JP3707919B2 - Dramを含む集積回路 - Google Patents

Dramを含む集積回路 Download PDF

Info

Publication number
JP3707919B2
JP3707919B2 JP31561397A JP31561397A JP3707919B2 JP 3707919 B2 JP3707919 B2 JP 3707919B2 JP 31561397 A JP31561397 A JP 31561397A JP 31561397 A JP31561397 A JP 31561397A JP 3707919 B2 JP3707919 B2 JP 3707919B2
Authority
JP
Japan
Prior art keywords
signal
input
level
dram
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31561397A
Other languages
English (en)
Other versions
JPH11149767A (ja
Inventor
善彦 住本
清人 大田
知則 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31561397A priority Critical patent/JP3707919B2/ja
Publication of JPH11149767A publication Critical patent/JPH11149767A/ja
Application granted granted Critical
Publication of JP3707919B2 publication Critical patent/JP3707919B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dram (AREA)
  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はDRAM(ダイナミック・ランダムアクセスメモリ)とマイクロコンピュータ又はASIC(特定用途向け集積回路)等のロジック回路をワンチップ化した集積回路、及び、そのバーンインテスト方法に関する。
【0002】
【従来の技術】
従来の一般的なDRAMのシステム構成を図10に示す。この図において、外部からアドレス端子Adに入力されたアドレス信号は、行アドレスバッファ102及び列アドレスバッファ103を介して行選択回路(行デコーダ)104及び列選択回路(列デコーダ)105に与えられる。行アドレス信号及び列アドレス信号により選択されたメモリセルアレイ106中のメモリセルに対して、データの書き込み又は読み出しが行われる。センスアンプ107は、制御信号入力Dinに応答してメモリセルアレイ106中のメモリセルの微小データ信号を増幅して出力Doutに出力するセンスアンプである。
【0003】
図11は上記のような従来のDRAMのEDO(Extended Data Out)方式のページモード読み出し動作のタイミングチャートである。時刻hにおいて行アドレス制御信号がH(高)レベルからL(低)レベルに変化し、アドレスAdライン上の行アドレスROW1が取り込まれることにより1行分のメモリセルが選択される。次に時刻iにおいて列アドレス制御信号がHレベルからLレベルに変化し、アドレスAdライン上の列アドレスCOL1が取り込まれることにより列アドレスが選択される。行アドレスROW1及び列アドレスCOL1によって選択されたメモリセルのデータD1が出力Doutに出力される。
【0004】
次に時刻jにおいて、列アドレス制御信号が再びHレベルからLレベルに変化すると、アドレスAdライン上の列アドレスCOL2が取り込まれる。この時、行アドレスROW1は変化していないので、行アドレスROW1及び列アドレスCOL2で選択されたメモリセルのデータD2が出力される。この際、時刻jで出力Doutに出力されていたデータD1が閉じられハイ・インピーダンス状態になり、その後、新たに選択されたメモリセルのデータD2が出力される。同様にして、同一の行アドレスROW1で列アドレスCOL3、COL4が時刻k、時刻mで順次取り込まれ、それに対応して選択されたメモリセルのデータD3、D4が順次出力される。
【0005】
上記のように、アドレスAdを行アドレスと列アドレスとに兼用し、行アドレス制御信号と列アドレス制御信号とを用いて行アドレスと列アドレスとを時分割で与えるアドレス多重化方式が一般的である。この方式によれば、DRAMの大容量化に伴って増加するアドレス端子の数を半減することができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような従来の構成では、ページモードでデータの読み出し又は書き込みを行う際、列アドレスを変えるたびに列アドレス制御信号をHレベルからLレベルにを変化させなければならず、DRAMの入力信号は非同期であるため、DRAM内部の動作タイミング信号の生成が難しいという問題があった。また、従来の構成では、行アドレスと列アドレスとを共通のアドレス入力に多重化して入力しているため、アドレスの制御が難しい。行アドレスと列アドレスを多重化して出力するための回路がロジック部に必要となり、消費電力が増加するという問題もある。
【0007】
そこで、本発明の目的はDRAMの外部入力をクロック入力に同期させることにより、DRAMのページモードでの読み出し又は書き込みを連続して行う場合のDRAMの制御を容易にすることにある。
【0008】
また、DRAMとロジック部がワンチップ化された集積回路において、ロジック部がDRAMのアドレスを制御する通常動作時と、外部からDRAMのアドレスを直接制御するテスト時とのアドレス制御方法を切り換えることにより、集積回路内部のアドレス制御を容易にして回路を簡素化すると共に消費電力を低減することも本発明の目的である。
【0009】
【課題を解決するための手段】
本発明の集積回路は、クロック入力、行アドレスを制御する第1の入力、列アドレスを制御する第2の入力、行アドレス及び列アドレスで読み出し又は書き込み対象のメモリセルが特定されるメモリセルアレイ、及びメモリセルアレイの列線に出力されたメモリセルのデータを増幅するセンスアンプを備え、通常動作時に、第1の入力をクロック入力に同期させた信号が変化して第1の論理レベルになるに伴って、行アドレスをクロック入力に同期させた信号により選択された行線に接続されたメモリセルのデータをセンスアンプで増幅し、引き続いて、クロック入力が変化するたびに、第1の入力が第1の論理レベルであり、かつ、第2の入力が所定の論理レベルであれば、列アドレスをクロックに同期させた信号により選択された列線に接続されたセンスアンプにより、データの読み出し又は書き込みを行うことを特徴とするDRAMと、DRAMにアクセスするロジック部と、通常動作時に、ロジック部がDRAMにアクセスするための行アドレスと列アドレスとを多重化せずにDRAMに与える信号選択回路とを備えたものである。
【0010】
上記のような構成によれば、DRAMのページモードでの読み出し又は書き込みを連続して行う場合、クロック入力にクロックを与え、例えば、行アドレス制御信号である第1の入力をLレベル、列アドレス制御信号である第2の入力をLレベルに設定し、列アドレスをクロック入力に同期させて与えれば、クロック入力が変化するたびに連続してデータの読み出し又は書き込みを行うことができる。第1及び第2の入力の論理レベルが上記の条件を満たさなくなれば、DRAMの読み出し又は書き込みは終了する。このようにして、DRAMの制御を容易にすることができる。また、行アドレス制御信号である第1の入力、列アドレス制御信号である第2の入力、行アドレス、列アドレス、入力データ、/ライトイネーブル信号がクロック入力に同期化されるため、メモリセルの読み出し、書き込みの制御タイミング信号の立ち上がり、立ち下がりのタイミングをクロック入力のみで生成し、タイミング生成回路を簡単な回路構成で実現することができる。
【0012】
好ましくは、信号選択回路は、外部入力端子からのアドレス信号とロジック部からのアドレス信号とのいずれか一方を選択してDRAMに与えるものであり、DRAMのテスト時は外部入力端子から入力される行アドレス及び列アドレスが時分割多重された信号を信号選択回路が選択してDRAMに与え。これにより、テスト時の外部端子数を低減することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら説明する。
(実施形態1)
図1に、本発明の実施形態1に係る集積回路の構成を示す。集積回路200は、DRAM1と、DRAM1のバーンインテスト時のテスト信号を発生するバーンインパターン発生回路11と、マイクロコンピュータ又はロジック回路からなるロジック部12等をワンチップに集積化したものである。13は論理積(AND)回路であり、14、16はインバータ回路であり、15は論理和(NOR)回路である。34は信号選択回路であり、ロジック部12の入力信号を制御すると共に、DRAM1への入力信号を切り替える。17〜21、115は1入力反転の2入力AND回路であり、22〜33、113、114はセレクタであり、116はトライステートバッファである。
【0018】
図2に、集積回路200に含まれるDRAM1のシステム構成を示す。図2において、2はDRAM1の動作を制御する制御回路であり、3は行アドレスを選択する行選択回路、4は列アドレスを選択する列選択回路、5はメモリセルアレイ、6はメモリセルアレイからの微小信号を増幅するセンスアンプ、7はメインアンプである。
【0019】
図3に、DRAM1の制御回路を示す。図3において、41〜43、48、49、64、67、71、77、81、85はインバータ回路であり、44、47、52はD型フリップフロップ回路(DFF)であり、45はANDとNORの複合回路である。50は行アドレスをラッチする行アドレスラッチであり、51、62、65、68、69、72、78、83、84、111はAND回路であり、53は列アドレスをラッチする列アドレスラッチである。54〜60、75、76、80、82、86は遅延回路であり、61はOR回路であり、63はイネーブル端子付きのDFFであり、66、70、79はセットリセット回路であり、73、74はバッファであり、89はDRAMのタイミング信号をつくるタイミング発生回路であり、118は行アドレスと列アドレスを判別して分離する判別回路である。
【0020】
図4はDRAM1のメモリセルアレイ5とその周辺の回路構成を示している。図4において、WL0〜WLNは行線であり、YL0〜YLMは列線であり、M00〜MNMはメモリセルである。T00〜T2Mはプリチャージ回路、S0〜SMはセンスアンプ、TG00〜TGM1はデータ線選択ゲート、93はメインアンプである。94、95はデータラッチ用のDFFであり、96、97はトライステートバッファであり、98はトライステートインバータ回路であり、112はイネーブル端子付きのDFFである。
【0021】
以上のように構成された集積回路について、まず通常動作時の信号選択回路の動作を説明する。図1において、通常動作時はテスト信号がLレベルに設定される。したがって、集積回路200内部の切り替え信号1とバーンインテスト信号は共にLレベルに固定され、切り替え信号2はHレベルに固定される。その結果、ロジック部12には信号選択回路34の1入力反転2入力AND回路17〜21及び115を介して、外部入力端子1〜5の信号及び外部入出力端子からトライステートバッファ116を通った信号が入力される。なお、外部入力端子5とその回路は複数ビット分設けられている。外部入出力端子とその回路も複数ビット分設けられている。
【0022】
また、信号選択回路34のセレクタ28〜32及び114がテスト信号によってA入力すなわちロジック部12から出力された信号を選択してDRAM1に与える。DRAM1の入力としてロジック部12の出力信号が選択されるので、第1の入力はロジック部12からの出力信号である行アドレス制御信号1が選択され、第2の入力はロジック部12からの出力信号である列アドレス制御信号1が選択され、/ライトイネーブル信号はロジック部12からの出力信号である/ライトイネーブル信号1が選択され、行アドレスはロジック部12からの出力信号である第1の行アドレスが選択され、列アドレスはロジック部12からの出力信号である第1の列アドレスが選択され、データ入力はロジック部12からの出力信号であるデータ入出力が選択されることになる。なお、信号名の頭に付された「/」は負論理を意味している。DRAM1のクロック入力については、信号選択回路34のセレクタ25でA入力が選択され、セレクタ33でA入力が選択されるので、ロジック部12の出力であるクロック1が選択される。
【0023】
次に、通常動作時のDRAMの動作について図6及び7のタイミングチャートを参照しながら説明する。まず、DRAM1のページモードでの読み出し動作のタイミングが図6に示されている。時刻t0において、行アドレス制御信号である第1の入力を図3のDFF44によりクロックに同期させた信号RASLがLレベルであるので、図4のPチャンネル(Pch)トランジスタT00〜T0M、T10〜T1M、T20〜T2Mがオンになり、ビット線0〜M、/ビット線0〜Mが1/2Vddにプリチャージされ、イコライズされる。
【0024】
時刻t1において、第1の入力をクロックに同期させた信号RASLがLレベルからHレベルに立ち上がると、図4のPchトランジスタT00〜T0M、T10〜T1M、T20〜T2Mがオフになり、ビット線0〜M、/ビット線0〜Mのプリチャージ、イコライズが停止される。図3の行アドレスラッチ50は、行アドレスをクロック入力によりラッチし、行アドレス3を出力する。図4において、RASLがHレベルなので、行アドレス3により選択された行線WLnがHレベルになる。図3において、遅延回路1(54)の出力であるセンスアンプイネーブルが時刻t1から遅延時間DLY1後にHレベルになるに伴って、センスアンプS0〜SMが能動状態になり、行線WLnに接続されたメモリセルのデータがビット線0〜Mに読み出され、センスアンプS0〜SMで差動増幅される。
【0025】
時刻t2において、第1の入力と共に第2の入力(列アドレス制御信号)がLレベルであるため、図3のインバータ41、42の出力が共にHレベルになり、ANDゲート51の出力がHレベルになる。その結果、列アドレスラッチ53がイネーブルになり、クロックの立ち上がりで列アドレスがラッチされ、DFF52の出力である列フラグがHレベルになる。
【0026】
図3の破線で囲まれたタイミング発生回路89の動作を説明する。時刻t2以前は列フラグがLレベルであり、ANDゲート65の出力がLレベルであるため、セットリセット回路66の出力はLレベルとなる。したがって、データ線プリチャージ信号/DPRSがLレベルになり、Pchトランジスタ90、91、92がオンになり、データ線、/データ線共にVddにプリチャージされ、イコライズされる。
【0027】
クロック入力が遅延回路2(55)で遅延時間DLY2だけ遅延し、この信号が遅延回路3(56)とインバータ64に入力される。列フラグがHレベルであるのでANDゲート65からワンショットパルスが出力され、セットリセット回路66がセットされる。時刻t2から遅延時間DLY2だけ遅れたタイミングで/DPRSが立ち上がり、データ線のプリチャージ及びイコライズが解除され、同時に列選択イネーブル信号YLENが立ち上がる。図4において、列アドレス3で選択された列信号であるYLmを列選択回路4がHレベルにするので、NchトランジスタTGm0、TGm1がオンになる。その結果、センスアンプSmの出力がデータ線及び/データ線に与えられる。
【0028】
図3のタイミング発生回路89において、CLKD1を遅延回路4(57)で遅延時間DLY4だけ遅らせた信号CLKD2が、遅延回路3(56)とインバータ67とに入力される。列フラグがHレベルであるのでANDゲート65からCLKD2の立ち上がりに同期したワンショットパルスが出力され、セットリセット回路70がセットされる。YLENの立ち上がりから遅延時間DLY4だけ遅れたタイミングでメインアンプイネーブル信号MAENがLレベルからHレベルに立ち上がり、メインアンプ93が動作を開始する。この結果、データ線及び/データ線の差動信号電圧が増幅され出力される。
【0029】
図3のタイミング発生回路89において、CLKD2を遅延回路5(58)で遅延時間DLY5だけ遅らせた信号CLKD3が遅延回路3(76)とインバータ77とに入力される。列フラグがHレベルであるので、ANDゲート78からCLKD2の立ち上がりに同期したワンショットパルスが出力され、セットリセット回路79がセットされる。MAEN信号の立ち上がりから遅延時間DLY5だけ遅れたタイミングでデータラッチクロック1(以下、DCK1と略記する)がLレベルからHレベルに立ち上がり、CLKD3を遅延回路7(80)で遅延時間DLY7だけ遅らせた信号CLKD4が遅延回路3(82)とインバータ81に入力される。列フラグがHレベルであるので、ANDゲート83からCLKD4の立ち上がりに同期したワンショットパルスが出力され、セットリセット回路79がリセットされ、DCK1はHレベルからLレベルになる。
【0030】
DCK1の立ち上がりでDFF94は、メインアンプ93の出力をラッチする。CLKD3を遅延回路6(59)で遅延時間DLY6だけ遅らせた信号CLKD5が遅延回路3(56)とインバータ71に入力され、CLKD5の立ち上がりに同期したワンショットパルスが出力される。セットリセット回路66、70がリセットされ、MAEN、YLEN、/PRSがHレベルからLレベルに立ち下がり、メインアンプ7が動作を停止する。次のデータの読み出しに備えてデータ線及び/データ線がプリチャージされ、列信号YL0〜YLMがすべてLレベルになり、NchトランジスタTG00〜TGM0、TG01〜TGM1がすべてオフになる。
【0031】
時刻t3において、図3における列フラグがHレベル、第1及び第2の入力が共にLレベル、そして/ライトイネーブル信号3がHレベルであるので、AND−NOR複合ゲート45の出力がHレベルになる。インバータ48の出力がLレベル、ORゲート61及びANDゲート62の出力が共にがHレベルであるので、時刻t3においてDFF63がHレベルになると、データ出力イネーブル信号(以下、DOENと略記する)がLレベルからHレベルに変化する。
【0032】
図3のタイミング発生回路89において、クロック入力を遅延回路8で遅延時間DLY8だけ遅らせた信号がANDゲート84に入力される。DOENがHレベルであるため、図6のタイミングチャートに示すように、時刻t3のクロックの立ち上がりから時間DLY8だけ遅れたタイミングでデータラッチクロック2(以下、DCK2と略記する)がLレベルからHレベルに変化する。このタイミングで図4におけるDFF94の出力信号をDFF95がラッチする。
【0033】
この時、DOENがHレベルであるのでDFF95の出力はトライステートバッファ96を通る。この結果、図6のタイミングチャートに示すようにデータD1がデータ入出力から出力される。データD1に対応する列アドレスCOL1が時刻t2でクロック入力によってラッチされてから、2クロック後の時刻t4におけるクロックの立ち上がりで、ロジック部12がデータD1を取り込む。これで列アドレスCOL1に対応するメモリセルのデータの読み出しが完了する。
【0034】
時刻t3、t4、t5においても、時刻t2の場合と同じようにクロック入力の立ち上がりで第1及び第2の入力が共にLレベルであり、/ライトイネーブル信号がHレベルである。したがって、前述したようにクロックの立ち上がりで列アドレスをラッチし、ラッチした列アドレス3で選択されたメモリセルのデータを図6のタイミングチャートに示したように順番にデータ入出力に読み出す。時刻t7において、第1の入力及び第2の入力が共にHレベルであり、AND・NOR複合ゲート45の出力がLレベルになるため、DFF63がLレベルになり、DOENがLレベルになり、入出力データの出力がハイインピーダンスになる。
【0035】
つぎに、DRAM1のページモードでの書き込み動作について、図7のタイミングチャートを用いて説明する。時刻t0及びt1における動作は前述のページモードでの読み出し動作と同じである。つまり、時刻t0において、行アドレス制御信号である第1の入力を図3のDFF44によりクロックに同期させた信号RASLがLレベルであるため、1/2Vddにプリチャージされ、イコライズされる。
【0036】
時刻t1において、第1の入力をクロックに同期させた信号RASLがHレベルになるため、ビット線0〜M、/ビット線0〜Mのプリチャージ及びイコライズが停止され、行アドレスラッチ50は行アドレスをクロック入力によりラッチして行アドレス3を出力する。RASLがHレベルなので、行アドレス3により選択された行線WLnがHレベルになり、図3において、遅延回路1(54)の出力であるセンスアンプイネーブルが時刻t1より時間DLY1後にHレベルになる。その結果、センスアンプS0〜SMが活性化され、WLnに接続されたメモリセルのデータが、ビット線0〜Mに読み出されてセンスアンプS0〜SMで差動増幅される。
【0037】
時刻t2において、第1の入力と共に第2の入力(列アドレス制御信号)がLレベルであるので、図3のインバータ41、42の出力がHレベルになり、ANDゲート51がHレベルになり、列アドレスラッチ53がイネーブルになる。時刻t2において、クロックの立ち上がりで列アドレスがラッチされ、DFF52の出力である列フラグがHレベルになる。同時に、インバータ43の出力がDFF47においてクロックの立ち上がりでラッチされ、/ライトイネーブル信号がLレベルであるので、DFF47の出力であるライトフラグはHレベルになり、インバータ85の出力であるリードフラグはLレベルになる。インバータ43の出力がHレベルでANDゲート51の出力がHレベルであるため、ANDゲート111の出力、つまりライトデータラッチイネーブル信号がHレベルになる。その結果、クロックの立ち上がりで入力データがラッチされる。/ライトイネーブル信号3がLレベルであるため、AND・NOR複合ゲート45の出力がLレベルになり、インバータ48の出力がHレベルになり、ORゲート61の出力がHレベルになる。ANDゲート62の出力がLレベルであるため、クロックの立ち上がりでDFF63の出力、すなわちDOENがLレベルになる。
【0038】
タイミング発生回路89の動作を説明する。クロック入力が、遅延回路2(55)で時間DLY2だけ遅れた信号が遅延回路3(56)とインバータ64に入力される。列フラグがHレベルであるのでANDゲート65からワンショットパルスが出力され、セットリセット回路66がセットされる。時刻t2から遅延時間DLY2だけ遅れたタイミングで/DPRSが立ち上がると、データ線のプリチャージ及びイコライズが解除され、同時に列選択イネーブル信号YLENが立ち上がる。
【0039】
列選択回路4が列アドレス3で選択された列信号であるYLmがHレベルになると、NchトランジスタTGm0、TGm1がオンになり、センスアンプSmの出力がデータ線及び/データ線に与えられる。同時に、ライトフラグがHレベルであるので、ANDゲート69からセットリセット回路66の出力が出力され、ライト入力イネーブル信号が時刻t2から遅延時間DLY2だけ遅れたタイミングでLレベルからHレベルに立ち上がる。
【0040】
ライト入力イネーブル信号がHレベルになると、図4において、トライステートバッファ97及びトライステートインバータ98がイネーブルになり、DFF112の出力であるデータ入力をラッチした信号の情報電圧でビット線m及び/ビット線mが強制的に書き換えられ、メモリセルMnmにこの情報電圧が書き込まれる。リードフラグがLレベルであるので、タイミング発生回路89においてANDゲート78及びANDゲート68がLレベルになり、セットリセット回路79及びセットリセット回路70はセットされない。したがって、ライト動作時はDCK1及びMAENはLOWレベルに固定され、メインアンプ93は動作を停止する。
【0041】
また、DOENがLレベルであるため、ANDゲート84がLレベルになり、DCK2はLレベルに固定される。また、CLKD3を遅延回路6(59)で遅延時間DLY6だけ遅らせた信号CLKD5が遅延回路3(56)とインバータ71に入力され、CLKD5の立ち上がりに同期したワンショットパルスが出力される。セットリセット回路66、70がリセットされ、YLEN、/PRSがHレベルからLレベルに立ち下がり、次のデータの読み出しに備えてデータ線及び/データ線がプリチャージされ、列信号YL0〜YLMがすべてLレベルになり、NchトランジスタTG00〜TGM0、TG01〜TGM1がすべてオフになる。
【0042】
時刻t3、t4、t5においても時刻t2のときと同じようにクロック入力の立ち上がりにおいて、第1及び第2の入力が共にLレベルであり、/ライトイネーブル信号がLレベルであるから、前述したようにクロックの立ち上がりで列アドレスをラッチして、ラッチした列アドレス3で選択されたメモリセルにクロックの立ち上がりでラッチした入力データを書き込む。
【0043】
以上説明したように、クロック入力がLレベルからHレベルに変化したときに、行アドレス制御信号(第1の入力)及び列アドレス制御信号(第2の入力)が共にLレベルであり、/ライトイネーブル信号がHレベルであれば、行アドレス及び列アドレスで選択されたメモリセルのデータが読み出される。また、クロック入力がLレベルからHレベルに変化したときに、行アドレス制御信号及び列アドレス制御信号が共にLレベルであり、/ライトイネーブル信号がLレベルであれば、行アドレス及び列アドレスで選択されたメモリセルにデータが書き込まれる。このようなDRAMの回路構成としたことにより、DRAMのページモードでの読み出し又は書き込みを連続して行う場合、行アドレス制御信号及び列アドレス制御信号を共にLレベルに設定し、列アドレスをクロック信号に同期させて与えれば、クロック信号が変化する度にデータの読み出し又は書き込みが連続して実行される。したがって、前述した従来の一般的なDRAMに比べて制御が容易になる。
【0044】
また、行アドレス制御信号(第1の入力)、列アドレス制御信号(第2の入力)、行アドレス、列アドレス、入力データ、及び/ライトイネーブル信号をクロック入力に同期させ、タイミング発生回路(図3の89)がメモリセルの読み出し及び書き込みの制御タイミング信号の立ち上がり及び立ち下がりのタイミングをクロック入力のみから生成している。したがって、タイミング生成回路を簡単な回路構成で実現することができる。また信号選択回路(図1の34)の働きにより、ロジック部12がDRAM1にアクセスする場合は、行アドレスと列アドレスを各別の出力ポートから同時に与えることができるため、アドレス制御を容易にすることができる。つまり、ロジック部で行アドレスと列アドレスを多重化して出力する回路が不要になり、回路の簡素化と消費電力の低減が実現される。
【0045】
つぎに、上記のようなDRAM1を含む集積回路200のテスト時における信号選択回路34の動作について説明する。図1において、テスト時は外部から与えるテスト信号がHレベル、テストモード信号がLレベルに設定されるので、集積回路200の内部の切り替え信号1はHレベルに固定され、バーンインテスト信号と切り替え信号2はLレベルに固定される。したがって、信号選択回路34のセレクタ22〜24、26、27、113でA入力が選択されるので、外部入力端子1〜3、5の信号及び外部入出力端子からトライステートバッファ116を通った信号が選択される。また、セレクタ28〜32、114はB入力、すなわち、セレクタ22〜24、26、27、113の出力信号を選択する。
【0046】
この結果、DRAM1には外部入力端子1〜3、5、及び外部入出力端子の信号が入力される。つまり、第1の入力として外部入力端子1が選択され、第2の入力として外部入力端子2が選択される。また、/ライトイネーブル信号として外部入力端子3が選択され、行アドレス及び列アドレスとして外部入力端子5が選択され、データ入力として外部入出力端子が選択される。また、セレクタ25がB入力を選択し、セレクタ33がA入力を選択するので、クロック入力として外部入力端子4の信号が選択される。この時ロジック部の入力は、1入力反転2入力AND回路17〜21によりLレベルに固定され、ロジック部は動作しない。
【0047】
DRAMのアドレス入力として、行アドレス及び列アドレスは共に外部入力端子5から入力される。つまり、内蔵DRAM1のテストのために集積回路200の外部端子数が増加するのを抑えるために、行アドレスと列アドレスを多重化した信号を外部入力端子5から与える。図3の制御回路図及び図8のテスト時の読み出し動作タイミングチャートを用いてDRAMのテスト時の動作、及び行アドレスと列アドレスを分離する判別回路の動作を説明する。
【0048】
上述のように、テスト時は外部からの入力でDRAMの制御を行う。つまり、外部入力端子4から入力されたクロック入力、外部入力端子1から入力された第1の入力、外部入力端子2から入力された第2の入力、外部入力端子3から入力された/ライトイネーブル信号、外部入力端子5から入力された行アドレスと列アドレスを多重化した信号、さらに外部入出力端子から入力されたデータ入力がDRAMに入力される。
【0049】
図8に示すように、クロック入力、第1及び第2の入力、/ライトイネーブル信号、そして行アドレスと列アドレスを多重化した信号が入力されたとき、行アドレスラッチイネーブルは、図3の判別回路において第1の入力をインバータ回路41で反転した信号をDFF44でラッチし、さらにインバータ回路49で反転した信号であるから、時刻t1から少し遅れてHレベルからLレベルに変化し、同様に時刻t7から少し遅れてLレベルからHレベルに変化する。図3の行アドレスラッチ50は行アドレスラッチイネーブルがHレベルのときにクロック入力の立ち上がりでデータを取り込むので、時刻t1で行アドレスのデータROW1を取り込む。また、行アドレスラッチイネーブルがLレベルのときはデータをホールドするので、行アドレス3は時刻t1からt8までROW1を出力し、行アドレスのみの信号となる。
【0050】
列アドレスラッチイネーブルは、図3の判別回路118において第1の入力をインバータ回路41で反転した信号と、第2の入力をインバータ回路42で反転した信号を入力とするAND回路51の出力信号であるので、時刻t1の後に第2の入力がHレベルからLレベルに変化した後、LレベルからHレベルに変化し、同様に時刻t6の後に第1の入力がLレベルからHレベルに変化した後、HレベルからLレベルに変化する。
【0051】
列アドレスラッチ53は列アドレスラッチイネーブルがHレベルのときにクロック入力の立ち上がりでデータを取り込むので、時刻t2で列アドレスのデータCOL1を取り込み、時刻t3で列アドレスのデータCOL2を取り込み、時刻t4で列アドレスのデータCOL3を取り込み、時刻t5で列アドレスのデータCOL4を取り込み、時刻t6で列アドレスのデータCOL5を取り込む。従って、列アドレス3は時刻t2から時刻t7までCOL1〜COL5を出力し、列アドレスのみの信号となる。このように、行アドレスと列アドレスを多重化した外部入力端子5の信号を判別回路118で行アドレスと列アドレスに分離する。その後の動作は通常動作時と同様に行アドレス3と列アドレス3で指定したメモリセルのデータを読み出し、外部入出力端子に出力する。書き込み動作時も同様に判別回路118で行アドレスと列アドレスを分離し、メモリセルを指定してデータを書き込む。
【0052】
以上説明したようにDRAMテスト時には、行アドレスと列アドレスを多重化した信号を外部から与え、判別回路118で行アドレスと列アドレスを分離することにより、内蔵DRAMのテストのために集積回路の外部端子数が増加するのを抑えている。
【0053】
(実施形態2)
図5に、本発明の実施形態2に係る集積回路のバーンインテスト装置300のシステム構成を示す。図中、46はバーンインテスト信号発生器であり、ロジック部(マイクロコンピュータ又はロジック回路)のバーンインテスト用パターン信号とDRAM用クロック信号及びバーンイン切り替え信号を発生する。k00〜kmnは複数の集積回路を同時にテストするための複数のソケットであり、バーンインテスト用のバーンインボード100に搭載されている。
【0054】
以下、バーンインテスト装置300を用いて集積回路のバーンインテストを行う方法について説明する。集積回路200のテストモード信号(図1参照)がバインボード100上でHレベルに固定され、バーンインテスト信号発生器46がバーンイン切替信号をLレベルにすると、集積回路200のセレクタ28〜32(図1)はA入力を選択して出力するため、ロジック部12の信号によりDRAM1が制御されるモードに設定される。バーンインテスト信号発生器46はバーンインボード100上のk00〜kmnのソケットにロジック部のバーンイン用テストパターン信号を与え、DRAM用クロック信号を停止して、集積回路200のロジック部のバーンインテストをDRAMを使用して行う。
ロジック部のバーンインテストが終了すると、バーンインテスト信号発生器46は、バーンイン切替信号をHレベルにして、ロジック部用テストパターン信号発生器を停止し、DRAM用クロック信号をソケットk00〜kmnに印加する。集積回路200は、テストモード信号がHレベルに固定されており、バーンイン切り替え信号がHレベルであるので、ANDゲート13の出力がHレベルになり、バーンインテスト信号がHレベルになる。その結果、バーンインパターン発生回路11が動作を開始し、NORゲート15の出力である切り替え信号1がLレベルになり、兼用端子である外部入力端子1〜5の信号が論理ゲート17〜21を介してロジック部12に入力される。
【0055】
この時、インバータ16の出力である切り替え信号2がHレベルになるため、セレクタ22〜27はB入力を選択し、セレクタ28〜32はB入力を選択する。したがって、DRAM1の第1の入力、第2の入力、/ライトイネーブル信号、クロック入力、行アドレス、列アドレス、入力データとして、バーンインパターン発生回路11の出力信号が与えられる。バーンインパターン発生回路11は、図9のタイミングチャートに示すように、外部入力端子4から入力されたクロックを分周して得られるクロック2をDRAMに与え、行アドレス制御信号2、列アドレス制御信号2、ライトイネーブル制御信号2、行アドレス2、列アドレス2、バーンイン入力データを生成する。
【0056】
最初のライトサイクルで行アドレス2及び列アドレス2で指定したアドレスにバーンイン入力データ(図9ではデータA)が書き込まれ、次のリードサイクルで同じアドレスのデータAが読み出される。リードサイクルが終了すると、列アドレスは変化せずに行アドレスがインクリメントされ、同じように書き込みと読み出しを行う。アドレスをインクリメントしながら全アドレス空間の書き込みと読み出しを繰り返し行い、メモリセルにストレスを印加することによってDRAMのバーンインテストが行われる。
【0057】
以上説明したように、本発明のDRAM内蔵集積回路はDRAMテスト用のバーンインパターン発生回路を備えているので、DRAMのバーンインテスト時に必要な外部信号はDRAM用クロック信号とバーンイン切り替え信号の2本だけでよい。したがって、ロジック部のバーンイン時とDRAMのバーンイン時とでバーンインボードの仕様をほとんど変える必要が無く、同一のバーンインボードを用いてロジック部とDRAMのバーンインテストを行うことができる。しかも、バーンイン切り替え信号を用いて、外部からソフトウェアでロジック部のバーンインとDRAMのバーンインとのモード切替を行うことができるので、テストが効率的になる。
【0058】
また、バーンイン切り替え信号をLレベルに設定してロジック部がDRAMを制御するモードにすれば、ロジック部のバーンインテストをDRAMを使用して行うことができるので、外部とDRAMとの間でやりとりする信号が不要になる。ロジック単体でバーンインテストを行う場合に比べてテストピンを削減することができると共に、集積回路に与えるテストパターンを外部で作る必要が無くなる。さらに、内部回路又は外部から予めDRAMにテストパターンデータを書いておいてロジック部のテストを行えば、外部からテストパターンを与える場合に比べて高速で動作させることができるのでテスト時間が短縮される。
【0059】
(実施形態3)
つぎに、本発明の実施形態3に係る集積回路のバーンインテストについて説明する。図5においてテストモード信号がHレベルに固定された状態でバーンインテスト信号発生器46からのバーンイン切り替え信号をHレベルに設定すると、図1において集積回路200のANDゲート13の出力がHレベルになりバーンインテスト信号がHレベルになる。また、信号選択回路34において、NORゲート15の出力である切り替え信号1がLレベルになり、兼用端子である外部入力端子1〜5の信号が論理ゲート17〜21を通ってロジック部12に入力される。
【0060】
この時、インバータ16の出力である切り替え信号2がHレベルになるため、セレクタ22〜27はB入力を選択し、セレクタ28〜32はB入力を選択する。この結果、DRAM1の第1の入力、第2の入力、/ライトイネーブル信号、クロック入力、行アドレス、列アドレス、入力データとして、バーンインパターン発生回路11の出力信号が与えられる。バーンインテスト信号がHレベルであるので、バーンインパターン発生回路11は、実施形態2と同様にアドレスをインクリメントしながら全アドレス空間の書き込みと読み出しとを繰り返し行い、メモリセルにストレスを印加することによりDRAMのバーンインテストが行われる。同時に、バーンインテスト信号発生器46は、外部入力端子1〜5を含む複数本の信号により、バーンインボード上のソケットK00〜ソケットKmnにロジック部のバーンインテストパターンを与える。このようにして、ロジック部12のバーンインテストと同時にDRAMのバーンインテストを行う。
【0061】
以上説明したように、本発明の集積回路200はDRAM用バーンインパターン発生回路を備えているので、DRAMのバーンインテスト時に必要な外部信号は、DRAM用クロック信号とバーンイン切り替え信号だけでよい。そこで、信号選択回路34により外部入力端子1〜5及び外部入出力端子をロジック部で使用できるように切り替えることにより、DRAMのバーンインテストと並列にロジック部のバーンインテストを行う場合でも、DRAM用クロック信号とバーンイン切り替え信号とテストモード信号以外のすべての外部端子をロジック部のバーンインテストに用いることができる。このようにして、多くの外部端子が必要なロジック部のバーンインテストをDRAMのバーンインテストと並列に行うことができる。
【0062】
半導体の微細化技術の進歩に伴って内蔵するDRAMの容量及びビット幅が大きくなり、DRAMのテスト用の信号本数が多くなり、DRAMのテストを行うための兼用端子が多くなったとしても、ロジック部のバーンインテストを行うための外部端子として兼用端子を使用できるので、DRAMのバーンインテストと並列にロジック部のバーンインテストを支障無く行うことができる。その結果、バーンイン時のテスト時間を削減することができる。
【0063】
【発明の効果】
以上説明したように、本発明のDRAMの回路構成によれば、ページモードでの読み出し又は書き込みを連続して行う場合、行アドレス制御信号をLレベル、列アドレス制御信号をLレベルに設定し、列アドレスをクロックに同期して与えれば、クロックが変化するたびに連続してデータの読み出し又は書き込みが行われる。この結果、DRAMの制御を容易にすることができる。
【0064】
また、行アドレス制御信号、列アドレス制御信号、行アドレス、列アドレス、入力データ、/ライトイネーブル信号をクロック入力に同期させるので、メモリセルの読み出し及び書き込みの制御タイミング信号の立ち上がり及び立ち下がりのタイミングをクロック入力のみから生成するタイミング生成回路を簡単な回路構成で実現することができる。
【0065】
また、本発明のDRAM内蔵集積回路によれば、集積回路内部でのアドレス制御を容易にし、ロジック部での回路の簡素化と消費電力の低減を実現しながら、内蔵DRAMのテストのために必要な外部入力端子の増加を抑えることができる
【図面の簡単な説明】
【図1】本発明の実施形態1に係る集積回路の構成を示す回路図
【図2】図1の集積回路に内蔵されたDRAMのシステム構成図
【図3】図1の集積回路における制御回路図
【図4】図1の集積回路におけるメモリセルとその周辺の回路図
【図5】本発明の実施形態2及び実施形態3に係るバーンインテスト装置のシステム構成図
【図6】図1の集積回路の通常動作時におけるDRAMのページモードでの読み出しタイミングチャート
【図7】図1の集積回路の通常動作時におけるDRAMのページモードでの書き込みタイミングチャート
【図8】図1の集積回路のテスト時におけるDRAMの読み出しタイミングチャート
【図9】図5のバーンインテスト装置におけるバーンインパターン発生回路のタイミングチャート
【図10】従来の一般的なDRAMのシステム構成図
【図11】従来のDRAMのEDO方式のページモード読み出しタイミング図
【符号の説明】
1 DRAM
2 制御回路
3 行選択回路
4 列選択回路
5 メモリセルアレイ
6 センスアンプ
7 メインアンプ
11 バーンインパターン発生回路
12 ロジック部
34 信号選択回路
46 バーンインテスト信号発生器
50 行アドレスラッチ
53 列アドレスラッチ
89 タイミング発生回路
100 バーンインボード
118 判別回路
200 集積回路
300 バーンインテスト装置

Claims (2)

  1. クロック入力、行アドレスを制御する第1の入力、列アドレスを制御する第2の入力、行アドレス及び列アドレスで読み出し又は書き込み対象のメモリセルが特定されるメモリセルアレイ、及び前記メモリセルアレイの列線に出力されたメモリセルのデータを増幅するセンスアンプを備え、
    通常動作時に、前記第1の入力を前記クロック入力に同期させた信号が変化して第1の論理レベルになるに伴って、前記行アドレスを前記クロック入力に同期させた信号により選択された行線に接続されたメモリセルのデータを前記センスアンプで増幅し、
    引き続いて、前記クロック入力が変化するたびに、前記第1の入力が第1の論理レベルであり、かつ、前記第2の入力が所定の論理レベルであれば、前記列アドレスを前記クロックに同期させた信号により選択された列線に接続されたセンスアンプにより、データの読み出し又は書き込みを行うことを特徴とするDRAMと、
    前記DRAMにアクセスするロジック部と、
    前記通常動作時に、前記ロジック部が前記DRAMにアクセスするための行アドレスと列アドレスとを多重化せずに前記DRAMに与える信号選択回路とを備えた集積回路。
  2. 前記信号選択回路は、外部入力端子からのアドレス信号と前記ロジック部からのアドレス信号とのいずれか一方を選択して前記DRAMに与えるものであり、前記DRAMのテスト時は前記外部入力端子から入力される行アドレス及び列アドレスが時分割多重された信号を前記信号選択回路が選択して前記DRAMに与えることを特徴とする請求項1記載の集積回路。
JP31561397A 1997-11-17 1997-11-17 Dramを含む集積回路 Expired - Fee Related JP3707919B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31561397A JP3707919B2 (ja) 1997-11-17 1997-11-17 Dramを含む集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31561397A JP3707919B2 (ja) 1997-11-17 1997-11-17 Dramを含む集積回路

Publications (2)

Publication Number Publication Date
JPH11149767A JPH11149767A (ja) 1999-06-02
JP3707919B2 true JP3707919B2 (ja) 2005-10-19

Family

ID=18067480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31561397A Expired - Fee Related JP3707919B2 (ja) 1997-11-17 1997-11-17 Dramを含む集積回路

Country Status (1)

Country Link
JP (1) JP3707919B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214839A (ja) * 2005-02-03 2006-08-17 Fujitsu Ltd メモリ内蔵デバイスへのテストパターン発生装置及びテストパターン発生方法
US20070076502A1 (en) * 2005-09-30 2007-04-05 Pyeon Hong B Daisy chain cascading devices
JP5115090B2 (ja) * 2007-08-10 2013-01-09 富士通セミコンダクター株式会社 半導体メモリ、半導体メモリのテスト方法およびシステム

Also Published As

Publication number Publication date
JPH11149767A (ja) 1999-06-02

Similar Documents

Publication Publication Date Title
US7562269B2 (en) Semiconductor storage device
KR100945968B1 (ko) 반도체기억장치
JPH0676566A (ja) 半導体メモリ装置
JP3180317B2 (ja) 半導体記憶装置
JPH0896573A (ja) 半導体記憶装置
JPH11191292A (ja) 半導体記憶装置およびそのバーストアドレスカウンタ
KR960012013A (ko) 동기형 반도체 기억 장치
JPH07326190A (ja) 半導体記憶装置
JP2001167580A (ja) 半導体記憶装置
JP3078934B2 (ja) 同期型ランダムアクセスメモリ
JPH03715B2 (ja)
US6708255B2 (en) Variable input/output control device in synchronous semiconductor device
JP2999869B2 (ja) メモリアクセス方式
US5572477A (en) Video ram method for outputting serial data
JP2746222B2 (ja) 半導体記憶装置
JP3707919B2 (ja) Dramを含む集積回路
JPH1186557A (ja) 同期型記憶装置および同期型記憶装置におけるデータ読み出し方法
JPH04212776A (ja) 半導体記憶装置のテスト回路
JPH08273368A (ja) 半導体記憶装置
JPH08147972A (ja) 同期式メモリ装置
JP2788729B2 (ja) 制御信号発生回路
JP3654013B2 (ja) 半導体装置及びそのテスト方法
JPH06267279A (ja) 半導体記憶装置
JPS63108747A (ja) ゲ−トアレイ集積回路
JP3057728B2 (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees