US20070037865A1 - Sirtuin modulating compounds - Google Patents

Sirtuin modulating compounds Download PDF

Info

Publication number
US20070037865A1
US20070037865A1 US11/499,920 US49992006A US2007037865A1 US 20070037865 A1 US20070037865 A1 US 20070037865A1 US 49992006 A US49992006 A US 49992006A US 2007037865 A1 US2007037865 A1 US 2007037865A1
Authority
US
United States
Prior art keywords
optionally substituted
unsubstituted
independently selected
zero
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/499,920
Other languages
English (en)
Inventor
Joseph Nunes
Jill Milne
Jean Bemis
Roger Xie
Chi Vu
Pui Ng
Jeremy Disch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sirtris Pharmaceuticals Inc
Original Assignee
Sirtris Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirtris Pharmaceuticals Inc filed Critical Sirtris Pharmaceuticals Inc
Priority to US11/499,920 priority Critical patent/US20070037865A1/en
Assigned to SIRTRIS PHARMACEUTICALS, INC. reassignment SIRTRIS PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEMIS, JEAN, DISCH, JEREMY S., MILNE, JILL, NG, PUI YEE, NUNES, JOSEPH J., VU, CHI B., XIE, ROGER
Publication of US20070037865A1 publication Critical patent/US20070037865A1/en
Priority to US13/249,131 priority patent/US8163908B2/en
Priority to US13/442,630 priority patent/US20120197013A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/06Antiabortive agents; Labour repressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the Silent Information Regulator (SIR) family of genes represents a highly conserved group of genes present in the genomes of organisms ranging from archaebacteria to a variety of eukaryotes (Frye, 2000).
  • the encoded SIR proteins are involved in diverse processes from regulation of gene silencing to DNA repair.
  • the proteins encoded by members of the SIR gene family show high sequence conservation in a 250 amino acid core domain.
  • a well-characterized gene in this family is S. cerevisiae SIR2, which is involved in silencing HM loci that contain information specifying yeast mating type, telomere position effects and cell aging (Guarente, 1999; Kaeberlein et al., 1999; Shore, 2000).
  • the yeast Sir2 protein belongs to a family of histone deacetylases (reviewed in Guarente, 2000; Shore, 2000).
  • the Sir2 homolog, CobB in Salmonella typhimurium, functions as an NAD (nicotinamide adenine dinucleotide)-dependent ADP-ribosyl transferase (Tsang and Escalante-Semerena, 1998).
  • the Sir2 protein is a class III deacetylase which uses NAD as a cosubstrate (Imai et al., 2000; Moazed, 2001; Smith et al., 2000; Tanner et al., 2000; Tanny and Moazed, 2001). Unlike other deacetylases, many of which are involved in gene silencing, Sir2 is insensitive to class I and II histone deacetylase inhibitors like trichostatin A (TSA) (Imai et al., 2000; Landry et al., 2000a; Smith et al., 2000).
  • TSA trichostatin A
  • acetylation of acetyl-lysine by Sir2 is tightly coupled to NAD hydrolysis, producing nicotinamide and a novel acetyl-ADP ribose compound (Tanner et al., 2000; Landry et al., 2000b; Tanny and Moazed, 2001).
  • the NAD-dependent deacetylase activity of Sir2 is essential for its functions which can connect its biological role with cellular metabolism in yeast (Guarente, 2000; Imai et al., 2000; Lin et al., 2000; Smith et al., 2000).
  • Sir2 homologs have NAD-dependent histone deacetylase activity (Imai et al., 2000; Smith et al., 2000). Most information about Sir2 mediated functions comes from the studies in yeast (Gartenberg, 2000; Gottschling, 2000).
  • SIRT3 is a homolog of SIRT1 that is conserved in prokaryotes and eukaryotes (P. Onyango et al., Proc. Natl. Acad. Sci. USA 99: 13653-13658 (2002)).
  • the SIRT3 protein is targeted to the mitochondrial cristae by a unique domain located at the N-terminus.
  • SIRT3 has NAD+-dependent protein deacetylase activity and is upbiquitously expressed, particularly in metabolically active tissues.
  • SIRT3 Upon transfer to the mitochondria, SIRT3 is believed to be cleaved into a smaller, active form by a mitochondrial matrix processing peptidase (MPP) (B. Schwer et al., J. Cell Biol. 158: 647-657 (2002)).
  • MPP mitochondrial matrix processing peptidase
  • Caloric restriction has been known for over 70 years to improve the health and extend the lifespan of mammals (Masoro, 2000). Yeast life span, like that of metazoans, is also extended by interventions that resemble caloric restriction, such as low glucose. The discovery that both yeast and flies lacking the SIR2 gene do not live longer when calorically restricted provides evidence that SIR2 genes mediate the beneficial health effects of this diet (Anderson et al., 2003; Helfand and Rogina, 2004).
  • yeast glucose-responsive cAMP adenosine 3′,5′-monophosphate-dependent (PKA) pathway
  • PKA adenosine 3′,5′-monophosphate-dependent pathway
  • novel sirtuin-modulating compounds and methods of use thereof.
  • the invention provides sirtuin-modulating compounds of Formula (I): or a salt thereof, where:
  • Ring A is optionally substituted, fused to another ring or both;
  • Ring B is substituted with at least one carboxy, substituted or unsubstituted arylcarboxamine, substituted or unsubstituted aralkylcarboxamine, substituted or unsubstituted heteroaryl group, substituted or unsubstituted heterocyclylcarbonylethenyl, or polycyclic aryl group or is fused to an aryl ring and is optionally substituted by one or more additional groups.
  • the invention provides sirtuin-modulating compounds of Formula (II): or a salt thereof, where:
  • Ring A is optionally substituted
  • R 1 , R 2 , R 3 and R 4 are independently selected from the group consisting of —H, halogen, —OR 5 , —CN, —CO 2 R 5 , —OCOR 5 , —OCO 2 R 5 , —C(O)NR 5 R 6 , —OC(O)NR 5 R 6 , —C(O)R 5 , —COR 5 , —SR 5 , —OSO 3 H, —S(O) n R 5 , —S(O) n OR 5 , —S(O) n NR 5 R 6 , —NR 5 R 6 , —NR 5 C(O)OR 6 , —NR 5 C(O)R 6 and —NO 2 ;
  • R 5 and R 6 are independently —H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group;
  • n 1 or 2.
  • the invention provides sirtuin-modulating compounds of Formula (III): or a salt thereof, where:
  • Ring A is optionally substituted
  • R 5 and R 6 are independently —H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group;
  • R 7 , R 9 , R 10 and R 11 are independently selected from the group consisting of —H, halogen, —R 5 , —OR 5 , —CN, —CO 2 R 5 , —OCOR 5 , —OCO 2 R 5 , —C(O)NR 5 R 6 , —OC(O)NR 5 R 6 , —C(O)R 5 , —COR 5 , —SR 5 , —OSO 3 H, —S(O) n R 5 , —S(O) n OR 5 , —S(O) n NR 5 R 6 , —NR 5 R 6 , —NR 5 C(O)OR 6 , —NR 5 C(O)R 6 and —NO 2 ;
  • R 8 is a polycyclic aryl group
  • n 1 or 2.
  • the invention provides sirtuin-modulating compounds of Formula (IV): Ar-L-J-M-K—Ar′ (IV) or a salt thereof, wherein:
  • each Ar and Ar′ is independently an optionally substituted carbocyclic or heterocyclic aryl group
  • L is an optionally substituted carbocyclic or heterocyclic arylene group
  • each J and K is independently NR 1 ′, O, S, or is optionally independently absent; or when J is NR 1 ′, R 1 ′ is a C1-C4 alkylene or C2-C4 alkenylene attached to Ar′ to form a ring fused to Ar′; or when K is NR 1 ′, R 1 ′ is a C1-C4 alkylene or C2-C4 alkenylene attached to L to form a ring fused to L;
  • each M is C(O), S(O), S(O) 2 , or CR 1 ′R 1 ′;
  • each R 1 ′ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 5 ′; halo; haloalkyl; CF 3 ; SR 2 ′; OR 2 ′; NR 2 ′R 2 ′; NR 2 ′R 3 ′; COOR 2 ′; NO 2 ; CN; C(O)R 2 ′; C(O)C(O)R 2 ′; C(O)NR 2 ′R 2 ′; OC(O)R 2 ′; S(O) 2 R 2 ′; S(O) 2 NR 2 ′R 2 ′; NR 2 ′C(O)NR 2 ′R 2 ′; NR 2 ′C(O)C(O)R 2 ′; NR 2 ′C(O)R 2 ′;
  • each R 2 ′ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 6 ′; C1-C10 alkyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′;
  • each R 3 ′ is independently C(O)R 2 ′, COOR 2 ′, or S(O) 2 R 2 ′;
  • each R 4 ′ is independently halo, CF 3 , SR 7 ′, OR 7 ′, OC(O)R 7 ′, NR 7 ′R 7 ′, NR 7 ′R 8 ′, NR 8 ′R 8 ′, COOR 7 ′, NO 2 , CN, C(O)R 7 ′, or C(O)NR 7 ′R 7 ′;
  • each R 5 ′ is independently a 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system comprising 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 6 ′; halo; sulfur; oxygen; CF 3 ; haloalkyl; SR 2 ′; OR 2 ′; OC(O)R 2 ′; NR 2 ′R 2 ′; NR 2 ′R 3 ′; NR 3 ′R 3
  • each R 6 ′ is independently a 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system comprising 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF 3 ; haloalkyl; SR 7 ′; OR 7 ′; NR 7 ′R 7 ′; NR 7 ′R 8 ′; NR 8 ′R 8 ′; COOR 7 ′; NO 2 ; CN; C(O
  • each R 7 ′ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF 3 , OR 10 ′, SR 10 ′, NR 10 ′R 10 ′, COOR 10 ′, NO 2 , CN, C(O)R 10 ′, C(O)NR 10 ′R 10 ′, NHC(O)R 10 ′, or OC(O)R 10 ′; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl
  • each R 8 ′ is independently C(O)R 7 ′, COOR 7 ′, or S(O) 2 R 7 ′;
  • each R 9 ′ is independently H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF 3 , OR 10 ′, SR 10 ′, NR 10 ′R 10 ′, COOR 10 ′, NO 2 , CN, C(O)R 10 ′, C(O)NR 10 ′R 10 ′, NHC(O)R 10 ′, or OC(O)R 10 ′;
  • each R 10 ′ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, CF 3 , OR 11 ′, SR 11 ′, NR 11 ′R 11 ′, COOR 11 ′, NO 2 , CN; or phenyl optionally substituted with halo, CF 3 , OR 11 ′, SR 11 ′, NR 11 ′R 11 ′, COOR 11 ′, NO 2 , CN;
  • each R 11 ′ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;
  • each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F, Cl, Br, or I, wherein the number of halogen atoms may not exceed that number that results in a perhaloalkyl group; and
  • each aryl is independently optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R 6 ′; halo; haloalkyl; CF 3 ; OR 9 ′; SR 9 ′; NR 9 ′R 9 ′; COOR 9 ′; NO 2 ; CN; C(O)R 9 ′; C(O)C(O)R 9 ′; C(O)NR 9 ′R 9 ′; S(O) 2 R 9 ′; N(R 9 ′)C(O)R 9 ′; N(R 9 ′)(COOR 9 ′); N(R 9 ′)S(O) 2 R 9 ′; S(O) 2 NR 9 ′R 9 ′; OC(O)R 9 ′; NR 9 ′C(O)NR 9 ′R 9
  • the invention provides sirtuin-modulating compounds of Formula (IVa): Het-L-Q-Ar′ (IVa) or a salt thereof, where:
  • Het is an optionally substituted heterocyclic aryl group
  • L is an optionally substituted carbocyclic or heterocyclic arylene group
  • Ar′ is an optionally substituted carbocyclic or heterocyclic aryl group
  • Q is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl, wherein:
  • L is an optionally substituted phenylene
  • Het are attached to L in a meta orientation, and Ar′ is optionally substituted phenyl;
  • the invention provides sirtuin-modulating compounds of Formula (V):
  • Ring A is optionally substituted with at least one R 1 ′ group
  • Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently R 1 ′;
  • each R 1 ′ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 5 ′; halo; haloalkyl; CF 3 ; SR 2 ′; OR 2 ′; NR 2 ′R 2 ′; NR 2 ′R 3 ′; COOR 2 ′; NO 2 ; CN; C(O)R 2 ′; C(O)C(O)R 2 ′; C(O)NR 2 ′R 2 ′; OC(O)R 2 ′; S(O) 2 R 2 ′; S(O) 2 NR 2 ′R 2 ′; NR 2 ′C(O)NR 2 ′R 2 ′; NR 2 ′C(O)C(O)R 2 ′; NR 2 ′C(O)R 2 ′;
  • each R 2 ′ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 6 ′; C1-C10 alkyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′;
  • each R 3 ′ is independently C(O)R 2 ′, COOR 2 ′, or S(O) 2 R 2 ′;
  • each R 4 ′ is independently halo, CF 3 , SR 7 ′, OR 7 ′, OC(O)R 7 ′, NR 7 ′R 7 ′, NR 7 ′R 8 ′, NR 8 ′R 8 ′, COOR 7 ′, NO 2 , CN, C(O)R 7 ′, or C(O)NR 7 ′R 7 ′;
  • each R 5 ′ is independently a 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system comprising 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 6 ′; halo; sulfur; oxygen; CF 3 ; haloalkyl; SR 2 ′; OR 2 ′; OC(O)R 2 ′; NR 2 ′R 2 ′; NR 2 ′R 3 ′; NR 3 ′R 3
  • each R 6 ′ is independently a 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system comprising 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF 3 ; haloalkyl; SR 7 ′; OR 7 ′; NR 7 ′R 7 ′; NR 7 ′R 8 ′; NR 8 ′R 8 ′; COOR 7 ′; NO 2 ; CN; C(O
  • each R 7 ′ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF 3 , OR 10 ′, SR 10 ′, NR 10 ′R 10 ′, COOR 10 ′, NO 2 , CN, C(O)R 10 ′, C(O)NR 10 ′R 10 ′, NHC(O)R 10 ′, or OC(O)R 10 ′; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl
  • each R 8 ′ is independently C(O)R 7 ′, COOR 7 ′, or S(O) 2 R 7 ′;
  • each R 9 ′ is independently H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF 3 , OR 10 ′, SR 10 ′, NR 10 ′R 10 ′, COOR 10 ′, NO 2 , CN, C(O)R 10 ′, C(O)NR 10 ′R 10 ′, NHC(O)R 10 ′, or OC(O)R 10 ′;
  • each R 10 ′ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, CF 3 , OR 11 ′, SR 11 ′, NR 11 ′R 11 ′, COOR 11 ′, NO 2 , CN; or phenyl optionally substituted with halo, CF 3 , OR 11 ′, SR 11 ′, NR 11 ′R 11 ′, COOR 11 ′, NO 2 , CN;
  • each R 11 ′ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;
  • each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F, Cl, Br, or I, wherein the number of halogen atoms may not exceed that number that results in a perhaloalkyl group; and
  • each aryl is independently a 5- to 7-membered monocyclic ring system or a 9- to 12-membered bicyclic ring system optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R 6 ′; halo; haloalkyl; CF 3 ; OR 9 ′; SR 9 ′; NR 9 ′R 9 ′; COOR 9 ′; NO 2 ; CN; C(O)R 9 ′; C(O)C(O)R 9 ′; C(O)NR 9 ′R 9 ′; S(O) 2 R 9 ′; N(R 9 ′)C(O)R 9 ′; N(R 9 ′)(COOR 9 ′); N(R 9 ′)S(O) 2 R 9 ′; S(O) 2 NR 9
  • the invention provides sirtuin-modulating compounds of Structural Formula (VI): or a salt thereof, wherein:
  • Het is an optionally substituted heterocyclic aryl group
  • Ar′ is an optionally substituted carbocyclic or heterocyclic aryl group.
  • the invention also includes prodrugs and metabolites of the compounds disclosed herein.
  • the invention provides sirtuin-modulating compounds of Structural Formula (VII): or a salt thereof, wherein:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that said compound is not: that when R 19 is and R 21 is —NHC(O)—, R 31 is not an optionally substituted phenyl.
  • compounds of Structural Formula (VII) have the following values:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • each R 20 is independently selected from H or a solubilizing group
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • one of X 7 , X 8 , X 9 and X 10 is N and the others are selected from CR 20 or CR 1 ′;
  • R 20 is a solubilizing group
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • said compound is not:
  • the invention provides sirtuin-modulating compounds of Structural Formula (VIII): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not 1-methoxynaphthyl; 2-methoxynaphthyl; or unsubstituted 2-thienyl;
  • R 31 is not unsubstituted naphthyl; 2-methoxy, 4-nitrophenyl; 4-chloro, 2-methylphenyl; or 4-t-butylphenyl; and
  • R 31 is not optionally substituted phenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (IX): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 50 is selected from 2,3-dimethoxyphenyl, phenoxyphenyl, 2-methyl-3-methoxyphenyl, 2-methoxy-4-methylphenyl, or phenyl substituted with 1 to 3 substituents, wherein one of said substituents is a solubilizing group; with the provisos that R 50 is not substituted simultaneously with a solubilizing group and a nitro group, and R 50 is not singly substituted at the 4-position with cyclic solubilizing group or at the 2-position with a morpholino group.
  • the invention provides sirtuin-modulating compounds of Structural Formula (X): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 51 is selected from an ooptionally substituted monocyclic heteroaryl, an optionally substituted bicyclic heteroaryl, or an optionally substituted naphthyl, wherein R 51 is not chloro-benzo(b)thienyl, unsubstituted benzodioxolyl, unsubstituted benzofuranyl, methyl-benzofuranyl, unsubstituted furanyl, phenyl-, bromo-, or nitro-furyl, chlorophenyl-isoxazolyl, oxobenzopyranyl, unsubstituted naphthyl, methoxy-, methyl-, or halo-naphthyl, unsubstituted thienyl, unsubstituted pyridinyl, or chloropyridinyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XI): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 22 is selected —NR 23 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not unsubstituted furyl, 5-(2-methyl-3-chlorophenyl)-furanyl, 2,4-dichlorophenyl, 3,5-dichloro-2-methoxyphenyl, 3-nitrophenyl, 4-chlorophenyl, 4-chloro-3-nitrophenyl, 4-isopropylphenyl, 4-methoxyphenyl, 2-methoxy-5-bromophenyl, or unsubstituted phenyl;
  • R 31 is not 3,4-dimethoxyphenyl, 4-chlorophenyl, or unsubstituted phenyl;
  • R 31 is not 2,4-dimethyl-6-nitrophenyl, 2- or 4-nitrophenyl, 4-cyclohexylphenyl, 4-methoxyphenyl, unsubstituted naphthyl, or unsubstituted phenyl, or phenyl monosubstituted, disubstituted or trisubstituted solely with substituents selected from straight- or branched-chain alkyl or halo;
  • R 31 is not 2,4-dichlorophenyl, 4-chlorophenyl, or unsubstituted phenyl;
  • R 31 is not unsubstituted phenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XII): or a salt thereof, wherein:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the proviso that when R 19 is Z 10 , Z 11 , Z 12 and Z 13 are each CH, and R 21 is —NHC(O)—, R 31 is not an optionally substituted phenyl.
  • the compounds of Structural Formula (XI) have the following values:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the proviso that:
  • the invention provides compounds of Structural Formula (XIII): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not unsubstituted furyl, 5-bromofuryl, unsubstituted phenyl, phenyl monosubstituted with halo or methyl, 3- or 4-methoxyphenyl, 4-butoxyphenyl, 4-t-butylphenyl, 3-trifluoromethylphenyl, 2-benzoylphenyl, 2- or 4-ethoxyphenyl, 2,3-, 2,4-, 3,4-, or 3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2,4- or 2-6 difluorophenyl, 3,4-dioxymethylene phenyl, 3,4- or 3,5-dimethlyphenyl, 2-chloro-5-bromophenyl, 2-methoxy-5-chlorophenyl, unsubstituted quinolinyl, thiazolyl substituted simultaneously with methyl and phenyl, or ethoxy-
  • R 31 is not unsubstituted phenyl
  • R 31 is not unsubstituted phenyl, 3-methylphenyl, 4-chlorophenyl, 4-ethoxyphenyl, 4-fluorophenyl or 4-methoxyphenyl;
  • R 31 is not unsubstituted phenyl or 4-chlorophenyl
  • R 31 is not 3,4-dioxymethylene phenyl, 2,4,5-trimethylphenyl, 2,4,6-trimethylphenyl, 2,4- or 3,4-dimethylphenyl, 2,5-difluorophenyl, 2,5- or 3,4-dimethoxyphenyl, fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-ethylphenyl, 4-methylphenyl, 3-methyl-4-methoxyphenyl, unsubstituted phenyl, unsubstituted pyridinyl, unsubstituted thienyl, chloro-substituted thienyl, or methyl-substituted benzothiazolyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XIV): or a salt thereof, wherein:
  • each of R 23 and R 24 is independently selected from H, —CH 3 or a solubilizing group
  • R 25 is selected from H, or a solubilizing group
  • R 19 is selected from:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • the invention provides sirtuin-modulating compounds of Structural Formula (XV): or a salt thereof, wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 32 is selected from an optionally substituted bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, wherein:
  • R 21 is —NH—C(O)—
  • R 32 is not unsubstituted 2-furyl, 2-(3-bromofuryl), unsubstituted 2-thienyl, unsubstituted 3-pyridyl, unsubstituted 4-pyridyl,
  • R 32 is not unsubstituted 2-thienyl or unsubstituted naphthyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XVI): or a salt thereof, wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 33 is an optionally substituted phenyl, wherein:
  • R 33 is a substituted phenyl other than phenyl singly substituted with halo, methyl, nitro or methoxy; 2-carboxyphenyl; 4-n-pentylphenyl; 4-ethoxyphenyl; 2-carboxy-3-nitrophenyl; 2-chloro-4-nitrophenyl; 2-methoxy-5-ethylphenyl; 2,4-dimethoxyphenyl; 3,4,5-trimethoxyphenyl; 2,4 dichlorophenyl; 2,6-difluorophenyl; 3,5-dinitrophenyl; or 3,4-dimethylphenyl;
  • R 33 is a substituted phenyl
  • R 33 is not unsubstituted phenyl, 4-methoxyphenyl; 3,4-dimethoxyphenyl or 4-chlorophenyl;
  • R 33 is not 2,4-bis(1,1-dimethylpropyl)phenyl
  • R 21 is —NH—C(O)—NH—
  • R 33 is not 4-methoxyphenyl
  • R 33 is a substituted phenyl other than 3-methylphenyl, 3-trifluoromethylphenyl, 2,4,5- or 2,4,6-trimethylphenyl, 2,4- or 3,4-dimethylphenyl, 2,5- or 3,4-dimethoxyphenyl, 2,5-dimethoxy-4-chlorophenyl, 3,6-dimethoxy, 4-methylphenyl, 2,5- or 3,4-dichlorophenyl, 2,5-diethoxyphenyl, 2-methyl-5-nitrophenyl, 2-ethoxy-5-bromophenyl, 2-methoxy-5-bromophenyl, 2-methoxy-3,4-dichlorophenyl, 2-methoxy-4-methyl-5-bromophenyl, 3,5-dinitro-4-methylphenyl, 3-methyl-4-methoxyphenyl, 3-nitro-4-methylphenyl, 3-methoxy-4-halophenyl, 3-
  • the invention provides sirtuin-modulating compounds of Structural Formula (XVII): or a salt thereof, wherein:
  • each of R 23 and R 24 is independently selected from H or —CH 3 , wherein at least one of R 23 and R 24 is H;
  • R 29 is phenyl substituted with:
  • R 23 is CH 3 , one —O—CH 3 group at the 2 or 3 position, wherein R 29 is optionally additionally substituted with a solubilizing group.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XVIII): or a salt thereof, wherein
  • R 19 is selected from: wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • each R 20 is independently selected from H or a solubilizing group
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • the invention provides sirtuin-modulating compounds of Structural Formula (XX): or a salt thereof, wherein
  • R 19 is selected from:
  • each R 20 is independently selected from H or a solubilizing group
  • R 20a is independently selected from H or a solubilizing group
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, wherein when R 19 is and Z 10 , Z 11 , Z 12 and Z 13 are each CH, R 20a is a solubilizing group.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXI): or a salt thereof, wherein
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 32 is an optionally substituted monocyclic or bicyclic heteroaryl, or an optionally substituted bicyclic aryl, wherein:
  • R 21 is —NH—C(O)—CH 2 —
  • R 32 is not unsubstituted thien-2-yl
  • R 21 is —NH—C(O)—
  • R 32 is not furan-2-yl, 5-bromofuran-2-yl, or 2-phenyl-4-methylthiazol-5-yl;
  • R 32 is not unsubstituted naphthyl or 5-chlorothien-2-yl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXII): or a salt thereof, wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 33 is an optionally substituted phenyl, wherein:
  • R 21 is —NR 1 ′—C(O)—, R 1 ′ is not H;
  • R 33 is not unsubstituted phenyl or 4-halophenyl
  • R 33 is not unsubstituted phenyl, 2,4- or 3,4-dimethylphenyl, 2,4-dimethyl-5-methoxyphenyl, 2-methoxy-3,4-dichlorophenyl, 2-methoxy, 5-bromophenyl-3,4-dioxyethylenephenyl, 3,4-dimethoxyphenyl, 3,4-dichlorophenyl, 3,4-dimethylphenyl, 3- or 4-methylphenyl, 4-alkoxyphenyl, 4-phenoxyphenyl, 4-halophenyl, 4-biphenyl, or 4-acetylaminophenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXII): or a salt thereof wherein:
  • R 21 is selected from —NH—C(O)—, or —NH—C(O)—CH 2 —;
  • R 33 is phenyl substituted with
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 21 is —NH—C(O)—
  • R 31 is not is not 3,5-dinitrophenyl, 4-butoxyphenyl
  • R 31 is not unsubstituted phenyl, 2- or 4-nitrophenyl, 2,4-dinitrophenyl, 2- or 4-chlorophenyl, 2-bromophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 2-carboxyphenyl, 2-azidophenyl, 2- or 4-aminophenyl, 2-acetamidophenyl, 4-methylphenyl, or 4-methoxyphenyl;
  • R 21 is —NH—C(O)—
  • R 1 ′′ is methyl
  • R 20 , R 20a , R 1 ′ and R 1 ′′′ is hydrogen
  • R 31 is not 2-methylaminophenyl
  • R 21 is —NH—C(O)—CH 2 — or NH—C(S)—NH—
  • R 20 , R 20a , R 1 ′, R 1 ′′ and R 1 ′′′ is hydrogen, R 31 is not unsubstituted phenyl;
  • R 21 is —NH—S(O) 2 —
  • R 1 ′′ is hydrogen or methyl
  • each of R 20 , R 20a , R 1 ′ and R 1 ′′′ is hydrogen
  • R 31 is not 4-methylphenyl
  • R 21 is —NH—S(O) 2 —
  • R 20a is hydrogen or —CH 2 —N(CH 2 CH 3 ) 2
  • each of R 20 , R 1 ′, R 1 ′′ and R 1 ′′′ is hydrogen, R 31 is not
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIV): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 23 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not 2-methylphenyl, or 3,4-dimethoxyphenyl;
  • R 21 is —NH—C(O)—CH ⁇ CH—, R 31 is not 2-chlorophenyl;
  • R 31 is not unsubstituted benzimidazolyl
  • R 31 is not unsubstituted phenyl, 4-chlorophenyl, 4-methylphenyl, or 4-acetoamidophenyl;
  • R 21 is —NH—S(O) 2 —
  • each of R 1 ′ and R 1 ′′′ is methyl or hydrogen
  • each of R 20 , R 20a , and R 1 ′′ is hydrogen
  • R 31 is not 4-nitrophenyl
  • R 31 is not 2,3-, 2,5-, 2,6-, 3,4- or 3,5-dimethylphenyl, 2,4-dichloromethyl, 2,4-dimethyl-6-bromophenyl, 2- or 4-chlorophenyl, 2-(1-methylpropyl)phenyl, 5-methyl-2-(1-methylethyl)phenyl, 2- or 4-methylphenyl, 2,4-dichloro-6-methylphenyl, nitrophenyl, 2,4-dimethyl-6-nitrophenyl, 2- or 4-methoxyphenyl, 4-acetyl-2-methoxyphenyl, 4-chloro-3,5-dimethylphenyl, 3-ethylphenyl, 4-bromophenyl, 4-cyclohexyphenyl
  • R 31 is not unsubstituted naphthyl, 4-chlorophenyl, 4-nitrophenyl, 4-methoxyphenyl, unsubstituted phenyl, unsubstituted thienyl
  • R 21 is —NH—C(O)—CH 2 —
  • R 1 ′ is methyl
  • R 20 , R 20a , R 1 ′′, and R 1 ′′′ is hydrogen
  • R 31 is not unsubstituted phenyl
  • R 31 is not unsubstituted furyl, nitrophenyl-substituted furyl, 2,4-dichlorophenyl, 3,5-dichloro-2-methoxyphenyl, 3- or 4-nitrophenyl, 4-methoxyphenyl, unsubstituted phenyl, or nitro-substituted thienyl;
  • R 21 is —NH—C(O)—CH(CH 2 CH 3 )—, and each of R 20 , R 20a , R 1 ′, R 1 ′′, and R 1 ′′′ is hydrogen, R 31 is not unsubstituted phenyl;
  • R 21 is —NH—C(O)—CH(CH 3 )—O—
  • R 1 ′′′ is methyl or hydrogen
  • each of R 20 , R 20a , R 1 ′, and R 1 ′′ is hydrogen
  • R 31 is not 2,4-dichlorophenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIV): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group and at least one of R 20 and R 20a is a solubilizing group;
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 23 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXV): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group, wherein at least one of R 20 and R 20a is a solubilizing group;
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 32 is an optionally substituted phenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVI): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 33 is selected from an optionally substituted heteroaryl or an optionally substituted bicyclic aryl, with the provisos that:
  • R 33 is not 5,6,7,8-tetrahydronaphthyl, unsubstituted benzofuryl, unsubstituted benzothiazolyl, chloro- or nitro-substituted benzothienyl, unsubstituted furyl, phenyl-, bromo- or nitro-substituted furyl, dimethyl-substituted isoxazolyl, unsubstituted naphthyl, 5-bromonaphthyl, 4-methylnaphthyl, 1- or 3-methoxynaphthyl, azo-substituted naphthyl, unsubstituted pyrazinyl, S-methyl-substituted pyridyl, unsubstituted pyridyl, thienyl-
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVI): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group, wherein at least one of R 20 or R 20a is a solubilizing group;
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 33 is selected from an optionally substituted heteroaryl or an optionally substituted bicyclic aryl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVII): or a salt thereof, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVII): or a salt thereof, wherein:
  • R 19 is selected from: wherein:
  • each Z 10 , Z 11 , Z 12 and Z 13 is independently selected from N, CR 20 , or CR 1 ′;
  • each Z 14 , Z 15 and Z 16 is independently selected from N, NR 1 ′, S, O, CR 20 , or CR 1 ′, wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 21 is —NH—C(O)—, R 19 is not pyrazolyl;
  • R 31 is not optionally substituted phenyl or optionally substituted pyridyl;
  • R 31 is not unsubstituted indolyl or unsubstituted phenyl;
  • R 21 is —NH—C(O)—CH 2 —
  • R 19 is R 31 is not 2-methylphenyl or 3,4-dimethoxyphenyl
  • R 21 is —NH—C(O)—CH ⁇ CH—, and R 19 is R 31 is not 2-chlorophenyl;
  • R 31 is not unsubstituted isoxazolyl, unsubstituted naphthyl, unsubstituted phenyl, 2,6-difluorophenyl, 2,5-dimethylphenyl, 3,4-dichlorophenyl, or 4-chlorophenyl;
  • R 21 is —NH—C(O)—NH—, and R 19 is R 31 is not unsubstituted benzimidazolyl;
  • R 31 is not unsubstituted pyridyl
  • R 20a when R 20a is a solubilizing group, R 19 is 1-methylpyrrolyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl, unsubstituted furyl, unsubstituted pyrrolyl, unsubstituted pyrazolyl, unsubstituted isoquinolinyl, unsubstituted benzothienyl, chloro-substituted benzothienyl, 2-fluoro-4-chlorophenyl or phenyl singly substituted with a solubilizing group;
  • R 20a when R 20a is a solubilizing group, R 19 is thienyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl;
  • R 20a when R 20a is a solubilizing group, R 19 is methylimidazolyl and R 21 is —NH—C(O)—, R 31 is not 1-methyl-4-(1,1-dimethylethyloxycarbonylamino)pyrrol-2-yl or phenyl singly substituted with a solubilizing group;
  • R 31 is not unsubstituted phenyl, 3-methoxyphenyl or 4-methoxyphenyl;
  • R 31 is not unsubstituted phenyl
  • R 31 is not unsubstituted pyridyl, unsubstituted thienyl, unsubstituted phenyl, 2-methylphenyl, 4-fluorophenyl, 4-methoxyphenyl, 4-methylphenyl, 3,4-dioxyethylenephenyl, 3-acetylamino-4-methylphenyl, 3-[(6-amino-1-oxohexyl)amino]-4-methylphenyl, 3-amino-4-methylphenyl, 2,6-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3-halo-4-methoxyphenyl, 3-nitro-4-methylphenyl, 4-propoxyphenyl, 3,4,5-trimethoxyphenyl or unsubstituted furyl;
  • R 21 is —NH—C(O)— and R 19 is R 31 is not 3,5-dinitrophenyl, 4-butoxyphenyl,
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′ and R 1 ′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 19 is selected from: wherein:
  • each Z 14 , Z 15 and Z 16 is independently selected from N, NR 1 ′, S, O, CR 20 , or CR 1 ′, wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′′′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 21 is —NH—C(O)—, R 19 is not pyrazolyl;
  • R 31 is not unsubstituted indolyl or unsubstituted phenyl;
  • R 31 is not unsubstituted isoxazolyl, unsubstituted naphthyl, unsubstituted phenyl, 2,6-difluorophenyl; 2,5-dimethylphenyl; 3,4-dichlorophenyl; or 4-chlorophenyl;
  • R 20a when R 20a is a solubilizing group, R 19 is 1-methylpyrrolyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl; unsubstituted furyl; unsubstituted pyrrolyl; unsubstituted pyrazolyl; unsubstituted isoquinolinyl; unsubstituted benzothienyl; chloro-substituted benzothienyl; 2-fluoro-4-chlorophenyl or phenyl singly substituted with a solubilizing group;
  • R 20a when R 20a is a solubilizing group, R 19 is thienyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl;
  • R 20a when R 20a is a solubilizing group, R 19 is methylimidazolyl and R 21 is —NH—C(O)—, R 31 is not 1-methyl-4-(1,1-dimethylethyloxycarbonylamino)pyrrol-2-yl or phenyl singly substituted with a solubilizing group; and
  • R 31 is not unsubstituted phenyl.
  • the invention provides compounds of Structural Formula (XXVIII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′ and R 1 ′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 29 is selected from:
  • each Z 10 , Z 11 , Z 12 and Z 13 is independently selected from N, CR 20 , or CR 1 ′, wherein one of Z 10 , Z 11 , Z 12 or Z 13 is N;
  • R 20 is a solubilizing group
  • R 1 ′′′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • compositions comprising one or more compounds of Formulas (I)-(XXVIII) or a salt, prodrug or metabolite thereof.
  • the invention provides methods for using sirtuin-modulating compounds, or compostions comprising sirtuin-modulating compounds.
  • sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may be used for a variety of therapeutic applications including, for example, increasing the lifespan of a cell, and treating and/or preventing a wide variety of diseases and disorders including, for example, diseases or disorders related to aging or stress, diabetes, obesity, neurodegenerative diseases, chemotherapeutic induced neuropathy, neuropathy associated with an ischemic event, ocular diseases and/or disorders, cardiovascular disease, blood clotting disorders, inflammation, and/or flushing, etc.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may also be used for treating a disease or disorder in a subject that would benefit from increased mitochondrial activity, for enhancing muscle performance, for increasing muscle ATP levels, or for treating or preventing muscle tissue damage associated with hypoxia or ischemia.
  • sirtuin-modulating compounds that decrease the level and/or activity of a sirtuin protein may be used for a variety of therapeutic applications including, for example, increasing cellular sensitivity to stress, increasing apoptosis, treatment of cancer, stimulation of appetite, and/or stimulation of weight gain, etc.
  • the methods comprise administering to a subject in need thereof a pharmaceutically effective amount of a sirtuin-modulating compound.
  • the sirtuin-modulating compounds may be administered alone or in combination with other compounds, including other sirtuin-modulating compounds, or other therapeutic agents.
  • FIG. 1 shows a schematic of the Cellular ATP Assay described in Example 5.
  • FIG. 2 shows a dose-response curve for ATP levels in cells following resveratrol treatment.
  • agent is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule (such as a nucleic acid, an antibody, a protein or portion thereof, e.g., a peptide), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
  • a biological macromolecule such as a nucleic acid, an antibody, a protein or portion thereof, e.g., a peptide
  • an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
  • the activity of such agents may render it suitable as a “therapeutic agent” which is a biologically, physiologically, or pharmacologically active substance (or substances) that acts locally or systemically in a subject.
  • bioavailable when referring to a compound is art-recognized and refers to a form of a compound that allows for it, or a portion of the amount of compound administered, to be absorbed by, incorporated to, or otherwise physiologically available to a subject or patient to whom it is administered.
  • Biologically active portion of a sirtuin refers to a portion of a sirtuin protein having a biological activity, such as the ability to deacetylate.
  • Biologically active portions of a sirtuin may comprise the core domain of sirtuins.
  • Biologically active portions of SIRT1 having GenBank Accession No. NP — 036370 that encompass the NAD+ binding domain and the substrate binding domain may include without limitation, amino acids 62-293 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 237 to 932 of GenBank Accession No. NM — 012238. Therefore, this region is sometimes referred to as the core domain.
  • SIRT1 also sometimes referred to as core domains
  • Other biologically active portions of SIRT1 include about amino acids 261 to 447 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 834 to 1394 of GenBank Accession No. NM — 012238; about amino acids 242 to 493 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 777 to 1532 of GenBank Accession No. NM — 012238; or about amino acids 254 to 495 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 813 to 1538 of GenBank Accession No. NM — 012238.
  • cat(s) refers to a feline animal including domestic cats and other members of the family Felidae, genus Felis.
  • amino acid residue refers to an amino acid that is a member of a group of amino acids having certain common properties.
  • conservative amino acid substitution refers to the substitution (conceptually or otherwise) of an amino acid from one such group with a different amino acid from the same group.
  • a functional way to define common properties between individual amino acids is to analyze the normalized frequencies of amino acid changes between corresponding proteins of homologous organisms (Schulz, G. E. and R. H. Schirmer., Principles of Protein Structure, Springer-Verlag). According to such analyses, groups of amino acids may be defined where amino acids within a group exchange preferentially with each other, and therefore resemble each other most in their impact on the overall protein structure (Schulz, G. E. and R.
  • One example of a set of amino acid groups defined in this manner include: (i) a charged group, consisting of Glu and Asp, Lys, Arg and His, (ii) a positively-charged group, consisting of Lys, Arg and His, (iii) a negatively-charged group, consisting of Glu and Asp, (iv) an aromatic group, consisting of Phe, Tyr and Trp, (v) a nitrogen ring group, consisting of His and Trp, (vi) a large aliphatic nonpolar group, consisting of Val, Leu and Ile, (vii) a slightly-polar group, consisting of Met and Cys, (viii) a small-residue group, consisting of Ser, Thr, Asp, Asn, Gly, Ala, Glu, Gln and Pro, (ix) an aliphatic group consisting of Val, Leu, Ile, Met and Cys, and (
  • Diabetes refers to high blood sugar or ketoacidosis, as well as chronic, general metabolic abnormalities arising from a prolonged high blood sugar status or a decrease in glucose tolerance. “Diabetes” encompasses both the type I and type II (Non Insulin Dependent Diabetes Mellitus or NIDDM) forms of the disease.
  • the risk factors for diabetes include the following factors: waistline of more than 40 inches for men or 35 inches for women, blood pressure of 130/85 mmHg or higher, triglycerides above 150 mg/dl, fasting blood glucose greater than 100 mg/dl or high-density lipoprotein of less than 40 mg/dl in men or 50 mg/dl in women.
  • a “direct activator” of a sirtuin is a molecule that activates a sirtuin by binding to it.
  • a “direct inhibitor” of a sirtuin is a molecule inhibits a sirtuin by binding to it.
  • ED 50 means the dose of a drug which produces 50% of its maximum response or effect, or alternatively, the dose which produces a pre-determined response in 50% of test subjects or preparations.
  • LD 50 means the dose of a drug which is lethal in 50% of test subjects.
  • therapeutic index is an art-recognized term which refers to the therapeutic index of a drug, defined as LD 50 /ED 50 .
  • hyperinsulinemia refers to a state in an individual in which the level of insulin in the blood is higher than normal.
  • insulin resistance refers to a state in which a normal amount of insulin produces a subnormal biologic response relative to the biological response in a subject that does not have insulin resistance.
  • insulin resistance disorder refers to any disease or condition that is caused by or contributed to by insulin resistance. Examples include: diabetes, obesity, metabolic syndrome, insulin-resistance syndromes, syndrome X, insulin resistance, high blood pressure, hypertension, high blood cholesterol, dyslipidemia, hyperlipidemia, dyslipidemia, atherosclerotic disease including stroke, coronary artery disease or myocardial infarction, hyperglycemia, hyperinsulinemia and/or hyperproinsulinemia, impaired glucose tolerance, delayed insulin release, diabetic complications, including coronary heart disease, angina pectoris, congestive heart failure, stroke, cognitive functions in dementia, retinopathy, peripheral neuropathy, nephropathy, glomerulonephritis, glomerulosclerosis, nephrotic syndrome, hypertensive nephrosclerosis some types of cancer (such as endometrial, breast, prostate, and colon), complications of pregnancy, poor female reproductive health (such as menstrual irregularities, infertility, irregular ovulation, poly
  • livestock animals refers to domesticated quadrupeds, which includes those being raised for meat and various byproducts, e.g., a bovine animal including cattle and other members of the genus Bos, a porcine animal including domestic swine and other members of the genus Sus, an ovine animal including sheep and other members of the genus Ovis, domestic goats and other members of the genus Capra; domesticated quadrupeds being raised for specialized tasks such as use as a beast of burden, e.g., an equine animal including domestic horses and other members of the family Equidae, genus Equus.
  • mammals include humans, primates, livestock animals (including bovines, porcines, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).
  • livestock animals including bovines, porcines, etc.
  • companion animals e.g., canines, felines, etc.
  • rodents e.g., mice and rats.
  • naturally occurring form when referring to a compound means a compound that is in a form, e.g., a composition, in which it can be found naturally. For example, since resveratrol can be found in red wine, it is present in red wine in a form that is naturally occurring. A compound is not in a form that is naturally occurring if, e.g., the compound has been purified and separated from at least some of the other molecules that are found with the compound in nature.
  • a “naturally occurring compound” refers to a compound that can be found in nature, i.e., a compound that has not been designed by man. A naturally occurring compound may have been made by man or by nature.
  • a “naturally occurring compound” refers to a compound that can be found in nature, i.e., a compound that has not been designed by man.
  • a naturally occurring compound may have been made by man or by nature.
  • resveratrol is a naturally-occurring compound.
  • a “non-naturally occurring compound” is a compound that is not known to exist in nature or that does not occur in nature.
  • Obese individuals or individuals suffering from obesity are generally individuals having a body mass index (BMI) of at least 25 or greater. Obesity may or may not be associated with insulin resistance.
  • BMI body mass index
  • parenteral administration and “administered parenterally” are art-recognized and refer to modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articulare, subcapsular, subarachnoid, intraspinal, and intrasternal injection and infusion.
  • a “patient”, “subject”, “individual” or “host” refers to either a human or a non-human animal.
  • percent identical refers to sequence identity between two amino acid sequences or between two nucleotide sequences. Identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When an equivalent position in the compared sequences is occupied by the same base or amino acid, then the molecules are identical at that position; when the equivalent site occupied by the same or a similar amino acid residue (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as homologous (similar) at that position.
  • Expression as a percentage of homology, similarity, or identity refers to a function of the number of identical or similar amino acids at positions shared by the compared sequences.
  • FASTA FASTA
  • BLAST BLAST
  • ENTREZ is available through the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Md.
  • the percent identity of two sequences can be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid or nucleotide mismatch between the two sequences.
  • MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases.
  • pharmaceutically acceptable carrier refers to a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof.
  • a pharmaceutically-acceptable material such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof.
  • Each carrier must be “acceptable” in the sense of being compatible with the subject composition and its components and not injurious to the patient.
  • materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide;
  • polynucleotide and “nucleic acid” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown.
  • polynucleotides coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
  • a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs.
  • modifications to the nucleotide structure may be imparted before or after assembly of the polymer.
  • the sequence of nucleotides may be interrupted by non-nucleotide components.
  • a polynucleotide may be further modified, such as by conjugation with a labeling component.
  • the term “recombinant” polynucleotide means a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in a nonnatural arrangement.
  • prophylactic or therapeutic treatment refers to administration of a drug to a host. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate or maintain the existing unwanted condition or side effects therefrom).
  • the unwanted condition e.g., disease or other unwanted state of the host animal
  • protecting group is art-recognized and refers to temporary substituents that protect a potentially reactive functional group from undesired chemical transformations.
  • protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones, respectively.
  • the field of protecting group chemistry has been reviewed by Greene and Wuts in Protective Groups in Organic Synthesis (2 nd ed., Wiley: New York, 1991).
  • pyrogen-free refers to a composition that does not contain a pyrogen in an amount that would lead to an adverse effect (e.g., irritation, fever, inflammation, diarrhea, respiratory distress, endotoxic shock, etc.) in a subject to which the composition has been administered.
  • an adverse effect e.g., irritation, fever, inflammation, diarrhea, respiratory distress, endotoxic shock, etc.
  • the term is meant to encompass compositions that are free of, or substantially free of, an endotoxin such as, for example, a lipopolysaccharide (LPS).
  • LPS lipopolysaccharide
  • Replicative lifespan of a cell refers to the number of daughter cells produced by an individual “mother cell.” “Chronological aging” or “chronological lifespan,” on the other hand, refers to the length of time a population of non-dividing cells remains viable when deprived of nutrients.
  • Increasing the lifespan of a cell” or “extending the lifespan of a cell,” as applied to cells or organisms, refers to increasing the number of daughter cells produced by one cell; increasing the ability of cells or organisms to cope with stresses and combat damage, e.g., to DNA, proteins; and/or increasing the ability of cells or organisms to survive and exist in a living state for longer under a particular condition, e.g., stress (for example, heatshock, osmotic stress, high energy radiation, chemically-induced stress, DNA damage, inadequate salt level, inadequate nitrogen level, or inadequate nutrient level). Lifespan can be increased by at least about 20%, 30%, 40%, 50%, 60% or between 20% and 70%, 30% and 60%, 40% and 60% or more using methods described herein.
  • sirtuin-activating compound refers to a compound that increases the level of a sirtuin protein and/or increases at least one activity of a sirtuin protein.
  • a sirtuin-activating compound may increase at least one biological activity of a sirtuin protein by at least about 10%, 25%, 50%, 75%, 100%, or more.
  • Exemplary biological activities of sirtuin proteins include deacetylation, e.g., of histones and p53; extending lifespan; increasing genomic stability; silencing transcription; and controlling the segregation of oxidized proteins between mother and daughter cells.
  • sirtuin-inhibiting compound refers to a compound that decreases the level of a sirtuin protein and/or decreases at least one activity of a sirtuin protein.
  • a sirtuin-inhibiting compound may decrease at least one biological activity of a sirtuin protein by at least about 10%, 25%, 50%, 75%, 100%, or more.
  • Exemplary biological activities of sirtuin proteins include deacetylation, e.g., of histones and p53; extending lifespan; increasing genomic stability; silencing transcription; and controlling the segregation of oxidized proteins between mother and daughter cells.
  • sirtuin-modulating compound refers to a compound of Formulas (I)-(XXVIII) as described herein.
  • a sirtuin-modulating compound may either up regulate (e.g., activate or stimulate), down regulate (e.g., inhibit or suppress) or otherwise change a functional property or biological activity of a sirtuin protein.
  • Sirtuin-modulating compounds may act to modulate a sirtuin protein either directly or indirectly.
  • a sirtuin-modulating compound may be a sirtuin-activating compound or a sirtuin-inhibiting compound.
  • “Sirtuin protein” refers to a member of the sirtuin deacetylase protein family, or preferably to the sir2 family, which include yeast Sir2 (GenBank Accession No. P53685), C. elegans Sir-2.1 (GenBank Accession No. NP — 501912), and human SIRT1 (GenBank Accession No. NM — 012238 and NP — 036370 (or AF083106)) and SIRT2 (GenBank Accession No. NM — 012237, NM — 030593, NP — 036369, NP — 085096, and AF083107) proteins.
  • HST genes additional yeast Sir2-like genes termed “HST genes” (homologues of Sir two) HST1, HST2, HST3 and HST4, and the five other human homologues hSIRT3, hSIRT4, hSIRT5, hSIRT6 and hSIRT7 (Brachmann et al. (1995) Genes Dev. 9:2888 and Frye et al. (1999) BBRC 260:273).
  • HST genes homologues of Sir two HST1, HST2, HST3 and HST4
  • Preferred sirtuins are those that share more similarities with SIRT1, i.e., hSIRT1, and/or Sir2 than with SIRT2, such as those members having at least part of the N-terminal sequence present in SIRT1 and absent in SIRT2 such as SIRT3 has.
  • SIRT1 protein refers to a member of the sir2 family of sirtuin deacetylases.
  • a SIRT1 protein includes yeast Sir2 (GenBank Accession No. P53685), C. elegans Sir-2.1 (GenBank Accession No. NP — 501912), human SIRT1 (GenBank Accession No. NM — 012238 or NP — 036370 (or AF083106)), and human SIRT2 (GenBank Accession No. NM — 012237, NM — 030593, NP — 036369, NP — 085096, or AF083107) proteins, and equivalents and fragments thereof.
  • a SIRT1 protein in another embodiment, includes a polypeptide comprising a sequence consisting of, or consisting essentially of, the amino acid sequence set forth in GenBank Accession Nos. NP — 036370, NP — 501912, NP — 085096, NP — 036369, or P53685.
  • SIRT1 proteins include polypeptides comprising all or a portion of the amino acid sequence set forth in GenBank Accession Nos. NP — 036370, NP — 501912, NP — 085096, NP — 036369, or P53685; the amino acid sequence set forth in GenBank Accession Nos.
  • Polypeptides of the invention also include homologs (e.g., orthologs and paralogs), variants, or fragments, of GenBank Accession Nos. NP — 036370, NP — 501912, NP — 085096, NP — 036369, or P53685.
  • SIRT3 protein refers to a member of the sirtuin deacetylase protein family and/or to a homolog of a SIRT1 protein.
  • a SIRT3 protein includes human SIRT3 (GenBank Accession No. AAH01042, NP — 036371, or NP — 001017524) and mouse SIRT3 (GenBank Accession No. NP — 071878) proteins, and equivalents and fragments thereof.
  • a SIRT3 protein includes a polypeptide comprising a sequence consisting of, or consisting essentially of, the amino acid sequence set forth in GenBank Accession Nos.
  • SIRT3 proteins include polypeptides comprising all or a portion of the amino acid sequence set forth in GenBank Accession AAH01042, NP — 036371, NP — 001017524, or NP — 071878; the amino acid sequence set forth in GenBank Accession Nos.
  • Polypeptides of the invention also include homologs (e.g., orthologs and paralogs), variants, or fragments, of GenBank Accession Nos.
  • a SIRT3 protein includes a fragment of SIRT3 protein that is produced by cleavage with a mitochondrial matrix processing peptidase (MPP) and/or a mitochondrial intermediate peptidase (MIP).
  • MPP mitochondrial matrix processing peptidase
  • MIP mitochondrial intermediate peptidase
  • substantially homologous when used in connection with amino acid sequences, refers to sequences which are substantially identical to or similar in sequence with each other, giving rise to a homology of conformation and thus to retention, to a useful degree, of one or more biological (including immunological) activities. The term is not intended to imply a common evolution of the sequences.
  • synthetic is art-recognized and refers to production by in vitro chemical or enzymatic synthesis.
  • systemic administration refers to the administration of a subject composition, therapeutic or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes.
  • therapeutic agent is art-recognized and refers to any chemical moiety that is a biologically, physiologically, or pharmacologically active substance that acts locally or systemically in a subject.
  • the term also means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and/or conditions in an animal or human.
  • therapeutic effect is art-recognized and refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance.
  • therapeutically-effective amount means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment.
  • the therapeutically effective amount of such substance will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
  • certain compositions described herein may be administered in a sufficient amount to produce a desired effect at a reasonable benefit/risk ratio applicable to such treatment.
  • Transcriptional regulatory sequence is a generic term used throughout the specification to refer to DNA sequences, such as initiation signals, enhancers, and promoters, which induce or control transcription of protein coding sequences with which they are operable linked.
  • transcription of one of the recombinant genes is under the control of a promoter sequence (or other transcriptional regulatory sequence) which controls the expression of the recombinant gene in a cell-type which expression is intended.
  • a promoter sequence or other transcriptional regulatory sequence
  • the recombinant gene can be under the control of transcriptional regulatory sequences which are the same or which are different from those sequences which control transcription of the naturally-occurring forms of genes as described herein.
  • Treating” a condition or disease refers to curing as well as ameliorating at least one symptom of the condition or disease.
  • a “vector” is a self-replicating nucleic acid molecule that transfers an inserted nucleic acid molecule into and/or between host cells.
  • the term includes vectors that function primarily for insertion of a nucleic acid molecule into a cell, replication of vectors that function primarily for the replication of nucleic acid, and expression vectors that function for transcription and/or translation of the DNA or RNA. Also included are vectors that provide more than one of the above functions.
  • expression vectors are defined as polynucleotides which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide(s).
  • An “expression system” usually connotes a suitable host cell comprised of an expression vector that can function to yield a desired expression product.
  • vision impairment refers to diminished vision, which is often only partially reversible or irreversible upon treatment (e.g., surgery). Particularly severe vision impairment is termed “blindness” or “vision loss”, which refers to a complete loss of vision, vision worse than 20/200 that cannot be improved with corrective lenses, or a visual field of less than 20 degrees diameter (10 degrees radius).
  • the invention provides novel sirtuin-modulating compounds for treating and/or preventing a wide variety of diseases and disorders including, for example, diseases or disorders related to aging or stress, diabetes, obesity, neurodegenerative diseases, ocular diseases and disorders, cardiovascular disease, blood clotting disorders, inflammation, cancer, and/or flushing, etc.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may also be used for treating a disease or disorder in a subject that would benefit from increased mitochondrial activity, for enhancing muscle performance, for increasing muscle ATP levels, or for treating or preventing muscle tissue damage associated with hypoxia or ischemia.
  • Other compounds disclosed herein may be suitable for use in a pharmaceutical composition and/or one or more methods disclosed herein.
  • sirtuin-modulating compounds of the invention are represented by Structural Formula (I): or a salt thereof, where:
  • Ring A is optionally substituted
  • Ring B is substituted with at least one carboxy, substituted or unsubstituted arylcarboxamine, substituted or unsubstituted aralkylcarboxamine, substituted or unsubstituted heteroaryl group, substituted or unsubstituted heterocyclylcarbonylethenyl, or polycyclic aryl group or is fused to an aryl ring and is optionally substituted by one or more additional groups.
  • Ring B is substituted with at least a carboxy group.
  • Ring B is substituted with at least a substituted or unsubstituted arylcarboxamine, a substituted or unsubstituted aralkylcarboxamine or a polycyclic aryl group.
  • Ring B is substituted with at least a substituted or unsubstituted heteroaryl group or a substituted or unsubstituted heterocyclylcarbonylethenyl group.
  • sirtuin-modulating compounds of the invention are represented by Structural Formula (II): or a salt thereof, where:
  • Ring A is optionally substituted
  • R 1 , R 2 , R 3 and R 4 are independently selected from the group consisting of —H, halogen, —OR 5 , —CN, —CO 2 R 5 , —OCOR 5 , —OCO 2 R 5 , —C(O)NR 5 R 6 , —OC(O)NR 5 R 6 , —C(O)R 5 , —COR 5 , —SR 5 , —OSO 3 H, —S(O) n R 5 , —S(O) n OR 5 , —S(O) n NR 5 R 6 , —NR 5 R 6 , —NR 5 C(O)OR 6 , —NR 5 C(O)R 6 and —NO 2 ;
  • R 5 and R 6 are independently —H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group;
  • n 1 or 2.
  • sirtuin-modulating compounds of the invention are represented by Structural Formula (IIa): or a salt thereof, where:
  • Ring A is optionally substituted
  • R 1 , R 2 , R 3 and R 4 are independently selected from the group consisting of —H, halogen, —OR 5 , —CN, —CO 2 R 5 , —OCOR 5 , —OCO 2 R 5 , —C(O)NR 5 R 6 , —OC(O)NR 5 R 6 , —C(O)R 5 , —COR 5 , —SR 5 , —OSO 3 H, —S(O) n R 5 , —S(O) n OR 5 , —S(O) n NR 5 R 6 , —NR 5 R 6 , —NR 5 C(O)OR 6 , —NR 5 C(O)R 6 and —NO 2 ;
  • R 5 and R 6 are independently —H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group;
  • n 1 or 2.
  • sirtuin-modulating compounds of the invention are represented by Structural Formula (II): or a salt thereof, where:
  • Ring A is optionally substituted
  • R 1 , R 2 , R 3 and R 4 are independently selected from the group consisting of —H, halogen, —OR 5 , —CN, —CO 2 R 5 , —OCOR 5 , —OCO 2 R 5 , —C(O)NR 5 R 6 , —OC(O)NR 5 R 6 , —C(O)R 5 , —COR 5 , —SR 5 , —OSO 3 H, —S(O) n R 5 , —S(O) n OR 5 , —S(O) n NR 5 R 6 , —NR 5 R 6 , —NR 5 C(O)OR 6 , —NR 5 C(O)R 6 and —NO 2 ;
  • R 5 and R 6 are independently —H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group;
  • n 1 or 2.
  • R 1 , R 2 , R 3 and R 4 in Structural Formulas (II)-(IIb) are independently selected from the group consisting of —H, —OR 5 and —SR 5 , particularly —H and —OR 5 (e.g., —H, —OH, —OCH 3 ).
  • Ring A is preferably substituted.
  • Suitable substituents include halogens (e.g., bromine), acyloxy groups (e.g., acetoxy), aminocarbonyl groups (e.g., arylaminocarbonyl such as substituted, particularly carboxy-substituted, phenylaminocarbonyl groups) and alkoxy (e.g., methoxy, ethoxy) groups.
  • the invention provides novel sirtuin-modulating compounds of Formula (III): or a salt thereof, where:
  • Ring A is optionally substituted
  • R 5 and R 6 are independently —H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group;
  • R 7 , R 9 , R 10 and R 11 are independently selected from the group consisting of —H, halogen, —R 5 , —OR 5 , —CN, —CO 2 R 5 , —OCOR 5 , —OCO 2 R 5 , —C(O)NR 5 R 6 , —OC(O)NR 5 R 6 , —C(O)R 5 , —COR 5 , —SR 5 , —OSO 3 H, —S(O) n R 5 , —S(O) n OR 5 , —S(O) n NR 5 R 6 , —NR 5 R 6 , —NR 5 C(O)OR 6 , —NR 5 C(O)R 6 and —NO 2 ;
  • R 8 is a polycyclic aryl group
  • n 1 or 2.
  • R 7 , R 9 , R 10 and R 11 are —H. In particular embodiments, R 7 , R 9 , R 10 and R 11 are each —H.
  • R 8 is a heteroaryl group, such as an oxazolo[4,5-b]pyridyl group.
  • R 8 is a heteroaryl group and one or more of R 7 , R 9 , R 10 and R 11 are —H.
  • Ring A is preferably substituted. Suitable substituents include halogens (e.g., bromine), acyloxy groups (e.g., acetoxy), aminocarbonyl groups (e.g., arylaminocarbonyl, such as substituted, particularly carboxy-substituted, phenylaminocarbonyl groups) and alkoxy (e.g., methoxy, ethoxy) groups, particularly alkoxy groups. In certain embodiments, Ring A is substituted with at least one alkoxy or halo group, particularly methoxy.
  • halogens e.g., bromine
  • acyloxy groups e.g., acetoxy
  • aminocarbonyl groups e.g., arylaminocarbonyl, such as substituted, particularly carboxy-substituted, phenylaminocarbonyl groups
  • alkoxy e.g., methoxy, ethoxy
  • Ring A is substituted with at least one alk
  • Ring A is optionally substituted with up to 3 substituents independently selected from (C 1 -C 3 straight or branched alkyl), O—(C 1 -C 3 straight or branched alkyl), N(C 1 -C 3 straight or branched alkyl) 2 , halo, or a 5 to 6-membered heterocycle.
  • Ring A is not substituted with a nitrile or pyrrolidyl group.
  • R 8 is a substituted or unsubstituted bicyclic heteroaryl group, such as a bicyclic heteroaryl group that includes a ring N atom and 1 to 2 additional ring heteroatoms independently selected from N, O or S.
  • R 8 is attached to the remainder of the compound by a carbon-carbon bond.
  • 2 additional ring heteroatoms are present, and typically at least one of said additional ring heteroatoms is O or S.
  • 2 total ring nitrogen atoms are present (with zero or one O or S present), and the nitrogen atoms are typically each in a different ring.
  • R 8 is not substituted with a carbonyl-containing moiety, particularly when R 8 is thienopyrimidyl or thienopyridinyl.
  • R 8 is selected from oxazolopyridyl, benzothienyl, benzofuryl, indolyl, quinoxalinyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, quinolinyl, isoquinolinyl or isoindolyl.
  • R 8 is selected from thiazolopyridyl, imidazothiazolyl, benzoxazinonyl, or imidazopyridyl.
  • R 8 where indicates attachment to the remainder of Structural Formula (III), include: where up to 2 ring carbons not immediately adjacent to the indicated attachment point are independently substituted with O—C 1 -C 3 straight or branched alkyl, C 1 -C 3 straight or branched alkyl or halo, particularly C 1 -C 3 straight or branched alkyl or halo.
  • R 8 is
  • R 8 is and Ring A is optionally substituted with up to 3 substituents independently selected from (C 1 -C 3 straight or branched alkyl), O—(C 1 -C 3 straight or branched alkyl), N(C 1 -C 3 straight or branched alkyl) 2 , halo, or a 5 to 6-membered heterocycle.
  • Ring A is not simultaneously substituted at the 2- and 6-positions with O—(C 1 -C 3 straight or branched alkyl).
  • Ring A is not simultaneously substituted at the 2-, 4- and 6-positions with O—(C 1 -C 3 straight or branched alkyl). In certain such embodiments, Ring A is not simultaneously substituted at the 2-, 3-, and 4-positions with O—(C 1 -C 3 straight or branched alkyl). In certain such embodiments, Ring A is not substituted at the 4-position with a 5 to 6-membered heterocycle. In certain such embodiments, Ring A is not singly substituted at the 3- or 4-position (typically 4-position) with O—(C 1 -C 3 straight or branched alkyl). In certain such embodiments, Ring A is not substituted at the 4-position with O—(C 1 -C 3 straight or branched alkyl) and at the 2- or 3-position with C 1 -C 3 straight or branched alkyl.
  • R 8 is and Ring A is optionally substituted with up to 3 substituents independently selected from (C 1 -C 3 straight or branched alkyl), (C 1 -C 3 straight or branched haloalkyl, where a haloalkyl group is an alkyl group substituted with one or more halogen atoms), O—(C 1 -C 3 straight or branched alkyl), N(C 1 -C 3 straight or branched alkyl) 2 , halo, or a 5 to 6-membered heterocycle.
  • Ring A is not singly substituted at the 3- or 4-position with O—(C 1 -C 3 straight or branched alkyl).
  • Ring A is not substituted at the 4-position with O—(C 1 -C 3 straight or branched alkyl) and at the 2- or 3-position with C 1 -C 3 straight or branched alkyl.
  • R 8 is (e.g., where one or both halo is chlorine) and Ring A is optionally substituted with up to 3 substituents independently selected from (C 1 -C 3 straight or branched alkyl), O—(C 1 -C 3 straight or branched alkyl), N(C 1 -C 3 straight or branched alkyl) 2 , halo, or a 5 to 6-membered heterocycle, but not singly substituted at the 3-position with O—(C 1 -C 3 straight or branched alkyl).
  • Ring A is substituted with up to 3 substituents independently selected from chloro, methyl, O-methyl, N(CH 3 ) 2 or morpholino.
  • R 8 is selected from where up to 2 ring carbons not immediately adjacent to the indicated attachment point are independently substituted with C 1 -C 3 straight or branched alkyl or halo; each of R 7 , R 9 , and R 11 is —H; and R 10 is selected from —H, —CH 2 OH, —CO 2 H, —CO 2 CH 3 , —CH 2 -piperazinyl, CH 2 N(CH 3 ) 2 , —C(O)—NH—(CH 2 ) 2 —N(CH 3 ) 2 , or —C(O)-piperazinyl.
  • R 7 , R 9 , R 10 and R 11 when R 8 is and Ring A is 3-dimethylaminophenyl, none of R 7 , R 9 , R 10 and R 11 is —CH 2 —N(CH 3 ) 2 or —C(O)—NH—(CH 2 ) 2 —N(CH 3 ) 2 , and/or when R 8 is and Ring A is 3,4 dimethoxyphenyl, none of R 7 , R 9 , R 10 and R 11 is C(O)OCH 3 or C(O)OH.
  • R 7 , R 9 , R 10 and R 11 is —H.
  • each of R 7 , R 9 , R 10 and R 11 is —H.
  • R 7 , R 9 , R 10 or R 11 is selected from —C(O)OH, —N(CH 3 ) 2 , —CH 2 OH, —CH 2 OCH 3 ,—CH 2 -piperazinyl, —CH 2 -methylpiperazinyl, —CH 2 -pyrrolidyl, —CH 2 -piperidyl, —CH 2 -morpholino, —CH 2 —N(CH 3 ) 2 , —C(O)—NH—(CH 2 ) n- piperazinyl, —C(O)—NH—(CH 2 ) n- methylpiperazinyl, —C(O)—NH—(CH 2 ) n- pyrrolidyl, —C(O)—NH—(CH 2 ) n- morpholino, —C(O)—NH—(CH 2 ) n- piperidyl, or —C(O)—NH—NH—(
  • R 10 is selected from —C(O)OH, —N(CH 3 ) 2 , —CH 2 OH, —CH 2 OCH 3 ,—CH 2 -piperazinyl, —CH 2 -methylpiperazinyl, —CH 2 -pyrrolidyl, —CH 2 -piperidyl, —CH 2 -morpholino, —CH 2 —N(CH 3 ) 2 , —C(O)—NH—(CH 2 ) n- piperazinyl, —C(O)—NH—(CH 2 ) n- methylpiperazinyl, —C(O)—NH—(CH 2 ) n- pyrrolidyl, —C(O)—NH—(CH 2 ) n- morpholino, —C(O)—NH—(CH 2 ) n- piperidyl, or —C(O)—NH—(CH 2 ) n- N
  • Ring A is substituted with a nitrile group or is substituted at the para position with a 5- or 6-membered heterocycle.
  • Typical examples of the heterocycle include pyrrolidyl, piperidinyl and morpholinyl.
  • the invention provides novel sirtuin-modulating compounds of Formula (IV): Ar-L-J-M-K—Ar′ (IV)
  • each Ar and Ar′ is independently an optionally substituted carbocyclic or heterocyclic aryl group
  • L is an optionally substituted carbocyclic or heterocyclic arylene group
  • each J and K is independently NR 1 ′, O, S, or is optionally independently absent; or when J is NR 1 ′, R 1 ′ is a C1-C4 alkylene or C2-C4 alkenylene attached to Ar′ to form a ring fused to Ar′; or when K is NR 1 ′, R 1 ′ is a C1-C4 alkylene or C2-C4 alkenylene attached to L to form a ring fused to L;
  • each M is C(O), S(O), S(O) 2 , or CR 1 ′R 1 ′;
  • each R 1 ′ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 5 ′; halo; haloalkyl; CF 3 ; SR 2 ′; OR 2 ′; NR 2 ′R 2 ′; NR 2 ′R 3 ′; COOR 2 ′; NO 2 ; CN; C(O)R 2 ′; C(O)C(O)R 2 ′; C(O)NR 2 ′R 2 ′; OC(O)R 2 ′; S(O) 2 R 2 ′; S(O) 2 NR 2 ′R 2 ′; NR 2 ′C(O)NR 2 ′R 2 ′; NR 2 ′C(O)C(O)R 2 ′; NR 2 ′C(O)R 2 ′;
  • each R 2 ′ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 6 ′; C1-C10 alkyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R 4 ′ or R 6 ′;
  • each R 3 ′ is independently C(O)R 2 ′, COOR 2 ′, or S(O) 2 R 2 ′;
  • each R 4 ′ is independently halo, CF 3 , SR 7 ′, OR 7 ′, OC(O)R 7 ′, NR 7 ′R 7 ′, NR 7 ′R 8 ′, NR 8 ′R 8 ′, COOR 7 ′, NO 2 , CN, C(O)R 7 ′, or C(O)NR 7 ′R 7 ′;
  • each R 5 ′ is independently a 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system comprising 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R 6 ′; halo; sulfur; oxygen; CF 3 ; haloalkyl; SR 2 ′; OR 2 ′; OC(O)R 2 ′; NR 2 ′R 2 ′; NR 2 ′R 3 ′; NR 3 ′R 3
  • each R 6 ′ is independently a 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system comprising 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF 3 ; haloalkyl; SR 7 ′; OR 7 ′; NR 7 ′R 7 ′; NR 7 ′R 8 ′; NR 8 ′R 8 ′; COOR 7 ′; NO 2 ; CN; C(O
  • each R 7 ′ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF 3 , OR 10 ′, SR 10 ′, NR 10 ′R 10 ′, COOR 10 ′, NO 2 , CN, C(O)R 10 ′, C(O)NR 10 ′R 10 ′, NHC(O)R 10 ′, or OC(O)R 10 ′; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl
  • each R 8 ′ is independently C(O)R 7 ′, COOR 7 ′, or S(O) 2 R 7 ′;
  • each R 9 ′ is independently H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF 3 , OR 10 ′, SR 10 ′, NR 10 ′R 10 ′, COOR 10 ′, NO 2 , CN, C(O)R 10 ′, C(O)NR 10 ′R 10 ′, NHC(O)R 10 ′, or OC(O)R 10 ′;
  • each R 10 ′ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, CF 3 , OR 11 ′, SR 11 ′, NR 11 ′R 11 ′, COOR 11 ′, NO 2 , CN; or phenyl optionally substituted with halo, CF 3 , OR 11 ′, SR 11 ′, NR 11 ′R 11 ′, COOR 11 ′, NO 2 , CN;
  • each R 11 ′ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;
  • each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F, Cl, Br, or I, wherein the number of halogen atoms may not exceed that number that results in a perhaloalkyl group; and
  • each aryl is independently optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R 6 ′; halo; haloalkyl; CF 3 ; OR 9 ′; SR 9 ′; NR 9 ′R 9 ′; COOR 9 ′; NO 2 ; CN; C(O)R 9 ′; C(O)C(O)R 9 ′; C(O)NR 9 ′R 9 ′; S(O) 2 R 9 ′; N(R 9 ′)C(O)R 9 ′; N(R 9 ′)(COOR 9 ′); N(R 9 ′)S(O) 2 R 9 ′; S(O) 2 NR 9 ′R 9 ′; OC(O)R 9 ′; NR 9 ′C(O)NR 9 ′R 9
  • each Ar, L, and Ar′ is independently an optionally substituted 5- to 7-membered monocyclic ring system or an optionally substituted 9- to 12-membered bicyclic ring system.
  • X 1 and X 2 are N; X 3 , X 4 , and X 5 are CR 1 ′; and X 6 is O.
  • X 1 and X 3 are N; X 2 , X 4 , and X 5 are CR 1 ′; and X 6 is O.
  • X 1 and X 4 are N; X 2 , X 3 , and X 5 are CR 1 ′; and X 6 is O.
  • X 1 and X 5 are N; X 2 , X 3 , and X 4 are CR 1 ′; and X 6 is O.
  • the compounds of the formula above are those wherein J is NR 1 ′, K is absent, and M is C(O).
  • the compounds of the formula above are those wherein J is absent, K is NR 1 ′, and M is C(O).
  • compounds of formula (IV) are those where when J is absent and K is NR 1 ′, M is not C(O) and when J is NR 1 ′ and K is absent, M is not C(O).
  • the compounds above are those wherein L is an optionally substituted 5- to 7-membered carbocyclic or heterocyclic aryl group.
  • the compounds are those wherein L is an optionally substituted phenylene, pyridinylene, imidazolylene, oxazolylene, or thiazolylene.
  • L is an optionally substituted phenylene.
  • L is an optionally substituted pyridinylene.
  • L is phenylene
  • L is pyridinylene
  • Ar and J may be attached to L at the ortho-, meta-, or para-positions. Particularly preferred are those embodiments where attachment is at the meta-position.
  • L is not phenylene when Ar′ is phenyl.
  • examples of such embodiments include embodiments where L is an optionally substituted heterocyclic aryl group and Ar′ is an optionally substituted carbocyclic or heterocyclic aryl group, or wherein L is an optionally substituted carbocyclic or heterocyclic aryl group and Ar′ is an optionally substituted heterocyclic aryl group.
  • the invention provides novel sirtuin-modulating compounds of Formula (I) or a salt thereof, wherein
  • Ring A is substituted with at least one R 1 ′ group
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, R 6 ′, R 7 ′, R 8 ′, R 9 ′, R 10 ′, and R 11 ′ are as defined above;
  • each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F, Cl, Br, or I, wherein the number of halogen atoms may not exceed that number that results in a perhaloalkyl group;
  • each aryl is independently a 5- to 7-membered monocyclic ring system or a 9- to 12-membered bicyclic ring system optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R 6 ′; halo; haloalkyl; CF 3 ; OR 9 ′; SR 9 ′; NR 9 ′R 9 ′; COOR 9 ′; NO 2 ; CN; C(O)R 9 ′; C(O)C(O)R 9 ′; C(O)NR 9 ′R 9 ′; S(O) 2 R 9 ′; N(R 9 ′)C(O)R 9 ′; N(R 9 ′)(COOR 9 ′); N(R 9 ′)S(O) 2 R 9 ′; S(O) 2 NR 9
  • Ring B is substituted with at least one wherein
  • X 1 , X 2 , X 3 , X 4 , and X 5 are independently selected from CR 1 ′ and N;
  • X 6 is selected from NR 1 ′, O, and S.
  • Ring B is phenyl or pyridinyl.
  • the invention provides novel sirtuin-modulating compounds of Formula (IVa): Het-L-Q-Ar′ (IVa) or a salt thereof, wherein:
  • Het is an optionally substituted heterocyclic aryl group
  • L is an optionally substituted carbocyclic or heterocyclic arylene group
  • Ar′ is an optionally substituted carbocyclic or heterocyclic aryl group
  • Q is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl, wherein:
  • Het is a polycyclic heteroaryl
  • L is an optionally substituted phenylene
  • Q and Het are attached to L in a meta orientation
  • Ar′ is optionally substituted phenyl; then Q is not —NH—C(O)—.
  • Het is a polycyclic heteroaryl
  • L is optionally substituted phenylene
  • Ar′ is optionally substituted phenyl
  • Q is not —NH—C(O)—.
  • Het and Q are attached to L in a 1-, 2- or 1-,3-configuration (e.g., when L is phenylene, Het and Q are attached in an ortho or a meta orientation).
  • Het When Het is substituted, it is typically substituted at up to 2 carbon atoms with a substituent independently selected from R 12 , N(R 12 ) 2 , NH(R 12 ), OR 12 , C(O)—NH—R 12 , C(O)—N(R 12 ) 2 , N(R 12 )—OR 12 , CH 2 —N(R 12 ) 2 , C(O)OR 12 , C(O)OH, where each R 12 is independently selected from optionally substituted C 1 -C 3 straight or branched alkyl.
  • Het is selected from oxazolopyridyl, benzothienyl, benzofuryl, indolyl, quinoxalinyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, quinolinyl, isoquinolinyl or isoindolyl.
  • Het comprises one ring N heteroatom and 1 to 2 additional ring heteroatoms independently selected from N, O or S, such as thiazolyl, triazolyl, oxadiazolyl, thiazolopyridyl, imidazothiazolyl, benzoxazinonyl, or imidazopyridyl.
  • Het include: where up to 2 ring carbons not immediately adjacent to the indicated attachment point are independently substituted with optionally substituted C 1 -C 3 straight or branched alkyl, phenyl, halo, N(R 12 ) 2 , NH(R 12 ), OR 12 , C(O)—NH—R 12 , C(O)—N(R 12 ) 2 , N(R 12 )—OR 12 , CH 2 —N(R 12 ) 2 , C(O)OR 12 , C(O)OH, wherein each R 12 is independently selected from optionally substituted C 1 -C 3 straight or branched alkyl.
  • L is selected from
  • each of Z 1 , Z 2 , Z 3 and Z 4 is independently selected from CH or N, wherein not more than three of said Z 1 , Z 2 , Z 3 or Z 4 is N;
  • each of Z 5 and Z 6 is independently selected from C, N, O or S, provided that at least one of Z 5 and Z 6 is N;
  • L is optionally substituted at 1 to 2 carbon atoms with a substituent independently selected from R 12 , N(R 12 ) 2 , NH(R 12 ), OR 12 , C(O)—NH—R 12 , C(O)—N(R 12 ) 2 , N(R 12 )—OR 12 , CH 2 —N(R 12 ) 2 , C(O)OR 12 , C(O)OH,
  • L is selected from phenylene or pyridylene, such as unsubstituted phenylene or phenylene substituted with a single substituent selected from C(O)OCH 3 , C(O)OH, CH 2 OH, N(CH 3 ) 2 , or CH 2 N(CH 3 ) 2 , or unsubstituted pyridylene.
  • Q is selected from —NH—C(O)—, —NH—S(O) 2 —, —NH—C(O)—NH—, —C(O)—NH—, —CH 2 —, —N(CH 3 )—C(O)—NH—, —NH—C(O)—N(CH 3 )—, or —NH—S(O) 2 —NH—, particularly —NH—C(O)—, —C(O)—NH—, —NH—, —NH—C(O)—NH, or —NH—S(O) 2 —.
  • Ar′ is selected from optionally substituted phenyl, benzothiazolyl, or benzoxazolyl.
  • typical optional substituents are 1 to 3 substituents independently selected from halo, (optionally substituted C 1 -C 3 straight or branched alkyl), O-(optionally substituted C 1 -C 3 straight or branched alkyl), S-(optionally substituted C 1 -C 3 straight or branched alkyl), N(CH 3 ) 2 or optionally substituted heterocyclyl, or wherein two substituents on adjacent ring atoms are taken together to form a dioxymethylene.
  • Het is selected from and wherein up to 2 ring carbons not immediately adjacent to the indicated attachment point are independently substituted with optionally substituted C 1 -C 3 straight or branched alkyl, phenyl or halo;
  • L is selected from unsubstituted phenylene, phenylene substituted with a single substituent selected from C(O)OCH 3 , C(O)OH, CH 2 OH, N(CH 3 ) 2 , or CH 2 N(CH 3 ) 2 , or unsubstituted pyridylene;
  • Q is selected from —NH—C(O)—, —C(O)—NH—, —NH—, —NH—C(O)—NH, or —NH—S(O) 2 —;
  • Ar′ is selected from optionally substituted phenyl, benzothiazolyl, or benzoxazolyl, wherein said phenyl is optionally substituted with 1 to 3 substituents independently selected from chloro, methyl, O-methyl, S-methyl, N(CH 3 ) 2 , morpholino, or 3,4 dioxymethylene.
  • Q is selected from —NH—C(O)—, —C(O)—NH—, —NH— or —NH—C(O)—NH.
  • the substituents on Ar′ are selected from chloro, methyl, O-methyl, S-methyl or N(CH 3 ) 2 .
  • the only substituent on Ar′ is an O-methyl group, particularly an O-methyl group ortho or meta to Q.
  • at least one is ortho or meta to Q.
  • L is pyridyl and Het and Q are at the 1,3- or 2,4-position with respect to the pyridyl nitrogen atom.
  • Q is —NH—S(O) 2 —.
  • the substituent is typically meta to both Het and Q.
  • Q is —NH— and Het is thiazolyl or oxazolopyridyl.
  • Q is —NH— and Ar is benzothiazolyl or benzoxazolyl.
  • L is and Q is —NH—(SO) 2 —.
  • Het is oxazolopyridyl.
  • Ar′ is advantageously naphthyl or phenyl, where Ar′ is optionally substituted with 1 to 3 substituents independently selected from CN, halo, (C 1 -C 3 straight or branched alkyl), O—(C 1 -C 3 straight or branched alkyl), N(C 1 -C 3 straight or branched alkyl) 2 , or a 5 to 6-membered heterocycle.
  • L is and Q is —NH—C(O)—.
  • Het is oxazolopyridyl.
  • Ar′ is advantageously pyridyl or phenyl optionally substituted with 1 to 3 substituents independently selected from CN, halo, (C1-C3 straight or branched alkyl), O—(C1-C3 straight or branched alkyl), N(C1-C3 straight or branched alkyl)2, or a 5 to 6-membered heterocycle.
  • Het comprises one N heteroatom and 1 to 2 additional heteroatoms independently selected from N, O or S;
  • L is and is optionally substituted
  • Q is —NH—C(O)—
  • Ar′ is phenyl substituted with 1 to 3 substituents independently selected from CN, halo, C 1 -C 3 straight or branched alkyl, O—(C 1 -C 3 straight or branched alkyl), N(C 1 -C 3 straight or branched alkyl) 2 , or a 5 to 6-membered heterocycle,
  • the invention provides novel sirtuin-modulating compounds of Formula (V):
  • Ring A is optionally substituted with at least one R 1 ′ group
  • Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are independently R 1 ′;
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, R 6 ′, R 7 ′, R 8 ′, R 9 ′, R 10 ′, and R 11 ′ are as defined above;
  • each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F, Cl, Br, or I, wherein the number of halogen atoms may not exceed that number that results in a perhaloalkyl group; and
  • each aryl is independently a 5- to 7-membered monocyclic ring system or a 9- to 12-membered bicyclic ring system optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R 6 ′; halo; haloalkyl; CF 3 ; OR 9 ′; SR 9 ′; NR 9 ′R 9 ′; COOR 9 ′; NO 2 ; CN; C(O)R 9 ′; C(O)C(O)R 9 ′; C(O)NR 9 ′R 9 ′; S(O) 2 R 9 ′; N(R 9 ′)C(O)R 9 ′; N(R 9 ′)(COOR 9 ′); N(R 9 ′)S(O) 2 R 9 ′; S(O) 2 NR 9
  • X 1 , X 2 , X 3 , X 4 , and X 5 are independently selected from CR 1 ′ and N;
  • X 6 is selected from NR 1 ′, O, and S.
  • X 1 and X 2 are N; X 3 , X 4 , and X 5 are CR 1 ′; and X 6 is O.
  • X 1 and X 3 are N; X 2 , X 4 , and X 5 are CR 1 ′; and X 6 is O.
  • X 1 and X 4 are N; X 2 , X 3 , and X 5 are CR 1 ′; and X 6 is O.
  • X 1 and X 5 are N; X 2 , X 3 , and X 4 are CR 1 ′; and X 6 is O.
  • the invention provides sirtuin-modulating compounds of Structural Formula (VII): or a salt thereof, wherein:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that said compound is not: that when R 19 is and R 21 is —NHC(O)—, R 31 is not an optionally substituted phenyl.
  • compounds of Structural Formula (VII) have the following values:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • each R 20 is independently selected from H or a solubilizing group
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • one of X 7 , X 8 , X 9 and X 10 is N and the others are selected from CR 20 or CR 1 ′;
  • R 20 is a solubilizing group
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • said compound is not:
  • At least one of Z 10 , Z 11 , Z 12 and Z 13 is CR 20 , wherein R 20 is a solubilizing group.
  • the solubilizing group is not —C(O)OCH 2 CH 3 , —COOH,
  • X 8 and X 9 are each independently selected from CR 20 or CR 1 ′R 19 is and each of Z 10 , Z 11 , Z 12 and Z 13 is independently selected from CR 20 , or CR 1 ′, then:
  • R 19 when R 19 is and each of Z 10 , Z 11 , Z 12 and Z 13 is CR 20 , or CR 1 ′; X 8 and X 9 are CR 20 or CR 1 ′; R 21 is —NHC(O)—; and R 31 is optionally substituted phenyl, then R 31 is a substituted phenyl, at least one R 1 ′ in a CR 1 ′ moiety is optionally substituted C 1 -C 3 straight or branched alkyl or at least one R 20 in a CR 20 is a solubilizing group, or a combination thereof.
  • R 19 is selected from phenyl, pyridyl, thienyl or furyl.
  • R 19 is wherein each of Z 10 , Z 11 , Z 12 and Z 13 is independently selected from CR 20 or CR 1 ′;
  • R 21 is —NH—C(O)—
  • R 31 is a substituted phenyl.
  • R 31 when X 9 is N, R 31 is not 2,4 dimethoxyphenyl and/or when X 10 is N, R 31 is not halo substituted phenyl; 3,4-dioxoethylenephenyl; or 3,5-dimethoxyphenyl.
  • R 31 is optionally substituted with 1 to 3 substituents independently selected from —OCH 3 , —CH 3 , —N(CH 3 ) 2 , pyrazinoxy or a solubilizing group.
  • Suitable examples of R 31 include 3-methoxy-4-((4-methylpiperazin-1-yl)methyl)phenyl, 3-methoxy-4-morpholinomethylphenyl, 3-methoxy-4-diaminomethylphenyl, 3-methoxy-4-((pyrrolidin-1-yl)methyl)phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 2,3,4-trimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2-dimethylaminophenyl, 3-dimethylaminophenyl, 4-dimethylaminophenyl, or 3,5-dimethylphenyl.
  • R 19 is selected from wherein one of Z 10 , Z 11 , Z 12 , and Z 13 is N and the others are independently selected from CR 20 or CR 1 ′;
  • R 21 is selected from —NH—, —NH—C(O)—, —NH—C(O)—NH, —NH—C(S)—NH— or —NH—S(O) 2 —;
  • R 31 is selected from an optionally substituted phenyl, an optionally substituted naphthyl, or an optionally substituted heteroaryl.
  • R 31 is selected from optionally substituted phenyl, benzothiazolyl, or benzoxazolyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (VIII): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not 1-methoxynaphthyl, 2-methoxynaphthyl, or unsubstituted 2-thienyl;
  • R 31 is not unsubstituted naphthyl, 2-methoxy, 4-nitrophenyl, 4-chloro-2-methylphenyl, or 4-t-butylphenyl;
  • R 31 is not optionally substituted phenyl.
  • R 21 is —NH—C(O)—; and R 31 is phenyl optionally substituted with 1 to 3 substituents independently selected from —OCH 3 , —CH 3 , —N(CH 3 ) 2 , or a solubilizing group.
  • R 21 is —NH—C(O)— and R 31 is selected from unsubstituted phenyl, 2-methoxyphenyl, 3-methoxyphenyl, 2,3,4-trimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 2-methyl-3-methoxyphenyl, 2-morpholinophenyl, 2-methoxy-4-methylphenyl, 2-dimethylaminophenyl, 4-dimethylaminophenyl, or particularly phenyl; 2-methoxyphenyl; 3-methoxyphenyl; 2,3,4-trimethoxyphenyl; 3,4,5-trimethoxyphenyl; 2,4-dimethoxyphenyl; 3,5-dimethoxyphenyl; 2-methyl-3-methoxyphenyl; 2-morpholinophenyl; 2-methoxy-4-methylphenyl; 2-dimethylaminophenyl;
  • the invention provides sirtuin-modulating compounds of Structural Formula (IX): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 50 is selected from 2,3-dimethoxyphenyl, phenoxyphenyl, 2-methyl-3-methoxyphenyl, 2-methoxy-4-methylphenyl, or phenyl substituted with 1 to 3 substituents, wherein one of said substituents is a solubilizing group; with the provisos that R 50 is not substituted simultaneously with a solubilizing group and a nitro group, and R 50 is not singly substituted at the 4-position with cyclic solubilizing group or at the 2-position with a morpholino group.
  • the invention provides sirtuin-modulating compounds of Structural Formula (X): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 51 is selected from an optionally substituted monocyclic heteroaryl, an optionally substituted bicyclic heteroaryl, or an optionally substituted naphthyl, wherein R 51 is not chloro-benzo(b)thienyl, unsubstituted benzodioxolyl, unsubstituted benzofuranyl, methyl-benzofuranyl, unsubstituted furanyl, phenyl-, bromo-, or nitro-furyl, chlorophenyl-isoxazolyl, oxobenzopyranyl, unsubstituted naphthyl, methoxy-, methyl-, or halo-naphthyl, unsubstituted thienyl, unsubstituted pyridinyl, or chloropyridinyl.
  • R 51 is selected from pyrazolyl, thiazolyl, oxazolyl, pyrimidinyl, furyl, thienyl, pyridyl, isoxazolyl, indolyl, benzopyrazolyl, benzothiazolyl, benzoxazolyl, quinoxalinyl, benzofuranyl, benzothienyl, quinolinyl, benzoisoxazolyl, benzotriazinyl, triazinyl, naphthyl, or and wherein R 51 is optionally substituted.
  • R 51 is selected from pyrazolyl, thiazolyl, oxazolyl, pyrimidinyl, indolyl, pyrazinyl, triazinyl, or and R 51 is optionally substituted.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XI): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 22 is selected from —NR 23 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1 ′
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not unsubstituted furyl, 5-(2-methyl-3-chlorophenyl)-furanyl, 2,4-dichlorophenyl, 3,5-dichloro-2-methoxyphenyl, 3-nitrophenyl, 4-chlorophenyl, 4-chloro-3-nitrophenyl, 4-isopropylphenyl, 4-methoxyphenyl, 2-methoxy-5-bromophenyl, or unsubstituted phenyl;
  • R 31 is not 3,4-dimethoxyphenyl, 4-chlorophenyl, or unsubstituted phenyl;
  • R 31 is not 2,4-dimethyl-6-nitrophenyl, 2- or 4-nitrophenyl, 4-cyclohexylphenyl, 4-methoxyphenyl, unsubstituted naphthyl, or unsubstituted phenyl, or phenyl monosubstituted, disubstituted or trisubstituted solely with substituents selected from straight- or branched-chain alkyl or halo;
  • R 31 is not 2,4-dichlorophenyl, 4-chlorophenyl, or unsubstituted phenyl;
  • R 31 is not unsubstituted phenyl.
  • R 22 is selected from —C(O)—NH—, —NH—, or —C(O)—NH—CH 3 .
  • R 31 is selected from optionally substituted phenyl, benzothiazolyl, quinoxalinyl, or benzoxazolyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XII): or a salt thereof, wherein:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the proviso that when R 19 is Z 10 , Z 11 , Z 12 and Z 13 are each CH, and R 21 is —NHC(O)—, R 31 is not an optionally substituted phenyl.
  • the compounds of Structural Formula (XI) have the following values:
  • each of X 7 , X 8 , X 9 and X 10 is independently selected from N, CR 20 , or CR 1 ′, wherein:
  • R 19 is selected from: wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the proviso that:
  • R 21 is —NH—C(O)— and R 19 is selected from:
  • R 19 is selected from optionally substituted phenyl, optionally substituted pyridyl, optionally substituted thienyl or optionally substituted furyl.
  • R 19 is wherein each of Z 10 , Z 11 , Z 12 and Z 13 is independently selected from CR 20 or CR 1 ′;
  • R 21 is selected from —NH—C(O)—, —NH—C(O)—CH(CH 3 )—O—, —NH—C(O)—CH 2 —O—, or —NH—S(O) 2 —CH 2 —CH 2 —;
  • R 31 is selected from an optionally substituted aryl, or an optionally substituted heteroaryl.
  • R 31 is optionally substituted with 1 to 3 substituents independently selected from —OCH 3 , —CH 3 , —N(CH 3 ) 2 , phenyl, phenoxy, 3,4-dioxymethylene, fluoro, or another solubilizing group.
  • R 31 examples include unsubstituted quinolinyl, 2,4-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2,3,4-trimethoxyphenyl, 2-dimethylaminophenyl, 3-dimethylaminophenyl, 4-dimethylaminophenyl, 3,5-dimethylphenyl, 3,5-difluorophenyl, 3-trifluoromethoxyphenyl, unsubstituted quinoxalinyl, unsubstituted benzopyrimidinyl, In certain such embodiments, R 31 is not phenyl-substituted furyl.
  • R 19 is selected from
  • each of Z 10 , Z 11 , Z 12 and Z 13 is independently selected from CR 20 , or CR 1 ′;
  • R 21 is selected from —NH—C(O)—, NH—C(O)—CH 2 —CH(CH 3 )—O, —NH—C(O)—NH—, —NH—C(S)—NH—, —NH—C(S)—NH—CH 2 —, or —NH—S(O) 2 —;
  • R 31 is selected from an optionally substituted phenyl, an optionally substituted naphthyl, or an optionally substituted heteroaryl.
  • R 31 is selected from phenyl, naphthyl, pyrazolyl, furyl, thienyl, pyridyl, isoxazolyl, benzopyrazolyl, benzofuryl, benzothienyl, quinolinyl, benzoisoxazolyl, or and R 31 is optionally substituted (e.g., optionally substituted with up to three substituents independently selected from —OCH 3 , —CH 3 , —N(CH 3 ) 2 , —O-phenyl, or another solubilizing group).
  • R 31 examples include unsubstituted phenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,3 dimethoxyphenyl, 2,4-dimethoxyphenyl, 2,5-bis(trifluoromethyl)phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2,3,4-trimethoxyphenyl, 2-methoxy-4-methylphenyl, 2-phenoxyphenyl, 3-dimethylaminophenyl, 4-dimethylaminophenyl, unsubstituted 2-furanyl, unsubstituted 2-thienyl,
  • one or more of the following conditions applies:
  • R 21 is —NH—C(S)—NH—
  • R 19 is phenyl
  • R 31 is not 2-methoxy-5-nitrophenyl, 2-S-methylphenyl or 2-acetylphenyl
  • R 21 is —NH—S(O) 2 —
  • R 19 is phenyl
  • R 31 is not thiadiazole-substituted thienyl or 4-methylsulfonylphenyl
  • R 21 is —NH—CO—
  • R 19 is phenyl
  • R 31 is not 2,4-difluorophenyl, pyridyl-substituted thienyl, 3,4-dichlorophenyl, 4-t-butylphenyl, or 3-benzyloxyphenyl;
  • R 21 is —NH—C(O)— and R 19 is R 31 is not 2,3,4-trimethoxyphenyl or 3,5-dimethoxyphenyl;
  • R 21 is —NH—C(O)— and R 19 is phenyl, R 31 is not 3,5-dimethoxyphenyl.
  • the invention provides compounds of Structural Formula (XIII): or a salt thereof, wherein:
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not unsubstituted furyl, 5-bromofuryl, unsubstituted phenyl, phenyl monosubstituted with halo or methyl, 3- or 4-methoxyphenyl, 4-butoxyphenyl, 4-t-butylphenyl, 3-trifluoromethylphenyl, 2-benzoylphenyl, 2- or 4-ethoxyphenyl, 2,3-, 2,4-, 3,4-, or 3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2,4- or 2-6 difluorophenyl, 3,4-dioxymethylene phenyl, 3,4- or 3,5-dimethlyphenyl, 2-chloro-5-bromophenyl, 2-methoxy-5-chlorophenyl, unsubstituted quinolinyl, thiazolyl substituted simultaneously with methyl and phenyl, or ethoxy-
  • R 31 is not unsubstituted phenyl
  • R 31 is not unsubstituted phenyl, 3-methylphenyl, 4-chlorophenyl, 4-ethoxyphenyl, 4-fluorophenyl or 4-methoxyphenyl;
  • R 31 is not unsubstituted phenyl or 4-chlorophenyl
  • R 31 is not 3,4-dioxymethylene phenyl, 2,4,5-trimethylphenyl, 2,4,6-trimethylphenyl, 2,4- or 3,4-dimethylphenyl, 2,5-difluorophenyl, 2,5- or 3,4-dimethoxyphenyl, fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-ethylphenyl, 4-methylphenyl, 3-methyl-4-methoxyphenyl, unsubstituted phenyl, unsubstituted pyridinyl, unsubstituted thienyl, chloro-substituted thienyl, or methyl-substituted benzothiazolyl.
  • R 1 ′ is selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from a monocyclic or bicyclic aryl or a monocyclic or bicyclic heteroaryl, and comprises a solubilizing group substituent.
  • R 31 is selected from phenyl, naphthyl, pyrazolyl, furyl, thienyl, pyridyl, isoxazolyl, benzopyrazolyl, benzofuryl, benzothienyl, quinolinyl, benzoisoxazolyl, or and R 31 is optionally substituted.
  • R 21 is selected from —NH—C(O)—, NH—C(O)—CH 2 —CH(CH 3 )—O, —NH—C(O)—NH—, —NH—C(S)—NH—, —NH—C(S)—NH—CH 2 —, or —NH—S(O) 2 —; and
  • R 31 is selected from an optionally substituted phenyl, an optionally substituted naphthyl, or an optionally substituted heteroaryl.
  • R 31 is selected from R 31 is selected from unsubstituted phenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,3 dimethoxyphenyl, 2,4-dimethoxyphenyl, 2,5-bis(trifluoromethyl)phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 2,3,4-trimethoxyphenyl, 2-methoxy-4-methylphenyl, 2-phenoxyphenyl, 3-dimethylaminophenyl, 4-dimethylaminophenyl, unsubstituted 2-furanyl, unsubstituted 2-thienyl,
  • the invention provides sirtuin-modulating compounds of Structural Formula (XIV): or a salt thereof, wherein:
  • each of R 23 and R 24 is independently selected from H, —CH 3 or a solubilizing group
  • R 25 is selected from H or a solubilizing group
  • R 19 is selected from:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • each of R 23 and R 24 is independently selected from H, —CH 3 or a solubilizing group
  • R 25 is selected from H, or a solubilizing group
  • R 19 is selected from:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, O or S;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • each R 20 is independently selected from H or a solubilizing group
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • R 31 is not 2,4-dimethoxyphenyl.
  • R 25 is selected from H, —CH 2 —N(CH 3 ) 2 , or
  • R 23 and R 24 are H.
  • R 19 is selected from phenyl, pyridyl, thienyl or furyl, particularly optionally substituted phenyl.
  • a phenyl is optionally substituted with:
  • each of R 23 and R 24 is independently selected from H, —CH 3 or a solubilizing group
  • R 25 is selected from H, or a solubilizing group
  • R 19 is selected from:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • R 19 is phenyl, at least one of R 23 , R 24 , or R 25 is a solubilizing group and wherein said compound is not 2-chloro-N-[3-[3-(cyclohexylamino)imidazo[1,2-a]pyridin-2-yl]phenyl]-4-nitrobenzamide.
  • R 25 is selected from H, —CH 2 —N(CH 3 ) 2 , or
  • R 23 and R 24 are H.
  • R 19 is selected from phenyl, pyridyl, thienyl or furyl, particularly optionally substituted phenyl.
  • a phenyl is optionally substituted with:
  • the invention provides sirtuin-modulating compounds of Structural Formula (XV): or a salt thereof, wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 32 is selected from an optionally substituted bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, wherein:
  • R 21 is —NH—C(O)—
  • R 32 is not unsubstituted 2-furyl, 2-(3-bromofuryl), unsubstituted 2-thienyl, unsubstituted 3-pyridyl, unsubstituted 4-pyridyl,
  • R 32 is not unsubstituted 2-thienyl or unsubstituted naphthyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XVI): or a salt thereof, wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 33 is an optionally substituted phenyl, wherein:
  • R 33 is a substituted phenyl other than phenyl singly substituted with halo, methyl, nitro or methoxy; 2-carboxyphenyl; 4-n-pentylphenyl; 4-ethoxyphenyl; 2-carboxy-3-nitrophenyl; 2-chloro-4-nitrophenyl; 2-methoxy-5-ethylphenyl; 2,4-dimethoxyphenyl; 3,4,5-trimethoxyphenyl; 2,4 dichlorophenyl; 2,6-difluorophenyl; 3,5-dinitrophenyl; or 3,4-dimethylphenyl;
  • R 33 is a substituted phenyl
  • R 33 is not unsubstituted phenyl, 4-methoxyphenyl; 3,4-dimethoxyphenyl or 4-chlorophenyl;
  • R 33 is not 2,4-bis(1,1-dimethylpropyl)phenyl
  • R 21 is —NH—C(O)—NH—
  • R 33 is not 4-methoxyphenyl
  • R 33 is a substituted phenyl other than 3-methylphenyl, 3-trifluoromethylphenyl, 2,4,5- or 2,4,6-trimethylphenyl, 2,4- or 3,4-dimethylphenyl, 2,5- or 3,4-dimethoxyphenyl, 2,5-dimethoxy-4-chlorophenyl, 3,6-dimethoxy, 4-methylphenyl, 2,5- or 3,4-dichlorophenyl, 2,5-diethoxyphenyl, 2-methyl-5-nitrophenyl, 2-ethoxy-5-bromophenyl, 2-methoxy-5-bromophenyl, 2-methoxy-3,4-dichlorophenyl, 2-methoxy-4-methyl-5-bromophenyl, 3,5-dinitro-4-methylphenyl, 3-methyl-4-methoxyphenyl, 3-nitro-4-methylphenyl, 3-methoxy-4-halophenyl, 3-
  • R 21 is selected from —NR 22 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 22 is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 33 is phenyl comprising a solubilizing group substituent, wherein: when R 21 is —NH—S(O) 2 said phenyl comprises an additional substituent.
  • R 21 is selected from —NR 22 —C(O)—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R′ 1 —NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 22 is an optionally substituted C 1 -C 3 straight or branched alkyl.
  • R 33 is optionally substituted on up to three carbon atoms with a substituent independently selected from —O—CH 3 , —CH 3 , —N(CH 3 ) 2 , —S(CH 3 ), or CN; or substituted on adjacent carbon atoms with bridging said adjacent carbon atoms.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XVII): or a salt thereof, wherein:
  • each of R 23 and R 24 is independently selected from H or —CH 3 , wherein at least one of R 23 and R 24 is H;
  • R 29 is phenyl substituted with:
  • R 29 is optionally additionally substituted with a solubilizing group.
  • R 29 is phenyl substituted with:
  • the invention provides sirtuin-modulating compounds of Structural Formula (XVIII): or a salt thereof, wherein
  • R 19 is selected from: wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • each R 20 is independently selected from H or a solubilizing group
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the proviso that when R 19 is Z 10 , Z 11 , Z 12 and Z 13 are each CH, R 20 is H, and R 21 is —NHC(O)—, R 31 is not an optionally substituted phenyl.
  • R 19 is selected from:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, O or S;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • each R 20 is independently selected from H or a solubilizing group
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • each R 1 ′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • compounds of Structural Formula (XVIII) have the formula: or a salt thereof, wherein
  • R 20 is selected from H or a solubilizing group
  • R 21 is selected from —NH—C(O)—, or —NH—C(O)—CH 2 —;
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • R 19 in compounds of Structural Formula (XVIII) is selected from phenyl, pyridyl, thienyl or furyl, particularly optionally substituted phenyl.
  • R 20 is selected from H, —CH 2 —N(CH 3 ) 2 ,
  • R 31 is selected from phenyl, pyrazolyl, furyl, pyridyl, pyrimidinyl, thienyl, naphthyl, benzopyrazolyl, benzofuryl, quinolinyl, quinoxalinyl, or benzothienyl and wherein R 31 is optionally substituted.
  • R 21 is selected from —NH—C(O)— or —NH—C(O)—CH 2 —.
  • R 31 when R 21 is —NR 1 ′—C(O)—, R 31 is not 4-cyanophenyl or and/or when R 21 is —NR 1 ′—S(O) 2 —, R 31 is not 4-methoxyphenyl or 4-t-butylphenyl.
  • R 31 when R 19 is and R 21 is —NR 1 ′—C(O)—, R 31 is not 4-cyanophenyl or and/or when R 19 is and R 21 is —NR 1 ′—S(O) 2 —, R 31 is not 4-methoxyphenyl or 4-t-butylphenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XX): or a salt thereof, wherein
  • R 19 is selected from: wherein:
  • each R 20 is independently selected from H or a solubilizing group
  • R 20a is independently selected from H or a solubilizing group
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, wherein when R 19 is and Z 10 , Z 11 , Z 12 and Z 13 are each CH, R 20a is a solubilizing group.
  • R 19 in compounds of Structural Formula (XX) is selected from phenyl, pyridyl, thienyl or furyl, particularly optionally substituted phenyl.
  • R 20a is selected from H, —CH 2 —N(CH 3 ) 2 ,
  • R 31 is selected from phenyl, pyrazolyl, furyl, pyridyl, pyrimidinyl, thienyl, naphthyl, benzopyrazolyl, benzofuryl, quinolinyl, quinoxalinyl, or benzothienyl and wherein R 31 is optionally substituted.
  • R 21 is selected from —NH—C(O)— or —NH—C(O)—CH 2 —.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXI): or a salt thereof, wherein
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 32 is an optionally substituted monocyclic or bicyclic heteroaryl, or an optionally substituted bicyclic aryl, wherein:
  • R 21 is —NH—C(O)—CH 2 —
  • R 32 is not unsubstituted thien-2-yl
  • R 21 is —NH—C(O)—
  • R 32 is not furan-2-yl, 5-bromofuran-2-yl, or 2-phenyl-4-methylthiazol-5-yl;
  • R 32 is not unsubstituted naphthyl or 5-chlorothien-2-yl.
  • R 32 is selected from pyrrolyl, pyrazolyl, pyrazinyl, furyl, pyridyl, pyrimidinyl, or thienyl, and R 32 is optionally substituted and is optionally benzofused.
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • R 32 is selected from benzofuryl, methylfuryl, benzothienyl, pyridyl, pyrazinyl, pyrimidinyl, pyrazolyl, wherein said methyfuryl, pyridyl, pyrazinyl, pyrimidinyl or pyrazolyl is optionally benzofused and wherein R 32 is optionally substituted or further substituted.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXII): or a salt thereof, wherein:
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 33 is an optionally substituted phenyl, wherein:
  • R 21 is —NR 1 ′—C(O)—, R 1 ′ is not H;
  • R 33 is not unsubstituted phenyl or 4-halophenyl
  • R 33 is not unsubstituted phenyl, 2,4- or 3,4-dimethylphenyl, 2,4-dimethyl-5-methoxyphenyl, 2-methoxy-3,4-dichlorophenyl, 2-methoxy, 5-bromophenyl-3,4-dioxyethylenephenyl, 3,4-dimethoxyphenyl, 3,4-dichlorophenyl, 3,4-dimethylphenyl, 3- or 4-methylphenyl, 4-alkoxyphenyl, 4-phenoxyphenyl, 4-halophenyl, 4-biphenyl, or 4-acetylaminophenyl.
  • R 21 is selected from —NH—C(O)— or —NH—C(O)—CH 2 —.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXII): or a salt thereof wherein:
  • R 21 is selected from —NH—C(O)—, or —NH—C(O)—CH 2 —;
  • R 33 is phenyl substituted with
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 21 is —NH—C(O)—
  • R 31 is not is not 3,5-dinitrophenyl, 4-butoxyphenyl
  • R 31 is not unsubstituted phenyl, 2- or 4-nitrophenyl, 2,4-dinitrophenyl, 2- or 4-chlorophenyl, 2-bromophenyl, 4-fluorophenyl, 2,4-dichlorophenyl, 2-carboxyphenyl, 2-azidophenyl, 2- or 4-aminophenyl, 2-acetamidophenyl, 4-methylphenyl, or 4-methoxyphenyl;
  • R 21 is —NH—C(O)—
  • R 1 ′′ is methyl
  • R 20 , R 20a , R 1 ′ and R 1 ′′′ is hydrogen
  • R 31 is not 2-methylaminophenyl
  • R 21 is —NH—C(O)—CH 2 — or NH—C(S)—NH—
  • R 20 , R 20a , R 1 ′, R 1 ′′ and R 1 ′′′ is hydrogen, R 31 is not unsubstituted phenyl;
  • R 21 is —NH—S(O) 2 —
  • R 1 ′′ is hydrogen or methyl
  • each of R 20 , R 20a , R 1 ′ and R 1 ′′′ is hydrogen
  • R 31 is not 4-methylphenyl
  • R 21 is —NH—S(O) 2 —
  • R 20a is hydrogen or —CH 2 —N(CH 2 CH 3 ) 2
  • each of R 20 , R 1 ′, R 1 ′′ and R 1 ′′′ is hydrogen, R 31 is not
  • R 21 is selected from —NH—C(O)—, or —NH—C(O)—NR 1 ′—.
  • R 31 is selected from optionally substituted phenyl, quinoxalinyl or quinolinyl.
  • R 31 is optionally substituted with up to 3 substituents independently selected from —OCH 3 , —N(CH 3 ) 2 , or a solubilizing group.
  • R 31 examples include 4-dimethylaminophenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3,4,5-tnimethoxyphenyl, 3-methoxy-4-((piperazin-1-yl)methyl)phenyl, 3-methoxy-4-((morpholino)methyl)phenyl, 3-methoxy-4-((pyrrolidin-1-yl)methyl)phenyl, unsubstituted phenyl, unsubstituted quinoxalinyl, and unsubstituted quinolinyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R ⁇ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′—
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • R 21 is selected from —NH—C(O)—, or —NH—C(O)—NR 1 ′—.
  • R 31 is selected from optionally substituted phenyl, quinoxalinyl or quinolinyl.
  • R 31 is optionally substituted with up to 3 substituents independently selected from —OCH 3 , —N(CH 3 ) 2 , or a solubilizing group.
  • R 31 examples include 4-dimethylaminophenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 3-methoxy-4-((piperazin-1-yl)methyl)phenyl, 3-methoxy-4-((morpholino)methyl)phenyl, 3-methoxy-4-((pyrrolidin-1-yl)methyl)phenyl, unsubstituted phenyl, unsubstituted quinoxalinyl, and unsubstituted quinolinyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIV): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 23 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(O)—CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 31 is not 2-methylphenyl, or 3,4-dimethoxyphenyl;
  • R 21 is —NH—C(O)—CH ⁇ CH—, R 31 is not 2-chlorophenyl;
  • R 31 is not unsubstituted benzimidazolyl
  • R 31 is not unsubstituted phenyl, 4-chlorophenyl, 4-methylphenyl, or 4-acetoamidophenyl;
  • R 21 is —NH—S(O) 2 —
  • each of R 1 ′ and R 1 ′′′ is methyl or hydrogen
  • each of R 20 , R 20a , and R 1 ′′ is hydrogen
  • R 31 is not 4-nitrophenyl
  • R 31 is not 2,3-, 2,5-, 2,6-, 3,4- or 3,5-dimethylphenyl, 2,4-dichloromethyl, 2,4-dimethyl-6-bromophenyl, 2- or 4-chlorophenyl, 2-(1-methylpropyl)phenyl, 5-methyl-2-(1-methylethyl)phenyl, 2- or 4-methylphenyl, 2,4-dichloro-6-methylphenyl, nitrophenyl, 2,4-dimethyl-6-nitrophenyl, 2- or 4-methoxyphenyl, 4-acetyl-2-methoxyphenyl, 4-chloro-3,5-dimethylphenyl, 3-ethylphenyl, 4,-bromophenyl, 4-cyclohexypheny
  • R 31 is not unsubstituted naphthyl, 4-chlorophenyl, 4-nitrophenyl, 4-methoxyphenyl, unsubstituted phenyl, unsubstituted thienyl
  • R 21 is —NH—C(O)—CH 2 —
  • R 1 ′ is methyl
  • R 20 , R 20a ,R 1 ′′, and R 1 ′′′ is hydrogen
  • R 31 is not unsubstituted phenyl
  • R 31 is not unsubstituted furyl, nitrophenyl-substituted furyl, 2,4-dichlorophenyl, 3,5-dichloro-2-methoxyphenyl, 3- or 4-nitrophenyl, 4-methoxyphenyl, unsubstituted phenyl, or nitro-substituted thienyl;
  • R 21 is —NH—C(O)—CH(CH 2 CH 3 )—, and each of R 20 , R 20a , R 1 ′, R 1 ′′, and R 1 ′′′ is hydrogen, R 31 is not unsubstituted phenyl;
  • R 31 is not 2,4-dichlorophenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXIV): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group and at least one of R 20 and R 20a is a solubilizing group;
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 21 is selected from —NR 23 —C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • R 21 when R 21 is —NH—C(O)—CH 2 —, R 31 is not 2-methylphenyl; or 3,4-dimethoxyphenyl; when R 21 is —NH—C(O)—CH ⁇ CH—, R 31 is not 2-chlorophenyl; and/or when R 21 is —NH—C(O)—NH—, R 31 is not unsubstituted benzimidazolyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXV): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group, wherein at least one of R 20 and R 20a is a solubilizing group;
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 32 is an optionally substituted phenyl.
  • R 32 is selected from 3,4-dimethoxyphenyl, 2,6-dimethoxyphenyl, or 2,4-dimethoxyphenyl; wherein R 32 is further optionally substituted with a solubilizing group.
  • R 32 is not unsubstituted thienyl; unsubstituted phenyl; 2-methylphenyl; 4-fluorophenyl; 4-methoxyphenyl; 4-methylphenyl; 3,4-dioxyethylenephenyl; 3-acetylamino-4-methylphenyl; 3-[(6-amino-1-oxohexyl)amino]-4-methylphenyl; 3-amino-4-methylphenyl; 3,5-dimethoxyphenyl; 3-halo-4-methoxyphenyl; 3-nitro-4-methylphenyl; or 4-propoxyphenyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVI): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 33 is selected from an optionally substituted heteroaryl or an optionally substituted bicyclic aryl, with the provisos that:
  • R 33 is not 5,6,7,8-tetrahydronaphthyl, unsubstituted benzofuryl, unsubstituted benzothiazolyl, chloro- or nitro-substituted benzothienyl, unsubstituted furyl, phenyl—, bromo- or nitro-substituted furyl, dimethyl-substituted isoxazolyl, unsubstituted naphthyl, 5-bromonaphthyl, 4-methylnaphthyl, 1- or 3-methoxynaphthyl, azo-substituted naphthyl, unsubstituted pyrazinyl, S-methyl-substituted pyridyl, unsubstituted pyridyl, thienyl-
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVI): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group, wherein at least one of R 20 or R 20a is a solubilizing group;
  • each R 1 ′, R 1 ′′ and R 1 ′′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 33 is selected from an optionally substituted heteroaryl or an optionally substituted bicyclic aryl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVII):
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′ and R 1 ′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 19 is selected from: wherein:
  • each Z 10 , Z 11 , Z 12 and Z 13 is independently selected from N, CR 20 , or CR 1 ′;
  • each Z 14 , Z 15 and Z 16 is independently selected from N, NR 1 ′, S, O, CR 20 , or CR 1 ′, wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—, —CR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl,
  • R 21 is —NH—C(O)— and R 19 is R 31 is not unsubstituted pyridyl, 2,6-dimethoxyphenyl, 3,4,5-trimethoxyphenyl or unsubstituted furyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′ and R 1 ′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 19 is selected from: wherein:
  • each Z 10 , Z 11 , Z 12 and Z 13 is independently selected from N, CR 20 , or CR 1 ′;
  • each Z 14 , Z 15 and Z 16 is independently selected from N, NR 1 ′, S, O, CR 20 , or CR 1 ′, wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —C(O)—NR 1 ′—, —C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—, —CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 9 is not pyrazolyl
  • R 31 is not optionally substituted phenyl or optionally substituted pyridyl;
  • R 31 is not unsubstituted indolyl or unsubstituted phenyl;
  • R 21 is —NH—C(O)—CH 2 —
  • R 19 is R 31 is not 2-methylphenyl or 3,4-dimethoxyphenyl
  • R 21 is —NH—C(O)—CH ⁇ CH—, and R 19 is R 31 is not 2-chlorophenyl;
  • R 31 is not unsubstituted isoxazolyl, unsubstituted naphthyl, unsubstituted phenyl, 2,6-difluorophenyl, 2,5-dimethylphenyl, 3,4-dichlorophenyl, or 4-chlorophenyl;
  • R 21 is —NH—C(O)—NH—, and R 19 is R 31 is not unsubstituted benzimidazolyl;
  • R 31 when R 21 is —NH—, and R 19 is pyrazolyl, R 31 is not unsubstituted pyridyl; when R 20a is a solubilizing group, R 19 is 1-methylpyrrolyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl, unsubstituted furyl, unsubstituted pyrrolyl, unsubstituted pyrazolyl, unsubstituted isoquinolinyl, unsubstituted benzothienyl, chloro-substituted benzothienyl, 2-fluoro-4-chlorophenyl or phenyl singly substituted with a solubilizing group;
  • R 20a when R 20a is a solubilizing group, R 19 is thienyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl; when R 20a is a solubilizing group, R 19 is methylimidazolyl and R 21 is —NH—C(O)—, R 31 is not 1-methyl-4-(1,1-dimethylethyloxycarbonylamino)pyrrol-2-yl or phenyl singly substituted with a solubilizing group;
  • R 31 is not unsubstituted phenyl, 3-methoxyphenyl or 4-methoxyphenyl;
  • R 31 is not unsubstituted phenyl; when R 21 is —NH—C(O)— and R 19 is thiazolyl or pyrimidinyl, R 31 is not unsubstituted phenyl; when R 21 is —NH—C(O)— and R 19 is R 31 is not unsubstituted pyridyl, unsubstituted thienyl, unsubstituted phenyl, 2-methylphenyl, 4-fluorophenyl, 4-methoxyphenyl, 4-methylphenyl, 3,4-dioxyethylenephenyl, 3-acetylamino-4-methylphenyl, 3-[(6-amino-1-oxohexyl)amino]-4-methylphenyl, 3-amino-4-methylphenyl, 2,6-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3-halo-4-methoxyphenyl, 3-nitro-4-methylphenyl, 4-prop
  • R 21 is selected from —NH—C(O)— or —NH—C(O)—NR 1 ′—, preferably —NH—C(O)—.
  • R 31 is selected from optionally substituted phenyl, quinoxalinyl or quinolinyl; preferably optionally substituted phenyl.
  • R 31 is optionally substituted with up to 3 substituents independently selected from —OCH 3 , —N(CH 3 ) 2 , or a solubilizing group.
  • R 31 examples include 4-dimethylaminophenyl; 3,4-dimethoxyphenyl; 3,5-dimethoxyphenyl; 3,4,5-trimethoxyphenyl; 3-methoxy-4-((piperazin-1-yl)methyl)phenyl; 3-methoxy-4-((morpholino)methyl)phenyl; 3-methoxy-4-((pyrrolidin-1-yl)methyl)phenyl; unsubstituted phenyl; unsubstituted quinoxalinyl; and unsubstituted quinolinyl.
  • Preferred examples of R 31 include 3,4-dimethoxyphenyl; 2,6-dimethoxyphenyl; or 2,4-dimethoxyphenyl; wherein R 31 is further optionally substituted with a solubilizing group.
  • R 21 is —NH—C(O)— and R 31 is selected from 3-methoxyphenyl; 3,4-dimethoxyphenyl; 3,4,5-trimethoxyphenyl; or 4-dimethylaminophenyl.
  • R 19 is not
  • R 21 when R 21 is —NH—C(O)—, R 19 is not optionally substituted pyrazolyl, thiazolyl, thienyl, pyrrolyl or pyrimidinyl; when R 21 is —NH—C(O)—CH2- or —NH—C(O)—NH—, R 19 is not pyrazolyl; and/or when R 21 is —NH—, R 19 is not optionally substituted pyridyl, thiazolyl, pyrazolyl, thiadiazolyl, or oxadiazolyl.
  • the invention provides sirtuin-modulating compounds of Structural Formula (XXVII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′ and R 1 ′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 19 is selected from:
  • each Z 10 , Z 11 , Z 12 and Z 13 is independently selected from N, CR 20 , or CR 1 ′;
  • each Z 14 , Z 15 and Z 16 is independently selected from N, NR 1 ′, S, O, CR 20 , or CR 1 ′, wherein:
  • Z 10 , Z 11 , Z 12 or Z 13 are N;
  • At least one of Z 14 , Z 15 and Z 16 is N, NR 1 ′, S or O;
  • Z 14 , Z 15 and Z 16 is S or O;
  • Z 14 , Z 15 and Z 16 are N or NR 1 ′;
  • R 20 is a solubilizing group
  • R 1 ′′′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R 1 ′—, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl, with the provisos that:
  • R 21 is —NH—C(O)—, R 19 is not pyrazolyl;
  • R 31 is not unsubstituted indolyl or unsubstituted phenyl;
  • R 31 is not unsubstituted isoxazolyl, unsubstituted naphthyl, unsubstituted phenyl, 2,6-difluorophenyl; 2,5-dimethylphenyl; 3,4-dichlorophenyl; or 4-chlorophenyl;
  • R 20a when R 20a is a solubilizing group, R 19 is 1-methylpyrrolyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl; unsubstituted furyl; unsubstituted pyrrolyl; unsubstituted pyrazolyl; unsubstituted isoquinolinyl; unsubstituted benzothienyl; chloro-substituted benzothienyl; 2-fluoro-4-chlorophenyl or phenyl singly substituted with a solubilizing group;
  • R 20a when R 20a is a solubilizing group, R 19 is thienyl and R 21 is —NH—C(O)—, R 31 is not unsubstituted phenyl;
  • R 20a when R 20a is a solubilizing group, R 19 is methylimidazolyl and R 21 is —NH—C(O)—, R 31 is not 1-methyl-4-(1,1-dimethylethyloxycarbonylamino)pyrrol-2-yl or phenyl singly substituted with a solubilizing group; and
  • R 31 is not unsubstituted phenyl.
  • R 21 is selected from —NH—C(O)— or —NH—C(O)—NR 1 ′—, preferably —NH—C(O)—.
  • R 31 is selected from optionally substituted phenyl, quinoxalinyl or quinolinyl; preferably optionally substituted phenyl.
  • R 31 is optionally substituted with up to 3 substituents independently selected from —OCH 3 , —N(CH 3 ) 2 , or a solubilizing group.
  • R 31 examples include 4-dimethylaminophenyl; 3,4-dimethoxyphenyl; 3,5-dimethoxyphenyl; 3,4,5-trimethoxyphenyl; 3-methoxy-4-((piperazin-1-yl)methyl)phenyl; 3-methoxy-4-((morpholino)methyl)phenyl; 3-methoxy-4-((pyrrolidin-1-yl)methyl)phenyl; unsubstituted phenyl; unsubstituted quinoxalinyl; and unsubstituted quinolinyl.
  • Preferred examples of R 31 include 3,4-dimethoxyphenyl; 2,6-dimethoxyphenyl; or 2,4-dimethoxyphenyl; wherein R 31 is further optionally substituted with a solubilizing group.
  • R 21 is —NH—C(O)— and R 31 is selected from 3-methoxyphenyl; 3,4-dimethoxyphenyl; 3,4,5-trimethoxyphenyl; or 4-dimethylaminophenyl.
  • the invention provides compounds of Structural Formula (XXVIII): or a salt thereof, wherein:
  • each R 20 and R 20a is independently selected from H or a solubilizing group
  • each R 1 ′ and R 1 ′′ is independently selected from H or optionally substituted C 1 -C 3 straight or branched alkyl;
  • R 29 is selected from:
  • each Z 10 , Z 11 , Z 12 and Z 13 is independently selected from N, CR 20 , or CR 1 ′, wherein one of Z 10 , Z 11 , Z 12 or Z 13 is N;
  • R 20 is a solubilizing group
  • R 1 ′′′ is an optionally substituted C 1 -C 3 straight or branched alkyl
  • R 21 is selected from —NR 1 ′—C(O)—, —NR 1 ′—S(O) 2 —, —NR 1 ′—C(O)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—, —NR 1 ′—C(S)—NR 1 ′—CR 1 ′R′ 1 —, —NR 1 ′—C(O)—CR 1 ′R 1 ′—NR 1 ′—, —NR 1 ′—C( ⁇ NR 1 ′)—NR 1 ′—, —NR 1 ′—C(O)—CR 1 ′ ⁇ CR 1 ′—, —NR 1 ′—S(O) 2 —NR 1 ′—, —NR 1 ′—C(O)—NR 1 ′—S(O) 2 —, —NR 1 ′—CR 1 ′R′ 1 —C(O)—NR 1 ′—, —NR 1 ′—C(O)—NR 1
  • R 31 is selected from an optionally substituted monocyclic or bicyclic aryl, or an optionally substituted monocyclic or bicyclic heteroaryl.
  • R 31 is optionally substituted phenyl, such as 3-methoxyphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, or 4-dimethylaminophenyl.
  • R 21 is —NH—C(O)—.
  • R 21 is —NH—C(O)— and R 31 is an optionally substituted phenyl, such as 3-methoxyphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, or 4-dimethylaminophenyl.
  • the sirtuin modulator is a sirtuin inhibitor
  • the invention provides novel sirtuin-modulating compounds of Formula (VI): or a salt thereof, wherein:
  • Het is an optionally substituted heterocyclic aryl group
  • Ar′ is an optionally substituted carbocyclic or heterocyclic aryl group.
  • Het comprises one N heteroatom and 1 to 2 additional heteroatoms independently selected from N, O or S, such as oxazolopyridyl.
  • Ar′ is selected from optionally substituted phenyl, benzothiazolyl, or benzoxazolyl.
  • Ar′ is substituted phenyl, typically it is substituted with I to 3 substituents independently selected from halo, methyl, O-methyl, S-methyl or N(CH 3 ) 2 , morpholino, or 3,4 dioxymethylene.
  • the compounds and salts thereof described herein also include their corresponding hydrates (e.g., hemihydrate, monohydrate, dihydrate, trihydrate, tetrahydrate) and solvates.
  • Suitable solvents for preparation of solvates and hydrates can generally be selected by a skilled artisan.
  • the compounds and salts thereof can be present in amorphous or crystalline (including co-crystalline and polymorph) forms.
  • bivalent groups disclosed as possible values for variables can have either orientation, provided that such orientation results in a stable molecule.
  • the left hand side of a bivalent group e.g., —NR 1 ′—C(O)—
  • a bivalent arylene or heteroarylene group e.g., R 19
  • the right hand side of a bivalent group is attached to a monovalent aryl group (e.g., R 31 ).
  • Sirtuin-modulating compounds of the invention having hydroxyl substituents also include the related secondary metabolites, such as phosphate, sulfate, acyl (e.g., acetyl, fatty acid acyl) and sugar (e.g., glucurondate, glucose) derivatives (e.g., of hydroxyl groups), particularly the sulfate, acyl and sugar derivatives.
  • the related secondary metabolites such as phosphate, sulfate, acyl (e.g., acetyl, fatty acid acyl) and sugar (e.g., glucurondate, glucose) derivatives (e.g., of hydroxyl groups), particularly the sulfate, acyl and sugar derivatives.
  • substituent groups -OH also include —OSO 3 ⁇ M + , where M + is a suitable cation (preferably H + , NH 4 + or an alkali metal ion such as Na + or K + ) and sugars such as These groups are generally cleavable to —OH by hydrolysis or by metabolic (e.g., enzymatic) cleavage.
  • M + is a suitable cation (preferably H + , NH 4 + or an alkali metal ion such as Na + or K + ) and sugars such as
  • the compounds of the invention exclude one or more of the species disclosed in Tables 4-6. In certain such embodiments, the compounds of the invention exclude compound 7.
  • Sirtuin-modulating compounds of the invention advantageously modulate the level and/or activity of a sirtuin protein, particularly the deacetylase activity of the sirtuin protein.
  • sirtuin-modulating compounds of the invention do not substantially have one or more of the following activities: inhibition of P13-kinase, inhibition of aldoreductase, inhibition of tyrosine kinase, transactivation of EGFR tyrosine kinase, coronary dilation, or spasmolytic activity, at concentrations of the compound that are effective for modulating the deacetylation activity of a sirtuin protein (e.g., such as a SIRT1 and/or a SIRT3 protein).
  • a sirtuin protein e.g., such as a SIRT1 and/or a SIRT3 protein.
  • An alkyl group is a straight chained, branched or cyclic non-aromatic hydrocarbon which is completely saturated.
  • a straight chained or branched alkyl group has from 1 to about 20 carbon atoms, preferably from 1 to about 10
  • a cyclic alkyl group has from 3 to about 10 carbon atoms, preferably from 3 to about 8.
  • straight chained and branched alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, pentyl and octyl.
  • a C1-C4 straight chained or branched alkyl group is also referred to as a “lower alkyl” group.
  • alkenyl group is a straight chained, branched or cyclic non-aromatic hydrocarbon which contains one or more double bonds. Typically, the double bonds are not located at the terminus of the alkenyl group, such that the double bond is not adjacent to another functional group.
  • An alkynyl group is a straight chained, branched or cyclic non-aromatic hydrocarbon which contains one or more triple bonds. Typically, the triple bonds are not located at the terminus of the alkynyl group, such that the triple bond is not adjacent to another functional group.
  • a ring e.g., 5- to 7-membered ring or cyclic group includes carbocyclic and heterocyclic rings. Such rings can be saturated or unsaturated, including aromatic. Heterocyclic rings typically contain 1 to 4 heteroatoms, although oxygen and sulfur atoms cannot be adjacent to each other.
  • Aromatic (aryl) groups include carbocyclic aromatic groups such as phenyl, naphthyl, and anthracyl, and heteroaryl groups such as imidazolyl, thienyl, furyl, pyridyl, pyrimidyl, pyranyl, pyrazolyl, pyrroyl, pyrazinyl, thiazolyl, oxazolyl, and tetrazolyl.
  • Aromatic groups also include fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring or heteroaryl ring is fused to one or more other heteroaryl rings.
  • Examples include benzothienyl, benzofuryl, indolyl, quinolinyl, benzothiazole, benzoxazole, benzimidazole, quinolinyl, isoquinolinyl and isoindolyl.
  • Non-aromatic heterocyclic rings are non-aromatic carbocyclic rings which include one or more heteroatoms such as nitrogen, oxygen or sulfur in the ring.
  • the ring can be five, six, seven or eight-membered. Examples include tetrahydrofuryl, tetrahyrothiophenyl, morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, and thiazolidinyl, along with the cyclic form of sugars.
  • a ring fused to a second ring shares at least one common bond.
  • Suitable substituents on an alkyl, alkenyl, alkynyl, aryl, non-aromatic heterocyclic or aryl group are those which do not substantially interfere with the ability of the disclosed compounds to have one or more of the properties disclosed herein.
  • a substituent substantially interferes with the properties of a compound when the magnitude of the property is reduced by more than about 50% in a compound with the substituent compared with a compound without the substituent.
  • substituents include —OH, halogen (—Br, —Cl, —I and —F), —OR a , —O—COR a , —COR a , —C(O)R a , —CN, —NO 2 , —COOH, —COOR a , —OCO 2 R a , —C(O)NR a R b , —OC(O)NR a R b , —SO 3 H, —NH 2 , —NHR a , —N(R a R b ), —COOR a , —CHO, —CONH 2 , —CONHR a , —CON(R a R b ), —NHCOR a , —NRCOR a , —NHCONH 2 , —NHCONR a H, —NHCON(R a R b ), —NR c CONH
  • R a —R d are each independently an aliphatic, substituted aliphatic, benzyl, substituted benzyl, aromatic or substituted aromatic group, preferably an alkyl, benzylic or aryl group.
  • —NR a R b taken together, can also form a substituted or unsubstituted non-aromatic heterocyclic group.
  • a non-aromatic heterocyclic group, benzylic group or aryl group can also have an aliphatic or substituted aliphatic group as a substituent.
  • a substituted aliphatic group can also have a non-aromatic heterocyclic ring, a substituted a non-aromatic heterocyclic ring, benzyl, substituted benzyl, aryl or substituted aryl group as a substituent.
  • a substituted aliphatic, non-aromatic heterocyclic group, substituted aryl, or substituted benzyl group can have more than one substituent.
  • a hydrogen-bond donating group is a functional group having a partially positively-charged hydrogen atom (e.g., —OH, —NH 2 , —SH) or a group (e.g., an ester) that metabolizes into a group capable of donating a hydrogen bond.
  • a partially positively-charged hydrogen atom e.g., —OH, —NH 2 , —SH
  • a group e.g., an ester
  • a “solubilizing group” is a moiety that has hydrophilic character sufficient to improve or increase the water-solubility of the compound in which it is included, as compared to an analog compound that does not include the group.
  • the hydrophilic character can be achieved by any means, such as by the inclusion of functional groups that ionize under the conditions of use to form charged moieties (e.g., carboxylic acids, sulfonic acids, phosphoric acids, amines, etc.); groups that include permanent charges (e.g., quaternary ammonium groups); and/or heteroatoms or heteroatomic groups (e.g., O, S, N, NH, N—(CH 2 ) y —R a , N—(CH 2 ) y —C(O)R a , N—(CH 2 ) y —C(O)OR a , N—(CH 2 ) y —S(O) 2 R a , N—(CH 2 )
  • R a or R b need not improve or increase water solubility over their unsubstituted counterparts to be within the scope of this definition. All that is required is that such substituents do not significantly reverse the improvement in water-solubility afforded by the unsubstituted R a or R b moiety.
  • the solubilizing group increases the water-solubility of the corresponding compound lacking the solubilizing group at least 5-fold, preferably at least 10-fold, more preferably at least 20-fold and most preferably at least 50-fold.
  • the solubilizing group is a moiety of the formula: —(CH 2 ) n —R 100 —N(R 101 )(R 101 ), wherein:
  • both R 101 moieties are taken together with the nitrogen atom to which they are bound to form a ring of the structure
  • both R 101 moieties are taken together with the nitrogen atom to which they are bound to form a 5-membered heteroaryl ring containing 1 to 3 additional N atoms, wherein said heteroaryl ring is optionally substituted with R 1 ′;
  • each Z is independently selected from —O—, —S—, —NR 1 ′—, or —C(R 50 )(R 50 )—,
  • each R 1 ′ is independently selected from hydrogen or a C 1 -C 3 straight or branched alkyl optionally substituted with one or more substituent independently selected from halo, —CN, —OH, —OCH 3 , —NH 2 , —NH(CH 3 ), —N(CH 3 ) 2 , or ⁇ O;
  • each R 50 is independently selected from R 1 ′, halo, CN, OH, O—(C 1 -C 4 straight or branched alkyl), N(R 1 ′)(R 1 ′), ⁇ CR 1 ′, SR 1 ′, ⁇ NR 1 ′, ⁇ NOR 1 ′, or ⁇ O;
  • any two suitable non-cyclic R 50 are optionally bound to one another directly or via a C 1 to C 2 alkylene, alkenylene or alkanediylidene bridge to produce a bicyclic fused or spiro ring; and ring structure is optionally benzofused or fused to a monocyclic heteroaryl to produce a bicyclic ring.
  • C 1 to C 2 alkylene, alkenylene or alkanediylidene bridge means the multivalent structures —CH 2 —, —CH 2 —CH 2 —, —CH ⁇ , ⁇ CH—, —CH ⁇ CH—, or ⁇ CH—CH ⁇ .
  • the two R 50 moieties that are optionally bound to one another can be either on the same carbon atom or different carbon atoms. The former produces a spiro bicyclic ring, while the latter produces a fused bicyclic ring.
  • a “suitable non-cyclic R 50 ” moiety available for forming a ring is a non-cyclic R 50 that comprises at least one terminal hydrogen atom.
  • the solubilizing group is a moiety of the formula: —(CH 2 ) n —O—R 101 , wherein n and R 101 are as defined above.
  • the solubilizing group is a moiety of the formula: —(CH 2 ) n —C(O)—R 1 ′, wherein n and R 1 ′ are as defined above.
  • a solubilizing group is selected from —(CH 2 ) n —R 102 , wherein n is 0, 1 or 2; and R 102 is selected from R 1 ′ are as defined above.
  • a solubilizing group is selected from 2-dimethylaminoethylcarbamoyl, piperazin-1-ylcarbonyl, piperazinylmethyl, dimethylaminomethyl, 4-methylpiperazin-1-ylmethyl, 4-aminopiperidin-1-yl-methyl, 4-fluoropiperidin-1-yl-methyl, morpholinomethyl, pyrrolidin-1-ylmethyl, 2-oxo-4-benzylpiperazin-1-ylmethyl, 4-benzylpiperazin-1-ylmethyl, 3-oxopiperazin-1-ylmethyl, piperidin-1-ylmethyl, piperazin-1-ylethyl, 2,3-dioxopropylaminomethyl, thiazolidin-3-ylmethyl, 4-acetylpiperazin-1-ylmethyl, 4-acetylpiperazin-1-yl, morpholino, 3,3-difluoroazetidin-1-ylmethyl,
  • the term “solubilizing group” also includes moieties disclosed as being attached to the 7-position of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (ciprofloxacin) and its derivatives, as disclosed in PCT publications WO 2005026165, WO 2005049602, and WO 2005033108, and European Patent publications EP 0343524, EP 0688772, EP 0153163, EP 0159174; as well as “water-solubilizing groups” described in United States patent publication 2006/0035891. The disclosure of each of these patent publications is incorporated herein by reference.
  • Double bonds indicated in a structure as: are intended to include both the (E)- and (Z)-configuration. Preferably, double bonds are in the (E)-configuration.
  • a sugar is an aldehyde or ketone derivative of a straight-chain polyhydroxy alcohol, which contains at least three carbon atoms.
  • a sugar can exist as a linear molecule or, preferably, as a cyclic molecule (e.g., in the pyranose or furanose form).
  • a sugar is a monosaccharide such as glucose or glucuronic acid.
  • the sugar is preferably a non-naturally occurring sugar.
  • one or more hydroxyl groups are substituted with another group, such as a halogen (e.g., chlorine).
  • the stereochemical configuration at one or more carbon atoms can also be altered, as compared to a naturally occurring sugar.
  • a suitable non-naturally occurring sugar is sucralose.
  • a fatty acid is a carboxylic acid having a long-chained hydrocarbon moiety.
  • a fatty acid has an even number of carbon atoms ranging from 12 to 24, often from 14 to 20.
  • Fatty acids can be saturated or unsaturated and substituted or unsubstituted, but are typically unsubstituted.
  • Fatty acids can be naturally or non-naturally occurring.
  • the fatty acid is preferably non-naturally occurring.
  • the acyl group of a fatty acid consists of the hydrocarbon moiety and the carbonyl moiety of the carboxylic acid functionality, but excludes the —OH moiety associated with the carboxylic acid functionality.
  • salts particularly pharmaceutically acceptable salts, of the sirtuin-modulating compounds described herein.
  • compounds that are inherently charged, such as those with a quaternary nitrogen, can form a salt with an appropriate counterion (e.g., a halide such as bromide, chloride, or fluoride, particularly bromide).
  • Acids commonly employed to form acid addition salts are inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like, and organic acids such as p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like
  • organic acids such as p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • salts include the sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate
  • Base addition salts include those derived from inorganic bases, such as ammonium or alkali or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like.
  • bases useful in preparing the salts of this invention thus include sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate, and the like.
  • the present invention provides methods of producing the above-defined sirtuin-modulating compounds.
  • the compounds may be synthesized using conventional techniques.
  • these compounds are conveniently synthesized from readily available starting materials.
  • one embodiment relates to a method of making a compound of the structure described herein using the following synthesis scheme:
  • a sirtuin-modulating compound may traverse the cytoplasmic membrane of a cell.
  • a compound may have a cell-permeability of at least about 20%, 50%, 75%, 80%, 90% or 95%.
  • Sirtuin-modulating compounds described herein may also have one or more of the following characteristics: the compound may be essentially non-toxic to a cell or subject; the sirtuin-modulating compound may be an organic molecule or a small molecule of 2000 amu or less, 1000 amu or less; a compound may have a half-life under normal atmospheric conditions of at least about 30 days, 60 days, 120 days, 6 months or 1 year; the compound may have a half-life in solution of at least about 30 days, 60 days, 120 days, 6 months or 1 year; a sirtuin-modulating compound may be more stable in solution than resveratrol by at least a factor of about 50%, 2 fold, 5 fold, 10 fold, 30 fold, 50 fold or 100 fold; a sirtuin-modulating compound may promote deacetylation of the DNA repair factor Ku70; a sirtuin-modulating compound may promote deacetylation of ReIA/p65; a compound may increase general turnover rates and enhance the sensitivity of
  • a sirtuin-modulating compound does not have any substantial ability to inhibit a histone deacetylase (HDACs) class I, a HDAC class II, or HDACs I and II, at concentrations (e.g., in vivo) effective for modulating the deacetylase activity of the sirtuin.
  • HDACs histone deacetylase
  • the sirtuin-modulating compound is a sirtuin-activating compound and is chosen to have an EC 50 for activating sirtuin deacetylase activity that is at least 5 fold less than the EC 50 for inhibition of an HDAC I and/or HDAC II, and even more preferably at least 10 fold, 100 fold or even 1000 fold less.
  • kits to perform such assays may be purchased commercially. See e.g., BioVision, Inc. (Mountain View, Calif.; world wide web at biovision.com) and Thomas Scientific (Swedesboro, N.J.; world wide web at tomassci.com).
  • a sirtuin-modulating compound does not have any substantial ability to modulate sirtuin homologs.
  • an activator of a human sirtuin protein may not have any substantial ability to activate a sirtuin protein from lower eukaryotes, particularly yeast or human pathogens, at concentrations (e.g., in vivo) effective for activating the deacetylase activity of human sirtuin.
  • a sirtuin-activating compound may be chosen to have an EC 50 for activating a human sirtuin, such as SIRT1 and/or SIRT3, deacetylase activity that is at least 5 fold less than the EC 50 for activating a yeast sirtuin, such as Sir2 (such as Candida, S. cerevisiae, etc.), and even more preferably at least 10 fold, 100 fold or even 1000 fold less.
  • a human sirtuin such as SIRT1 and/or SIRT3
  • deacetylase activity that is at least 5 fold less than the EC 50 for activating a yeast sirtuin, such as Sir2 (such as Candida, S. cerevisiae, etc.)
  • Sir2 such as Candida, S. cerevisiae, etc.
  • an inhibitor of a sirtuin protein from lower eukaryotes, particularly yeast or human pathogens does not have any substantial ability to inhibit a sirtuin protein from humans at concentrations (e.g., in vivo) effective for inhibiting the deacetylase activity of a sirtuin protein from a lower eukaryote.
  • a sirtuin-inhibiting compound may be chosen to have an IC 50 for inhibiting a human sirtuin, such as SIRT1 and/or SIRT3, deacetylase activity that is at least 5 fold less than the IC 50 for inhibiting a yeast sirtuin, such as Sir2 (such as Candida, S. cerevisiae, etc.), and even more preferably at least 10 fold, 100 fold or even 1000 fold less.
  • a sirtuin-modulating compound may have the ability to modulate one or more sirtuin protein homologs, such as, for example, one or more of human SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, or SIRT7.
  • a sirtuin-modulating compound has the ability to modulate both a SIRT1 and a SIRT3 protein.
  • a SIRT1 modulator does not have any substantial ability to modulate other sirtuin protein homologs, such as, for example, one or more of human SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, or SIRT7, at concentrations (e.g., in vivo) effective for modulating the deacetylase activity of human SIRT1.
  • a sirtuin-modulating compound may be chosen to have an ED 50 for modulating human SIRT1 deacetylase activity that is at least 5 fold less than the ED 50 for modulating one or more of human SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, or SIRT7, and even more preferably at least 10 fold, 100 fold or even 1000 fold less.
  • a SIRT1 modulator does not have any substantial ability to modulate a SIRT3 protein.
  • a SIRT3 modulator does not have any substantial ability to modulate other sirtuin protein homologs, such as, for example, one or more of human SIRT1, SIRT2, SIRT4, SIRT5, SIRT6, or SIRT7, at concentrations (e.g., in vivo) effective for modulating the deacetylase activity of human SIRT3.
  • a sirtuin-modulating compound may be chosen to have an ED 50 for modulating human SIRT3 deacetylase activity that is at least 5 fold less than the ED 50 for modulating one or more of human SIRT1, SIRT2, SIRT4, SIRT5, SIRT6, or SIRT7, and even more preferably at least 10 fold, 100 fold or even 1000 fold less.
  • a SIRT3 modulator does not have any substantial ability to modulate a SIRT1 protein.
  • a sirtuin-modulating compound may have a binding affinity for a sirtuin protein of about 10 ⁇ 9 M, 10 ⁇ 10 M, 10 11 M, 10 ⁇ 12 M or less.
  • a sirtuin-modulating compound may reduce (activator) or increase (inhibitor) the apparent Km of a sirtuin protein for its substrate or NAD+ (or other cofactor) by a factor of at least about 2, 3, 4, 5, 10, 20, 30, 50 or 100.
  • Km values are determined using the mass spectrometry assay described herein.
  • Preferred activating compounds reduce the Km of a sirtuin for its substrate or cofactor to a greater extent than caused by resveratrol at a similar concentration or reduce the Km of a sirtuin for its substrate or cofactor similar to that caused by resveratrol at a lower concentration.
  • a sirtuin-modulating compound may increase the Vmax of a sirtuin protein by a factor of at least about 2, 3, 4, 5, 10, 20, 30, 50 or 100.
  • a sirtuin-modulating compound may have an ED50 for modulating the deacetylase activity of a SIRT1 and/or SIRT3 protein of less than about 1nM, less than about 10 nM, less than about 100 nM, less than about 1 ⁇ M, less than about 10 ⁇ M, less than about 100 ⁇ M, or from about 1-10 nM, from about 10-100 nM, from about 0.1-1 ⁇ M, from about 1-10 ⁇ M or from about 10-100 ⁇ M.
  • a sirtuin-modulating compound may modulate the deacetylase activity of a SIRT1 and/or SIRT3 protein by a factor of at least about 5, 10, 20, 30, 50, or 100, as measured in a cellular assay or in a cell based assay.
  • a sirtuin-activating compound may cause at least about 10%, 30%, 50%, 80%, 2 fold, 5 fold, 10 fold, 50 fold or 100 fold greater induction of the deacetylase activity of a sirtuin protein relative to the same concentration of resveratrol.
  • a sirtuin-modulating compound may have an ED50 for modulating SIRT5 that is at least about 10 fold, 20 fold, 30 fold, 50 fold greater than that for modulating SIRT1 and/or SIRT3.
  • the invention provides methods for modulating the level and/or activity of a sirtuin protein and methods of use thereof.
  • the invention provides methods for using sirtuin-modulating compounds wherein the sirtuin-modulating compounds activate a sirtuin protein, e.g., increase the level and/or activity of a sirtuin protein.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may be useful for a variety of therapeutic applications including, for example, increasing the lifespan of a cell, and treating and/or preventing a wide variety of diseases and disorders including, for example, diseases or disorders related to aging or stress, diabetes, obesity, neurodegenerative diseases, cardiovascular disease, blood clotting disorders, inflammation, cancer, and/or flushing, etc.
  • the methods comprise administering to a subject in need thereof a pharmaceutically effective amount of a sirtuin-modulating compound, e.g., a sirtuin-activating compound.
  • the invention provides methods for using sirtuin-modulating compounds wherein the sirtuin-modulating compounds decrease sirtuin activity, e.g., decrease the level and/or activity of a sirtuin protein.
  • Sirtuin-modulating compounds that decrease the level and/or activity of a sirtuin protein may be useful for a variety of therapeutic application including, for example, increasing cellular sensitivity to stress (including increasing radiosensitivity and/or chemosensitivity), increasing the amount and/or rate of apoptosis, treatment of cancer (optionally in combination another chemotherapeutic agent), stimulation of appetite, and/or stimulation of weight gain, etc.
  • the methods comprise administering to a subject in need thereof a pharmaceutically effective amount of a sirtuin-modulating compound, e.g., a sirtuin-inhibiting compound.
  • activators and inhibitors of the instant invention may interact with a sirtuin at the same location within the sirtuin protein (e.g., active site or site affecting the Km or Vmax of the active site). It is believed that this is the reason why certain classes of sirtuin activators and inhibitors can have substantial structural similarity.
  • the sirtuin-modulating compounds described herein may be taken alone or in combination with other compounds.
  • a mixture of two or more sirtuin-modulating compounds may be administered to a subject in need thereof.
  • a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein may be administered with one or more of the following compounds: resveratrol, butein, fisetin, piceatannol, or quercetin.
  • a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein may be administered in combination with nicotinic acid.
  • a sirtuin-modulating compound that decreases the level and/or activity of a sirtuin protein may be administered with one or more of the following compounds: nicotinamide (NAM), suranim; NF023 (a G-protein antagonist); NF279 (a purinergic receptor antagonist); Trolox (6-hydroxy-2,5,7,8,tetramethylchroman-2-carboxylic acid); ( ⁇ )-epigallocatechin (hydroxy on sites 3,5,7,3′,4′,5′); ( ⁇ )-epigallocatechin gallate (Hydroxy sites 5,7,3′,4′,5′ and gallate ester on 3); cyanidin choloride (3,5,7,3′,4′-pentahydroxyflavylium chloride); delphinidin chloride (3,5,7,3′,4′,5′-hexahydroxyflavylium chloride); myricetin (cannabiscetin; 3,5,7,3′,4′
  • one or more sirtuin-modulating compounds may be administered with one or more therapeutic agents for the treatment or prevention of various diseases, including, for example, cancer, diabetes, neurodegenerative diseases, cardiovascular disease, blood clotting, inflammation, flushing, obesity, ageing, stress, etc.
  • combination therapies comprising a sirtuin-modulating compound may refer to (1) pharmaceutical compositions that comprise one or more sirtuin-modulating compounds in combination with one or more therapeutic agents (e.g., one or more therapeutic agents described herein); and (2) co-administration of one or more sirtuin-modulating compounds with one or more therapeutic agents wherein the sirtuin-modulating compound and therapeutic agent have not been formulated in the same compositions (but may be present within the same kit or package, such as a blister pack or other multi-chamber package; connected, separately sealed containers (e.g., foil pouches) that can be separated by the user; or a kit where the sirtuin modulating compound(s) and other therapeutic agent(s) are in separate vessels).
  • the sirtuin-modulating compound may be administered at the same, intermittent, staggered, prior to, subsequent to, or combinations thereof, with the administration of another therapeutic agent.
  • methods for reducing, preventing or treating diseases or disorders using a sirtuin-modulating compound may also comprise increasing the protein level of a sirtuin, such as human SIRT1, SIRT2 and/or SIRT3, or homologs thereof.
  • Increasing protein levels can be achieved by introducing into a cell one or more copies of a nucleic acid that encodes a sirtuin.
  • the level of a sirtuin can be increased in a mammalian cell by introducing into the mammalian cell a nucleic acid encoding the sirtuin, e.g., increasing the level of SIRT1 by introducing a nucleic acid encoding the amino acid sequence set forth in GenBank Accession No.
  • NP — 036370 and/or increasing the level of SIRT3 by introducing a nucleic acid encoding the amino acid sequence set forth in GenBank Accession No. AAH01042.
  • the nucleic acid may be under the control of a promoter that regulates the expression of the SIRT1 and/or SIRT3 nucleic acid.
  • the nucleic acid may be introduced into the cell at a location in the genome that is downstream of a promoter. Methods for increasing the level of a protein using these methods are well known in the art.
  • a nucleic acid that is introduced into a cell to increase the protein level of a sirtuin may encode a protein that is at least about 80%, 85%, 90%, 95%, 98%, or 99% identical to the sequence of a sirtuin, e.g., SIRT1 (GenBank Accession No. NP — 036370) and/or SIRT3 (GenBank Accession No. AAH01042) protein.
  • the nucleic acid encoding the protein may be at least about 80%, 85%, 90%, 95%, 98%, or 99% identical to a nucleic acid encoding a SIRT1 (e.g. GenBank Accession No.
  • the nucleic acid may also be a nucleic acid that hybridizes, preferably under stringent hybridization conditions, to a nucleic acid encoding a wild-type sirtuin, e.g., SIRT1 (GenBank Accession No. NM — 012238) and/or SIRT3 (e.g., GenBank Accession No. BC001042) protein.
  • Stringent hybridization conditions may include hybridization and a wash in 0.2 ⁇ SSC at 65° C.
  • a protein that is different from a wild-type sirtuin protein such as a protein that is a fragment of a wild-type sirtuin
  • the protein is preferably biologically active, e.g., is capable of deacetylation. It is only necessary to express in a cell a portion of the sirtuin that is biologically active.
  • a protein that differs from wild-type SIRT1 having GenBank Accession No. NP — 036370 preferably contains the core structure thereof.
  • the core structure sometimes refers to amino acids 62-293 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 237 to 932 of GenBank Accession No.
  • NM — 012238 which encompasses the NAD binding as well as the substrate binding domains.
  • the core domain of SIRT1 may also refer to about amino acids 261 to 447 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 834 to 1394 of GenBank Accession No. NM-012238; to about amino acids 242 to 493 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 777 to 1532 of GenBank Accession No. NM — 012238; or to about amino acids 254 to 495 of GenBank Accession No. NP — 036370, which are encoded by nucleotides 813 to 1538 of GenBank Accession No. NM — 012238.
  • Whether a protein retains a biological function e.g., deacetylation capabilities, can be determined according to methods known in the art.
  • methods for reducing, preventing or treating diseases or disorders using a sirtuin-modulating compound may also comprise decreasing the protein level of a sirtuin, such as human SIRT1, SIRT2 and/or SIRT3, or homologs thereof.
  • Decreasing a sirtuin protein level can be achieved according to methods known in the art.
  • an siRNA, an antisense nucleic acid, or a ribozyme targeted to the sirtuin can be expressed in the cell.
  • a dominant negative sirtuin mutant e.g., a mutant that is not capable of deacetylating, may also be used.
  • mutant H363Y of SIRT1 described, e.g., in Luo et al. (2001) Cell 107:137 can be used.
  • agents that inhibit transcription can be used.
  • Methods for modulating sirtuin protein levels also include methods for modulating the transcription of genes encoding sirtuins, methods for stabilizing/destabilizing the corresponding mRNAs, and other methods known in the art.
  • the invention provides a method extending the lifespan of a cell, extending the proliferative capacity of a cell, slowing ageing of a cell, promoting the survival of a cell, delaying cellular senescence in a cell, mimicking the effects of calorie restriction, increasing the resistance of a cell to stress, or preventing apoptosis of a cell, by contacting the cell with a sirtuin-modulating compound of the invention that increases the level and/or activity of a sirtuin protein.
  • the methods comprise contacting the cell with a sirtuin-activating compound.
  • the methods described herein may be used to increase the amount of time that cells, particularly primary cells (i.e., cells obtained from an organism, e.g., a human), may be kept alive in a cell culture.
  • Embryonic stem (ES) cells and pluripotent cells, and cells differentiated therefrom may also be treated with a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein to keep the cells, or progeny thereof, in culture for longer periods of time.
  • ES Embryonic stem
  • Such cells can also be used for transplantation into a subject, e.g., after ex vivo modification.
  • cells that are intended to be preserved for long periods of time may be treated with a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein.
  • the cells may be in suspension (e.g., blood cells, serum, biological growth media, etc.) or in tissues or organs.
  • blood collected from an individual for purposes of transfusion may be treated with a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein to preserve the blood cells for longer periods of time.
  • blood to be used for forensic purposes may also be preserved using a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein.
  • Other cells that may be treated to extend their lifespan or protect against apoptosis include cells for consumption, e.g., cells from non-human mammals (such as meat) or plant cells (such as vegetables).
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may also be applied during developmental and growth phases in mammals, plants, insects or microorganisms, in order to, e.g., alter, retard or accelerate the developmental and/or growth process.
  • sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may be used to treat cells useful for transplantation or cell therapy, including, for example, solid tissue grafts, organ transplants, cell suspensions, stem cells, bone marrow cells, etc.
  • the cells or tissue may be an autograft, an allograft, a syngraft or a xenograft.
  • the cells or tissue may be treated with the sirtuin-modulating compound prior to administration/implantation, concurrently with administration/implantation, and/or post administration/implantation into a subject.
  • the cells or tissue may be treated prior to removal of the cells from the donor individual, ex vivo after removal of the cells or tissue from the donor individual, or post implantation into the recipient.
  • the donor or recipient individual may be treated systemically with a sirtuin-modulating compound or may have a subset of cells/tissue treated locally with a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein.
  • the cells or tissue may additionally be treated with another therapeutic agent useful for prolonging graft survival, such as, for example, an immunosuppressive agent, a cytokine, an angiogenic factor, etc.
  • cells may be treated with a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein in vivo, e.g., to increase their lifespan or prevent apoptosis.
  • skin can be protected from aging (e.g., developing wrinkles, loss of elasticity, etc.) by treating skin or epithelial cells with a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein.
  • skin is contacted with a pharmaceutical or cosmetic composition comprising a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein.
  • Exemplary skin afflictions or skin conditions that may be treated in accordance with the methods described herein include disorders or diseases associated with or caused by inflammation, sun damage or natural aging.
  • the compositions find utility in the prevention or treatment of contact dermatitis (including irritant contact dermatitis and allergic contact dermatitis), atopic dermatitis (also known as allergic eczema), actinic keratosis, keratinization disorders (including eczema), epidermolysis bullosa diseases (including penfigus), exfoliative dermatitis, seborrheic dermatitis, erythemas (including erythema multiforme and erythema nodosum), damage caused by the sun or other light sources, discoid lupus erythematosus, dermatomyositis, psoriasis, skin cancer and the effects of natural aging.
  • sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may be used for the treatment of wounds and/or burns to promote healing, including, for example, first—, second- or third-degree burns and/or a thermal, chemical or electrical burns.
  • the formulations may be administered topically, to the skin or mucosal tissue, as an ointment, lotion, cream, microemulsion, gel, solution or the like, as further described herein, within the context of a dosing regimen effective to bring about the desired result.
  • Topical formulations comprising one or more sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may also be used as preventive, e.g., chemopreventive, compositions.
  • preventive e.g., chemopreventive
  • susceptible skin is treated prior to any visible condition in a particular individual.
  • Sirtuin-modulating compounds may be delivered locally or systemically to a subject.
  • a sirtuin-modulating compound is delivered locally to a tissue or organ of a subject by injection, topical formulation, etc.
  • a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein may be used for treating or preventing a disease or condition induced or exacerbated by cellular senescence in a subject; methods for decreasing the rate of senescence of a subject, e.g., after onset of senescence; methods for extending the lifespan of a subject; methods for treating or preventing a disease or condition relating to lifespan; methods for treating or preventing a disease or condition relating to the proliferative capacity of cells; and methods for treating or preventing a disease or condition resulting from cell damage or death.
  • the method does not act by decreasing the rate of occurrence of diseases that shorten the lifespan of a subject.
  • a method does not act by reducing the lethality caused by a disease, such as cancer.
  • a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein may be administered to a subject in order to generally increase the lifespan of its cells and to protect its cells against stress and/or against apoptosis. It is believed that treating a subject with a compound described herein is similar to subjecting the subject to hormesis, i.e., mild stress that is beneficial to organisms and may extend their lifespan.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may be administered to a subject to prevent aging and aging-related consequences or diseases, such as stroke, heart disease, heart failure, arthritis, high blood pressure, and Alzheimer's disease.
  • Other conditions that can be treated include ocular disorders, e.g., associated with the aging of the eye, such as cataracts, glaucoma, and macular degeneration.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein can also be administered to subjects for treatment of diseases, e.g., chronic diseases, associated with cell death, in order to protect the cells from cell death.
  • Exemplary diseases include those associated with neural cell death, neuronal dysfunction, or muscular cell death or dysfunction, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, amniotropic lateral sclerosis, and muscular dystrophy; AIDS; fulminant hepatitis; diseases linked to degeneration of the brain, such as Creutzfeld-Jakob disease, retinitis pigmentosa and cerebellar degeneration; myelodysplasis such as aplastic anemia; ischemic diseases such as myocardial infarction and stroke; hepatic diseases such as alcoholic hepatitis, hepatitis B and hepatitis C; joint-diseases such as osteoarthritis; atherosclerosis; alopecia; damage to the skin due to UV light; lichen planus; atrophy of the skin; cataract; and graft rejections.
  • Cell death can also be caused by surgery, drug therapy, chemical exposure or radiation exposure.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein can also be administered to a subject suffering from an acute disease, e.g., damage to an organ or tissue, e.g., a subject suffering from stroke or myocardial infarction or a subject suffering from a spinal cord injury.
  • Sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may also be used to repair an alcoholic's liver.
  • the invention provides a method for treating and/or preventing a cardiovascular disease by administering to a subject in need thereof a sirtuin-modulating compound that increases the level and/or activity of a sirtuin protein.
  • Cardiovascular diseases that can be treated or prevented using the sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein include cardiomyopathy or myocarditis; such as idiopathic cardiomyopathy, metabolic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy.
  • cardiomyopathy or myocarditis such as idiopathic cardiomyopathy, metabolic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy.
  • atheromatous disorders of the major blood vessels such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the femoral arteries, and the popliteal arteries.
  • vascular diseases that can be treated or prevented include those related to platelet aggregation, the retinal arterioles, the glomerular arterioles, the vasa nervorum, cardiac arterioles, and associated capillary beds of the eye, the kidney, the heart, and the central and peripheral nervous systems.
  • the sirtuin-modulating compounds that increase the level and/or activity of a sirtuin protein may also be used for increasing HDL levels in plasma of an individual.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Neurology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Endocrinology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Psychology (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Dermatology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Reproductive Health (AREA)
  • Psychiatry (AREA)
  • Child & Adolescent Psychology (AREA)
  • Nutrition Science (AREA)
US11/499,920 2005-08-04 2006-08-04 Sirtuin modulating compounds Abandoned US20070037865A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/499,920 US20070037865A1 (en) 2005-08-04 2006-08-04 Sirtuin modulating compounds
US13/249,131 US8163908B2 (en) 2005-08-04 2011-09-29 Sirtuin modulating compounds
US13/442,630 US20120197013A1 (en) 2005-08-04 2012-04-09 Sirtuin modulating compounds

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US70561205P 2005-08-04 2005-08-04
US74178305P 2005-12-02 2005-12-02
US77937006P 2006-03-03 2006-03-03
US79227606P 2006-04-14 2006-04-14
US11/499,920 US20070037865A1 (en) 2005-08-04 2006-08-04 Sirtuin modulating compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/070,350 Continuation US8044198B2 (en) 2005-08-04 2008-02-15 Sirtuin modulating compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/499,239 Continuation US8093401B2 (en) 2005-08-04 2006-08-04 Sirtuin modulating compounds

Publications (1)

Publication Number Publication Date
US20070037865A1 true US20070037865A1 (en) 2007-02-15

Family

ID=37074951

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/499,920 Abandoned US20070037865A1 (en) 2005-08-04 2006-08-04 Sirtuin modulating compounds
US11/499,919 Expired - Fee Related US7345178B2 (en) 2005-08-04 2006-08-04 Sirtuin modulating compounds
US12/070,350 Expired - Fee Related US8044198B2 (en) 2005-08-04 2008-02-15 Sirtuin modulating compounds
US13/249,131 Expired - Fee Related US8163908B2 (en) 2005-08-04 2011-09-29 Sirtuin modulating compounds
US13/442,630 Abandoned US20120197013A1 (en) 2005-08-04 2012-04-09 Sirtuin modulating compounds

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/499,919 Expired - Fee Related US7345178B2 (en) 2005-08-04 2006-08-04 Sirtuin modulating compounds
US12/070,350 Expired - Fee Related US8044198B2 (en) 2005-08-04 2008-02-15 Sirtuin modulating compounds
US13/249,131 Expired - Fee Related US8163908B2 (en) 2005-08-04 2011-09-29 Sirtuin modulating compounds
US13/442,630 Abandoned US20120197013A1 (en) 2005-08-04 2012-04-09 Sirtuin modulating compounds

Country Status (11)

Country Link
US (5) US20070037865A1 (enrdf_load_stackoverflow)
EP (7) EP1910362B9 (enrdf_load_stackoverflow)
JP (7) JP2009503117A (enrdf_load_stackoverflow)
CN (1) CN103145738A (enrdf_load_stackoverflow)
AU (5) AU2006278504B2 (enrdf_load_stackoverflow)
CA (5) CA2617532A1 (enrdf_load_stackoverflow)
DK (1) DK1910384T3 (enrdf_load_stackoverflow)
ES (3) ES2397275T3 (enrdf_load_stackoverflow)
PL (1) PL1910384T3 (enrdf_load_stackoverflow)
PT (1) PT1910384E (enrdf_load_stackoverflow)
WO (5) WO2007019345A1 (enrdf_load_stackoverflow)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158376A1 (en) * 2003-10-23 2005-07-21 Sardi William F. Dietary supplement and method of processing same
US20060229265A1 (en) * 2005-03-30 2006-10-12 Sirtris Pharmaceuticals, Inc. Nicotinamide riboside and analogues thereof
US20060276393A1 (en) * 2005-01-13 2006-12-07 Sirtris Pharmaceuticals, Inc. Novel compositions for preventing and treating neurodegenerative and blood coagulation disorders
US20070014833A1 (en) * 2005-03-30 2007-01-18 Sirtris Pharmaceuticals, Inc. Treatment of eye disorders with sirtuin modulators
US20070037827A1 (en) * 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070037810A1 (en) * 2005-08-04 2007-02-15 Sirtis Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070149466A1 (en) * 2005-07-07 2007-06-28 Michael Milburn Methods and related compositions for treating or preventing obesity, insulin resistance disorders, and mitochondrial-associated disorders
WO2009005933A1 (en) * 2007-06-29 2009-01-08 Xtent, Inc. Adjustable-length drug delivery balloon
US20090012080A1 (en) * 2007-06-20 2009-01-08 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090099170A1 (en) * 2005-08-04 2009-04-16 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090105246A1 (en) * 2007-06-20 2009-04-23 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090105319A1 (en) * 2007-10-19 2009-04-23 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US20090163476A1 (en) * 2005-03-03 2009-06-25 Sirtris Pharmaceuticals, Inc. N-Phenyl Benzamide Derivatives as Sirtuin Modulators
US20090169585A1 (en) * 2003-10-23 2009-07-02 Resveratrol Partners, Llc Resveratrol-Containing Compositions And Their Use In Modulating Gene Product Concentration Or Activity
US20100173024A1 (en) * 2008-12-01 2010-07-08 LifeSpan Extension, LLC Methods and compositions for altering health, wellbeing, and lifespan
US20100216994A1 (en) * 2007-10-30 2010-08-26 Nihon Medi-Physics Co., Ltd. Use of novel compound having affinity for amyloid, and process for production of the same
US20100267781A1 (en) * 2008-10-17 2010-10-21 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US7855289B2 (en) 2005-08-04 2010-12-21 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20110009381A1 (en) * 2007-11-08 2011-01-13 Sirtis Pharmaceuticals, Inc. Solubilized thiazolopyridines
US20110039847A1 (en) * 2007-11-01 2011-02-17 Sirtris Pharmaceuticals, Inc Amide derivatives as sirtuin modulators
US20110082189A1 (en) * 2007-10-23 2011-04-07 President And Fellows Of Harvard College Use of compounds activating sirt-3 for mimicking exercise
US20110124637A1 (en) * 2008-07-03 2011-05-26 Chi B Vu Benzimidazoles and related analogs as sirtuin modulators
WO2013059587A1 (en) * 2011-10-20 2013-04-25 Sirtris Pharmaceuticals, Inc. Substituted bicyclic aza-heterocycles and analogues as sirtuin modulators
US8487131B2 (en) 2009-04-15 2013-07-16 Sanford-Burnham Medical Research Institute Optically pure apogossypol derivative as pan-active inhibitor of anti-apoptotic B-cell lymphoma/leukemia-2 (BCL-2)
US8492401B2 (en) 2008-12-19 2013-07-23 Glaxosmithkline Llc Thiazolopyridine sirtuin modulating compounds
US8916528B2 (en) 2011-11-16 2014-12-23 Resveratrol Partners, Llc Compositions containing resveratrol and nucleotides
US9133186B2 (en) 2010-09-10 2015-09-15 Shionogi & Co., Ltd. Hetero ring-fused imidazole derivative having AMPK activating effect
EP2957636A2 (en) 2010-05-03 2015-12-23 CuRNA, Inc. Treatment of sirtuin (sirt) related diseases by inhibition of natural antisense transcript to a sirtuin (sirt)
WO2016061190A1 (en) * 2014-10-14 2016-04-21 The Board Of Trustees Of The Leland Stanford Junior University Method for treating neurodegenerative diseases
US10653669B2 (en) 2015-12-15 2020-05-19 The Board Of Trustees Of The Leland Stanford Junior University Method for preventing and/or treating aging-associated cognitive impairment and neuroinflammation
US10851066B2 (en) 2018-08-06 2020-12-01 The Board Of Trustees Of The Leland Stanford Junior University 2-arylbenzimidazoles as PPARGC1A activators for treating neurodegenerative diseases
CN114380819A (zh) * 2020-10-22 2022-04-22 鲁南制药集团股份有限公司 一种唑吡坦中间体化合物

Families Citing this family (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
EP1755391B1 (en) * 2004-06-04 2015-11-11 Washington University Methods and compositions for treating neuropathies
CN101124012B (zh) * 2004-12-27 2012-09-05 范因斯坦医学研究院 通过电刺激迷走神经治疗炎症性疾病的装置
US11207518B2 (en) * 2004-12-27 2021-12-28 The Feinstein Institutes For Medical Research Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway
BRPI0519759A2 (pt) 2004-12-30 2009-03-10 Astex Therapeutics Ltd composiÇÕes farmacÊuticas
US20060292099A1 (en) * 2005-05-25 2006-12-28 Michael Milburn Treatment of eye disorders with sirtuin modulators
JP2007063225A (ja) * 2005-09-01 2007-03-15 Takeda Chem Ind Ltd イミダゾピリジン化合物
WO2007041641A1 (en) * 2005-10-03 2007-04-12 University Of Tennessee Research Foundation Methods of reducing the production of reactive oxygen species and methods of screening or identifying compounds and compositions that reduce the production of reactive oxygen species
EP1968579A1 (en) 2005-12-30 2008-09-17 Astex Therapeutics Limited Pharmaceutical compounds
SI1986633T1 (sl) 2006-02-10 2015-03-31 Summit Corporation Plc Zdravljenje Duchennove mišične distrofije
WO2008001115A2 (en) 2006-06-29 2008-01-03 Astex Therapeutics Limited Pharmaceutical combinations of 1-cyclopropyl-3- [3- (5-m0rphoolin-4-ylmethyl-1h-benzoimidazol-2-yl) -lh-1-pyrazol- 4-yl] -urea
MX2009008022A (es) * 2007-01-26 2009-12-11 Univ Washington Metodos y composiciones para tratar neuropatias.
KR101514853B1 (ko) 2007-03-01 2015-04-24 노파르티스 아게 Pim 키나제 억제제 및 이들의 사용 방법
JP2010523720A (ja) * 2007-04-12 2010-07-15 プレジデント アンド フェロウズ オブ ハーバード カレッジ β−カテニン関連疾患の処置のための、サーチュインに基づいた方法および組成物
US9884031B2 (en) 2007-05-09 2018-02-06 The Trustees Of The University Of Pennsylvania Use of HDAC inhibitors for treatment of cardiac rhythm disorders
JP2010534231A (ja) * 2007-07-23 2010-11-04 ビオマリン アイジーエー リミテッド デュシェンヌ型筋ジストロフィーを治療するための化合物
ES2617957T3 (es) 2007-08-03 2017-06-20 Summit (Oxford) Limited Combinaciones farmacológicas para el tratamiento de la distrofia muscular de Duchenne
CN101970012A (zh) 2007-09-14 2011-02-09 日东电工株式会社 药物载体
WO2009039195A1 (en) * 2007-09-20 2009-03-26 Resveratrol Partners, Llc Resveratrol-containing compositions for modulating gene product concentration or activity
US7868001B2 (en) * 2007-11-02 2011-01-11 Hutchison Medipharma Enterprises Limited Cytokine inhibitors
RU2364597C1 (ru) 2007-12-14 2009-08-20 Андрей Александрович Иващенко ГЕТЕРОЦИКЛИЧЕСКИЕ ИНГИБИТОРЫ Hh-СИГНАЛЬНОГО КАСКАДА, ЛЕКАРСТВЕННЫЕ КОМПОЗИЦИИ НА ИХ ОСНОВЕ И СПОСОБ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ, СВЯЗАННЫХ С АББЕРАНТНОЙ АКТИВНОСТЬЮ Hh СИГНАЛЬНОЙ СИСТЕМЫ
JP2011511806A (ja) 2008-02-07 2011-04-14 マサチューセッツ・アイ・アンド・イア・インファーマリー Atoh1発現を増強する化合物
WO2009099643A1 (en) * 2008-02-07 2009-08-13 The J. David Gladstone Institutes Use of sirt1 activators or inhibitors to modulate an immune response
US9211409B2 (en) * 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
WO2009121623A2 (en) * 2008-04-04 2009-10-08 Summit Corporation Plc Compounds for treating muscular dystrophy
MX2010012010A (es) 2008-05-01 2010-11-30 Sirtris Pharmaceuticals Inc Quinolinas y analogos relacionados como moduladores de sirtuin.
BRPI0912716A2 (pt) * 2008-05-13 2015-10-13 Genmedica Therapeutics Sl composto.
JP5774982B2 (ja) * 2008-05-19 2015-09-09 サノビオン ファーマシューティカルズ インクSunovion Pharmaceuticals Inc. イミダゾ[1,2−a]ピリジン化合物
WO2009146358A1 (en) * 2008-05-29 2009-12-03 Sirtris Pharmaceuticals, Inc. Imidazopyridine and related analogs as sirtuin modulators
BRPI0916576A2 (pt) 2008-08-04 2017-06-27 Chdi Inc pelo menos uma entidade química, composição farmacêutica, e, método para tratar uma condição ou distúrbio.
US8329732B2 (en) 2008-09-02 2012-12-11 Novartis Ag Kinase inhibitors and methods of their use
SI2338059T1 (sl) 2008-09-23 2015-08-31 Wista Laboratories Ltd. Ligandi za agregirane molekule tau
EP2344475B1 (en) * 2008-09-29 2014-07-30 GlaxoSmithKline LLC Quinazolinone, quinolone and related analogs as sirtuin modulators
KR20110079763A (ko) * 2008-10-29 2011-07-07 서트리스 파마슈티컬즈, 인코포레이티드 시르투인 조절제로서의 피리딘, 비시클릭 피리딘 및 관련 유사체
GB0821307D0 (en) * 2008-11-21 2008-12-31 Summit Corp Plc Compounds for treatment of duchenne muscular dystrophy
ES2403633T3 (es) * 2008-12-04 2013-05-20 Proximagen Limited Compuestos de imidazopiridina
AU2009333588A1 (en) 2008-12-08 2011-07-21 Northwestern University Method of modulating HSF-1
WO2010090830A1 (en) * 2009-01-20 2010-08-12 Isis Pharmaceuticals, Inc. Modulation of sirt1 expression
WO2010088574A1 (en) * 2009-01-30 2010-08-05 Sirtris Pharmaceuticals, Inc. Azabenzimidazoles and related analogs as sirtuin modulators
US20100239552A1 (en) * 2009-03-16 2010-09-23 Genmedica Therapeutics Sl Combination Therapies for Treating Metabolic Disorders
BRPI1013878A2 (pt) * 2009-03-16 2016-04-05 Genmedica Therapeutics Sl método para tratar distúrbios metabólicos, e, composto
US8886339B2 (en) 2009-06-09 2014-11-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
TWI482771B (zh) 2009-05-04 2015-05-01 Du Pont 磺醯胺殺線蟲劑
EP2429995B1 (en) 2009-05-15 2014-01-22 Novartis AG Aryl pyridine as aldosterone synthase inhibitors
KR20120026612A (ko) 2009-06-09 2012-03-19 아브락시스 바이오사이언스, 엘엘씨 벤질 치환 트리아진 유도체와 이들의 치료적 용도
BRPI1011247A2 (pt) 2009-06-09 2016-06-21 California Capital Equity Llc derivados de isoquinolina, quinolina e quinazolina como inibidores de sinalização de hedgehog
WO2010144550A1 (en) 2009-06-09 2010-12-16 Abraxis Bioscience, Llc Triazine derivatives and their therapeutical applications
GB0919757D0 (en) * 2009-11-12 2009-12-30 Johnson Matthey Plc Polymorphs of bromfenac sodium and methods for preparing bromfenac sodium polymorphs
US8299295B2 (en) 2009-10-15 2012-10-30 Johnson Matthey Public Limited Company Polymorphs of bromfenac sodium and methods for preparing bromfenac sodium polymorphs
US9556201B2 (en) 2009-10-29 2017-01-31 Glaxosmithkline Llc Bicyclic pyridines and analogs as sirtuin modulators
US9040521B2 (en) 2009-11-06 2015-05-26 The J. David Gladstone Institutes Methods and compositions for modulating tau levels
US9833621B2 (en) * 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
WO2014169145A1 (en) 2013-04-10 2014-10-16 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
ES2758554T3 (es) 2009-12-08 2020-05-05 Univ Case Western Reserve Aminoácidos gama para tratamiento de trastornos oculares
EP3636314B1 (en) 2009-12-23 2021-09-08 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
WO2011091153A1 (en) 2010-01-25 2011-07-28 Chdi, Inc. Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof
EP2554163A4 (en) * 2010-03-26 2013-07-17 Univ Hokkaido Nat Univ Corp THERAPEUTIC ACTIVE FOR NEURODEGENERATIVE DISEASES
WO2011130595A2 (en) 2010-04-15 2011-10-20 Sirtris Pharmaceuticals, Inc. Sirtuin activators and activation assays
AR081331A1 (es) 2010-04-23 2012-08-08 Cytokinetics Inc Amino- pirimidinas composiciones de las mismas y metodos para el uso de los mismos
EP2560488B1 (en) 2010-04-23 2015-10-28 Cytokinetics, Inc. Certain amino-pyridines and amino-triazines, compositions thereof, and methods for their use
AR081626A1 (es) 2010-04-23 2012-10-10 Cytokinetics Inc Compuestos amino-piridazinicos, composiciones farmaceuticas que los contienen y uso de los mismos para tratar trastornos musculares cardiacos y esqueleticos
CA2797533A1 (en) * 2010-04-27 2011-11-10 Calcimedica, Inc. Compounds that modulate intracellular calcium
WO2011137089A1 (en) 2010-04-29 2011-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Activators of human pyruvate kinase
EP2388255A1 (en) * 2010-05-11 2011-11-23 Ikerchem, S.L. Polysubstituted benzofurans and medicinal applications thereof
US20120058088A1 (en) * 2010-06-28 2012-03-08 Resveratrol Partners, Llc Resveratrol-Containing Compositions And Methods Of Use
US20130158035A1 (en) * 2010-08-24 2013-06-20 Brigham Young University Antimetastatic compounds
EP2616072A1 (en) * 2010-09-15 2013-07-24 F.Hoffmann-La Roche Ag Azabenzothiazole compounds, compositions and methods of use
WO2012066061A1 (en) 2010-11-19 2012-05-24 F. Hoffmann-La Roche Ag Pyrazolopyridines and pyrazolopyridines and their use as tyk2 inhibitors
US8466197B2 (en) 2010-12-14 2013-06-18 Genmedica Therapeutics Sl Thiocarbonates as anti-inflammatory and antioxidant compounds useful for treating metabolic disorders
EP2670404B1 (en) 2011-02-02 2018-08-29 The Trustees of Princeton University Sirtuin modulators as virus production modulators
WO2012120056A1 (de) 2011-03-08 2012-09-13 Sanofi Tetrasubstituierte oxathiazinderivate, verfahren zu deren herstellung, ihre verwendung als medikament sowie sie enthaltendes arzneimittel und deren verwendung
US8901114B2 (en) 2011-03-08 2014-12-02 Sanofi Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
EP2683705B1 (de) 2011-03-08 2015-04-22 Sanofi Di- und trisubstituierte oxathiazinderivate, verfahren zu deren herstellung, ihre verwendung als medikament sowie sie enthaltendes arzneimittel und deren verwendung
EP2683699B1 (de) 2011-03-08 2015-06-24 Sanofi Di- und trisubstituierte oxathiazinderivate, verfahren zu deren herstellung, ihre verwendung als medikament sowie sie enthaltendes arzneimittel und deren verwendung
WO2012120053A1 (de) 2011-03-08 2012-09-13 Sanofi Verzweigte oxathiazinderivate, verfahren zu deren herstellung, ihre verwendung als medikament sowie sie enthaltendes arzneimittel und deren verwendung
US8759380B2 (en) 2011-04-22 2014-06-24 Cytokinetics, Inc. Certain heterocycles, compositions thereof, and methods for their use
US9181231B2 (en) 2011-05-03 2015-11-10 Agios Pharmaceuticals, Inc Pyruvate kinase activators for use for increasing lifetime of the red blood cells and treating anemia
WO2012154865A2 (en) 2011-05-09 2012-11-15 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US12172017B2 (en) 2011-05-09 2024-12-24 Setpoint Medical Corporation Vagus nerve stimulation to treat neurodegenerative disorders
JP6158801B2 (ja) 2011-07-15 2017-07-05 ニューサート サイエンシーズ, インコーポレイテッド 代謝経路を変調させるための組成物および方法
JP2014525443A (ja) 2011-08-30 2014-09-29 シーエイチディーアイ ファウンデーション,インコーポレーテッド キヌレニン−3−モノオキシゲナーゼインヒビター、医薬組成物、およびこれらの使用方法
MX382065B (es) 2011-08-30 2025-03-12 Chdi Foundation Inc Inhibidores de la quinurenina-3-monooxigenasa, sus composiciones farmacéuticas, y métodos para su uso.
EP2567959B1 (en) 2011-09-12 2014-04-16 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
US20130085157A1 (en) * 2011-09-30 2013-04-04 Emilie D. Smith Arylsubstituted thiazolotriazoles and thiazoloimidazoles
US20140329854A1 (en) * 2011-12-12 2014-11-06 Smb Innovation Novel heterocyclic compounds useful in sirtuin binding and modulation
EP2793871A4 (en) * 2011-12-23 2015-07-22 Auckland Uniservices Ltd COMPOUNDS AND METHODS FOR SELECTIVE IMAGING AND / OR ABLATION
US9198454B2 (en) 2012-03-08 2015-12-01 Nusirt Sciences, Inc. Compositions, methods, and kits for regulating energy metabolism
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
WO2013166502A1 (en) * 2012-05-04 2013-11-07 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Regulation of cardiac sodium channels by sirt1 and sirt1 activators
HK1206021A1 (en) 2012-05-21 2015-12-31 Novartis Ag Novel ring-substituted n-pyridinyl amides as kinase inhibitors
EP2671885A1 (en) * 2012-06-05 2013-12-11 Ares Trading S.A. Imidazo-oxadiazole and Imidazo-thiadiazole derivatives
RU2662564C2 (ru) * 2012-07-04 2018-07-26 ЗЗ Байотек ЛЛС Лечение воспалительных заболеваний кожи
EP2682395A1 (en) 2012-07-04 2014-01-08 Laboratorios Del. Dr. Esteve, S.A. Imidazo[2,1-b]thiazole derivatives, their preparation and use as medicaments
CA2878895A1 (en) 2012-07-13 2014-01-16 Indiana University Research & Technology Corporation Compounds for treatment of spinal muscular atrophy
US10092574B2 (en) 2012-09-26 2018-10-09 Valorisation-Recherche, Limited Partnership Inhibitors of polynucleotide repeat-associated RNA foci and uses thereof
WO2015042685A1 (en) * 2013-09-25 2015-04-02 Valorisation-Recherche Inhibitors of polynucleotide repeat-associated rna foci and uses thereof
US9943517B2 (en) 2012-11-13 2018-04-17 Nusirt Sciences, Inc. Compositions and methods for increasing energy metabolism
CN103027912A (zh) * 2012-12-11 2013-04-10 南京医科大学附属南京儿童医院 N-[2-[3-(1-哌嗪基甲基)咪唑并[2,1-b]噻唑-6-基]苯基]-2-喹喔啉甲酰胺在制备防治高血压药物中的应用
US9296754B2 (en) 2013-03-15 2016-03-29 Novartis Ag Compounds and compositions for the treatment of parasitic diseases
WO2014139144A1 (en) 2013-03-15 2014-09-18 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US9186361B2 (en) 2013-03-15 2015-11-17 Novartis Ag Compounds and compositions for the treatment of parasitic diseases
US9585876B2 (en) 2013-03-15 2017-03-07 Nusirt Sciences, Inc. Leucine and nicotinic acid reduces lipid levels
US9233961B2 (en) 2013-03-15 2016-01-12 Novartis Ag Compounds and compositions for the treatment of parasitic diseases
EP3004088A1 (en) * 2013-05-24 2016-04-13 Iomet Pharma Ltd. Slc2a transporter inhibitors
US10172915B2 (en) 2013-10-20 2019-01-08 Duke University Methods and compositions for activation of sirtuins with Annexin A1 peptides
US20160271090A1 (en) * 2013-10-29 2016-09-22 Tokyo University Of Agriculture Frataxin enhancer
EP3384908B1 (en) 2013-12-02 2020-09-30 The Trustees of Columbia University in the City of New York Modulating ferroptosis and treating excitotoxic disorders
ES2701087T3 (es) 2013-12-19 2019-02-20 Novartis Ag Derivados de [1,2,4]-triazolo-[1,5-a]-pirimidina como inhibidores del proteasoma de protozoarios para el tratamiento de enfermedades parasitarias tales como leishmaniasis
EP3110507B1 (en) 2014-02-27 2020-11-18 NuSirt Sciences, Inc. Compositions and methods for the reduction or prevention of hepatic steatosis
WO2015143654A1 (en) * 2014-03-26 2015-10-01 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF
CA2950727A1 (en) 2014-06-02 2015-12-10 Glaxosmithkline Intellectual Property (No.2) Limited Preparation and use of crystalline beta-d-nicotinamide riboside
EP3152216B1 (de) * 2014-06-05 2019-07-24 Bayer CropScience Aktiengesellschaft Bicyclische verbindungen als schädlingsbekämpfungsmittel
RU2016149767A (ru) 2014-06-06 2018-07-16 Глэксосмитклайн Интеллекчуал Проперти (Но.2) Лимитед Аналоги никотинамидрибозида и фармацевтические композиции и их применение
UA120856C2 (uk) 2014-07-17 2020-02-25 Кхді Фаундейшн, Інк. Способи та композиції для лікування розладів, пов'язаних з віл
RS61013B1 (sr) 2014-10-24 2020-11-30 Landos Biopharma Inc Terapeutski preparati zasnovani na lantionin sintetazi c- sličnom proteinu-2
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
US11406833B2 (en) 2015-02-03 2022-08-09 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US9586949B2 (en) 2015-02-09 2017-03-07 Incyte Corporation Aza-heteroaryl compounds as PI3K-gamma inhibitors
HRP20201304T1 (hr) 2015-07-27 2020-11-27 Chong Kun Dang Pharmaceutical Corp. Spoj derivata 1,3,4-oksadiazol-amida koji služi kao inhibitor histonske deacetilaze 6 i farmaceutski pripravak koji sadrži taj spoj
EP3328844B1 (en) 2015-07-27 2019-11-27 Chong Kun Dang Pharmaceutical Corp. 1,3,4-oxadiazole sulfamide derivatives as histone deacetylase 6 inhibitor and pharmaceutical composition comprising the same
CA2993929C (en) * 2015-07-27 2020-10-20 Chong Kun Dang Pharmaceutical Corp. 1,3,4-oxadiazole sulfonamide derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
DK3331864T3 (da) 2015-08-04 2021-12-13 Chong Kun Dang Pharmaceutical Corp 1,3,4-Oxadiazolderivat-forbindelser som histon-deacetylase-6-hæmmer, og den farmaceutiske sammensætning omfattende disse
US10800794B2 (en) 2015-10-08 2020-10-13 Fmc Corporation Heterocycle-substituted bicyclic azole pesticides
HRP20230201T1 (hr) 2015-10-12 2023-03-31 Chong Kun Dang Pharmaceutical Corp. Oksadiazol aminski spojevi derivati kao inhibitor histonske deacetilaze 6 i farmaceutska kompozicija koja sadrži iste
TWI744256B (zh) 2015-11-06 2021-11-01 美商英塞特公司 作為PI3K-γ抑制劑之雜環化合物
WO2017096270A1 (en) * 2015-12-03 2017-06-08 The Regents Of The University Of California Methods for treating mitochondrial diseases
US20170190689A1 (en) 2016-01-05 2017-07-06 Incyte Corporation Pyridine and pyridimine compounds as pi3k-gamma inhibitors
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
WO2017127758A1 (en) 2016-01-20 2017-07-27 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
EP3405107B1 (en) 2016-01-20 2023-04-12 Setpoint Medical Corporation Control of vagal stimulation
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
US11072777B2 (en) 2016-03-04 2021-07-27 University Of Louisville Research Foundation, Inc. Methods and compositions for ex vivo expansion of very small embryonic-like stem cells (VSELs)
DK3426243T3 (da) 2016-03-09 2021-07-19 Raze Therapeutics Inc 3-phosphoglyceratdehydrogenase-inhibitorer og anvendelser deraf
WO2017156179A1 (en) * 2016-03-09 2017-09-14 Raze Therapeutics, Inc. 3-phosphoglycerate dehydrogenase inhibitors and uses thereof
US10138248B2 (en) 2016-06-24 2018-11-27 Incyte Corporation Substituted imidazo[2,1-f][1,2,4]triazines, substituted imidazo[1,2-a]pyridines, substituted imidazo[1,2-b]pyridazines and substituted imidazo[1,2-a]pyrazines as PI3K-γ inhibitors
WO2018049191A1 (en) 2016-09-09 2018-03-15 Incyte Corporation Pyrazolopyridone derivatives as hpk1 modulators and uses thereof for the treatment of cancer
CN109923114B (zh) 2016-09-09 2022-11-01 因赛特公司 作为hpk1调节剂的吡唑并吡啶衍生物和其用于治疗癌症的用途
US20180072718A1 (en) 2016-09-09 2018-03-15 Incyte Corporation Pyrazolopyridine compounds and uses thereof
TW201811799A (zh) 2016-09-09 2018-04-01 美商英塞特公司 吡唑并嘧啶化合物及其用途
WO2018152220A1 (en) 2017-02-15 2018-08-23 Incyte Corporation Pyrazolopyridine compounds and uses thereof
PT3483164T (pt) 2017-03-20 2020-05-14 Forma Therapeutics Inc Composições de pirrolopirrole como ativadores de piruvato quinase (pkr)
KR102101234B1 (ko) * 2017-04-18 2020-04-16 부산대학교 산학협력단 신규 sirt 1 활성화제 및 이의 의학적 용도
CA3060416A1 (en) 2017-04-21 2018-10-25 Epizyme, Inc. Combination therapies with ehmt2 inhibitors
CN107173817A (zh) * 2017-05-19 2017-09-19 广州弘宝元生物科技有限公司 sir2蛋白在制备抗氧化的食品或药品中的应用
KR102101235B1 (ko) * 2017-07-13 2020-04-16 부산대학교 산학협력단 신규 sirt 1 활성화제 및 이의 의학적 용도
EP3668402B1 (en) 2017-08-14 2024-07-31 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
CN111491551B (zh) * 2017-09-06 2023-11-17 纽约州立大学研究基金会 用于从流体中去除内毒素和细胞因子的组合物和装置
WO2019051199A1 (en) 2017-09-08 2019-03-14 Incyte Corporation 6-CYANO-INDAZOLE COMPOUNDS AS HEMATOPOIETIC PROGENITOR KINASE 1 (HPK1) MODULATORS
JP7244504B2 (ja) 2017-10-18 2023-03-22 インサイト・コーポレイション PI3K-γ阻害剤としての三級ヒドロキシ基で置換された縮合イミダゾール誘導体
EP3710007A4 (en) * 2017-11-14 2021-12-15 Children's Medical Center Corporation USE OF IMIDAZOPYRIMIDINE TO MODULATE A HUMAN IMMUNE RESPONSE
EP3709998B8 (en) * 2017-11-14 2025-02-19 Children's Medical Center Corporation N-[5-(imidazo[1,2-a]pyrimidin-2-yl)phenyl]-benzamide and -benzeneacetamide derivatives as tnf stimulators for the treatment of e.g. infectious diseases and cancer
AU2018374767A1 (en) 2017-11-30 2020-06-25 Landos Biopharma, Inc. Therapies with lanthionine C-like protein 2 ligands and cells prepared therewith
US10745388B2 (en) 2018-02-20 2020-08-18 Incyte Corporation Indazole compounds and uses thereof
JP7526673B2 (ja) 2018-02-20 2024-08-01 インサイト・コーポレイション がんを治療するためのhpk1阻害剤としてのn-(フェニル)-2-(フェニル)ピリミジン-4-カルボキサミド誘導体及び関連化合物
US10752635B2 (en) 2018-02-20 2020-08-25 Incyte Corporation Indazole compounds and uses thereof
US11299473B2 (en) 2018-04-13 2022-04-12 Incyte Corporation Benzimidazole and indole compounds and uses thereof
KR102101236B1 (ko) * 2018-04-19 2020-04-16 부산대학교 산학협력단 신규 sirt 1 활성화제 및 이의 의학적 용도
KR102316234B1 (ko) 2018-07-26 2021-10-22 주식회사 종근당 히스톤 탈아세틸화효소 6 억제제로서의 1,3,4-옥사다이아졸 유도체 화합물 및 이를 포함하는 약제학적 조성물
US10899755B2 (en) 2018-08-08 2021-01-26 Incyte Corporation Benzothiazole compounds and uses thereof
CN108774187A (zh) * 2018-08-14 2018-11-09 天津安浩生物科技有限公司 一种苯并噁唑衍生物其制备方法和应用
CR20250050A (es) 2018-09-05 2025-03-19 Incyte Corp Formas cristalinas de un inhibidor de fosfoinositida 3–quinasa (pi3k) (divisional 2021-0165)
US12122778B2 (en) 2018-09-19 2024-10-22 Novo Nordisk Health Care Ag Activating pyruvate kinase R
US12053458B2 (en) 2018-09-19 2024-08-06 Novo Nordisk Health Care Ag Treating sickle cell disease with a pyruvate kinase R activating compound
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
MA53726A (fr) 2018-09-25 2022-05-11 Incyte Corp Composés pyrazolo[4,3-d]pyrimidine en tant que modulateurs des alk2 et/ou fgfr
KR102797127B1 (ko) * 2018-12-29 2025-04-21 우한 크리에이터나 사이언스 앤드 테크놀로지 컴퍼니, 리미티드 헤테로고리계 화합물, 중간체, 이의 제조 방법 및 용도
EP3906029A4 (en) 2018-12-31 2022-09-21 Biomea Fusion, LLC MENIN-MLL INTERACTION INHIBITORS
CN119841834A (zh) 2018-12-31 2025-04-18 拜欧米富士恩公司 Menin-mll相互作用的不可逆抑制剂
WO2020210786A1 (en) 2019-04-12 2020-10-15 Setpoint Medical Corporation Vagus nerve stimulation to treat neurodegenerative disorders
PH12022550271A1 (en) 2019-08-06 2023-06-26 Incyte Corp Solid forms of an hpk1 inhibitor
MX2022003254A (es) 2019-09-19 2022-04-18 Forma Therapeutics Inc Composiciones activadoras de piruvato cinasa r (pkr).
WO2021070957A1 (ja) * 2019-10-09 2021-04-15 国立大学法人東北大学 ベンゼン縮合環化合物、およびそれを含有する医薬組成物
KR102267662B1 (ko) * 2019-11-19 2021-06-22 한국화학연구원 벤즈아미드 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
US11117881B2 (en) 2019-12-20 2021-09-14 Landos Biopharma, Inc. Lanthionine c-like protein 2 ligands, cells prepared therewith, and therapies using same
JP2023510220A (ja) * 2020-01-17 2023-03-13 テグ-キョンプク メディカル イノベーション ファウンデーション 新規化合物、その調製方法、及びその使用
EP4100109A4 (en) * 2020-02-06 2024-03-27 Children's Hospital Medical Center COMPOUNDS, COMPOSITIONS, METHODS FOR TREATING DISEASES AND NERVE DAMAGE AND METHODS FOR PRODUCING THE COMPOUNDS
JP2023526080A (ja) 2020-05-21 2023-06-20 ザ・フェインステイン・インスティチュート・フォー・メディカル・リサーチ 迷走神経刺激のためのシステムおよび方法
JP2023542908A (ja) 2020-09-18 2023-10-12 シャンハイ ファーマシューティカルズ ホールディング カンパニー,リミティド カルボニル複素環系化合物及びその使用
CN116829542A (zh) * 2021-01-29 2023-09-29 韩国化学研究院 苯并噻唑及苯并咪唑衍生物、药学上可接受的盐、其制备方法以及包含其作为活性成分的药物组合物
US12128035B2 (en) 2021-03-19 2024-10-29 Novo Nordisk Health Care Ag Activating pyruvate kinase R
KR102375097B1 (ko) * 2021-04-01 2022-03-17 주식회사 클로소사이언스 항노화 유전자 klotho의 발현을 유도하는 화합물을 포함하는 퇴행성 신경질환의 예방 또는 치료용 조성물
CN113321667B (zh) * 2021-05-26 2022-04-22 中国药科大学 氯诺昔康钠螯合物及其制备方法和应用
TW202320796A (zh) 2021-08-11 2023-06-01 美商拜歐米富士恩股份有限公司 用於糖尿病的menin-mll相互作用之共價抑制劑
CN118119390A (zh) * 2021-08-12 2024-05-31 奎拉里斯生物公司 用于延长释放克罗卡林疗法的组合物和方法
WO2023022912A1 (en) 2021-08-20 2023-02-23 Biomea Fusion, Inc. Crystalline form of n-[4-[4-(4-morpholinyl)-7h-pyrrolo[2,3-d]pyrimidin-6-yl]phenyl]-4-[[3(r)-[(1-oxo -2-propen-1-yl)amino]-1-piperidinyl]methyl]-2-pyridinecarboxamide, an irreversible menin-mll inhibitor for the treatment of cancer
CN113769150B (zh) * 2021-10-22 2022-05-17 广东海洋大学 一种具有快速凝血作用的复合材料及其制备方法
WO2024058617A1 (ko) * 2022-09-16 2024-03-21 일동제약(주) 헤테로아릴 유도체 화합물의 항바이러스 용도
US12012370B1 (en) * 2022-12-29 2024-06-18 Codagen Biosciences, Inc. Sirtuin modulating compounds and applications thereof
WO2024155719A1 (en) 2023-01-18 2024-07-25 Biomea Fusion, Inc. Crystalline forms of n-[4-[4-(4-morpholinyl)-7h-pyrrolo[2,3-d]pyrimidin-6-yl]phenyl]-4-[[3(r)-[(l-oxo-2-propen-l-yl)amino]-l-piperidinyl]methyl]-2- pyridinecarboxamide as a covalentinhibitor of menin-mll interaction
WO2024168215A1 (en) * 2023-02-10 2024-08-15 Sirtsei Pharaceuticals, Inc. Compositions and methods for treating anhedonia

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164603A (en) * 1965-01-05 xnhcox
US3503929A (en) * 1965-10-21 1970-03-31 Minnesota Mining & Mfg Polyimidazoquinazolines and polyamidobenzimidazoles
US3517007A (en) * 1968-04-05 1970-06-23 American Home Prod 5 - acetamido - 4 - pyrimidinecarboxamides,5 - acetamido - 4 - pyrimidinecarboxylic acid hydrazides and related compounds
US3712888A (en) * 1970-12-14 1973-01-23 American Cyanamid Co Bis-pyridoxazole-stilbene derivatives for optical brightening
US3928228A (en) * 1969-04-28 1975-12-23 Sterling Drug Inc 4,4{40 -Stilbenebis-pyridooxazoles and related optical brighteners and polymeric compositions brightened thereby
US4038396A (en) * 1975-02-24 1977-07-26 Merck & Co., Inc. Anti-inflammatory oxazole[4,5-b]pyridines
US4189321A (en) * 1977-08-31 1980-02-19 Konishiroku Photo Industry Co., Ltd. Process for forming magenta dye images
US4471040A (en) * 1980-09-10 1984-09-11 Canon Kabushiki Kaisha Electrophotographic disazo photosensitive member
US4939133A (en) * 1985-10-01 1990-07-03 Warner-Lambert Company N-substituted-2-hydroxy-α-oxo-benzeneacetamides and pharmaceutical compositions having activity as modulators of the arachidonic acid cascade
US5808087A (en) * 1995-11-29 1998-09-15 Mitsui Chemicals, Inc. Sulfonium salts of pyrrolylbenzimidazoles
US5814651A (en) * 1992-12-02 1998-09-29 Pfizer Inc. Catechol diethers as selective PDEIV inhibitors
US5821258A (en) * 1994-12-27 1998-10-13 Mitsui Chemicals, Inc. Phenylbenzimidazole derivatives
US5852011A (en) * 1994-05-31 1998-12-22 Mitsui Chemicals, Inc. Benzimidazole derivatives
US5958950A (en) * 1995-10-05 1999-09-28 Warner-Lambert Company Benzimidazole compounds useful for the treatment of inflammatory disease, atherosclerosis, restenosis or inhibiting lipoxygenase
US6291476B1 (en) * 1999-05-12 2001-09-18 Ortho-Mcneil Pharmaceutical, Inc. Pyrazole carboxamides useful for the treatment of obesity and other disorders
US6407104B1 (en) * 1998-03-31 2002-06-18 Shionogi & Co., Ltd. Pyrrolo[1,2-a]pyrazine spla2 inhibitor
US6479508B1 (en) * 2000-07-06 2002-11-12 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
US20030199516A1 (en) * 2001-09-13 2003-10-23 Genesoft, Inc. Methods of treating infection by drug resistant bacteria
US6653309B1 (en) * 1999-04-26 2003-11-25 Vertex Pharmaceuticals Incorporated Inhibitors of IMPDH enzyme technical field of the invention
US20040010033A1 (en) * 2001-02-20 2004-01-15 Pfizer Inc. Non-peptide GnRH agents, methods and intermediates for their preparation
US20040034037A1 (en) * 2002-02-06 2004-02-19 Harbeson Scott L. Heteroaryl compounds useful as inhibitors of GSK-3
US20040044203A1 (en) * 2001-03-28 2004-03-04 Wittman Mark D. Novel tyrosine kinase inhibitors
US20040048843A1 (en) * 2002-04-18 2004-03-11 Schering Corporation Benzimidazolone histamine H3 antagonists
US20040072760A1 (en) * 2002-10-02 2004-04-15 Carboni Joan M. Synergistic methods and compositions for treating cancer
US20040142997A1 (en) * 2002-10-09 2004-07-22 Chen Yuhpyng L. Pyrazole compounds for treatment of neurodegenerative disorders
US20040152743A1 (en) * 2002-07-12 2004-08-05 Aventis Pharma Deutschland Gmbh Heterocyclically substituted benzoylureas, process for their preparation and their use as pharmaceuticals
US20040157845A1 (en) * 2003-02-10 2004-08-12 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US20040171073A1 (en) * 2002-10-08 2004-09-02 Massachusetts Institute Of Technology Compounds for modulation of cholesterol transport
US20040180905A1 (en) * 2003-03-11 2004-09-16 Pfizer Inc Novel pyrazine compounds as transforming growth factor (TGF) compounds
US20040220189A1 (en) * 2003-02-20 2004-11-04 Sugen, Inc. Use of 8-amino-aryl-substituted imidazopyrazines as kinase inhbitors
US20050009840A1 (en) * 2003-02-26 2005-01-13 Sugen, Inc. Aminoheteroaryl compounds as protein kinase inhibitors
US20050065196A1 (en) * 2001-12-03 2005-03-24 Takashi Inaba Azole compound and medicinal use thereof
US20050065151A1 (en) * 2003-09-19 2005-03-24 Norcross Roger David Thiazolopyridine
US20050085519A1 (en) * 2001-07-27 2005-04-21 Rubin Lee L. Mediators of hedgehog signaling pathways, compositions and uses related thereto
US20050197375A1 (en) * 2002-03-25 2005-09-08 Sircar Jagadish C. Use of benzimidazole analogs in the treatment of cell proliferation
US20050197353A1 (en) * 2002-08-17 2005-09-08 Aventis Pharma Deutschland Gmbh Indole derivatives or benzimidazole derivatives for modulating IkB kinase
US20050245513A1 (en) * 2002-03-18 2005-11-03 Michel Gallant Hetero-bridge substituted 8-arylquinoline pde4 inhibitors
US20050266515A1 (en) * 2002-11-27 2005-12-01 The University Of North Carolina At Chapel Hill Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDHS), a glycolytic anzyme expressed only in male germ cells, is a target for male contraception
US20050265515A1 (en) * 2004-03-24 2005-12-01 Canon Kabushiki Kaisha Radiation CT radiographing device, radiation CT radiographing system, and radiation CT radiographing method using the same
US20060014756A1 (en) * 2001-10-26 2006-01-19 Aventis Pharmaceuticals Inc. Benzimidazoles
US20060036098A1 (en) * 2002-11-01 2006-02-16 Yuntae Kim Carbonylamino-benzimidazole derivatives as androgen receptor modulators
US20060074075A1 (en) * 2004-06-24 2006-04-06 Sara Hadida-Ruah Modulators of ATP-binding cassette transporters
US20070037809A1 (en) * 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070037827A1 (en) * 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070037810A1 (en) * 2005-08-04 2007-02-15 Sirtis Pharmaceuticals, Inc. Sirtuin modulating compounds
US7345178B2 (en) * 2005-08-04 2008-03-18 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090163476A1 (en) * 2005-03-03 2009-06-25 Sirtris Pharmaceuticals, Inc. N-Phenyl Benzamide Derivatives as Sirtuin Modulators
US20100168084A1 (en) * 2008-05-08 2010-07-01 Huber L Julie Therapeutic compounds and related methods of use
US7829556B2 (en) * 2007-06-20 2010-11-09 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7893086B2 (en) * 2007-06-20 2011-02-22 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB138286A (en) 1919-09-05 1920-02-05 Robert Bertram Grey Improvements in or relating to mixing apparatus
DE1108698B (de) 1959-09-03 1961-06-15 Hoechst Ag Verfahren zur Herstellung von 2-(2'-Aminoaryl)-4, 5-arylen-1, 2, 3-triazolen
FR1439129A (fr) 1965-04-02 1966-05-20 Chimetron Nouveaux sulfonylbenzimidazoles
FR1476529A (fr) 1965-04-24 1967-04-14 Chimetron Sarl Nouveaux dérivés benzimidazole-sulfoniques et sulfamides correspondants
FR1450625A (fr) * 1965-06-18 1966-06-24 Chimetron Sarl Sulfonamidothiazolyl-2 benzimidazoles
AR208500A1 (es) 1972-06-14 1977-02-15 Merck & Co Inc Procedimiento para la preparacion de derivados de oxazolo(4,5-b)-piridinas
ZA735753B (en) 1972-09-14 1974-07-31 American Cyanamid Co Resolution of 6-substituted amino phenyl-2,3,5,6-tetrahydro(2,1-b)thiadiazoles
JPS5331880B2 (enrdf_load_stackoverflow) 1973-07-20 1978-09-05
PL96241B1 (pl) 1975-06-30 1977-12-31 Sposob wytwarzania 2-/2-podstawionych-4-tiazolilo/-benzimidazoli
US4018932A (en) * 1975-11-03 1977-04-19 American Cyanamid Company Anthelmintic pour-on formulations for topical use on domestic and farm animals
JPS5929594B2 (ja) 1976-01-19 1984-07-21 ウェルファイド株式会社 アルコ−ル誘導体
US4665079A (en) 1984-02-17 1987-05-12 Warner-Lambert Company Antibacterial agents
FR2561916B1 (fr) 1984-03-30 1987-12-11 Lafon Labor Forme galenique pour administration orale et son procede de preparation par lyophilisation d'une emission huile dans eau
US4571396A (en) 1984-04-16 1986-02-18 Warner-Lambert Company Antibacterial agents
US4727064A (en) 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4642903A (en) 1985-03-26 1987-02-17 R. P. Scherer Corporation Freeze-dried foam dosage form
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
DE3807084A1 (de) 1988-03-04 1989-09-14 Knoll Ag Neue benzimidazo(1,2-c)chinazoline, ihre herstellung und verwendung
JP2844079B2 (ja) 1988-05-23 1999-01-06 塩野義製薬株式会社 ピリドンカルボン酸系抗菌剤
US5073374A (en) 1988-11-30 1991-12-17 Schering Corporation Fast dissolving buccal tablet
US5112616A (en) 1988-11-30 1992-05-12 Schering Corporation Fast dissolving buccal tablet
US5219574A (en) 1989-09-15 1993-06-15 Cima Labs. Inc. Magnesium carbonate and oil tableting aid and flavoring additive
US5178878A (en) 1989-10-02 1993-01-12 Cima Labs, Inc. Effervescent dosage form with microparticles
US5223264A (en) 1989-10-02 1993-06-29 Cima Labs, Inc. Pediatric effervescent dosage form
US5188825A (en) 1989-12-28 1993-02-23 Iles Martin C Freeze-dried dosage forms and methods for preparing the same
US5063507A (en) 1990-09-14 1991-11-05 Plains Cotton Cooperative Association Goods database employing electronic title or documentary-type title
JPH04190232A (ja) * 1990-11-26 1992-07-08 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JPH04191736A (ja) * 1990-11-27 1992-07-10 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
US5464632C1 (en) 1991-07-22 2001-02-20 Prographarm Lab Rapidly disintegratable multiparticular tablet
JP3069458B2 (ja) 1992-01-29 2000-07-24 武田薬品工業株式会社 口腔内崩壊型錠剤およびその製造法
DE4203932A1 (de) 1992-02-11 1993-08-12 Deutsche Aerospace Sende-/empfangsmodul
JPH06247969A (ja) 1992-12-28 1994-09-06 Takeda Chem Ind Ltd 縮合複素環化合物及びそれを含む農園芸用殺虫剤
US5503846A (en) 1993-03-17 1996-04-02 Cima Labs, Inc. Base coated acid particles and effervescent formulation incorporating same
ES2162867T3 (es) 1993-07-09 2002-01-16 Scherer Corp R P Metodo de fabricacion de formas de dosificacion de farmacos liofilizados.
US5895664A (en) 1993-09-10 1999-04-20 Fuisz Technologies Ltd. Process for forming quickly dispersing comestible unit and product therefrom
US5622719A (en) 1993-09-10 1997-04-22 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5851553A (en) 1993-09-10 1998-12-22 Fuisz Technologies, Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5595761A (en) 1994-01-27 1997-01-21 The Board Of Regents Of The University Of Oklahoma Particulate support matrix for making a rapidly dissolving tablet
US5576014A (en) 1994-01-31 1996-11-19 Yamanouchi Pharmaceutical Co., Ltd Intrabuccally dissolving compressed moldings and production process thereof
US5635210A (en) 1994-02-03 1997-06-03 The Board Of Regents Of The University Of Oklahoma Method of making a rapidly dissolving tablet
JPH07291976A (ja) * 1994-04-27 1995-11-07 Otsuka Pharmaceut Factory Inc イミダゾ〔2,1−b〕チアゾール誘導体
JP3258531B2 (ja) * 1994-05-31 2002-02-18 三井化学株式会社 ベンズイミダゾール誘導体
US5567439A (en) 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
DK0688772T3 (da) 1994-06-16 1999-11-01 Lg Chemical Ltd Quinolincarboxylsyrederivater med 7-(4-aminomethyl-3-oxim)-pyrrolidinsubstituenter og fremgangsmåde til deres fremstilling
GB9421836D0 (en) 1994-10-28 1994-12-14 Scherer Corp R P Process for preparing solid pharmaceutical dosage forms of hydrophobic substances
JP3223090B2 (ja) * 1994-12-27 2001-10-29 三井化学株式会社 フェニルベンズイミダゾール誘導体
US5639475A (en) 1995-02-03 1997-06-17 Eurand America, Incorporated Effervescent microcapsules
EP0810853B1 (en) 1995-02-24 2004-08-25 Elan Pharma International Limited Aerosols containing nanoparticle dispersions
US5607697A (en) 1995-06-07 1997-03-04 Cima Labs, Incorporated Taste masking microparticles for oral dosage forms
AUPN449295A0 (en) 1995-07-28 1995-08-24 Inner And Eastern Health Care Network, The Radioprotectors
US5807577A (en) 1995-11-22 1998-09-15 Lab Pharmaceutical Research International Inc. Fast-melt tablet and method of making same
US5807578A (en) 1995-11-22 1998-09-15 Lab Pharmaceutical Research International Inc. Fast-melt tablet and method of making same
CN1233954A (zh) 1996-10-01 1999-11-03 西马实验室股份有限公司 掩盖味道的微胶囊组合物及其制备方法
US6024981A (en) 1997-04-16 2000-02-15 Cima Labs Inc. Rapidly dissolving robust dosage form
US5939091A (en) 1997-05-20 1999-08-17 Warner Lambert Company Method for making fast-melt tablets
US5869098A (en) 1997-08-20 1999-02-09 Fuisz Technologies Ltd. Fast-dissolving comestible units formed under high-speed/high-pressure conditions
CN1299358A (zh) 1997-12-31 2001-06-13 新泽西州州立大学(拉特格斯) 杂环拓扑异构酶毒性剂
ES2356342T3 (es) 1998-01-05 2011-04-07 The University Of Washington Mejora de transporte utilizando agentes de alteración de membrana.
ID29244A (id) * 1998-08-20 2001-08-16 Agouron Pharma ZAT-ZAT GnRH NON-PEPTIDA, METODE-METODE DAN ZAT-ZAT ANTARA PEMBUATANNYA
US6288089B1 (en) 1998-12-21 2001-09-11 Michael Zawada Use of kinase inhibitors for treating neurodegenerative diseases
GB2351081A (en) * 1999-06-18 2000-12-20 Lilly Forschung Gmbh Pharmaceutically active imidazoline compounds and analogues thereof
EP1194425B1 (de) 1999-06-23 2005-08-10 Aventis Pharma Deutschland GmbH Substituierte benzimidazole
WO2001021615A1 (en) 1999-09-17 2001-03-29 Yamanouchi Pharmaceutical Co., Ltd. Benzimidazole derivatives
DE19948434A1 (de) 1999-10-08 2001-06-07 Gruenenthal Gmbh Substanzbibliothek enthaltend bicyclische Imidazo-5-amine und/oder bicyclische Imidazo-3-amine
US20020049176A1 (en) 1999-11-10 2002-04-25 Anderson Christen M. Modulation of mitochondrial mass and function for the treatment of diseases and for target and drug discovery
US6316029B1 (en) 2000-05-18 2001-11-13 Flak Pharma International, Ltd. Rapidly disintegrating solid oral dosage form
AU2001258784A1 (en) * 2000-05-22 2001-12-03 Takeda Chemical Industries Ltd. Tyrosine phosphatase inhibitors
BR0111544A (pt) * 2000-06-14 2003-07-01 Warner Lambert Co Heterociclos bicìclicos 6,5-fundidos
JP2002161084A (ja) 2000-11-28 2002-06-04 Sumitomo Pharmaceut Co Ltd 複素環誘導体
WO2002066454A1 (en) 2001-02-21 2002-08-29 Sankyo Company, Limited Chromene derivatives
ITMI20010528A1 (it) 2001-03-13 2002-09-13 Istituto Biochimico Pavese Pha Complessi di resveratrolo con fosfolipidi loro preparazione e composizioni farmaceutiche e cosmetiche
EE200300475A (et) 2001-03-28 2004-02-16 Bristol-Myers Squibb Company Türosiini kinaasi inhibiitorid, neid sisaldavad ravimkoostised ja nimetatud ühendid kasutamiseks haiguste ravis
WO2002101073A2 (en) * 2001-06-13 2002-12-19 Genesoft Pharmaceuticals, Inc. Aryl-benzimidazole compounds having antiinfective activity
US7196095B2 (en) * 2001-06-25 2007-03-27 Merck & Co., Inc. (Pyrimidinyl) (phenyl) substituted fused heteroaryl p38 inhibiting and PKG kinase inhibiting compounds
EP1409463B1 (en) * 2001-06-26 2010-02-24 Bristol-Myers Squibb Company N-heterocyclic inhibitors of tnf-alpha expression
WO2003007959A1 (en) 2001-07-16 2003-01-30 Fujisawa Pharmaceutical Co., Ltd. Quinoxaline derivatives which have parp inhibitory action
HUP0103987A3 (en) 2001-09-28 2004-11-29 Richter Gedeon Vegyeszet Phenylpiperazinylalkyl carboxylic acid amid derivatives, process for their preparation, pharmaceutical compositions containing them and their intermediates
HUP0103986A2 (hu) 2001-09-28 2003-06-28 Richter Gedeon Vegyészeti Gyár Rt. Új karbonsavamid szerkezetet tartalmazó piperidinil vegyületek, eljárás az előállításukra és ezeket tartalmazó gyógyszerkészítmények
JP2005298333A (ja) 2001-11-15 2005-10-27 Meiji Seika Kaisha Ltd 新規トリアゾール誘導体及びこれを有効成分とする抗真菌剤
WO2003045929A1 (fr) 2001-11-26 2003-06-05 Takeda Chemical Industries, Ltd. Derive bicyclique, procede de production de ce derive et utilisation correspondante
ATE511858T1 (de) * 2002-02-05 2011-06-15 Astellas Pharma Inc 2,4,6-triamino-1,3,5-triazin-derivat
GB0205256D0 (en) 2002-03-06 2002-04-17 Oxford Glycosciences Uk Ltd Novel compounds
EP1487843A4 (en) * 2002-03-20 2010-03-10 Metabolex Inc SUBSTITUTED PHENYLACETIC ACIDS
JP4239463B2 (ja) 2002-04-09 2009-03-18 大正製薬株式会社 3−トリフルオロメチルアニリド誘導体
JP4224979B2 (ja) 2002-04-09 2009-02-18 大正製薬株式会社 インターロイキン12抑制剤
JP2003313176A (ja) 2002-04-24 2003-11-06 Sankyo Co Ltd アミノアゾール誘導体
WO2003103648A1 (ja) * 2002-06-05 2003-12-18 株式会社医薬分子設計研究所 糖尿病治療薬
ATE547416T1 (de) * 2002-07-24 2012-03-15 Dermira Canada Inc Pyrazolylbenzothiazolderivate und deren verwendung als therapeutische mittel
SE0202429D0 (sv) * 2002-08-14 2002-08-14 Astrazeneca Ab Novel Compounds
JP2004075614A (ja) 2002-08-20 2004-03-11 Sankyo Co Ltd クロメン誘導体を含有する医薬
US8252520B2 (en) 2002-10-11 2012-08-28 Taivex Therapeutics Corporation Methods and compounds for inhibiting Hec1 activity for the treatment of proliferative diseases
ES2301846T3 (es) 2002-10-21 2008-07-01 L'oreal Proceso para disolver compuestos lipofilos en fase acuosa con copolimeros de bloque anfifilico; y composiciones cosmeticas.
US7265129B2 (en) * 2002-10-25 2007-09-04 Genesoft Pharmaceuticals, Inc. Anti-infective biaryl compounds
US7691296B2 (en) 2002-11-25 2010-04-06 Amorepacific Corporation Method for stabilizing active components using polyol/polymer microcapsule, and cosmetic composition containing the microcapsule
WO2004067480A2 (en) * 2003-01-25 2004-08-12 Oxford Glycosciences (Uk) Ltd Substituted phenylurea derivatives as hdac inhibitors
EP1605967A1 (en) 2003-03-13 2005-12-21 Novo Nordisk A/S Novel nph insulin preparations
CA2518318A1 (en) * 2003-03-17 2004-09-30 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20050026849A1 (en) 2003-03-28 2005-02-03 Singh Chandra U. Water soluble formulations of digitalis glycosides for treating cell-proliferative and other diseases
WO2004089896A1 (en) * 2003-04-11 2004-10-21 Novo Nordisk A/S 11β-HYDROXYSTEROID DEHYDROGENASE TYPE 1 ACTIVE COMPOUNDS
PL1636217T3 (pl) * 2003-05-13 2009-02-27 Hoffmann La Roche 1-Imidazobenzotiazole jako ligandy receptora adenozynowego
TWI372050B (en) * 2003-07-03 2012-09-11 Astex Therapeutics Ltd (morpholin-4-ylmethyl-1h-benzimidazol-2-yl)-1h-pyrazoles
PE20050338A1 (es) * 2003-08-06 2005-05-16 Vertex Pharma Compuestos de aminotriazoles como inhibidores de proteina quinasas
GB2405793A (en) 2003-09-12 2005-03-16 4 Aza Bioscience Nv Pteridine derivatives for treating TNF-alpha related disorders
WO2005026165A1 (en) 2003-09-12 2005-03-24 Warner-Lambert Company Llc Quinolone antibacterial agents
JP2007522093A (ja) 2003-09-22 2007-08-09 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 7−アミノアルキリデニル−複素環式キノロンおよびナフチリドン
WO2005030206A1 (en) * 2003-09-24 2005-04-07 Imclone Systems Incorporated Aryl-1,3-azole derivatives and methods for inhibiting heparnase activity
AU2004276337B2 (en) * 2003-09-24 2009-11-12 Methylgene Inc. Inhibitors of histone deacetylase
WO2005049602A1 (en) 2003-11-18 2005-06-02 Warner-Lambert Company Llc Quinolone antibacterial agents
JP2005162855A (ja) 2003-12-02 2005-06-23 Konica Minolta Holdings Inc 着色組成物、インクジェット記録用インク、カラートナー、光記録媒体、感熱転写記録材料用インクシート、カラーフィルター、及び該インクジェット記録用インクを用いたインクジェット記録方法
RU2006125441A (ru) 2003-12-15 2008-01-27 Джапан Тобакко Инк. (Jp) Производные циклопропана и их фармацевтическое применение
ATE381554T1 (de) 2003-12-22 2008-01-15 Basilea Pharmaceutica Ag Aroylfurane und aroylthiophene, die sich für die behandlung von krebs eignen
AU2005207029B2 (en) * 2004-01-20 2011-09-01 Brigham Young University Novel sirtuin activating compounds and methods for making the same
JP2007533686A (ja) * 2004-04-22 2007-11-22 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 性的障害ii治療用の新規医薬組成物
EP1763514A2 (en) 2004-05-18 2007-03-21 Rigel Pharmaceuticals, Inc. Cycloalkyl substituted pyrimidinediamine compounds and their uses
TW200600492A (en) 2004-05-18 2006-01-01 Achillion Pharmaceuticals Inc Substituted aryl acylthioureas and related compounds; inhibitors of viral replication
US7517076B2 (en) * 2004-06-30 2009-04-14 Eastman Kodak Company Phase-change ink jet printing with electrostatic transfer
EP1781287A4 (en) * 2004-08-13 2008-02-27 Genentech Inc THIAZOLE-BASED COMPOUNDS HAVING ENZYMATIC INHIBITORY ACTIVITY USING ADENOSINE TRIPHOSPHATE (ATP)
AU2005304393B2 (en) 2004-11-10 2012-09-27 Synta Pharmaceuticals Corp. IL-12 modulatory compounds
WO2006070198A1 (en) * 2004-12-30 2006-07-06 Astex Therapeutics Limited Pyrazole derivatives as that modulate the activity of cdk, gsk and aurora kinases
GB0508463D0 (en) * 2005-04-26 2005-06-01 Glaxo Group Ltd Compounds
BRPI0608910A2 (pt) * 2005-05-09 2010-02-17 Achillion Pharmaceuticals Inc uso de um composto da fórmula ou um sal ou hidrato farmaceuticamente aceitável desse, composto ou sal ou hidrato do mesmo, composição farmacêutica e composição farmacêutica embalada
KR101514853B1 (ko) 2007-03-01 2015-04-24 노파르티스 아게 Pim 키나제 억제제 및 이들의 사용 방법
TWI331918B (en) * 2007-10-31 2010-10-21 Univ Kaohsiung Medical Imino-indeno[1,2-c]quinoline derivatives, their preparation processes, and pharmaceutical compositions comprising the same

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164603A (en) * 1965-01-05 xnhcox
US3503929A (en) * 1965-10-21 1970-03-31 Minnesota Mining & Mfg Polyimidazoquinazolines and polyamidobenzimidazoles
US3517007A (en) * 1968-04-05 1970-06-23 American Home Prod 5 - acetamido - 4 - pyrimidinecarboxamides,5 - acetamido - 4 - pyrimidinecarboxylic acid hydrazides and related compounds
US3928228A (en) * 1969-04-28 1975-12-23 Sterling Drug Inc 4,4{40 -Stilbenebis-pyridooxazoles and related optical brighteners and polymeric compositions brightened thereby
US3712888A (en) * 1970-12-14 1973-01-23 American Cyanamid Co Bis-pyridoxazole-stilbene derivatives for optical brightening
US4038396A (en) * 1975-02-24 1977-07-26 Merck & Co., Inc. Anti-inflammatory oxazole[4,5-b]pyridines
US4189321A (en) * 1977-08-31 1980-02-19 Konishiroku Photo Industry Co., Ltd. Process for forming magenta dye images
US4471040A (en) * 1980-09-10 1984-09-11 Canon Kabushiki Kaisha Electrophotographic disazo photosensitive member
US4939133A (en) * 1985-10-01 1990-07-03 Warner-Lambert Company N-substituted-2-hydroxy-α-oxo-benzeneacetamides and pharmaceutical compositions having activity as modulators of the arachidonic acid cascade
US5814651A (en) * 1992-12-02 1998-09-29 Pfizer Inc. Catechol diethers as selective PDEIV inhibitors
US5852011A (en) * 1994-05-31 1998-12-22 Mitsui Chemicals, Inc. Benzimidazole derivatives
US5821258A (en) * 1994-12-27 1998-10-13 Mitsui Chemicals, Inc. Phenylbenzimidazole derivatives
US5958950A (en) * 1995-10-05 1999-09-28 Warner-Lambert Company Benzimidazole compounds useful for the treatment of inflammatory disease, atherosclerosis, restenosis or inhibiting lipoxygenase
US5808087A (en) * 1995-11-29 1998-09-15 Mitsui Chemicals, Inc. Sulfonium salts of pyrrolylbenzimidazoles
US6407104B1 (en) * 1998-03-31 2002-06-18 Shionogi & Co., Ltd. Pyrrolo[1,2-a]pyrazine spla2 inhibitor
US6653309B1 (en) * 1999-04-26 2003-11-25 Vertex Pharmaceuticals Incorporated Inhibitors of IMPDH enzyme technical field of the invention
US6291476B1 (en) * 1999-05-12 2001-09-18 Ortho-Mcneil Pharmaceutical, Inc. Pyrazole carboxamides useful for the treatment of obesity and other disorders
US6479508B1 (en) * 2000-07-06 2002-11-12 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
US20030232816A1 (en) * 2000-07-06 2003-12-18 Boehringer Ingelheim (Canada) Ltd. Viral polymerase inhibitors
US20040010033A1 (en) * 2001-02-20 2004-01-15 Pfizer Inc. Non-peptide GnRH agents, methods and intermediates for their preparation
US20040044203A1 (en) * 2001-03-28 2004-03-04 Wittman Mark D. Novel tyrosine kinase inhibitors
US20050085519A1 (en) * 2001-07-27 2005-04-21 Rubin Lee L. Mediators of hedgehog signaling pathways, compositions and uses related thereto
US20030199516A1 (en) * 2001-09-13 2003-10-23 Genesoft, Inc. Methods of treating infection by drug resistant bacteria
US20060014756A1 (en) * 2001-10-26 2006-01-19 Aventis Pharmaceuticals Inc. Benzimidazoles
US20050065196A1 (en) * 2001-12-03 2005-03-24 Takashi Inaba Azole compound and medicinal use thereof
US20040034037A1 (en) * 2002-02-06 2004-02-19 Harbeson Scott L. Heteroaryl compounds useful as inhibitors of GSK-3
US20050245513A1 (en) * 2002-03-18 2005-11-03 Michel Gallant Hetero-bridge substituted 8-arylquinoline pde4 inhibitors
US20050197375A1 (en) * 2002-03-25 2005-09-08 Sircar Jagadish C. Use of benzimidazole analogs in the treatment of cell proliferation
US20040048843A1 (en) * 2002-04-18 2004-03-11 Schering Corporation Benzimidazolone histamine H3 antagonists
US20040152743A1 (en) * 2002-07-12 2004-08-05 Aventis Pharma Deutschland Gmbh Heterocyclically substituted benzoylureas, process for their preparation and their use as pharmaceuticals
US20050197353A1 (en) * 2002-08-17 2005-09-08 Aventis Pharma Deutschland Gmbh Indole derivatives or benzimidazole derivatives for modulating IkB kinase
US20040072760A1 (en) * 2002-10-02 2004-04-15 Carboni Joan M. Synergistic methods and compositions for treating cancer
US20040171073A1 (en) * 2002-10-08 2004-09-02 Massachusetts Institute Of Technology Compounds for modulation of cholesterol transport
US20040142997A1 (en) * 2002-10-09 2004-07-22 Chen Yuhpyng L. Pyrazole compounds for treatment of neurodegenerative disorders
US20060036098A1 (en) * 2002-11-01 2006-02-16 Yuntae Kim Carbonylamino-benzimidazole derivatives as androgen receptor modulators
US20050266515A1 (en) * 2002-11-27 2005-12-01 The University Of North Carolina At Chapel Hill Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDHS), a glycolytic anzyme expressed only in male germ cells, is a target for male contraception
US20040157845A1 (en) * 2003-02-10 2004-08-12 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US20040220189A1 (en) * 2003-02-20 2004-11-04 Sugen, Inc. Use of 8-amino-aryl-substituted imidazopyrazines as kinase inhbitors
US20050009840A1 (en) * 2003-02-26 2005-01-13 Sugen, Inc. Aminoheteroaryl compounds as protein kinase inhibitors
US20040180905A1 (en) * 2003-03-11 2004-09-16 Pfizer Inc Novel pyrazine compounds as transforming growth factor (TGF) compounds
US20050065151A1 (en) * 2003-09-19 2005-03-24 Norcross Roger David Thiazolopyridine
US20050265515A1 (en) * 2004-03-24 2005-12-01 Canon Kabushiki Kaisha Radiation CT radiographing device, radiation CT radiographing system, and radiation CT radiographing method using the same
US20060074075A1 (en) * 2004-06-24 2006-04-06 Sara Hadida-Ruah Modulators of ATP-binding cassette transporters
US20090163476A1 (en) * 2005-03-03 2009-06-25 Sirtris Pharmaceuticals, Inc. N-Phenyl Benzamide Derivatives as Sirtuin Modulators
US20070037809A1 (en) * 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070037827A1 (en) * 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070037810A1 (en) * 2005-08-04 2007-02-15 Sirtis Pharmaceuticals, Inc. Sirtuin modulating compounds
US7345178B2 (en) * 2005-08-04 2008-03-18 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090099170A1 (en) * 2005-08-04 2009-04-16 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7829556B2 (en) * 2007-06-20 2010-11-09 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7893086B2 (en) * 2007-06-20 2011-02-22 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20100168084A1 (en) * 2008-05-08 2010-07-01 Huber L Julie Therapeutic compounds and related methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Korshak et al., Makromolekulare Chemie (1975), 176(5), 1233-71 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158376A1 (en) * 2003-10-23 2005-07-21 Sardi William F. Dietary supplement and method of processing same
US20090169585A1 (en) * 2003-10-23 2009-07-02 Resveratrol Partners, Llc Resveratrol-Containing Compositions And Their Use In Modulating Gene Product Concentration Or Activity
US20060276393A1 (en) * 2005-01-13 2006-12-07 Sirtris Pharmaceuticals, Inc. Novel compositions for preventing and treating neurodegenerative and blood coagulation disorders
US20090163476A1 (en) * 2005-03-03 2009-06-25 Sirtris Pharmaceuticals, Inc. N-Phenyl Benzamide Derivatives as Sirtuin Modulators
US20060229265A1 (en) * 2005-03-30 2006-10-12 Sirtris Pharmaceuticals, Inc. Nicotinamide riboside and analogues thereof
US20070014833A1 (en) * 2005-03-30 2007-01-18 Sirtris Pharmaceuticals, Inc. Treatment of eye disorders with sirtuin modulators
US20070149466A1 (en) * 2005-07-07 2007-06-28 Michael Milburn Methods and related compositions for treating or preventing obesity, insulin resistance disorders, and mitochondrial-associated disorders
US20070037827A1 (en) * 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8163908B2 (en) 2005-08-04 2012-04-24 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090099170A1 (en) * 2005-08-04 2009-04-16 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8093401B2 (en) 2005-08-04 2012-01-10 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8088928B2 (en) 2005-08-04 2012-01-03 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8178536B2 (en) 2005-08-04 2012-05-15 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20070037810A1 (en) * 2005-08-04 2007-02-15 Sirtis Pharmaceuticals, Inc. Sirtuin modulating compounds
US8044198B2 (en) 2005-08-04 2011-10-25 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20110130387A1 (en) * 2005-08-04 2011-06-02 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7855289B2 (en) 2005-08-04 2010-12-21 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7829556B2 (en) 2007-06-20 2010-11-09 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8247565B2 (en) 2007-06-20 2012-08-21 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8268862B2 (en) 2007-06-20 2012-09-18 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090012080A1 (en) * 2007-06-20 2009-01-08 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20110015192A1 (en) * 2007-06-20 2011-01-20 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US20090105246A1 (en) * 2007-06-20 2009-04-23 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7893086B2 (en) 2007-06-20 2011-02-22 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US10894147B2 (en) 2007-06-29 2021-01-19 J.W. Medical Systems Ltd. Adjustable-length drug delivery balloon
US10112034B2 (en) 2007-06-29 2018-10-30 J.W. Medical Systems Ltd. Adjustable-length drug delivery balloon
US11577055B2 (en) 2007-06-29 2023-02-14 J.W. Medical Systems Ltd. Adjustable-length drug delivery balloon
WO2009005933A1 (en) * 2007-06-29 2009-01-08 Xtent, Inc. Adjustable-length drug delivery balloon
US9370642B2 (en) 2007-06-29 2016-06-21 J.W. Medical Systems Ltd. Adjustable-length drug delivery balloon
US9115061B2 (en) 2007-10-19 2015-08-25 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US20090105319A1 (en) * 2007-10-19 2009-04-23 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US8436207B2 (en) 2007-10-19 2013-05-07 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US20110082189A1 (en) * 2007-10-23 2011-04-07 President And Fellows Of Harvard College Use of compounds activating sirt-3 for mimicking exercise
US20100216994A1 (en) * 2007-10-30 2010-08-26 Nihon Medi-Physics Co., Ltd. Use of novel compound having affinity for amyloid, and process for production of the same
US20110039847A1 (en) * 2007-11-01 2011-02-17 Sirtris Pharmaceuticals, Inc Amide derivatives as sirtuin modulators
US20110009381A1 (en) * 2007-11-08 2011-01-13 Sirtis Pharmaceuticals, Inc. Solubilized thiazolopyridines
US8846947B2 (en) 2008-07-03 2014-09-30 Glaxosmithkline Llc Benzimidazoles and related analogs as sirtuin modulators
US20110124637A1 (en) * 2008-07-03 2011-05-26 Chi B Vu Benzimidazoles and related analogs as sirtuin modulators
US20100267781A1 (en) * 2008-10-17 2010-10-21 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US8039668B2 (en) 2008-10-17 2011-10-18 Burnham Institute For Medical Research Naphthalene-based inhibitors of anti-apoptotic proteins
US20100173024A1 (en) * 2008-12-01 2010-07-08 LifeSpan Extension, LLC Methods and compositions for altering health, wellbeing, and lifespan
US8492401B2 (en) 2008-12-19 2013-07-23 Glaxosmithkline Llc Thiazolopyridine sirtuin modulating compounds
US8487131B2 (en) 2009-04-15 2013-07-16 Sanford-Burnham Medical Research Institute Optically pure apogossypol derivative as pan-active inhibitor of anti-apoptotic B-cell lymphoma/leukemia-2 (BCL-2)
WO2010120943A1 (en) * 2009-04-15 2010-10-21 Sanford-Burnham Medical Research Institute Naphthalene-based inhibitors of anti-apoptotic proteins
KR101936011B1 (ko) 2010-05-03 2019-01-07 큐알엔에이, 인크. 시르투인 (sirt)에 대한 자연 안티센스 전사체의 저해에 의한 시르투인 (sirt) 관련된 질환의 치료
EP2957636A2 (en) 2010-05-03 2015-12-23 CuRNA, Inc. Treatment of sirtuin (sirt) related diseases by inhibition of natural antisense transcript to a sirtuin (sirt)
US9133186B2 (en) 2010-09-10 2015-09-15 Shionogi & Co., Ltd. Hetero ring-fused imidazole derivative having AMPK activating effect
WO2013059587A1 (en) * 2011-10-20 2013-04-25 Sirtris Pharmaceuticals, Inc. Substituted bicyclic aza-heterocycles and analogues as sirtuin modulators
US9957271B2 (en) 2011-10-20 2018-05-01 Glaxosmithkline Llc Substituted bicyclic aza-heterocycles and analogues as sirtuin modulators
US9226937B2 (en) 2011-11-16 2016-01-05 Resveratrol Partners, Llc Compositions containing resveratrol and nucleotides
US8916528B2 (en) 2011-11-16 2014-12-23 Resveratrol Partners, Llc Compositions containing resveratrol and nucleotides
US10272070B2 (en) 2014-10-14 2019-04-30 The Board of Trustees of the Leland Stanford Junio r University Method for treating neurodegenerative diseases
US10583125B2 (en) 2014-10-14 2020-03-10 The Board Of Trustees Of The Leland Stanford Junio Method for treating neurodegenerative diseases
WO2016061190A1 (en) * 2014-10-14 2016-04-21 The Board Of Trustees Of The Leland Stanford Junior University Method for treating neurodegenerative diseases
US10966962B2 (en) 2014-10-14 2021-04-06 The Board Of Trustees Of The Leland Stanford Junior University Method for treating neurodegenerative diseases
US10653669B2 (en) 2015-12-15 2020-05-19 The Board Of Trustees Of The Leland Stanford Junior University Method for preventing and/or treating aging-associated cognitive impairment and neuroinflammation
US10851066B2 (en) 2018-08-06 2020-12-01 The Board Of Trustees Of The Leland Stanford Junior University 2-arylbenzimidazoles as PPARGC1A activators for treating neurodegenerative diseases
US11111217B2 (en) 2018-08-06 2021-09-07 The Board Of Trustees Of The Leland Stanford Junior University 2-arylbenzimidazoles as Ppargc1a activators for treating neurodegenerative diseases
US12195432B2 (en) 2018-08-06 2025-01-14 The Board Of Trustees Of The Leland Stanford Junior University 2-arylbenzimidazoles as Ppargc1a activators for treating neurodegenerative diseases
CN114380819A (zh) * 2020-10-22 2022-04-22 鲁南制药集团股份有限公司 一种唑吡坦中间体化合物

Also Published As

Publication number Publication date
CA2617532A1 (en) 2007-02-15
JP2009503117A (ja) 2009-01-29
JP2009503114A (ja) 2009-01-29
PL1910384T3 (pl) 2013-03-29
AU2006278504B2 (en) 2013-01-17
US7345178B2 (en) 2008-03-18
US8163908B2 (en) 2012-04-24
WO2007019417A1 (en) 2007-02-15
US20120197013A1 (en) 2012-08-02
AU2006278396A1 (en) 2007-02-15
EP1910384B1 (en) 2012-10-10
CA2618360C (en) 2015-06-09
PT1910384E (pt) 2013-01-23
AU2006278503A1 (en) 2007-02-15
WO2007019416A1 (en) 2007-02-15
US20090099170A1 (en) 2009-04-16
EP1910380A1 (en) 2008-04-16
JP2012211149A (ja) 2012-11-01
JP2009508811A (ja) 2009-03-05
AU2006278505A1 (en) 2007-02-15
CA2617557A1 (en) 2007-02-15
US8044198B2 (en) 2011-10-25
AU2006278505B2 (en) 2013-01-17
EP1910362B1 (en) 2012-10-17
EP1910362B9 (en) 2013-02-20
CN103145738A (zh) 2013-06-12
JP2009503113A (ja) 2009-01-29
WO2007019344A1 (en) 2007-02-15
JP2012214480A (ja) 2012-11-08
EP1910384A1 (en) 2008-04-16
EP2468752A1 (en) 2012-06-27
AU2006278397A1 (en) 2007-02-15
EP1910385A1 (en) 2008-04-16
US20070043050A1 (en) 2007-02-22
US20120022254A1 (en) 2012-01-26
CA2618360A1 (en) 2007-02-15
AU2006278504A1 (en) 2007-02-15
ES2396913T3 (es) 2013-03-01
WO2007019344A8 (en) 2010-08-12
CA2618370A1 (en) 2007-02-15
DK1910384T3 (da) 2012-12-17
ES2431050T3 (es) 2013-11-22
JP5203194B2 (ja) 2013-06-05
AU2006278397B2 (en) 2013-01-17
CA2618368A1 (en) 2007-02-15
EP1909910A1 (en) 2008-04-16
AU2006278503B2 (en) 2013-01-17
JP5203196B2 (ja) 2013-06-05
JP5203193B2 (ja) 2013-06-05
JP5203195B2 (ja) 2013-06-05
EP1910385B1 (en) 2013-07-24
WO2007019345A1 (en) 2007-02-15
WO2007019346A1 (en) 2007-02-15
EP2388263A1 (en) 2011-11-23
JP2009503112A (ja) 2009-01-29
EP1910362A1 (en) 2008-04-16
ES2397275T3 (es) 2013-03-05

Similar Documents

Publication Publication Date Title
US8093401B2 (en) Sirtuin modulating compounds
US7345178B2 (en) Sirtuin modulating compounds
US7855289B2 (en) Sirtuin modulating compounds
US8088928B2 (en) Sirtuin modulating compounds
US20090163476A1 (en) N-Phenyl Benzamide Derivatives as Sirtuin Modulators
US20090069301A1 (en) Acridine and Quinoline Derivatives as Sirtuin Modulators

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIRTRIS PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NUNES, JOSEPH J.;MILNE, JILL;BEMIS, JEAN;AND OTHERS;REEL/FRAME:018264/0653

Effective date: 20060911

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION