidazole, benzthiazole, benzoxazole, and benzisoxazole, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b . In another class of this embodiment, B is unsubstituted or substituted with one to two substituents selected from R b .
  • B is selected from the group consisting of: aryl, and heteroaryl, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is selected from the group consisting of phenyl, pyridine, pyrimidine, thiazole and benzimidazole, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b .
  • B is unsubstituted or substituted with one to two substituents selected from R b .
  • B is aryl, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b .
  • B is unsubstituted or substituted with one to two substituents selected from R b .
  • B is phenyl, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b .
  • B is unsubstituted or substituted with one to two substituents selected from R b .
  • B is heteroaryl, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b .
  • B is unsubstituted or substituted with one to two substituents selected from R b .
  • B is selected from the group consisting of: pyridine, pyrimidine, thiazole, benzimidazole, benzthiazole, benzoxazole, and benzisoxazole, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is selected from the group consisting of: pyridine, pyrimidine, thiazole, and benzimidazole, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b .
  • B is unsubstituted or substituted with one to two substituents selected from Rb.
  • B is pyridine or benzimidazole, wherein B is unsubstituted or substituted with one to five substituents selected from R b .
  • B is unsubstituted or substituted with one to four substituents selected from R b .
  • B is unsubstituted or substituted with one to three substituents selected from R b .
  • B is unsubstituted or substituted with one to two substituents selected from R b .
  • R 1 is selected from the group consisting of: halogen, —OR e , —CN, —C 1-6 alkyl, and C 3-6 cycloalkyl, wherein each C 1-4 alkyl and C 3-6 cycloalkyl is unsubstituted or substituted with one to three substituents selected from R i .
  • R 1 is selected from the group consisting of: halogen, —OR e , —CN, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R i .
  • R 1 is selected from the group consisting of: halogen, —CN, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R i .
  • R 1 is —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R i .
  • R 2 is selected from the group consisting of: hydrogen, —C 1-6 alkyl, and C 3-6 cycloalkyl, wherein each C 1-6 alkyl and C 3-6 cycloalkyl is unsubstituted or substituted with one to three substituents selected from R.
  • R 2 is selected from the group consisting of: hydrogen, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R.
  • R 2 is —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R.
  • R 2 is hydrogen.
  • R 3 is selected from the group consisting of: hydrogen, halogen, —OR e , —C 1-6 alkyl, —C 2-6 alkenyl, —C 2-6 alkynyl, and —C 3-6 cycloalkyl, wherein each —C 1-6 alkyl, —C 2-6 alkenyl, —C 2-6 alkynyl, and —C 3-6 cycloalkyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 3 is selected from the group consisting of: hydrogen, halogen, —OR e , —C 1-6 alkyl, —C 2-6 alkenyl, and —C 2-6 alkynyl, wherein each —C 1-6 alkyl, —C 2-6 alkenyl, and —C 2-6 alkynyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 3 is selected from the group consisting of: hydrogen, halogen, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 3 is selected from the group consisting of: hydrogen, halogen, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 3 is selected from the group consisting of: hydrogen, F and —CH 3 .
  • R 3 is hydrogen.
  • R 4 is selected from the group consisting of: hydrogen, halogen, —OR e , —C 1-6 alkyl, —C 2-6 alkenyl, —C 2-4 alkynyl, and —C 3-6 cycloalkyl, wherein each —C 1-6 alkyl, —C 2-6 alkenyl, —C 2-6 alkynyl, and —C 3-6 cycloalkyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 4 is selected from the group consisting of: hydrogen, halogen, —OR e , —C 1-6 alkyl, —C 2-6 alkenyl, and —C 2-6 alkynyl, wherein each —C 1-6 alkyl, —C 2-6 alkenyl, and —C 2-6 alkynyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 4 is selected from the group consisting of: hydrogen, halogen, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 4 is selected from the group consisting of: hydrogen, halogen, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R L .
  • R 4 is selected from the group consisting of: hydrogen, F and —CH 3 .
  • R 4 is hydrogen.
  • R 5 is selected from the group consisting of: hydrogen, —C 1-3 alkyl, and halogen. In a class of this embodiment, R 5 is selected from the group consisting of: hydrogen, —C 1-3 alkyl, and halogen. In another class of this embodiment, R 5 is selected from the group consisting of: hydrogen, and —C 1-3 alkyl. In another class of this embodiment, R 5 is —C 1-3 alkyl. In another class of this embodiment, R 5 is hydrogen.
  • R 6 is selected from the group consisting of: hydrogen, —C 1-3 alkyl, and halogen, or R 5 and R 6 can together form oxo.
  • R 6 is selected from the group consisting of: hydrogen, —C 1-3 alkyl, and halogen.
  • R 6 is selected from the group consisting of: hydrogen, and —C 1-3 alkyl.
  • R 6 is —C 1-3 alkyl.
  • R 6 is hydrogen.
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl, provided that when A is phenyl, then R a is not selected from the group consisting of:
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl, provided that when A is phenyl, then R a is not selected from the group consisting of:
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl, provided that when A is phenyl and B is phenyl or
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl, provided that when A is phenyl and B is phenyl or
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl.
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —S(O) m R e , —NR c R d , —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, and —CF 3 .
  • R a is selected from the group consisting of: —CH 3 , F, and —CF 3 .
  • R a is selected from the group consisting of: —C 1-6 alkyl and halogen.
  • R a is selected from the group consisting of: —CH 3 , and F.
  • R a is —C 1-6 alkyl.
  • R a is —CH 3 .
  • R a is halogen.
  • R a is F.
  • R a is selected from the group consisting of: halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl.
  • R a is selected from the group consisting of: halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: halogen, —OR e , —S(O) m R e , —NR c R d , —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: halogen, —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: halogen, and —CF 3 .
  • R a is selected from the group consisting of: F, and —CF 3 .
  • R a is —CF 3 .
  • R a is F.
  • R a is selected from the group consisting of: —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl.
  • R a is selected from the group consisting of: —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: —OR e , —S(O) m R e , —NR c R d , —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is selected from the group consisting of: —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R a is —CF 3 .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —NR c S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O—(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e ,
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —NR c S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —NR c S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —NR c S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloakyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —NR c S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-C 1-10 alkyl-, —
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p O—C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, and —S(O) 2 C 1-10 alkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k , or a pharmaceutically acceptable salt thereof.
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p O—C 2-10 cycloheteroalkyl, —CF 3 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k , or a pharmaceutically acceptable salt thereof.
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, —O—C 1-6 alkyl-O-isosorbide and —O—C 1-6 alkyl-O-isomannide, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, —O—C 1-6 alkyl-O-isosorbide and —O—C 1-6 alkyl-O-isomannide, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , F, Cl, I, —OH, —OC 1-10 alkyl, —OCH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , ——OCH 2 CH(OH
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , F, Cl, I, —OH, —OC 1-10 alkyl, —OCH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 )
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , F, I, —OH, —OC 1-10 alkyl, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —OCH 2 -oxetane, —OCH 2 -tetrahydropyran, —CF 3 , and pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-; —NR c S(O) m R e , —NR c S(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O-aryl, —O-heteroaryl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 3-6 cycloalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, aryl, and heteroaryl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 3-6 cycloalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , F, Cl, I, —OH, —OC 1-10 alkyl, —OCH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , ——OCH 2 CH(OH
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , F, Cl, I, —OH, —OC 1-10 alkyl, —OCH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 )
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , F, I, —OH, —OC 1-10 alkyl, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —OCH 2 -oxetane, —OCH 2 -tetrahydropyran, —CF 3 , and pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , F, Cl, I, —OH, —OCH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , F, Cl, I, —OH, —OCH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 CH 3 ) 2
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , F, I, —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —OCH 2 -methyloxetane, —OCH 2 -fluorotetrahydropyran, —CF 3 , and (methylsulfonyl)methylpyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, —OH, —OC 2-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, —OH, —OC 2-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p C 1-10 alkyl, —(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e ,
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p O—C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, and —S(O) 2 C 1-10 alkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k , or a pharmaceutically acceptable salt thereof.
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, halogen, —OH, —OC 1-10 alkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p O—C 2-10 cycloheteroalkyl, —CF 3 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k , or a pharmaceutically acceptable salt thereof.
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, —O—C 1-6 alkyl-O-isosorbide and —O—C 1-6 alkyl-O-isomannide, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, —O—C 1-6 alkyl-O-isosorbide and —O—C 1-6 alkyl-O-isomannide, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 O 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O(CH 2 ) 2 C(CH 3
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 ) 2 —O—CH 2 C(CH 3 ) 2 CN
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —OCH 2 -oxetane, —OCH 2 -tetrahydropyran, —CF 3 , and pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, —OH, —OC 2-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O(CH 2 ) p C 2-5 cycloheteroalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-; —NR
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —O-aryl, —O-heteroaryl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 3-6 cycloalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, aryl, and heteroaryl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 3-6 cycloalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OH, —OC 2-10 alkyl, —O(CH 2 ) p C 2-10 cycloheteroalkyl, —CF 3 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O(CH 3 , —CH 2
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 ) 2 —O—CH 2 C(CH 3 ) 2 CN
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , —OH, —OC 2-10 alkyl, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —OCH 2 -oxetane, —OCH 2 -tetrahydropyran, —CF 3 , and pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, (CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O(CH 2 )
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 ) 2 —O—CH 2 C(CH 3 ) 2 CN
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , —OH, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —OCH 2 -methyloxetane, —OCH 2 -fluorotetrahydropyran, —CF 3 , and (methylsulfonyl)methyl-pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, OH, —OC 2-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, OH, —OC 2-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl-, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-, —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p O—C 2-10 cycloheteroalkyl, —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, and —S(O) 2 C 1-10 alkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k , or a pharmaceutically acceptable salt thereof.
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OC 2-10 alkyl, —O(CH 2 ) p O—C 2-10 cycloheteroalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k , or a pharmaceutically acceptable salt thereof.
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, OH, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, —O—C 1-6 alkyl-O-isosorbide and —O—C 1-6 alkyl-O-isomannide, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, OH, —OC 2-10 alkyl, —O—C 1-6 alkyl-O-isosorbide and —O—C 1-6 alkyl-O-isomannide, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , OH, —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O(CH 2 ) 2 OH,
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , OH, —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 ) 2 —O—CH 2 C(CH 3 ) 2 CN,
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, and pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, —OC 2-10 alkyl, —OC 2-10 alkenyl, —O(CH 2 ) p OC 1-10 alkyl, —(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O(CH 2 ) p C 3-6 cycloalkyl-C 1-10 alkyl, —O-aryl, —O-heteroaryl, —O-aryl-C 1-10 alkyl-, —O-heteroaryl-C 1-10 alkyl-; —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —O-aryl, —O-heteroaryl, —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 3-6 cycloalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, aryl, and heteroaryl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —C 2-10 alkenyl, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 3-6 cycloalkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OC 2-10 alkyl, —O(CH 2 ) p OC 1-10 alkyl, —O(CH 2 ) p C 3-6 cycloalkyl, —OCF 3 , —OCHF 2 , —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —C 1-10 alkyl, —OC 2-10 alkyl, —(CH 2 ) p —C 2-10 cycloheteroalkyl, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OC 2-10 alkyl, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN,
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OC 2-10 alkyl, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 ) 2 —O
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , —OC 2-10 alkyl, —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, and pyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —OCH 2 CF 2 CF 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O(CH 2 ) 3
  • R b is independently selected from the group consisting of: —CH 3 , —CH 2 CH 3 , —(CH 2 ) 2 C(CH 3 ) 2 OH, —(CH 2 ) 3 C(CH 3 ) 2 OH, —(CH 2 ) 4 SO 2 CH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —OCH 2 CH(OH)CH 3 , —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 CH(OH)CH 2 OH, —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, —O—(CH 2 ) 2 —O—CH 2 C(CH 3 ) 2 CN, —O
  • R b is independently selected from the group consisting of: —CH 3 , —(CH 2 ) 4 SO 2 CH 3 , —OCH 2 C(CH 3 ) 2 OH, —O(CH 2 ) 2 C(CH 3 ) 2 OH, —O(CH 2 ) 3 C(CH 3 ) 2 OH, —O(CH 2 ) 2 CH(OH)CH 3 , —O(CH 2 ) 3 SO 2 CH 3 , —OCH 2 C(CH 2 OH) 2 CH 3 , —O(CH 2 ) 3 C(CH 3 ) 2 CN, and (methylsulfonyl)methylpyrrolidine, wherein each R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is —OC 1-10 alkyl, wherein R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is —OC 2-10 alkyl, wherein R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is —OC 3-10 alkyl, wherein R b is unsubstituted or substituted with one to five substituents selected from R k .
  • R b is —O(CH 2 ) 3 SO 2 CH 3 .
  • R c and R d are each independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 3-6 cycloalkyl-C 1-10 -alkyl-, —C 2-5 cycloheteroalkyl, —C 2-5 cycloheteroalkyl-C 1-10 alkyl-, aryl, heteroaryl, aryl-C 1-10 alkyl-, and heteroaryl-C 1-10 alkyl-, or R c and R d together with the atom(s) to which they are attached form a cycloheteroalkyl ring of 4 to 7 members containing 0-2 additional heteroatoms independently selected from oxygen, sulfur and N—R g , and wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c and R d are each independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 2-5 cycloheteroalkyl, aryl, and heteroaryl, or R c and R d together with the atom(s) to which they are attached form a cycloheteroalkyl ring of 4 to 7 members containing 0-2 additional heteroatoms independently selected from oxygen, sulfur and N—R g , and wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c and R d are each independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, and —C 2-10 alkenyl, or R c and R d together with the atom(s) to which they are attached form a cycloheteroalkyl ring of 4 to 7 members containing 0-2 additional heteroatoms independently selected from oxygen, sulfur and N—R g , and wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c and R d are each independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 3-6 cycloalkyl-C 1-10 alkyl-, —C 2-5 cycloheteroalkyl, —C 2-5 cycloheteroalkyl-C 1-10 alkyl-, aryl, heteroaryl, aryl-C 1-10 alkyl-, and heteroaryl-C 1-10 alkyl-, wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c and R d are each independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 2-5 cycloheteroalkyl, aryl, and heteroaryl, wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c and R d are each independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, and —C 2-10 alkenyl, wherein each R c and R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 3-6 cycloalkyl-C 1-10 alkyl-, —C 2-5 cycloheteroalkyl, —C 2-5 cycloheteroalkyl-C 1-10 alkyl-, aryl, heteroaryl, aryl-C 1-10 alkyl-, and heteroaryl-C 1-10 alkyl-, wherein each R c is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 2-5 cycloheteroalkyl, aryl, and heteroaryl, wherein each R c is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R c is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, and —C 2-10 alkenyl, wherein each R c is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R d is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 3-6 cycloalkyl-C 1-10 alkyl-, —C 2-5 cycloheteroalkyl, —C 2-5 cycloheteroalkyl-C 1-10 alkyl-, aryl, heteroaryl, aryl-C 1-10 alkyl-, and heteroaryl-C 1-10 alkyl-, wherein each R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R d is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 2-5 cycloheteroalkyl, aryl, and heteroaryl, wherein each R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • R d is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, and —C 2-10 alkenyl, wherein each R d is unsubstituted or substituted with one to three substituents independently selected from R f .
  • each R e is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, —C 3-6 cycloalkyl-C 1-10 alkyl-, -cycloheteroalkyl, cycloheteroalkyl-C 1-10 alkyl-, aryl, heteroaryl, aryl-C 1-10 alkyl-, and heteroaryl-C 1-10 alkyl-, wherein each R e is unsubstituted or substituted with one to three substituents selected from R h .
  • each R e is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, —C 2-10 alkenyl, —C 3-6 cycloalkyl, -cycloheteroalkyl, aryl, heteroaryl, wherein each R e is unsubstituted or substituted with one to three substituents selected from R h .
  • each R e is independently selected from the group consisting of: hydrogen, —C 1-10 alkyl, and —C 2-10 alkenyl, wherein each R e is unsubstituted or substituted with one to three substituents selected from R h .
  • each R e is independently selected from the group consisting of: hydrogen, and —C 1-10 alkyl, wherein each R e is unsubstituted or substituted with one to three substituents selected from R h .
  • each R e is —C 1-10 alkyl, wherein each R e is unsubstituted or substituted with one to three substituents selected from R h .
  • each R e is —C 1-10 alkyl.
  • each R e is hydrogen.
  • each R f is selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, —O—C 1-4 alkyl, —S(O) m —C 1-4 alkyl, —CN, —CF 3 , —OCHF 2 , and —OCF 3 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R f is selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, —O—C 1-4 alkyl, —CN, —CF 3 , —OCHF 2 , and —OCF 3 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R f is selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, —CN, —CF 3 , —OCHF 2 , and —OCF 3 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R f is selected from the group consisting of: halogen, and —C 1-10 alkyl, wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R g is selected from the group consisting of: hydrogen, —C(O)R e , and —C 1-10 alkyl, wherein —C 1-10 alkyl is unsubstituted or substituted with one to five fluorines.
  • each R h is selected from the group consisting of: halogen, —C 1-10 -alkyl, —OH, —O—C 1-4 alkyl, —S(O) m —C 1-4 alkyl, —CN, —CF 3 , —OCHF 2 , and —OCF 3 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R h is selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, —O—C 1-4 alkyl, —CN, —CF 3 , —OCHF 2 , and —OCF 3 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R h is selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, —CN, —CF 3 , —OCHF 2 , and —OCF 3 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • each R h is selected from the group consisting of: halogen, and —C 1-10 alkyl, wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, halogen, cyano, and —S(O) 2 CH 3 .
  • R i is independently selected from the group consisting of: —C 1-6 alkyl, —OR e , —NR c S(O) m R e , halogen, —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl.
  • R i is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R i is selected from the group consisting of: —C 1-6 alkyl, halogen, —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R i is —CF 3 .
  • R 1 is independently selected from the group consisting of: —C 1-10 alkyl, —OR e , —NR c S(O) m R e , halogen, —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl.
  • R j is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R j is selected from the group consisting of: —C 1-6 alkyl, halogen, —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R j is —CF 3 .
  • each R k is independently selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, oxo, halogen, —O—C 1-4 alkyl, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —CF 3 , —OCHF 2 , —OCF 3 , —NH 2 , —NHSO 2 C 1-6 alkyl, —NHCOC 1-6 alkyl, ⁇ N(OCH 3 ), —P(O)(OH) 2 , and —P(O)(OC 1-6 alkyl) 2 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —O—C 1-4 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NHSO 2 C 1-6 alkyl, and ⁇ N(OCH 3 ), and —P(O)(OC 1-6 alkyl) 2 , wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl; or a pharmaceutically acceptable salt thereof.
  • each R k is independently selected from the group consisting of: —CH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 , CN and —P(O)(OCH 3 ) 2 , wherein each —CH 3 is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —CH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 , CN and —P(O)(OCH 3 ) 2 , wherein each —CH 3 is unsubstituted or substituted with one to three —OH.
  • each R k is independently selected from the group consisting of: —CH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 and —P(O)(OCH 3 ) 2 ,
  • each R k is independently selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, oxo, halogen, —O—C 1-4 alkyl, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —CF 3 , —OCHF 2 , —OCF 3 , —NH 2 , —NHSO 2 C 1-6 alkyl, —NHCOC 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NH 2 , —NHSO 2 C 1-6 alkyl, —NHCOC 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NHSO 2 C 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, and —CN, wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —CH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 , and CN, wherein each —CH 3 is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —CH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 , and CN, wherein each —CH 3 is unsubstituted or substituted with one to three —OH.
  • each R k is independently selected from the group consisting of: —CH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 .
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —O—C 1-4 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NHSO 2 C 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl, or a pharmaceutically acceptable salt thereof.
  • each R k is independently selected from the group consisting of: —CH 3 , OCH 3 , —CH 2 OH, —OH, F, —SO 2 CH 3 , —CH 2 SO 2 CH 3 , and CN, wherein each —CH 3 is unsubstituted or substituted with one to three —OH.
  • each R k is independently selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, oxo, halogen, —O—C 1-4 alkyl, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —CF 3 , —OCHF 2 , —OCF 3 , —NH 2 , —NHSO 2 C 1-6 alkyl, —NHCOC 1-6 alkyl, ⁇ N(OCH 3 ), —P(O)(OH) 2 , and —P(O)(OC 1-6 alkyl) 2 , wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —O—C 1-4 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NHSO 2 C 1-6 alkyl, and ⁇ N(OCH 3 ), and —P(O)(OC 1-6 alkyl) 2 , wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: halogen, —C 1-10 alkyl, —OH, oxo, halogen, —O—C 1-4 alkyl, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —CF 3 , —OCHF 2 , —OCF 3 , —NH 2 , —NHSO 2 C 1-6 alkyl, —NHCOC 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NH 2 , —NHSO 2 C 1-6 alkyl, —NHCOC 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, —CN, —NHSO 2 C 1-6 alkyl, and ⁇ N(OCH 3 ), wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —C 1-10 alkyl, —OH, halogen, —SO 2 —C 1-6 alkyl, —C 1-6 alkyl-SO 2 C 1-6 alkyl, and —CN, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —SO 2 —C 1-6 alkyl, and —C 1-6 alkyl-SO 2 C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl.
  • each R k is independently selected from the group consisting of: —SO 2 CH 3 , and —CH 2 SO 2 CH 3 , wherein each —CH 3 is unsubstituted or substituted with one to three —OH.
  • each R k is independently selected from the group consisting of: —SO 2 CH 3 , and —CH 2 SO 2 CH 3 .
  • R L is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c S(O) m R e , —S(O) m R e , —S(O) m NR c R d , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —C(O)NR c R d , —NR c C(O)R e , —NR c C(O)OR e , —NR c C(O)NR c R d , —CF 3 , —OCF 3 , —OCHF 2 , —C 3-6 cycloalkyl, and —C 2-5 cycloheteroalkyl.
  • R L is selected from the group consisting of: —C 1-6 alkyl, halogen, —OR e , —NR c R d , —C(O)R e , —OC(O)R e , —CO 2 R e , —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R L is selected from the group consisting of: —C 1-6 alkyl, halogen, —CN, —CF 3 , —OCF 3 , and —OCHF 2 .
  • R L is —CF 3 .
  • n is 0, 1, 2, 3 or 4. In a class of this embodiment, n is 0, 1, 2 or 3. In another class of this embodiment, n is 0, 1 or 2. In a class of this embodiment, n is 0 or 1. In a class of this embodiment, n is 1, 2, 3 or 4. In another class of this embodiment, n is 1, 2 or 3. In another class of this embodiment, n is 1 or 2. In another class of this embodiment, n is 0. In another class of this embodiment, n is 1. In another class of this embodiment, n is 2. In another class of this embodiment, n is 3. In another class of this embodiment, n is 4.
  • m is 0, 1 or 2. In a class of this embodiment, m is 0 or 1. In another class of this embodiment, m is 1 or 2. In another class of this embodiment, m is 0. In another class of this embodiment, m is 1. In another class of this embodiment, m is 2.
  • p is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In another embodiment of the present invention, p is 0, 1, 2, 3, 4, 5, 6, 7 or 8. In another embodiment of the present invention, p is 0, 1, 2, 3, 4, 5 or 6. In another embodiment of the present invention, p is 0, 1, 2, 3 or 4. a class of this embodiment, p is 0, 1, 2 or 3. In a class of this embodiment, p is 0, 1 or 2. In another embodiment of the present invention, p is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In another embodiment of the present invention, p is 1, 2, 3, 4, 5, 6, 7 or 8. In another embodiment of the present invention, p is 1, 2, 3, 4, 5 or 6. In another embodiment of the present invention, p is 1, 2, 3 or 4.
  • p is 1, 2 or 3. In a class of this embodiment, p is 1 or 2. In another class of this embodiment, p is 0 or 1. In another class of this embodiment, p is 0 or 2. In another class of this embodiment, p is 0. In another class of this embodiment, p is 1. In another class of this embodiment, p is 2. In another class of this embodiment, p is 3. In another class of this embodiment, p is 4. In another class of this embodiment, p is 5. In another class of this embodiment, p is 6. In another class of this embodiment, p is 7. In another class of this embodiment, p is 8. In another class of this embodiment, p is 9. In another class of this embodiment, p is 10.
  • the invention relates to compounds of structural formula Ia:
  • the invention relates to compounds of structural formula Ib:
  • the invention relates to compounds of structural formula Ic:
  • the invention relates to compounds of structural formula Id:
  • the invention relates to compounds of structural formula Ie:
  • the invention relates to compounds of structural formula If:
  • the compound of structural formula I includes the compounds of structural formulas Ia, Ib, Ic, Id, Ie, If and Ig, and pharmaceutically acceptable salts, hydrates and solvates thereof.
  • T CH
  • V is CH
  • A is selected from the group consisting of: aryl and heteroaryl, wherein A is unsubstituted or substituted with one to five substituents selected from R a ;
  • B is selected from the group consisting of: aryl and heteroaryl, wherein B is unsubstituted or substituted with one to five substituents selected from R b , R 1 , R 2 , R 5 and R 6 are hydrogen; and
  • R 3 and R 4 are selected from the group consisting of: hydrogen, halogen, and —C 1-6 alkyl, wherein each C 1-6 alkyl is unsubstituted or substituted with one to three substituents selected from R L ; or a pharmaceutically acceptable salt thereof.
  • T CH
  • V is CH
  • A is selected from the group consisting of: phenyl and pyridine, wherein A is unsubstituted or substituted with one to five substituents selected from R a ;
  • B is selected from the group consisting of phenyl, pyridine, pyrimidine, thiazole, benzimidazole, benzthiazole, benzoxazole, and benzisoxazole, wherein B is unsubstituted or substituted with one to five substituents selected from R b ;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen;
  • R a is selected from the group consisting of: —C 1-4 alkyl, halogen, and —CF 3 ;
  • R b is independently selected from the group consisting of:
  • each R b is unsubstituted or substituted with one to five substituents selected from R k ; and each R k is independently selected from the group consisting of:
  • T CH
  • V is CH
  • A is phenyl, wherein phenyl is unsubstituted or substituted with one to five substituents selected from R a ;
  • B is selected from the group consisting of phenyl, and pyridine, wherein B is unsubstituted or substituted with one to five substituents selected from R b ;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen;
  • R a is selected from the group consisting of: —C 1-6 alkyl, halogen, and —CF 3 ;
  • R b is independently selected from the group consisting of:
  • each R b is unsubstituted or substituted with one to five substituents selected from R k ; and each R k is independently selected from the group consisting of:
  • each C 1-10 alkyl is unsubstituted or substituted with one to three substituents independently selected from: —OH, —OC 1-6 alkyl, halogen, cyano, and —S(O) 2 C 1-6 alkyl; or a pharmaceutically acceptable salt thereof.
  • GPR40 G-protein-coupled receptor 40
  • the compounds of formula I have the absolute stereochemistry at the two stereogenic carbon centers as indicated in the compound of structural formula Ig:
  • stereoisomers including diastereoisomers, enantiomers, epimers, and mixtures of these may also have utility in treating GPR40 mediated diseases.
  • Alkyl means saturated carbon chains which may be linear or branched or combinations thereof, unless the carbon chain is defined otherwise.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, and the like.
  • Alkenyl means carbon chains which contain at least one carbon-carbon double bond, and which may be linear or branched, or combinations thereof, unless otherwise defined. Examples of alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like.
