US20070076502A1 - Daisy chain cascading devices - Google Patents

Daisy chain cascading devices Download PDF

Info

Publication number
US20070076502A1
US20070076502A1 US11/496,278 US49627806A US2007076502A1 US 20070076502 A1 US20070076502 A1 US 20070076502A1 US 49627806 A US49627806 A US 49627806A US 2007076502 A1 US2007076502 A1 US 2007076502A1
Authority
US
United States
Prior art keywords
memory device
input
output
memory
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/496,278
Other languages
English (en)
Inventor
Hong Pyeon
Jin-Ki Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mosaid Technologies Inc
Original Assignee
Mosaid Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/324,023 external-priority patent/US7652922B2/en
Application filed by Mosaid Technologies Inc filed Critical Mosaid Technologies Inc
Priority to US11/496,278 priority Critical patent/US20070076502A1/en
Assigned to MOSAID TECHNOLOGIES INCORPORATED reassignment MOSAID TECHNOLOGIES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, JIN-KI, PYEON, HONG BEOM
Priority to TW103113209A priority patent/TWI564906B/zh
Priority to EP08006224.3A priority patent/EP1981031B1/en
Priority to EP08006225A priority patent/EP1981032B1/en
Priority to KR1020087010548A priority patent/KR101370691B1/ko
Priority to KR1020137020705A priority patent/KR101506831B1/ko
Priority to TW095136434A priority patent/TWI445010B/zh
Priority to KR1020137020706A priority patent/KR101392605B1/ko
Priority to ES08006225T priority patent/ES2405952T3/es
Priority to KR1020117022548A priority patent/KR101452564B1/ko
Priority to CN201210074088.2A priority patent/CN102750975B/zh
Priority to CN200680036482XA priority patent/CN101278352B/zh
Priority to EP08006223A priority patent/EP1981030B1/en
Priority to CA002627663A priority patent/CA2627663A1/en
Priority to JP2008532551A priority patent/JP2009510568A/ja
Priority to EP06790771.7A priority patent/EP1929480B1/en
Priority to KR1020147013416A priority patent/KR101547076B1/ko
Priority to PCT/CA2006/001607 priority patent/WO2007036048A1/en
Priority to ES08006223T priority patent/ES2395570T3/es
Priority to US11/594,564 priority patent/US9240227B2/en
Priority to US11/639,375 priority patent/US20070165457A1/en
Priority to TW103119019A priority patent/TW201433921A/zh
Priority to TW096108972A priority patent/TWI448901B/zh
Priority to CN2007800106485A priority patent/CN101410814B/zh
Priority to EP07719422A priority patent/EP1999601A4/en
Priority to CA002644593A priority patent/CA2644593A1/en
Priority to CN201310261739.3A priority patent/CN103714841A/zh
Priority to KR1020087020432A priority patent/KR101314893B1/ko
Priority to KR1020137012902A priority patent/KR101365827B1/ko
Priority to EP11003539A priority patent/EP2348510A1/en
Priority to PCT/CA2007/000488 priority patent/WO2007109888A1/en
Priority to JP2009501797A priority patent/JP5189072B2/ja
Publication of US20070076502A1 publication Critical patent/US20070076502A1/en
Assigned to MOSAID TECHNOLOGIES INCORPORATED reassignment MOSAID TECHNOLOGIES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, JIN-KI, MR.
Assigned to MOSAID TECHNOLOGIES INCORPORATED reassignment MOSAID TECHNOLOGIES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PYEON, HONG-BOEM, MR.
Priority to EP08015337A priority patent/EP2031516A3/en
Assigned to MOSAID TECHNOLOGIES INCORPORATED reassignment MOSAID TECHNOLOGIES INCORPORATED CHANGE OF ADDRESS OF ASSIGNEE Assignors: MOSAID TECHNOLOGIES INCORPORATED
Priority to JP2009223077A priority patent/JP5179450B2/ja
Priority to US12/578,115 priority patent/US20100030951A1/en
Assigned to ROYAL BANK OF CANADA reassignment ROYAL BANK OF CANADA U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) - SHORT FORM Assignors: 658276 N.B. LTD., 658868 N.B. INC., MOSAID TECHNOLOGIES INCORPORATED
Priority to JP2012198200A priority patent/JP2012238341A/ja
Priority to JP2012210614A priority patent/JP5575856B2/ja
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MOSAID TECHNOLOGIES INCORPORATED
Assigned to CONVERSANT IP N.B. 868 INC., CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CONVERSANT IP N.B. 276 INC. reassignment CONVERSANT IP N.B. 868 INC. RELEASE OF SECURITY INTEREST Assignors: ROYAL BANK OF CANADA
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. CHANGE OF ADDRESS Assignors: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.
Assigned to CPPIB CREDIT INVESTMENTS INC., AS LENDER, ROYAL BANK OF CANADA, AS LENDER reassignment CPPIB CREDIT INVESTMENTS INC., AS LENDER U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) Assignors: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.
Assigned to CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. reassignment CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC. RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS) Assignors: ROYAL BANK OF CANADA, AS LENDER
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4247Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4247Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus
    • G06F13/4256Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus using a clocked protocol
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/066Means for reducing external access-lines for a semiconductor memory clip, e.g. by multiplexing at least address and data signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/06Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication
    • G06F12/0615Address space extension
    • G06F12/0623Address space extension for memory modules
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory

Definitions

  • a typical computer-based system comprises a system board and optionally one or more peripheral devices, such as display units, storage units and the like.
  • the system board may contain one or more processors, a memory subsystem and other logic, such as serial device interfaces, network device controllers, hard disk controllers and the like.
  • processors that are employed on a particular system board usually depends on the type of tasks performed by the system. For example, a system that performs a limited set of tasks, such as monitor emissions generated by an automobile engine and adjust an air/fuel mixture to ensure the engine is burning fuel completely may employ a simple specialized processor that is tailored to performing these tasks. On the other hand, a system that performs many different tasks, such as managing many users and running many different applications, may employ one or more complex processors that are general purpose in nature, configured to perform high-speed calculations and manipulate data to minimize the response time to servicing the users' requests.
  • the memory subsystem is a storage that holds information (e.g., instructions, data values) used by the processors.
  • the memory subsystem typically comprises controller logic and one or more memory devices.
  • the controller logic typically is configured to interface the memory devices with the processors and enable the processors to store and retrieve information to and from the memory devices.
  • the memory devices hold the actual information.
  • the type of devices employed in a memory subsystem is often driven by the type of tasks performed by the computer system.
  • a computer system may have the task of having to boot without the assistance of a disk drive and execute a set of software routines that do not change often.
  • the memory subsystem may employ non-volatile devices, such as flash memory devices, to store the software routines.
  • non-volatile devices such as flash memory devices
  • Other computer systems may execute very complex tasks that require a large high-speed data store to hold large portions of information.
  • the memory subsystem may employ high-speed high-density Dynamic Random Access Memory (DRAM) devices to store large portions of information.
  • DRAM Dynamic Random Access Memory
  • Devices in a memory subsystem are often interconnected using a parallel interconnection scheme. This scheme involves interconnecting the devices in a manner such that address and data information and control signals are coupled to the devices in a parallel fashion. Each device may incorporate multiple inputs/outputs to accommodate the parallel transfer of the data and address information as well as control signals to the devices.
  • One shortcoming associated with utilizing parallel interconnections in a memory subsystem is that they tend to require a large number of interconnections between the devices in order to transfer information and signals to the devices in parallel. This adds to the complexity of boards that implement these subsystems. Moreover, undesirable effects associated with large numbers of interconnections, such as crosstalk, tend to limit the performance of these subsystems. In addition, the number of devices incorporated in these subsystems may be limited due to propagation delay of signals carried by the interconnections.
  • the techniques described herein overcome the above shortcomings by providing a technique for coupling devices in a serial daisy chain cascading arrangement that employs fewer and shorter connections than parallel interconnection implementations.
  • Configuring devices in the daisy chain arrangement may allow the devices to be operated at higher speeds than parallel interconnection implementations because utilizing fewer and shorter interconnections makes the overall implementation less vulnerable to undesirable effects, such as propagation delay and crosstalk.
  • fewer and shorter connections tend to reduce the complexity of the implementation. This reduced complexity further enables a subsystem containing the devices to be implemented in a smaller area thus allowing the subsystem to occupy a smaller footprint.
  • devices are coupled in a daisy chain cascade arrangement such that outputs of an earlier device in the daisy chain cascade are coupled to inputs of the next device later in the daisy chain to accommodate the transfer of information (e.g., data, address and command information) and control signals (e.g., enable signals) from the earlier device to the latter device.
  • information e.g., data, address and command information
  • control signals e.g., enable signals
  • each device in the daisy chain cascade comprises a serial input (SI) and a serial output (SO).
  • SI serial input
  • SO serial output
  • Information is input to a device via its SI.
  • the information is output from the device via its SO.
  • the SO of a device in the daisy chain cascade is coupled to the SI of the next device in the daisy chain cascade.
  • Circuitry is provided in the devices to enable information input to an earlier device in the daisy chain cascade via its SI to be passed through the device and output from the device via its SO.
  • the information is then transferred to the SI of the next device in the daisy chain cascade via the connection between the earlier device's SO and the next device's SI.
  • the transferred information may then be inputted to the next device via its SI.
  • a clock signal is coupled to the devices in the daisy chain cascade.
  • the clock signal is used by the devices to accommodate the transfer of the information from one device to the next device in the daisy chain cascade.
  • control signals e.g., enable signals
  • enable signals that are utilized by the devices to, e.g., enable data to be input to the device via the SI and output from the device via the SO are transferred between devices in the daisy chain cascade, as described above.
  • circuitry is provided to enable control signals input to an earlier device in the daisy chain cascade to be propagated through the device and transferred from the device via an output to an input of a next device in the daisy chain cascade. The transferred signals are then input to the next device via the input.
  • FIG. 1 is a block diagram of an exemplary device configuration comprising a plurality of single port devices configured in a serial daisy chain cascade arrangement.
  • FIG. 2 is a block diagram of an exemplary device configuration comprising a plurality of single port devices configured in a serial daisy chain cascading arrangement having a cascaded clock.
  • FIG. 3 is a block diagram of an exemplary device configuration comprising a plurality of dual port devices configured in a serial daisy chain cascade arrangement.
  • FIG. 4 is a block diagram of an exemplary device configuration comprising a plurality of single port devices configured in a serial daisy chain arrangement having inputs and outputs for various enable signals.
  • FIG. 5 is a block diagram of an exemplary device configuration comprising dual port devices configured in a serial daisy chain arrangement having inputs and outputs configured for various enable signals.
  • FIG. 6 is a block diagram of an exemplary device configuration comprising a plurality of devices having multiple parallel inputs and multiple parallel outputs which are configured in a serial daisy chain cascading arrangement.
  • FIG. 7 is a timing diagram illustrating timing associated with a read operation performed on a single device configured and a plurality of devices configured in a serial daisy chain cascade arrangement.
  • FIG. 8 is a timing diagram illustrating timing associated with information transferred between devices configured in a serial daisy chain cascade arrangement.
  • FIG. 9 is a high-level block diagram of exemplary serial output control logic for a single ported device.
  • FIG. 10 is a high-level block diagram of exemplary serial output control logic for a dual ported device.
  • FIG. 11 is a detailed block diagram of exemplary serial output control logic for a device.
  • FIG. 12 is a block diagram of an exemplary configuration of devices configured in a serial daisy chain cascading arrangement and containing exemplary serial output control logic.
  • FIG. 13 is a timing diagram illustrating timing associated with inputs and outputs of the devices comprising exemplary serial output control logic.
  • FIG. 14 is a block diagram of exemplary serial output control logic that may be used to transfer data from memory contained in a first device in a daisy chain cascade to a second device in the daisy chain cascade.
  • FIG. 15 is a timing diagram illustrating timing associated with transferring data contained in memory of a first device in a daisy chain cascade to a second device in the daisy chain cascade using exemplary serial output control logic.
  • FIG. 1 is a block diagram of an exemplary device configuration comprising a plurality of single port devices 110 a - e configured in a serial daisy chain cascade arrangement.
  • the devices 110 a - e are illustratively memory devices each of which contains a memory (not shown) which may comprise Dynamic Random Access Memory (DRAM) cells, Static Random Access Memory (SRAM) cells, flash memory cells and the like.
  • Each device 110 comprises a serial input (SI), a serial output (SO), a clock (SCLK) input and a chip select (CS#) input.
  • SI serial input
  • SO serial output
  • SCLK clock
  • CS# chip select
  • the SI is used to transfer information (e.g., command, address and data information) into the device 110 .
  • the SO is used to transfer information from the device 110 .
  • the SCLK input is used to provide an external clock signal to the device 110 and the CS# input is used to provide a chip select signal to the device 110 .
  • An example of a device that may be used with the techniques described herein is a Multiple Independent Serial Link (MISL) Memory device described in previously incorporated U.S. patent application Ser No. 11/324,023.
  • MISL Multiple Independent Serial Link
  • the SI and SO are connected between devices 110 in the daisy chain cascade arrangement such that the SO of a device 110 earlier in the daisy chain cascade is coupled to the SI of the next device 110 in the daisy chain cascade.
  • the SO of device 110 a is coupled to the SI of device 110 b.
  • the SCLK input of each device 110 is fed with a clock signal from, e.g., a memory controller (not shown).
  • the clock signal is distributed to each device 110 via a common link.
  • SCLK is used to, inter alia, latch information input to the device 110 at various registers contained in the device 110 .
  • Information input to the devices 110 may be latched at different times of the clock signal fed to the SCLK input.
  • SDR single data rate
  • DDR double data rate
  • both the rising and falling edges of the SCLK clock signal may be used to latch information input at the SI.
  • the CS# input of each device is a conventional chip select that selects the device. This input is coupled to a common link which enables a chip select signal to be asserted to all of the devices 110 concurrently and consequently selects all of the devices 110 simultaneously.
  • FIG. 2 is a block diagram of an exemplary device configuration comprising a plurality of single port devices 210 a - e configured in a serial daisy chain cascading arrangement having a cascaded clock.
  • Each device 210 comprises a SI, SO, SCLK input and CS# input, as described above.
  • each device 210 comprises a clock output (SCLKO).
  • the SCLKO is an output that outputs the SCLK signal input to the device 210 .
  • the SI and SO of the devices 210 are coupled in a daisy chain cascade arrangement, as described above.
  • the SCLK input and SCLKO of the devices are also coupled in a daisy chain cascade arrangement such that the SCLKO of an earlier device 210 in the daisy chain cascade is coupled to the SCLK input of the next 210 device in the daisy chain cascade.
  • the SCLKO of device 210 a is coupled to the SCLK input of device 210 b.
  • the clock signal may incur a delay as it propagates through the daisy chain cascaded devices.
  • An internal delay compensation circuit such as a delay locked loop (DLL) circuit, may be employed to obviate this delay.
  • DLL delay locked loop
  • FIG. 3 is a block diagram of an exemplary device configuration comprising a plurality of dual port devices 310 a - e configured in a serial daisy chain cascading arrangement.
  • Each device 310 comprises an SI and SO for each port, an SCLK input and CS# input, as described above.
  • the SI for the first port on the device 310 is labeled “SI0” and the SI for the second port is labeled “SI1”.
  • the SO for the first port is labeled “SO0” and for the second port “SO1”.
  • the SI and SO for each port are connected between devices 310 as described above.
  • the SO of port 0 on device 310 a is fed to the SI of port 0 on device 310 b and so on.
  • the SO of port 1 on device 310 a is fed to the SI of port 1 on device 310 b and so on.
  • FIG. 4 is a block diagram of an exemplary device configuration comprising a plurality of single port devices configured in a serial daisy chain arrangement having inputs and outputs for various enable signals.
  • Each device 410 comprises an SI, SO, CS# input, SCLK input, as described above.
  • each device 410 comprises an input port enable (IPE) input, output port enable (OPE) input, input port enable output (IPEQ) and output port enable output (OPEQ).
  • the IPE input is used to input an IPE signal to the device.
  • the IPE signal is used by the device to enable the SI such that when IPE is asserted information may be serially input to the device 410 via the SI.
  • the OPE input is used to input an OPE signal to the device.
  • the OPE signal is used by the device to enable the SO such that when OPE is asserted information may be serially output from the device 410 via the SO.
  • the IPEQ and OPEQ are outputs that output the IPE and OPE signals, respectively, from the device.
  • the CS# input and SCLK inputs are coupled to separate links which distribute the CS# and SCLK signals, respectively, to the devices 410 a - d, as described above.
  • the SI and SO are coupled from one device to the next in a daisy chain cascade arrangement, as described above.
  • the IPEQ and OPEQ of an earlier device 410 in the daisy chain cascade are coupled to the IPE input and OPE input, respectively, of the next device 410 in the daisy chain cascade. This arrangement allows IPE and OPE signals to be transferred from one device 410 to the next in a serial daisy chain cascade fashion.
  • FIG. 5 is a block diagram of an exemplary device configuration comprising dual port devices 510 a - d configured in a serial daisy chain arrangement having inputs and outputs for various enable signals.
  • Each device 510 comprises a CS# input, SCLK input, and an SI, SO, IPE, OPE, IPEQ and OPEQ for each port, as described above.
  • the SI, SO, IPE, OPE, IPEQ and OPEQ for port 1 and port 2 are designated SI 1 , SO 1 , IPE 1 , OPE 1 , IPEQ 1 and OPEQ 1 , and SI 2 , SO 2 , IPE 2 , OPE 2 , IPEQ 2 and OPEQ 2 , respectively.
  • the CS# input for each device 510 is coupled to a single link to simultaneously select all devices 510 , as described above.
  • the SCLK for each device 510 is coupled to a single link which is configured to simultaneously distribute a clock signal to all devices 510 , as described above.
  • the SI, SO, IPE, OPE, IPEQ and OPEQ are coupled between devices such that the SO, IPEQ and OPEQ of an earlier device in the daisy chain cascade are coupled to the SI, IPE and OPE of a later device in the daisy chain cascade.
  • the SO 1 , S 02 , IPEQ 1 , IPEQ 2 , OPEQ 1 and OPEQ 2 of device 510 a are coupled to the SI 1 , SI 2 , IPE 1 , IPE 2 , OPE 1 and OPE 2 , respectively, of device 510 b.
  • the SI, IPE and OPE signals that are input to the SI, IPE and OPE inputs of device 510 a , respectively, are provided to the device 510 a from, e.g., a memory controller (not shown).
  • Device 510 d provides data and control signals back to the memory controller via the SO, IPEQ and OPEQ outputs of device 510 d.
  • FIG. 6 is a block diagram of an exemplary device configuration comprising a plurality of devices 610 a - d having multiple serial inputs (SI 0 to SIn) and multiple serial outputs (SO 0 to SOn) which are configured in a serial daisy chain cascading arrangement.
  • each device 610 has an SCLK input and CS# input, as described above.
  • serial inputs (SI 0 to SIn) and serial outputs (SO 0 to SOn) employed for each device 610 enable information to be input to and output from the device 610 , respectively, in a serial fashion.
  • Each input may be assigned a specific role to input certain types of information (e.g., address, command, data) and/or signals (e.g., enable signals) to the device 610 .
  • each output may be assigned a specific role to output certain types of information and signals from the device 610 .
  • one or more inputs may be assigned a role to enable address information to be input to the device 610 .
  • one or more outputs may be assigned a role to output the address information from the device 610 .
  • the number of serial inputs and serial outputs for each device 610 typically depends on certain factors, such as the number of address lines, command size and data width size. These factors may be influenced by how the device is used in a particular system application. For example, a system application that requires a data store that is used to store a small amount of information may employ a device that has fewer address and data lines, and hence fewer inputs/outputs, than a system application that requires a data store for a large amount of information.
  • FIG. 7 is a timing diagram illustrating timing associated with a read operation performed on a single device, and a plurality of devices configured in a serial daisy chain cascade arrangement.
  • CS# is asserted to select all of the devices.
  • the read operation begins by asserting IPE and clocking information associated with the read operation into the device via SI.
  • this information includes a command (CMD) indicating a read operation is to be performed and a column address (Col. ADD) and row address (Row ADD) that indicate a starting location in memory where the data is read.
  • CMD command
  • Column. ADD column address
  • Row ADD row address
  • the requested data is read from memory and placed in a special internal data buffer contained in the device.
  • the length of tR is typically determined by characteristics of cells that comprise the memory.
  • OPE is asserted to enable the serial transfer of data from the internal data buffer via the SO to the next device in the daisy chain cascade.
  • the data is serially outputted from the internal buffer at the SO output, illustratively, at the rising edge of SCLK.
  • Data output from a device in the daisy chain cascade is delayed as much as one clock cycle to control latency, e.g., associated with propagating control signals, such as IPE and OPE.
  • latency control is performed using a clock synchronized latch.
  • FIG. 8 is a timing diagram illustrating timing associated with information transferred between devices configured in a serial daisy chain cascade arrangement.
  • CS# is asserted to select the devices.
  • Information is input to the first device in the daisy chain cascade by asserting IPE and clocking data into the device on successive rising edges of SCLK.
  • IPE is propagated through the first device to the second device in less than a cycle. This enables information to be clocked from the SO of the first device into the SI of the second device at one cycle after the information was clocked into the first device. This is repeated for successive devices in the daisy chain cascade.
  • the information is inputted to the third device in the serial daisy chain cascade at the third rising edge of SCLK from the latch point of the data at the first device.
  • Control signals IPE and OPE are synchronized with the rising edge of SCLK in order to ensure a proper setup time for these signals at the next device in the daisy chain cascade.
  • FIG. 9 is a block diagram of exemplary serial output control logic 900 for a single ported device.
  • Logic 900 comprises an input buffer for IPE 902 , input buffer for SI (SIP) 904 , input buffer for OPE 906 , input latch control 908 , serial-to-parallel register 910 , output latch control 912 , data register 914 , address register 916 , command interpreter 918 , selector 920 , page buffer 924 , logical OR gate 926 , output buffer 928 , selector 930 and memory 950 .
  • SI SI
  • Input buffer 902 is a conventional low-voltage transistor-to-transistor logic (LVTTL) buffer configured to buffer the state of an IPE signal fed to the device at the input of buffer 902 .
  • the output of buffer 902 is fed to input latch control 908 which latches the state of the IPE signal and provides a latched state of the IPE signal to input buffer 904 and selector 920 .
  • Input buffer 904 is a LVTTL buffer configured to buffer information fed to the device via the SI input.
  • Input buffer 904 is enabled by the output of input latch control 908 . When enabled, information provided to the SI input is fed by the buffer 908 to the serial-to-parallel register 910 and an input of selector 930 .
  • the input buffer 904 is enabled when the latched state of the IPE signal fed from the input latch control 908 indicates that the IPE signal is asserted.
  • Information fed to the serial-to-parallel register 910 is converted by the register 910 from a serial form to a parallel form. Outputs of the serial-to-parallel register 910 are fed to data register 914 , address register 916 and command interpreter 918 .
  • the data register 914 and address register 916 hold data and address information, respectively, that is fed to the device via the SI.
  • the command interpreter 918 is configured to interpret commands input to the device via the SI. These commands are used to further control the operation of the device. For example, a “write memory” command may be used to cause the device to write data contained in the data register 914 to memory 950 contained in the device at an address specified by the address register 916 .
  • the input buffer 906 is a LVTTL buffer configured to buffer an OPE signal that is fed to the OPE input of the device.
  • the output of buffer 906 is transferred to an output latch control 912 which latches the state of the OPE signal.
  • Output latch control outputs the latched OPE signal state to OR gate 926 .
  • OR gate 926 is a conventional logic OR gate whose output is used to enable/disable the output of output buffer 928 .
  • Selector 920 is a conventional 2-to-1 multiplexer that outputs one of two inputs as selected by the signal DAISY_CHAIN. As noted above, one of these inputs is the latched state of IPE from input latch control 908 . The other input is set to a logical low condition.
  • the signal DAISY_CHAIN indicates whether the device is coupled to one or more other devices in a serial daisy chain cascade arrangement. Illustratively, this signal is asserted if the device is coupled to one or more devices in a serial daisy chain cascade arrangement. Asserting the DAISY_CHAIN signal causes the latched state of the IPE signal fed to the selector 920 to be output from the selector 920 . When DAISY_CHAIN is not asserted, the logic low condition input to the selector 920 is output from the selector 920 .
  • Page buffer 924 is a conventional data buffer that is configured to hold information read from memory 950 .
  • Selector 930 is a conventional 2-to-1 multiplexer that outputs one of two inputs as selected by the signal ID_MATCH. One input to selector 930 is fed from the output of the page buffer 924 and the other input is fed from the output of the SI input buffer 904 . The output of selector 930 is fed to output buffer 928 .
  • the signal ID_MATCH indicates whether a particular command sent to the device via SI is addressed to the device. If the command is addressed to the device, ID_MATCH is asserted causing the output from the page buffer 924 to be output from the selector 930 . If ID_MATCH is not asserted, the output from the SI buffer 904 (i.e., the state of the SI signal input to the device) is output from selector 930 .
  • Memory 950 is a conventional memory configured to hold data.
  • Memory 950 may be a random access memory (RAM) comprising cells, such as static RAM (SRAM), dynamic RAM (DRAM) or flash memory cells, that are addressable using an address that is input to the device via the SI.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic RAM
  • flash memory cells that are addressable using an address that is input to the device via the SI.
  • an asserted IPE signal is buffered by input buffer 902 and transferred to input latch control 908 which latches the asserted state of IPE.
  • This latched state is fed to selector 920 and to input buffer 904 to enable this buffer 904 .
  • Command, address and data information input to input buffer 904 are then transferred to the serial-to-parallel register 910 which converts the information from a serial form to a parallel form and feeds the command, address and data information to the command interpreter 918 , address register 916 and data register 914 , respectively.
  • the output of buffer 904 is also fed to selector 930 .
  • OR gate 926 passes the state of IPE to output buffer 928 to enable the output buffer 928 . This, in turn, allows the information input to the SI input to be output from the device at SO.
  • Data from the page buffer 924 are output from the device by asserting OPE and ID_MATCH.
  • the asserted state of OPE is fed to input buffer 906 which in turn feeds the state to output latch control 912 which latches the state.
  • the latched asserted state is fed to a second input of OR gate 926 which outputs a signal to enable output buffer 928 .
  • Asserting ID_MATCH enables the output of page buffer 924 to be present at the output of selector 930 .
  • the output of selector 930 is fed to the enabled output buffer 928 which outputs the data from the device at the device's SO output.
  • output buffer 928 is only enabled by the OPE. This allows the device to be used in non-daisy chain serial cascade configurations.
  • FIG. 10 is a block diagram of exemplary serial output control logic 1000 for a dual ported device.
  • the input and control path logic 1000 comprises an IPE input buffer 1002 , SI input buffer 1004 , OPE input buffer 1006 , input latch control 1008 , serial-to-parallel register 1010 , output latch control 1012 , data register 1014 , address register 1016 , command interpreter 1018 , selector 1020 , page buffer 1024 , logical OR gate 1026 , output buffer 1028 and selector 1030 which are identical to the above described IPE input buffer 902 , SIP input buffer 904 , OPE input buffer 906 , input latch control 908 , serial-to-parallel register 910 , output latch control 912 , data register 914 , address register 916 , command interpreter 918 , selector 920 , page buffer 924 , logical OR gate 926 , output buffer 928 and selector 930 , respectively.
  • FIG. 11 is a detailed block diagram of another embodiment of serial output control logic 1100 that may used with the techniques described herein.
  • Logic 1100 comprises an SI input buffer 1104 , an IPE input buffer 1106 , an OPE input buffer 1108 , an SCLK input buffer 1110 , logical AND gates 1112 and 1114 , latches 1116 , 1118 , 1120 and 1122 , selectors 1124 and 1130 , logical OR gate 1126 and an SO output buffer 1128 .
  • Buffers 1104 , 1106 , 1108 and 1110 are conventional LVTTL buffers configured to buffer SI, IPE, OPE and SCLK signals, respectively, that are inputted to the device.
  • AND gate 1112 is configured to output the information input to the SI to latch 1116 when IPE is asserted.
  • Latch 1116 is configured to latch the information when a clock signal (SCLK) is provided by buffer 1110 .
  • DATA_OUT represents the state of data read from a memory (not shown) contained in the device.
  • AND gate 1114 is configured to output a state of DATA_OUT when OPE is asserted.
  • the output of AND gate 1114 feeds latch 1118 which is configured to latch the state of DATA_OUT when a clock signal is provided by buffer 1110 .
  • Buffer 1106 is configured to buffer the IPE signal fed to the device.
  • the output of buffer 1106 is latched by latch 1120 .
  • buffer 1108 is configured to buffer the OPE signal fed to the device.
  • Latch 1122 is configured to latch the state of OPE as output by buffer 1108 .
  • Selectors 1124 and 1130 are conventional 2-to-1 multiplexers each comprising two inputs. The inputs for selector 1124 are selected for output from the selector 1124 by the above-described ID_MATCH signal. One input is fed with the latched state of DATA_OUT as maintained by latch 1118 . This input is selected for output from selector 1124 when ID_MATCH is asserted. The other input is fed with the latched state of SI as maintained by latch 1116 . This input is selected for output from the selector 1124 when ID_MATCH is not asserted.
  • the inputs for selector 1130 are selected for output from the selector 1130 by the above-described DAISY_CHAIN signal.
  • One input to selector 1130 is fed with the latched state of IPE as maintained by latch 1120 and the other input is tied to a logical zero.
  • the latched state of IPE is selected for output from the selector 1130 when DAISY_CHAIN is asserted. Likewise, when DAISY_CHAIN is not asserted, logical zero is selected for output from the selector 1130 .
  • OR gate 1126 is a conventional logical OR gate configured to provide an enable/disable signal to output buffer 1128 .
  • OR gate 1126 is fed with the output of selector 1130 and the latched state of OPE, as maintained by latch 1122 . Either of these outputs may be used to provide an enable signal to buffer 1128 to enable the buffer's output.
  • Buffer 1128 is a conventional buffer that buffers output signal SO. As noted above, buffer 1128 is enabled/disabled by the output of OR gate 1126 .
  • latch 1116 latch 1116 latches this information illustratively at the first upward transition of SCLK after IPE is asserted.
  • latch 1120 latches the state of IPE at this SCLK transition. Assuming ID_MATCH is not asserted, the output of latch 1116 is fed to buffer 1128 via selector 1124 .
  • the asserted IPE is transferred from buffer 1106 to latch 1120 where it is also illustratively latched by the first upward transition of SCLK.
  • the latched state of IPE is provided at the output of selector 1130 and transferred to OR gate 1126 to provide an enable signal to buffer 1128 .
  • the latched state of SI is then transferred from the device via buffer 1128 as output SO.
  • selector 1130 When DAISY_CHAIN is not asserted, the logical zero input to selector 1130 is selected which outputs a logical zero from selector 1130 . This effectively disables IPE from enabling buffer 1128 .
  • the asserted state of OPE is latched at 1122 and the state of DATA_OUT is latched at latch 1118 .
  • ID_MATCH is asserted
  • the latched state of DATA_OUT is selected by selector 1124 and applied to the input of buffer 1128 .
  • the latched asserted state of OPE from latch 1122 passes through OR gate 1126 to enable buffer 1128 which causes the latched state of DATA_OUT to be output from the device as output SO.
  • FIG. 12 is a block diagram of an exemplary configuration of devices configured in a serial daisy chain cascading arrangement and containing exemplary serial output control logic.
  • the arrangement comprises three devices 1210 configured such that outputs of an earlier device in the daisy chain cascade are coupled to inputs of the next device in the daisy chain cascade, as described above. The transfer of information and data from one device to the next is described with reference to FIG. 13 below.
  • FIG. 13 is an exemplary timing diagram illustrating timing associated with inputs and outputs of devices illustrated in FIG. 12 . Specifically, the diagram illustrates the operation of the serial output control logic 1100 in each device with respect to passing information input at the SI input of each device 1210 to the SO output of the device 1210 .
  • DAISY_CHAIN is asserted.
  • IPE When IPE is asserted at device 1210 a , information at the device's SI input is passed through the device's serial output control logic 1100 , as described above, to the SO output of the device 1210 a . Specifically, data is clocked into device 1210 a illustratively at each rising edge of SCLK after IPE is asserted. The information and state of IPE propagates through the logic 1100 , as described above, and exits the device 1210 a at the device's SO and IPEQ outputs, respectively. These outputs are represented in the diagram as S 1 and P 1 , respectively.
  • These outputs are fed to the SI and IPE inputs of device 1210 b , pass through the serial output control logic 1100 of the device 1210 b , as described above, and are output from device 1210 b at the device's SO and IPEQ outputs one clock cycle later. These outputs are represented in the diagram as S 2 and P 2 , respectively.
  • the SO and IPEQ outputs of device 1210 b are fed to the SI and IPE inputs of device 1210 c , respectively, pass through the serial output control logic 1100 of device 1210 c and are output from the device 1210 c at the device's SO and IPEQ outputs, respectively, one clock cycle later.
  • These outputs are represented in the diagram as S 3 and P 3 , respectively.
  • output_latency is the output latency of the data
  • N is the number of devices in the daisy chain cascade arrangement
  • clock_cycle_time is the clock cycle time at which the clock (e.g., SCLK) operates.
  • clock_cycle_time for the daisy chain cascade illustrated in FIG. 12 is 10 nanoseconds.
  • the total output latency for the data at the SO of device 1210 c is 3*10 nanoseconds or 30 nanoseconds.
  • edges of the clock may act as latch points of input data and change points of output data.
  • the total latency is half the latency for SDR operation.
  • the information input to a device 1210 is output one clock cycle later for SDR operation and one half cycle later for DDR operation. This delay is introduced to accommodate the time it takes to activate the output buffer 1128 .
  • FIG. 14 is a block diagram of logic 1400 that may be used to transfer data contained in memory of a first device 1450 a in a daisy chain cascade to a second device 1450 b in the daisy chain cascade.
  • Logic 1400 comprises a data output register 1402 , an OPE input buffer 1404 , an SCLK input buffer 1406 , an AND gate 1408 , a data output latch 1410 , an OPE state latch 1412 , a selector 1414 , an SO output buffer 1416 and an OPEQ output buffer 1418 .
  • the data output register 1402 is a conventional register configured to store data read from memory contained in the device 1450 .
  • the register 1402 is illustratively a parallel-to-serial data register that loads data in parallel from memory and serially transfers the data to an input of gate 1408 .
  • SCLK provides clocks that are used by register 1402 to transfer the data to gate 1408 .
  • data register 1402 is configured to hold a byte of data comprising bits D 0 through D 7 where D 0 is the least-significant bit (LSB) of the byte and bit D 7 is the most-significant bit (MSB) of the byte.
  • the register 1402 is loaded in parallel with a byte's worth of data from memory. The data is then shifted from the register and serially fed bit-by-bit to the input of gate 1408 starting with the MSB.
  • Buffers 1404 and 1406 are conventional LVTTL buffers used to buffer input signals OPE and SCLK, respectively.
  • the OPE signal is transferred from the output of buffer 1404 (OPEI) to gate 1408 .
  • the SCLK signal is transferred from the output of buffer 1406 to data output register 1402 and, latches 1410 and 1412 to provide a clock to these components.
  • Gate 1408 is a conventional logic AND gate which is configured to transfer the output of the data output register 1402 (DATA_OUT) to latch 1410 when OPE is asserted.
  • the output of gate 1408 is designated as “DBIT”.
  • Latches 1410 and 1412 are conventional latches configured to latch the state of DBIT and the OPE signal, respectively.
  • Selector 1414 is a conventional two input 2-to-1 multiplexer that is controlled by the signal ID_MATCH. One of the data inputs is fed with the latched state of DBIT. This state is output from the selector 1414 when ID_MATCH is asserted.
  • the other input is fed with serial information (SI 0 ) inputted to the device 1450 a via its SI. This information is outputted by the selector 1414 when ID_MATCH is not asserted.
  • SI 0 serial information
  • Buffers 1416 and 1418 are conventional buffers configured to buffer the output of selector 1414 and latch 1406 , respectively.
  • the output of buffer 1416 exits the device 1450 a as SO (SO 0 ) and the output of buffer 1418 exits the device 1450 a as OPEQ (OPEQ 0 ).
  • FIG. 15 is a timing diagram illustrating timing associated with transferring a byte's worth of data from memory contained in device 1450 a to device 1450 b using logic 1400 .
  • OPEI is asserted shortly after OPE is fed to the device 1450 a at input buffer 1404 .
  • OPEI is fed to gate 1408 to enable the data present in D 7 of the data output register 1402 to be latched at latch 1410 at the next rising edge of SCLK.
  • this next rising edge of SCLK causes data to be right-shifted in data output register 1402 such that data in D 6 is shifted into D 7 , data in D 5 is shifted into D 6 and so on.
  • latch 1410 The output of latch 1410 is presented to selector 1414 which, assuming ID_MATCH is asserted, outputs the latched state of the data to buffer 1416 .
  • Buffer 1416 outputs this latched state from the device 1450 a as SO 0 which is fed to the SI input (SI 1 ) of the next device 1450 b of the daisy chain cascade. Meanwhile, also at the rising edge of the first clock after OPE is asserted, the state of OPE is latched at latch 1412 .
  • the output of latch 1412 is transferred to buffer 1418 which outputs the latched state of OPE from the device 1450 a as OPEQ (OPEQ 0 ) which is fed to the OPE input (OPE 1 ) of the next device 1450 b in the daisy chain cascade. This process is repeated for bits D 6 through D 0 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bus Control (AREA)
  • Information Transfer Systems (AREA)
  • Dram (AREA)
  • Memory System (AREA)
  • Read Only Memory (AREA)
  • Small-Scale Networks (AREA)
US11/496,278 2005-09-30 2006-07-31 Daisy chain cascading devices Abandoned US20070076502A1 (en)

Priority Applications (37)

Application Number Priority Date Filing Date Title
US11/496,278 US20070076502A1 (en) 2005-09-30 2006-07-31 Daisy chain cascading devices
ES08006223T ES2395570T3 (es) 2005-09-30 2006-09-29 Dispositivo de Cascada de Cadena Tipo Margarita
KR1020117022548A KR101452564B1 (ko) 2005-09-30 2006-09-29 데이지 체인 캐스케이딩 장치
CN201210074088.2A CN102750975B (zh) 2005-09-30 2006-09-29 菊花链级联设备
EP08006225A EP1981032B1 (en) 2005-09-30 2006-09-29 Daisy chain cascading devices
KR1020087010548A KR101370691B1 (ko) 2005-09-30 2006-09-29 데이지 체인 캐스케이딩 장치
KR1020137020705A KR101506831B1 (ko) 2005-09-30 2006-09-29 데이지 체인 캐스케이딩 장치
TW095136434A TWI445010B (zh) 2005-09-30 2006-09-29 菊鍊串接裝置
KR1020137020706A KR101392605B1 (ko) 2005-09-30 2006-09-29 데이지 체인 캐스케이딩 장치
ES08006225T ES2405952T3 (es) 2005-09-30 2006-09-29 Dispositivo en cascada de cadena de margarita
TW103113209A TWI564906B (zh) 2005-09-30 2006-09-29 菊鍊串接裝置
EP08006224.3A EP1981031B1 (en) 2005-09-30 2006-09-29 Daisy chain cascading devices
CN200680036482XA CN101278352B (zh) 2005-09-30 2006-09-29 菊花链级联设备和方法
EP08006223A EP1981030B1 (en) 2005-09-30 2006-09-29 Daisy chain cascading devices
CA002627663A CA2627663A1 (en) 2005-09-30 2006-09-29 Daisy chain cascading devices
JP2008532551A JP2009510568A (ja) 2005-09-30 2006-09-29 デイジーチェーンカスケードデバイス
EP06790771.7A EP1929480B1 (en) 2005-09-30 2006-09-29 Daisy chain cascading devices
KR1020147013416A KR101547076B1 (ko) 2005-09-30 2006-09-29 데이지 체인 캐스케이딩 장치
PCT/CA2006/001607 WO2007036048A1 (en) 2005-09-30 2006-09-29 Daisy chain cascading devices
US11/594,564 US9240227B2 (en) 2005-09-30 2006-11-08 Daisy chain cascading devices
US11/639,375 US20070165457A1 (en) 2005-09-30 2006-12-14 Nonvolatile memory system
TW096108972A TWI448901B (zh) 2006-03-28 2007-03-15 非揮發性記憶體系統及控制非揮發性記憶體系統之方法
TW103119019A TW201433921A (zh) 2006-03-28 2007-03-15 非揮發性記憶體系統及控制非揮發性記憶體系統之方法
KR1020137012902A KR101365827B1 (ko) 2006-03-28 2007-03-26 비휘발성 메모리의 데이지 체인 배열
JP2009501797A JP5189072B2 (ja) 2006-03-28 2007-03-26 不揮発性メモリのデイジーチェイン配置
EP07719422A EP1999601A4 (en) 2006-03-28 2007-03-26 SERIES MOUNTING NON-VOLATILE MEMOIRES
CA002644593A CA2644593A1 (en) 2006-03-28 2007-03-26 A daisy chain arrangement of non-volatile memories
CN201310261739.3A CN103714841A (zh) 2006-03-28 2007-03-26 非易失性存储器的菊花链布置
KR1020087020432A KR101314893B1 (ko) 2006-03-28 2007-03-26 비휘발성 메모리의 데이지 체인 배열
CN2007800106485A CN101410814B (zh) 2006-03-28 2007-03-26 非易失性存储器的菊花链布置
EP11003539A EP2348510A1 (en) 2006-03-28 2007-03-26 A daisy chain arrangement of non-volatile memories
PCT/CA2007/000488 WO2007109888A1 (en) 2006-03-28 2007-03-26 A daisy chain arrangement of non-volatile memories
EP08015337A EP2031516A3 (en) 2006-03-28 2008-09-29 A daisy chain arrangement of non-volatile memories
JP2009223077A JP5179450B2 (ja) 2005-09-30 2009-09-28 デイジーチェーンカスケードデバイス
US12/578,115 US20100030951A1 (en) 2005-09-30 2009-10-13 Nonvolatile memory system
JP2012198200A JP2012238341A (ja) 2005-09-30 2012-09-10 デイジーチェーンカスケードデバイス
JP2012210614A JP5575856B2 (ja) 2006-03-28 2012-09-25 不揮発性メモリのデイジーチェイン配置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72236805P 2005-09-30 2005-09-30
US11/324,023 US7652922B2 (en) 2005-09-30 2005-12-30 Multiple independent serial link memory
US78771006P 2006-03-28 2006-03-28
US11/496,278 US20070076502A1 (en) 2005-09-30 2006-07-31 Daisy chain cascading devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/324,023 Continuation-In-Part US7652922B2 (en) 2005-09-30 2005-12-30 Multiple independent serial link memory

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/594,564 Continuation-In-Part US9240227B2 (en) 2005-09-30 2006-11-08 Daisy chain cascading devices
US11/639,375 Continuation-In-Part US20070165457A1 (en) 2005-09-30 2006-12-14 Nonvolatile memory system

Publications (1)

Publication Number Publication Date
US20070076502A1 true US20070076502A1 (en) 2007-04-05

Family

ID=37899330

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/496,278 Abandoned US20070076502A1 (en) 2005-09-30 2006-07-31 Daisy chain cascading devices
US11/594,564 Active 2026-01-06 US9240227B2 (en) 2005-09-30 2006-11-08 Daisy chain cascading devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/594,564 Active 2026-01-06 US9240227B2 (en) 2005-09-30 2006-11-08 Daisy chain cascading devices

Country Status (9)

Country Link
US (2) US20070076502A1 (ko)
EP (4) EP1981032B1 (ko)
JP (3) JP2009510568A (ko)
KR (5) KR101392605B1 (ko)
CN (1) CN102750975B (ko)
CA (1) CA2627663A1 (ko)
ES (2) ES2395570T3 (ko)
TW (2) TWI564906B (ko)
WO (1) WO2007036048A1 (ko)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080126816A1 (en) * 2006-11-27 2008-05-29 Edoardo Prete Apparatus and method for switching an apparatus to a power saving mode
US20080168296A1 (en) * 2006-12-06 2008-07-10 Hakjune Oh Apparatus and method for communicating with semiconductor devices of a serial interconnection
US20080226004A1 (en) * 2007-03-12 2008-09-18 Hakjune Oh Methods and apparatus for clock signal synchronization in a configuration of series-connected semiconductor devices
US20090039927A1 (en) * 2007-02-16 2009-02-12 Mosaid Technologies Incorporated Clock mode determination in a memory system
EP2031516A2 (en) 2006-03-28 2009-03-04 MOSAID Technologies Inc. A daisy chain arrangement of non-volatile memories
US20090073768A1 (en) * 2005-09-30 2009-03-19 Mosaid Technologies Incorporated Memory with output control
US20090076496A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies Llc. Prostate cancer ablation
US20090103378A1 (en) * 2007-10-17 2009-04-23 Mosaid Technologies Incorporated Single-strobe operation of memory devices
US20090129184A1 (en) * 2007-11-15 2009-05-21 Mosaid Technologies Incorporated Methods and systems for failure isolation and data recovery in a configuration of series-connected semiconductor devices
US20090154629A1 (en) * 2007-12-14 2009-06-18 Mosaid Technologies Incorporated Clock reproducing and timing method in a system having a plurality of devices
US20090154284A1 (en) * 2007-12-12 2009-06-18 Hakjune Oh Semiconductor memory device suitable for interconnection in a ring topology
US20090154285A1 (en) * 2007-12-14 2009-06-18 Mosaid Technologies Incorporated Memory controller with flexible data alignment to clock
US20090164830A1 (en) * 2007-12-21 2009-06-25 Hakjune Oh Non-volatile semiconductor memory device with power saving feature
US20090259873A1 (en) * 2007-12-21 2009-10-15 Mosaid Technologies Incorporated Non-volatile semiconductor memory device with power saving feature
US20100011174A1 (en) * 2008-07-08 2010-01-14 Mosaid Technologies Incorporated Mixed data rates in memory devices and systems
US20100091538A1 (en) * 2008-10-14 2010-04-15 Mosaid Technologies Incorporated Bridge device architecture for connecting discrete memory devices to a system
US20100115172A1 (en) * 2008-11-04 2010-05-06 Mosaid Technologies Incorporated Bridge device having a virtual page buffer
US20100115214A1 (en) * 2008-11-04 2010-05-06 Mosaid Technologies Incorporated Bridging device having a configurable virtual page size
US20100162053A1 (en) * 2008-12-23 2010-06-24 Mosaid Technologies Incorporated Error detection method and a system including one or more memory devices
US20100327923A1 (en) * 2009-06-29 2010-12-30 Mosaid Technologies Incorporated Bridging device having a frequency configurable clock domain
US20110016279A1 (en) * 2009-07-16 2011-01-20 Mosaid Technologies Incorporated Simultaneous read and write data transfer
US7904639B2 (en) 2006-08-22 2011-03-08 Mosaid Technologies Incorporated Modular command structure for memory and memory system
US7957173B2 (en) 2008-10-14 2011-06-07 Mosaid Technologies Incorporated Composite memory having a bridging device for connecting discrete memory devices to a system
US20110235426A1 (en) * 2010-03-23 2011-09-29 Mosaid Technologies Incorporated Flash memory system having a plurality of serially connected devices
WO2011137541A1 (en) 2010-05-07 2011-11-10 Mosaid Technologies Incorporated Method and apparatus for concurrently reading a plurality of memory devices using a single buffer
US8122202B2 (en) 2007-02-16 2012-02-21 Peter Gillingham Reduced pin count interface
US20120311297A1 (en) * 2011-06-03 2012-12-06 June Lee Logical unit address assignment
US20130307611A1 (en) * 2012-05-21 2013-11-21 Won-kyung Kang Multi-chip package and operating method thereof
US8594110B2 (en) 2008-01-11 2013-11-26 Mosaid Technologies Incorporated Ring-of-clusters network topologies
US20140089548A1 (en) * 2012-09-26 2014-03-27 Ronald Norman Prusia Systems, Methods, and Articles of Manufacture To Stream Data
US8700845B1 (en) * 2009-08-12 2014-04-15 Micron Technology, Inc. Daisy chaining nonvolatile memories
US20140132318A1 (en) * 2012-11-09 2014-05-15 Mosaid Technologies Incorporated Pll locking control in daisy chained memory system
US8812768B2 (en) 2007-02-16 2014-08-19 Conversant Intellectual Property Management Inc. System having one or more memory devices
US8825967B2 (en) 2011-12-08 2014-09-02 Conversant Intellectual Property Management Inc. Independent write and read control in serially-connected devices
US8843694B2 (en) 2007-02-22 2014-09-23 Conversant Intellectual Property Management Inc. System and method of page buffer operation for memory devices
US8843692B2 (en) 2010-04-27 2014-09-23 Conversant Intellectual Property Management Inc. System of interconnected nonvolatile memories having automatic status packet
US8856482B2 (en) 2011-03-11 2014-10-07 Micron Technology, Inc. Systems, devices, memory controllers, and methods for memory initialization
US8880780B2 (en) 2007-02-22 2014-11-04 Conversant Intellectual Property Management Incorporated Apparatus and method for using a page buffer of a memory device as a temporary cache
US20140359200A1 (en) * 2013-05-29 2014-12-04 Sandisk Technologies Inc. High Performance System Topology for NAND Memory Systems
US8924661B1 (en) * 2009-01-18 2014-12-30 Apple Inc. Memory system including a controller and processors associated with memory devices
US8966124B1 (en) * 2012-09-26 2015-02-24 The United States Of America As Represented By The Secretary Of The Navy Systems, methods, and articles of manufacture to stream data
US20150178197A1 (en) * 2013-12-23 2015-06-25 Sandisk Technologies Inc. Addressing Auto address Assignment and Auto-Routing in NAND Memory Network
US9230654B2 (en) 2005-09-30 2016-01-05 Conversant Intellectual Property Management Inc. Method and system for accessing a flash memory device
US9588883B2 (en) 2011-09-23 2017-03-07 Conversant Intellectual Property Management Inc. Flash memory system
US20170177533A1 (en) * 2015-12-21 2017-06-22 Viewmove Technologies, Inc. Communication system with train bus architecture
US20170213581A1 (en) * 2016-01-27 2017-07-27 Electronics And Telecommunications Research Institute Processing unit, in-memory data processing apparatus and method
US9728526B2 (en) 2013-05-29 2017-08-08 Sandisk Technologies Llc Packaging of high performance system topology for NAND memory systems
US10318447B2 (en) * 2013-09-11 2019-06-11 Nxp Usa, Inc. Universal SPI (Serial Peripheral Interface)
US20210064564A1 (en) * 2019-08-29 2021-03-04 Microchip Technology Incorporated Daisy Chain Streaming Mode
US11948629B2 (en) 2005-09-30 2024-04-02 Mosaid Technologies Incorporated Non-volatile memory device with concurrent bank operations

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057049A1 (ja) 2004-11-26 2006-06-01 Kabushiki Kaisha Toshiba カードおよびホスト機器
US8407395B2 (en) 2006-08-22 2013-03-26 Mosaid Technologies Incorporated Scalable memory system
US8433874B2 (en) * 2006-12-06 2013-04-30 Mosaid Technologies Incorporated Address assignment and type recognition of serially interconnected memory devices of mixed type
US7925854B2 (en) * 2006-12-06 2011-04-12 Mosaid Technologies Incorporated System and method of operating memory devices of mixed type
US7554855B2 (en) * 2006-12-20 2009-06-30 Mosaid Technologies Incorporated Hybrid solid-state memory system having volatile and non-volatile memory
US7650459B2 (en) * 2006-12-21 2010-01-19 Intel Corporation High speed interface for non-volatile memory
CN101755220A (zh) 2007-07-17 2010-06-23 爱德万测试株式会社 测试装置、电路装置以及程序
US8399973B2 (en) * 2007-12-20 2013-03-19 Mosaid Technologies Incorporated Data storage and stackable configurations
US8823209B2 (en) * 2008-06-20 2014-09-02 Fujitsu Semiconductor Limited Control of semiconductor devices to selectively supply power to power domains in a hierarchical structure
US8560735B2 (en) 2008-08-15 2013-10-15 Micron Technology, Inc. Chained bus method and device
US8181056B2 (en) * 2008-09-30 2012-05-15 Mosaid Technologies Incorporated Serial-connected memory system with output delay adjustment
US8161313B2 (en) * 2008-09-30 2012-04-17 Mosaid Technologies Incorporated Serial-connected memory system with duty cycle correction
JP2012504263A (ja) 2008-09-30 2012-02-16 モサイド・テクノロジーズ・インコーポレーテッド 出力遅延調整によるシリアル接続のメモリシステム
US8472199B2 (en) 2008-11-13 2013-06-25 Mosaid Technologies Incorporated System including a plurality of encapsulated semiconductor chips
JP5150591B2 (ja) 2009-09-24 2013-02-20 株式会社東芝 半導体装置及びホスト機器
TWI426446B (zh) 2009-12-31 2014-02-11 Ite Tech Inc 資料處理模組、堆疊式資料傳輸系統、發光模組、顯示系統及資料處理方法
US8966208B2 (en) * 2010-02-25 2015-02-24 Conversant Ip Management Inc. Semiconductor memory device with plural memory die and controller die
US9009423B2 (en) * 2010-04-26 2015-04-14 Novachips Canada Inc. Serially connected memory having subdivided data interface
US8463959B2 (en) * 2010-05-31 2013-06-11 Mosaid Technologies Incorporated High-speed interface for daisy-chained devices
KR20110132055A (ko) * 2010-06-01 2011-12-07 삼성전자주식회사 Id 설정 시스템, id 설정 방법 및 이를 이용한 디스플레이 장치
CA2822811A1 (en) * 2010-12-22 2012-06-28 Converteam Technology Ltd. Communications architecture for providing data communication, synchronization and fault detection between isolated modules
US9239806B2 (en) * 2011-03-11 2016-01-19 Micron Technology, Inc. Systems, devices, memory controllers, and methods for controlling memory
US8775689B2 (en) 2011-05-02 2014-07-08 Deere & Company Electronic modules with automatic configuration
CN102662383B (zh) * 2012-05-29 2014-11-19 张二浩 用于控制链条系统的控制链条实现方法
US9471484B2 (en) 2012-09-19 2016-10-18 Novachips Canada Inc. Flash memory controller having dual mode pin-out
US9501437B2 (en) * 2012-11-15 2016-11-22 Empire Technology Development Llc Scalable storage system having multiple storage channels
US9477616B2 (en) * 2013-08-07 2016-10-25 Micron Technology, Inc. Devices, systems, and methods of reducing chip select
US20150104673A1 (en) * 2013-10-10 2015-04-16 Datang Nxp Semiconductors Co., Ltd. Daisy-chain communication bus and protocol
JP6290761B2 (ja) * 2014-09-25 2018-03-07 Necプラットフォームズ株式会社 データ転送制御システム、データ転送制御方法、及び、データ転送制御プログラム
US10560989B2 (en) 2014-09-28 2020-02-11 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
KR102206171B1 (ko) * 2014-10-27 2021-01-22 엘지전자 주식회사 데이지 체인 형태의 멀티비전 및 그의 id할당 방법
US11754232B2 (en) 2015-03-10 2023-09-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED lamp and power source module thereof related applications
TWI620074B (zh) * 2016-07-12 2018-04-01 緯創資通股份有限公司 伺服器系統及儲存單元的控制方法
KR102656189B1 (ko) 2016-07-19 2024-04-11 삼성전자주식회사 직렬로 연결되는 스토리지 장치들 중 직접 연결되지 않은 스토리지 장치를 제어하도록 구성되는 전자 장치, 그것에 포함되는 스토리지 장치, 그것을 포함하는 컴퓨팅 시스템, 및 스토리지 장치의 컨트롤러의 동작 방법
US10715722B2 (en) 2016-07-19 2020-07-14 Samsung Electronics Co., Ltd. Display device, method of controlling thereof and display system
KR20180033368A (ko) 2016-09-23 2018-04-03 삼성전자주식회사 케스-케이드 연결 구조로 레퍼런스 클록을 전달하는 스토리지 장치들을 포함하는 전자 장치
US10510382B2 (en) 2016-11-11 2019-12-17 Qualcomm Incorporated Hardware automated link control of daisy-chained storage device
WO2018112942A1 (zh) * 2016-12-23 2018-06-28 深圳前海达闼云端智能科技有限公司 设备认证方法、装置、电子设备及从设备
KR102615775B1 (ko) * 2017-01-31 2023-12-20 에스케이하이닉스 주식회사 반도체 장치
CN112825236A (zh) 2019-11-20 2021-05-21 联咏科技股份有限公司 显示驱动系统以及用于显示驱动系统的方法
CN112087359B (zh) * 2020-09-28 2022-03-18 北京东土科技股份有限公司 一种串行通信系统
KR102401812B1 (ko) * 2020-12-21 2022-05-25 넥스트랩주식회사 로봇제어를 위한 고속 시리얼 인터페이스 장치 및 그 인터페이스 방법
CN117118777B (zh) * 2023-10-23 2024-01-02 合肥为国半导体有限公司 一种通信系统及方法

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249270A (en) * 1965-05-03 1966-05-03 Mister Hanger Inc Garment support means
US4174536A (en) * 1977-01-21 1979-11-13 Massachusetts Institute Of Technology Digital communications controller with firmware control
US4683555A (en) * 1985-01-22 1987-07-28 Texas Instruments Incorporated Serial accessed semiconductor memory with reconfigureable shift registers
US4733376A (en) * 1984-10-17 1988-03-22 Fujitsu Limited Semiconductor memory device having serial data input circuit and serial data output circuit
US5126808A (en) * 1989-10-23 1992-06-30 Advanced Micro Devices, Inc. Flash EEPROM array with paged erase architecture
US5136292A (en) * 1989-03-15 1992-08-04 Oki Electric Industry Co., Ltd. Serial data receiving circuit for serial to parallel conversion
US5175819A (en) * 1990-03-28 1992-12-29 Integrated Device Technology, Inc. Cascadable parallel to serial converter using tap shift registers and data shift registers while receiving input data from FIFO buffer
US5243703A (en) * 1990-04-18 1993-09-07 Rambus, Inc. Apparatus for synchronously generating clock signals in a data processing system
US5280539A (en) * 1992-01-15 1994-01-18 Samsung Electronics Co., Ltd. Synchronous circuit for serial input signal
US5319598A (en) * 1990-12-10 1994-06-07 Hughes Aircraft Company Nonvolatile serially programmable devices
US5336951A (en) * 1991-05-03 1994-08-09 Lattice Semiconductor Corporation Structure and method for multiplexing pins for in-system programming
US5365484A (en) * 1993-08-23 1994-11-15 Advanced Micro Devices, Inc. Independent array grounds for flash EEPROM array with paged erase architechture
US5404460A (en) * 1994-01-28 1995-04-04 Vlsi Technology, Inc. Method for configuring multiple identical serial I/O devices to unique addresses through a serial bus
US5440694A (en) * 1992-03-26 1995-08-08 Nec Corporation Interface circuit for allowing receiving serial data input after receiving serial input suspension signal
US5452259A (en) * 1993-11-15 1995-09-19 Micron Technology Inc. Multiport memory with pipelined serial input
US5473566A (en) * 1994-09-12 1995-12-05 Cirrus Logic, Inc. Memory architecture and devices, systems and methods utilizing the same
US5473577A (en) * 1993-03-20 1995-12-05 Hitachi, Ltd. Serial memory
US5473563A (en) * 1993-01-13 1995-12-05 Samsung Electronics Co., Ltd. Nonvolatile semiconductor memory
US5596724A (en) * 1994-02-04 1997-01-21 Advanced Micro Devices Input/output data port with a parallel and serial interface
US5602780A (en) * 1993-10-20 1997-02-11 Texas Instruments Incorporated Serial to parallel and parallel to serial architecture for a RAM based FIFO memory
US5636342A (en) * 1995-02-17 1997-06-03 Dell Usa, L.P. Systems and method for assigning unique addresses to agents on a system management bus
US5671178A (en) * 1995-02-04 1997-09-23 Samsung Electronics Co., Ltd. Erase verifying circuit for a nonvolatile semiconductor memory with column redundancy
US5721840A (en) * 1993-09-20 1998-02-24 Olympus Optical Co., Ltd. Information processing apparatus incorporating automatic SCSI ID generation
US5740379A (en) * 1994-08-19 1998-04-14 Siemens Aktiengesellschaft Method for generating unique addresses for electrical devices from input bit patterns being verifiable for admissibility
US5761146A (en) * 1995-12-28 1998-06-02 Samsung Electronics Co., Ltd. Data in/out channel control circuit of semiconductor memory device having multi-bank structure
US5771199A (en) * 1995-12-29 1998-06-23 Samsung Electronics Co., Ltd. Integrated circuit memory devices having improved dual memory bank control capability and methods of operating same
US5802006A (en) * 1996-02-21 1998-09-01 Nec Corporation Semiconductor memory of multiple-bank structure having block write function
US5818785A (en) * 1995-12-20 1998-10-06 Kabushiki Kaisha Toshiba Semiconductor memory device having a plurality of banks
US5828899A (en) * 1996-01-04 1998-10-27 Compaq Computer Corporation System for peripheral devices recursively generating unique addresses based on the number of devices connected dependent upon the relative position to the port
US5835935A (en) * 1995-09-13 1998-11-10 Lexar Media, Inc. Method of and architecture for controlling system data with automatic wear leveling in a semiconductor non-volatile mass storage memory
US5859809A (en) * 1996-12-31 1999-01-12 Hyundai Electronics Industries Co., Ltd. Semiconductor device of daisy chain structure having independent refresh apparatus
US5872994A (en) * 1995-11-10 1999-02-16 Nec Corporation Flash memory incorporating microcomputer having on-board writing function
US5937425A (en) * 1997-10-16 1999-08-10 M-Systems Flash Disk Pioneers Ltd. Flash file system optimized for page-mode flash technologies
US5938750A (en) * 1996-06-28 1999-08-17 Intel Corporation Method and apparatus for a memory card bus design
US5941974A (en) * 1996-11-29 1999-08-24 Motorola, Inc. Serial interface with register selection which uses clock counting, chip select pulsing, and no address bits
US5959930A (en) * 1997-08-22 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Multi-bank synchronous semiconductor memory device
US5964857A (en) * 1997-05-30 1999-10-12 Quality Semiconductor, Inc. Priority encoder for a content addressable memory system
US5995417A (en) * 1998-10-20 1999-11-30 Advanced Micro Devices, Inc. Scheme for page erase and erase verify in a non-volatile memory array
US6002638A (en) * 1998-01-20 1999-12-14 Microchip Technology Incorporated Memory device having a switchable clock output and method therefor
US6091660A (en) * 1997-10-02 2000-07-18 Hitachi, Ltd. Semiconductor integrated circuit device
US6102963A (en) * 1997-12-29 2000-08-15 Vantis Corporation Electrically erasable and reprogrammable, nonvolatile integrated storage device with in-system programming and verification (ISPAV) capabilities for supporting in-system reconfiguring of PLD's
US6107658A (en) * 1997-02-27 2000-08-22 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US6144576A (en) * 1998-08-19 2000-11-07 Intel Corporation Method and apparatus for implementing a serial memory architecture
US6148364A (en) * 1997-12-30 2000-11-14 Netlogic Microsystems, Inc. Method and apparatus for cascading content addressable memory devices
US6178135B1 (en) * 1998-12-28 2001-01-23 Samsung Electronics Co., Ltd. Multi-bank memory devices having bank selection switches therein that enable efficient sense amplifier utilization
US6304921B1 (en) * 1998-12-07 2001-10-16 Motorola Inc. System for serial peripheral interface with embedded addressing circuit for providing portion of an address for peripheral devices
US6317350B1 (en) * 2000-06-16 2001-11-13 Netlogic Microsystems, Inc. Hierarchical depth cascading of content addressable memory devices
US6317352B1 (en) * 2000-09-18 2001-11-13 Intel Corporation Apparatus for implementing a buffered daisy chain connection between a memory controller and memory modules
US6438064B2 (en) * 1998-10-30 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device capable of efficient memory cell select operation with reduced element count
US6442098B1 (en) * 2000-02-08 2002-08-27 Alliance Semiconductor High performance multi-bank compact synchronous DRAM architecture
US20020188781A1 (en) * 2001-06-06 2002-12-12 Daniel Schoch Apparatus and methods for initializing integrated circuit addresses
US6535948B1 (en) * 2000-05-31 2003-03-18 Agere Systems Inc. Serial interface unit
US6584303B1 (en) * 1997-08-20 2003-06-24 Nokia Corporation Method and apparatus for automatically identifying a function module in a modular transceiver system
US20030123473A1 (en) * 2001-12-28 2003-07-03 Masahito Satoh Variable time division multiplex transmission system
US6594183B1 (en) * 1991-09-13 2003-07-15 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6601199B1 (en) * 1998-10-28 2003-07-29 Kabushiki Kaisha Toshiba Memory-embedded LSI
US6611466B2 (en) * 2001-07-02 2003-08-26 Samsung Electronics Co., Ltd. Semiconductor memory device capable of adjusting the number of banks and method for adjusting the number of banks
US6658582B1 (en) * 1997-08-26 2003-12-02 Samsung Electronics Co., Ltd. Serial interface circuits having improved data transmitting and receiving capability
US20040001380A1 (en) * 2002-06-28 2004-01-01 Oswald Becca Method and apparatus for interconnecting content addressable memory devices
US6680904B1 (en) * 1999-12-27 2004-01-20 Orckit Communications Ltd. Bi-directional chaining of network access ports
US20040019736A1 (en) * 2002-07-23 2004-01-29 Dug-Soo Kim Portable flash memory with extended memory capacity
US20040024960A1 (en) * 2002-07-31 2004-02-05 Lawrence King CAM diamond cascade architecture
US20040039854A1 (en) * 1998-03-02 2004-02-26 Lexar Media, Inc. Flash memory card with enhanced operating mode detection and user-friendly interfacing system
US6715044B2 (en) * 1991-07-26 2004-03-30 Sandisk Corporation Device and method for controlling solid-state memory system
US6732221B2 (en) * 2001-06-01 2004-05-04 M-Systems Flash Disk Pioneers Ltd Wear leveling of static areas in flash memory
US6754807B1 (en) * 2000-08-31 2004-06-22 Stmicroelectronics, Inc. System and method for managing vertical dependencies in a digital signal processor
US6763426B1 (en) * 2001-12-27 2004-07-13 Cypress Semiconductor Corporation Cascadable content addressable memory (CAM) device and architecture
US20040148482A1 (en) * 2003-01-13 2004-07-29 Grundy Kevin P. Memory chain
US6799235B2 (en) * 2002-01-02 2004-09-28 Intel Corporation Daisy chain latency reduction
US20040199721A1 (en) * 2003-03-12 2004-10-07 Power Data Communication Co., Ltd. Multi-transmission interface memory card
US6807103B2 (en) * 2000-11-15 2004-10-19 Stmicroelectronics S.A. Page-erasable flash memory
US6816933B1 (en) * 2000-05-17 2004-11-09 Silicon Laboratories, Inc. Serial device daisy chaining method and apparatus
US20040230738A1 (en) * 2003-01-09 2004-11-18 Samsung Electronics Co., Ltd. Apparatus and method for controlling execute-in-place (XIP) in serial flash memory, and flash memory chip using the same
US6853573B2 (en) * 2002-09-02 2005-02-08 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory device for connecting to serial advanced technology attachment cable
US6853557B1 (en) * 2000-09-20 2005-02-08 Rambus, Inc. Multi-channel memory architecture
US20050086413A1 (en) * 2003-10-15 2005-04-21 Super Talent Electronics Inc. Capacity Expansion of Flash Memory Device with a Daisy-Chainable Structure and an Integrated Hub
US20050108469A1 (en) * 2003-11-13 2005-05-19 Intel Corporation Buffered memory module with implicit to explicit memory command expansion
US20050120163A1 (en) * 2003-12-02 2005-06-02 Super Talent Electronics Inc. Serial Interface to Flash-Memory Chip Using PCI-Express-Like Packets and Packed Data for Partial-Page Writes
US20050160218A1 (en) * 2004-01-20 2005-07-21 Sun-Teck See Highly integrated mass storage device with an intelligent flash controller
US6928501B2 (en) * 2001-10-15 2005-08-09 Silicon Laboratories, Inc. Serial device daisy chaining method and apparatus
US6950325B1 (en) * 2004-10-07 2005-09-27 Winbond Electronics Corporation Cascade-connected ROM
US20050213421A1 (en) * 2002-11-28 2005-09-29 Salvatore Polizzi Non-volatile memory device architecture, for instance a flash kind, having a serial communication interface
US6967874B2 (en) * 2003-06-30 2005-11-22 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and electric device with the same
US20050278495A1 (en) * 2004-06-11 2005-12-15 Kee-Hoon Lee Hub, memory module, memory system and methods for reading and writing to the same
US20060020740A1 (en) * 2004-07-22 2006-01-26 International Business Machines Corporation Multi-node architecture with daisy chain communication link configurable to operate in unidirectional and bidirectional modes
US20060041730A1 (en) * 2004-08-19 2006-02-23 Larson Douglas A Memory command delay balancing in a daisy-chained memory topology
US20060050594A1 (en) * 2004-09-03 2006-03-09 Park Jin S Flash memory device and method of erasing flash memory cell thereof
US20060285424A1 (en) * 2005-06-15 2006-12-21 Peter Gregorius High-speed interface circuit for semiconductor memory chips and memory system including semiconductor memory chips
US20070005831A1 (en) * 2005-06-30 2007-01-04 Peter Gregorius Semiconductor memory system
US20070083701A1 (en) * 2005-10-12 2007-04-12 Sun Microsystems, Inc. Power throttling in a memory system
US20070153576A1 (en) * 2005-09-30 2007-07-05 Hakjune Oh Memory with output control
US7284089B2 (en) * 2003-10-01 2007-10-16 Yqa Now Limited Data storage device
US7334070B2 (en) * 2004-10-29 2008-02-19 International Business Machines Corporation Multi-channel memory architecture for daisy chained arrangements of nodes with bridging between memory channels
US7433258B2 (en) * 2003-10-10 2008-10-07 Datasecure Llc. Posted precharge and multiple open-page RAM architecture
US20080279003A1 (en) * 2005-09-30 2008-11-13 Mosaid Technologies Incorporated Multiple independent serial link memory

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815935U (ja) 1981-07-24 1983-01-31 電気興業株式会社 支線絶縁碍子
JPS5949800U (ja) 1982-09-27 1984-04-02 株式会社明電舎 エアリフトポンプ
US4617566A (en) 1983-12-15 1986-10-14 Teleplex Corporation Addressable-port, daisy chain telemetry system with self-test capability
JPS6148060U (ja) 1984-09-04 1986-03-31 三菱重工業株式会社 ダスト払落装置
DE3588156T2 (de) * 1985-01-22 1998-01-08 Texas Instruments Inc Halbleiterspeicher mit Serienzugriff
JPS62152050A (ja) 1985-12-26 1987-07-07 Nec Corp 半導体メモリ
JPS63113624A (ja) 1986-10-30 1988-05-18 Tokyo Electric Co Ltd 電子秤のプリンタインタ−フエ−ス
JPH0176143U (ko) 1987-11-05 1989-05-23
JP2764908B2 (ja) 1988-02-04 1998-06-11 日本電気株式会社 カスケード・バッファ回路
JPH02136945U (ko) 1989-04-19 1990-11-15
JPH02282989A (ja) 1989-04-25 1990-11-20 Sony Corp メモリ制御回路
JPH03113555U (ko) 1990-03-06 1991-11-20
US5204669A (en) 1990-08-30 1993-04-20 Datacard Corporation Automatic station identification where function modules automatically initialize
US5132635A (en) 1991-03-05 1992-07-21 Ast Research, Inc. Serial testing of removable circuit boards on a backplane bus
US5249270A (en) * 1991-03-29 1993-09-28 Echelon Corporation Development system protocol
US5663901A (en) 1991-04-11 1997-09-02 Sandisk Corporation Computer memory cards using flash EEPROM integrated circuit chips and memory-controller systems
JPH0776942B2 (ja) 1991-04-22 1995-08-16 インターナショナル・ビジネス・マシーンズ・コーポレイション マルチプロセッサ・システムおよびそのデータ伝送装置
JPH05108547A (ja) 1991-10-14 1993-04-30 Fujitsu Ltd ダイレクトメモリアクセス方式
JPH05233524A (ja) 1992-02-19 1993-09-10 Casio Comput Co Ltd バス制御装置
JPH05241946A (ja) 1992-02-27 1993-09-21 Nec Corp Rom内蔵ランダムアクセスメモリ装置
US5592415A (en) 1992-07-06 1997-01-07 Hitachi, Ltd. Non-volatile semiconductor memory
US5519847A (en) 1993-06-30 1996-05-21 Intel Corporation Method of pipelining sequential writes in a flash memory
US5617367A (en) * 1993-09-01 1997-04-01 Micron Technology, Inc. Controlling synchronous serial access to a multiport memory
US5475854A (en) 1994-01-28 1995-12-12 Vlsi Technology, Inc. Serial bus I/O system and method for serializing interrupt requests and DMA requests in a computer system
JPH07254292A (ja) 1994-03-15 1995-10-03 Mitsubishi Electric Corp 不揮発性メモリおよびこの不揮発性メモリを用いたマイクロコンピュータ
JPH07319755A (ja) 1994-05-25 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> 複数ポートメモリ
US5563915A (en) 1994-11-30 1996-10-08 Thomson Consumer Electronics Inc. Data deinterleaver in a digital television signal decoding system
JPH08221319A (ja) 1995-02-13 1996-08-30 Hitachi Ltd 半導体記憶装置
US5878240A (en) 1995-05-11 1999-03-02 Lucent Technologies, Inc. System and method for providing high speed memory access in a multiprocessor, multimemory environment
US5729683A (en) 1995-05-18 1998-03-17 Compaq Computer Corporation Programming memory devices through the parallel port of a computer system
US5594694A (en) 1995-07-28 1997-01-14 Micron Quantum Devices, Inc. Memory circuit with switch for selectively connecting an input/output pad directly to a nonvolatile memory cell
US6728851B1 (en) 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
JP2817672B2 (ja) 1995-08-11 1998-10-30 日本電気株式会社 半導体メモリ
US5742840A (en) 1995-08-16 1998-04-21 Microunity Systems Engineering, Inc. General purpose, multiple precision parallel operation, programmable media processor
JPH0954751A (ja) 1995-08-18 1997-02-25 Hitachi Ltd 情報処理装置
US5812796A (en) * 1995-08-18 1998-09-22 General Magic, Inc. Support structures for an intelligent low power serial bus
JPH0991197A (ja) 1995-09-22 1997-04-04 Sharp Corp データ転送制御装置
JPH09115286A (ja) 1995-10-17 1997-05-02 Hitachi Ltd マルチポートメモリ
KR100197563B1 (ko) 1995-12-27 1999-06-15 윤종용 동기 지연라인을 이용한 디지탈 지연 동기루프 회로
US5809070A (en) 1996-02-27 1998-09-15 Flat Connections, Inc. High speed data communications using multiple low speed modems
JP3926873B2 (ja) * 1996-10-11 2007-06-06 株式会社東芝 コンピュータシステム
US5900021A (en) 1997-04-04 1999-05-04 United Memories, Inc. Pad input select circuit for use with bond options
US5966723A (en) 1997-05-16 1999-10-12 Intel Corporation Serial programming mode for non-volatile memory
US6378018B1 (en) * 1997-10-10 2002-04-23 Intel Corporation Memory device and system including a low power interface
JPH11224492A (ja) 1997-11-06 1999-08-17 Toshiba Corp 半導体記憶装置、不揮発性半導体記憶装置及びフラッシュメモリ
JP3707919B2 (ja) * 1997-11-17 2005-10-19 松下電器産業株式会社 Dramを含む集積回路
JP3532747B2 (ja) 1997-12-09 2004-05-31 富士通株式会社 強誘電体記憶装置、フラッシュメモリ、および不揮発性ランダムアクセスメモリ
US6453365B1 (en) 1998-02-11 2002-09-17 Globespanvirata, Inc. Direct memory access controller having decode circuit for compact instruction format
US6085290A (en) 1998-03-10 2000-07-04 Nexabit Networks, Llc Method of and apparatus for validating data read out of a multi port internally cached dynamic random access memory (AMPIC DRAM)
JP2000082982A (ja) * 1998-09-03 2000-03-21 Nec Corp アレーアンテナ受信装置
US6422098B1 (en) 1999-03-03 2002-07-23 Hanson Research Corp. Dissolution sampling apparatus
JP3464621B2 (ja) 1999-04-01 2003-11-10 フーリエ有限会社 バンク可変メモリ
AUPQ005099A0 (en) * 1999-04-29 1999-05-20 Canon Kabushiki Kaisha Sequential bus architecture
JP3853537B2 (ja) * 1999-04-30 2006-12-06 株式会社日立製作所 半導体メモリファイルシステム
US6377502B1 (en) 1999-05-10 2002-04-23 Kabushiki Kaisha Toshiba Semiconductor device that enables simultaneous read and write/erase operation
US7069406B2 (en) 1999-07-02 2006-06-27 Integrated Device Technology, Inc. Double data rate synchronous SRAM with 100% bus utilization
US6792003B1 (en) * 1999-08-12 2004-09-14 Nortel Networks Limited Method and apparatus for transporting and aligning data across multiple serial data streams
DE10043397B4 (de) 1999-09-06 2007-02-08 Samsung Electronics Co., Ltd., Suwon Flash-Speicherbauelement mit Programmierungszustandsfeststellungsschaltung und das Verfahren dafür
US6567023B1 (en) * 1999-09-17 2003-05-20 Kabushiki Kaisha Toshiba Analog to digital to analog converter for multi-valued current data using internal binary voltage
JP3892655B2 (ja) * 1999-09-17 2007-03-14 株式会社東芝 半導体集積回路装置
KR100398040B1 (ko) 1999-12-28 2003-09-19 주식회사 하이닉스반도체 플래시 메모리 소자
AU2001243463A1 (en) * 2000-03-10 2001-09-24 Arc International Plc Memory interface and method of interfacing between functional entities
JP2002024158A (ja) 2000-07-05 2002-01-25 Denso Corp データ転送装置及びマイクロコンピュータ
TW530207B (en) 2000-09-05 2003-05-01 Samsung Electronics Co Ltd Semiconductor memory device having altered clock frequency for address and/or command signals, and memory module and system having the same
JP2002109884A (ja) 2000-09-27 2002-04-12 Toshiba Corp メモリ装置
US6658509B1 (en) 2000-10-03 2003-12-02 Intel Corporation Multi-tier point-to-point ring memory interface
JP2002236611A (ja) 2000-12-04 2002-08-23 Hitachi Ltd 半導体装置と情報処理システム
US6718432B1 (en) 2001-03-22 2004-04-06 Netlogic Microsystems, Inc. Method and apparatus for transparent cascading of multiple content addressable memory devices
JP2003036681A (ja) 2001-07-23 2003-02-07 Hitachi Ltd 不揮発性記憶装置
WO2003010939A1 (fr) 2001-07-25 2003-02-06 Sony Corporation Appareil d'interface
JP2003077276A (ja) 2001-08-31 2003-03-14 Nec Corp 半導体メモリ
JP2003072276A (ja) 2001-08-31 2003-03-12 Masaaki Fukami 筆記具
DE10144998A1 (de) 2001-09-12 2003-05-08 Kluft Werner Ereignisdatenrekorder für Kollisions- bzw. Überlastsituationen an Werkzeugmaschinen
US6778443B2 (en) 2001-12-25 2004-08-17 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device having memory blocks pre-programmed before erased
JP2003198356A (ja) * 2001-12-25 2003-07-11 Hitachi Ltd 半導体チップおよび集積回路
JP4204226B2 (ja) 2001-12-28 2009-01-07 日本テキサス・インスツルメンツ株式会社 デバイス識別方法、データ伝送方法、デバイス識別子付与装置、並びにデバイス
JP2003263363A (ja) 2002-03-08 2003-09-19 Ricoh Co Ltd メモリ制御回路
US6906978B2 (en) 2002-03-19 2005-06-14 Intel Corporation Flexible integrated memory
JP2003337640A (ja) 2002-05-21 2003-11-28 Mitsubishi Electric Corp バス制御装置
US7073022B2 (en) 2002-05-23 2006-07-04 International Business Machines Corporation Serial interface for a data storage array
JP4257824B2 (ja) 2002-07-03 2009-04-22 シャープ株式会社 半導体記憶装置
CN1692343A (zh) 2002-07-22 2005-11-02 株式会社瑞萨科技 半导体集成电路器件、数据处理系统及存储系统
JP4122921B2 (ja) 2002-10-18 2008-07-23 株式会社日立製作所 バス装置
US7242684B2 (en) 2003-02-07 2007-07-10 Fujitsu Limited Architecture for switching packets in a high-speed switching environment
US7571287B2 (en) 2003-03-13 2009-08-04 Marvell World Trade Ltd. Multiport memory architecture, devices and systems including the same, and methods of using the same
US7020757B2 (en) * 2003-03-27 2006-03-28 Hewlett-Packard Development Company, L.P. Providing an arrangement of memory devices to enable high-speed data access
US7016213B2 (en) 2003-05-13 2006-03-21 Advanced Micro Devices, Inc. Method for initializing a system including a host and plurality of memory modules connected via a serial memory interconnect
JP4256210B2 (ja) 2003-06-12 2009-04-22 株式会社半導体理工学研究センター 同期バンク型メモリ
JP2005025473A (ja) 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 複合入出力装置
KR100542712B1 (ko) 2003-08-25 2006-01-11 주식회사 하이닉스반도체 동기형 디램의 라이트 패스 구조
DE10339787B4 (de) * 2003-08-28 2005-11-03 Infineon Technologies Ag Speichermodul
JP2005078523A (ja) 2003-09-02 2005-03-24 Matsushita Electric Ind Co Ltd シリアル転送装置
US7779212B2 (en) * 2003-10-17 2010-08-17 Micron Technology, Inc. Method and apparatus for sending data from multiple sources over a communications bus
US7113418B2 (en) 2003-11-04 2006-09-26 Hewlett-Packard Development Company, L.P. Memory systems and methods
US20050138267A1 (en) * 2003-12-23 2005-06-23 Bains Kuljit S. Integral memory buffer and serial presence detect capability for fully-buffered memory modules
KR100598097B1 (ko) 2003-12-29 2006-07-07 삼성전자주식회사 듀얼 칩 패키지
US7031221B2 (en) 2003-12-30 2006-04-18 Intel Corporation Fixed phase clock and strobe signals in daisy chained chips
BRPI0418431A (pt) 2004-01-20 2007-05-22 Trek 2000 Int Ltd dispositivo de armazenamento de dados portátil utilizando dispositivos de múltiplas memórias
JP4697924B2 (ja) 2004-06-07 2011-06-08 キヤノン株式会社 データ転送方法
US8375146B2 (en) 2004-08-09 2013-02-12 SanDisk Technologies, Inc. Ring bus structure and its use in flash memory systems
US7457156B2 (en) * 2004-09-02 2008-11-25 Micron Technology, Inc. NAND flash depletion cell structure
GB2421092B (en) * 2004-12-07 2008-12-03 Hewlett Packard Development Co Bufferless writing of data to memory
US8041879B2 (en) 2005-02-18 2011-10-18 Sandisk Il Ltd Flash memory backup system and method
JP2006260127A (ja) 2005-03-17 2006-09-28 Hiroshima Univ 結合網およびそれを用いたマルチポートメモリ
EP2317446A1 (en) 2005-06-30 2011-05-04 Imec A memory arrangement for multi-processor systems
US7414917B2 (en) * 2005-07-29 2008-08-19 Infineon Technologies Re-driving CAwD and rD signal lines
US7464225B2 (en) * 2005-09-26 2008-12-09 Rambus Inc. Memory module including a plurality of integrated circuit memory devices and a plurality of buffer devices in a matrix topology
WO2007083701A1 (ja) 2006-01-19 2007-07-26 Matsushita Electric Industrial Co., Ltd. 無線通信基地局装置およびパイロット送信方法
US8364861B2 (en) * 2006-03-28 2013-01-29 Mosaid Technologies Incorporated Asynchronous ID generation
US7546410B2 (en) * 2006-07-26 2009-06-09 International Business Machines Corporation Self timed memory chip having an apportionable data bus
US7545664B2 (en) 2006-07-26 2009-06-09 International Business Machines Corporation Memory system having self timed daisy chained memory chips
US8407395B2 (en) * 2006-08-22 2013-03-26 Mosaid Technologies Incorporated Scalable memory system
WO2008090409A2 (en) * 2006-10-04 2008-07-31 Marvell Technology Japan Y.K. Flash memory control interface

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249270A (en) * 1965-05-03 1966-05-03 Mister Hanger Inc Garment support means
US4174536A (en) * 1977-01-21 1979-11-13 Massachusetts Institute Of Technology Digital communications controller with firmware control
US4733376A (en) * 1984-10-17 1988-03-22 Fujitsu Limited Semiconductor memory device having serial data input circuit and serial data output circuit
US4683555A (en) * 1985-01-22 1987-07-28 Texas Instruments Incorporated Serial accessed semiconductor memory with reconfigureable shift registers
US4796231A (en) * 1985-01-22 1989-01-03 Texas Instruments Incorporated Serial accessed semiconductor memory with reconfigurable shift registers
US5136292A (en) * 1989-03-15 1992-08-04 Oki Electric Industry Co., Ltd. Serial data receiving circuit for serial to parallel conversion
US5126808A (en) * 1989-10-23 1992-06-30 Advanced Micro Devices, Inc. Flash EEPROM array with paged erase architecture
US5175819A (en) * 1990-03-28 1992-12-29 Integrated Device Technology, Inc. Cascadable parallel to serial converter using tap shift registers and data shift registers while receiving input data from FIFO buffer
US5243703A (en) * 1990-04-18 1993-09-07 Rambus, Inc. Apparatus for synchronously generating clock signals in a data processing system
US5319598A (en) * 1990-12-10 1994-06-07 Hughes Aircraft Company Nonvolatile serially programmable devices
US5336951A (en) * 1991-05-03 1994-08-09 Lattice Semiconductor Corporation Structure and method for multiplexing pins for in-system programming
US6715044B2 (en) * 1991-07-26 2004-03-30 Sandisk Corporation Device and method for controlling solid-state memory system
US6594183B1 (en) * 1991-09-13 2003-07-15 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6850443B2 (en) * 1991-09-13 2005-02-01 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US5280539A (en) * 1992-01-15 1994-01-18 Samsung Electronics Co., Ltd. Synchronous circuit for serial input signal
US5440694A (en) * 1992-03-26 1995-08-08 Nec Corporation Interface circuit for allowing receiving serial data input after receiving serial input suspension signal
US5473563A (en) * 1993-01-13 1995-12-05 Samsung Electronics Co., Ltd. Nonvolatile semiconductor memory
US5473577A (en) * 1993-03-20 1995-12-05 Hitachi, Ltd. Serial memory
US5365484A (en) * 1993-08-23 1994-11-15 Advanced Micro Devices, Inc. Independent array grounds for flash EEPROM array with paged erase architechture
US5721840A (en) * 1993-09-20 1998-02-24 Olympus Optical Co., Ltd. Information processing apparatus incorporating automatic SCSI ID generation
US5602780A (en) * 1993-10-20 1997-02-11 Texas Instruments Incorporated Serial to parallel and parallel to serial architecture for a RAM based FIFO memory
US5452259A (en) * 1993-11-15 1995-09-19 Micron Technology Inc. Multiport memory with pipelined serial input
US5404460A (en) * 1994-01-28 1995-04-04 Vlsi Technology, Inc. Method for configuring multiple identical serial I/O devices to unique addresses through a serial bus
US5596724A (en) * 1994-02-04 1997-01-21 Advanced Micro Devices Input/output data port with a parallel and serial interface
US5740379A (en) * 1994-08-19 1998-04-14 Siemens Aktiengesellschaft Method for generating unique addresses for electrical devices from input bit patterns being verifiable for admissibility
US5473566A (en) * 1994-09-12 1995-12-05 Cirrus Logic, Inc. Memory architecture and devices, systems and methods utilizing the same
US5671178A (en) * 1995-02-04 1997-09-23 Samsung Electronics Co., Ltd. Erase verifying circuit for a nonvolatile semiconductor memory with column redundancy
US5636342A (en) * 1995-02-17 1997-06-03 Dell Usa, L.P. Systems and method for assigning unique addresses to agents on a system management bus
US5835935A (en) * 1995-09-13 1998-11-10 Lexar Media, Inc. Method of and architecture for controlling system data with automatic wear leveling in a semiconductor non-volatile mass storage memory
US5872994A (en) * 1995-11-10 1999-02-16 Nec Corporation Flash memory incorporating microcomputer having on-board writing function
US5818785A (en) * 1995-12-20 1998-10-06 Kabushiki Kaisha Toshiba Semiconductor memory device having a plurality of banks
US5761146A (en) * 1995-12-28 1998-06-02 Samsung Electronics Co., Ltd. Data in/out channel control circuit of semiconductor memory device having multi-bank structure
US5771199A (en) * 1995-12-29 1998-06-23 Samsung Electronics Co., Ltd. Integrated circuit memory devices having improved dual memory bank control capability and methods of operating same
US5828899A (en) * 1996-01-04 1998-10-27 Compaq Computer Corporation System for peripheral devices recursively generating unique addresses based on the number of devices connected dependent upon the relative position to the port
US5802006A (en) * 1996-02-21 1998-09-01 Nec Corporation Semiconductor memory of multiple-bank structure having block write function
US5938750A (en) * 1996-06-28 1999-08-17 Intel Corporation Method and apparatus for a memory card bus design
US5941974A (en) * 1996-11-29 1999-08-24 Motorola, Inc. Serial interface with register selection which uses clock counting, chip select pulsing, and no address bits
US5859809A (en) * 1996-12-31 1999-01-12 Hyundai Electronics Industries Co., Ltd. Semiconductor device of daisy chain structure having independent refresh apparatus
US6107658A (en) * 1997-02-27 2000-08-22 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US5964857A (en) * 1997-05-30 1999-10-12 Quality Semiconductor, Inc. Priority encoder for a content addressable memory system
US6584303B1 (en) * 1997-08-20 2003-06-24 Nokia Corporation Method and apparatus for automatically identifying a function module in a modular transceiver system
US5959930A (en) * 1997-08-22 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Multi-bank synchronous semiconductor memory device
US6658582B1 (en) * 1997-08-26 2003-12-02 Samsung Electronics Co., Ltd. Serial interface circuits having improved data transmitting and receiving capability
US6091660A (en) * 1997-10-02 2000-07-18 Hitachi, Ltd. Semiconductor integrated circuit device
US5937425A (en) * 1997-10-16 1999-08-10 M-Systems Flash Disk Pioneers Ltd. Flash file system optimized for page-mode flash technologies
US6102963A (en) * 1997-12-29 2000-08-15 Vantis Corporation Electrically erasable and reprogrammable, nonvolatile integrated storage device with in-system programming and verification (ISPAV) capabilities for supporting in-system reconfiguring of PLD's
US6148364A (en) * 1997-12-30 2000-11-14 Netlogic Microsystems, Inc. Method and apparatus for cascading content addressable memory devices
US6002638A (en) * 1998-01-20 1999-12-14 Microchip Technology Incorporated Memory device having a switchable clock output and method therefor
US20040039854A1 (en) * 1998-03-02 2004-02-26 Lexar Media, Inc. Flash memory card with enhanced operating mode detection and user-friendly interfacing system
US6144576A (en) * 1998-08-19 2000-11-07 Intel Corporation Method and apparatus for implementing a serial memory architecture
US5995417A (en) * 1998-10-20 1999-11-30 Advanced Micro Devices, Inc. Scheme for page erase and erase verify in a non-volatile memory array
US6601199B1 (en) * 1998-10-28 2003-07-29 Kabushiki Kaisha Toshiba Memory-embedded LSI
US6438064B2 (en) * 1998-10-30 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device capable of efficient memory cell select operation with reduced element count
US6304921B1 (en) * 1998-12-07 2001-10-16 Motorola Inc. System for serial peripheral interface with embedded addressing circuit for providing portion of an address for peripheral devices
US6178135B1 (en) * 1998-12-28 2001-01-23 Samsung Electronics Co., Ltd. Multi-bank memory devices having bank selection switches therein that enable efficient sense amplifier utilization
US6680904B1 (en) * 1999-12-27 2004-01-20 Orckit Communications Ltd. Bi-directional chaining of network access ports
US6442098B1 (en) * 2000-02-08 2002-08-27 Alliance Semiconductor High performance multi-bank compact synchronous DRAM architecture
US6816933B1 (en) * 2000-05-17 2004-11-09 Silicon Laboratories, Inc. Serial device daisy chaining method and apparatus
US6944697B2 (en) * 2000-05-17 2005-09-13 Silicon Laboratories, Inc. Serial device daisy chaining method and apparatus
US6535948B1 (en) * 2000-05-31 2003-03-18 Agere Systems Inc. Serial interface unit
US6317350B1 (en) * 2000-06-16 2001-11-13 Netlogic Microsystems, Inc. Hierarchical depth cascading of content addressable memory devices
US6754807B1 (en) * 2000-08-31 2004-06-22 Stmicroelectronics, Inc. System and method for managing vertical dependencies in a digital signal processor
US6317352B1 (en) * 2000-09-18 2001-11-13 Intel Corporation Apparatus for implementing a buffered daisy chain connection between a memory controller and memory modules
US6853557B1 (en) * 2000-09-20 2005-02-08 Rambus, Inc. Multi-channel memory architecture
US6807103B2 (en) * 2000-11-15 2004-10-19 Stmicroelectronics S.A. Page-erasable flash memory
US6732221B2 (en) * 2001-06-01 2004-05-04 M-Systems Flash Disk Pioneers Ltd Wear leveling of static areas in flash memory
US20020188781A1 (en) * 2001-06-06 2002-12-12 Daniel Schoch Apparatus and methods for initializing integrated circuit addresses
US6611466B2 (en) * 2001-07-02 2003-08-26 Samsung Electronics Co., Ltd. Semiconductor memory device capable of adjusting the number of banks and method for adjusting the number of banks
US6928501B2 (en) * 2001-10-15 2005-08-09 Silicon Laboratories, Inc. Serial device daisy chaining method and apparatus
US6763426B1 (en) * 2001-12-27 2004-07-13 Cypress Semiconductor Corporation Cascadable content addressable memory (CAM) device and architecture
US20030123473A1 (en) * 2001-12-28 2003-07-03 Masahito Satoh Variable time division multiplex transmission system
US6799235B2 (en) * 2002-01-02 2004-09-28 Intel Corporation Daisy chain latency reduction
US20040001380A1 (en) * 2002-06-28 2004-01-01 Oswald Becca Method and apparatus for interconnecting content addressable memory devices
US20040019736A1 (en) * 2002-07-23 2004-01-29 Dug-Soo Kim Portable flash memory with extended memory capacity
US20040024960A1 (en) * 2002-07-31 2004-02-05 Lawrence King CAM diamond cascade architecture
US6853573B2 (en) * 2002-09-02 2005-02-08 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory device for connecting to serial advanced technology attachment cable
US20050213421A1 (en) * 2002-11-28 2005-09-29 Salvatore Polizzi Non-volatile memory device architecture, for instance a flash kind, having a serial communication interface
US20040230738A1 (en) * 2003-01-09 2004-11-18 Samsung Electronics Co., Ltd. Apparatus and method for controlling execute-in-place (XIP) in serial flash memory, and flash memory chip using the same
US20040148482A1 (en) * 2003-01-13 2004-07-29 Grundy Kevin P. Memory chain
US20040199721A1 (en) * 2003-03-12 2004-10-07 Power Data Communication Co., Ltd. Multi-transmission interface memory card
US6967874B2 (en) * 2003-06-30 2005-11-22 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and electric device with the same
US7284089B2 (en) * 2003-10-01 2007-10-16 Yqa Now Limited Data storage device
US7433258B2 (en) * 2003-10-10 2008-10-07 Datasecure Llc. Posted precharge and multiple open-page RAM architecture
US20050086413A1 (en) * 2003-10-15 2005-04-21 Super Talent Electronics Inc. Capacity Expansion of Flash Memory Device with a Daisy-Chainable Structure and an Integrated Hub
US20050108469A1 (en) * 2003-11-13 2005-05-19 Intel Corporation Buffered memory module with implicit to explicit memory command expansion
US20050120163A1 (en) * 2003-12-02 2005-06-02 Super Talent Electronics Inc. Serial Interface to Flash-Memory Chip Using PCI-Express-Like Packets and Packed Data for Partial-Page Writes
US20050160218A1 (en) * 2004-01-20 2005-07-21 Sun-Teck See Highly integrated mass storage device with an intelligent flash controller
US20050278495A1 (en) * 2004-06-11 2005-12-15 Kee-Hoon Lee Hub, memory module, memory system and methods for reading and writing to the same
US20060020740A1 (en) * 2004-07-22 2006-01-26 International Business Machines Corporation Multi-node architecture with daisy chain communication link configurable to operate in unidirectional and bidirectional modes
US20060041730A1 (en) * 2004-08-19 2006-02-23 Larson Douglas A Memory command delay balancing in a daisy-chained memory topology
US20060050594A1 (en) * 2004-09-03 2006-03-09 Park Jin S Flash memory device and method of erasing flash memory cell thereof
US6950325B1 (en) * 2004-10-07 2005-09-27 Winbond Electronics Corporation Cascade-connected ROM
US7334070B2 (en) * 2004-10-29 2008-02-19 International Business Machines Corporation Multi-channel memory architecture for daisy chained arrangements of nodes with bridging between memory channels
US20060285424A1 (en) * 2005-06-15 2006-12-21 Peter Gregorius High-speed interface circuit for semiconductor memory chips and memory system including semiconductor memory chips
US20070005831A1 (en) * 2005-06-30 2007-01-04 Peter Gregorius Semiconductor memory system
US20070153576A1 (en) * 2005-09-30 2007-07-05 Hakjune Oh Memory with output control
US20080279003A1 (en) * 2005-09-30 2008-11-13 Mosaid Technologies Incorporated Multiple independent serial link memory
US7652922B2 (en) * 2005-09-30 2010-01-26 Mosaid Technologies Incorporated Multiple independent serial link memory
US20070083701A1 (en) * 2005-10-12 2007-04-12 Sun Microsystems, Inc. Power throttling in a memory system

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826294B2 (en) * 2005-09-30 2010-11-02 Mosaid Technologies Incorporated Memory with output control
US11600323B2 (en) 2005-09-30 2023-03-07 Mosaid Technologies Incorporated Non-volatile memory device with concurrent bank operations
US8654601B2 (en) 2005-09-30 2014-02-18 Mosaid Technologies Incorporated Memory with output control
US8199598B2 (en) 2005-09-30 2012-06-12 Mosaid Technologies Incorporated Memory with output control
US11948629B2 (en) 2005-09-30 2024-04-02 Mosaid Technologies Incorporated Non-volatile memory device with concurrent bank operations
US20090073768A1 (en) * 2005-09-30 2009-03-19 Mosaid Technologies Incorporated Memory with output control
US8427897B2 (en) 2005-09-30 2013-04-23 Mosaid Technologies Incorporated Memory with output control
US9230654B2 (en) 2005-09-30 2016-01-05 Conversant Intellectual Property Management Inc. Method and system for accessing a flash memory device
US20110002171A1 (en) * 2005-09-30 2011-01-06 Mosaid Technologies Incorporated Memory with output control
EP2031516A2 (en) 2006-03-28 2009-03-04 MOSAID Technologies Inc. A daisy chain arrangement of non-volatile memories
US7904639B2 (en) 2006-08-22 2011-03-08 Mosaid Technologies Incorporated Modular command structure for memory and memory system
US20080126816A1 (en) * 2006-11-27 2008-05-29 Edoardo Prete Apparatus and method for switching an apparatus to a power saving mode
US7721130B2 (en) * 2006-11-27 2010-05-18 Qimonda Ag Apparatus and method for switching an apparatus to a power saving mode
US8230147B2 (en) 2006-12-06 2012-07-24 Mosaid Technologies Incorporated Apparatus and method for communicating with semiconductor devices of a serial interconnection
US20080168296A1 (en) * 2006-12-06 2008-07-10 Hakjune Oh Apparatus and method for communicating with semiconductor devices of a serial interconnection
US20100268853A1 (en) * 2006-12-06 2010-10-21 Mosaid Technologies Incorporated Apparatus and method for communicating with semiconductor devices of a serial interconnection
US7752364B2 (en) 2006-12-06 2010-07-06 Mosaid Technologies Incorporated Apparatus and method for communicating with semiconductor devices of a serial interconnection
US11880569B2 (en) 2007-02-16 2024-01-23 Mosaid Technologies Incorporated Clock mode determination in a memory system
US20090039927A1 (en) * 2007-02-16 2009-02-12 Mosaid Technologies Incorporated Clock mode determination in a memory system
US11347396B2 (en) 2007-02-16 2022-05-31 Mosaid Technologies Incorporated Clock mode determination in a memory system
US11669248B2 (en) 2007-02-16 2023-06-06 Mosaid Technologies Incorporated Clock mode determination in a memory system
US8432767B2 (en) 2007-02-16 2013-04-30 Mosaid Technologies Incorporated Clock mode determination in a memory system
US8122202B2 (en) 2007-02-16 2012-02-21 Peter Gillingham Reduced pin count interface
US8644108B2 (en) 2007-02-16 2014-02-04 Mosaid Technologies Incorporated Clock mode determination in a memory system
US20110110165A1 (en) * 2007-02-16 2011-05-12 Mosaid Technologies Incorporated Clock mode determination in a memory system
US8812768B2 (en) 2007-02-16 2014-08-19 Conversant Intellectual Property Management Inc. System having one or more memory devices
US7885140B2 (en) 2007-02-16 2011-02-08 Mosaid Technologies Incorporated Clock mode determination in a memory system
US8843694B2 (en) 2007-02-22 2014-09-23 Conversant Intellectual Property Management Inc. System and method of page buffer operation for memory devices
US8880780B2 (en) 2007-02-22 2014-11-04 Conversant Intellectual Property Management Incorporated Apparatus and method for using a page buffer of a memory device as a temporary cache
US8886871B2 (en) 2007-02-22 2014-11-11 Conversant Intellectual Property Management Incorporated Apparatus and method of page program operation for memory devices with mirror back-up of data
US20110060934A1 (en) * 2007-03-12 2011-03-10 Hakjune Oh Methods and apparatus for clock signal synchronization in a configuration of series-connected semiconductor devices
US8713344B2 (en) 2007-03-12 2014-04-29 Mosaid Technologies Incorporated Methods and apparatus for clock signal synchronization in a configuration of series connected semiconductor devices
US20080226004A1 (en) * 2007-03-12 2008-09-18 Hakjune Oh Methods and apparatus for clock signal synchronization in a configuration of series-connected semiconductor devices
US7865756B2 (en) 2007-03-12 2011-01-04 Mosaid Technologies Incorporated Methods and apparatus for clock signal synchronization in a configuration of series-connected semiconductor devices
US8825966B2 (en) 2007-08-22 2014-09-02 Mosaid Technologies Incorporated Reduced pin count interface
US20090076496A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies Llc. Prostate cancer ablation
US8406070B2 (en) 2007-10-17 2013-03-26 Mosaid Technologies Incorporated Single-strobe operation of memory devices
US8675425B2 (en) 2007-10-17 2014-03-18 Mosaid Technologies Incorporated Single-strobe operation of memory devices
US20090103378A1 (en) * 2007-10-17 2009-04-23 Mosaid Technologies Incorporated Single-strobe operation of memory devices
US20110096614A1 (en) * 2007-10-17 2011-04-28 Mosaid Technologies Incorporated Single-strobe operation of memory devices
US7889578B2 (en) 2007-10-17 2011-02-15 Mosaid Technologies Incorporated Single-strobe operation of memory devices
US20090129184A1 (en) * 2007-11-15 2009-05-21 Mosaid Technologies Incorporated Methods and systems for failure isolation and data recovery in a configuration of series-connected semiconductor devices
US8443233B2 (en) 2007-11-15 2013-05-14 Mosaid Technologies Incorporated Methods and systems for failure isolation and data recovery in a configuration of series-connected semiconductor devices
US7836340B2 (en) 2007-11-15 2010-11-16 Mosaid Technologies Incorporated Methods and systems for failure isolation and data recovery in a configuration of series-connected semiconductor devices
US20110060937A1 (en) * 2007-11-15 2011-03-10 Schuetz Roland Methods and systems for failure isolation and data recovery in a configuration of series-connected semiconductor devices
US20090154284A1 (en) * 2007-12-12 2009-06-18 Hakjune Oh Semiconductor memory device suitable for interconnection in a ring topology
US8825939B2 (en) 2007-12-12 2014-09-02 Conversant Intellectual Property Management Inc. Semiconductor memory device suitable for interconnection in a ring topology
US8467486B2 (en) 2007-12-14 2013-06-18 Mosaid Technologies Incorporated Memory controller with flexible data alignment to clock
US20090154629A1 (en) * 2007-12-14 2009-06-18 Mosaid Technologies Incorporated Clock reproducing and timing method in a system having a plurality of devices
US8837655B2 (en) 2007-12-14 2014-09-16 Conversant Intellectual Property Management Inc. Memory controller with flexible data alignment to clock
US8781053B2 (en) 2007-12-14 2014-07-15 Conversant Intellectual Property Management Incorporated Clock reproducing and timing method in a system having a plurality of devices
US20090154285A1 (en) * 2007-12-14 2009-06-18 Mosaid Technologies Incorporated Memory controller with flexible data alignment to clock
US8359485B2 (en) 2007-12-21 2013-01-22 Mosaid Technologies Incorporated Non-volatile semiconductor memory device with power saving feature
US8291248B2 (en) 2007-12-21 2012-10-16 Mosaid Technologies Incorporated Non-volatile semiconductor memory device with power saving feature
US8145925B2 (en) 2007-12-21 2012-03-27 Mosaid Technologies Incorporated Non-volatile semiconductor memory device with power saving feature
US9213389B2 (en) 2007-12-21 2015-12-15 Conversant Intellectual Property Management Inc. Non-volatile semiconductor memory device with power-saving feature
US20090259873A1 (en) * 2007-12-21 2009-10-15 Mosaid Technologies Incorporated Non-volatile semiconductor memory device with power saving feature
US20090164830A1 (en) * 2007-12-21 2009-06-25 Hakjune Oh Non-volatile semiconductor memory device with power saving feature
US8902910B2 (en) 2008-01-11 2014-12-02 Conversant Intellectual Property Management Inc. Ring-of-clusters network topologies
US8594110B2 (en) 2008-01-11 2013-11-26 Mosaid Technologies Incorporated Ring-of-clusters network topologies
US8139390B2 (en) 2008-07-08 2012-03-20 Mosaid Technologies Incorporated Mixed data rates in memory devices and systems
US20100011174A1 (en) * 2008-07-08 2010-01-14 Mosaid Technologies Incorporated Mixed data rates in memory devices and systems
DE112009002444T5 (de) 2008-10-14 2012-01-19 Mosaid Technologies Inc. A composite memory having a bridging device for connecting discrete memory devices to a system
US8134852B2 (en) 2008-10-14 2012-03-13 Mosaid Technologies Incorporated Bridge device architecture for connecting discrete memory devices to a system
US20110194365A1 (en) * 2008-10-14 2011-08-11 Mosaid Technologies Incorporated Bridge device architecture for connecting discrete memory devices to a system
US7957173B2 (en) 2008-10-14 2011-06-07 Mosaid Technologies Incorporated Composite memory having a bridging device for connecting discrete memory devices to a system
US20100091538A1 (en) * 2008-10-14 2010-04-15 Mosaid Technologies Incorporated Bridge device architecture for connecting discrete memory devices to a system
US8737105B2 (en) 2008-10-14 2014-05-27 Conversant Intellectual Property Management Inc. Bridge device architecture for connecting discrete memory devices to a system
US8363444B2 (en) 2008-10-14 2013-01-29 Mosaid Technologies Incorporated Bridge device architecture for connecting discrete memory devices to a system
US20100115172A1 (en) * 2008-11-04 2010-05-06 Mosaid Technologies Incorporated Bridge device having a virtual page buffer
US20100115214A1 (en) * 2008-11-04 2010-05-06 Mosaid Technologies Incorporated Bridging device having a configurable virtual page size
US8549209B2 (en) 2008-11-04 2013-10-01 Mosaid Technologies Incorporated Bridging device having a configurable virtual page size
WO2010051623A1 (en) 2008-11-04 2010-05-14 Mosaid Technologies Incorporated A bridging device having a configurable virtual page size
US8880970B2 (en) 2008-12-23 2014-11-04 Conversant Intellectual Property Management Inc. Error detection method and a system including one or more memory devices
US20100162053A1 (en) * 2008-12-23 2010-06-24 Mosaid Technologies Incorporated Error detection method and a system including one or more memory devices
US8924661B1 (en) * 2009-01-18 2014-12-30 Apple Inc. Memory system including a controller and processors associated with memory devices
DE112010002750T5 (de) 2009-06-29 2013-01-31 Mosaid Technologies Incorporated Brückenvorrichtung mit einer Taktdomäne mit konfigurierbarer Frequenz
US20100327923A1 (en) * 2009-06-29 2010-12-30 Mosaid Technologies Incorporated Bridging device having a frequency configurable clock domain
US8504789B2 (en) 2009-06-29 2013-08-06 Mosaid Technologies Incorporated Bridging device having a frequency configurable clock domain
US20110016279A1 (en) * 2009-07-16 2011-01-20 Mosaid Technologies Incorporated Simultaneous read and write data transfer
US8898415B2 (en) 2009-07-16 2014-11-25 Conversant Intellectual Property Management Inc. Simultaneous read and write data transfer
US8521980B2 (en) 2009-07-16 2013-08-27 Mosaid Technologies Incorporated Simultaneous read and write data transfer
US8700845B1 (en) * 2009-08-12 2014-04-15 Micron Technology, Inc. Daisy chaining nonvolatile memories
US20110235426A1 (en) * 2010-03-23 2011-09-29 Mosaid Technologies Incorporated Flash memory system having a plurality of serially connected devices
US8582382B2 (en) 2010-03-23 2013-11-12 Mosaid Technologies Incorporated Memory system having a plurality of serially connected devices
US8843692B2 (en) 2010-04-27 2014-09-23 Conversant Intellectual Property Management Inc. System of interconnected nonvolatile memories having automatic status packet
WO2011137541A1 (en) 2010-05-07 2011-11-10 Mosaid Technologies Incorporated Method and apparatus for concurrently reading a plurality of memory devices using a single buffer
US9251068B2 (en) 2011-03-11 2016-02-02 Micron Technology, Inc. Systems, devices, memory controllers, and methods for memory initialization
US8856482B2 (en) 2011-03-11 2014-10-07 Micron Technology, Inc. Systems, devices, memory controllers, and methods for memory initialization
US20120311297A1 (en) * 2011-06-03 2012-12-06 June Lee Logical unit address assignment
US9390049B2 (en) * 2011-06-03 2016-07-12 Micron Technology, Inc. Logical unit address assignment
US10705736B2 (en) 2011-09-23 2020-07-07 Conversant Intellectual Property Management Inc. Flash memory system
US9588883B2 (en) 2011-09-23 2017-03-07 Conversant Intellectual Property Management Inc. Flash memory system
US8825967B2 (en) 2011-12-08 2014-09-02 Conversant Intellectual Property Management Inc. Independent write and read control in serially-connected devices
US9015392B2 (en) * 2012-05-21 2015-04-21 SK Hynix Inc. Multi-chip package and operating method thereof
US20130307611A1 (en) * 2012-05-21 2013-11-21 Won-kyung Kang Multi-chip package and operating method thereof
US20140089548A1 (en) * 2012-09-26 2014-03-27 Ronald Norman Prusia Systems, Methods, and Articles of Manufacture To Stream Data
US8966124B1 (en) * 2012-09-26 2015-02-24 The United States Of America As Represented By The Secretary Of The Navy Systems, methods, and articles of manufacture to stream data
US8909833B2 (en) * 2012-09-26 2014-12-09 The United States Of America As Represented By The Secretary Of The Navy Systems, methods, and articles of manufacture to stream data
US20140132318A1 (en) * 2012-11-09 2014-05-15 Mosaid Technologies Incorporated Pll locking control in daisy chained memory system
US9054717B2 (en) * 2012-11-09 2015-06-09 Novachips Canada Inc. PLL locking control in daisy chained memory system
US9324389B2 (en) * 2013-05-29 2016-04-26 Sandisk Technologies Inc. High performance system topology for NAND memory systems
US9728526B2 (en) 2013-05-29 2017-08-08 Sandisk Technologies Llc Packaging of high performance system topology for NAND memory systems
US10103133B2 (en) 2013-05-29 2018-10-16 Sandisk Technologies Llc Packaging of high performance system topology for NAND memory systems
US20140359200A1 (en) * 2013-05-29 2014-12-04 Sandisk Technologies Inc. High Performance System Topology for NAND Memory Systems
US10318447B2 (en) * 2013-09-11 2019-06-11 Nxp Usa, Inc. Universal SPI (Serial Peripheral Interface)
US20150178197A1 (en) * 2013-12-23 2015-06-25 Sandisk Technologies Inc. Addressing Auto address Assignment and Auto-Routing in NAND Memory Network
US9703702B2 (en) * 2013-12-23 2017-07-11 Sandisk Technologies Llc Addressing auto address assignment and auto-routing in NAND memory network
US10353846B2 (en) * 2015-12-21 2019-07-16 Viewmove Technologies, Inc. Communication system with train bus architecture
US20170177533A1 (en) * 2015-12-21 2017-06-22 Viewmove Technologies, Inc. Communication system with train bus architecture
US20170213581A1 (en) * 2016-01-27 2017-07-27 Electronics And Telecommunications Research Institute Processing unit, in-memory data processing apparatus and method
CN114286991A (zh) * 2019-08-29 2022-04-05 微芯片技术股份有限公司 菊花链流传输模式
US20210064564A1 (en) * 2019-08-29 2021-03-04 Microchip Technology Incorporated Daisy Chain Streaming Mode
US11386025B2 (en) 2019-08-29 2022-07-12 Microchip Technology Incorporated Daisy chain complex commands
US11494324B2 (en) * 2019-08-29 2022-11-08 Microchip Technology Incorporated Daisy chain streaming mode

Also Published As

Publication number Publication date
WO2007036048B1 (en) 2007-06-07
JP2012238341A (ja) 2012-12-06
EP1981031B1 (en) 2015-09-02
CA2627663A1 (en) 2007-04-05
KR20080056276A (ko) 2008-06-20
CN102750975B (zh) 2015-09-09
KR20110124326A (ko) 2011-11-16
TWI445010B (zh) 2014-07-11
CN102750975A (zh) 2012-10-24
KR20130095325A (ko) 2013-08-27
KR101392605B1 (ko) 2014-05-08
KR101506831B1 (ko) 2015-03-30
EP1981030A1 (en) 2008-10-15
ES2395570T3 (es) 2013-02-13
KR101452564B1 (ko) 2014-10-22
EP1981030B1 (en) 2012-09-12
KR101547076B1 (ko) 2015-08-24
JP2009301586A (ja) 2009-12-24
JP2009510568A (ja) 2009-03-12
TW200822131A (en) 2008-05-16
US20070109833A1 (en) 2007-05-17
JP5179450B2 (ja) 2013-04-10
US9240227B2 (en) 2016-01-19
EP1929480A1 (en) 2008-06-11
TW201430850A (zh) 2014-08-01
KR20130097243A (ko) 2013-09-02
EP1981032A1 (en) 2008-10-15
TWI564906B (zh) 2017-01-01
EP1929480B1 (en) 2015-03-18
ES2405952T3 (es) 2013-06-04
KR20140079845A (ko) 2014-06-27
EP1981032B1 (en) 2013-02-06
EP1981031A1 (en) 2008-10-15
WO2007036048A1 (en) 2007-04-05
EP1929480A4 (en) 2008-10-15
KR101370691B1 (ko) 2014-03-05

Similar Documents

Publication Publication Date Title
US20070076502A1 (en) Daisy chain cascading devices
US8364861B2 (en) Asynchronous ID generation
US10224080B2 (en) Semiconductor memory device with late write feature
US5410670A (en) Accessing system that reduces access times due to transmission delays and I/O access circuitry in a burst mode random access memory
JPH10506495A (ja) メモリ拡張ロジックを有する同期sram
WO2006050983A1 (en) Memory access using multiple sets of address/data lines
US4992979A (en) Memory structure for nonsequential storage of block bytes in multi bit chips
CN111696595B (zh) 半导体装置
JPH06282983A (ja) メモリ内のデータをアクセスするための方法、メモリシステムおよびメモリ制御システム
US5959937A (en) Dual clocking scheme in a multi-port RAM

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PYEON, HONG BEOM;KIM, JIN-KI;REEL/FRAME:018329/0767

Effective date: 20060908

AS Assignment

Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, JIN-KI, MR.;REEL/FRAME:021221/0384

Effective date: 20080623

AS Assignment

Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PYEON, HONG-BOEM, MR.;REEL/FRAME:021323/0760

Effective date: 20080623

Owner name: MOSAID TECHNOLOGIES INCORPORATED,CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PYEON, HONG-BOEM, MR.;REEL/FRAME:021323/0760

Effective date: 20080623

AS Assignment

Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA

Free format text: CHANGE OF ADDRESS OF ASSIGNEE;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:022542/0876

Effective date: 20090209

Owner name: MOSAID TECHNOLOGIES INCORPORATED,CANADA

Free format text: CHANGE OF ADDRESS OF ASSIGNEE;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:022542/0876

Effective date: 20090209

AS Assignment

Owner name: ROYAL BANK OF CANADA, CANADA

Free format text: U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) - SHORT FORM;ASSIGNORS:658276 N.B. LTD.;658868 N.B. INC.;MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:027512/0196

Effective date: 20111223

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:032439/0638

Effective date: 20140101

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344

Effective date: 20140611

Owner name: CONVERSANT IP N.B. 276 INC., CANADA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344

Effective date: 20140611

Owner name: CONVERSANT IP N.B. 868 INC., CANADA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344

Effective date: 20140611

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA

Free format text: CHANGE OF ADDRESS;ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033678/0096

Effective date: 20140820

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: CHANGE OF ADDRESS;ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033678/0096

Effective date: 20140820

AS Assignment

Owner name: ROYAL BANK OF CANADA, AS LENDER, CANADA

Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033706/0367

Effective date: 20140611

Owner name: CPPIB CREDIT INVESTMENTS INC., AS LENDER, CANADA

Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033706/0367

Effective date: 20140611

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA

Free format text: RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:ROYAL BANK OF CANADA, AS LENDER;REEL/FRAME:047645/0424

Effective date: 20180731

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,

Free format text: RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:ROYAL BANK OF CANADA, AS LENDER;REEL/FRAME:047645/0424

Effective date: 20180731