DE10151390A1 - Essigsäurederivate - Google Patents

Essigsäurederivate

Info

Publication number
DE10151390A1
DE10151390A1 DE10151390A DE10151390A DE10151390A1 DE 10151390 A1 DE10151390 A1 DE 10151390A1 DE 10151390 A DE10151390 A DE 10151390A DE 10151390 A DE10151390 A DE 10151390A DE 10151390 A1 DE10151390 A1 DE 10151390A1
Authority
DE
Germany
Prior art keywords
compounds
hydrogen
alkyl
general formula
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10151390A
Other languages
English (en)
Inventor
Hilmar Bischoff
Elke Dittrich-Wengenroth
Heike Heckroth
Andrea Vaupel
Michael Woltering
Stefan Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE10151390A priority Critical patent/DE10151390A1/de
Priority to DO2002000481A priority patent/DOP2002000481A/es
Priority to US10/492,761 priority patent/US20050154061A1/en
Priority to EP02777295A priority patent/EP1438285A1/de
Priority to PCT/EP2002/011275 priority patent/WO2003035603A1/de
Priority to CA002463226A priority patent/CA2463226A1/en
Priority to JP2003538119A priority patent/JP2005506379A/ja
Priority to UY27491A priority patent/UY27491A1/es
Priority to PE2002001026A priority patent/PE20030609A1/es
Priority to SV2002001294A priority patent/SV2004001294A/es
Priority to ARP020103941A priority patent/AR037507A1/es
Priority to GT200300003A priority patent/GT200300003A/es
Publication of DE10151390A1 publication Critical patent/DE10151390A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/58Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Abstract

Die vorliegende Anmeldung betrifft neue substituierte Essigsäurederivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung in Arzneimitteln, insbesondere als potente PPAR-delta aktivierende Verbindungen zur Prophylaxe und/oder Behandlung kardiovaskulärer Erkrankungen, insbesondere von Dyslipidämien und koronaren Herzkrankheiten.

Description

  • Die vorliegende Anmeldung betrifft neue substituierte Essigsäurederivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung in Arzneimitteln, insbesondere als potente PPAR-delta aktivierende Verbindungen zur Prophylaxe und/oder Behandlung kardiovaskulärer Erkrankungen, insbesondere von Dyslipidämien und koronaren Herzkrankheiten.
  • Trotz vielfacher Therapieerfolge bleiben koronare Herzkrankheiten (KHK) ein ernstes Problem der öffentlichen Gesundheit. Während die Behandlung mit Statinen durch Hemmung der HMG-CoA-Reduktase sehr erfolgreich die Plasmakonzentration von LDL-Cholesterin senkt und dieses zu einer signifikanten Senkung der Mortalität von Risikopatienten führt, so fehlen heute überzeugende Behandlungsstrategien zur Therapie von Patienten mit ungünstigem HDL/LDL-Cholesterin-Verhältnis und/oder einer Hypertriglyceridämie.
  • Fibrate stellen heute die einzige Therapieform für Patienten dieser Risikogruppen dar. Sie wirken als schwache Agonisten des Peroxisom-Proliferator-aktivierten Rezeptors (PPAR)-alpha (Nature 1990, 347, 645-50). Ein Nachteil von bisher zugelassenen Fibraten ist ihre nur schwache Interaktion mit dem Rezeptor, die zu hohen Tagesdosen und deutlichen Nebenwirkungen führt.
  • Für den Peroxisom-Proliferator-aktivierten Rezeptor (PPAR)-delta (Mol. Endocrinol. 1992, 6, 1634-41) weisen erste pharmakologische Befunde in Tiermodellen darauf hin, dass potente PPAR-delta-Agonisten ebenfalls zu einer Verbesserung des HDL/LDL-Cholesterin-Verhältnisses und der Hypertriglyceridämie führen können.
  • In der WO 00/23407 werden PPAR-Modulatoren zur Behandlung von Obesitas, Atherosklerose und/oder Diabetes beschrieben.
  • Aufgabe der vorliegenden Erfindung war die Bereitstellung neuer Verbindungen, die als PPAR-delta-Modulatoren eingesetzt werden können.
  • Es wurde nun gefunden, dass Verbindungen der allgemeinen Formel (I)


    worin
    A für eine Bindung oder für eine -CH2- oder -CH2CH2-Gruppe steht,
    X für O, S oder CH2 steht,
    R1, R2 und R3 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C3-C7)-Cycloalkyl, Hydroxy, (C1-C6)-Alkoxy, Amino, Mono- oder Di-(C1-C6)-Alkylamino, Halogen, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano stehen,
    R4 für Wasserstoff oder (C1-C4)-Alkyl steht,
    R5 und R6 Wasserstoff bedeuten oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden,
    R7 für Wasserstoff oder (C1-C4)-Alkyl steht,
    R8 für geradkettiges (C5-C10)-Alkyl oder für eine Gruppe der Formel -(CH2)n-E steht, worin
    E für (C3-C12)-Cycloalkyl, das bis zu vierfach, gleich oder verschieden, durch (C1-C6)-Alkyl, Trifluormethyl, Hydroxy, (C1-C6)-Alkoxy, Carboxyl oder (C1-C6)-Alkoxycarbonyl substituiert sein kann, oder für 4- bis 8-gliedriges Heterocyclyl mit bis zu zwei Heteroatomen aus O und/oder S, das bis zu zweifach, gleich oder verschieden, durch (C1- C6)-Alkyl substituiert sein kann, steht,
    und
    n für die Zahl 0, 1 oder 2 steht,
    R9 und R10 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy, Trifluormethyl oder Halogen stehen,
    R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff oder (C1-C4)-Alkyl stehen,
    und
    R13 für Wasserstoff oder für eine hydrolysierbare Gruppe steht, die zur entsprechenden Carbonsäure abgebaut werden kann,
    sowie deren pharmazeutisch verträgliche Salze, Hydrate und Solvate,
    eine pharmakologische Wirkung zeigen und als Arzneimittel oder zur Herstellung von Arzneimittel-Formulierungen verwendet werden können.
  • Im Rahmen der Erfindung bedeutet in der Definition von R13 eine hydrolysierbare Gruppe eine Gruppe, die insbesondere im Körper zu einer Umwandlung der -C(O)OR13-Gruppierung in die entsprechende Carbonsäure (R13 = Wasserstoff) führt.
  • Solche Gruppen sind beispielhaft und vorzugsweise: Benzyl, (C1-C6)-Alkyl oder (C3- C8)-Cycloalkyl, die jeweils gegebenenfalls ein- oder mehrfach, gleich oder verschieden, durch Halogen, Hydroxy, Amino, (C1-C6)-Alkoxy, Carboxyl, (C1-C6)- Alkoxycarbonyl, (C1-C6)-Alkoxycarbonylamino oder (C1-C6)-Alkanoyloxy substituiert sind, oder insbesondere (C1-C4)-Alkyl, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden, durch Halogen, Hydroxy, Amino, (C1-C4)-Alkoxy, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Alkoxycarbonylamino oder (C1-C4)- Alkanoyloxy substituiert ist.
  • (C1-C6)-Alkyl, (C1-C4)-Alkyl und (C1-C3)-Alkyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6, 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl und t-Butyl.
  • (C5-C10)-Alkyl steht im Rahmen der Erfindung für einen geradkettigen Alkylrest mit 5 bis 10 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger Alkylrest mit 5 bis 7 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: n-Pentyl, n-Hexyl und n-Heptyl.
  • (C3-C12)-Cycloalkyl und (C3-C7)-Cycloalkyl stehen im Rahmen der Erfindung für eine mono-, bi- oder tricyclische Cycloalkylgruppe mit 3 bis 12 Kohlenstoffatomen bzw. für eine mono- oder bicyclische Cycloalkylgruppe mit 3 bis 7 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Cyclobutyl, Cyclopentyl und Cyclohexyl.
  • (C1-C6)-Alkoxy, (C1-C4)-Alkoxy und (C1-C3)-Alkoxy stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6, 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, t-Butoxy, n-Pentoxy und n-Hexoxy.
  • (C1-C6)-Alkoxycarbonyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 Kohlenstoffatomen, der über eine Carbonylgruppe verknüpft ist. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und t-Butoxycarbonyl.
  • (C1-C6)-Alkoxycarbonylamino steht im Rahmen der Erfindung für eine Amino- Gruppe mit einem geradkettigen oder verzweigten Alkoxycarbonylsubstituenten, der im Alkoxyrest 1 bis 6 Kohlenstoffatome aufweist und über die Carbonylgruppe verknüpft ist. Bevorzugt ist ein Alkoxycarbonylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonylamino, Ethoxycarbonylamino, n-Propoxycarbonylamino und t-Butoxycarbonylamino.
  • (C1-C6)-Alkanoyloxy steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkyl-Rest mit 1 bis 6 Kohlenstoffatomen, der in der 1-Position ein doppelt gebundenes Sauerstoffatom trägt und in der 1-Position über ein weiteres Sauerstoffatom verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Acetoxy, Propionoxy, n-Butyroxy, i-Butyroxy, Pivaloyloxy, n-Hexanoyloxy.
  • Mono-(C1-C6)-Alkylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkylsubstituenten, der 1 bis 6 Kohlenstoffatome aufweist. Bevorzugt ist ein geradkettiger oder verzweigter Monoalkylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methylamino, Ethylamino, n-Propylamino, Isopropylamino, t-Butylamino, n- Pentylamino und n-Hexylamino.
  • Di-(C1-C6)-Alkylamino und Di-(C1-C4)-Alkylamino stehen im Rahmen der Erfindung für eine Amino-Gruppe mit zwei gleichen oder verschiedenen geradkettigen oder verzweigten Alkylsubstituenten, die jeweils 1 bis 6 bzw. 1 bis 4 Kohlenstoffatome aufweisen. Bevorzugt sind geradkettige oder verzweigte Dialkylamino-Reste mit jeweils 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: N,N-Dimethylamino, N,N-Diethylamino, N-Ethyl-N methylamino, N-Methyl-N-n- propylamino, N-Isopropyl-N npropylamino, N-t-Butyl-N methylamino, N-Ethyl-N-n- pentylamino und N-n-Hexyl-N-methylamino.
  • Halogen schließt im Rahmen der Erfindung Fluor, Chlor, Brom und Iod ein. Bevorzugt sind Chlor oder Fluor.
  • 4- bis 8-gliedriges Heterocyclyl mit bis zu 2 Heteroatomen aus der Reihe O und/oder S steht im Rahmen der Erfindung für einen gesättigten, mono- oder bicyclischen Heterocyclus, der über ein Ringkohlenstoffatom verknüpft ist. Bevorzugt ist ein 5- bis 6-gliedriger gesättigter Heterocyclus mit einem Sauerstoffatom als Heteroatom. Beispielhaft und vorzugsweise seien genannt: Tetrahydrofuran-3-yl, Tetrahydropyran-3-yl und Tetrahydropyran-4-yl.
  • Die erfindungsgemäßen Verbindungen können in Abhängigkeit von dem Substitutionsmuster in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.
  • Weiterhin können bestimmte Verbindungen in tautomeren Formen vorliegen. Dies ist dem Fachmann bekannt, und derartige Verbindungen sind ebenfalls vom Umfang der Erfindung umfasst.
  • Die erfindungsgemäßen Verbindungen können auch als Salze vorliegen. Im Rahmen der Erfindung sind physiologisch unbedenkliche Salze bevorzugt.
  • Pharmazeutisch verträgliche Salze können Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren sein. Bevorzugt werden Salze mit anorganischen Säuren wie beispielsweise Chlorwasserstoffsäure, Bromwasserstoffsäure, Phosphorsäure oder Schwefelsäure, oder Salze mit organischen Carbon- oder Sulfonsäuren wie beispielsweise Essigsäure, Propionsäure, Maleinsäure, Fumarsäure, Äpfelsäure, Zitronensäure, Weinsäure, Milchsäure, Benzoesäure, oder Methansulfonsäure, Ethansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure oder Naphthalindisulfonsäure.
  • Pharmazeutisch verträgliche Salze können ebenso Salze der erfindungsgemäßen Verbindungen mit Basen sein, wie beispielsweise Metall- oder Ammoniumsalze. Bevorzugte Beispiele sind Alkalimetallsalze (z. B. Natrium- oder Kaliumsalze), Erdalkalisalze (z. B. Magnesium- oder Calciumsalze), sowie Ammoniumsalze, die abgeleitet sind von Ammoniak oder organischen Aminen, wie beispielsweise Ethylamin, Di- bzw. Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, 1-Ephenamin, Methylpiperidin, Arginin, Lysin, Ethylendiamin oder 2-Phenylethylamin.
  • Die erfindungsgemäßen Verbindungen können auch in Form ihrer Solvate, insbesondere in Form ihrer Hydrate vorliegen.
  • Bevorzugt sind Verbindungen der allgemeinen Formel (I),
    worin
    A für eine -CH2- oder -CH2CH2-Gruppe steht,
    X für O oder S steht,
    R1 und R2 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C4)-Alkyl, Di-(C1-C4)-Alkylamino, Chlor, Fluor, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano stehen,
    R3 für Wasserstoff steht,
    R4 für Wasserstoff oder Methyl steht,
    R5 und R6 Wasserstoff bedeuten oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden,
    R7 für Wasserstoff steht,
    R8 für (C3-C8)-Cycloalkyl, das bis zu vierfach, gleich oder verschieden, durch (C1-C4)-Alkyl, Trifluormethyl, (C1-C4)-Alkoxy, Carboxyl oder (C1-C4)- Alkoxycarbonyl substituiert sein kann, oder für 5- bis 6-gliedriges Heterocyclyl mit bis zu zwei Heteroatomen aus O und/oder S, das bis zu zweifach, gleich oder verschieden, durch (C1-C4)-Alkyl substituiert sein kann, steht,
    R9 für Wasserstoff, (C1-C3)-Alkyl, (C1-C3)-Alkoxy, Trifluormethyl, Fluor oder Chlor steht,
    R10 für Wasserstoff steht,
    R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff oder Methyl stehen,
    und
    R13 für Wasserstoff oder für eine hydrolysierbare Gruppe steht, die zur entsprechenden Carbonsäure abgebaut werden kann,
    sowie deren pharmazeutisch verträgliche Salze, Hydrate und Solvate.
  • Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I),
    worin
    A für eine -CH2-Gruppe steht,
    X für O oder S steht,
    R1 für Wasserstoff, Methyl, Trifluormethyl, Chlor, Fluor, Nitro oder Cyano steht,
    R2 Methyl, Trifluormethyl, Chlor, Fluor, Nitro oder Cyano steht,
    R3 für Wasserstoff steht,
    R4 für Wasserstoff steht,
    R5 und R6 gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden,
    R7 für Wasserstoff steht,
    R8 für Cyclopentyl oder Cyclohexyl, die jeweils durch Methoxy, Ethoxy oder bis zu vierfach durch Methyl substituiert sein können, oder für 3-Tetrahydrofuranyl, 3-Tetrahydropyranyl oder 4-Tetrahydropyranyl, die ein- bis zweifach durch Methyl substituiert sein können, steht,
    R9 für Methyl steht,
    R10 für Wasserstoff steht,
    R11 und R12 beide für Wasserstoff oder für Methyl stehen,
    und
    R13 für eine hydrolysierbare Gruppe steht, die zur entsprechenden Carbonsäure abgebaut werden kann, oder insbesondere für Wasserstoff steht,
    sowie deren pharmazeutisch verträgliche Salze, Hydrate und Solvate.
  • Die oben aufgeführten allgemeinen oder in Vorzugsbereichen angegebenen Reste-definitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangsstoffe bzw. Zwischenprodukte.
  • Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen angegebenen Restedefinitionen werden unabhängig von den jeweilig angegebenen Kombinationen der Reste beliebig auch durch Restedefinitionen anderer Kombinationen ersetzt.
  • Von besonderer Bedeutung sind Verbindungen der Formel (I), in denen R4 für Wasserstoff oder Methyl und R7 für Wasserstoff steht.
  • Von besonderer Bedeutung sind Verbindungen der Formel (I), in denen R5 und R6 gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden.
  • Von besonderer Bedeutung sind Verbindungen der Formel (IA)


    in der
    R1 und R2 gleich oder verschieden sind und unabhängig voneinander für Methyl, Trifluormethyl, Fluor, Chlor, Nitro oder Cyano stehen,
    und
    A, X, R8, R9, R10, R11 und R12 jeweils die oben aufgeführte Bedeutung haben.
  • Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, dass man
    [A] Verbindungen der allgemeinen Formel (II)


    in welcher
    A, X, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben
    und
    T für Benzyl, (C1-C6)-Alkyl oder für einen für die Festphasen-Synthese geeigneten polymeren Träger steht,
    zunächst unter Aktivierung der Carbonsäure-Gruppe in (II) mit Verbindungen der allgemeinen Formel (III)


    in welcher
    R1, R2, R3 und R4 die oben angegebene Bedeutung haben,
    zu Verbindungen der allgemeinen Formel (Ia)


    in welcher
    A, X, T, R1, R2, R3, R4, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
    umsetzt,
    oder
    [B] Verbindungen der allgemeinen Formel (IV)


    in welcher
    A, X, T, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
    in Gegenwart einer Base mit Verbindungen der allgemeinen Formel (V)


    in welcher
    R1, R2, R3, R4 und R7 die oben angegebene Bedeutung haben
    und
    Q für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, Mesylat oder Tosylat, vorzugsweise für Brom oder Iod steht,
    gleichfalls zu Verbindungen der allgemeinen Formel (Ia) umsetzt,
    dann die Verbindungen der allgemeinen Formel (Ia) gegebenenfalls nach bekannten Methoden zur Amid-Reduktion in Verbindungen der allgemeinen Formel (Ib)


    in welcher
    A, X, T, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
    überführt,
    anschließend mit Säuren oder Basen in die entsprechenden Carbonsäuren der allgemeinen Formel (Ic)


    in welcher
    A, X, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
    überführt,
    und diese gegebenenfalls nach bekannten Methoden zur Veresterung durch Umsetzung mit Verbindungen der allgemeinen Formel (VI)

    R13-Z (VI),

    worin
    R13 die oben angegebene Bedeutung hat
    und
    Z für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, Mesylat oder Tosylat, oder für eine Hydroxy-Gruppe steht,
    weiter modifiziert.
  • Das erfindungsgemäße Verfahren wird im Allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, das Verfahren bei Überdruck oder bei Unterdruck durchzuführen (z. B. in einem Bereich von 0,5 bis 5 bar).
  • Als Lösemittel für das Verfahren eignen sich übliche organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfraktionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol, oder Ethylacetat, Pyridin, Dimethylsulfoxid, Dimethylformamid, N,N'-Dimethylpropylenharnstoff (DMPU), N-Methylpyrrolidon (NMP), Acetonitril, Aceton oder Nitromethan. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden.
  • Bevorzugte Lösemittel für den Verfahrensschritt (II) + (III) → (Ia) sind Dichlormethan, Dimethylformamid sowie Dimethylformamid in Kombination mit Pyridin. Für den Verfahrensschritt (IV) + (V) → (Ia) ist Dimethylformamid bevorzugt.
  • Der erfindungsgemäße Verfahrensschritt (II) + (III) → (Ia) wird im Allgemeinen in einem Temperaturbereich von 0°C bis +100°C, bevorzugt von 0°C bis +40°C, durchgeführt. Der Verfahrensschritt (IV) + (V) → (Ia) wird im Allgemeinen in einem Temperaturbereich von 0°C bis +120°C, bevorzugt von +50°C bis +100°C durchgeführt.
  • Als Hilfsstoffe für die Amidbildung im Verfahrensschritt (II) + (III) → (Ia) werden bevorzugt übliche Kondensationsmittel eingesetzt, wie Carbodiimide, z. B. N,N'- Diethyl-, N,N'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid (DCC), N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC), oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5-methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2- dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchlorformiat, oder Bis-(2-oxo-3-oxazolidinyl)-phosphorylchlorid oder Benzotriazolyloxy-tris(dimethylamino)phosphonium-hexafluorophosphat, oder O-(Benzotriazol-1-yl)- N,N,N',N'-tetramethyluronium-hexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)- pyridyl)-1,1,3,3-tetramethyluronium-tetrafluoroborat (TPTU) oder O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-hexafluorophosphat (HATU), gegebenenfalls in Kombination mit weiteren Hilfsstoffen wie 1-Hydroxybenzotriazol oder N-Hydroxysuccinimid, sowie als Basen Alkalicarbonate, z. B. Natrium- oder Kaliumcarbonat oder -hydrogencarbonat, oder organische Basen wie Trialkylamine, z. B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin oder Diisopropylethylamin, oder Pyridin. Besonders bevorzugt ist die Kombination von EDC, N-Methylmorpholin und 1-Hydroxybenzotriazol, von EDC, Triethylamin und 1-Hydroxybenzotriazol, von HATU und Diisopropylethylamin sowie von HATU und Pyridin.
  • Als Base für die Reaktion (IV) + (V) → (Ia) eignen sich die üblichen anorganischen Basen wie Alkalihydroxide, wie beispielsweise Lithium-, Natrium- oder Kaliumhydroxid, Alkali- oder Erdalkalicarbonate wie Natrium-, Kalium-, Calcium- oder Cäsiumcarbonat oder Natrium- oder Kaliumhydrogencarbonat, oder organische Basen wie Trialkylamine, z. B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin oder Diisopropylethylamin. Bevorzugt ist Natriumhydrogencarbonat.
  • Die Hydrolyse der Carbonsäureester im Verfahrensschritt (Ia) bzw. (Ib) → (Ic) erfolgt nach üblichen Methoden, indem man die Ester in inerten Lösemitteln mit Basen behandelt, wobei die zunächst entstehenden Salze durch Behandeln mit Säure in die freien Carbonsäuren überführt werden. Im Falle der tert.-Butylester erfolgt die Hydrolyse bevorzugt mit Säuren.
  • Als Lösemittel eignen sich für die Hydrolyse der Carbonsäureester Wasser oder die für eine Esterspaltung üblichen organischen Lösemittel. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, Propanol, Isopropanol oder Butanol, oder Ether wie Tetrahydrofuran oder Dioxan, Dimethylformamid, Dichlormethan oder Dimethylsulfoxid. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen. Bevorzugt sind Wasser/Tetrahydrofuran und im Falle der Umsetzung mit Trifluoressigsäure Dichlormethan sowie im Falle von Chlorwasserstoff Tetrahydrofuran, Diethylether, Dioxan oder Wasser.
  • Als Basen eignen sich für die Hydrolyse die üblichen anorganischen Basen. Hierzu gehören bevorzugt Alkalihydroxide oder Erdalkalihydroxide wie beispielsweise Natriumhydroxid, Lithiumhydroxid, Kaliumhydroxid oder Bariumhydroxid, oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natriumhydrogencarbonat. Besonders bevorzugt werden Natriumhydroxid oder Lithiumhydroxid eingesetzt.
  • Als Säuren eignen sich im Allgemeinen Trifluoressigsäure, Schwefelsäure, Chlorwasserstoff, Bromwasserstoff und Essigsäure oder deren Gemische gegebenenfalls unter Zusatz von Wasser. Bevorzugt sind Chlorwasserstoff oder Trifluoressigsäure im Falle der tert.-Butylester und Salzsäure im Falle der Methylester.
  • Im Falle der über Festphasen-Synthese hergestellten, über die Carbonsäure-Gruppe an einen polymeren Träger gebundenen Verbindungen der allgemeinen Formel (Ia) bzw. (Ib) erfolgt die Abspaltung vom Harz zu den Verbindungen der allgemeinen Formel (Ic) gleichfalls nach den zuvor beschriebenen üblichen Methoden zur Carbonsäureester-Hydrolyse. Bevorzugt wird hier Trifluoressigsäure eingesetzt.
  • Bei der Durchführung der Hydrolyse wird die Base oder die Säure im Allgemeinen in einer Menge von 1 bis 100 mol, bevorzugt von 1,5 bis 40 mol bezogen auf 1 mol des Esters eingesetzt.
  • Die Hydrolyse wird im Allgemeinen in einem Temperaturbereich von 0°C bis +100°C, bevorzugt von 0°C bis +50°C, durchgeführt.
  • Die Verbindungen der allgemeinen Formel (II) sind neu und können hergestellt werden, indem man zunächst
    [a] Verbindungen der allgemeinen Formel (VII)


    worin
    X, T, R9, R10, R11 und R12 die oben angegebene Bedeutung haben
    und
    B für eine Bindung oder eine Methylengruppe steht,
    in Gegenwart eines geeigneten Reduktionsmittels mit Verbindungen der allgemeinen Formel (VIII)

    R14-NH2 (VIII),

    in welcher
    R14 [a-1] die oben angegebene Bedeutung von R8 hat
    oder
    [a-2] für eine Gruppe der Formel


    steht,
    worin
    R7 die oben angegebene Bedeutung hat
    und
    R15 für (C1-C4)-Alkyl oder Trimethylsilyl steht,
    zu Verbindungen der allgemeinen Formel (IX)


    worin
    B, X, T, R9, R10, R11, R12 und R14 die oben angegebene Bedeutung haben,
    umsetzt,
    diese dann in Gegenwart einer Base mit Verbindungen der allgemeinen Formel (X)

    R16-Y (X),

    in welcher
    R16 im Falle der Verfahrensvariante [a-1] für eine Gruppe der Formel


    steht,
    worin R7 und R15 die oben angegebene Bedeutung haben,
    oder
    im Falle der Verfahrensvariante [a-2] die oben angegebene Bedeutung von R8 hat,
    und
    Y für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, Mesylat oder Tosylat, vorzugsweise für Brom oder Iod steht,
    zu Verbindungen der allgemeinen Formel (XI)


    in welcher
    B, X, T, R7, R8, R9, R10, R11, R12 und R15 die oben angegebene Bedeutung haben,
    umsetzt,
    und abschließend in diesen Verbindungen selektiv die Carbonsäureester-Gruppierung -COOR15 zur Carbonsäure hydrolysiert,
    oder
    [b] Verbindungen der allgemeinen Formel (XII)


    worin
    A, X, T, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
    in Gegenwart eines geeigneten Reduktionsmittels mit Verbindungen der allgemeinen Formel (XIII)

    R17-CHO (XIII),

    in welcher
    R17 für geradkettiges (C4-C9)-Alkyl oder für eine Gruppe der Formel -(CH2)m-E steht, worin
    E die oben angegebene Bedeutung hat
    und
    m für die Zahl 0 oder 1 steht,
    zu Verbindungen der allgemeinen Formel (XIV)


    worin
    A, X, T, R9, R10, R11, R12 und R17 die oben angegebene Bedeutung haben,
    umsetzt,
    diese dann in Gegenwart einer Base mit Verbindungen der allgemeinen Formel (XV)


    in welcher
    R7, R15 und Y die oben angegebene Bedeutung haben,
    zu Verbindungen der allgemeinen Formel (XVI)


    in welcher
    A, X, T, R7, R9, R10, R11, R12, R15 und R17 die oben angegebene Bedeutung haben,
    umsetzt,
    und abschließend in diesen Verbindungen selektiv die Carbonsäureester-Gruppierung -COOR15 zur Carbonsäure hydrolysiert.
  • Das gesamte Verfahren kann auch als Festphasen-Synthese durchgeführt werden. In diesem Fall werden die Verbindungen der allgemeinen Formel (VII) bzw. (XII) als Carbonsäureester an ein geeignetes Trägerharz geknüpft, die weiteren Reaktionen an fester Phase durchgeführt und die Zielverbindung abschließend vom Harz abgespalten. Festphasen-Synthese sowie die Anknüpfung und die Abspaltung vom Harz sind geläufige Standardtechniken. Als ein Beispiel aus der umfangreichen Literatur wird auf die Publikation "Linkers for Solid Phase Organic Synthesis", Ian W. James, Tetrahedron 55, 4855-4946 (1999) verwiesen.
  • Die Umsetzung (VII) + (VIII) → (IX) bzw. (XII) + (XIII) → (XIV) erfolgt in den für eine reduktive Aminierung üblichen, unter den Reaktionsbedingungen inerten Lösemitteln, gegebenenfalls in Gegenwart einer Säure. Zu diesen Lösemitteln gehören beispielsweise Wasser, Dimethylformamid, Tetrahydrofuran, Dichlormethan, Dichlorethan oder Alkohole wie Methanol, Ethanol, Propanol, Isopropanol oder Butanol; ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen. Bevorzugt sind Methanol und Ethanol jeweils unter Zusatz von Essigsäure.
  • Als Reduktionsmittel für die Umsetzung (VII) + (VIII) → (IX) bzw. (XII) + (XIII) → (XIV) eignen sich komplexe Aluminium- oder Borhydride, wie beispielsweise Diisobutylaluminiumhydrid, Natriumborhydrid, Natriumtriacetoxyborhydrid, Natriumcyanoborhydrid oder Tetrabutylammoniumborhydrid, oder auch die katalytische Hydrierung in Gegenwart von Übergangsmetall-Katalysatoren wie beispielsweise Palladium, Platin, Rhodium oder Raney-Nickel. Bevorzugte Reduktionsmittel sind Natriumcyanoborhydrid, Natriumtriacetoxyborhydrid und Tetrabutylammoniumborhydrid.
  • Die Umsetzung (VII) + (VIII) → (IX) bzw. (XII) + (XIII) → (XIV) erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +40°C.
  • Der Umsetzung (IX) + (X) → (XI) bzw. (XIV) + (XV) → (XVI) erfolgt in den üblichen unter den Reaktionsbedingungen inerten Lösemitteln. Bevorzugt sind Dimethylformamid, Tetrahydrofuran und Dioxan.
  • Als Base für die Reaktion (IX) + (X) → (XI) bzw. (XIV) + (XV) → (XVI) eignen sich die üblichen anorganischen oder organischen Basen. Bevorzugt ist Triethylamin.
  • Die Umsetzung (IX) + (X) → (XI) bzw. (XIV) + (XV) → (XVI) erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +100°C.
  • Die Reaktion (XI) → (II) bzw. (XVI) → (II) erfolgt in den für eine Esterspaltung üblichen, unter den Reaktionsbedingungen inerten Lösemitteln. Im Fall der Ester- Hydrolyse sind dies bevorzugt Tetrahydrofuran, Dioxan und Alkohole wie Methanol und Ethanol jeweils im Gemisch mit Wasser. Im Fall der Silylester-Spaltung wird bevorzugt Dioxan oder Tetrahydrofuran eingesetzt.
  • Als Base für die Reaktion (XI) → (II) bzw. (XVI) → (II) eignen sich im Fall der Hydrolyse die üblichen anorganischen Basen. Bevorzugt sind Lithium-, Natrium- und Kaliumhydroxid. Im Fall der Silylester-Spaltung wird bevorzugt Tetrabutylammoniumfluorid verwendet.
  • Die Umsetzung (XI) → (II) bzw. (XVI) → (II) erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +100°C.
  • Die Verbindungen der allgemeinen Formel (IV) entsprechen den Verbindungen der allgemeinen Formel (IX) bzw. (XIV) und können wie zuvor beschrieben hergestellt werden.
  • Die Verbindungen der allgemeinen Formeln (III), (V), (VI), (VII), (VIII), (X), (XII), (XIII) und (XV) sind kommerziell erhältlich, bekannt oder nach üblichen Methoden herstellbar [vgl. z. B. P. J. Brown et al., J. Med. Chem. 42, 3785-88 (1999)].
  • Die erfindungsgemäßen Verbindungen der Formel (I) zeigen ein überraschendes und wertvolles pharmakologisches Wirkungsspektrum und lassen sich daher als vielseitige Medikamente einsetzen. Insbesondere eignen sie sich zur Behandlung der koronaren Herzkrankheit, zur Myokardinfarkt-Prophylaxe sowie zur Behandlung von Restenose nach Koronarangioplastie oder Stenting. Bevorzugt eignen sich die erfindungsgemäßen Verbindungen der Formel (I) zur Behandlung der Arteriosklerose und Hypercholesterolämie, zur Erhöhung krankhaft niedriger HDL-Spiegel sowie zur Senkung erhöhter Triglycerid- und LDL-Spiegel. Darüber hinaus können sie zur Behandlung von Obesitas, Diabetes, zur Behandlung des metabolischen Syndroms (Glucose-Intoleranz, Hyperinsulinämie, Dyslipidämie und Bluthochdruck infolge von Insulinresistenz), der Leberfibrose und Krebs angewendet werden.
  • Die neuen Wirkstoffe können allein oder bei Bedarf in Kombination mit anderen Wirkstoffen vorzugsweise aus der Gruppe CETP-Inhibitoren, Antidiabetika, Antioxidantien, Cytostatika, Calciumantagonisten, Blutdrucksenkende Mittel, Thyroidhormone und/oder Thyroidmimetika, Inhibitoren der HMG-CoA-Reduktase, Inhibitoren der HMG-CoA-Reduktase-Expression, Squalensynthese-Inhibitoren, ACAT-Inhibitoren, durchblutungsfördernde Mittel, Thrombozytenaggregationshemmer, Antikoagulantien, Angiotensin-II-Rezeptorantagonisten, Cholesterin- Absorptionshemmer, MTP-Inhibitoren, Aldolase-Reduktase-Inhibitoren, Fibrate, Niacin, Anoretika, Lipase-Inhibitoren und PPAR-α- und/oder PPAR-γ-Agonisten verabreicht werden.
  • Die Wirksamkeit der erfindungsgemäßen Verbindungen lässt sich z. B. in vitro durch den im Beispielteil beschriebenen Transaktivierungsassay prüfen.
  • Die Wirksamkeit der erfindungsgemäßen Verbindungen in vivo lässt sich z. B. durch die im Beispielteil beschriebenen Untersuchungen prüfen.
  • Für die Applikation der Verbindungen der allgemeinen Formel (I) kommen alle üblichen Applikationsformen in Betracht, d. h. also oral, parenteral, inhalativ, nasal, sublingual, rektal, äußerlich wie z. B. transdermal, oder lokal wie z. B. bei Implantaten oder Stents. Bei der parenteralen Applikation sind insbesondere intravenöse, intramuskuläre oder subkutane Applikation, beispielsweise als subkutanes Depot, zu nennen. Bevorzugt ist die orale oder parenterale Applikation. Ganz besonders bevorzugt ist die orale Applikation.
  • Hierbei können die Wirkstoffe allein oder in Form von Zubereitungen verabreicht werden. Für die orale Applikation eignen sich als Zubereitungen u. a. Tabletten, Kapseln, Pellets, Dragees, Pillen, Granulate, feste und flüssige Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen. Hierbei muss der Wirkstoff in einer solchen Menge vorliegen, dass eine therapeutische Wirkung erzielt wird. Im allgemeinen kann der Wirkstoff in einer Konzentration von 0,1 bis 100 Gew.-%, insbesondere 0,5 bis 90 Gew.-%, vorzugsweise 5 bis 80 Gew.-%, vorliegen. Insbesondere sollte die Konzentration des Wirkstoffs 0,5-90 Gew.-% betragen, d. h. der Wirkstoff sollte in Mengen vorliegen, die ausreichend sind, den angegebenen Dosierungsspielraum zu erreichen.
  • Zu diesem Zweck können die Wirkstoffe in an sich bekannter Weise in die üblichen Zubereitungen überführt werden. Dies geschieht unter Verwendung inerter, nichttoxischer, pharmazeutisch geeigneter Trägerstoffe, Hilfsstoffe, Lösungsmittel, Vehikel, Emulgatoren und/oder Dispergiermittel.
  • Als Hilfsstoffe seien beispielsweise aufgeführt: Wasser, nichttoxische organische Lösungsmittel wie z. B. Paraffine, pflanzliche Öle (z. B. Sesamöl), Alkohole (z. B. Ethanol, Glycerin), Glykole (z. B. Polyethylenglykol), feste Trägerstoffe wie natürliche oder synthetische Gesteinsmehle (z. B. Talkum oder Silikate), Zucker (z. B. Milchzucker), Emulgiermittel, Dispergiermittel (z. B. Polyvinylpyrrolidon) und Gleitmittel (z. B. Magnesiumsulfat).
  • Im Falle der oralen Applikation können Tabletten selbstverständlich auch Zusätze wie Natriumcitrat zusammen mit Zuschlagstoffen wie Stärke, Gelatine und dergleichen enthalten. Wässrige Zubereitungen für die orale Applikation können weiterhin mit Geschmacksaufbesserern oder Farbstoffen versetzt werden.
  • Bei oraler Applikation werden vorzugsweise Dosierungen von 0,001 bis 5 mg/kg, bevorzugt von 0,005 bis 3 mg/kg Körpergewicht je 24 Stunden appliziert.
  • Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt. Abkürzungen DC: Dünnschichtchromatographie
    DCI: direkte chemische Ionisation (bei MS)
    DMAP: 4-N,N Dimethylaminopyridin
    ESI: Elektrospray-Ionisation (bei MS)
    HATU: O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium- Hexafluorphosphat
    HPLC: Hochdruck-, Hochleistungsflüssigchromatographie
    LC-MS: Flüssigchromatographie-gekoppelte Massenspektroskopie
    MS: Massenspektroskopie
    NMR: Kernresonanzspektroskopie
    Rt: Retentionszeit (bei HPLC)
    THF: Tetrahydrofuran
  • Ausführungsbeispiele Beispiel 1 2-[4-[[[2-[2,4-Dichlorphenyl)amino]-2-oxoethyl]-cyclohexylamino]methyl]-2- methylphenoxy]-2-methyl-propansäure
  • Stufe 1a) tert.-Butyl-2-(4-formyl-2-methylphenoxy)-2-methylpropanoat
  • 10.0 g (73.5 mmol) 4-Hydroxy-3-methylbenzaldehyd und 14.2 g (103 mmol) Kaliumcarbonat werden in 90 ml Dimethylformamid vorgelegt und 30 min bei 90°C gerührt. Dann werden 22.9 g (103 mmol) tert.-Butyl-2-brom-2-methylpropanoat bei 50°C zugegeben. Nach 1.5 h bei 50°C erwärmt man auf 100°C und rührt über Nacht. Das Lösungsmittel wird im Vakuum entfernt. Man nimmt in Ethylacetat auf und wäscht zweimal mit Wasser, zweimal mit gesättigter wässriger Natriumhydrogencarbonat-Lösung und einmal mit gesättigter wässriger Natriumchlorid-Lösung. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird in Methanol gelöst und chromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 10 : 1). Man erhält 5.05 g (25% d. Th.) Produkt.
    LC-MS (Methode A): Rt = 4.8 min
    1H-NMR (400 MHz, CDCl3): δ = 1.40 (s, 9H), 1.65 (s, 6H), 2.30 (s, 3H), 6.23 (d, 1H), 7.58 (dd, 1H), 7.67 (m, 1H), 9.83 (s, 1H). Stufe 1b) tert.-Butyl-2-{4-[(cyclohexylamino)methyl]-2-methylphenoxy}-2-methylpropanoat

  • 0.36 g (3.6 mmol) Cyclohexylamin und 1.0 g (3.6 mmol) tert.-Butyl-2-(4-formyl-2- methylphenoxy)-2-methylpropanoat aus Stufe 1a) werden in 12 ml Dichlormethan vorgelegt und 1 h bei Raumtemperatur gerührt. Nach Zugabe von 1.2 g (5.4 mmol) Natriumtriacetoxyborhydrid rührt man über Nacht bei Raumtemperatur und versetzt anschließend mit gesättigter wässriger Natriumhydrogencarbonat-Lösung und Dichlormethan. Die Phasen werden getrennt und die wässrige Phase wird mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Man erhält 1.29 g (99% d. Th.) des Rohproduktes, welches ohne weitere Reinigung umgesetzt wird.
    MS (DCI): m/z = 362 [M + H]+
    1H-NMR (200 MHz, CDCl3): δ = 1.00-1.30 (m, 4H), 1.42 (s, 9H), 1.53 (s, 6H), 1.5-2.0 (m, 6H), 2.20 (s, 3H), 2.47 (m, 1H), 3.70 (s, 2H), 6.68 (dd, 1H), 6.98 (dd, 1H), 7.07 (s, 1H). Stufe 1c) 2-Brom-N-(2,4-dichlorphenyl)acetamid

  • 24.1 g (149 mmol) 2,4-Dichloranilin und 20.7 ml (149 mmol) Triethylamin werden in 300 ml Dichlormethan vorgelegt und bei 30-50°C mit einer Lösung von 30.0 g (149 mmol) Bromacetylbromid in 50 ml Dichlormethan versetzt. Nach 1 h Rühren bei Raumtemperatur wäscht man zweimal mit Wasser und einmal mit gesättigter wässriger Natriumchlorid-Lösung. Die vereinigten organischen Phasen werden eingeengt und das Rohprodukt aus Ethanol umkristallisiert. Man erhält 19.88 g (47% d. Th.) Produkt.
    LC-MS (Methode A): Rt = 4.1 min
    MS (ESI pos): m/z = 282 [M + H]+
    1H-NMR (300 MHz, CDCl3): δ = 4.06 (s, 2H), 7.28 (dd, 1H), 7.40 (d, 1H), 8.30 (d, 1H), 8.72 (br. s, 1H). Stufe 1d) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]-cyclohexylamino]- methyl]-2-methylphenoxy]-2-methyl-propanoat

  • 0.626 g (2.21 mmol) 2-Brom-N-(2,4-dichlorphenyl)acetamid aus Stufe 1c) werden zu einer Lösung von 0.800 g (2.21 mmol) tert.-Butyl-2-{4-[(cyclohexylamino)methyl]- 2-methylphenoxy}-2-methylpropanoat aus Stufe 1b) und 0.205 g (2.43 mmol) Natriumhydrogencarbonat in 12 ml Dimethylformamid gegeben und für 4 h bei 90°C gerührt. Die Reaktionsmischung wird eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat, Gradient 95 : 5 → 70 : 30). Man erhält 0.909 g (56% d. Th.) des gewünschten Produktes.
    HPLC (Methode B): Rt = 3.69 min
    1H-NMR (300 MHz, CDCl3): δ = 1.05-1.70 (m, 6H), überlagert von 1.33 (s, 9H) und 1.47 (s, 6H), 1.77-2.0 (m, 4H), 2.14 (s, 3H), 2.57 (m, 1H), 3.23 (s, 2H), 3.61 (s, 2H), 6.61 (d, 1H), 6.98 (dd, 1H), 7.12 (br. s, 1H), 7.16 (dd, 1H), 7.33 (d, 1H), 8.40 (d, 1H), 9.93 (s, 1H). Stufe 1e) 2-[4-[[[2-[2,4-Dichlorphenyl)amino]-2-oxoethyl]-cyclohexylamino]methyl]-2- methylphenoxy]-2-methyl-propansäure

  • 0.709 g (1.33 mmol) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]- cyclohexylamino]methyl]-2-methylphenoxy]-2-methyl-propanoat aus Stufe 1d) werden in 4 ml Dichlormethan gelöst und mit 4 ml Trifluoressigsäure versetzt. Nach 2 h Rühren bei Raumtemperatur wird mit Toluol verdünnt, eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Dichlormethan/Methanol, Gradient 98 : 2 → 95 : 5). Man erhält 0.7 g (100% d. Th.) der Titelverbindung.
    LC-MS (Methode A): Rt = 4.4 min
    MS (ESI pos): m/z = 507 [M + H]+
    1H-NMR (300 MHz, CDCl3): δ = 1.10-1.75 (m, 6H), überlagert von 1.60 (s, 6H), 1.87-2.18 (m, 4H), überlagert von 2.13 (s, 3H), 3.35 (m, 1H), 4.11 (s, 2H), 4.20 (s, 2H), 6.61 (d, 1H), 6.92 (dd, 1H), 7.11 (br. s, 1H), 7.16 (dd, 1H), 7.32 (d, 1H), 7.68 (d, 1H), 9.82 (s, 1H). Beispiel 2 2-[4-[[[2-[2,4-Dichlorphenyl)amino]-2-oxoethyl]-cyclohexylamino]methyl]-2- methylphenoxy]essigsäure

    Stufe 2a) tert.-Butyl-(4-formyl-2-methylphenoxy)acetat

  • 5.0 g (37 mmol) 4-Hydroxy-3-methylbenzaldehyd und 7.1 g (51 mmol) Kaliumcarbonat werden in 45 ml Dimethylformamid vorgelegt und 30 min bei 50°C gerührt. Dann werden 10.0 g (51.4 mmol) tert.-Butyl-2-bromacetat bei 50°C zugegeben. Nach 1 h bei 50°C wird über Nacht bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt. Man nimmt in Ethylacetat auf und wäscht zweimal mit Wasser, zweimal mit gesättigter wässriger Natriumhydrogencarbonat- Lösung und einmal mit gesättigter wässriger Natriumchlorid-Lösung. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt (10.23 g) wird ohne weitere Reinigung umgesetzt.
    LC-MS (Methode A): Rt = 4.3 min
    MS (ESI pos): m/z = 195 [M + H-tBu]+
    1H-NMR (400 MHz, CDCl3): δ = 1.48 (s, 9H), 2.33 (s, 3H), 4.61 (s, 1H), 6.77 (d, 1H), 7.65 (d, 1H), 7.70 (br. s, 1H), 9.87 (s, 1H). Stufe 2b) tert.-Butyl-{4-[(cyclohexylamino)methyl]-2-methylphenoxy}acetat

  • 0.40 g (4.0 mmol) Cyclohexylamin und 1.0 g (4.0 mmol) tert.-Butyl-(4-formyl-2- methylphenoxy)acetat aus Stufe 2a) werden in 14 ml Dichlormethan vorgelegt und 30 min bei Raumtemperatur gerührt. Nach Zugabe von 1.34 g (5.99 mmol) Natriumtriacetoxyborhydrid rührt man über Nacht bei Raumtemperatur und versetzt anschließend mit gesättigter wässriger Natriumhydrogencarbonat-Lösung. Man extrahiert mit Ethylacetat. Die Phasen werden getrennt, die wässrige Phase wird mit 1 M Natronlauge verdünnt und erneut mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Man erhält 1.25 g (94% d. Th.) des Rohproduktes, welches ohne weitere Reinigung umgesetzt wird.
    HPLC (Methode B): Rt = 2.59 min
    MS (DCI): m/z = 334 [M + H]+
    1H-NMR (200 MHz, CDCl3): δ = 1.00-2.10 (m, 10H), überlagert von 1.48 (s, 9H), 2.28 (s, 3H), 2.49 (m, 1H), 3.70 (s, 2H), 4.50 (s, 2H), 6.61 (d, 1H), 7.05 (d, 1H), 7.10 (s, 1H). Stufe 2c) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]-cyclohexylamino]- methyl]-2-methylphenoxy]acetat

  • 0.679 g (2.40 mmol) 2-Brom-N-(2,4-dichlorphenyl)acetamid aus Beispiel 1/Stufe 1c) werden zu einer Lösung von 0.800 g (2.40 mmol) tert.-Butyl-{4- [(cyclohexylamino)methyl]-2-methylphenoxy}acetat aus Stufe 2b) und 0.222 g (2.64 mmol) Natriumhydrogencarbonat in 12 ml Dimethylformamid gegeben und für 4 h bei 90°C gerührt. Die Reaktionsmischung wird eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat, Gradient 95 : 5 → 70 : 30). Man erhält 0.790 g (46% d. Th.) des gewünschten Produktes.
    HPLC (Methode B): Rt = 3.27 min
    1H-NMR (300 MHz, CDCl3): δ = 1.05-1.70 (m, 6H), überlagert von 1.41 (s, 9H), 1.77-2.01 (m, 4H), 2.20 (s, 3H), 2.57 (m, 1H), 3.24 (s, 2H), 3.62 (s, 2H), 4.45 (s, 1H), 6.56 (d, 1H), 7.05 (dd, 1H), 7.14 (br. s, 1H), überlagert von 7.18 (dd, 1H), 7.36 (d, 1H), 8.39 (d, 1H), 9.92 (s, 1H). Stufe 2d) 2-[4-[[[2-[2,4-Dichlorphenyl)amino]-2-oxoethyl]-cyclohexylamino]methyl]-2- methylphenoxy]essigsäure

  • 0.709 g (1.48 mmol) tert.-Butyl-2-[4-[[[2-[2,4-Dichlorphenyl)amino]-2-oxoethyl]- cyclohexylamino]methyl]-2-methylphenoxy]acetat aus Stufe 2c) werden in 4 ml Dichlormethan gelöst und mit 4 ml Trifluoressigsäure versetzt. Nach 2 h Rühren bei Raumtemperatur wird mit Toluol verdünnt, eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Dichlormethan/Methanol, Gradient 98 : 2 → 95 : 5). Man erhält 0.7 g (100% d. Th.) der Titelverbindung.
    LC-MS (Methode A): Rt = 3.9 min
    MS (ESI pos): m/z = 479 [M + H]+
    1H-NMR (300 MHz, CDCl3): δ = 1.10-1.74 (m, 6H), 1.86-2.18 (m, 4H), überlagert von 2.14 (s, 3H), 3.41 (m, 1H), 4.08 (s, 2H), 4.20 (s, 2H), 4.62 (s, 2H), 6.67 (d, 1H), 7.00 (d, 1H), 7.09 (s, 1H), 7.15 (dd, 1H), 7.29 (d, 1H), 7.62 (d, 1H), 9.58 (s, 1H). Beispiel 3 2-[4-[[[2-[2,4-Dichlorphenyl)amino]-2-oxoethyl]-(2,5-dimethylcyclopentyl)amino]- methyl]-2-methylphenoxy]-2-methyl-propansäure

    Stufe 3a) tert.-Butyl-2-(4-{[(2,5-dimethylcyclopentyl)amino]methyl}-2-methylphenoxy)-2- methyl-propanoat

  • 0.044 g (0.39 mmol) 2,5-Dimethylcyclopentylamin und 0.11 g (0.39 mmol) tert.- Butyl-2-(4-formyl-2-methylphenoxy)-2-methylpropanoat aus Beispiel 1/Stufe 1a) werden in 1.5 ml Dichlormethan vorgelegt und 1 h bei Raumtemperatur gerührt. Nach Zugabe von 0.13 g (0.58 mmol) Natriumtriacetoxyborhydrid rührt man für 20 h bei Raumtemperatur. Es wird mit gesättigter wässriger Natriumhydrogencarbonat- Lösung versetzt und mit Dichlormethan verdünnt. Die Phasen werden getrennt, die wässrige Phase wird mit Ethylacetat extrahiert und die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Man erhält 0.13 g (88% d. Th.) des Rohproduktes, welches ohne weitere Reinigung umgesetzt wird.
    LC-MS (Methode A): Rt = 3.2 min
    MS (ESI pos): m/z = 376 [M + H]+
    1H-NMR (200 MHz, CDCl3): δ = 0.90 (d, 3H), 0.99 (d, 3H), 1.0-2.0 (m, 6H), überlagert von 1.43 (s, 9H) und 1.53 (s, 3H), 2.20 (s, 3H), 2.47 (t, 1H), 3.64 (q, 2H), 6.68 (d, 1H), 7.0 (dd, 1H), 7.10 (br. s, 1H). Stufe 3b) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]-(2,5-dimethylcyclopentyl)amino]methyl]-2-methylphenoxy]-2-methylpropanoat

  • 0.096 g (0.34 mmol) 2-Brom-N-(2,4-dichlorphenyl)acetamid aus Beispiel 1/Stufe 1c) werden zu einer Lösung von 0.13 g (0.34 mmol) tert.-Butyl-2-(4-{[(2,5- dimethylcyclopentyl)amino]methyl}-2-methylphenoxy)-2-methyl-propanoat aus Stufe 3a) und 0.032 g (0.37 mmol) Natriumhydrogencarbonat in 3 ml Dimethylformamid gegeben und für 4 h bei 90°C gerührt. Die Reaktionsmischung wird eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat, Gradient 99 : 1 → 70 : 30). Nach Einengen erhält man 0.053 g (23% d. Th.) des Produktes.
    DC (Cyclohexan/Ethylacetat 5 : 1): Rf = 0.41
    LC-MS (Methode D): Rt = 3.40 min
    MS (ESI pos): m/z = 577 [M + H]+
    1H-NMR (200 MHz, CDCl3): δ = 1.12 (t, 6H), 1.2-2.4 (m, 6H), überlagert von 1.38 (s, 9H), 1.49 (s, 3H) und 2.14 (s, 3H), 2.83 (t, 1H), 3.4-3.9 (m, 4H), 6.52 (d, 1H), 7.05 (dd, 1H), 7.19 (m, 2H), 7.37 (d, 1H), 8.32 (d, 1H), 9.72 (s, 1H). Stufe 3c) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]-(2,5-dimethylcyclopentyl)amino]methyl]-2-methylphenoxy]-2-methylpropansäure

  • 0.04 g (0.07 mmol) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]-(2,5- dimethylcyclopentyl)amino]methyl]-2-methylphenoxy]-2-methylpropanoat aus Stufe 3b) werden in 1.5 ml Dichlormethan gelöst und mit 1.5 ml Trifluoressigsäure versetzt. Nach 2 h Rühren bei Raumtemperatur wird mit Toluol verdünnt, eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Dichlormethan/Methanol, Gradient 98 : 2 → 90 : 10). Man erhält 0.024 g (66% d. Th.) der Titelverbindung.
    LC-MS (Methode A): Rt = 5.52 min
    MS (ESI pos): m/z = 521 [M + H]+
    1H-NMR (300 MHz, CDCl3): 8 = 1.0-2.4 (m, 6H), überlagert von 1.09 (d, 3H), 1.13 (d, 3H), 1.48 (s, 3H) und 2.12 (s, 3H), 2.75 (t, 1H), 3.3-3.85 (m, 4H), 6.70 (d, 1H), 7.0-7.3 (m, 3H), 7.44 (d, 1H), 8.3 8 (d, 1H), 9.65 (s, 1H). Beispiel 4 2-{4-[(Cyclohexyl{2-[(2,4-dichlorphenyl)amino]ethyl}amino)methyl]-2-methylphenoxy}-2-methyl-propansäure

    Stufe 4a) tert.-Butyl-2-{4-[(cyclohexyl{2-[(2,4-dichlorphenyl)amino]ethyl}amino)methyl]-2- methylphenoxy}-2-methylpropanoat

  • 0.16 g (0.28 mmol) tert.-Butyl-2-[4-[[[2-[2,4-dichlorphenyl)amino]-2-oxoethyl]- cyclohexylamino]methyl]-2-methylphenoxy]-2-methyl-propanoat aus Beispiel 1/Stufe 1d) werden unter Argon-Atmosphäre in 3 ml Toluol vorgelegt und mit 0.17 ml Boran-Dimethylsulfid-Komplex (2.0 M in Tetrahydrofuran) versetzt. Nach 2 h bei 110°C lässt man auf Raumtemperatur abkühlen, rührt 1 h mit 3 ml einer 2 N wässrigen Natriumcarbonat-Lösung und verdünnt anschließend mit Ethylacetat und Wasser. Die organische Phase wird abgetrennt, mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und anschließend eingeengt. Das Rohprodukt wird chromatographisch an Kieselgel (Laufmittel: Cyclohexan/Ethylacetat, Gradient 98 : 2 → 70 : 30) gereinigt. Man erhält 0.085 g (54% d. Th.) der Titelverbindung.
    DC (Cyclohexan/Ethylacetat 5 : 1): Rf = 0.59
    LC-MS (Methode A): Rt = 4.0 min
    MS (ESI pos): m/z = 549 [M + H]+
    1H-NMR (300 MHz, CDCl3): δ = 1.0-1.68 (m, 6H), überlagert von 1.48 (s, 9H) und 1.55 (s, 6H), 1.7-1.92 (m, 4H), 2.13 (s, 3H), 2.48 (m, 1H), 2.80 (m, 2H), 2.92 (m, 2H), 3.51 (s, 2H), 5.18 (br. s, 1H), 6.47 (d, 1H), 6.62 (d, 1H), 6.9-7.1 (m, 3H), 7.21 (d, 1H). Stufe 4b) 2-{4-[(Cyclohexyl{2-[(2,4-dichlorphenyl)amino]ethyl}amino)methyl]-2-methylphenoxy}-2-methyl-propansäure

  • 0.085 g (0.15 mmol) tert.-Butyl-2-{4-[(cyclohexyl{2-[(2,4-dichlorphenyl)amino]- ethyl}amino)methyl]-2-methylphenoxy}-2-methylpropanoat aus Stufe 4a) werden in 1 ml Dichlormethan gelöst und mit 1 ml Trifluoressigsäure versetzt. Nach 2 h Rühren bei Raumtemperatur wird mit Toluol verdünnt, eingeengt und chromatographisch an Kieselgel gereinigt (Laufmittel: Dichlormethan/Methanol, Gradient 98 : 2 → 95 : 5). Man erhält 0.06 g (79% d. Th.) der Titelverbindung.
    DC (Dichlormethan/Methanol 10 : 1): Rf = 0.37
    LC-MS (Methode A): Rt = 3.3 min
    MS (ESI neg): m/z = 491 [M - H]+
    1H-NMR (200 MHz, CDCl3): δ = 0.8-2.2 (m, 10H), überlagert von 1.60 (s, 6H), 2.19 (s, 3H), 2.92 (m, 4H), 3.22 (br. s, 1H), 4.07 (s, 2H), 6.07 (s, H), 6.7-7.4 (m, 6H). Beispiel 5 2-[4-[[[2-[2,4-Dimethylphenyl)amino]-2-oxoethyl]-cyclohexylamino]methyl]-2- methylphenoxy]propansäure

  • Diese Verbindung wurde über Festphasen-Synthese an einem polymeren Trägerharz (Wang-Harz) gemäß dem folgenden Reaktionsschema 1 hergestellt: Reaktionsschema 1

  • Reaktionsbedingungen: a) Diisopropylcarbodiimid, DMAP, Triethylamin, Dichlormethan, Raumtemperatur, 20 h; b) Cäsiumcarbonat, Dioxan/Isopropanol 1 : 1, 60°C, 24 h; c) Trimethylorthoformiat/Dimethylformamid 1 : 1, Raumtemperatur, 20 h; Tetrabutylammoniumborhydrid, Essigsäure, Dimethylformamid, Raumtemperatur, 20 h; d) Triethylamin, Dioxan, 60°C, 20 h; Tetrabutylammoniumfluorid, Dioxan, Raumtemperatur, 1-2 h; e) HATU, Pyridin/Dimethylformamid 2 : 1, Raumtemperatur, 20 h; f) Trifluoressigsäure, Dichlormethan, Raumtemperatur, 30 min.
  • Stufe 5a)
  • 30.0 g (28.2 mmol reaktive Gruppen; theoretische Beladung 0.94 mmol/g) Wang- Harz (Fa. Rapp Polymere, Best.-Nr. H 1011) werden in 200 ml Dichlormethan suspendiert. Nach der Zugabe von 12.9 g (84.6 mmol) 2-Brompropansäure, 17.8 g (141 mmol) Diisopropylcarbodiimid und 5.17 g (42.3 mmol) DMAP wird die Mischung 20 h bei Raumtemperatur geschüttelt. Anschließend wird die Mischung filtriert, das Harz mit Dimethylformamid und abwechselnd mit Methanol und Dichlormethan gewaschen. Man erhält Harz 5a, welches ohne weitere Reinigung umgesetzt wird.
  • Stufe 5b)
  • 10.0 g (9.40 mmol) Harz 5a werden in 100 ml Dioxan/Isopropanol (1 : 1) vorgelegt und mit 21.4 g (65.8 mmol) Cäsiumcarbonat und 8.96 g (65.8 mmol) 4-Hydroxy-3- methylbenzaldehyd über Nacht bei 60°C gerührt. Man lässt auf Raumtemperatur abkühlen und neutralisiert mit 4.3 ml Essigsäure. Anschließend wird die Mischung filtriert, das Harz mit Wasser, Dimethylformamid und abwechselnd mit Methanol und Dichlormethan gewaschen. Man erhält Harz 5b, welches ohne weitere Reinigung umgesetzt wird.
  • Stufe 5c)
  • 2.00 g (1.88 mmol) Harz 5b und 0.932 g (9.40 mmol) Cyclohexylamin werden in 20 ml Trimethylorthoformiat/Dimethylformamid (1 : 1) suspendiert. Die Mischung wird 20 h bei Raumtemperatur geschüttelt. Man filtriert und wäscht das Harz mit Dimethylformamid. Anschließend wird das Harz in 20 ml Dimethylformamid suspendiert, mit 1.93 g (7.52 mmol) Tetrabutylammoniumborhydrid und 1.08 ml (18.8 mmol) Essigsäure versetzt und 20 h bei Raumtemperatur geschüttelt. Man filtriert die Mischung und wäscht das Harz mit Dimethylformamid, Methanol und Dichlormethan. Auf diese Weise erhält man Harz 5c, welches direkt weiter umgesetzt wird.
  • Stufe 5d)
  • 0.548 g (1.88 mmol) Harz 5c werden in 100 ml Dioxan suspendiert und mit 5.24 ml (37.6 mmol) Triethylamin und 4.64 ml (28.2 mmol) Bromessigsäuretrimethylsilylester versetzt. Die Mischung wird bei 60°C für 20 h geschüttelt. Anschließend wird die Mischung filtriert und das Harz mit Dimethylformamid, Methanol und Dichlormethan gewaschen. Zur Abspaltung der Silyl-Schutzgruppe wird das Harz in 50 ml Dioxan suspendiert und mit 3.8 ml (3.8 mmol) einer 1 M Lösung von Tetrabutylammoniumfluorid in THF versetzt. Die Mischung wird für 1-2 h bei Raumtemperatur geschüttelt und dann filtriert. Anschließend wird das Harz mit Dimethylformamid, Methanol und Dichlormethan gewaschen. Das so erhaltene Harz 5d wird direkt weiter umgesetzt.
  • Stufe 5e)
  • 1.0 g (0.94 mmol) Harz 5d werden in 12 ml Pyridin/Dimethylformamid (1 : 1) suspendiert und mit 1.14 g (9.40 mmol) 2,5-Dimethylanilin und 1.07 g (2.82 mmol) HATU versetzt. Die Mischung wird 20 h bei Raumtemperatur geschüttelt, dann filtriert und das Harz mit Dimethylformamid, 30%-iger Essigsäure, Wasser, Dimethylformamid, Methanol und Dichlormethan gewaschen. Anschließend wird das so erhaltene Harz 5e in einer Mischung von 12 ml Dichlormethan/Trifluoressigsäure (1 : 1) suspendiert. Die Mischung wird 30 min bei Raumtemperatur geschüttelt, dann filtriert und das Produkt durch präparative HPLC (RP-18, Laufmittel: Wasser/Acetonitril, Gradient 60 : 40 → 10 : 90) gereinigt. Man erhält 0.14 g (33% d. Th.) der Titelverbindung.
    LC-MS (Methode D): Rt = 1.93 min
    MS (ESI pos): m/z = 453 [M + H]+
    1H-NMR (200 MHz, DMSO-d6): δ = 1.0-2.3 (m, 10H), überlagert von 1.50 (d, 3H), 2.00 (s, 3H), 2.13 (s, 3H) und 2.22 (s, 3H), 3.48 (m, 1H), 4.34 (br. s, 2H), 4.78 (m, 3H), 6.72-7.44 (m, 6H), 9.08 (br. s, 1H).
  • Die nachfolgend aufgeführten Ausführungsbeispiele wurden im Rahmen der Festphasen-Synthese einer Bibliothek von Verbindungen hergestellt. Das Verfahren soll beispielhaft für die Bibliotheksynthese in MiniKans (IRORI) nach der "Mix & Split"-Methode stehen [K. C. Nicolaou, X.-Y. Xiao, Z. Parandoosh, A. Senyei, M. P. Nova, Angew. Chem. Int. Ed. Engl. 35, 2289-2290 (1995)]. Es wurde nach zwei verschiedenen, in den Reaktionsschemata 2 und 3 wiedergegebenen Methoden durchgeführt: Reaktionsschema 2 (Methode 1)

  • Reaktionsbedingungen: a) Trimethylorthoformiat/Dimethylformamid 1 : 1, Raumtemperatur, 12-20 h; Tetrabutylammoniumborhydrid, Essigsäure, Dimethylformamid, Raumtemperatur, 20 h; b) Triethylamin, Dioxan, 60°C, 12-20 h; Tetrabutylammoniumfluorid, Dioxan, Raumtemperatur, 1-2 h; c) HATU, Pyridin/Dimethylformamid 2 : 1, Raumtemperatur, 20 h; d) Trifluoressigsäure, Dichlormethan, Raumtemperatur, 30 min. Reaktionsschema 3 (Methode 2)

  • Reaktionsbedingungen: b) Triethylamin, Dichlormethan, 15°C → Raumtemperatur, 1 h; c) Natriumhydrogencarbonat, Dimethylformamid, 90°C, 3 h; d) Trifluoressigsäure, Dichlormethan, Raumtemperatur, 30 min.
  • Die Ausgangsharze II (Reaktionsschema 2) wurden dabei nach zwei verschiedenen, in den Reaktionsschemata 4 und 5 wiedergegebenen Methoden hergestellt: Reaktionsschema 4 (Methode A)

  • Reaktionsbedingungen: a) Triethylamin, Dichlormethan, -20°C → Raumtemperatur, 24 h (X = Br) bzw. Diisopropylcarbodiimid, DMAP, Triethylamin, Dichlormethan, Raumtemperatur, 20 h (X = OH); b) Cäsiumcarbonat, Dioxan/Isopropanol 1 : 1, 60°C, 24 h. Reaktionsschema 5 (Methode B)

  • Reaktionsbedingungen: a) Kaliumcarbonat, Dimethylformamid, 50-100°C, 20 h; b) Trifluoressigsäure, Dichlormethan, Raumtemperatur, 2 h; c) N,N-Diisopropylcarbodiimid, DMAP, Dichlormethan, Raumtemperatur, 20 h. Herstellung der Ausgangsharze II nach Methode A Harz IIa

  • Stufe a)
  • 20.0 g (18.8 mmol reaktive Gruppen; theoretische Beladung 0.94 mmol/g) Wang- Harz (Fa. Rapp Polymere, Best.-Nr. H 1011) werden in 200 ml Dichlormethan suspendiert. Nach Zugabe von 21.0 ml (150 mmol) Triethylamin kühlt man auf -20°C und versetzt mit 34.6 g (150 mmol) 2-Brom-2-methylpropanoylbromid. Nach 1.5 h bei -20°C lässt man auf Raumtemperatur erwärmen und rührt für weitere 20 h. Anschließend wird die Mischung filtriert, das Harz mit Dimethylformamid und abwechselnd mit Methanol und Dichlormethan gewaschen. Man erhält Harz Ia, welches ohne weitere Reinigung umgesetzt wird.
  • Stufe b)
  • 16.0 g (15.04 mmol) Harz Ia werden in 160 ml Dioxan/Isopropanol (1 : 1) vorgelegt und mit 39.2 g (120 mmol) Cäsiumcarbonat und 14.7 g (120 mmol) 4-Hydroxybenzaldehyd über Nacht bei 60°C gerührt. Man lässt auf Raumtemperatur abkühlen und neutralisiert mit 6.9 ml Essigsäure. Anschließend wird die Mischung filtriert, das Harz mit Wasser, Dimethylformamid und abwechselnd mit Methanol und Dichlormethan gewaschen. Man erhält Harz IIa, welches ohne weitere Reinigung in der nachfolgenden Synthesesequenz eingesetzt wird.
  • Die folgenden Ausgangsharze II wurden auf analoge Weise nach Methode A hergestellt: Harz IIb

    Harz IIc

    Herstellung der Ausgangsharze II nach Methode B Harz IId

    Stufe a) tert.-Butyl-2-(4-formyl-2-methylphenoxy)-2-methylpropanoat

  • 10.0 g (73.5 mmol) 4-Hydroxy-3-methylbenzaldehyd und 14.2 g (103 mmol) Kaliumcarbonat werden in 90 ml Dimethylformamid vorgelegt und 30 min bei 50°C gerührt. Man tropft 19.2 ml (103 mmol) 2-Bromisobuttersäure-tert.-butylester zu der Suspension, rührt weitere 1.5 h bei 50°C und erwärmt dann für 20 h auf 100°C. Nach Abkühlen auf Raumtemperatur entfernt man das Lösungsmittel im Vakuum, nimmt in Ethylacetat auf und extrahiert mit Wasser, gesättigter wässriger Natriumhydrogencarbonat-Lösung und gesättigter wässriger Natriumchlorid-Lösung. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wird chromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 10 : 1). Man erhält 5.05 g (25% d. Th.) des gewünschten Produktes.
    LC-MS (Methode A): Rt = 4.8 min
    MS (ESI pos): m/z = 223 [M + H-tBu]+
    1H-NMR (400 MHz, CDCl3): δ = 1.40 (s, 9H), 1.68 (s, 6H), 2.29 (s, 3H), 6.74 (d, 1H), 7.5 8 (dd, 1H), 7.70 (br. s, 1H), 9.83 (s, 1H). Stufe b) 2-(4-Formyl-2-methylphenoxy)-2-methylpropansäure

  • 2.2 g (7.9 mmol) tert.-Butyl-2-(4-formyl-2-methylphenoxy)-2-methylpropanoat werden in 20 ml Dichlormethan gelöst und mit 20 ml Trifluoressigsäure versetzt. Nach 2 h Rühren bei Raumtemperatur engt man im Vakuum ein und erhält die gewünschte Verbindung.
    LC-MS (Methode D): Rt = 2.33 min
    MS (ESI pos): m/z = 223 [M + H]+ Stufe c)

  • 5.0 g (4.7 mmol reaktive Gruppen; theoretische Beladung 0.94 mmol/g) Wang-Harz (Fa. Rapp Polymere, Best.-Nr. H 1011) werden in 40 ml Dichlormethan suspendiert. Man gibt nacheinander 1.98 g (8.93 mmol) 2-(4-Formyl-2-methylphenoxy)-2- methylpropansäure, 2.37 g (18.8 mmol) N,N-Diisopropylcarbodiimid und 0.75 g (6.1 mmol) N,N-Dimethylaminopyridin zu. Nach 20 h Schütteln bei Raumtemperatur saugt man das Harz ab und wäscht dieses mehrfach mit Dimethylformamid und abwechselnd mit Methanol und Dichlormethan. Auf diese Weise erhält man Harz IId, welches ohne weitere Reinigung in der nachfolgenden Synthesesequenz eingesetzt wird.
  • Die folgenden Ausgangsharze II wurden auf analoge Weise nach Methode B hergestellt: Harz IIe

    Harz IIf

  • Darstellung der für die Bibliotheksynthese nach Reaktionsschema 3/Methode 2 benötigten Bromessigsäureanilide VI siehe auch Beispiel 1/Stufe 1c VIa) 2-Brom-N-(2,4-dimethylphenyl)acetamid
  • 15.0 g (124 mmol) 2,4-Dimethylanilin und 17.3 ml (124 mmol) Triethylamin werden in 200 ml Dichlormethan vorgelegt und bei 15°C mit einer Lösung von 25.0 g (124 mmol) Bromacetylbromid in 50 ml Dichlormethan versetzt. Nach 1 h Rühren bei Raumtemperatur kristallisiert das Produkt aus. Die Kristalle werden abgesaugt. Die Mutterlauge wird im Vakuum eingeengt. Die entstehenden Kristalle werden ebenfalls abgesaugt und im Vakuum getrocknet. Man erhält insgesamt 19.45 g (65% d. Th.) des Produktes.
    LC-MS (Methode A): Rt = 3.54 min
    MS (ESI pos): m/z = 242 [M + H]+ VIb) 2-Brom-N-(2,4-difluorphenyl)acetamid

  • 14.0 g (108 mmol) 2,4-Difluoranilin und 15.1 ml (108 mmol) Triethylamin werden in 200 ml Dichlormethan vorgelegt und bei 15°C mit einer Lösung von 21.9 g (108 mmol) Bromacetylbromid in 50 ml Dichlormethan versetzt. Nach 1 h Rühren bei Raumtemperatur versetzt man die Lösung mit Wasser und wäscht mehrfach mit Wasser und einmal mit gesättigter wässriger Natriumhydrogencarbonat-Lösung. Die vereinigten organischen Phasen werden im Vakuum eingeengt. Dabei kristallisiert das Produkt aus. Man erhält 22.4 g (83% d. Th.) des Produktes.
    LC-MS (Methode A): Rt = 3.26 min
    MS (ESI pos): m/z = 251 [M + H]+.
  • Allgemeine Arbeitsvorschriften für die Bibliotheksynthese an der festen Phase nach Methode 1 (Reaktionsschema 2) a) Harzvorbereitung
  • 0.07-0.1 g der Harze 5b, IIa, IIb, IIc, IId, IIe, IIf (pro Kan) werden als Suspension in Dimethylformamid/Dichlormethan (1 : 2) in IRORI-Mini-Kans eingeschlämmt, mit Diethylether gewaschen und getrocknet.
  • b) Reduktive Aminierung zu den Harzen III
  • Das so kompartimentierte Harz wird in Dichlormethan/Trimethylorthoformiat (1 : 1) suspendiert und nach Zugabe des Amins (5-7 eq.) bei Raumtemperatur für 12-18 h geschüttelt. Man filtriert und wäscht das Harz mit Dimethylformamid. Anschließend wird das Harz in Dimethylformamid und Eisessig (10 eq.) suspendiert, mit Tetrabutylammoniumborhydrid (4 eq.) versetzt und 6 h bei Raumtemperatur geschüttelt [alternativ zu dieser Vorgehensweise kann das Harz in Dimethylformamid suspendiert, mit Tetrabutylammoniumborhydrid (4 eq.) versetzt und 15 min bei Raumtemperatur geschüttelt werden; man kühlt auf -40°C, versetzt mit Eisessig (100 eq.) und schüttelt, nach Erwärmen auf Raumtemperatur für 6 h. Danach filtriert man die Mischung und wäscht das Harz wiederholt mit Methanol, Dichlormethan/Essigsäure (10 : 1), Methanol, Dimethylformamid, Dichlormethan/Diisopropylethylamin (10 : 1), Methanol, Dichlormethan sowie Diethylether und trocknet abschließend im Vakuum.
  • c) Alkylierung mit Bromessigsäuretrimethylsilylester
  • Die getrennten Reaktionsgefäße werden unter Argon-Atmosphäre in 2.5 ml Dioxan pro Kan suspendiert und mit Triethylamin (14 eq.) und Bromessigsäuretrimethylsilylester (14 eq.) versetzt. Die Mischung wird über Nacht bei 60°C geschüttelt. Anschließend wird die Mischung filtriert und das Harz mit Wasser, Methanol, Dimethylformamid, Methanol, Dichlormethan, Methanol, Dichlormethan und Diethylether gewaschen. Nach Trocknen im Vakuum wird die gesamte Reaktion wiederholt. Abschließend wird das Harz mit Wasser und zweimal mit Dioxan gewaschen.
  • d) Trimethylsilylester-Spaltung zu den Harzen IV
  • Das Harz wird in 2.5 ml Dioxan/Kan suspendiert und mit Tetrabutylammoniumfluorid (2 eq. einer 1 M Lösung in THF) versetzt. Die Mischung wird für 2 h bei Raumtemperatur geschüttelt und dann filtriert. Anschließend wird das Harz mit Dimethylformamid, Methanol, Dichlormethan und Diethylether gewaschen.
  • e) Amidbildung zu den Harzen V
  • Das Harz wird in Pyridin/Dimethylformamid (2 : 1) suspendiert und mit dem Anilin- Derivat (5-10 eq.) und HATU (3 eq.) versetzt. Die Mischung wird 20 h bei Raumtemperatur geschüttelt und dann filtriert. Für eine vollständige Umsetzung muss dieser Vorgang teilweise wiederholt werden. Anschließend wäscht man mit 30%-iger Essigsäure, Wasser, Dimethylformamid, Methanol, Dichlormethan, Methanol und Dichlormethan.
  • f) Abspaltung vom Trägerharz
  • Die Reaktoren werden unten aufgeschnitten und in Flex-Chem-Blöcken viermal mit jeweils 500 µl Dichlormethan/Trifluoressigsäure (1 : 1) behandelt. Nach Einengen im Vakuum erhält man das jeweilige Produkt. Beispiel 6 2-[4-[[[2-[N-Methyl-2,4-(dimethylphenyl)amino]-2-oxoethyl]-cyclohexylamino]- methyl]phenoxy]-2-methylpropansäure

  • Diese Verbindung wurde nach den Allgemeinen Arbeitsvorschriften für die Bibliotheksynthese nach Methode 1 hergestellt.
    LC-MS (Methode C): Rt = 3.1 min
    MS (ESI pos): m/z = 467 [M + H]+.
  • Allgemeine Arbeitsvorschriften für die Bibliotheksynthese an der festen Phase nach Methode 2 (Reaktionsschema 3) a) Alkylierung mit Bromessigsäureaniliden zu den Harzen V
  • Die getrennten Reaktionsgefäße mit den nach Methode 1 (Reaktionsschema 2) erhaltenen Harzen III werden in Dimethylformamid vorgelegt und mit Natriumhydrogencarbonat (3 eq.) sowie dem Bromessigsäureanilid aus Beispiel 1/Stufe 1c), VIa bzw. VIb (3 eq.) versetzt. Man rührt für 3 h bei 90°C. Anschließend wird mit Methanol, Dimethylformamid, Dichlormethan, Methanol, Dichlormethan und Diethylether gewaschen.
  • b) Abspaltung vom Trägerharz
  • Die Reaktoren werden unten aufgeschnitten und in Flex-Chem-Blöcken viermal mit jeweils 500 µl Dichlormethan/Trifluoressigsäure (1 : 1) behandelt. Nach Einengen im Vakuum erhält man das jeweilige Produkt.
  • Die in der nachfolgenden Tabelle aufgeführten Ausführungsbeispiele 7-57 wurden nach den Allgemeinen Arbeitsvorschriften für die Bibliotheksynthese nach Methode 1 oder nach Methode 2 hergestellt:





















    LC-MS Methoden A: Symmetry C-18, 3.5 µm, 2.1 × 50 mm; 70°C; 0.5 ml/min. Laufmittel A = Acetonitril + 0.1% Ameisensäure, Laufmittel B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A → 4 min 90% A → 6 min 90% A.
    B: LiChrospher 100 RP 18, 5 µm, 40°C; 2.5 ml/min. Laufmittel A = Acetonitril + 0.05% Trifluoressigsäure, Laufmittel B = Wasser + 0.05% Trifluoressigsäure, Gradient: 0.0 min 10% A → 3.0 min 90% A → 4 min 90% A.
    C: Symmetry C-18, 3.5 µm, 2.1 × 50 mm; 40°C; 0.5 ml/min. Laufmittel A = Acetonitril + 0.1% Ameisensäure, Laufmittel B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A → 4 min 90% A → 6 min 90% A.
    D: Symmetry C-18, 5 µm, 2.1 × 150 mm; 70°C; 1.2 ml/min; Laufmittel A = Acetonitril, Laufmittel B = Wasser + 0.3 g 30% HCl/l, Gradient: 0.0 min 2% A → 2.5 min 95% A → 5 min 95% A.
    E: Symmetry C-18, 3.5 µm, 2.1 × 50 mm; 24°C; 0.75 ml/min; Laufmittel A = Acetonitril + 0.1% Ameisensäure, Laufmittel B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A → 4 min 90% A → 5.5 min 90% A.
    F: YMC-ODS-AQ, 3 µm, 2.1 × 50 mm; Raumtemperatur; 0.8 ml/min. Laufmittel A = Wasser + 0.05% Ameisensäure, Laufmittel B = Acetonitril + 0.05% Ameisensäure, Gradient: 0.0 min 100% A → 2.9 min 30% A → 3.1 min 10% A → 4.5 min 10% A.
  • Beispiel A Zellulärer Transaktivierungs-Assay Testprinzip
  • Ein zellulärer Assay wird eingesetzt zur Identifizierung von Aktivatoren des Peroxisom-Proliferator-aktivierten Rezeptors delta (PPAR-delta).
  • Da Säugetierzellen verschiedene endogene nukleäre Rezeptoren enthalten, die eine eindeutige Interpretation der Ergebnisse komplizieren könnten, wird ein etabliertes Chimärensystem eingesetzt, in dem die Liganden-Bindungsdomäne des humanen PPARB-Rezeptors an die DNA-Bindungsdomäne des Hefe-Transkriptionsfaktors GAL4 fusioniert wird. Die so entstehende GAL4-PPARδ-Chimäre wird in CHO- Zellen mit einem Reporterkonstrukt co-transfiziert und stabil exprimiert.
  • Klonierung
  • Das GAL4-PPARδ-Expressions-Konstrukt enthält die Ligandenbindungsdomäne von PPARδ (Aminosäuren 414-1326), welche PCR-amplifiziert wird und in den Vektor pcDNA3.1 hineinkloniert wird. Dieser Vektor enthält bereits die GAL4-DNA- Bindungsdomäne (Aminosäuren 1-147) des Vektors pFC2-dbd (Stratagene). Das Reporterkonstrukt, welches fünf Kopien der GAL4-Bindestelle, vorgeschaltet vor einem Thymidinkinasepromoter enthält, führt zur Expression der Firefly-Luciferase (Photinus pyralis) nach Aktivierung und Bindung von GAL4-PPARδ.
  • Transaktivierungs-Assay (Luciferase-Reporter)
  • CHO (chinese hamster ovary)-Zellen werden in CHO-A-SFM-Medium (GIBCO), supplementiert mit 2.5% fötalem Kälberserum und 1% Penicillin/Streptomycin (GIBCO), mit einer Zelldichte von 2 × 103 Zellen pro well in einer 384 well-Platte (Greiner) ausgesät. Nach Kultivierung über 48 h bei 37°C werden die Zellen stimuliert. Dazu werden die zu prüfenden Substanzen in oben genanntem Medium aufgenommen und zu den Zellen dazu gegeben. Nach einer Stimulationszeit von 24 Stunden wird die Luciferaseaktivität mit Hilfe einer Videokamera gemessen. Die gemessenen relativen Lichteinheiten ergeben in Abhängigkeit von der Substanzkonzentration eine sigmoide Stimulationskurve. Die Berechnung der EC50-Werte erfolgt mit Hilfe des Computerprogramms GraphPad PRISM (Version 3.02).
  • Die erfindungsgemäßen Verbindungen der Beispiele 1, 2, 3, 4, 5, 7 und 8 zeigen in diesem Test EC50-Werte von 1 bis 100 nM.
  • Beispiel B Testbeschreibungen zur Auffindung von pharmakologisch wirksamen Substanzen, die das HDL-Cholesterin (HDL-C) im Serum von transgenen Mäusen, die mit dem humanen ApoA1-Gen (hApoA1) transfiziert sind, erhöhen bzw. das metabolische Syndrom von adipösen ob,ob-Mäusen beeinflussen und deren Blutglucosekonzentration senken
  • Die Substanzen, die auf ihre HDL-C erhöhende Wirkung in vivo untersucht werden sollen, werden männlichen transgenen hApoA1-Mäusen oral verabreicht. Die Tiere werden einen Tag vor Versuchsbeginn randomisiert Gruppen mit gleicher Tierzahl, in der Regel n = 7-10, zugeordnet. Während des gesamten Versuches steht den Tieren Trinkwasser und Futter ad libitum zur Verfügung. Die Substanzen werden einmal täglich 7 Tage lang oral verabreicht. Zu diesem Zweck werden die Testsubstanzen in einer Lösung aus Solutol HS 15 + Ethanol + Kochsalzlösung (0.9%) im Verhältnis 1 + 1 + 8 oder in einer Lösung aus Solutol HS 15 + Kochsalzlösung (0.9%) im Verhältnis 2 + 8 gelöst. Die Applikation der gelösten Substanzen erfolgt in einem Volumen von 10 ml/kg Körpergewicht mit einer Schlundsonde. Als Kontrollgruppe dienen Tiere, die genauso behandelt werden, aber nur das Lösungsmittel (10 ml/kg Körpergewicht) ohne Testsubstanz erhalten.
  • Vor der ersten Substanzapplikation wird jeder Maus zur Bestimmung von ApoA1, Serumcholesterin, HDL-C und Serumtriglyceriden (TG) Blut durch Punktion des retroorbitalen Venenplexus entnommen (Vorwert). Anschließend wird den Tieren mit einer Schlundsonde die Testsubstanz zum ersten Mal verabreicht. 24 Stunden nach der letzten Substanzapplikation, d. h. am 8. Tag nach Behandlungsbeginn, wird jedem Tier zur Bestimmung der gleichen Parameter erneut Blut durch Punktion des retroorbitalen Venenplexus entnommen. Die Blutproben werden zentrifugiert, und nach Gewinnung des Serums werden Cholesterin und TG photometrisch mit einem EPOS Analyzer 5060 (Eppendorf-Gerätebau, Netheler & Hinz GmbH, Hamburg) bestimmt. Die Bestimmung erfolgt mit handelsüblichen Enzymtests (Boehringer Mannheim, Mannheim).
  • Zur Bestimmung des HDL-C wird die nicht-HDL-C-Fraktion mit 20% PEG 8000 in 0.2 M Glycinpuffer pH 10 gefällt. Aus dem Überstand wird das Cholesterin in einer 96er-Lochplatte mit handelsüblichem Reagenz (Ecoline 25, Merck, Darmstadt) UV- photometrisch bestimmt (BIO-TEK Instruments, USA).
  • Das humane Maus-ApoA1 wird mit einer Sandwich-ELISA-Methode unter Verwendung eines polyklonalen antihuman-ApoA1- und eines monoklonalen antihuman-ApoA1-Antikörpers (Biodesign International, USA) bestimmt. Die Quantifizierung erfolgt UV-photometrisch (BIO-TEK Instruments, USA) mit Peroxidase-gekoppelten anti-Maus-IGG-Antikörper (KPL, USA) und Peroxidasesubstrat (KPL, USA).
  • Die Wirkung der Testsubstanzen auf die HDL-C-Konzentration wird durch Subtraktion des Messwertes der 1. Blutentnahme (Vorwert) von dem Messwert der 2. Blutentnahme (nach Behandlung) bestimmt. Es werden die Differenzen aller HDL-C-Werte einer Gruppe gemittelt und mit dem Mittelwert der Differenzen der Kontrollgruppe verglichen.
  • Die statistische Auswertung erfolgt mit Student's t-Test nach vorheriger Überprüfung der Varianzen auf Homogenität.
  • Substanzen, die das HDL-C der behandelten Tiere, verglichen mit dem der Kontrollgruppe, statistisch signifikant (p < 0.05) um mindestens 15% erhöhen, werden als pharmakologisch wirksam angesehen.
  • Um Substanzen auf ihre Beeinflussung eines metabolischen Syndroms prüfen zu können, werden Tiere mit einer Insulinresistenz und erhöhten Blutglucosespiegeln verwendet. Dazu werden C57B1/6J Lep<ob>-Mäuse nach dem gleichen Protokoll behandelt wie die transgenen ApoA1-Mäuse. Die Serumlipide werden wie oben beschrieben bestimmt. Zusätzlich wird bei diesen Tieren Serumglucose als Parameter für die Blutglucose bestimmt. Die Serumglucose wird enzymatisch an einem EPOS Analyzer 5060 (s. oben) mit handelsüblichen Enzymtests (Boehringer Mannheim) bestimmt.
  • Eine Blutglucose-senkende Wirkung der Testsubstanzen wird durch Subtraktion des Messwertes der 1. Blutentnahme eines Tieres (Vorwert) von dem Messwert der 2. Blutentnahme des gleichen Tieres (nach Behandlung) bestimmt. Es werden die Differenzen aller Serumglucose-Werte einer Gruppe gemittelt und mit dem Mittelwert der Differenzen der Kontrollgruppe verglichen.
  • Die statistische Auswertung erfolgt mit Student's t-Test nach vorheriger Überprüfung der Varianzen auf Homogenität.
  • Substanzen, die die Serumglucosekonzentration der behandelten Tiere, verglichen mit der der Kontrollgruppe, statistisch signifikant (p < 0.05) um mindestens 10% senken, werden als pharmakologisch wirksam angesehen.

Claims (14)

1. Verbindungen der allgemeinen Formel (I)


worin
A für eine Bindung oder für eine -CH2- oder -CH2CH2-Gruppe steht,
X für O, S oder CH2 steht,
R1, R2 und R3 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C3-C7)-Cycloalkyl, Hydroxy, (C1-C6)- Alkoxy, Amino, Mono- oder Di-(C1-C6)-Alkylamino, Halogen, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano stehen,
R4 für Wasserstoff oder (C1-C4)-Alkyl steht,
R5 und R6 Wasserstoff bedeuten oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden,
R7 für Wasserstoff oder (C1-C4)-Alkyl steht,
R8 für geradkettiges (C5-C10)-Alkyl oder für eine Gruppe der Formel -(CH2)n-E steht, worin
E für (C3-C12)-Cycloalkyl, das bis zu vierfach, gleich oder verschieden, durch (C1-C6)-Alkyl, Trifluormethyl, Hydroxy, (C1-C6)-Alkoxy, Carboxyl oder (C1-C6)-Alkoxycarbonyl substituiert sein kann, oder für 4- bis 8-gliedriges Heterocyclyl mit bis zu zwei Heteroatomen aus O und/oder S, das bis zu zweifach, gleich oder verschieden, durch (C1-C6)-Alkyl substituiert sein kann, steht,
und
n für die Zahl 0, 1 oder 2 steht,
R9 und R10 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy, Trifluormethyl oder Halogen stehen,
R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff oder (C1-C4)-Alkyl stehen,
und
R13 für Wasserstoff oder für eine hydrolysierbare Gruppe steht, die zur entsprechenden Carbonsäure abgebaut werden kann,
sowie deren pharmazeutisch verträgliche Salze, Hydrate und Solvate.
2. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1
worin
A für eine -CH2- oder -CH2CH2-Gruppe steht,
X für O oder S steht,
R1 und R2 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C4)-Alkyl, Di-(C1-C4)-Alkylamino, Chlor, Fluor, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano stehen,
R3 für Wasserstoff steht,
R4 für Wasserstoff oder Methyl steht,
R5 und R6 Wasserstoff bedeuten oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden,
R7 für Wasserstoff steht,
R8 für (C3-C8)-Cycloalkyl, das bis zu vierfach, gleich oder verschieden, durch (C1-C4)-Alkyl, Trifluormethyl, (C1-C4)-Alkoxy, Carboxyl oder (C1-C4)-Alkoxycarbonyl substituiert sein kann, oder für 5- bis 6- gliedriges Heterocyclyl mit bis zu zwei Heteroatomen aus O und/oder S, das bis zu zweifach, gleich oder verschieden, durch (C1-C4)-Alkyl substituiert sein kann, steht,
R9 für Wasserstoff, (C1-C3)-Alkyl, (C1-C3)-Alkoxy, Trifluormethyl, Fluor oder Chlor steht,
R10 für Wasserstoff steht,
R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff oder Methyl stehen,
und
R13 für Wasserstoff oder für eine hydrolysierbare Gruppe steht, die zur entsprechenden Carbonsäure abgebaut werden kann,
sowie deren pharmazeutisch verträgliche Salze, Hydrate und Solvate.
3. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 worin
A für eine -CH2-Gruppe steht,
X für O oder S steht,
R1 für Wasserstoff, Methyl, Trifluormethyl, Chlor, Fluor, Nitro oder Cyano steht,
R2 für Methyl, Trifluormethyl, Chlor, Fluor, Nitro oder Cyano steht,
R3 für Wasserstoff steht,
R4 für Wasserstoff steht,
R5 und R6 gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden,
R7 für Wasserstoff steht,
R8 für Cyclopentyl oder Cyclohexyl, die jeweils durch Methoxy, Ethoxy oder bis zu vierfach durch Methyl substituiert sein können, oder für 3- Tetrahydrofuranyl, 3-Tetrahydropyranyl oder 4-Tetrahydropyranyl, die ein- bis zweifach durch Methyl substituiert sein können, steht,
R9 für Methyl steht,
R10 für Wasserstoff steht,
R11 und R12 beide für Wasserstoff oder für Methyl stehen,
und
R13 für eine hydrolysierbare Gruppe steht, die zur entsprechenden Carbonsäure abgebaut werden kann, oder insbesondere für Wasserstoff steht,
sowie deren pharmazeutisch verträgliche Salze, Hydrate und Solvate.
4. Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 3 in denen R4 für Wasserstoff oder Methyl und R7 für Wasserstoff steht.
5. Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 5 in denen R5 und R6 gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bilden.
6. Verbindungen der Formel (IA)


in der
R1 und R2 gleich oder verschieden sind und unabhängig voneinander für Methyl, Trifluormethyl, Fluor, Chlor, Nitro oder Cyano stehen,
und
A, X, R8, R9, R10, R11 und R12 jeweils die in den Ansprüchen 1 bis 5 angegebenen Bedeutungen haben.
7. Verbindungen der Formel (I) bzw. (IA), wie in den Ansprüchen 1 bis 6 definiert, zur Vorbeugung und Behandlung von Krankheiten.
8. Arzneimittel enthaltend mindestens eine Verbindung der Formel (I) bzw. (IA), wie in Anspruch 1 bzw. 6 definiert, und inerte, nichttoxische, pharmazeutisch geeignete Trägerstoffe, Hilfsmittel, Lösungsmittel, Vehikel, Emulgatoren und/oder Dispergiermittel.
9. Verwendung von Verbindungen der Formel (I) bzw. (IA) und Arzneimittel, die in den Ansprüchen 1 bis 8 definiert sind, zur Vorbeugung vor und Behandlung von Krankheiten.
10. Verwendung von Verbindungen der Formel (I) bzw (IA), wie in den Ansprüchen 1 bis 6 definiert, zur Herstellung von Arzneimitteln.
11. Verwendung von Verbindungen der Formel (I) bzw (IA), wie in den Ansprüchen 1 bis 6 definiert, zur Herstellung von Arzneimitteln zur Vorbeugung und Behandlung von koronaren Herzkrankheiten und Dyslipidämie, zur Mykardinfarkt-Prophylaxe sowie zur Behandlung von Restenose nach Koronarangioplastic oder Stenting.
12. Verfahren zu Vorbeugung und Behandlung von Krankheiten, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) bzw (IA), wie in Anspruch 1 und 6 definiert, auf Lebewesen einwirken lässt.
13. Verfahren zur Herstellung von Arzneimitteln, dadurch gekennzeichnet, dass man mindestens eine Verbindung der Formel (I) bzw (IA), wie in Anspruch 1 und 6 definiert, mit Hilfs- und/oder Trägerstoffen in eine Applikationsform überführt.
14. Verfahren zur Herstellung von Verbindungen der Formel (I), wie in Anspruch 1 definiert, dadurch gekennzeichnet, dass man
[A] Verbindungen der allgemeinen Formel (II)


in welcher
A, X, R7, R8, R9, R10, R11 und R12 die in Anspruch 1 angegebenen Bedeutungen haben
und
T für Benzyl, (C1-C6)-Alkyl oder für einen für die Festphasen-Synthese geeigneten polymeren Träger steht,
zunächst unter Aktivierung der Carbonsäure-Gruppe in (II) mit Verbindungen der allgemeinen Formel (III)


in welcher
R1, R2, R3 und R4 die in Anspruch 1 angegebenen Bedeutungen haben,
zu Verbindungen der allgemeinen Formel (Ia)


in welcher
A, X, T, R1, R2, R3, R4, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
umsetzt,
oder
[B] Verbindungen der allgemeinen Formel (IV)


in welcher
A, X, T, R8, R9, R10, R11 und R12 die in Anspruch 1 angegebenen Bedeutungen haben,
in Gegenwart einer Base mit Verbindungen der allgemeinen Formel (V)


in welcher
R1, R2, R3, R4 und R7 die in Anspruch 1 angegebenen Bedeutungen haben
und
Q für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, Mesylat oder Tosylat, vorzugsweise für Brom oder Iod steht,
gleichfalls zu Verbindungen der allgemeinen Formel (Ia) umsetzt, dann die Verbindungen der allgemeinen Formel (Ia) gegebenenfalls nach bekannten Methoden zur Amid-Reduktion in Verbindungen der allgemeinen Formel (Ib)


in welcher
A, X, T, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
überführt,
anschließend mit Säuren oder Basen in die entsprechenden Carbonsäuren der allgemeinen Formel (Ic)


in welcher
A, X, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 und R12 die oben angegebene Bedeutung haben,
überführt,
und diese gegebenenfalls nach bekannten Methoden zur Veresterung durch Umsetzung mit Verbindungen der allgemeinen Formel (VI)

R13-Z (VI),

worin
R13 die oben angegebene Bedeutung hat
und
Z für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, Mesylat oder Tosylat, oder für eine Hydroxy-Gruppe steht,
weiter modifiziert.
DE10151390A 2001-10-18 2001-10-18 Essigsäurederivate Withdrawn DE10151390A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE10151390A DE10151390A1 (de) 2001-10-18 2001-10-18 Essigsäurederivate
DO2002000481A DOP2002000481A (es) 2001-10-18 2002-10-08 Derivados de acido acetico
US10/492,761 US20050154061A1 (en) 2001-10-18 2002-10-09 Acetic acid derivatives
EP02777295A EP1438285A1 (de) 2001-10-18 2002-10-09 Essigsäurederivate
PCT/EP2002/011275 WO2003035603A1 (de) 2001-10-18 2002-10-09 Essigsäurederivate
CA002463226A CA2463226A1 (en) 2001-10-18 2002-10-09 Acetic acid derivatives
JP2003538119A JP2005506379A (ja) 2001-10-18 2002-10-09 酢酸誘導体
UY27491A UY27491A1 (es) 2001-10-18 2002-10-15 Derivados de ácido acético
PE2002001026A PE20030609A1 (es) 2001-10-18 2002-10-17 Derivados de acido acetico
SV2002001294A SV2004001294A (es) 2001-10-18 2002-10-17 Derivados de acido acetico ref. lea 35699-sv
ARP020103941A AR037507A1 (es) 2001-10-18 2002-10-18 Derivados de acido acetico sustituidos, un procedimiento para su preparacion, medicamentos, un procedimiento para su preparacion, el uso de dichos compuestos para la preparacion de medicamentos
GT200300003A GT200300003A (es) 2001-10-18 2003-01-10 Derivados de acido acetico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10151390A DE10151390A1 (de) 2001-10-18 2001-10-18 Essigsäurederivate

Publications (1)

Publication Number Publication Date
DE10151390A1 true DE10151390A1 (de) 2003-05-08

Family

ID=7702887

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10151390A Withdrawn DE10151390A1 (de) 2001-10-18 2001-10-18 Essigsäurederivate

Country Status (12)

Country Link
US (1) US20050154061A1 (de)
EP (1) EP1438285A1 (de)
JP (1) JP2005506379A (de)
AR (1) AR037507A1 (de)
CA (1) CA2463226A1 (de)
DE (1) DE10151390A1 (de)
DO (1) DOP2002000481A (de)
GT (1) GT200300003A (de)
PE (1) PE20030609A1 (de)
SV (1) SV2004001294A (de)
UY (1) UY27491A1 (de)
WO (1) WO2003035603A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337839A1 (de) * 2003-08-18 2005-03-17 Bayer Healthcare Ag Indolin-Derivate
PL1661890T3 (pl) * 2003-09-03 2011-06-30 Kowa Co Związek aktywujący PPAR oraz kompozycja farmaceutyczna zawierająca ten związek
ATE515494T1 (de) 2004-05-05 2011-07-15 High Point Pharmaceuticals Llc Neue verbindungen, deren herstellung und verwendung
WO2005105726A1 (en) 2004-05-05 2005-11-10 Novo Nordisk A/S Novel compounds, their preparation and use
MX2007016374A (es) 2005-06-30 2008-03-05 Novo Nordisk As Acidos fenoxiaceticos como activadores ppar delta.
CN103224477A (zh) 2005-12-22 2013-07-31 高点制药有限责任公司 作为PPAR-δ活化剂的苯氧基乙酸
JP2009529512A (ja) 2006-03-09 2009-08-20 ハイ ポイント ファーマシューティカルズ,リミティド ライアビリティ カンパニー 新規な化合物、それらの製造法、及び使用法
US8410284B2 (en) 2008-10-22 2013-04-02 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
CA2741672A1 (en) 2008-10-31 2010-05-06 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
EP2538784B1 (de) 2010-02-25 2015-09-09 Merck Sharp & Dohme Corp. Benzimidazolderivate als antidiabetika
EP2677869B1 (de) 2011-02-25 2017-11-08 Merck Sharp & Dohme Corp. Neue cyclische azabenzimidazolderivate als antidiabetika
JP2015525782A (ja) 2012-08-02 2015-09-07 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 抗糖尿病性三環式化合物
CN104994848A (zh) 2013-02-22 2015-10-21 默沙东公司 抗糖尿病二环化合物
WO2014139388A1 (en) 2013-03-14 2014-09-18 Merck Sharp & Dohme Corp. Novel indole derivatives useful as anti-diabetic agents
EP3043789B1 (de) 2013-09-09 2020-07-08 vTv Therapeutics LLC Verwendung von ppar-delta-agonisten zur behandlung von muskelatrophie
WO2015051496A1 (en) 2013-10-08 2015-04-16 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2018106518A1 (en) 2016-12-06 2018-06-14 Merck Sharp & Dohme Corp. Antidiabetic heterocyclic compounds
US10968232B2 (en) 2016-12-20 2021-04-06 Merck Sharp & Dohme Corp. Antidiabetic spirochroman compounds
WO2023147309A1 (en) 2022-01-25 2023-08-03 Reneo Pharmaceuticals, Inc. Use of ppar-delta agonists in the treatment of disease

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9822473D0 (en) * 1998-10-16 1998-12-09 Glaxo Group Ltd Chemical compounds
PL361162A1 (en) * 2000-10-05 2004-09-20 Bayer Aktiengesellschaft Propionic acid derivatives with ppar-alpha activating properties

Also Published As

Publication number Publication date
EP1438285A1 (de) 2004-07-21
JP2005506379A (ja) 2005-03-03
DOP2002000481A (es) 2003-04-30
US20050154061A1 (en) 2005-07-14
CA2463226A1 (en) 2003-05-01
WO2003035603A1 (de) 2003-05-01
PE20030609A1 (es) 2003-09-07
SV2004001294A (es) 2004-02-24
AR037507A1 (es) 2004-11-17
UY27491A1 (es) 2003-05-30
GT200300003A (es) 2004-09-21

Similar Documents

Publication Publication Date Title
DE10151390A1 (de) Essigsäurederivate
DE69922703T2 (de) Ureido-thiobuttersäurederivate als ppar-agonisten
DE60129960T2 (de) Benzamidliganden für den thyroid-rezeptor
DE60014588T2 (de) Thioamidderivate
DE10229777A1 (de) Indolin-Phenylsulfonamid-Derivate
EA013835B1 (ru) Замещенные соединения тетрациклина (варианты), фармацевтическая композиция и способ лечения чувствительного к тетрациклину состояния субъекта
AU2010291834A1 (en) Substituted heterocyclic derivatives for the treatment of pain and epilepsy
EP2797892A1 (de) Pyridinonderivate als gewebetransglutaminaseinhibitoren
DE10222034A1 (de) Tetrahydroisochinolin-Derivate
ES2403592T3 (es) Nuevos derivados de bencimidazol y su empleo como agonsitas del FXR
JP2005506379A5 (de)
DE10300099A1 (de) Indol-Phenylsulfonamid-Derivate
EP0599203A1 (de) N,n,-Disubstituierte Arylcycloalkylamine, deren Salze, diese Verbindungen enthaltende Arzneimittel und deren Verwendung sowie Verfahren zu iher Herstellung
EP1939195A1 (de) Neue Indolderivate und deren Verwendung als Arzneimittel
DE10038007A1 (de) Neue Amino-und Amido-Diphenylether für Arzneimittel
DE2802630A1 (de) 6-ethoxy-1,2-dihydro-2,2,4-trimethylchinolinderivate und verfahren zu ihrer herstellung
DE10024939A1 (de) Neue Diphenylmethanderivate für Arzneimittel
DE102004016845A1 (de) Phenylthioessigsäure-Derivate und ihre Verwendung
EP0824529A1 (de) Benzothiazole und benzoxazole, diese verbindungen enthaltende arzneimittel und deren verwendung sowie verfahren zu ihrer herstellung
DE69917058T2 (de) Thiazolderivate
EP1654227A1 (de) Bicyclische indolinsulfonamid-derivate
DE69908756T2 (de) Matrix-metalloproteinase-inhibitoren
JP2008533122A (ja) 新規なチロシン誘導体
EP0596326B1 (de) Aryliden-1-azacycloalkane und Arylalkyl-1-azacycloalkane, deren Salze, diese Verbindungen enthaltende Arzneimittel und deren Verwendung sowie Verfahren zu ihrer Herstellung
DE10335450A1 (de) Indolin-Sulfanilsäureamide

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BAYER HEALTHCARE AG, 51373 LEVERKUSEN, DE

8139 Disposal/non-payment of the annual fee