  • Alkynyl means carbon chains which contain at least one carbon-carbon triple bond, and which may be linear or branched, or combinations thereof, unless otherwise defined. Examples of alkynyl include ethynyl, propargyl, 3-methyl-1-pentynyl, 2-heptynyl and the like.
  • Cycloalkyl means a saturated monocyclic, bicyclic or bridged carbocyclic ring, having a specified number of carbon atoms. The term may also be used to describe a carbocyclic ring fused to an aryl group. Examples of cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like. In one embodiment of the present invention, cycloalkyl is selected from: cyclopropane, cyclobutane and cyclohexane.
  • Cycloalkenyl means a nonaromatic monocyclic or bicyclic carbocylic ring containing at least one double bond.
  • Examples of cycloalkenyl include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooxtenyl and the like.
  • Cycloheteroalkyl means a saturated or partly unsaturated non-aromatic monocyclic, bicyclic or bridged carbocyclic ring or ring system containing at least one ring heteroatom selected from N, NH, S (including SO and SO 2 ) and O.
  • the cycloheteroalkyl ring may be substituted on the ring carbons and/or the ring nitrogen(s).
  • cycloheteroalkyl examples include tetrahydrofuran, pyrrolidine, tetrahydrothiophene, azetidine, piperazine, piperidine, morpholine, oxetane and tetrahydropyran, hexose, pentose, isosorbide and isomannide, dianhydromannitol, 1,4:3,6-dianhydromannitol, 1,4:3,6-dianhydro[D]mannitol, hexahydrofuro[3,2-b]furan, and 2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan.
  • cycloheteroalkyl is selected from: hexose, pentose, isosorbide and isomannide. In another embodiment of the present invention, cycloheteroalkyl is selected from: isosorbide and isomannide. In another embodiment of the present invention, cycloheteroalkyl is selected from: oxetane, tetrahydropyran, azetidine, tetrahydrothiopyran and pyrrolidine.
  • cycloheteroalkyl is selected from: oxetane, -piperazine, azetidine, pyrrolidine, morpholine and spiro(indene-1,4-piperidine).
  • cycloheteroalkyl is oxetane.
  • Cycloheteroalkenyl means a nonaromatic monocyclic, bicyclic or bridged carbocyclic ring or ring system containing at least one double bond and containing at least one heteroatom selected from N, NH, S and O.
  • Aryl means a monocyclic, bicyclic or tricyclic carbocyclic aromatic ring or ring system containing 5-14 carbon atoms, wherein at least one of the rings is aromatic.
  • aryl include phenyl and naphthyl. In one embodiment of the present invention, aryl is phenyl.
  • Heteroaryl means monocyclic, bicyclic or tricyclic ring or ring system containing 5-14 carbon atoms and containing at least one ring heteroatom selected from N, NH, S (including SO and SO 2 ) and O, wherein at least one of the heteroatom containing rings is aromatic.
  • heteroaryl examples include pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl, thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furanyl, triazinyl, thienyl, pyrimidyl, pyridazinyl, pyrazinyl, benzisoxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, benzothiophenyl (including S-oxide and dioxide), furo(2,3-b)pyridyl, quinolyl, indolyl, isoquinolyl, quinazolinyl, dibenzofuranyl, and the like.
  • heteroaryl is selected from: pyridine, pyrimidine, thiazole, benzimidazole, benzthiazole, benzoxazole, and benzisoxazole.
  • heteroaryl is pyridine.
  • heteroaryl is imidazopyridine.
  • Halogen includes fluorine, chlorine, bromine and iodine.
  • any variable e.g., R 1 , R a , etc.
  • its definition on each occurrence is independent of its definition at every other occurrence.
  • combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
  • a squiggly line across a bond in a substituent variable represents the point of attachment.
  • substituted shall be deemed to include multiple degrees of substitution by a named substitutent. Where multiple substituent moieties are disclosed or claimed, the substituted compound can be independently substituted by one or more of the disclosed or claimed substituent moieties, singly or plurally. By independently substituted, it is meant that the (two or more) substituents can be the same or different.
  • phrases “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, salts and/or dosage forms which are, using sound medical judgment, and following all applicable government regulations, safe and suitable for administration to a human being or an animal.
  • % enantiomeric excess (abbreviated “ee”) shall mean the % major enantiomer less the % minor enantiomer. Thus, a 70% enantiomeric excess corresponds to formation of 85% of one enantiomer and 15% of the other.
  • enantiomeric excess is synonymous with the term “optical purity.”
  • Compounds of Formula I may contain one or more asymmetric centers and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers.
  • the present invention is meant to encompass all such isomeric forms of the compounds of Formula I.
  • racemic mixtures of the compounds may be separated so that the individual enantiomers are isolated.
  • the separation can be carried out by methods well-known in the art, such as the coupling of a racemic mixture of compounds to an enantiomerically pure compound to form a diastereoisomeric mixture, followed by separation of the individual diastereoisomers by standard methods, such as fractional crystallization or chromatography.
  • the coupling reaction is often the formation of salts using an enantiomerically pure acid or base.
  • the diasteromeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue.
  • the racemic mixture of the compounds can also be separated directly by chromatographic methods utilizing chiral stationary phases, which methods are well known in the art.
  • any enantiomer of a compound may be obtained by stereoselective synthesis using optically pure starting materials or reagents of known configuration by methods well known in the art.
  • Tautomers are defined as compounds that undergo rapid proton shifts from one atom of the compound to another atom of the compound. Some of the compounds described herein may exist as tautomers with different points of attachment of hydrogen. Such an example may be a ketone and its enol form known as keto-enol tautomers. The individual tautomers as well as mixture thereof are encompassed with compounds of Formula I.
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominately found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of structural formula I.
  • different isotopic forms of hydrogen (H) include protium ( 1 H), deuterium ( 2 H), and tritium ( 3 H).
  • Protium is the predominant hydrogen isotope found in nature.
  • Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Tritium is radioactive and may therefore provide for a radiolabeled compound, useful as a tracer in metabolic or kinetic studies.
  • Isotopically-enriched compounds within structural formula I can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
  • crystalline forms for compounds of the present invention may exist as polymorphs and as such are intended to be included in the present invention.
  • some of the compounds of the instant invention may form solvates with water or common organic solvents. Such solvates are encompassed within the scope of this invention.
  • Racemic mixtures can be separated into their individual enantiomers by any of a number of conventional methods. These include chiral chromatography, derivatization with a chiral auxiliary followed by separation by chromatography or crystallization, and fractional crystallization of diastereomeric salts.
  • references to the compounds of the present invention are meant to also include the pharmaceutically acceptable salts, and also salts that are not pharmaceutically acceptable when they are used as precursors to the free compounds or their pharmaceutically acceptable salts or in other synthetic manipulations.
  • the compounds of the present invention may be administered in the form of a pharmaceutically acceptable salt.
  • pharmaceutically acceptable salt refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts of basic compounds encompassed within the term “pharmaceutically acceptable salt” refer to non-toxic salts of the compounds of this invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid.
  • Representative salts of basic compounds of the present invention include, but are not limited to, the following: acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt,
  • suitable pharmaceutically acceptable salts thereof include, but are not limited to, salts derived from inorganic bases including aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, mangamous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, cyclic amines, and basic ion-exchange resins, such as arginine, betaine, caffeine, choline, N,N-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
  • basic ion-exchange resins such as arginine, betaine, caffeine, cho
  • esters of carboxylic acid derivatives such as methyl, ethyl, or pivaloyloxymethyl
  • acyl derivatives of alcohols such as O-acetyl, O-pivaloyl, O-benzoyl, and O-aminoacyl
  • esters and acyl groups known in the art for modifying the solubility or hydrolysis characteristics for use as sustained-release or prodrug formulations.
  • Solvates, and in particular, the hydrates of the compounds of the present invention are included in the present invention as well.
  • the compounds of the present invention are potent agonists of the GPR40 receptor.
  • the compounds, and pharmaceutically acceptable salts thereof, may be efficacious in the treatment of diseases that are modulated by GPR40 ligands, which are generally agonists. Many of these diseases are summarized below.
  • One or more of these diseases may be treated by the administration of a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt thereof, to a patient in need of treatment.
  • the compounds of the present invention may be used for the manufacture of a medicament which may be useful for treating one or more of these diseases:
  • Preferred uses of the compounds may be for the treatment of one or more of the following diseases by administering a therapeutically effective amount to a patient in need of treatment.
  • the compounds may be used for manufacturing a medicament for the treatment of one or more of these diseases:
  • the compounds may be effective in lowering glucose and lipids in diabetic patients and in non-diabetic patients who have impaired glucose tolerance and/or are in a pre-diabetic condition.
  • the compounds may ameliorate hyperinsulinemia, which often occurs in diabetic or pre-diabetic patients, by modulating the swings in the level of serum glucose that often occurs in these patients.
  • the compounds may also be effective in treating or reducing insulin resistance.
  • the compounds may be effective in treating or preventing gestational diabetes.
  • the compounds may also be effective in treating or preventing lipid disorders.
  • the compounds may be effective in treating or preventing diabetes related disorders.
  • the compounds may also be effective in treating or preventing obesity related disorders.
  • the compounds of this invention may also have utility in improving or restoring ⁇ -cell function, so that they may be useful in treating Type 1 diabetes or in delaying or preventing a patient with Type 2 diabetes from needing insulin therapy.
  • the invention also includes pharmaceutically acceptable salts of the compounds, and pharmaceutical compositions comprising the compounds and a pharmaceutically acceptable carrier.
  • the compounds may be useful in treating insulin resistance, Type 2 diabetes, hyperglycemia, and dyslipidemia that is associated with Type 2 diabetes and insulin resistance.
  • the compounds may also be useful for the treatment of obesity
  • a compound of the present invention may be used in the manufacture of a medicament for the treatment of Type 2 diabetes in a human or other mammalian patient.
  • a method of treating Type 2 diabetes comprises the administration of a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising the compound, to a patient in need of treatment.
  • Other medical uses of the compounds of the present invention are described herein.
  • the compounds of the present invention in which at least one of T, U and V is N or N-oxide, such as compounds A-1, A-2, A-3 and A-4 in Table A, have the unexpected benefit of increased intrinsic potency (2-20 fold) in the GPR40 Inositol Phosphate Turnover (IP1) Assay (+/ ⁇ 100% human serum) compared to the compounds in which T is CH, U is CH and V is CH, such as compounds B-1, B-2, B-3 and B-4 in Table A. Due to their increased potency in this assay, the compounds of the present invention are expected to exhibit glucose lowering efficacy at reduced plasma exposures, and can require a lower dose.
  • IP1 Inositol Phosphate Turnover
  • the compounds of the present invention also have the unexpected benefit of decreased binding (5-10-fold) to the ion channel, Kv11.1 compared to the compounds in which T is CH, U is CH and V is CH, such as compounds B-1 and B-3 in Table A.
  • This ion channel also called the hERG channel, is implicated in sometimes fatal cardiac arrythymias (QTc interval prolongation).
  • QTc interval prolongation This decreased off-target ion channel binding to ion channel Kv11.1, taken together with increased on-target GPR40 activity, results in the compounds of the present invention having an unexpected benefit of 20-100-fold improved selectivity, due to incorporating a single nitrogen atom into the molecule.
  • the compounds of the present invention in which at least one of T, U and V is N or N-oxide, such as compounds A-1, A-2, A-3 and A-4 in Table A have the unexpected benefit of greater solubility (2-5 fold) in aqueous media, such as Phosphate Buffered Saline (PBS) solution at pH 7, and/or biorelevant media, such as FaSSIF (Fasted State Simulated Intestinal Fluid) at pH 7, compared to the compounds in which T is CH, U is CH and V is CH, such as compounds B-1, B-2, B-3 and B-4 in Table A.
  • PBS Phosphate Buffered Saline
  • FaSSIF Fested State Simulated Intestinal Fluid
  • diabetes includes both insulin-dependent diabetes mellitus (i.e., IDDM, also known as type 1 diabetes) and non-insulin-dependent diabetes mellitus (i.e., NIDDM, also known as Type 2 diabetes).
  • IDDM insulin-dependent diabetes mellitus
  • NIDDM non-insulin-dependent diabetes mellitus
  • Type 1 diabetes or insulin-dependent diabetes
  • Type 2 diabetes or insulin-independent diabetes (i.e., non-insulin-dependent diabetes mellitus)
  • Most of the Type 2 diabetics are also obese.
  • the compositions of the present invention may be useful for treating both Type 1 and Type 2 diabetes.
  • the term “diabetes associated with obesity” refers to diabetes caused by obesity or resulting from obesity.
  • Diabetes is characterized by a fasting plasma glucose level of greater than or equal to 126 mg/dl.
  • a diabetic subject has a fasting plasma glucose level of greater than or equal to 126 mg/dl.
  • a pre diabetic subject is someone suffering from prediabetes.
  • Prediabetes is characterized by an impaired fasting plasma glucose (FPG) level of greater than or equal to 110 mg/dl and less than 126 mg/dl; or impaired glucose tolerance; or insulin resistance.
  • FPG impaired fasting plasma glucose
  • a prediabetic subject is a subject with impaired fasting glucose (a fasting plasma glucose (FPG) level of greater than or equal to 110 mg/dl and less than 126 mg/dl); or impaired glucose tolerance (a 2 hour plasma glucose level of ⁇ 140 mg/dl and ⁇ 200 mg/dl); or insulin resistance, resulting in an increased risk of developing diabetes.
  • FPG fasting plasma glucose
  • Treatment of diabetes mellitus refers to the administration of a compound or combination of the present invention to treat a diabetic subject.
  • One outcome of treatment may be decreasing the glucose level in a subject with elevated glucose levels.
  • Another outcome of treatment may be decreasing insulin levels in a subject with elevated insulin levels.
  • Another outcome of treatment may be decreasing plasma triglycerides in a subject with elevated plasma triglycerides.
  • Another outcome of treatment is decreasing LDL cholesterol in a subject with high LDL cholesterol levels.
  • Another outcome of treatment may be increasing HDL cholesterol in a subject with low HDL cholesterol levels.
  • Another outcome of treatment is increasing insulin sensivity.
  • Another outcome of treatment may be enhancing glucose tolerance in a subject with glucose intolerance.
  • Yet another outcome of treatment may be decreasing insulin resistance in a subject with increased insulin resistance or elevated levels of insulin.
  • Prevention of diabetes mellitus refers to the administration of a compound or combination of the present invention to prevent the onset of diabetes in a subject in need thereof.
  • a subject in need of preventing diabetes is a prediabetic subject that is overweight or obese.
  • diabetes related disorders should be understood to mean disorders that are associated with, caused by, or result from diabetes. Examples of diabetes related disorders include retinal damage, kidney disease, and nerve damage.
  • Atherosclerosis encompasses vascular diseases and conditions that are recognized and understood by physicians practicing in the relevant fields of medicine.
  • Atherosclerotic cardiovascular disease, coronary heart disease (also known as coronary artery disease or ischemic heart disease), cerebrovascular disease and peripheral vessel disease are all clinical manifestations of atherosclerosis and are therefore encompassed by the terms “atherosclerosis” and “atherosclerotic disease.”
  • the combination comprised of a therapeutically effective amount of an anti-obesity agent in combination with a therapeutically effective amount of an anti-hypertensive agent may be administered to prevent or reduce the risk of occurrence, or recurrence where the potential exists, of a coronary heart disease event, a cerebrovascular event, or intermittent claudication.
  • Coronary heart disease events are intended to include CHD death, myocardial infarction (i.e., a heart attack), and coronary revascularization procedures. Cerebrovascular events are intended to include ischemic or hemorrhagic stroke (also known as cerebrovascular accidents) and transient ischemic attacks. Intermittent claudication is a clinical manifestation of peripheral vessel disease.
  • the term “atherosclerotic disease event” as used herein is intended to encompass coronary heart disease events, cerebrovascular events, and intermittent claudication. It is intended that persons who have previously experienced one or more non-fatal atherosclerotic disease events are those for whom the potential for recurrence of such an event exists.
  • the term “atherosclerosis related disorders” should be understood to mean disorders associated with, caused by, or resulting from atherosclerosis.
  • hypertension includes essential, or primary, hypertension wherein the cause is not known or where hypertension is due to greater than one cause, such as changes in both the heart and blood vessels; and secondary hypertension wherein the cause is known.
  • causes of secondary hypertension include, but are not limited to obesity; kidney disease; hormonal disorders; use of certain drugs, such as oral contraceptives, corticosteroids, cyclosporin, and the like.
  • hypertension encompasses high blood pressure, in which both the systolic and diastolic pressure levels are elevated ( ⁇ 140 mmHg/ ⁇ 90 mmHg), and isolated systolic hypertension, in which only the systolic pressure is elevated to greater than or equal to 140 mm Hg, while the diastolic pressure is less than 90 mm Hg.
  • Normal blood pressure may be defined as less than 120 mmHg systolic and less than 80 mmHg diastolic.
  • a hypertensive subject is a subject with hypertension.
  • a pre-hypertensive subject is a subject with a blood pressure that is between 120 mmHg over 80 mmHg and 139 mmHg over 89 mmHg
  • Treatment of hypertension refers to the administration of the compounds and combinations of the present invention to treat hypertension in a hypertensive subject.
  • Treatment of hypertension-related disorder refers to the administration of a compound or combination of the present invention to treat the hypertension-related disorder.
  • Prevention of hypertension, or a hypertension related disorder refers to the administration of the combinations of the present invention to a pre-hypertensive subject to prevent the onset of hypertension or a hypertension related disorder.
  • the hypertension-related disorders herein are associated with, caused by, or result from hypertension. Examples of hypertension-related disorders include, but are not limited to: heart disease, heart failure, heart attack, kidney failure, and stroke.
  • Dyslipidemias and lipid disorders are disorders of lipid metabolism including various conditions characterized by abnormal concentrations of one or more lipids (i.e. cholesterol and triglycerides), and/or apolipoproteins (i.e., apolipoproteins A, B, C and E), and/or lipoproteins (i.e., the macromolecular complexes formed by the lipid and the apolipoprotein that allow lipids to circulate in blood, such as LDL, VLDL and IDL).
  • Hyperlipidemia is associated with abnormally high levels of lipids, LDL and VLDL cholesterol, and/or triglycerides.
  • Treatment of dyslipidemia refers to the administration of the combinations of the present invention to a dyslipidemic subject.
  • Prevention of dyslipidemia refers to the administration of the combinations of the present invention to a pre-dyslipidemic subject.
  • a pre-dyslipidemic subject is a subject with higher than normal lipid levels, that is
  • dyslipidemia related disorders and “lipid disorder related disorders” should be understood to mean disorders associated with, caused by, or resulting from dyslipidemia or lipid disorders.
  • dylipidemia related disorder and lipid disorder related disorders include, but are not limited to: hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low high density lipoprotein (HDL) levels, high plasma low density lipoprotein (LDL) levels, atherosclerosis and its sequelae, coronary artery or carotid artery disease, heart attack, and stroke.
  • oil as used herein is a condition in which there is an excess of body fat.
  • BMI Body Mass Index
  • “Obesity” refers to a condition whereby an otherwise healthy subject has a Body Mass Index (BMI) greater than or equal to 30 kg/m 2 , or a condition whereby a subject with at least one co-morbidity has a BMI greater than or equal to 27 kg/m 2 .
  • An “obese subject” is an otherwise healthy subject with a Body Mass Index (BMI) greater than or equal to 30 kg/m 2 or a subject with at least one co-morbidity with a BMI greater than or equal to 27 kg/m 2 .
  • An overweight subject is a subject at risk of obesity.
  • a “subject at risk of obesity” is an otherwise healthy subject with a BMI of 25 kg/m 2 to less than 30 kg/m 2 or a subject with at least one co-morbidity with a BMI of 25 kg/m 2 to less than 27 kg/m 2 .
  • a subject with at least one obesity-induced or obesity-related co-morbidity that requires weight reduction or that would be improved by weight reduction, has a BMI greater than or equal to 25 kg/m 2 .
  • an “obese subject” refers to a subject with at least one obesity-induced or obesity-related co-morbidity that requires weight reduction or that would be improved by weight reduction, with a BMI greater than or equal to 25 kg/m 2 .
  • a “subject at risk of obesity” is a subject with a BMI of greater than 23 kg/m 2 to less than 25 kg/m 2 .
  • obesity is meant to encompass all of the above definitions of obesity.
  • Obesity-induced or obesity-related co-morbidities include, but are not limited to, diabetes mellitus, non-insulin dependent diabetes mellitus—type 2, diabetes associated with obesity, impaired glucose tolerance, impaired fasting glucose, insulin resistance syndrome, dyslipidemia, hypertension, hypertension associated with obesity, hyperuricacidemia, gout, coronary artery disease, myocardial infarction, angina pectoris, sleep apnea syndrome, Pickwickian syndrome, fatty liver; cerebral infarction, cerebral thrombosis, transient ischemic attack, orthopedic disorders, arthritis deformans, lumbodynia, emmeniopathy, and infertility.
  • co-morbidities include: hypertension, hyperlipidemia, dyslipidemia, glucose intolerance, cardiovascular disease, sleep apnea, and other obesity-related conditions.
  • Treatment of obesity and obesity-related disorders refers to the administration of the compounds of the present invention to reduce or maintain the body weight of an obese subject.
  • One outcome of treatment may be reducing the body weight of an obese subject relative to that subject's body weight immediately before the administration of the compounds of the present invention.
  • Another outcome of treatment may be preventing body weight regain of body weight previously lost as a result of diet, exercise, or pharmacotherapy.
  • Another outcome of treatment may be decreasing the occurrence of and/or the severity of obesity-related diseases.
  • the treatment may suitably result in a reduction in food or calorie intake by the subject, including a reduction in total food intake, or a reduction of intake of specific components of the diet such as carbohydrates or fats; and/or the inhibition of nutrient absorption; and/or the inhibition of the reduction of metabolic rate; and in weight reduction in patients in need thereof.
  • the treatment may also result in an alteration of metabolic rate, such as an increase in metabolic rate, rather than or in addition to an inhibition of the reduction of metabolic rate; and/or in minimization of the metabolic resistance that normally results from weight loss.
  • Prevention of obesity and obesity-related disorders refers to the administration of the compounds of the present invention to reduce or maintain the body weight of a subject at risk of obesity.
  • One outcome of prevention may be reducing the body weight of a subject at risk of obesity relative to that subject's body weight immediately before the administration of the compounds of the present invention.
  • Another outcome of prevention may be preventing body weight regain of body weight previously lost as a result of diet, exercise, or pharmacotherapy.
  • Another outcome of prevention may be preventing obesity from occurring if the treatment is administered prior to the onset of obesity in a subject at risk of obesity.
  • Another outcome of prevention may be decreasing the occurrence and/or severity of obesity-related disorders if the treatment is administered prior to the onset of obesity in a subject at risk of obesity.
  • Such treatment may prevent the occurrence, progression or severity of obesity-related disorders, such as, but not limited to, arteriosclerosis, Type II diabetes, polycystic ovarian disease, cardiovascular diseases, osteoarthritis, dermatological disorders, hypertension, insulin resistance, hypercholesterolemia, hypertriglyceridemia, and cholelithiasis.
  • the obesity-related disorders herein are associated with, caused by, or result from obesity.
  • obesity-related disorders include overeating and bulimia, hypertension, diabetes, elevated plasma insulin concentrations and insulin resistance, dyslipidemias, hyperlipidemia, endometrial, breast, prostate and colon cancer, osteoarthritis, obstructive sleep apnea, cholelithiasis, gallstones, heart disease, abnormal heart rhythms and arrythmias, myocardial infarction, congestive heart failure, coronary heart disease, sudden death, stroke, polycystic ovarian disease, craniopharyngioma, the Prader-Willi Syndrome, Frohlich's syndrome, GH-deficient subjects, normal variant short stature, Turner's syndrome, and other pathological conditions showing reduced metabolic activity or a decrease in resting energy expenditure as a percentage of total fat-free mass, e.g, children with acute lymphoblastic leukemia.
  • obesity-related disorders are metabolic syndrome, also known as syndrome X, insulin resistance syndrome, sexual and reproductive dysfunction, such as infertility, hypogonadism in males and hirsutism in females, gastrointestinal motility disorders, such as obesity-related gastro-esophageal reflux, respiratory disorders, such as obesity-hypoventilation syndrome (Pickwickian syndrome), cardiovascular disorders, inflammation, such as systemic inflammation of the vasculature, arteriosclerosis, hypercholesterolemia, hyperuricaemia, lower back pain, gallbladder disease, gout, and kidney cancer.
  • the compounds of the present invention are also useful for reducing the risk of secondary outcomes of obesity, such as reducing the risk of left ventricular hypertrophy.
  • metabolic syndrome also known as syndrome X
  • syndrome X is defined in the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III, or ATP III), National Institutes of Health, 2001, NIH Publication No. 01-3670. E. S. Ford et al., JAMA, vol. 287 (3), Jan. 16, 2002, pp 356-359.
  • a person is defined as having metabolic syndrome if the person has three or more of the following disorders: abdominal obesity, hypertriglyceridemia, low HDL cholesterol, high blood pressure, and high fasting plasma glucose. The criteria for these are defined in ATP-III.
  • Treatment of metabolic syndrome refers to the administration of the combinations of the present invention to a subject with metabolic syndrome.
  • Prevention of metabolic syndrome refers to the administration of the combinations of the present invention to a subject with two of the disorders that define metabolic syndrome.
  • a subject with two of the disorders that define metabolic syndrome is a subject that has developed two of the disorders that define metabolic syndrome, but has not yet developed three or more of the disorders that define metabolic syndrome.
  • administering should be understood to mean providing a compound of the invention or a prodrug of a compound of the invention to the individual or mammal in need of treatment.
  • the administration of the compound of structural formula I in order to practice the present methods of therapy is carried out by administering an effective amount of the compound of structural formula Ito the mammal in need of such treatment or prophylaxis.
  • the need for a prophylactic administration according to the methods of the present invention is determined via the use of well known risk factors.
  • the effective amount of an individual compound is determined, in the final analysis, by the physician or veterinarian in charge of the case, but depends on factors such as the exact disease to be treated, the severity of the disease and other diseases or conditions from which the patient suffers, the chosen route of administration other drugs and treatments which the patient may concomitantly require, and other factors in the physician's judgment.
  • Any suitable route of administration may be employed for providing a mammal, especially a human, with an effective dose of a compound of the present invention.
  • oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed.
  • Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like.
  • compounds of the present invention are administered orally.
  • an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses.
  • the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day.
  • a suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day.
  • compositions are preferably provided in the form of tablets containing 1.0 to 1000 mg of the active ingredient, particularly 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750.0, 800.0, 900.0, and 1000.0 mg of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated.
  • the compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.
  • the compounds of the present invention are administered at a daily dosage of from about 0.1 mg to about 100 mg per kilogram of animal body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form.
  • the total daily dosage is from about 1.0 mg to about 1000 mg, preferably from about 1 mg to about 50 mg. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 350 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response.
  • an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per week, which can be administered in single or multiple doses.
  • the dosage level will be about 0.1 to about 250 mg/kg per week; more preferably about 0.5 to about 100 mg/kg per week.
  • a suitable dosage level may be about 0.01 to 250 mg/kg per week, about 0.05 to 100 mg/kg per week, or about 0.1 to 50 mg/kg per week. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per week.
  • compositions are preferably provided in the form of tablets containing 1.0 to 1000 mg of the active ingredient, particularly 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750.0, 800.0, 900.0, and 1000.0 mg of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated.
  • the compounds may also be administered on a regimen of 1 to 4 times per week, preferably once or twice per week.
  • the compounds of the present invention are administered at a weekly dosage of from about 0.1 mg to about 100 mg per kilogram of animal body weight, preferably given as a single weekly dose or in divided doses two to six times a week, or in sustained release form.
  • the total weekly dosage is from about 1.0 mg to about 1000 mg, preferably from about 1 mg to about 50 mg. In the case of a 70 kg adult human, the total weekly dose will generally be from about 7 mg to about 350 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response.
  • the compounds of this invention may be used in pharmaceutical compositions comprising (a) the compound(s) or pharmaceutically acceptable salts thereof, and (b) a pharmaceutically acceptable carrier.
  • the compounds of this invention may be used in pharmaceutical compositions that include one or more other active pharmaceutical ingredients.
  • the compounds of this invention may also be used in pharmaceutical compositions in which the compound of the present invention or a pharmaceutically acceptable salt thereof is the only active ingredient.
  • composition as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
  • Compounds of the present invention may be used in combination with other drugs that may also be useful in the treatment or amelioration of the diseases or conditions for which compounds of the present invention are useful.
  • Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of the present invention.
  • more than one drug is commonly administered.
  • the compounds of this invention may generally be administered to a patient who is already taking one or more other drugs for these conditions.
  • the compounds will be administered to a patient who is already being treated with one or more antidiabetic compound, such as metformin, sulfonylureas, and/or PPAR ⁇ agonists, when the patient's glycemic levels are not adequately responding to treatment.
  • one or more antidiabetic compound such as metformin, sulfonylureas, and/or PPAR ⁇ agonists
  • a pharmaceutical composition in unit dosage form containing such other drugs and the compound of the present invention is preferred.
  • the combination therapy also includes therapies in which the compound of the present invention and one or more other drugs are administered on different overlapping schedules. It is also contemplated that when used in combination with one or more other active ingredients, the compound of the present invention and the other active ingredients may be used in lower doses than when each is used singly. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to a compound of the present invention.
  • Examples of other active ingredients that may be administered separately or in the same pharmaceutical composition in combination with a compound of the formulas described herein include, but are not limited to:
  • DPP-4 dipeptidyl peptidase-IV
  • DPP-4 inhibitors e.g., sitagliptin, alogliptin, linagliptin, vildagliptin, saxagliptin, teneligliptin, omarigliptin
  • sitagliptin e.g., sitagliptin, alogliptin, linagliptin, vildagliptin, saxagliptin, teneligliptin, omarigliptin
  • (2) insulin sensitizers including (i) PPAR ⁇ agonists, such as the glitazones (e.g. pioglitazone, AMG 131, MBX2044, mitoglitazone, lobeglitazone, IDR-105, rosiglitazone, and balaglitazone), and other PPAR ligands, including (1) PPAR ⁇ / ⁇ dual agonists (e.g., ZYH2, ZYH1, GFT505, chiglitazar, muraglitazar, aleglitazar, sodelglitazar, and naveglitazar); (2) PPAR ⁇ agonists such as fenofibric acid derivatives (e.g., gemfibrozil, clofibrate, ciprofibrate, fenofibrate, bezafibrate), (3) selective PPAR ⁇ modulators (SPPAR ⁇ M's), (e.g., such as those disclosed in WO 02/06
  • insulin or insulin analogs e.g., insulin detemir, insulin glulisine, insulin degludec, insulin glargine, insulin lispro, SBS1000 and oral and inhalable formulations of insulin and insulin analogs
  • amylin and amylin analogs e.g., pramlintide
  • sulfonylurea and non-sulfonylurea insulin secretagogues e.g., tolbutamide, glyburide, glipizide, glimepiride, mitiglinide, meglitinides, nateglinide and repaglinide
  • insulin secretagogues e.g., tolbutamide, glyburide, glipizide, glimepiride, mitiglinide, meglitinides, nateglinide and repaglinide
  • ⁇ -glucosidase inhibitors e.g., acarbose, voglibose and miglitol
  • glucagon receptor antagonists e.g., NOXG15, LY2409021
  • incretin mimetics such as GLP-1, GLP-1 analogs, derivatives, and mimetics
  • GLP-1 receptor agonists e.g., dulaglutide, semaglutide, albiglutide, exenatide, liraglutide, lixisenatide, taspoglutide, GSK2374697, ADX72231, RG7685, NN9924, ZYOG1, CJC-1131, and BIM-51077, including intranasal, transdermal, and once-weekly formulations thereof
  • oxyntomodulin and oxyntomodulin analogs and derivatives e.g., dulaglutide, semaglutide, albiglutide, exenatide, liraglutide, lixisenatide, taspoglutide, GSK2374697, ADX72231, RG7685, NN9924, ZYOG1, CJC-1131, and BIM-51077, including intranasal, transderma
  • LDL cholesterol lowering agents such as (i) HMG-CoA reductase inhibitors (e.g., simvastatin, lovastatin, pravastatin, crivastatin, fluvastatin, atorvastatin, pitavastatin and rosuvastatin), (ii) bile acid sequestering agents (e.g., colestilan, colestimide, colesevalam hydrochloride, colestipol, cholestyramine, and dialkylaminoalkyl derivatives of a cross-linked dextran), (iii) inhibitors of cholesterol absorption, (e.g., ezetimibe), and (iv) acyl CoA:cholesterol acyltransferase inhibitors, (e.g., avasimibe);
  • HMG-CoA reductase inhibitors e.g., simvastatin, lovastatin, pravastatin, crivastatin, fluvastat
  • HDL-raising drugs e.g., niacin and nicotinic acid receptor agonists, and extended-release versions thereof; MK-524A, which is a combination of niacin extended-release and the DP-1 antagonist MK-524);
  • agents intended for use in inflammatory conditions such as aspirin, non-steroidal anti-inflammatory drugs or NSAIDs, glucocorticoids, and selective cyclooxygenase-2 or COX-2 inhibitors;
  • antihypertensive agents such as ACE inhibitors (e.g., lisinopril, enalapril, ramipril, captopril, quinapril, and tandolapril), A-II receptor blockers (e.g., losartan, candesartan, irbesartan, olmesartan medoxomil, valsartan, telmisartan, and eprosartan), renin inhibitors (e.g., aliskiren), beta blockers, and calcium channel blockers;
  • ACE inhibitors e.g., lisinopril, enalapril, ramipril, captopril, quinapril, and tandolapril
  • A-II receptor blockers e.g., losartan, candesartan, irbesartan, olmesartan medoxomil, valsartan, telm
  • GKAs glucokinase activators
  • inhibitors of 11 ⁇ -hydroxysteroid dehydrogenase type 1 e.g., such as those disclosed in U.S. Pat. No. 6,730,690, and LY-2523199;
  • CETP inhibitors e.g., anacetrapib, evacetrapib and torcetrapib
  • inhibitors of acetyl CoA carboxylase-1 or 2 (ACC1 or ACC2);
  • AMP-activated Protein Kinase activators such as MB 1055, ETC 1002;
  • GPR-109 other agonists of the G-protein-coupled receptors: (i) GPR-109, (ii) GPR-119 (e.g., MBX2982, APD597, GSK1292263, HM47000, and PSN821), and (iii) GPR-40 (e.g., TAK875, MR 1704, TUG 469, TUG499, ASP 4178);
  • GPR-109 e.g., MBX2982, APD597, GSK1292263, HM47000, and PSN821
  • GPR-40 e.g., TAK875, MR 1704, TUG 469, TUG499, ASP 4178
  • neuromedin U receptor agonists e.g., such as those disclosed in WO 2009/042053, including, but not limited to, neuromedin S (NMS)
  • NMS neuromedin S
  • GPR-105 antagonists e.g., such as those disclosed in WO 2009/000087;
  • SGLT inhibitors e.g., ASP1941, SGLT-3, empagliflozin, dapagliflozin, canagliflozin, BI-10773, PF-04971729, remogloflozin, TS-071, tofogliflozin, ipragliflozin, and LX-4211;
  • inhibitors of acyl coenzyme A monoacylglycerol acyltransferase 1 and 2 (MGAT-1 and MGAT-2);
  • TGRS receptor also known as GPBAR1, BG37, GPCR19, GPR131, and M-BAR
  • PACAP PACAP
  • PACAP mimetics PACAP
  • PACAP receptor 3 agonists PACAP, PACAP mimetics, and PACAP receptor 3 agonists
  • PTP-1B protein tyrosine phosphatase-1B
  • IL-1b antibodies e.g., XOMA052 and canakinumab
  • GPR 120 agonists such as KDT501.
  • Suitable active ingredients/pharmaceutical agents that may be administered in combination with a compound of the present invention, and either administered separately or in the same pharmaceutical composition, include, but are not limited to:
  • anti-diabetic agents such as (1) PPAR ⁇ agonists such as glitazones (e.g. ciglitazone; darglitazone; englitazone; isaglitazone (MCC-555); pioglitazone (ACTOS); rosiglitazone (AVANDIA); troglitazone; rivoglitazone, BRL49653; CLX-0921; 5-BTZD, GW-0207, LG-100641, R483, and LY-300512, and the like and compounds disclosed in WO97/10813, 97/27857, 97/28115, 97/28137, 97/27847, 03/000685, and 03/027112 and SPPARMS (selective PPAR gamma modulators) such as T131 (Amgen), FK614 (Fujisawa), netoglitazone, and metaglidasen; (2) biguanides such as buformin; metformin
  • MC3002 Maxocore
  • TY51501 ToaEiyo
  • farglitazar naveglitazar
  • muraglitazar peliglitazar
  • tesaglitazar GALIDA
  • JT-501 chiglitazar
  • WO 99/16758 WO 99/19313, WO 99/20614, WO 99/38850
  • WO 00/23415 WO 00/23417, WO 00/23445, WO 00/50414, WO 01/00579, WO 01/79150, WO 02/062799
  • WO 03/033481 WO 03/033450, WO 03/033453
  • GLK modulators such as PSN105, RO 281675, RO 274375 and those disclosed in WO 03/015774, WO 03/000
  • anti-dyslipidemic agents such as (1) bile acid sequestrants such as, cholestyramine, colesevelem, colestipol, dialkylaminoalkyl derivatives of a cross-linked dextran; Colestid®; LoCholest®; and Questran®, and the like; (2) HMG-CoA reductase inhibitors such as atorvastatin, itavastatin, pitavastatin, fluvastatin, lovastatin, pravastatin, rivastatin, simvastatin, rosuvastatin (ZD-4522), and other statins, particularly simvastatin; (3) HMG-CoA synthase inhibitors; (4) cholesterol absorption inhibitors such as FMVP4 (Forbes Medi-Tech), KT6-971 (Kotobuki Pharmaceutical), FM-VA12 (Forbes Medi-Tech), FM-VP-24 (Forbes Medi-Tech), stanol esters, beta-sitosterol
  • NS-220/R1593 Nippon Shinyaku/Roche
  • ST1929 Sigma Tau
  • MC3001/MC3004 MaxoCore Pharmaceuticals, gemcabene calcium, other fibric acid derivatives, such as Atromid®, Lopid® and Tricor®, and those disclosed in U.S. Pat. No.
  • FXR receptor modulators such as GW 4064 (GlaxoSmithkline), SR 103912, QRX401, LN-6691 (Lion Bioscience), and those disclosed in WO 02/064125, WO 04/045511, and the like;
  • LXR receptor modulators such as GW 3965 (GlaxoSmithkline), T9013137, and XTC0179628 (X-Ceptor Therapeutics/Sanyo), and those disclosed in WO 03/031408, WO 03/063796, WO 04/072041, and the like;
  • lipoprotein synthesis inhibitors such as niacin; (13) renin angiotensin system inhibitors;
  • PPAR 6 partial agonists such as those disclosed in WO 03/024395;
  • bile acid reabsorption inhibitors such as BARI1453, SC435, PHA384640, S8921, AZD7706, and the like; and bil
  • anti-hypertensive agents such as (1) diuretics, such as thiazides, including chlorthalidone, chlorthiazide, dichlorophenamide, hydroflumethiazide, indapamide, and hydrochlorothiazide; loop diuretics, such as bumetanide, ethacrynic acid, furosemide, and torsemide; potassium sparing agents, such as amiloride, and triamterene; and aldosterone antagonists, such as spironolactone, epirenone, and the like; (2) beta-adrenergic blockers such as acebutolol, atenolol, betaxolol, bevantolol, bisoprolol, bopindolol, carteolol, carvedilol, celiprolol, esmolol, indenolol, metaprolol, nadolol, nebivolol
  • anti-obesity agents such as (1) 5HT (serotonin) transporter inhibitors, such as paroxetine, fluoxetine, fenfluramine, fluvoxamine, sertraline, and imipramine, and those disclosed in WO 03/00663, as well as serotonin/noradrenaline re uptake inhibitors such as sibutramine (MERIDIA/REDUCTIL) and dopamine uptake inhibitor/Norepenephrine uptake inhibitors such as radafaxine hydrochloride, 353162 (GlaxoSmithkline), and the like; (2) NE (norepinephrine) transporter inhibitors, such as GW 320659, despiramine, talsupram, and nomifensine; (3) CB1 (cannabinoid-1 receptor) antagonist/inverse agonists, such as taranabant, rimonabant (ACCOMPLIA Sanofi Synthelabo), SR-147778 (Sanofi Syn
  • MCH1R melanin-concentrating hormone 1 receptor
  • T-226296 Takeda
  • T71 Takeda/Amgen
  • AMGN-608450 AMGN-503796
  • Amgen 856464
  • A798 Abbott
  • ATC0175/AR224349 Arena Pharmaceuticals
  • GW803430 GaxoSmithkine
  • NBI-1A Neurorocrine Biosciences
  • NGX-1 Neurogen
  • SNP-7941 Synaptic
  • SNAP9847 Synaptic
  • T-226293 Schering Plough
  • TPI-1361-17 Saitama Medical School/University of California Irvine
  • WO 01/21 melanin-concentrating hormone 1 receptor
  • NPY1 neuropeptide Y Y1
  • BMS205749, BIBP3226, J-115814, BIBO 3304, LY-357897, CP-671906, and GI-264879A and those disclosed in U.S. Pat. No.
  • NPY5 neuropeptide Y Y5
  • E-6999 Esteve
  • GW-587081X GW-548118X
  • FR 235,208 FR226928, FR 240662, FR252384
  • 1229U91 GI-264879A
  • CGP71683A C-75
  • LY366377 LY366377, PD-160170, SR-120562A, SR-120819A, S2367 (Shionogi), JCF-104, and H409/22; and those compounds
  • WO 97/19682 WO 97/20820, WO 97/20821, WO 97/20822, WO 97/20823, WO 98/27063, WO 00/107409, WO 00/185714, WO 00/185730, WO 00/64880, WO 00/68197, WO 00/69849, WO 01/09120, WO 01/14376, WO 01/85714, WO 01/85730, WO 01/07409, WO 01/02379, WO 01/02379, WO 01/23388, WO 01/23389, WO 01/44201, WO 01/62737, WO 01/62738, WO 01/09120, WO 02/20488, WO 02/22592, WO 02/48152, WO 02/49648, WO 02/051806, WO 02/094789, WO 03/009845, WO 03/014083, WO 03/0228
  • leptin such as recombinant human leptin (PEG-OB, Hoffman La Roche) and recombinant methionyl human leptin (Amgen);
  • leptin derivatives such as those disclosed in U.S. Pat. Nos.
  • opioid antagonists such as nalmefene (Revex®), 3-methoxynaltrexone, naloxone, and naltrexone; and those disclosed in WO 00/21509; (13) orexin antagonists, such as SB-334867-A (GlaxoSmithkline); and those disclosed in WO 01/96302, 01/68609, 02/44172, 02/51232, 02/51838, 02/089800, 02/090355, 03/023561, 03/032991, 03/037847, 04/004733, 04/026866, 04/041791, 04/085403, and
  • CNTF ciliary neurotrophic factors
  • GI-181771 Gaxo-SmithKline
  • SR146131 Sanofi Synthelabo
  • butabindide butabindide
  • PD170,292, PD 149164 Pfizer
  • CNTF derivatives such as axokine (Regeneron); and those disclosed in WO 94/09134, WO 98/22128, and WO 99/43813
  • GHS growth hormone secretagogue receptor
  • GHS growth hormone secretagogue receptor
  • GLP-1 glucagon-like peptide 1 agonists
  • Topiramate Topimax®
  • phytopharm compound 57 CP 644,673
  • ACC2 acetyl-CoA carboxylase-2
  • ⁇ 3 beta adrenergic receptor 3) agonists, such as rafebergron/AD9677/TAK677 (Dainippon/Takeda), CL-316,243, SB 418790, BRL-37344, L-796568, BMS-196085, BRL-35135A, CGP12177A, BTA-243, GRC1087 (Glenmark Pharmaceuticals)
  • GW 427353 solabegron hydrochloride
  • Trecadrine Zeneca D7114, N-5984 (Nisshin Kyorin)
  • UCP-1 uncoupling protein 1
  • 2, or 3 activators such as phytanic acid, 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1-propenyl]benzoic acid (TTNPB), and retinoic acid; and those disclosed in WO 99/00123; (35) acyl-estrogens, such as oleoyl-estrone, disclosed in del Mar-Grasa, M.
  • glucocorticoid receptor antagonists such as CP472555 (Pfizer), KB 3305, and those disclosed in WO 04/000869, WO 04/075864, and the like; (37) 11 ⁇ HSD-1 (11-beta hydroxy steroid dehydrogenase type 1) inhibitors, such as BVT 3498 (AMG 331), BVT 2733, 3-(1-adamantyl)-4-ethyl-5-(ethylthio)-4H-1,2,4-triazole, 3-(1-adamantyl)-5-(3,4,5-trimethoxyphenyl)-4-methyl-4H-1,2,4-triazole, 3-adamantanyl-4,5,6,7,8,9,10,11,12,3a-decahydro-1,2,4-triazolo[4,3-a][11]annulene, and those compounds disclosed in WO 01
  • anorectic agents suitable for use in combination with a compound of the present invention include, but are not limited to, a minorex, amphechloral, amphetamine, benzphetamine, chlorphentermine, clobenzorex, cloforex, clominorex, clortermine, cyclexedrine, dexfenfluramine, dextroamphetamine, diethylpropion, diphemethoxidine, N-ethylamphetamine, fenbutrazate, fenfluramine, fenisorex, fenproporex, fludorex, fluminorex, furfurylmethylamphetamine, levamfetamine, levophacetoperane, mazindol, mefenorex, metamfepramone, methamphetamine, norpseudoephedrine, pentorex, phendimetrazine, phenmetrazine, phentermine,
  • a particularly suitable class of anorectic agent are the halogenated amphetamine derivatives, including chlorphentermine, cloforex, clortermine, dexfenfluramine, fenfluramine, picilorex and sibutramine; and pharmaceutically acceptable salts thereof.
  • Particular halogenated amphetamine derivatives of use in combination with a compound of the present invention include: fenfluramine and dexfenfluramine, and pharmaceutically acceptable salts thereof.
  • Specific compounds of use in combination with a compound of the present invention include: simvastatin, mevastatin, ezetimibe, atorvastatin, sitagliptin, metformin, sibutramine, orlistat, Qnexa, topiramate, naltrexone, bupriopion, phentermine, and losartan, losartan with hydrochlorothiazide.
  • Specific CB1 antagonists/inverse agonists of use in combination with a compound of the present invention include: those described in WO03/077847, including: N-[3-(4-chlorophenyl)-2(S)-phenyl-1(S)-methylpropyl]-2-(4-trifluoromethyl-2-pyrimidyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, N-[3-(4-chlorophenyl)-2-(5-chloro-3-pyridyl)-1-methylpropyl]-2-(5-trifluoromethyl-2-pyridyloxy)-2-methylpropanamide, and pharmaceutically acceptable salts thereof; as well as those in WO05/000809, which includes the following: 3- ⁇ 1-[bis(4
  • NPY5 antagonists of use in combination with a compound of the present invention include: 3-oxo-N-(5-phenyl-2-pyrazinyl)-spiro[isobenzofuran-1(3H), 4′-piperidine]-1′-carboxamide, 3-oxo-N-(7-trifluoromethylpyrido[3,2-b]pyridin-2-yl)spiro-[isobenzofuran-1(3H), 4′-piperidine]-1′-carboxamide, N-[5-(3-fluorophenyl)-2-pyrimidinyl]-3-oxospiro-[isobenzofuran-1(3H), 4′-piperidine]-1′-carboxamide, trans-3′-oxo-N-(5-phenyl-2-pyrimidinyl)spiro[cyclohexane-1,1′(3′H)-isobenzofuran]-4-carboxamide, trans-3′-ox
  • Specific ACC-1/2 inhibitors of use in combination with a compound of the present invention include: l′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-6-(1H-tetrazol-5-yl)spiro[chroman-2,4′-piperidin]-4-one; (5- ⁇ l′-[(4,8-dimethoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl ⁇ -2H-tetrazol-2-yl)methyl pivalate; 5- ⁇ l′-[(8-cyclopropyl-4-methoxyquinolin-2-yl)carbonyl]-4-oxospiro[chroman-2,4′-piperidin]-6-yl ⁇ nicotinic acid; 1′-(8-methoxy-4-morpholin-4-yl-2-naphthoyl)-6-(1H-tetrazol-5-yl
  • MCH1R antagonist compounds of use in combination with a compound of the present invention include: 1- ⁇ 4-[(1-ethylazetidin-3-yl)oxy]phenyl ⁇ -4-[(4-fluorobenzyl)oxy]pyridin-2(1H)-one, 4-[(4-fluorobenzyl)oxy]-1- ⁇ 4-[(1-isopropylazetidin-3-yl)oxy]phenyl ⁇ pyridin-2(1H)-one, 1-[4-(azetidin-3-yloxy)phenyl]-4-[(5-chloropyridin-2-yl)methoxy]pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)methoxy]-1- ⁇ 4-[(1-ethylazetidin-3-yl)oxy]phenyl ⁇ pyridin-2(1H)-one, 4-[(5-chloropyridin-2-yl)
  • Specific DP-IV inhibitors of use in combination with a compound of the present invention are selected from Januvia, 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine.
  • the compound of formula I is favorably combined with 7-[(3R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(trifluoromethyl)-5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine, and pharmaceutically acceptable salts thereof.
  • H3 (histamine H3) antagonists/inverse agonists of use in combination with a compound of the present invention include: those described in WO05/077905, including: 3- ⁇ 4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl ⁇ -2-ethylpyrido[2,3-d]-pyrimidin-4(3H)-one, 3- ⁇ 4-[(1-cyclobutyl-4-piperidinyl)oxy]phenyl ⁇ -2-methylpyrido[4,3-d]pyrimidin-4(3H)-one, 2-ethyl-3-(4- ⁇ 3-[(3S)-3-methylpiperidin-1-yl]propoxy ⁇ phenyl)pyrido[2,3-d]pyrimidin-4(3H)-one 2-methyl-3-(4- ⁇ 3-[(3S)-3-methylpiperidin-1-yl]propoxy ⁇ phenyl)pyrido[4,3-d]pyrimidin-4(3H
  • CCK1R agonists of use in combination with a compound of the present invention include: 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(4-methylphenyl)-1H-imidazol-4-yl]carbonyl ⁇ -1-piperazinyl)-1-naphthoic acid; 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(2-fluoro-4-methylphenyl)-1H-imidazol-4-yl]carbonyl ⁇ -1-piperazinyl)-1-naphthoic acid; 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(4-fluorophenyl)-1H-imidazol-4-yl]carbonyl ⁇ -1-piperazinyl)-1-naphthoic acid; 3-(4- ⁇ [1-(3-ethoxyphenyl)-2-(2,4-difluorophenyl)-1H-imid
  • Specific MC4R agonists of use in combination with a compound of the present invention include: 1) (5S)-1′- ⁇ [(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)piperidin-4-yl]carbonyl ⁇ -3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′-piperidine]; 2)(5R)-1′- ⁇ [(3R,4R)-1-tert-butyl-3-(2,3,4-trifluorophenyl)-piperidin-4-yl]carbonyl ⁇ -3-chloro-2-methyl-5-[1-methyl-1-(1-methyl-1H-1,2,4-triazol-5-yl)ethyl]-5H-spiro[furo[3,4-b]pyridine-7,4′
  • Suitable neurokinin-1 (NK-1) receptor antagonists may be favorably employed with the AMP-kinase activators of the present invention.
  • NK-1 receptor antagonists of use in the present invention are fully described in the art.
  • Specific neurokinin-1 receptor antagonists of use in the present invention include: ( ⁇ )-(2R3R,2S3S)—N- ⁇ [2-cyclopropoxy-5-(trifluoromethoxy)-phenyl]methyl ⁇ -2-phenylpiperidin-3-amine; 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)-phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1H,4H-1,2,4-triazolo)methyl)morpholine; aperpitant; CJ17493; GW597599; GW679769; R673; R067319; R1124; R1204; SSR146977;
  • the above combinations include combinations of a compound of the present invention not only with one other active compound, but also with two or more other active compounds.
  • Non-limiting examples include combinations of compounds with two or more active compounds selected from biguanides, sulfonylureas, HMG-CoA reductase inhibitors, PPAR ⁇ agonists, DPP-4 inhibitors, anti-obesity compounds, and anti-hypertensive agents.
  • the present invention also provides a method for the treatment or prevention of a G-protein coupled receptor 40 (GPR40) mediated disease, which method comprises administration to a patient in need of such treatment or at risk of developing a GPR40 mediated disease of an amount of a GPR40 agonist and an amount of one or more active ingredients, such that together they give effective relief.
  • GPR40 G-protein coupled receptor 40
  • a pharmaceutical composition comprising a GPR40 agonist and one or more active ingredients, together with at least one pharmaceutically acceptable carrier or excipient.
  • a GPR40 agonist and one or more active ingredients for the manufacture of a medicament for the treatment or prevention of a GPR40 mediated disease.
  • a product comprising a GPR40 agonist and one or more active ingredients as a combined preparation for simultaneous, separate or sequential use in the treatment or prevention of a GPR40 mediated disease.
  • Such a combined preparation may be, for example, in the form of a twin pack.
  • a compound of the present invention may be used in conjunction with another pharmaceutical agent effective to treat that disorder.
  • the present invention also provides a method for the treatment or prevention of diabetes, obesity, hypertension, Metabolic Syndrome, dyslipidemia, cancer, atherosclerosis, and related disorders thereof, which method comprises administration to a patient in need of such treatment an amount of a compound of the present invention and an amount of another pharmaceutical agent effective to threat that disorder, such that together they give effective relief.
  • the present invention also provides a method for the treatment or prevention of diabetes, obesity, hypertension, Metabolic Syndrome, dyslipidemia, cancer, atherosclerosis, and related disorders thereof, which method comprises administration to a patient in need of such treatment an amount of a compound of the present invention and an amount of another pharmaceutical agent useful in treating that particular condition, such that together they give effective relief.
  • terapéuticaally effective amount means the amount the compound of structural formula I that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disorder being treated.
  • the novel methods of treatment of this invention are for disorders known to those skilled in the art.
  • the term “mammal” includes humans, and companion animals such as dogs and cats.
  • the weight ratio of the compound of the Formula Ito the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the Formula I is combined with a DPIV inhibitor the weight ratio of the compound of the Formula Ito the DPIV inhibitor will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the Formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
  • the compounds of the present invention can be prepared according to the procedures of the following Examples, using appropriate materials.
  • the compounds illustrated in the examples are not, however, to be construed as forming the only genus that is considered as the invention.
  • the Examples further illustrate details for the preparation of the compounds of the present invention.
  • Those skilled in the art will readily understand that known variations of protecting groups, as well as of the conditions and processes of the following preparative procedures, can be used to prepare these compounds.
  • a chemical reagent such as a boronic acid or a boronate is not commercially available, such a chemical reagent can be readily prepared following one of numerous methods described in the literature. All temperatures are degrees Celsius unless otherwise noted.
  • Mass spectra (MS) were measured either by electrospray ion-mass spectroscopy (ESMS) or by atmospheric pressure chemical ionization mass spectroscopy (APCI).
  • TLC or prep-TLC, or prep TLC is preparative thin layer chromatography;
  • RBF round bottom flask;
  • RCM ring closing metathesis reaction;
  • rt or r.t. or RT room temperature;
  • s singlet;
  • SFC supercritical fluid chromatography;
  • s-phos is 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl;
  • t is triplet;
  • TBTU is N,N,N,N′-Tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate;
  • TEA is triethyl amine;
  • Ti(OiPr) 4 is titanium isopropoxide;
  • TFA trifluoroacetic acid;
  • TLC thin-layer chromatography;
  • TMSCl is trimethyl silyl chloride;
  • Step B (4-Bromo-5-iodo-pyridin-2-yl)-bis-(4-methoxy-benzyl)-amine (1-3)
  • Step C (4-Bromo-5-vinyl-pyridin-2-yl)-bis-(4-methoxy-benzyl)-amine (1-4)
  • Step D (4-Allyl-5-vinyl-pyridin-2-yl)-bis-(4-methoxy-benzyl)-amine (1-5)
  • Step E Bis-(4-methoxy-benzyl)-(5H-[2]pyrindin-3-yl)-amine (1-6)
  • Step F 4-[Bis-(4-methoxy-benzyl)-amino]-1,1a,6,6a-tetrahydro-3-aza-cyclopropa[a]-indene-1-carboxylic acid ethyl ester (1-7)
  • Step G 4-Amino-1,1a,6,6a-tetrahydro-3-aza-cyclopropa[a]indene-1-carboxylic acid ethyl ester (1-8)
  • Step H 4-Hydroxy-1,1a,6,6a-tetrahydro-3-aza-cyclopropa[a]indene-1-carboxylic acid ethyl ester (1-9)
  • Step A (5-bromo-2-methoxyisonicotinaldehyde (39-1)
  • Step B methyl 4-formyl-6-methoxynicotinate (39-2)
  • Step C (E)-methyl 4-(3-ethoxy-3-oxoprop-1-en-1-yl)-6-methoxynicotinate (39-3)
  • Step D methyl 4-(3-ethoxy-3-oxopropyl)-6-methoxynicotinate (39-4)
  • Step E ethyl 3-methoxy-7-oxo-6,7-dihydro-5H-cyclopenta[c]pyridine-6-carboxylate (39-5)
  • Step F 3-methoxy-5H-cyclopenta[c]pyridin-7(6H)-one (39-6)
  • Step G 3-methoxy-6,7-dihydro-5H-cyclopenta[c]pyridin-7-ol (39-7)
  • Step I ethyl 3-methoxy-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (39-9)
  • Step J ethyl 3-hydroxy-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (1-9)
  • Step B 2-(3-Bromomethyl-4-fluoro-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (2-3)
  • Step C 4-[2-Fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzyloxy]-1,1a,6,6a-tetrahydro-3-aza-cyclopropa[a]indene-1-carboxylic acid ethyl ester (2-4)
  • Reference Example 2-5 was prepared in a similar manner to Reference Example 2-4 using the appropriate commercially available starting materials.
  • Step B 3-bromo-2,4-dimethyl-6(3-(methylthio)propoxy)pyridine (3-2)
  • Step C 3-bromo-2,4-dimethyl-6-(3-(methylsulfonyl)propoxy)pyridine (3-3)
  • Step B 3-(methylsulfonyl)propyl 4-methylbenzenesulfonate (34-2)
  • Step C 2-bromo-1,3-dimethyl-5-(3-(methylsulfonyl)propoxy)benzene (34-1
  • Step D (2′,6′-dimethyl-4′-(3-(methylsulfonyl)propoxy)-[1,1′-biphenyl]-3-yl)methanol (34-4)
  • Step E 3′-(bromomethyl)-2,6-dimethyl-4-(3-(methylsulfonyl)propoxy)-1,1′-biphenyl (34-5)
  • Step C (5aR,6S,6aS)-3-((2′,6′-dimethyl-4′-((3-methyloxetan-3-yl)methoxy)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (3-4)
  • Example 2 (compound 3-5) was prepared in a similar manner to compound 3-4 using the appropriate commercially available materials.
  • Step A methyl 3-(4-bromo-3,5-dimethylphenoxy)propanoate (4-2)
  • Step B 1-(2-(4-bromo-3,5-dimethylphenoxy)ethyl)cyclopropanol (4-3)
  • Step C (5 aR,6S,6aS)-ethyl 3-((4′-(2-(1-hydroxycyclopropyl)ethoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (4-4)
  • Step D (5aR,6S,6aS)-3-((4′-(2-(1-hydroxycyclopropyl)ethoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl)methoxy-5,5a,6,6a-tetrahdrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (4-5)
  • Example 4 (compound 4-6) was prepared in a similar manner to Compound 4-5 using the appropriate commercially available starting materials.
  • Step A 4-(4-bromo-3,5-dimethylphenoxy)-2-methylbutan-2-ol (5-1)
  • Steps B and C (5aR,6S,6aS)-3-((4′-(3-hydroxy-3-methylbutoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (5-3)
  • Examples 6-8 (compounds 5-4, 5-5 and 5-6) were prepared in a similar manner to compound 5-3 using the appropriate commercially available starting materials.
  • Step A (S)-1-(4-bromo-3,5-dimethylphenoxy)propan-2-ol (6-2)
  • Step B (5aR,6S,6aS)-ethyl 3-((4-fluoro-4′-((S)-2-hydroxypropoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (6-3)
  • Step C (5aR,6S,6aS)-3-((4-fluoro-4′-((S)-2-hydroxypropoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (6-4)
  • Step A 4-((5-bromo-6-methylpyridin-2-yl)oxy)-2-methylbutan-2-ol (7-2)
  • Step B (5 aR,6S,6aS)-ethyl 3-((3-(6-(3-hydroxy-3-methylbutoxy)-2-methylpyridin-3-yl)benzyl)oxy)-5, a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (7-3)
  • Step C (5aR,6S,6aS)-3-((3-(6-(3-hydroxy-3-methylbutoxy)-2-methylpyridin-3-yl)benzyl)oxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid
  • Step A methyl 3-(4-bromo-3-(trifluoromethyl)phenoxy)propanoate (8-2)
  • Step B 1-(2-(4-bromo-3-(trifluoromethyl)phenoxy)ethyl)cyclopropanol (8-3)
  • Step C (5aR,6S,6aS)-ethyl 3-((4-fluoro-4′-(2-(1-hydroxycyclopropyl)ethoxy)-2′-(trifluoromethyl)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]-cyclopenta[1,2-c]pyridine-6-carboxylate (8-4)
  • Step D (5aR,6S,6aS)-3-((4-fluoro-4′-(2-(1-hydroxycyclopropyl)ethoxy)-2′-(trifluoromethyl)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (8-5)
  • Example 16 (Compound 8-6) was prepared in a similar manner to Compound 8-5 using the appropriate commercially available starting materials.
  • Step B (4-fluorotetrahydro-2H-pyran-4-yl) methanol (9-3)
  • Step D 4-((4-bromo-3,5-dimethylphenoxy)methyl)-4-fluorotetrahydro-2H-pyran (9-5)
  • Step E ethyl 3-((4-fluoro-4′44-fluorotetrahydro-2H-pyran-4-yl)methoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl) methoxy)-5,5a,6,6a-tetrahydro cyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (9-6)
  • Step F (5aR,6S,6aS)-3-((4-fluoro-4′-((4-fluorotetrahydro-2H-pyran-4-yl)methoxy)-2′,6′-dimethyl-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (9-7)
  • Example 18 (Compound 9-8) was prepared in a similar manner to Compound 9-7 using the appropriate commercially available starting materials and boronate from Reference Example 2-5.
  • Step A 1-fluoro-3-(3-(methylsulfonyl)propoxy)-5-(trifluoromethyl)benzene (10-2)
  • Step B 2-bromo-1-fluoro-5-(3-(methylsulfonyl)propoxy)-3-(trifluoromethyl)benzene (10-3)
  • Step C (5aR,6S,6aS-ethyl 3-((2′,4-difluoro-4′-(methylsulfonyl)propoxy)-6′-(trifluoromethyl)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]-cyclopenta[1,2-c]pyridine-6-carboxylate (10-4)
  • Step D (5aR,6S,6aS)-3-((2′,4-difluoro-4′-(3-(methylsulfonyl)propoxy)-6′-(trifluoromethyl)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (10-5)
  • Step A (5aR,6S,6aS)-ethyl 3-((2′,6′-dimethyl-4′-(3-(methylsulfonyl)propoxy)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahdrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylate (34-6) and its enantiomer (34-6a)
  • Step B (5aR,6S,6aS)-3-((2′,6′-dimethyl-4′-(3-(methylsulfonyl)propoxy)-[1,1′-biphenyl]-3-yl)methoxy)-5,5a,6,6a-tetrahdrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic acid (10-61
US13/955,282 2012-08-02 2013-07-31 Antidiabetic tricyclic compounds Abandoned US20140045746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/955,282 US20140045746A1 (en) 2012-08-02 2013-07-31 Antidiabetic tricyclic compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2012/079558 2012-08-02
PCT/CN2012/079558 WO2014019186A1 (en) 2012-08-02 2012-08-02 Antidiabetic tricyclic compounds
US201261696572P 2012-09-04 2012-09-04
US13/955,282 US20140045746A1 (en) 2012-08-02 2013-07-31 Antidiabetic tricyclic compounds

Publications (1)

Publication Number Publication Date
US20140045746A1 true US20140045746A1 (en) 2014-02-13

Family

ID=48998703

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/418,147 Active US9527875B2 (en) 2012-08-02 2013-07-31 Antidiabetic tricyclic compounds
US13/955,282 Abandoned US20140045746A1 (en) 2012-08-02 2013-07-31 Antidiabetic tricyclic compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/418,147 Active US9527875B2 (en) 2012-08-02 2013-07-31 Antidiabetic tricyclic compounds

Country Status (12)

Country Link
US (2) US9527875B2 (es)
EP (1) EP2880028B1 (es)
JP (1) JP2015525782A (es)
KR (1) KR20150036245A (es)
AR (1) AR091962A1 (es)
AU (1) AU2013296470B2 (es)
BR (1) BR112015002080A2 (es)
CA (1) CA2880901A1 (es)
MX (1) MX2015001500A (es)
RU (1) RU2015106909A (es)
TW (1) TW201408644A (es)
WO (1) WO2014022528A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095256A1 (en) * 2013-12-19 2015-06-25 Merck Sharp & Dohme Corp. Antidiabetic substituted heteroaryl compounds
WO2015097713A1 (en) 2013-11-14 2015-07-02 Cadila Healthcare Limited Novel heterocyclic compounds
WO2015176267A1 (en) * 2014-05-22 2015-11-26 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
US9527875B2 (en) 2012-08-02 2016-12-27 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
CN110568100A (zh) * 2019-09-12 2019-12-13 江西济民可信金水宝制药有限公司 一种米格列奈钙r-异构体的检测方法
US10519115B2 (en) 2013-11-15 2019-12-31 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088266A2 (en) 2010-12-22 2012-06-28 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of fgfr3
DK3176170T3 (en) 2012-06-13 2019-01-28 Incyte Holdings Corp SUBSTITUTED TRICYCLIC RELATIONS AS FGFR INHIBITORS
WO2014026125A1 (en) 2012-08-10 2014-02-13 Incyte Corporation Pyrazine derivatives as fgfr inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
ES2893725T3 (es) 2013-04-19 2022-02-09 Incyte Holdings Corp Heterocíclicos bicíclicos como inhibidores del FGFR
WO2015051496A1 (en) * 2013-10-08 2015-04-16 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
CN107438607B (zh) 2015-02-20 2021-02-05 因赛特公司 作为fgfr抑制剂的双环杂环
WO2016134294A1 (en) 2015-02-20 2016-08-25 Incyte Corporation Bicyclic heterocycles as fgfr4 inhibitors
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
JP7050797B2 (ja) * 2016-10-25 2022-04-08 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ベンジルアミノピリジルシクロプロパンカルボン酸、その医薬組成物および使用
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
WO2019099315A1 (en) 2017-11-16 2019-05-23 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
BR112020022392A2 (pt) 2018-05-04 2021-02-02 Incyte Corporation formas sólidas de um inibidor de fgfr e processos para preparação das mesmas
MA52493A (fr) 2018-05-04 2021-03-10 Incyte Corp Sels d'un inhibiteur de fgfr
US11590161B2 (en) 2018-08-13 2023-02-28 Viscera Labs, Inc. Therapeutic composition and methods
US11524029B2 (en) 2018-08-13 2022-12-13 Viscera Labs, Inc. Therapeutic composition and methods
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
CR20220169A (es) 2019-10-14 2022-10-27 Incyte Corp Heterociclos bicíclicos como inhibidores de fgfr
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
JP2023505258A (ja) 2019-12-04 2023-02-08 インサイト・コーポレイション Fgfr阻害剤としての三環式複素環
WO2021113462A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Derivatives of an fgfr inhibitor
WO2022261160A1 (en) 2021-06-09 2022-12-15 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors

Family Cites Families (474)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914250A (en) 1974-08-01 1975-10-21 American Home Prod 1,4-Diazepino{8 6,5,4-jk{9 carbazoles
JPS608117B2 (ja) 1977-02-08 1985-02-28 財団法人微生物化学研究会 新生理活性物質エステラスチンおよびその製造法
DE2928485A1 (de) 1979-07-14 1981-01-29 Bayer Ag Verwendung von harnstoffderivaten als arzneimittel bei der behandlung von fettstoffwechselstoerungen
ZA821577B (en) 1981-04-06 1983-03-30 Boots Co Plc Therapeutic agents
US4452813A (en) 1981-05-22 1984-06-05 Taiho Pharmaceutical Company Limited Sulfonate derivatives, process for preparing same and antilipemic compositions containing the derivative
FR2523584B1 (fr) 1982-03-17 1985-06-28 Rhone Poulenc Agrochimie Halogenures d'acides s-(tertioalcoyl) alcoylphosphonothioiques, leur preparation et leur utilisation
JPS58193541A (ja) 1982-05-07 1983-11-11 Konishiroku Photo Ind Co Ltd 熱現像画像記録材料
CA1258454A (en) 1982-08-10 1989-08-15 Leo Alig Phenethanolamines
JPH0245181B2 (ja) 1983-03-16 1990-10-08 Fuji Photo Film Co Ltd Netsugenzokaraakankozairyo
GB8313322D0 (en) 1983-05-14 1983-06-22 Ciba Geigy Ag Heterocyclic-(cyclo)aliphatic carboxylic acids
GB8313320D0 (en) 1983-05-14 1983-06-22 Ciba Geigy Ag Coating compositions
GB8313321D0 (en) 1983-05-14 1983-06-22 Ciba Geigy Ag Preparation of mercaptan substituted carboxylic acids
CA1247547A (en) 1983-06-22 1988-12-28 Paul Hadvary Leucine derivatives
IE61928B1 (en) 1988-11-29 1994-11-30 Boots Co Plc Treatment of obesity
US5391571A (en) 1989-11-15 1995-02-21 American Home Products Corporation Cholesterol ester hydrolase inhibitors
US5112820A (en) 1990-03-05 1992-05-12 Sterling Drug Inc. Anti-glaucoma compositions containing 2- and 3-aminomethyl-6-arylcarbonyl- or 6-phenylthio-2,3-dihydropyrrolo-(1,2,3-de)-1,4-benzoxazines and method of use thereof
US5081122A (en) 1990-03-05 1992-01-14 Sterling Drug Inc. Antiglaucoma compositions containing 4-arylcarbonyl-1-(4-morpholinyl)-lower-alkyl)-1H-indoles and method of use thereof
US4973587A (en) 1990-03-08 1990-11-27 Sterling Drug Inc. 3-arylcarbonyl-1-aminoalkyl-1H-indole-containing antiglaucoma method
US5013837A (en) 1990-03-08 1991-05-07 Sterling Drug Inc. 3-Arylcarbonyl-1H-indole-containing compounds
PT100905A (pt) 1991-09-30 1994-02-28 Eisai Co Ltd Compostos heterociclicos azotados biciclicos contendo aneis de benzeno, ciclo-hexano ou piridina e de pirimidina, piridina ou imidazol substituidos e composicoes farmaceuticas que os contem
FR2692575B1 (fr) 1992-06-23 1995-06-30 Sanofi Elf Nouveaux derives du pyrazole, procede pour leur preparation et compositions pharmaceutiques les contenant.
US5349056A (en) 1992-10-09 1994-09-20 Regeneron Pharmaceuticals Modified ciliary neurotrophic factors
US6472178B1 (en) 1998-02-27 2002-10-29 Regeneron Pharmaceuticals, Inc. Nucleic acids encoding a modified ciliary neurotrophic factor and method of making thereof
US5451677A (en) 1993-02-09 1995-09-19 Merck & Co., Inc. Substituted phenyl sulfonamides as selective β 3 agonists for the treatment of diabetes and obesity
US5292736A (en) 1993-02-26 1994-03-08 Sterling Winthrop Inc. Morpholinoalkylindenes as antiglaucoma agents
JPH06298731A (ja) 1993-04-13 1994-10-25 Fuji Photo Film Co Ltd 複素環化合物の製造方法
FR2714057B1 (fr) 1993-12-17 1996-03-08 Sanofi Elf Nouveaux dérivés du 3-pyrazolecarboxamide, procédé pour leur préparation et compositions pharmaceutiques les contenant.
US5705515A (en) 1994-04-26 1998-01-06 Merck & Co., Inc. Substituted sulfonamides as selective β-3 agonists for the treatment of diabetes and obesity
IL113410A (en) 1994-04-26 1999-11-30 Merck & Co Inc Substituted sulfonamides having an asymmetric center and pharmaceutical compositions containing them
US5945425A (en) 1994-04-29 1999-08-31 G.D. Searle & Co. Method of using (H+ /K+)ATPase inhibitors as antiviral agents
SK57097A3 (en) 1994-11-07 1998-10-07 Pfizer Certain substituted benzylamine derivatives; a new class of neuropeptide y1 specific ligands
US5554727A (en) 1995-01-31 1996-09-10 Eli Lilly And Company Anti-obesity proteins
US5521283A (en) 1995-01-31 1996-05-28 Eli Lilly And Company Anti-obesity proteins
US5552522A (en) 1995-01-31 1996-09-03 Eli Lilly And Company Anti-obesity proteins
US5605886A (en) 1995-01-31 1997-02-25 Eli Lilly And Company Anti-obesity proteins
CA2211656A1 (en) 1995-01-31 1996-08-08 Margret B. Basinski Anti-obesity proteins
US5552523A (en) 1995-01-31 1996-09-03 Eli Lilly And Company Anti-obesity proteins
JPH10513450A (ja) 1995-01-31 1998-12-22 イーライ・リリー・アンド・カンパニー 抗肥満症タンパク質
US5552524A (en) 1995-01-31 1996-09-03 Eli Lilly And Company Anti-obesity proteins
US5559208A (en) 1995-01-31 1996-09-24 Eli Lilly And Company Anti-obesity proteins
US5532237A (en) 1995-02-15 1996-07-02 Merck Frosst Canada, Inc. Indole derivatives with affinity for the cannabinoid receptor
US5831115A (en) 1995-04-21 1998-11-03 Abbott Laboratories Inhibitors of squalene synthase and protein farnesyltransferase
US20020006964A1 (en) 1995-05-16 2002-01-17 Young James W. Methods of using and compositions comprising (+) sibutramine optionally in combination with other pharmacologically active compounds
US5739106A (en) 1995-06-07 1998-04-14 Rink; Timothy J. Appetite regulating compositions
EP0788353A1 (en) 1995-09-18 1997-08-13 Ligand Pharmaceuticals, Inc. Ppar gamma antagonists for treating obesity
FR2741621B1 (fr) 1995-11-23 1998-02-13 Sanofi Sa Nouveaux derives de pyrazole, procede pour leur preparation et compositions pharmaceutiques en contenant
US6482927B1 (en) 1995-11-27 2002-11-19 Millennium Pharmaceuticals, Inc. Chimeric proteins comprising the extracellular domain of murine Ob receptor
WO1997020821A1 (en) 1995-12-01 1997-06-12 Novartis Ag Heteroaryl derivatives
AU7692896A (en) 1995-12-01 1997-06-27 Novartis Ag Quinazolin-2,4-diazirines as NPY receptor antagonist
WO1997019682A1 (en) 1995-12-01 1997-06-05 Synaptic Pharmaceutical Corporation Aryl sulfonamide and sulfamide derivatives and uses thereof
AU7692996A (en) 1995-12-01 1997-06-27 Ciba-Geigy Ag Receptor antagonists
AU7626496A (en) 1995-12-01 1997-06-27 Ciba-Geigy Ag Heteroaryl compounds
TW432073B (en) 1995-12-28 2001-05-01 Pfizer Pyrazolopyridine compounds
AU1856997A (en) 1996-02-02 1997-08-22 Merck & Co., Inc. Method for raising hdl cholesterol levels
ES2241036T3 (es) 1996-02-02 2005-10-16 MERCK & CO., INC. Procedimiento de tratamiento de diabetes y estados patologicos asociados.
EP0888278B1 (en) 1996-02-02 2003-07-23 Merck & Co., Inc. Antidiabetic agents
DE69720429T9 (de) 1996-02-02 2004-09-23 Merck & Co., Inc. Heterocyclische verbindungen als antidiabetische mittel und für die behandlung von fettleibigkeit
CA2245524A1 (en) 1996-02-02 1997-08-07 Wei Han Antidiabetic agents
WO1997029079A1 (fr) 1996-02-06 1997-08-14 Japan Tobacco Inc. Composes chimiques et utilisation pharmaceutique
WO1997046556A1 (en) 1996-06-07 1997-12-11 Merck & Co., Inc. OXADIAZOLE BENZENESULFONAMIDES AS SELECTIVE β3 AGONISTS FOR THE TREATMENT OF DIABETES AND OBESITY
IT1288388B1 (it) 1996-11-19 1998-09-22 Angeletti P Ist Richerche Bio Uso di sostanze che attivano il recettore del cntf ( fattore neurotrofico ciliare) per la preparazione di farmaci per la terapia
CA2274594C (en) 1996-12-16 2006-10-10 Banyu Pharmaceutical Co., Ltd. Aminopyrazole derivatives
JPH10237049A (ja) 1996-12-24 1998-09-08 Nippon Chemiphar Co Ltd ベンズイソキサゾ−ル誘導体
EP0971588B1 (en) 1997-01-21 2004-03-17 Smithkline Beecham Corporation Novel cannabinoid receptor modulators
IL131130A0 (en) 1997-01-28 2001-01-28 Merck & Co Inc Thiazole benzenesulfonamides as beta3 agonists for the treatment of diabetes and obesity
KR100510794B1 (ko) 1997-02-04 2005-08-31 더 보드 오브 트러스티스 오브 더 유니버시티 오브 아칸소 살진균 카르복스아미드
AU735137B2 (en) 1997-02-21 2001-07-05 Bayer Intellectual Property Gmbh Arylsulphonamides and analogues and their use for the treatment and neurovegetative disorders
WO1998039342A1 (en) 1997-03-07 1998-09-11 Metabasis Therapeutics, Inc. Novel indole and azaindole inhibitors of fructose-1,6-bisphosphatase
AU6452098A (en) 1997-03-07 1998-09-22 Metabasis Therapeutics, Inc. Novel purine inhibitors of fructose-1,6-bisphosphatase
DK0970095T3 (da) 1997-03-07 2004-03-08 Metabasis Therapeutics Inc Hidtil ukendte benzimidazolinhibitorer for fructose-1,6-bisphosphase
JP2001516361A (ja) 1997-03-18 2001-09-25 スミスクライン・ビーチャム・コーポレイション 新規カンナビノイド受容体作動薬
FR2761265B1 (fr) 1997-03-28 1999-07-02 Sanofi Sa Composition pharmaceutique pour l'administration orale d'un derive du n-piperidino-3-pyrazolecarboxamide, de ses sels et de leurs solvates
FR2761266B1 (fr) 1997-03-28 1999-07-02 Sanofi Sa Composition pharmaceutique formee par granulation humide pour l'administration orale d'un derive du n-piperidino-3- pyrazolecarboxamide, de ses sels et de leurs solvates
DE69812096T2 (de) 1997-04-23 2003-10-30 Banyu Pharma Co Ltd Neuropeptid y rezeptorantagonisten
US6001836A (en) 1997-05-28 1999-12-14 Bristol-Myers Squibb Company Dihydropyridine NPY antagonists: cyanoguanidine derivatives
SE9702457D0 (sv) 1997-06-26 1997-06-26 Pharmacia & Upjohn Ab Screening
AU8127998A (en) 1997-07-11 1999-02-08 Japan Tobacco Inc. Quinoline compounds and medicinal uses thereof
EP1124807A1 (en) 1997-10-27 2001-08-22 Dr. Reddy's Research Foundation Novel heterocyclic compounds and their use in medicine, process for their preparation and pharmaceutical compositions containing them
WO1999019313A1 (en) 1997-10-27 1999-04-22 Dr. Reddy's Research Foundation Novel tricyclic compounds and their use in medicine; process for their preparation and pharmaceutical compositions containing them
US6440961B1 (en) 1997-10-27 2002-08-27 Dr. Reddy's Research Foundation Tricyclic compounds and their use in medicine: process for their preparation and pharmaceutical compositions containing them
EP1051403A1 (en) 1998-01-29 2000-11-15 Dr. Reddy's Research Foundation Novel alkanoic acids and their use in medicine, process for their preparation and pharmaceutical compositions containing them
US6312662B1 (en) 1998-03-06 2001-11-06 Metabasis Therapeutics, Inc. Prodrugs phosphorus-containing compounds
EP1068207A1 (en) 1998-04-02 2001-01-17 Neurogen Corporation AMINOALKYL SUBSTITUTED 9H-PYRIDINO 2,3-b]INDOLE AND 9H-PYRIMIDINO 4,5-b]INDOLE DERIVATIVES
ID26128A (id) 1998-04-29 2000-11-23 Ortho Mcneil Pharm Inc Senyawa-senyawa aminotetralin tersubstitusi-n sebagai ligan-ligan untuk reseptor neupeptida y y5 yang bermanfaat dalam pengobatan obesitas dan gangguan-gangguan lain
CN100357281C (zh) 1998-05-27 2007-12-26 雷迪实验室有限公司 双环化合物、其制备方法和包含它们的药物组合物
US6329395B1 (en) 1998-06-08 2001-12-11 Schering Corporation Neuropeptide Y5 receptor antagonists
CA2334551A1 (en) 1998-06-11 1999-12-16 Merck & Co., Inc. Spiropiperidine derivatives as melanocortin receptor agonists
JP3923255B2 (ja) 1998-07-15 2007-05-30 帝人株式会社 チオベンズイミダゾール誘導体
DE19837627A1 (de) 1998-08-19 2000-02-24 Bayer Ag Neue Aminosäureester von Arylsulfonamiden und Analoga
HN1998000027A (es) 1998-08-19 1999-06-02 Bayer Ip Gmbh Arilsulfonamidas y analagos
US6358951B1 (en) 1998-08-21 2002-03-19 Pfizer Inc. Growth hormone secretagogues
PT1112275E (pt) 1998-09-09 2003-12-31 Metabasis Therapeutics Inc Novos inibidores heteroaromaticos da frutose-1,6-bisfosfatase
WO2000015826A2 (en) 1998-09-10 2000-03-23 Millennium Pharmaceuticals, Inc. Leptin induced genes
US6337332B1 (en) 1998-09-17 2002-01-08 Pfizer Inc. Neuropeptide Y receptor antagonists
DE19844547C2 (de) 1998-09-29 2002-11-07 Aventis Pharma Gmbh Polycyclische Dihydrothiazole, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP1121111B1 (en) 1998-10-15 2010-02-10 Imperial Innovations Limited Compounds for the treatment of weight loss
WO2000023417A1 (en) 1998-10-21 2000-04-27 Novo Nordisk A/S New compounds, their preparation and use
WO2000023415A1 (en) 1998-10-21 2000-04-27 Novo Nordisk A/S New compounds, their preparation and use
AU6325599A (en) 1998-10-21 2000-05-08 Dr. Reddy's Research Foundation New compounds, their preparation and use
ATE314371T1 (de) 1998-11-10 2006-01-15 Merck & Co Inc Spiro-indole als y5-rezeptor antagonisten
US6344481B1 (en) 1999-03-01 2002-02-05 Pfizer Inc. Thyromimetic antiobesity agents
EP1178789B1 (en) 1999-03-19 2008-07-16 Abbott GmbH & Co. KG Method of treating eating disorders
FR2792314B1 (fr) 1999-04-15 2001-06-01 Adir Nouveaux composes aminotriazoles, leur procede de preparation et les compositions pharmaceutiques qui les contiennent
DK1183245T3 (da) 1999-04-22 2007-09-24 Lundbeck & Co As H Selektive NPY(Y5)-antagonister
US6340683B1 (en) 1999-04-22 2002-01-22 Synaptic Pharmaceutical Corporation Selective NPY (Y5) antagonists (triazines)
EP1177172A1 (en) 1999-05-05 2002-02-06 Ortho-McNeil Pharmaceutical, Inc. 3a,4,5,9b-TETRAHYDRO-1H-BENZ e]INDOL-2-YL AMINE-DERIVED NEUROPEPTIDE Y RECEPTORS LIGANDS USEFUL IN THE TREATMENT OF OBESITY AND OTHER DISORDERS
EP1177188B1 (en) 1999-05-12 2005-10-12 Ortho-McNeil Pharmaceutical, Inc. Pyrazole carboxamides useful for the treatment of obesity and other disorders
EP1187614A4 (en) 1999-06-04 2005-06-22 Merck & Co Inc SUBSTITUTED PIPERIDINES THAN MELANOCORTIN-4 RECEPTOR AGONISTS
CA2377309C (en) 1999-06-30 2010-11-23 Tularik Inc. Compounds for the modulation of ppar.gamma. activity
DE60023141T2 (de) 1999-06-30 2006-06-14 Lundbeck As Valby H Selektive npy (y5) antagonisten
WO2001007409A1 (en) 1999-07-23 2001-02-01 Astrazeneca Uk Limited Carbazole derivatives and their use as neuropeptide y5 receptor ligands
MXPA02000927A (es) 1999-07-28 2003-07-14 Johnson & Johnson Amina y derivados de amida como ligandos para el receptor del neuropeptido y y5 utiles en el tratamiento de obesidad y otros trastornos.
MXPA02001160A (es) 1999-08-04 2002-07-02 Millennium Pharm Inc Compuestos que se unen a los receptores para melanocortina-4, y metodo de uso de estos.
TWI279402B (en) 1999-08-20 2007-04-21 Banyu Pharma Co Ltd Spiro compounds having NPY antagonistic activities and agents containing the same
CA2383147A1 (en) 1999-09-20 2001-03-29 Takeda Chemical Industries, Ltd. Mch antagonists
NZ517575A (en) 1999-09-30 2004-04-30 Neurogen Corp Certain alkylene diamine-substituted heterocycles
ATE347553T1 (de) 1999-09-30 2006-12-15 Neurogen Corp Amino-substituierte pyrazolo 1,5-aö-1,5- pyrimidine und pyrazolo 1,5-aö-1,3,5-triazine
CZ20021067A3 (cs) 1999-09-30 2002-11-13 Neurogen Corporation Určité alkylendiaminové substituované pyrazolo[1,5-a]- 1,5-pyrimidiny a pyrazolo[1,5-a]-1,3,5-triaziny
TWI262185B (en) 1999-10-01 2006-09-21 Eisai Co Ltd Carboxylic acid derivatives having anti-hyperglycemia and anti-hyperlipemia action, and pharmaceutical composition containing the derivatives
AU7802700A (en) 1999-10-06 2001-05-10 Melacure Therapeutics Ab Guanidine derivatives and their use in the production of a medicament for blocking xanthine oxidase/dehydrogenase
DE19949319A1 (de) 1999-10-13 2001-06-13 Ruetgers Vft Ag Verfahren zur Herstellung von Arylalkylethern
AU769430B2 (en) 1999-10-13 2004-01-29 Pfizer Products Inc. Biaryl ether derivatives useful as monoamine reuptake inhibitors
IL149400A0 (en) 1999-11-05 2002-11-10 Aventis Pharma Gmbh Indeno-, naphtho-, and benzocyclohepta-dihydrothiazole derivatives, the production thereof and their use as anorectic medicaments
SK8452002A3 (en) 1999-12-16 2002-11-06 Schering Corp Substituted 4-(phenyl or pyridyl)imidazole derivatives, pharmaceutical composition comprising the same and use thereof
AU783839B2 (en) 2000-01-17 2005-12-15 Teijin Limited Human chymase inhibitors
PT1249450E (pt) 2000-01-17 2008-01-02 Teijin Pharma Ltd Derivados de benzimidazole como inibidores de quimase humana
WO2001052880A1 (en) 2000-01-18 2001-07-26 Merck & Co., Inc. Cyclic peptides as potent and selective melanocortin-4 receptor antagonists
AU2001228325A1 (en) 2000-02-01 2001-08-14 Novo-Nordisk A/S Use of compounds for the regulation of food intake
CA2399791A1 (en) 2000-02-11 2001-08-16 Bristol-Myers Squibb Company Cannabinoid receptor modulators, their processes of preparation, and use of cannabinoid receptor modulators in treating respiratory and non-respiratory diseases
JP2001226269A (ja) 2000-02-18 2001-08-21 Takeda Chem Ind Ltd メラニン凝集ホルモン拮抗剤
GB0004003D0 (en) 2000-02-22 2000-04-12 Knoll Ag Therapeutic agents
WO2001062738A1 (fr) 2000-02-22 2001-08-30 Banyu Pharmaceutical Co., Ltd. Composes a base d'imidazoline
YU56302A (sh) 2000-02-23 2005-11-28 Aventis Pharma Deutschland Gmbh. Derivati 8,8a-dihidro-indeno/1,2-d/taizola, koji su supstituisani u 8a-položaju,postupak za njihovu proizvodnju i njihova primena kod leka npr.kao anorektičnog sredstva
US6531478B2 (en) 2000-02-24 2003-03-11 Cheryl P. Kordik Amino pyrazole derivatives useful for the treatment of obesity and other disorders
BR0108631A (pt) 2000-02-26 2002-12-03 Aventis Pharma Gmbh Derivados de 8,8a-dihidro-indeno[1,2-d] tiazol, que na posição 2 portam um substituinte com uma estrutura sulfonamida ou estrutura sulfona; processos para a sua preparação e seu emprego como medicamento
FR2805810B1 (fr) 2000-03-03 2002-04-26 Aventis Pharma Sa Compositions pharmaceutiques contenant des derives de 3- amino-azetidine, les nouveaux derives et leur preparation
FR2805817B1 (fr) 2000-03-03 2002-04-26 Aventis Pharma Sa Compositions pharmaceutiques contenant des derives d'azetidine, les nouveaux derives d'azetidine et leur preparation
FR2805818B1 (fr) 2000-03-03 2002-04-26 Aventis Pharma Sa Derives d'azetidine, leur preparation et les compositions pharmaceutiques les contenant
EP1132389A1 (en) 2000-03-06 2001-09-12 Vernalis Research Limited New aza-indolyl derivatives for the treatment of obesity
AU6011301A (en) 2000-03-14 2001-09-24 Actelion Pharmaceuticals Ltd 1,2,3,4-tetrahydroisoquinoline derivatives
EP1268000A4 (en) 2000-03-23 2004-12-29 Merck & Co Inc SPIROPIPERID DERIVATIVES AS MELANOCORTIN RECEPTOR AGONISTS
SI1268435T1 (sl) 2000-03-23 2007-02-28 Solvay Pharm Bv 4,5-dihidro-1h-pirazolni derivati s cb 1-antagonisticno aktivnostjo
EP1268449A4 (en) 2000-03-23 2004-09-15 Merck & Co Inc SUBSTITUTED PIPERIDINE AS MELANOCORTIN RECEPTOR AGONISTS
US6600015B2 (en) 2000-04-04 2003-07-29 Hoffmann-La Roche Inc. Selective linear peptides with melanocortin-4 receptor (MC4-R) agonist activity
EP1142886A1 (en) 2000-04-07 2001-10-10 Aventis Pharma Deutschland GmbH Percyquinnin, a process for its production and its use as a pharmaceutical
JP2001354671A (ja) 2000-04-14 2001-12-25 Nippon Chemiphar Co Ltd ペルオキシソーム増殖剤応答性受容体δの活性化剤
AU2001248279A1 (en) 2000-04-17 2001-10-30 Novo-Nordisk A/S New compounds, their preparation and use
CA2407149C (en) 2000-04-28 2010-10-12 Takeda Chemical Industries, Ltd. Melanin-concentrating hormone antagonist
GB0010757D0 (en) 2000-05-05 2000-06-28 Astrazeneca Ab Chemical compounds
GB0011013D0 (en) 2000-05-09 2000-06-28 Astrazeneca Ab Chemical compounds
US6432960B2 (en) 2000-05-10 2002-08-13 Bristol-Myers Squibb Company Squarate derivatives of dihydropyridine NPY antagonists
WO2001085173A1 (en) 2000-05-10 2001-11-15 Bristol-Myers Squibb Company Alkylamine derivatives of dihydropyridine npy antagonists
US6444675B2 (en) 2000-05-10 2002-09-03 Bristol-Myers Squibb Company 4-alkyl and 4-cycloalkyl derivatives of dihydropyridine NPY antagonists
JP2004507456A (ja) 2000-05-11 2004-03-11 ブリストル−マイヤーズ スクイブ カンパニー 成長ホルモン分泌促進薬として有用なテトラヒドロイソキノリン類縁体
AU2001256733A1 (en) 2000-05-16 2001-11-26 Takeda Chemical Industries Ltd. Melanin-concentrating hormone antagonist
AU2001259056A1 (en) 2000-05-17 2001-11-26 Eli Lilly And Company Method for selectively inhibiting ghrelin action
US6391881B2 (en) 2000-05-19 2002-05-21 Bristol-Myers Squibb Company Thiourea derivatives of dihydropyridine NPY antagonists
SE0001899D0 (sv) 2000-05-22 2000-05-22 Pharmacia & Upjohn Ab New compounds
CA2410597A1 (en) 2000-05-30 2001-12-06 Merck & Co., Inc. Melanocortin receptor agonists
RU2293735C2 (ru) 2000-06-15 2007-02-20 Шеринг Корпорейшн Производные нор-секо химбацина, фармацевтическая композиция и способ ингибирования на их основе
DE60110066T2 (de) 2000-06-16 2006-02-02 Smithkline Beecham P.L.C., Brentford Piperidine zur verwendung als orexinrezeptorantagonisten
JP2004504303A (ja) 2000-07-05 2004-02-12 シナプティック・ファーマスーティカル・コーポレーション 選択的メラニン凝集ホルモン−1(mch1)受容体アンタゴニストおよびその使用
WO2002004433A2 (en) 2000-07-06 2002-01-17 Neurogen Corporation Melanin concentrating hormone receptor ligands
GB0019357D0 (en) 2000-08-07 2000-09-27 Melacure Therapeutics Ab Novel phenyl guanidines
KR20030033002A (ko) 2000-07-24 2003-04-26 아다나 바이오싸이언스 리미티드 그렐린 길항제
AU8395501A (en) 2000-07-31 2002-02-13 Hoffmann La Roche Piperazine derivatives
US6768024B1 (en) 2000-08-04 2004-07-27 Lion Bioscience Ag Triamine derivative melanocortin receptor ligands and methods of using same
GB0019359D0 (en) 2000-08-07 2000-09-27 Melacure Therapeutics Ab Novel guanidines
WO2002014271A1 (fr) 2000-08-10 2002-02-21 Mitsubishi Pharma Corporation Dérivés de proline et leur utilisation comme médicaments
WO2002014291A1 (en) 2000-08-11 2002-02-21 Nippon Chemiphar Co.,Ltd. PPARδ ACTIVATORS
EP1313470A4 (en) 2000-08-17 2005-02-16 Gliatech Inc NEW ALICYCLIC IMIDAZOLE AS H 3 ACTIVE SUBSTANCES
JP2004506685A (ja) 2000-08-21 2004-03-04 グリアテツク・インコーポレイテツド 食欲の制御と肥満の治療のためのヒスタミンh3受容体逆アゴニストの使用
US6680340B2 (en) 2000-08-21 2004-01-20 Merck & Co., Inc. Anti-hypercholesterolemic drug combination
WO2002015909A1 (en) 2000-08-23 2002-02-28 Merck & Co., Inc. Substituted piperidines as melanocortin receptor agonists
US20020037829A1 (en) 2000-08-23 2002-03-28 Aronson Peter S. Use of DPPIV inhibitors as diuretic and anti-hypertensive agents
US6900226B2 (en) 2000-09-06 2005-05-31 Hoffman-La Roche Inc. Neuropeptide Y antagonists
CA2422013A1 (en) 2000-09-14 2002-03-21 Schering Corporation Substituted urea neuropeptide y y5 receptor antagonists
AU2001292480A1 (en) 2000-09-26 2002-04-08 Biovitrum Ab Novel pyridazine compounds for the treatment of diabetes
WO2002026707A1 (en) 2000-09-26 2002-04-04 Biovitrum Ab Novel compounds
PL361675A1 (en) 2000-10-13 2004-10-04 Eli Lilly And Company Substituted dipeptides as growth hormone secretagogues
DE60135239D1 (de) 2000-10-16 2008-09-18 Vernalis Res Ltd Indolinderivate und deren verwendung als 5-ht2 rezeptor liganden
HUP0301382A2 (hu) 2000-10-20 2003-11-28 Pfizer Products Inc. Alfa-aril-etanol-amin-származékok és e vegyületeket tartalmazó béta-3 adrenergiás receptor agonista hatású gyógyászati készítmények
WO2002036596A2 (en) 2000-11-03 2002-05-10 Wyeth CYCLOALKYL[b][1,4]DIAZEPINO[6,7,1-hi]INDOLES AND DERIVATIVES
ATE329901T1 (de) 2000-11-10 2006-07-15 Lilly Co Eli 3-substituierte oxindolderivate als beta-3- agonisten
AU2403802A (en) 2000-11-15 2002-05-27 Banyu Pharma Co Ltd Benzimidazole derivatives
EP1335907B1 (en) 2000-11-20 2010-06-09 Biovitrum AB (publ) Piperazinylpyrazine compounds as agonist or antagonist of serotonin 5ht-2 receptor
DK1337518T3 (da) 2000-11-20 2009-10-19 Biovitrum Ab Publ Piperazinylpyrazinforbindelser som antagonister for serotonin-5-HT2-receptoren
DE60108420T2 (de) 2000-11-28 2005-12-22 Smithkline Beecham P.L.C., Brentford Morpholinderivate als antagonisten an orexinrezeptoren
AU2002224139A1 (en) 2000-12-05 2002-06-18 Nippon Chemiphar Co. Ltd. Ppar (peroxisome proliferator activated receptor) activators
JPWO2002046154A1 (ja) 2000-12-05 2004-04-08 日本ケミファ株式会社 ペルオキシソーム増殖剤応答性受容体δの活性化剤
EP1347982B1 (en) 2000-12-12 2005-11-16 Neurogen Corporation Spiro isobenzofuran-1,4'-piperidin]-3-ones and 3h-spiroisobenzofuran-1,4'-piperidines
GB0030710D0 (en) 2000-12-15 2001-01-31 Hoffmann La Roche Piperazine derivatives
NZ526174A (en) 2000-12-21 2004-12-24 Schering Corp Heteroaryl urea neuropeptide Y Y5 receptor antagonists
CN1531527A (zh) 2000-12-22 2004-09-22 咔唑衍生物及其作为神经肽y5受体配体的用途
AU2002231097B2 (en) 2000-12-22 2004-12-09 Schering Corporation Piperidine MCH antagonists and their use in the treatment of obesity
WO2002051232A2 (en) 2000-12-27 2002-07-04 Actelion Pharmaceuticals Ltd. Novel benzazepines and related heterocyclic derivatives
KR100539143B1 (ko) 2000-12-27 2005-12-26 에프. 호프만-라 로슈 아게 인돌 유도체 및 그의 5-ht2b 및 5-ht2c 수용체리간드로서의 용도
CA2432985A1 (en) 2001-01-23 2002-08-01 Vincent Mancuso Piperazine- and piperidine-derivatives as melanocortin receptor agonists
EP1368339A1 (en) 2001-01-23 2003-12-10 Eli Lilly & Company Substituted piperidines/piperazines as melanocortin receptor agonists
US7169777B2 (en) 2001-01-23 2007-01-30 Eli Lilly And Company Melanocortin receptor agonists
BR0206831A (pt) 2001-02-02 2004-07-06 Takeda Chemical Industries Ltd Composto, cristal, agente farmacêutico, agentes para profilaxia ou tratamento de diabetes, de complicações diabéticas, de tolerância prejudicada à glucose e de obesidade, inibidor de peptidase, uso de um composto, e, método de produção de um composto
CA2436741A1 (en) 2001-02-05 2002-08-15 Dr. Reddy's Laboratories Limited Aryl substituted alkylcarboxylic acids as hypocholesterolemic agents
WO2002062766A2 (en) 2001-02-07 2002-08-15 Millennium Pharmaceuticals, Inc. Melanocortin-4 receptor binding compounds and methods of use thereof
US20020119958A1 (en) 2001-02-13 2002-08-29 Shinichiro Tojo Therapeutic agent for hyperlipidemia
IL157508A0 (en) 2001-02-24 2004-03-28 Ibm Global interrupt and barrier networks
CA2439119A1 (en) 2001-02-28 2002-09-06 Merck & Co., Inc. Acylated piperidine derivatives as melanocortin-4 receptor agonists
DE60215132T2 (de) 2001-02-28 2007-08-23 Merck & Co., Inc. Acylierte piperidin-derivate als melanocortin-4-rezeptor-agonisten
BR0207658A (pt) 2001-02-28 2005-10-25 Merck & Co Inc Métodos para o tratamento ou a prevenção de distúrbios, doenças ou condições responsivas à ativação do receptor de melanocortina-4, de obesidade, de diabetes melito, de disfunção sexual masculina ou feminina, e de disfunção erétil em um mamìfero que disto necessita, e, composição farmacêutica
GB0105772D0 (en) 2001-03-08 2001-04-25 Sterix Ltd Use
US6900329B2 (en) 2001-03-21 2005-05-31 Schering Corporation MCH antagonists and their use in the treatment of obesity
NZ527680A (en) 2001-03-21 2005-07-29 Pharmacopeia Drug Discovery Aryl and biaryl compounds having MCH modulatory activity
CN100366614C (zh) 2001-03-22 2008-02-06 索尔瓦药物有限公司 具有cb1-拮抗活性的4,5-二氢-1h-吡唑衍生物
US7078422B2 (en) 2001-03-23 2006-07-18 Nippon Chemiphar Co., Ltd. Activator for peroxisome proliferator-activated receptor
JP4256166B2 (ja) 2001-03-28 2009-04-22 エーザイ・アール・アンド・ディー・マネジメント株式会社 カルボン酸化合物
EP1373212A4 (en) 2001-03-29 2004-06-23 Molecular Design Int ADRENERGIC-BETA-3 RECEPTOR AGONISTS, AGONIST COMPOSITIONS AND METHODS OF PREPARING AND USING THE SAME
EP1375472A4 (en) 2001-03-30 2008-12-10 Eisai R&D Man Co Ltd BENZENE COMPOUND AND SALT THEREOF
GB0108631D0 (en) 2001-04-05 2001-05-30 Melacure Therapeutics Ab Novel benzylideneamino guanidines and their uses as ligands to the melanocortin receptors
EP1377293B1 (en) 2001-04-12 2010-03-10 Pharmacopeia, LLC Aryl and biaryl piperidines used as mch antagonists
US6573287B2 (en) 2001-04-12 2003-06-03 Bristo-Myers Squibb Company 2,1-oxazoline and 1,2-pyrazoline-based inhibitors of dipeptidyl peptidase IV and method
CN100448874C (zh) 2001-05-05 2009-01-07 史密斯克莱·比奇曼公司 N-芳酰基环胺
EP1435955A2 (en) 2001-05-05 2004-07-14 SmithKline Beecham P.L.C. N-aroyl cyclic amine derivatives as orexin receptor antagonists
US7030150B2 (en) 2001-05-11 2006-04-18 Trimeris, Inc. Benzimidazole compounds and antiviral uses thereof
FR2824825B1 (fr) 2001-05-15 2005-05-06 Servier Lab Nouveaux derives d'alpha-amino-acides, leur procede de preparation et les compositions pharmaceutiques qui les contiennent
AU2002338896B2 (en) 2001-05-21 2006-04-27 F.Hoffman-La Roche Ag Quinoline derivatives as ligands for the neuropeptide Y receptor
KR20040012851A (ko) 2001-05-22 2004-02-11 뉴로젠 코포레이션 멜라닌 농축성 호르몬 수용체 리간드: 치환된1-벤질-4-아릴 피페라진 유사체
US6548538B2 (en) 2001-05-22 2003-04-15 Bayer Aktiengesellschaft Propionic acid derivatives
AU2002344820B2 (en) 2001-06-20 2006-12-14 Merck & Co., Inc. Dipeptidyl peptidase inhibitors for the treatment of diabetes
JP2005500308A (ja) 2001-06-20 2005-01-06 メルク エンド カムパニー インコーポレーテッド 糖尿病を治療するためのジペプチジルペプチダーゼ阻害剤
WO2003000685A1 (en) 2001-06-20 2003-01-03 Takeda Chemical Industries, Ltd. 5-membered heterocycle derivatives
US6825198B2 (en) 2001-06-21 2004-11-30 Pfizer Inc 5-HT receptor ligands and uses thereof
GB0115517D0 (en) 2001-06-25 2001-08-15 Ferring Bv Novel antidiabetic agents
SE0102299D0 (sv) 2001-06-26 2001-06-26 Astrazeneca Ab Compounds
WO2003000249A1 (fr) 2001-06-26 2003-01-03 Takeda Chemical Industries, Ltd. Regulateur de la fonction du recepteur relatif aux retinoides
DE10150203A1 (de) 2001-10-12 2003-04-17 Probiodrug Ag Peptidylketone als Inhibitoren der DPIV
CN1471538A (zh) 2001-06-27 2004-01-28 前体生物药物股份有限公司 用于竞争性调节二肽基肽酶iv催化的肽结构
ES2296962T3 (es) 2001-06-27 2008-05-01 Smithkline Beecham Corporation Pirrolidinas como inhibidores de dipeptidil peptidasa.
EP1399433B1 (en) 2001-06-27 2007-08-22 Smithkline Beecham Corporation Fluoropyrrolidines as dipeptidyl peptidase inhibitors
ATE455759T1 (de) 2001-06-27 2010-02-15 Smithkline Beecham Corp Fluoropyrrolidine als dipeptidylpeptidasehemmer
EP1404682B1 (en) 2001-06-29 2005-09-14 Novo Nordisk A/S Method of inhibiting ptp 1b and/or t-cell ptp and/or other ptpases with an asp residue at position 48
US6688713B2 (en) 2001-07-02 2004-02-10 Mitsubishi Digital Electronics America, Inc. Television base casting
JP2005502624A (ja) 2001-07-03 2005-01-27 ノボ ノルディスク アクティーゼルスカブ 糖尿病を治療するための、dpp−ivを阻害するプリン誘導体
JP3532537B2 (ja) 2001-07-05 2004-05-31 株式会社テムコジャパン 骨伝導ヘッドセット
MXPA03011886A (es) 2001-07-05 2005-03-07 Lundbeck & Co As H Piperidinias anilinicas sustituidas como antagonistas selectivos de mch.
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
ITMI20011483A1 (it) 2001-07-11 2003-01-11 Res & Innovation Soc Coop A R Uso di composti come antagonisti funzionali ai recettori centrali deicannabinoidi
WO2003006604A2 (en) 2001-07-12 2003-01-23 Merck & Co., Inc. Cyclic peptides as potent and selective melanocortin-4 receptor agonists
WO2003007949A1 (en) 2001-07-18 2003-01-30 Merck & Co., Inc. Bridged piperidine derivatives as melanocortin receptor agonists
WO2003007990A1 (fr) 2001-07-18 2003-01-30 Sumitomo Pharmaceuticals Company, Limited Agoniste de la myosine
WO2003007887A2 (en) 2001-07-20 2003-01-30 Merck & Co., Inc. Substituted imidazoles as cannabinoid receptor modulators
US6977264B2 (en) 2001-07-25 2005-12-20 Amgen Inc. Substituted piperidines and methods of use
US7115607B2 (en) 2001-07-25 2006-10-03 Amgen Inc. Substituted piperazinyl amides and methods of use
AR036191A1 (es) 2001-07-26 2004-08-18 Schering Corp Compuestos antagonistas de receptores y5 del neuropeptido y, una composicion farmaceutica, un procedimiento para preparar dicha composicion y el uso de dichos compuestos, solos o en combinacion para la preparacion de una composicion farmaceutica
JP4301940B2 (ja) 2001-07-31 2009-07-22 日清オイリオグループ株式会社 抗肥満剤およびその原料
GB0119172D0 (en) 2001-08-06 2001-09-26 Melacure Therapeutics Ab Phenyl pyrrole derivatives
WO2003014113A1 (en) 2001-08-06 2003-02-20 Glenmark Pharmaceuticals Limited Novel benzopyran compounds and process for their preparation and use
JP4341404B2 (ja) 2001-08-07 2009-10-07 萬有製薬株式会社 スピロ化合物
EP1416951A1 (en) 2001-08-08 2004-05-12 Merck & Co., Inc. Melanin-concentrating hormone antagonists
IL160304A0 (en) 2001-08-10 2004-07-25 Nippon Chemiphar Co ACTIVATOR FOR PEROXISOME PROLIFERATOR-RESPONSIVE RECEPTOR delta
WO2003016307A1 (en) 2001-08-14 2003-02-27 Eli Lilly And Company β3 ADRENERGIC AGONISTS
WO2003016276A2 (en) 2001-08-14 2003-02-27 Eli Lilly And Company 3-substituted oxindole beta-3 agonists
DE10139416A1 (de) 2001-08-17 2003-03-06 Aventis Pharma Gmbh Aminoalkyl substituierte aromatische Bicyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
SE0102764D0 (sv) 2001-08-17 2001-08-17 Astrazeneca Ab Compounds
JPWO2003016265A1 (ja) 2001-08-17 2004-12-02 エーザイ株式会社 環状化合物およびpparアゴニスト
US20030092041A1 (en) 2001-08-23 2003-05-15 Millennium Pharmaceuticals, Inc. Novel use for muscarinic receptor M5 in the diagnosis and treatment of metabolic disorders
EP1419785A4 (en) 2001-08-24 2005-07-06 Teijin Ltd MEDICAMENTS CONTAINING A CHYMASE INHIBITOR AND ACE INHIBITOR AS ACTIVE INGREDIENTS
AU2002331766A1 (en) 2001-08-31 2003-03-18 University Of Connecticut Novel pyrazole analogs acting on cannabinoid receptors
GB0121941D0 (en) 2001-09-11 2001-10-31 Astrazeneca Ab Chemical compounds
US6915444B2 (en) 2001-09-12 2005-07-05 Rockwell Automation Technologies, Inc. Network independent safety protocol for industrial controller using data manipulation techniques
CA2460578A1 (en) 2001-09-13 2003-03-27 Nisshin Pharma Inc. Propanolamine derivative having 1,4-benzodioxane ring
MXPA04002330A (es) 2001-09-14 2005-04-08 Japan Tobacco Inc Compuestos biarilo ligados.
CN100341862C (zh) 2001-09-14 2007-10-10 三菱制药株式会社 噻唑烷衍生物及其医药用途
DE60234616D1 (de) 2001-09-14 2010-01-14 High Point Pharmaceuticals Llc Substituierte piperidinen mit selektiver bindungsfähigkeit zu histamin h3-rezeptoren
EP1430027B1 (en) 2001-09-14 2010-09-01 High Point Pharmaceuticals, LLC Novel aminoazetidine, -pyrrolidine and -piperidine derivatives
WO2003024948A1 (en) 2001-09-14 2003-03-27 Bayer Pharmaceuticals Corporation Benzofuran and dihydrobenzofuran derivatives useful as beta-3 adrenoreceptor agonists
JP2005509603A (ja) 2001-09-19 2005-04-14 ノボ ノルディスク アクティーゼルスカブ Dpp−iv酵素の阻害剤であるヘテロ環化合物
WO2003024447A1 (en) 2001-09-20 2003-03-27 Smithkline Beecham Corporation Inhibitors of glycogen synthase kinase-3
BR0212044A (pt) 2001-09-21 2004-08-17 Solvay Pharm Bv Compostos, composições farmacêuticas, método de preparação das mesmas, e, uso de um composto
TWI231757B (en) 2001-09-21 2005-05-01 Solvay Pharm Bv 1H-Imidazole derivatives having CB1 agonistic, CB1 partial agonistic or CB1-antagonistic activity
BR0208253A (pt) 2001-09-21 2004-04-13 Solvay Pharm Bv Compostos, composições farmacêuticas, método de preparação de composições farmacêuticas, processo para preparação de compostos, e, uso de um composto
US6509367B1 (en) 2001-09-22 2003-01-21 Virginia Commonwealth University Pyrazole cannabinoid agonist and antagonists
AU2002331898A1 (en) 2001-09-24 2003-04-07 Board Of Supervisors Of Louisiana State Universityand Agricultural And Mechanical College Induction of brown adipocytes by transcription factor nfe2l2
JP2005532982A (ja) 2001-09-24 2005-11-04 バイエル・フアーマシユーチカルズ・コーポレーシヨン 肥満の処置のためのピロール誘導体の製造及び使用
HN2002000266A (es) 2001-09-24 2003-11-16 Bayer Corp Preparacion y uso de derivados de imidazol para el tratamiento de la obesidad.
ES2252524T3 (es) 2001-09-24 2006-05-16 Bayer Pharmaceuticals Corporation Preparacion y uso de derivados de 1,5,6,7-tetrahidropirrolo(3,2-c)piridina para el tratamiento de la obesidad.
DE60230818D1 (de) 2001-09-24 2009-02-26 Imp Innovations Ltd Pyy3-36 zur zur reduzierung oder vorbeugung von fettleibigkeit
CA2463039A1 (en) 2001-09-26 2003-04-03 Bayer Pharmaceuticals Corporation 1,6-naphthyridine derivatives as antidiabetics
US6787558B2 (en) 2001-09-28 2004-09-07 Hoffmann-La Roche Inc. Quinoline derivatives
CA2460594A1 (en) 2001-10-01 2003-04-10 Taisho Pharmaceutical Co., Ltd. Mch receptor antagonists
US7119110B2 (en) 2001-10-05 2006-10-10 Interhealth Nutraceuticals Incorporated Method and composition for preventing or reducing the symptoms of insulin resistance syndrome
AU2002336433A1 (en) 2001-10-08 2003-04-22 Eli Lilly And Company Tricyclic compounds useful for modulating lxr
JP2005506338A (ja) 2001-10-09 2005-03-03 ニューロクライン バイオサイエンシーズ, インコーポレイテッド メラノコルチンレセプターのリガンドならびに関連の配合物および方法
US7521053B2 (en) 2001-10-11 2009-04-21 Amgen Inc. Angiopoietin-2 specific binding agents
GB0124463D0 (en) 2001-10-11 2001-12-05 Smithkline Beecham Plc Compounds
MXPA04002931A (es) 2001-10-12 2005-04-11 Bayer Pharmaceuticals Corp Heterociclos que contienen nitrogeno de 5 miembros sustituidos con fenilo para el tratamiento de la obesidad.
ES2326411T3 (es) 2001-10-12 2009-10-09 Nippon Chemiphar Co., Ltd. Activador del receptor delta activado por proliferadores de peroxisomas.
US6573396B2 (en) 2001-10-12 2003-06-03 Exxonmobil Chemical Patents Inc. Co-production of dialkyl carbonates and diols with treatment of hydroxy alkyl carbonate
GB0124627D0 (en) 2001-10-15 2001-12-05 Smithkline Beecham Plc Novel compounds
JP2005527480A (ja) 2001-10-16 2005-09-15 ドクター・レディーズ・ラボラトリーズ・リミテッド ベンゾキサジンおよびベンゾチアジン誘導体、ならびにそれを含有する医薬組成物
HUP0401837A2 (hu) 2001-10-17 2004-12-28 Novo Nordisk A/S Dikarbonsavszármazékok, előállításuk és gyógyászati alkalmazásuk és ezeket tartalmazó gyógyszerkészítmények
DE10151390A1 (de) 2001-10-18 2003-05-08 Bayer Ag Essigsäurederivate
IL161478A0 (en) 2001-10-25 2004-09-27 Takeda Chemical Industries Ltd Quinoline compound
US6861440B2 (en) 2001-10-26 2005-03-01 Hoffmann-La Roche Inc. DPP IV inhibitors
EP1452526A1 (en) 2001-10-29 2004-09-01 Japan Tobacco Inc. Indole compound and medicinal use thereof
US7342117B2 (en) 2001-10-30 2008-03-11 Astellas Pharma Inc. α-form or β-form crystal of acetanilide derivative
EA010859B1 (ru) 2001-11-01 2008-12-30 Янссен Фармацевтика Н.В. Гетероариламины - производные пиримидина и пиридазина в качестве ингибиторов гликогенсинтаза-киназы 3-бета (ингибиторов gsk3)
CN1582277A (zh) 2001-11-01 2005-02-16 詹森药业有限公司 用作糖原合酶激酶3β抑制剂的酰胺衍生物
GB0126292D0 (en) 2001-11-01 2002-01-02 Smithkline Beecham Plc Compounds
IL161155A0 (en) 2001-11-02 2004-08-31 Pfizer Prod Inc Treatment of insulin resistance syndrome and type 2 diabetes with pde9 inhibitors
HN2002000317A (es) 2001-11-02 2003-05-21 Pfizer Inhibidores de pde9 para tratamiento de trastornos cardiovasculares
US6673815B2 (en) 2001-11-06 2004-01-06 Bristol-Myers Squibb Company Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US7163952B2 (en) 2001-12-03 2007-01-16 Japan Tobacco Inc. Azole compound and medicinal use thereof
AU2002351748B2 (en) 2001-12-21 2009-07-09 Novo Nordisk A/S Amide derivatives as GK activators
WO2003057144A2 (en) 2001-12-26 2003-07-17 Guilford Pharmaceuticals Change inhibitors of dipeptidyl peptidase iv
US6727261B2 (en) 2001-12-27 2004-04-27 Hoffman-La Roche Inc. Pyrido[2,1-A]Isoquinoline derivatives
KR100974901B1 (ko) 2001-12-28 2010-08-10 아카디아 파마슈티칼스 인코포레이티드 모노아민 수용체 조정자로서의 스피로아자사이클릭 화합물
AU2003208952B2 (en) 2002-01-30 2008-04-24 Amgen Inc. Heterocyclic arylsulfonamidobenzylic compounds
TWI262917B (en) 2002-02-01 2006-10-01 Dainippon Sumitomo Pharma Co 2-Furancarboxylic hydrazides and pharmaceutical compositions containing the same
WO2003072100A1 (en) 2002-02-25 2003-09-04 Eli Lilly And Company Peroxisome proliferator activated receptor modulators
MXPA04002602A (es) 2002-02-28 2004-08-11 Japan Tobacco Inc Compuestos de ester y sus usos medicos.
ATE486842T1 (de) 2002-03-12 2010-11-15 Merck Sharp & Dohme Substituierte amide
WO2003091216A1 (fr) 2002-04-25 2003-11-06 Sumitomo Pharmaceuticals Co., Ltd. Nouveaux derives de piperidine
WO2003091213A1 (fr) 2002-04-25 2003-11-06 Yamanouchi Pharmaceutical Co., Ltd. Derives d'amide ou sels de ces derives
US20040053933A1 (en) 2002-05-10 2004-03-18 Neurocrine Biosciences, Inc. Ligands of melanocortin receptors and compositions and methods related thereto
DE10222034A1 (de) 2002-05-17 2003-11-27 Bayer Ag Tetrahydroisochinolin-Derivate
WO2003099793A1 (en) 2002-05-24 2003-12-04 Takeda Pharmaceutical Company Limited 1,2-azole derivatives with hypoglycemic and hypolipidemic activity
AR040241A1 (es) 2002-06-10 2005-03-23 Merck & Co Inc Inhibidores de la 11-beta-hidroxiesteroide deshidrogrenasa 1 para el tratamiento de la diabetes obesidad y dislipidemia
PT1551860E (pt) 2002-06-19 2007-02-28 Karobio Ab Ligandos de receptores glucocorticóides para o tratamento de distúrbios metabólicos
DE10229777A1 (de) 2002-07-03 2004-01-29 Bayer Ag Indolin-Phenylsulfonamid-Derivate
GB0215579D0 (en) 2002-07-05 2002-08-14 Astrazeneca Ab Chemical compounds
WO2004004611A1 (en) 2002-07-08 2004-01-15 Coloplast A/S Conduit device
SE0202134D0 (sv) 2002-07-08 2002-07-08 Astrazeneca Ab Therapeutic agents
MXPA04002269A (es) 2002-07-09 2004-06-29 Actelion Pharmaceuticals Ltd Derivados de 7,8,9,10-tetrahidro-6h-azepino,6,7,8,9-tetrahidro-pirido y 2,3-dihidro-2h-pirrolo[2,1-b]-quinazolinona.
JPWO2004007439A1 (ja) 2002-07-10 2005-11-10 住友製薬株式会社 ビアリール誘導体
EP1525304A1 (de) 2002-07-18 2005-04-27 Basf Aktiengesellschaft Nadh-abhängige cytochrom b5 reduktase als target für herbizide
DE10233817A1 (de) 2002-07-25 2004-02-12 Aventis Pharma Deutschland Gmbh Substituierte Diarylheterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
JP2005533858A (ja) 2002-07-27 2005-11-10 アストラゼネカ アクチボラグ 化合物
AU2003250117B2 (en) 2002-07-29 2007-05-10 F. Hoffmann-La Roche Ag Novel benzodioxoles
DE10238860A1 (de) 2002-08-24 2004-03-04 Bayerische Motoren Werke Ag Brennstoff-Zelle mit einer das Brenngas über der Elektroden-Oberfläche verteilenden perforierten Folie
US6849761B2 (en) 2002-09-05 2005-02-01 Wyeth Substituted naphthoic acid derivatives useful in the treatment of insulin resistance and hyperglycemia
AU2003261935A1 (en) 2002-09-06 2004-03-29 Takeda Pharmaceutical Company Limited Furan or thiophene derivative and medicinal use thereof
JP2006501820A (ja) 2002-09-06 2006-01-19 バイエル・フアーマシユーチカルズ・コーポレーシヨン 修飾glp−1受容体アゴニストおよびそれらの薬理学的使用法
US20060040937A1 (en) 2002-09-18 2006-02-23 Glaxo Group Limited N-aroyl cyclic amines as orexin receptor antagonists
US20040138258A1 (en) 2002-09-18 2004-07-15 Hanauske-Abel Hartmut M. Inhibitors of 11beta-hydroxysteroid dehydrogenase and uses therefor
US7045527B2 (en) 2002-09-24 2006-05-16 Amgen Inc. Piperidine derivatives
WO2004028453A2 (en) 2002-09-25 2004-04-08 Neurogen Corporation Methods for preventing and treating obesity in patients with mc4 receptor mutations
NZ539013A (en) 2002-10-03 2007-05-31 Novartis Ag Substituted (thiazol-2-yl) -amide or sulfonamide as glycokinase activators useful in the treatment of type 2 diabetes
AU2003263475A1 (en) 2002-10-11 2004-05-04 Koninklijke Philips Electronics N.V. A unit for and method of image conversion
AU2003272970B2 (en) 2002-10-11 2009-05-28 Sanwa Kagaku Kenkyusho Co. Ltd. GLP-1 derivatives and transmicosal absorption preparations thereof
AU2003269242A1 (en) 2002-10-11 2004-05-04 Astrazeneca Ab 1,4-disubstituted piperidine derivatives and their use as 11-betahsd1 inhibitors
EP1556040A1 (en) 2002-10-24 2005-07-27 Sterix Limited Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1 and type 2
US6852748B1 (en) 2002-10-30 2005-02-08 Boehringer Ingelheim Pharmaceuticals, Inc. Derivatives of [6,7-dihydro-5H-imidazo[1,2-a]imidazole-3-sulfonyl]-pyrrolidine-2-carboxylic acid amide
AU2003286776A1 (en) 2002-10-30 2004-06-07 Guilford Pharmaceuticals Inc. Novel inhibitors of dipeptidyl peptidase iv
DE10250743A1 (de) 2002-10-31 2004-05-19 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Amid-Verbindungen mit MCH-antagonistischer Wirkung und diese Verbindungen enthaltende Arzneimittel
GB0225944D0 (en) 2002-11-06 2002-12-11 Glaxo Group Ltd Novel compounds
JP2006514102A (ja) 2002-11-07 2006-04-27 アストラゼネカ アクチボラグ 2−オキソ−エタンスルホンアミド誘導体
GB0225986D0 (en) 2002-11-07 2002-12-11 Astrazeneca Ab Chemical compounds
DE10251927A1 (de) 2002-11-08 2004-05-19 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel
WO2004041266A1 (ja) 2002-11-08 2004-05-21 Takeda Pharmaceutical Company Limited 受容体機能調節剤
US20050143449A1 (en) 2002-11-15 2005-06-30 The Salk Institute For Biological Studies Non-steroidal farnesoid X receptor modulators and methods for the use thereof
JP2006508975A (ja) 2002-11-18 2006-03-16 ファイザー・プロダクツ・インク ジペプチジルペプチダーゼivを阻害するフッ素化環状アミド
GB0226931D0 (en) 2002-11-19 2002-12-24 Astrazeneca Ab Chemical compounds
GB0226930D0 (en) 2002-11-19 2002-12-24 Astrazeneca Ab Chemical compounds
AU2003281978A1 (en) 2002-11-22 2004-06-18 Boehringer Ingelheim International Gmbh 2,5-diketopiperazines for the treatment of obesity
AU2003295842A1 (en) 2002-11-25 2004-06-18 Gni Ltd. Inferring gene regulatory networks from time-ordered gene expression data using differential equations
GB0227813D0 (en) 2002-11-29 2003-01-08 Astrazeneca Ab Chemical compounds
UY28103A1 (es) 2002-12-03 2004-06-30 Boehringer Ingelheim Pharma Nuevas imidazo-piridinonas sustituidas, su preparación y su empleo como medicacmentos
CA2508914A1 (en) 2002-12-04 2004-06-17 Gene Logic Inc. Modulators of melanocortin receptor
EP1572637A1 (en) 2002-12-11 2005-09-14 Eli Lilly And Company Novel mch receptor antagonists
JP2004196702A (ja) 2002-12-18 2004-07-15 Yamanouchi Pharmaceut Co Ltd 新規なアミド誘導体又はその塩
WO2004056744A1 (en) 2002-12-23 2004-07-08 Janssen Pharmaceutica N.V. Adamantyl acetamides as hydroxysteroid dehydrogenase inhibitors
US20040209928A1 (en) 2002-12-30 2004-10-21 Ravi Kurukulasuriya Glucagon receptor antagonists/inverse agonists
WO2004063194A1 (en) 2003-01-06 2004-07-29 Eli Lilly And Company Heteroaryl compounds
CA2509086C (en) 2003-01-06 2012-08-21 Eli Lilly And Company Substituted arylcyclopropylacetamides as glucokinase activators
DE10301788B4 (de) 2003-01-20 2005-08-25 Aventis Pharma Deutschland Gmbh Pharmazeutische Verwendung von Pyrimido[5,4-e][1,2,4]triazin-5,7-dionen
TW200503994A (en) 2003-01-24 2005-02-01 Novartis Ag Organic compounds
AU2004207731B2 (en) 2003-01-31 2009-08-13 Sanwa Kagaku Kenkyusho Co., Ltd. Compound inhibiting dipeptidyl peptidase iv
US6759546B1 (en) 2003-02-04 2004-07-06 Allergan, Inc. 3,5-di-iso-propyl-heptatrienoic acid derivatives having serum glucose reducing activity
WO2004072041A1 (en) 2003-02-12 2004-08-26 Care X S.A. Tetrahydroquinolines as agonists of liver- x receptors
WO2004071454A2 (en) 2003-02-13 2004-08-26 Guilford Pharmaceuticals Inc. Substituted azetidine compounds as inhibitors of dipeptidyl peptidase iv
US20050154011A1 (en) 2003-02-20 2005-07-14 The Procter & Gamble Company Tetrahydroisoquinolnyl sulfamic acids
FR2851563B1 (fr) 2003-02-26 2005-04-22 Sod Conseils Rech Applic Nouveaux derives de benzimidazole et d'imidazo-pyridine et leur utilisation en tant que medicament
US20040224992A1 (en) 2003-02-27 2004-11-11 Boehringer Ingelheim Pharmaceuticals, Inc. Glucocorticoid mimetics, methods of making them, pharmaceutical compositions, and uses thereof
EP1460069A1 (en) 2003-03-20 2004-09-22 MyoContract Ltd. Substituted cyclohexyl and piperidinyl derivatives as melanocortin-4 receptor modulators
CL2004000553A1 (es) 2003-03-20 2005-02-04 Actelion Pharmaceuticals Ltd Uso de compuestos derivados de guanidina como antagonistas del receptor de neuropeptido ff; compuestos derivados de guanidina; procedimientos de preparacion; y composicion farmaceutica que los comprende.
EP1468999A1 (en) 2003-03-20 2004-10-20 MyoContract Ltd. Substituted piperidine and piperazine derivatives as melanocortin-4 receptor modulators
EP1611104B1 (en) 2003-03-26 2009-07-01 Actelion Pharmaceuticals Ltd. Tetrahydroisoquinolyl acetamide derivatives for use as orexin receptor antagonists
FR2852957B1 (fr) 2003-03-31 2005-06-10 Sod Conseils Rech Applic Nouveaux derives d'imidazo-pyridine et leur utilisation en tant que medicament
JP2004315511A (ja) 2003-03-31 2004-11-11 Taisho Pharmaceut Co Ltd Mch受容体アンタゴニスト
JP2006522109A (ja) 2003-03-31 2006-09-28 大正製薬株式会社 新規なキナゾリン誘導体及びそれらの使用に関連する治療方法
US20040199842A1 (en) 2003-04-04 2004-10-07 Sartschev Ronald A. Test system with high accuracy time measurement system
US20070027073A1 (en) 2003-04-08 2007-02-01 Menachem Rubinstein Long-acting derivatives of pyy agonists
JP3819415B2 (ja) 2003-04-09 2006-09-06 日本たばこ産業株式会社 複素芳香5員環化合物及びその医薬用途
GB0308335D0 (en) 2003-04-10 2003-05-14 Novartis Ag Organic compounds
EP1615667A2 (en) 2003-04-11 2006-01-18 Novo Nordisk A/S Combinations of an 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor and a glucocorticoid receptor agonist
KR20050121732A (ko) 2003-04-14 2005-12-27 디 인스티튜트스 포 파마슈티컬 디스커버리, 엘엘씨 당뇨병 치료를 위한n-(((((1,3-티아졸-2-일)아미노)카르보닐)페닐)술포닐)페닐알라닌 유도체 및 관련 화합물
BRPI0409465A (pt) 2003-04-17 2006-05-02 Pfizer Prod Inc derivados de carboxamida como agentes antidiabéticos
MXPA05011702A (es) 2003-04-30 2006-01-23 Pfizer Prod Inc Agentes antidiabeticos.
KR20060010770A (ko) 2003-05-01 2006-02-02 베르날리스 리서치 리미티드 아제티딘카르복스아미드 유도체와 씨비1 수용체로 매개된질병의 치료에 대한 이들의 용도
AU2003902260A0 (en) 2003-05-09 2003-05-29 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
EP1630152A4 (en) 2003-05-30 2009-09-23 Takeda Pharmaceutical CONNECTION WITH CONDENSED RING
WO2004108674A1 (ja) 2003-06-05 2004-12-16 Kissei Pharmaceutical Co., Ltd. アミノアルコール誘導体、それを含有する医薬組成物およびそれらの用途
AU2003902828A0 (en) 2003-06-05 2003-06-26 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
RU2006100298A (ru) 2003-06-11 2006-05-10 Мерк энд Ко., Инк. (US) Замещенные производные 3-алкил-и 3-алкенилазетидинов
WO2004111004A1 (en) 2003-06-12 2004-12-23 Novo Nordisk A/S Substituted piperazine carbamates for use as inhibitors of hormone sensitive lipase
CA2527033A1 (en) 2003-06-18 2004-12-23 Astrazeneca Ab 2-substitued 5,6-diaryl-pyrazine derivatives as cb1 modulators
GB0314057D0 (en) 2003-06-18 2003-07-23 Astrazeneca Ab Therapeutic agents
GB0314049D0 (en) 2003-06-18 2003-07-23 Astrazeneca Ab Therapeutic agents
EP1644023A2 (en) 2003-06-19 2006-04-12 Eli Lilly And Company Melanocortin recptor 4(mc4) agonists and their uses
GB0314261D0 (en) 2003-06-19 2003-07-23 Astrazeneca Ab Therapeutic agents
MXPA05013733A (es) 2003-06-20 2006-03-08 Hoffmann La Roche 2-aminobenzotiazoles como agonistas inversos del receptor de cb1.
US7355049B2 (en) 2003-06-24 2008-04-08 Hoffmann-La Roche Inc. Biaryloxymethylarenecarboxylic acids as glycogen synthase activator
GB0314967D0 (en) 2003-06-26 2003-07-30 Hoffmann La Roche Piperazine derivatives
KR20060018902A (ko) 2003-06-27 2006-03-02 텔 아비브 유니버시티 퓨쳐 테크놀로지 디벨롭먼트 엘.피. 글리코겐 신타제 키나제-3 억제제
AU2004253543B2 (en) 2003-07-01 2009-02-19 Merck & Co., Inc. Ophthalmic compositions for treating ocular hypertension
CA2532397A1 (en) 2003-07-21 2005-02-03 Smithkline Beecham Corporation (2s,4s)-4-fluoro-1-[4-fluoro-beta-(4-fluorophenyl)-l-phenylalanyl]-2-pyrrolidinecarbonitrile p-toluenesulfonic acid salt and anhydrous crystalline forms thereof
JP2005042839A (ja) 2003-07-23 2005-02-17 Iseki & Co Ltd 作業車両の変速制御装置
WO2005012331A1 (en) 2003-07-31 2005-02-10 Tranzyme Pharma Spatially-defined macrocyclic compounds useful for drug discovery
GB0318464D0 (en) 2003-08-07 2003-09-10 Astrazeneca Ab Chemical compounds
GB0318463D0 (en) 2003-08-07 2003-09-10 Astrazeneca Ab Chemical compounds
ATE380189T1 (de) 2003-08-12 2007-12-15 Hoffmann La Roche 2-amino-5-benzoylthiazol npy-antagonisten
US7326706B2 (en) 2003-08-15 2008-02-05 Bristol-Myers Squibb Company Pyrazine modulators of cannabinoid receptors
US20050148643A1 (en) 2003-08-19 2005-07-07 Agouron Pharmaceuticals, Inc. Carbamate compositions and methods fo rmodulating the activity of the CHK1 enzyme
WO2005019168A2 (en) 2003-08-20 2005-03-03 Pfizer Products Inc. Fluorinated lysine derivatives as dipeptidyl peptidase iv inhibitors
CN1871029A (zh) 2003-08-22 2006-11-29 帝人制药株式会社 含有类糜蛋白酶抑制剂作为有效成分的药物
TWI290140B (en) 2003-08-25 2007-11-21 Schering Corp 2-Substituted benzimidazole derivatives as selective melanin concentrating hormone receptor antagonists for thr treatment of obesity and related disorders
TW200519116A (en) 2003-08-26 2005-06-16 Teijin Pharma Ltd Pyrrolopyrimidine derivatives
WO2005023762A1 (en) 2003-09-04 2005-03-17 Abbott Laboratories Pyrrolidine-2-carbonitrile derivatives and their use as inhibitors of dipeptidyl peptidase-iv (dpp-iv)
WO2005051890A1 (en) 2003-11-19 2005-06-09 Smithkline Beecham Corporation Aminophenylcyclopropyl carboxylic acids and derivatives as agonists to gpr40
JP4922615B2 (ja) 2003-11-26 2012-04-25 武田薬品工業株式会社 受容体機能調節剤
TW200522944A (en) 2003-12-23 2005-07-16 Lilly Co Eli CB1 modulator compounds
US7456218B2 (en) 2003-12-25 2008-11-25 Takeda Pharmaceutical Company Limited 3-(4-benzyloxyphenyl) propanoic acid derivatives
US7585880B2 (en) 2003-12-26 2009-09-08 Takeda Pharmaceutical Company Limited Phenylpropanoic acid derivatives
RU2358969C2 (ru) 2004-02-13 2009-06-20 Баниу Фармасьютикал Ко., Лтд. Конденсированное 4-оксопиримидиновое производное
EA011010B1 (ru) 2004-02-27 2008-12-30 Эмджен, Инк. Соединения, модулирующие рецептор gpr40, фармацевтическая композиция, способ лечения заболеваний, чувствительных к модулированию рецептора gpr40 (варианты), способ модулирования функции gpr40 (варианты) и способ модулирования циркулирующей концентрации инсулина
JP4875978B2 (ja) 2004-03-15 2012-02-15 武田薬品工業株式会社 アミノフェニルプロパン酸誘導体
US7517910B2 (en) 2004-03-30 2009-04-14 Takeda Pharmaceutical Company Limited Alkoxyphenylpropanoic acid derivatives
US20080021069A1 (en) 2004-10-08 2008-01-24 Takeda Pharmaceutical Company Limited Receptor Function Regulating Agent
JP2008528590A (ja) 2005-01-28 2008-07-31 メルク エンド カムパニー インコーポレーテッド 抗糖尿病性二環式化合物
JP2008528628A (ja) 2005-01-31 2008-07-31 メルク エンド カムパニー インコーポレーテッド 抗糖尿病性二環式化合物
WO2006094209A2 (en) 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. N-benzimidazolylalkyl-substituted amide sirtuin modulators
US7465804B2 (en) 2005-05-20 2008-12-16 Amgen Inc. Compounds, pharmaceutical compositions and methods for their use in treating metabolic disorders
US8153694B2 (en) 2005-07-29 2012-04-10 Takeda Pharmaceutical Company Limited Cyclopropanecarboxylic acid compound
AU2006291234A1 (en) 2005-09-14 2007-03-22 Amgen Inc. Conformationally constrained 3- (4-hydroxy-phenyl) - substituted-propanoic acids useful for treating metabolic disorders
CN101401422B (zh) 2006-03-08 2011-09-07 黄金富 个性化区域化商业电视广告的方法和系统
CA2646430A1 (en) 2006-03-14 2007-09-20 Amgen Inc. Bicyclic carboxylic acid derivatives useful for treating metabolic disorders
TW200815377A (en) 2006-04-24 2008-04-01 Astellas Pharma Inc Oxadiazolidinedione compound
PE20080069A1 (es) 2006-05-15 2008-02-22 Merck & Co Inc Compuestos biciclicos como agonistas del receptor 40 acoplado a proteina g (gpr40)
ZA200900154B (en) 2006-06-27 2010-03-31 Takeda Pharmaceutical Fused cyclic compounds
WO2008030618A1 (en) 2006-09-07 2008-03-13 Amgen Inc. Benzo-fused compounds for use in treating metabolic disorders
WO2008054674A2 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
US8039484B2 (en) 2006-10-31 2011-10-18 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
TW200838526A (en) 2006-12-01 2008-10-01 Astellas Pharma Inc Carboxylic acid derivatives
JP2010524932A (ja) 2007-04-16 2010-07-22 アムジエン・インコーポレーテツド 置換ビフェニルフェノキシ−、チオフェニル−及びアミノフェニルプロパン酸gpr40調節物質
EP2174343A1 (en) 2007-06-28 2010-04-14 Semiconductor Energy Laboratory Co, Ltd. Manufacturing method of semiconductor device
CA2691010A1 (en) 2007-06-28 2008-12-31 Merck Frosst Canada Ltd. Substituted fused pyrimidines as antagonists of gpr105 activity
US10395288B2 (en) 2007-07-03 2019-08-27 Collabra Technology, Inc. Methods and systems for a private market: facilitating connections between buyers and sellers or exchangers of products and services while maintaining privacy
WO2009042053A2 (en) 2007-09-21 2009-04-02 Merck & Co., Inc. Neuromedin u receptor agonists and uses thereof
EP2205548A1 (en) 2007-10-10 2010-07-14 Amgen, Inc Substituted biphenyl gpr40 modulators
US8399507B2 (en) 2007-10-29 2013-03-19 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2009111056A1 (en) 2008-03-06 2009-09-11 Amgen Inc. Conformationally constrained carboxylic acid derivatives useful for treating metabolic disorders
EP3924343A1 (en) 2008-09-26 2021-12-22 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
ES2450567T3 (es) 2008-10-15 2014-03-25 Amgen, Inc Moduladores de GPR40 espirocíclicos
MX2011004258A (es) 2008-10-22 2011-06-01 Merck Sharp & Dohme Derivados de bencimidazol ciclicos novedosos utiles como agentes anti-diabeticos.
AU2009309007A1 (en) 2008-10-29 2010-05-06 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
JP5557845B2 (ja) 2008-10-31 2014-07-23 メルク・シャープ・アンド・ドーム・コーポレーション 糖尿病用剤として有用な新規環状ベンゾイミダゾール誘導体
EP2389369A1 (en) 2009-01-23 2011-11-30 Schering Corporation Pentafluorosulpholane-containing antidiabetic compounds
JP2012515781A (ja) 2009-01-23 2012-07-12 シェーリング コーポレイション 架橋および縮合複素環式抗糖尿病化合物
AU2010206789A1 (en) 2009-01-23 2011-07-28 Merck Sharp & Dohme Corp. Bridged and fused antidiabetic compounds
TW201040186A (en) 2009-02-05 2010-11-16 Schering Corp Phthalazine-containing antidiabetic compounds
US20120172351A1 (en) 2009-06-09 2012-07-05 Nobuyuki Negoro Novel fused cyclic compound and use thereof
WO2011078371A1 (ja) 2009-12-25 2011-06-30 持田製薬株式会社 新規3-ヒドロキシ-5-アリールイソチアゾール誘導体
CN101865413B (zh) 2010-06-28 2012-08-01 李晓锋 模拟真火的电子发光装置及其模拟真火的方法
WO2014019186A1 (en) 2012-08-02 2014-02-06 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
RU2015106909A (ru) 2012-08-02 2016-09-27 Мерк Шарп И Доум Корп. Антидиабетические трициклические соединения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
http://www.criver.com/find-a-model?animal_type=Mice; Mice Tab, page 3, 4/21/14 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527875B2 (en) 2012-08-02 2016-12-27 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2015097713A1 (en) 2013-11-14 2015-07-02 Cadila Healthcare Limited Novel heterocyclic compounds
US10011609B2 (en) 2013-11-14 2018-07-03 Cadila Healthcare Limited Heterocyclic compounds
US10246470B2 (en) 2013-11-14 2019-04-02 Cadila Healthcare Limited Heterocyclic compounds
US10519115B2 (en) 2013-11-15 2019-12-31 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2015095256A1 (en) * 2013-12-19 2015-06-25 Merck Sharp & Dohme Corp. Antidiabetic substituted heteroaryl compounds
US9834563B2 (en) 2013-12-19 2017-12-05 Merck Sharp & Dohme Corp. Antidiabetic substituted heteroaryl compounds
WO2015176267A1 (en) * 2014-05-22 2015-11-26 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
US10000454B2 (en) 2014-05-22 2018-06-19 Merck Sharp & Dohme Antidiabetic tricyclic compounds
CN110568100A (zh) * 2019-09-12 2019-12-13 江西济民可信金水宝制药有限公司 一种米格列奈钙r-异构体的检测方法

Also Published As

Publication number Publication date
JP2015525782A (ja) 2015-09-07
EP2880028B1 (en) 2020-09-30
US20150191495A1 (en) 2015-07-09
BR112015002080A2 (pt) 2017-07-04
TW201408644A (zh) 2014-03-01
US9527875B2 (en) 2016-12-27
WO2014022528A1 (en) 2014-02-06
MX2015001500A (es) 2015-04-08
RU2015106909A (ru) 2016-09-27
CA2880901A1 (en) 2014-02-06
EP2880028A1 (en) 2015-06-10
AU2013296470A1 (en) 2015-02-05
AU2013296470B2 (en) 2016-03-17
AR091962A1 (es) 2015-03-11
KR20150036245A (ko) 2015-04-07

Similar Documents

Publication Publication Date Title
US9527875B2 (en) Antidiabetic tricyclic compounds
US9932311B2 (en) Antidiabetic tricyclic compounds
US10059667B2 (en) Antidiabetic compounds
WO2014019186A1 (en) Antidiabetic tricyclic compounds
EP2352374B1 (en) Novel cyclic benzimidazole derivatives useful anti-diabetic agents
EP2538784B1 (en) Benzimidazole derivatives useful anti-diabetic agents
EP2906040B1 (en) Novel benzimidazole tetrahydropyran derivatives
EP2888006B1 (en) Novel azabenzimidazole tetrahydropyran derivatives useful as ampk activators
US10519115B2 (en) Antidiabetic tricyclic compounds
US10676458B2 (en) Antidiabetic bicyclic compounds
US9957219B2 (en) Antidiabetic bicyclic compounds
US11225471B2 (en) Antidiabetic bicyclic compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: WUXI APPTEC (SHANGHAI) CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, LINUS S.;CUI, MINGXIANG;HU, BIN;AND OTHERS;SIGNING DATES FROM 20130725 TO 20130726;REEL/FRAME:030914/0280

Owner name: MERCK SHARP & DOHME CORP, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WUXI APPTEC (BVI) INC.;REEL/FRAME:030914/0429

Effective date: 20130725

Owner name: WUXI APPTEC (BVI) INC., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WUXI APPTEC (SHANGHAI) CO., LTD.;REEL/FRAME:030914/0356

Effective date: 20130725

Owner name: MERCK SHARP & DOHME CORP, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAGMANN, WILLIAM K.;NARGUND, RAVI P.;BLIZZARD, TIMOTHY A.;AND OTHERS;SIGNING DATES FROM 20130722 TO 20130724;REEL/FRAME:030914/0156

AS Assignment

Owner name: MERCK SHARP & DOHME CORP, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANG, QUN;REEL/FRAME:030998/0769

Effective date: 20130808

AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAGMANN, WILLIAM K.;NARGUND, RAVI P.;BLIZZARD, TIMOTHY A.;AND OTHERS;SIGNING DATES FROM 20140506 TO 20140520;REEL/FRAME:033675/0070

Owner name: WUXI APPTEC CO., LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, LINUS S.;CUI, MINGXIANG;HU, BIN;AND OTHERS;SIGNING DATES FROM 20140504 TO 20140505;REEL/FRAME:033676/0973

Owner name: WUXI APPTEC (BVI) INC., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WUXI APPTEC CO., LTD;REEL/FRAME:033676/0677

Effective date: 20140507

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WUXI APPTEC CO., LTD;REEL/FRAME:033676/0789

Effective date: 20140505

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WUXI APPTEC (BVI) INC.;REEL/FRAME:033676/0759

Effective date: 20140505

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION