KR20120115593A - 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품 - Google Patents

노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품 Download PDF

Info

Publication number
KR20120115593A
KR20120115593A KR1020127025341A KR20127025341A KR20120115593A KR 20120115593 A KR20120115593 A KR 20120115593A KR 1020127025341 A KR1020127025341 A KR 1020127025341A KR 20127025341 A KR20127025341 A KR 20127025341A KR 20120115593 A KR20120115593 A KR 20120115593A
Authority
KR
South Korea
Prior art keywords
substrate
liquid
plate member
exposure
optical
Prior art date
Application number
KR1020127025341A
Other languages
English (en)
Other versions
KR101431944B1 (ko
Inventor
히로유키 나가사카
히로아키 다카이와
시게루 히루카와
류이치 호시카
히토시 이시자와
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20120115593A publication Critical patent/KR20120115593A/ko
Application granted granted Critical
Publication of KR101431944B1 publication Critical patent/KR101431944B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box

Abstract

노광 장치 (EX) 는 투영 광학계 (PL) 와 액체 (1) 를 통해 기판 (P) 상에 노광광 (EL) 을 조사하여 기판 (P) 을 노광하는 것으로서, 기판 (P) 을 유지하기 위한 기판 테이블 (PT) 을 구비하고, 기판 테이블 (PT) 에 발액성의 평탄면 (30A) 을 갖는 플레이트 부재 (30) 를 교환 가능하게 형성하여 액체가 잔류하는 것을 방지하고, 양호한 노광 정밀도를 유지할 수 있다.

Description

노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품{EXPOSURE APPARATUS, EXPOSURE METHOD, DEVICE PRODUCING METHOD, AND OPTICAL COMPONENT}
본 발명은 액체를 통해 기판 상에 노광광을 조사하여 기판을 노광하는 노광 장치 및 노광 방법, 디바이스 제조 방법에 관한 것이다. 또, 본 발명은 액침법을 사용한 투영 노광 장치에 사용되는 광학 부품, 및 그 광학 부품을 사용한 투영 노광 장치에 관한 것이다. 또한, 본 발명은 액체 또는 증기와 접하는 환경에서 사용되기에 적합한 광학 부품에 관한 것이다.
반도체 디바이스나 액정 표시 디바이스는 마스크 상에 형성된 패턴을 감광성의 기판 상에 전사하는 이른바 포토리소그래피의 수법에 의해 제조된다. 이 포토리소그래피 공정에서 사용되는 노광 장치는 마스크를 지지하는 마스크 스테이지와 기판을 지지하는 기판 스테이지를 가지며, 마스크 스테이지 및 기판 스테이지를 축차 (逐次) 이동하면서 마스크의 패턴을 투영 광학계를 통해 기판에 전사하는 것이다. 최근, 디바이스 패턴의 보다 나은 고집적화에 대응하기 위해 투영 광학계의 고해상도화가 더욱 요구되고 있다. 투영 광학계의 해상도는 사용하는 노광 파장이 짧을수록, 또한 투영 광학계의 개구수가 클수록 높아진다. 그 때문에, 노광 장치에서 사용되는 노광 파장은 해마다 단파장화되고 있고, 투영 광학계의 개구수도 증대하고 있다. 그리고, 현재 주류인 노광 파장은 KrF 엑시머 레이저의 248㎚ 인데, 더욱 단파장인 ArF 엑시머 레이저의 193㎚ 도 실용화되고 있다. 또한, 노광할 때에는 해상도와 마찬가지로 초점 심도 (DOF) 도 중요하게 된다. 해상도 (R) 및 초점 심도 (δ) 는 각각 이하의 식으로 표시된다.
R=k1?λ/NA ??????(1)
δ=±k2?λ/NA2 ??????(2)
여기에서, λ 는 노광 파장, NA 는 투영 광학계의 개구수, k1, k2 는 프로세스 계수이다. (1) 식, (2) 식으로부터 해상도 (R) 를 높이기 위해, 노광 파장 (λ) 을 짧게 하여 개구수 (NA) 를 크게 하면, 초점 심도 (δ) 가 좁아지는 것을 알 수 있다.
초점 심도 (δ) 가 너무 좁아지면, 투영 광학계의 이미지면에 대하여 기판 표면을 합치시키는 것이 곤란해지고, 노광 동작시의 마진이 부족할 우려가 있다. 또한, 단파장화하는 노광광에 대하여 사용 가능한 광학 부품 재료는 한정된다. 이러한 관점에서, 투영 광학계를 통과한 후의 노광광의 파장을 실질적으로 짧게 하고, 또한 초점 심도를 넓게 하는 방법으로서, 예를 들어 국제 공개 제99/49504호나 일본 공개특허공보 평10-303114호에 개시되어 있는 액침법이 제안되어 있다. 이 액침법은 투영 광학계의 하면 (下面) 과 기판 표면의 사이를 물이나 유기 용매 등의 액체로 채워 액침 영역을 형성하고, 액체 중에서의 노광광의 파장이 공기 중의 1/n (n 은 액체의 굴절률로 통상 1.2 ? 1.6 정도) 이 되는 것을 이용하여 해상도를 향상시킴과 함께, 초점 심도를 약 n 배로 확대한다는 것이다.
그런데, 도 18 에 나타내는 모식도와 같이, 액침법을 채용한 노광 장치에 있어서도, 기판 (P) 의 에지 영역 (E) 을 노광하는 경우가 있다. 이 경우, 투영 영역 (100) 의 일부가 기판 (P) 의 외측으로 밀려나가 노광광이 기판 (P) 을 유지하는 기판 테이블 (120) 상에도 조사된다. 액침 노광의 경우, 투영 영역 (100) 을 덮도록 액체의 액침 영역이 형성되지만, 에지 영역 (E) 을 노광할 때에는 액체의 액침 영역의 일부가 기판 (P) 의 외측으로 밀려나가 기판 테이블 (120) 상에 형성된다. 또한, 기판 테이블 (120) 상의 기판 (P) 의 주위에 각종 계측 부재나 계측용 센서가 배치되어 있는 경우에는, 이들 계측 부재나 계측 센서를 사용하기 위해, 기판 테이블 (120) 상에 액침 영역이 형성되는 경우도 있다. 액침 영역의 일부가 기판 테이블 (120) 상에 형성되면 기판 테이블 (120) 상에 액체가 잔류할 가능성이 높아지고, 그 기화에 의해, 예를 들어 기판 (P) 이 놓여져 있는 환경 (온도, 습도) 이 변동하거나, 기판 테이블 (120) 이 열변형되거나, 또는 기판 (P) 의 위치 정보 등을 계측하는 각종 계측광의 광로의 환경이 변동되는 등 노광 정밀도가 저하 (低下) 될 가능성이 있다. 또한, 잔류한 액체가 기화된 후, 워터 마크 (물 자국) 가 남아 기판 (P) 이나 액체 등의 오염 요인이 되거나, 각종 계측의 오차 요인이 될 가능성도 있다.
본 발명은 이러한 사정을 감안하여 이루어진 것으로서, 액체가 잔류하는 것을 방지하고, 양호한 노광 정밀도, 계측 정밀도를 유지할 수 있는 노광 장치 및 노광 방법, 디바이스 제조 방법을 제공하는 것을 제 1 목적으로 한다.
또한, 본 발명은 자외 레이저 조사 (照射) 내구성 (耐久性) 을 구비한 발수성막을 갖는 광학 부품, 및 그 광학 부품을 탑재한 투영 노광 장치를 제공하는 것을 제 2 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은 실시 형태에 나타내는 도 1 ? 도 21 에 대응한 이하의 구성을 채용하고 있다. 단, 각 요소에 붙인 괄호가 있는 부호는 그 요소의 예시에 불과하며, 각 요소를 한정하는 것은 아니다.
본 발명의 제 1 태양에 따르면, 액체 (1) 를 통해 기판 (P) 에 노광광 (EL) 을 조사하여 기판 (P) 을 노광하는 노광 장치로서, 기판 상에 패턴의 이미지를 투영하는 투영 광학계 (PL) ; 및 기판 (P) 을 유지하기 위한 기판 테이블 (PT) 을 구비하고 ; 기판 테이블 (PT) 에 그 표면 (30A) 의 적어도 일부가 발액성 (撥掖性) 인 부재 (30) 가 교환 가능하게 형성된 노광 장치 (EX) 가 제공된다.
또한 본 발명에서는 상기 태양의 노광 장치를 사용하는 것을 특징으로 하는 디바이스 제조 방법이 제공된다.
본 발명에 의하면, 기판 테이블에 형성된 발액성의 부재를 교환 가능하게 형성했기 때문에, 그 부재의 발액성이 열화되었을 때, 새로운 발액성의 부재와 교환할 수 있다. 따라서, 액체가 잔류하는 것을 억제할 수 있고, 설사 잔류해도 그 액체를 원활하게 회수할 수 있다. 따라서, 잔류한 액체에 기인하는 노광 정밀도, 계측 정밀도의 열화를 방지할 수 있어 원하는 성능을 발휘할 수 있는 디바이스를 제조할 수 있다.
본 발명의 제 2 태양에 따르면, 투영 광학계 (PL) 와 액체 (1) 를 통해 노광광 (EL) 을 기판 (P) 상에 조사하여 기판 (P) 을 액침 노광하는 노광 방법에 있어서, 기판 (P) 을 기판 유지 부재 (30) 로 유지하고, 기판 유지 부재 (30) 는 기판 (P) 의 주위에 그 기판 (P) 표면과 거의 면이 일치하게 되는 평탄부 (30A) 를 가지며, 기판 (P) 을 유지한 기판 유지 부재 (30) 를 기판 스테이지 (PST, PT) 에 반입하고, 기판 스테이지 (PST, PT) 상에 반입된 기판 (P) 을 액침 노광하고, 액침 노광의 완료 후에 기판 (P) 을 유지한 기판 유지 부재 (30) 를 기판 스테이지 (PST, PT) 로부터 반출하는 노광 방법이 제공된다.
또한 본 발명에서는 상기 노광 방법을 사용하는 것을 특징으로 하는 디바이스 제조 방법이 제공된다.
본 발명에 의하면, 기판의 주위에 평탄부를 갖는 기판 유지 부재를 기판과 함께 기판 스테이지에 대하여 반입 및 반출함으로써, 기판 유지 부재를 기판과 함께 기판 스테이지에 대하여 용이하게 교환할 수 있고, 예를 들어 기판 유지 부재의 발액성이 열화되었을 때에도 용이하게 교환할 수 있다. 또한, 기판 유지 부재는 기판의 주위에 평탄부를 갖고 있기 때문에, 그 기판 유지 부재를 기판과 함께 기판 스테이지에 반입하여 기판의 에지 영역을 액침 노광할 때, 액체의 액침 영역의 일부가 기판의 외측에 밀려나가도 평탄부에 의해 액침 영역의 형상이 유지되어 액체의 유출 등을 초래하지 않고 투영 광학계 아래에 액체를 양호하게 유지한 상태로 액침 노광할 수 있다. 따라서, 노광 정밀도의 열화가 방지되어 원하는 성능을 발휘하는 디바이스를 제조할 수 있다.
본 발명의 제 3 태양에 따르면, 액체 (1) 를 통해 기판 (P) 에 노광광 (EL) 을 조사하여 기판 (P) 을 노광하는 노광 장치로서, 기판 상에 패턴의 이미지를 투영하는 투영 광학계 (PL) ; 및 투영 광학계 (PL) 에 대하여 이동 가능한 이동 스테이지 (PST) 를 구비하고 ; 이동 스테이지 (PST) 에 적어도 일부가 발수성인 발액성 부재 (30, PH, 300, 400, 500) 가 형성되고, 그 발액성 부재가 교환 가능한 노광 장치 (EX) 가 제공된다.
본 발명의 제 3 태양의 노광 장치에서는 이동 스테이지에 형성된 발액성의 부재를 교환 가능하게 형성했기 때문에, 그 부재의 발액성이 열화되었을 때, 새로운 부재와 교환할 수 있다. 이동 스테이지는, 예를 들어 기판을 유지하여 이동하는 기판 스테이지 또는 각종 기준 부재나 계측 센서 등의 계측 부재를 구비한 계측 스테이지여도 된다. 또는, 이동 스테이지로서 기판 스테이지 및 계측 스테이지의 양측을 구비하고 있어도 된다. 또한, 이동 스테이지로서 복수의 기판 스테이지 또는 복수의 계측 스테이지를 구비하고 있어도 된다.
본 발명의 제 4 태양에 따르면, 노광광 (EL) 을 액체 (1) 를 통해 기판 (P) 에 조사하여 상기 기판 (P) 을 액침 노광하는 노광 방법으로서, 상기 액체 (1) 를 기판 (P) 상의 적어도 일부에 공급하는 것; 노광광 (EL) 을 액체를 통해 기판 (P) 에 조사하여 상기 기판을 액침 노광하는 것; 및 상기 액체가 공급되는 기판과는 다른 노광 장치의 부분 (30, 300, 400, 500) 이 발액성을 갖고 있고, 그 발액성을 갖는 노광 장치의 부분 (30, 300, 400, 500) 을 그 발액성의 열화에 따라 교환하는 것을 포함하는 노광 방법이 제공된다.
본 발명의 제 4 태양의 노광 방법에서는 발액성을 갖는 노광 장치의 부분이 자외광의 조사에 의해 열화되지만, 열화에 따라 그 부분을 교환하기 때문에, 열화에 의한 액체의 잔류나 누설 등을 방지할 수 있다. 상기 부분의 교환은 정기적으로 행해도 되고, 또는 부분마다 열화 상황을 추정하거나 관찰한 결과에 기초하여 행해도 된다.
본 발명의 제 5 태양에 따르면, 노광 빔 (EL) 으로 마스크 (M) 를 조명하고, 투영 광학계에 의해 상기 마스크의 패턴을 기판 스테이지 상에 유지되는 기판 (P) 상에 액체 (1) 를 통해 전사하는 투영 노광 장치 (EX) 의 상기 기판 스테이지 상에 탑재되는 광학 부품 (650, 652, 654) 으로서, 상기 노광 빔에 의해 조사되는 광조사면 (660); 상기 광조사면의 표면에 형성된 이산화 규소, 불화 마그네슘 및 불화 칼슘 중의 적어도 1 개로 이루어지는 미립자층에 의해 구성되는 접착 미립자층 (662); 및 상기 접착 미립자층의 표면에 형성된 비정질 불소 수지에 의해 구성되는 발수성막 (664) 을 구비하는 광학 부품이 제공된다.
본 발명자가 플루오로알킬실란과 기재 (基材) 유리의 밀착성에 대하여 분석한 결과, 플루오로알킬실란의 말단기 -CF3 가 화학적으로 안정되므로, 기재 유리와의 사이에서 수소 결합이나 축합 반응 등 화학적인 결합을 기대할 수 없는 것을 알았다. 그래서, 본 발명자는 화학적인 결합에 의존하지 않고, 분자간 인력을 증대시키는 방법을 검토하였다. 이 결과, 기재 유리와 접착하는 접착층의 표면적을 크게 함으로써 부착 에너지를 순조롭게 증대시키는 것에 성공하였다. 본 발명의 광학 부품에 의하면, 접착 미립자층을 형성하는 이산화 규소 (SiO2), 불화 마그네슘 (MgF2) 및 불화 칼슘 (CaF2) 중의 적어도 1 개로 이루어지는 미립자층은 기재의 유리 (주성분 SiO2) 와 친화성이 좋고, 기재 유리와 적당한 밀착성이 얻어진다. 또한, 표면에 입자 직경에 의해 유래하는 요철을 발생시킨다. 또한, 이산화 규소 등은 자외선 투과율이 매우 높은 재료이므로, 그 자체의 레이저 조사 내구성도 높다. 따라서, 이산화 규소 (SiO2), 불화 마그네슘 (MgF2) 및 불화 칼슘 (CaF2) 중의 적어도 1 개로 이루어지는 미립자층을 막형성한 후, 비정질 불소 수지에 의해 구성되는 발수성막을 형성하면, 비정질 불소 수지는 이산화 규소 등의 미립자의 틈에 들어가고, 끌어안듯이 건조ㆍ고화된다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수성막의 강도는 높은 것이 된다.
또한, 본 발명의 제 6 태양에 따르면, 노광 빔 (EL) 으로 마스크 (M) 를 조명하고, 투영 광학계 (PL) 에 의해 상기 마스크의 패턴을 기판 스테이지 (PST) 상에 유지되는 기판 상에 액체 (1) 를 통해 전사하는 투영 노광 장치의 상기 기판 스테이지 (PST) 상에 탑재되는 광학 부품 (650, 652, 654) 으로서, 상기 노광 빔에 의해 조사되는 광조사면 (660); 상기 광조사면의 표면에 형성된 접착면 (668); 및 상기 접착면의 표면에 형성된 비정질 불소 수지에 의해 구성되는 발수성막 (664) 을 구비하는 광학 부품이 제공된다. 이 태양의 광학 부품에서는 상기 접착면이 불화 수소에 의해 에칭된 면인 것이 바람직하다.
제 6 태양의 광학 부품에 의하면, 광조사면에 예를 들어 불화 수소에 의해 에칭한 에칭면에 의해 구성되는 접착면을 가지므로, 접착면 상에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하면, 비정질 불소 수지는 접착면의 공극 (空隙) 에 들어가고, 끌어안듯이 건조ㆍ고화된다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수성막의 강도는 높은 것이 된다.
또한, 상기 태양의 광학 부품은 상기 광조사면이 기재 유리를 가질 수 있다. 또한, 상기 태양의 광학 부품은 상기 광조사면이 상기 기재 유리의 적어도 일부에 형성된 금속막을 가질 수 있다. 이들 광학 부품에 의하면, 광조사면 상에 형성된 발수성막은 레이저 조사 내구성을 가지므로, 투영 노광 장치의 기판 스테이지 상에 탑재되어 있는 광학 부품의 광조사면의 발수성을 장기간에 걸쳐 유지할 수 있다.
또, 본 발명에서는 상기 어느 하나의 태양의 광학 부품을 구비하는 투영 노광 장치 또한 제공된다. 이 투영 노광 장치에 의하면, 기판 스테이지 상에 광조사면의 발수성을 장기간에 걸쳐 유지할 수 있는 광학 부품을 탑재하고 있기 때문에, 액침 노광을 반복한 경우에도 광학 부품의 광조사면 상의 배수 (排水) 를 확실하게 실시할 수 있다.
또한, 본 발명의 제 7 태양에 따르면, 노광 빔 (EL) 으로 마스크 (M) 를 조명하고, 투영 광학계 (PL) 에 의해 상기 마스크의 패턴을 기판 스테이지 (PST) 상에 유지되는 기판 상에 액체를 통해 전사하는 투영 노광 장치 (EX) 로서, 상기 기판 스테이지 상에 상기 노광 빔에 의해 조사되는 광조사면 (660); 상기 광조사면의 표면에 형성된 접착 미립자층 (662); 및 상기 접착 미립자층의 표면에 형성된 비정질 불소 수지에 의해 구성되는 발수성막 (664) 을 갖는 광학 부품을 구비하는 투영 노광 장치가 제공된다.
제 7 태양의 투영 노광 장치에 의하면, 기판 스테이지 상에 탑재된 광학 부품이 광조사면에 접착 미립자층을 가지므로, 비정질 불소 수지에 의해 구성되는 발수성막이 접착 미립자층에 밀착한다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수성막의 강도는 높은 것이 된다.
또한, 제 7 태양의 투영 노광 장치는 상기 광조사면이 기재 유리를 가질 수 있다. 또, 제 7 태양의 투영 노광 장치는 상기 광조사면이 상기 기재 유리의 적어도 일부에 형성된 금속막을 가질 수 있다. 이들 투영 노광 장치에 의하면, 기판 스테이지 상에 탑재되어 있는 광학 부품의 광조사면 상에 형성된 발수성막은 레이저 조사 내구성을 가지므로, 투영 노광 장치의 기판 스테이지 상에 탑재되어 있는 광학 부품의 광조사면의 발수성을 장기간에 걸쳐 유지할 수 있다.
본 발명의 제 8 태양에 따르면, 광학 부품 (300, 400, 500, 650, 652, 654) 으로서, 광조사면을 갖는 부품 본체 (660); 상기 광조사면의 표면에 형성된 이산화 규소, 불화 마그네슘 및 불화 칼슘으로 이루어지는 군에서 선택된 적어도 1 종의 미립자에 의해 형성된 미립자층 (662); 및 상기 미립자층의 표면에 비정질 불소 수지에 의해 형성된 발수성막 (664) 을 구비하는 광학 부품이 제공된다. 발수성막은 미립자층을 통해 광조사면과 강고하게 접속되어 있기 때문에, 본 발명은 액체 또는 증기 분위기 중에서 사용되는 광학 센서나 렌즈 등의 용도에 매우 유용하다.
본 발명의 제 8 태양에 따르면, 광학 부품 (300, 400, 500, 650, 652, 654) 으로서, 광조사면을 갖는 부품 본체 (660); 상기 광조사면의 표면에 에칭에 의해 형성된 접착면 (668); 및 상기 접착면에 비정질 불소 수지에 의해 형성된 발수성막 (664) 을 구비하는 광학 부품이 제공된다. 발수성막은 미립자층을 통해 광조사면과 강고하게 접속되어 있기 때문에, 본 발명은 액체 또는 증기 분위기 중에서 사용되는 광학 센서나 렌즈 등의 용도에 매우 유용하다.
도 1 은 본 발명의 노광 장치의 일 실시 형태를 나타내는 개략 구성도이다.
도 2 는 액체 공급 기구 및 액체 회수 기구를 나타내는 개략 평면도이다.
도 3 은 기판 테이블의 평면도이다.
도 4 는 기판을 유지한 상태의 기판 테이블의 평면도이다.
도 5 는 기판 테이블의 단면도이다.
도 6 은 기판 테이블에 대해 각 부재가 탈착 가능한 것을 나타내는 모식도이다.
도 7(a) ? 7(d) 는 본 발명의 노광 장치의 동작의 일례를 나타내는 모식도이다.
도 8(a) ? 8(d) 는 본 발명의 노광 장치의 동작의 일례를 나타내는 모식도이다.
도 9 는 반송 장치에 반송되고 있는 기판 유지 부재를 나타내는 평면도이다.
도 10 은 기판 테이블의 다른 실시 형태를 나타내는 단면도이다.
도 11(a) 및 11(b) 는 본 발명의 노광 장치의 다른 실시 형태를 나타내는 개략 구성도이다.
도 12(a) 및 12(b) 는 기판 유지 부재의 다른 실시 형태를 나타내는 도면이다.
도 13(a) ? 13(d) 는 본 발명의 노광 장치의 동작의 다른 예를 나타내는 모식도이다.
도 14 는 본 발명의 노광 장치의 다른 실시 형태를 나타내는 개략 구성도이다.
도 15 는 본 발명의 노광 장치의 다른 실시 형태를 나타내는 개략 구성도이다.
도 16 은 본 발명의 노광 장치의 다른 실시 형태를 나타내는 개략 구성도이다.
도 17 은 반도체 디바이스의 제조 공정의 일례를 나타내는 플로우 차트도이다.
도 18 은 종래의 과제를 설명하기 위한 모식도이다.
도 19 는 실시 형태에 관한 웨이퍼 스테이지에 탑재되어 있는 광학 부품을 나타내는 도면이다.
도 20 은 실시 형태에 관한 웨이퍼 스테이지 상에 탑재되어 있는 광학 부품의 구성도이다.
도 21 은 실시 형태에 관한 웨이퍼 스테이지 상에 탑재되어 있는 광학 부품의 구성도이다.
실시하기 위한 최선의 형태
이하, 본 발명의 노광 장치에 대하여 도면을 참조하면서 설명하는데, 본 발명은 이것에 한정되지 않는다.
<제 1 실시 형태>
도 1 은 본 발명의 노광 장치의 일 실시 형태를 나타내는 개략 구성도이다. 도 1 에 있어서, 노광 장치 (EX) 는 마스크 (M) 를 지지하는 마스크 스테이지 (MST), 기판 (P) 을 기판 테이블 (PT) 을 통해 지지하는 기판 스테이지 (PST), 마스크 스테이지 (MST) 에 지지되어 있는 마스크 (M) 를 노광광 (EL) 으로 조명하는 조명 광학계 (IL), 노광광 (EL) 으로 조명된 마스크 (M) 의 패턴 이미지를 기판 스테이지 (PST) 에 지지되어 있는 기판 (P) 에 투영 노광하는 투영 광학계 (PL), 및 노광 장치 (EX) 전체의 동작을 통괄 제어하는 제어 장치 (CONT) 를 구비하고 있다.
본 실시 형태의 노광 장치 (EX) 에는 노광 파장을 실질적으로 짧게 하여 해상도를 향상시킴과 함께 초점 심도를 실질적으로 넓히기 위해 액침법이 적용된다. 이 액침 노광 장치는 기판 (P) 상에 액체 (1) 를 공급하는 액체 공급 기구 (10), 및 기판 (P) 상의 액체 (1) 를 회수하는 액체 회수 기구 (20) 를 구비하고 있다. 본 실시 형태에 있어서, 액체 (1) 에는 순수 (純水) 가 사용된다. 노광 장치 (EX) 는 적어도 마스크 (M) 의 패턴 이미지를 기판 (P) 상에 전사하고 있는 동안, 액체 공급 기구 (10) 로부터 공급된 액체 (1) 에 의해 투영 광학계 (PL) 의 투영 영역 (AR1) 을 포함하는 기판 (P) 상의 적어도 일부에 (국소적으로) 액침 영역 (AR2) 을 형성한다. 구체적으로는 노광 장치 (EX) 는 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 와 기판 (P) 의 표면 (노광면) 사이에 액체 (1) 를 채우고, 이 투영 광학계 (PL) 와 기판 (P) 사이의 액체 (1) 및 투영 광학계 (PL) 를 통해 마스크 (M) 의 패턴 이미지를 기판 (P) 상에 투영하여 기판 (P) 을 노광한다.
여기에서, 본 실시 형태에서는 노광 장치 (EX) 로서 마스크 (M) 와 기판 (P) 을 주사 방향에서의 서로 다른 방향 (역방향) 으로 동기 이동하면서 마스크 (M) 에 형성된 패턴을 기판 (P) 에 노광하는 주사형 노광 장치 (이른바 스캐닝 스테퍼) 를 사용하는 경우를 예로 들어 설명한다. 이하의 설명에 있어서, 투영 광학계 (PL) 의 광축 (AX) 과 일치하는 방향을 Z 축 방향, Z 축 방향에 수직인 평면 내에서 마스크 (M) 와 기판 (P) 의 동기 이동 방향 (주사 방향) 을 X 축 방향, Z 축 방향 및 X 축 방향에 수직인 방향 (비주사 방향) 을 Y 축 방향으로 한다. 또한, X 축, Y 축 및 Z 축 주위의 회전 (경사) 방향을 각각 θX, θY 및 θZ 방향으로 한다. 또, 여기에서 말하는 「기판」 은 반도체 웨이퍼 상에 감광성 재료인 포토레지스트를 도포한 것을 포함하고, 「마스크」 는 기판 상에 축소 투영되는 디바이스 패턴이 형성된 레티클을 포함한다.
조명 광학계 (IL) 는 마스크 스테이지 (MST) 에 지지되어 있는 마스크 (M) 를 노광광 (EL) 으로 조명하는 것이고, 노광용 광원, 노광용 광원으로부터 사출 (射出) 된 광속의 조도를 균일화하는 옵티컬 인테그레이터 (optical integrator; 호모지나이저 (homogenizer)), 옵티컬 인테그레이터로부터의 노광광 (EL) 을 집광하는 콘덴서 렌즈, 릴레이 렌즈계, 노광광 (EL) 에 의한 마스크 (M) 상의 조명 영역을 슬릿형상으로 설정하는 가변 시야 조리개 등을 갖고 있다. 마스크 (M) 상의 소정의 조명 영역은 조명 광학계 (IL) 에 의해 균일한 조도 분포의 노광광 (EL) 으로 조명된다. 조명 광학계 (IL) 로부터 사출되는 노광광 (EL) 으로는, 예를 들어 수은 램프로부터 사출되는 휘선 (g 선, h 선, i 선) 및 KrF 엑시머 레이저광 (파장 248㎚) 등의 원자외광 (DUV 광) 이나, ArF 엑시머 레이저광 (파장 193㎚) 및 F2 레이저광 (파장 157㎚) 등의 진공 자외광 (VUV 광) 등이 사용된다. 본 실시 형태에서는 ArF 엑시머 레이저광이 사용된다. 상기 기술한 바와 같이, 본 실시 형태에서의 액체 (1) 는 순수로서, 노광광 (EL) 이 ArF 엑시머 레이저광이어도 투과 가능하다. 또한, 순수는 휘선 (g 선, h 선, i 선) 및 KrF 엑시머 레이저광 (파장 248㎚) 등의 원자외광 (DUV 광) 도 투과 가능하다.
마스크 스테이지 (MST) 는 마스크 (M) 를 지지하면서, 투영 광학계 (PL) 의 광축 (AX) 에 수직인 평면 내, 즉 XY 평면 내에서 2 차원 이동 가능하고, 또한 θZ 방향으로 미소 회전 가능하다. 마스크 스테이지 (MST) 는 리니어 모터 등의 마스크 스테이지 구동 장치 (MSTD) 에 의해 구동된다. 마스크 스테이지 구동 장치 (MSTD) 는 제어 장치 (CONT) 에 의해 제어된다. 마스크 스테이지 (MST) 상에는 이동경 (50) 이 형성되어 있다. 또한, 이동경 (50) 에 대향하는 위치에는 레이저 간섭계 (51) 가 형성되어 있다. 마스크 스테이지 (MST) 상의 마스크 (M) 의 2 차원 방향의 위치, 및 회전각은 레이저 간섭계 (51) 에 의해 실시간으로 계측되고, 계측 결과는 제어 장치 (CONT) 에 출력된다. 제어 장치 (CONT) 는 레이저 간섭계 (51) 의 계측 결과에 기초하여 마스크 스테이지 구동 장치 (MSTD) 를 구동함으로써 마스크 스테이지 (MST) 에 지지되어 있는 마스크 (M) 의 위치를 결정한다.
투영 광학계 (PL) 는 마스크 (M) 의 패턴을 소정의 투영 배율 (β) 로 기판 (P) 에 투영 노광한다. 투영 광학계 (PL) 는 기판 (P) 측의 선단부에 형성된 광학 소자 (렌즈; 2) 를 포함하는 복수의 광학 소자로 구성되어 있고, 이들 광학 소자는 경통 (PK) 으로 지지되어 있다. 본 실시 형태에 있어서, 투영 광학계 (PL) 는 투영 배율 (β) 이 예를 들어 1/4 또는 1/5 의 축소계이다. 또, 투영 광학계 (PL) 는 등배계 및 확대계의 어느것이어도 된다. 또한, 투영 광학계 (PL) 는 굴절 소자를 포함하지 않는 반사계, 반사 소자를 포함하지 않는 굴절계, 굴절 소자와 반사 소자를 포함하는 반사 굴절계의 어느 것이어도 된다. 또, 본 실시 형태의 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 는 경통 (PK) 에 대하여 착탈 (교환) 가능하게 형성되어 있고, 광학 소자 (2) 에는 액침 영역 (AR2) 의 액체 (1) 가 접촉한다.
광학 소자 (2) 는 형석으로 형성되어 있다. 물은 형석과의 친화성이 높으므로, 광학 소자 (2) 의 액체 접촉면 (2a) 의 거의 전체면에 액체 (1) 를 밀착시킬 수 있다. 즉, 본 실시 형태에서는 광학 소자 (2) 의 액체 접촉면 (2a) 과의 친화성이 높은 물을 액체 (1) 로서 공급하도록 하고 있기 때문에, 광학 소자 (2) 의 액체 접촉면 (2a) 과 액체 (1) 의 밀착성이 높고, 광학 소자 (2) 와 기판 (P) 사이의 광로를 액체 (1) 로 확실하게 채울 수 있다. 또, 광학 소자 (2) 는 물과의 친화성이 높은 석영이어도 된다. 또, 광학 소자 (2) 의 액체 접촉면 (2a) 에 친수화 (친액화) 처리를 실시하여 액체 (1) 와의 친화성을 더욱 높이도록 해도 된다. 또한, 경통 (PK) 은 그 선단 부근이 액체 (물; 1) 에 접하게 되기 때문에, 적어도 선단 부근은 Ti (티탄) 등의 녹에 대하여 내성 (耐性) 이 있는 금속으로 형성된다.
기판 스테이지 (PST) 는 기판 (P) 을 지지하는 것으로서, 기판 (P) 을 기판 테이블 (PT) 을 통해 유지하는 Z 스테이지 (52), Z 스테이지 (52) 를 지지하는 XY 스테이지 (53), 및 XY 스테이지 (53) 를 지지하는 베이스 (54) 를 구비하고 있다. 기판 테이블 (PT) 은 기판 (P) 을 유지하는 것으로서, 기판 스테이지 (PST) (Z 스테이지 (52)) 상에 형성되어 있다. 기판 스테이지 (PST) 는 리니어 모터 등의 기판 스테이지 구동 장치 (PSTD) 에 의해 구동된다. 기판 스테이지 구동 장치 (PSTD) 는 제어 장치 (CONT) 에 의해 제어된다. Z 스테이지 (52) 를 구동함으로써, 기판 테이블 (PT) 에 유지되어 있는 기판 (P) 의 Z 축 방향에서의 위치 (포커스 위치), 및 θX, θY 방향에서의 위치가 제어된다. 또한, XY 스테이지 (53) 를 구동함으로써, 기판 (P) 의 XY 방향에서의 위치 (투영 광학계 (PL) 의 이미지면과 실질적으로 평행한 방향의 위치) 가 제어된다. 즉, Z 스테이지 (52) 는 기판 (P) 의 포커스 위치 및 경사각을 제어하여 기판 (P) 의 표면을 오토 포커스 방식, 및 오토 레벨링 방식으로 투영 광학계 (PL) 의 이미지면에 맞추고, XY 스테이지 (53) 는 기판 (P) 의 X 축 방향 및 Y 축 방향에서의 위치를 결정한다. 또, Z 스테이지와 XY 스테이지를 일체적으로 형성해도 되는 것은 말할 필요도 없다. 또, 오토 포커스ㆍ레벨링 검출계의 구성으로는, 예를 들어 일본 공개특허공보 평8-37149호에 개시되어 있는 것을 사용할 수 있다.
기판 스테이지 (PST) (기판 테이블 (PT)) 상에는 기판 스테이지 (PST) 와 함께 투영 광학계 (PL) 에 대하여 이동하는 이동경 (55) 이 형성되어 있다. 또한, 이동경 (55) 에 대향하는 위치에는 레이저 간섭계 (56) 가 형성되어 있다. 기판 스테이지 (PST) (기판 테이블 (PT)) 상의 기판 (P) 의 2 차원 방향의 위치, 및 회전각은 레이저 간섭계 (56) 에 의해 실시간으로 계측되고, 계측 결과는 제어 장치 (CONT) 에 출력된다. 제어 장치 (CONT) 는 레이저 간섭계 (56) 의 계측 결과에 기초하여 기판 스테이지 구동 장치 (PSTD) 를 구동함으로써 기판 스테이지 (PST) 에 지지되어 있는 기판 (P) 의 위치를 결정한다.
기판 스테이지 (PST) (기판 테이블 (PT)) 의 근방 상측에는 기판 (P) 상의 얼라인먼트 마크 또는 기판 스테이지 (PST) (기판 테이블 (PT)) 상에 형성된 기준 마크 (후술) 를 검출하는 기판 얼라인먼트계 (350) 가 배치되어 있다. 또한, 마스크 스테이지 (MST) 의 근방에는 노광광 (EL) 과 동일한 파장의 광을 사용하고, 마스크 (M) 와 투영 광학계 (PL) 를 통해 기판 스테이지 (PST) (기판 테이블 (PT)) 상의 기준 마크를 검출하는 마스크 얼라인먼트계 (360) 가 형성되어 있다. 또, 기판 얼라인먼트계 (350) 의 구성으로는 일본 공개특허공보 평4-65603호 (대응 미국 특허 제5,493,403호) 에 개시되어 있는 것을 사용할 수 있고, 마스크 얼라인먼트계 (360) 의 구성으로는 일본 공개특허공보 평7-176468호 (대응 미국 특허 제5,646,413호) 에 개시되어 있는 것을 사용할 수 있다.
기판 테이블 (PT) 상에는 이 기판 테이블 (PT) 에 유지된 기판 (P) 을 둘러싸는 플레이트 부재 (30) 가 형성되어 있다. 플레이트 부재 (30) 는 기판 테이블 (PT) 과는 별도의 부재로서, 기판 테이블 (PT) 에 대하여 탈착 가능하게 형성되어 있어 교환 가능하다. 플레이트 부재 (30) 는 기판 테이블 (PT) 에 유지된 기판 (P) 의 표면과 거의 면이 일치하는 평탄면 (평탄부; 30A) 을 갖고 있다. 평탄면 (30A) 은 기판 테이블 (PT) 에 유지된 기판 (P) 의 주위에 배치되어 있다. 또한, 기판 테이블 (PT) 상에서 플레이트 부재 (30) 의 외측에는 플레이트 부재 (30) 의 평탄면 (30A) 과 거의 면이 일치하게 되는 평탄면 (32A) 을 갖는 제 2 플레이트 부재 (32) 가 형성되어 있다. 제 2 플레이트 부재 (32) 도 기판 테이블 (PT) 에 대하여 탈착 가능하게 형성되어 있어 교환 가능하다.
소정의 액체 (1) 를 기판 (P) 상에 공급하는 액체 공급 기구 (10) 는 액체 (1) 를 공급 가능한 제 1 액체 공급부 (11) 및 제 2 액체 공급부 (12) 와, 제 1 액체 공급부 (11) 에 유로를 갖는 공급관 (11A) 을 통해 접속되고, 이 제 1 액체 공급부 (11) 로부터 송출된 액체 (1) 를 기판 (P) 상에 공급하는 공급구 (13A) 를 갖는 제 1 공급 부재 (13) 와, 제 2 액체 공급부 (12) 에 유로를 갖는 공급관 (12A) 을 통해 접속되고, 이 제 2 액체 공급부 (12) 로부터 송출된 액체 (1) 를 기판 (P) 상에 공급하는 공급구 (14A) 를 갖는 제 2 공급 부재 (14) 를 구비하고 있다. 제 1, 제 2 공급 부재 (13, 14) 는 기판 (P) 의 표면에 근접하여 배치되어 있고, 기판 (P) 의 면방향에서 서로 다른 위치에 형성되어 있다. 구체적으로는 액체 공급 기구 (10) 의 제 1 공급 부재 (13) 는 투영 영역 (AR1) 에 대하여 주사 방향 일측 (-X 측) 에 형성되고, 제 2 공급 부재 (14) 는 투영 영역 (AR1) 에 대하여 주사 방향 타측 (+X 측) 에 형성되어 있다.
제 1, 제 2 액체 공급부 (11, 12) 의 각각은 액체 (1) 를 수용하는 탱크, 및 가압 펌프 등 (모두 도시 생략) 을 구비하고 있고, 공급관 (11A, 12A) 및 공급 부재 (13, 14) 의 각각을 통해 기판 (P) 상에 액체 (1) 를 공급한다. 또한, 제 1, 제 2 액체 공급부 (11, 12) 의 액체 공급 동작은 제어 장치 (CONT) 에 의해 제어되고, 제어 장치 (CONT) 는 제 1, 제 2 액체 공급부 (11, 12) 에 의한 기판 (P) 상에 대한 단위 시간당의 액체 공급량을 독립적으로 제어할 수 있다. 또한, 제 1, 제 2 액체 공급부 (11, 12) 의 각각은 액체의 온도 조정 기구를 갖고 있고, 이 온도 조정 기구에 의해 장치가 수용되는 챔버 내의 온도와 거의 동일한 온도 (예를 들어 23℃) 의 액체 (1) 를 기판 (P) 상에 공급할 수 있다. 또, 제 1, 제 2 액체 공급부 (11, 12) 의 탱크, 가압 펌프, 온도 조정 기구는 반드시 노광 장치 (EX) 가 구비하고 있을 필요는 없고, 노광 장치 (EX) 가 설치되는 공장 등의 설비를 대용할 수도 있다.
액체 회수 기구 (20) 는 기판 (P) 상의 액체 (1) 를 회수하는 것으로서, 기판 (P) 의 표면에 근접하여 배치된 회수구 (23A, 24A) 를 갖는 제 1, 제 2 회수 부재 (23, 24) 와, 이 제 1, 제 2 회수 부재 (23, 24) 에 유로를 갖는 회수관 (21A, 22A) 을 통해 각각 접속된 제 1, 제 2 액체 회수부 (21, 22) 를 구비하고 있다. 제 1, 제 2 액체 회수부 (21, 22) 는 예를 들어 진공 펌프 등의 진공계 (흡인 장치), 기액 (氣液) 분리기, 및 회수한 액체 (1) 를 수용하는 탱크 등 (모두 도시 생략) 을 구비하고 있고, 기판 (P) 상의 액체 (1) 를 제 1, 제 2 회수 부재 (23, 24), 및 회수관 (21A, 22A) 을 통해 회수한다. 제 1, 제 2 액체 회수부 (21, 22) 의 액체 회수 동작은 제어 장치 (CONT) 에 의해 제어된다. 제어 장치 (CONT) 는 제 1, 제 2 액체 회수부 (21, 22) 에 의한 단위 시간당의 액체 회수량을 독립적으로 제어할 수 있다. 또, 제 1, 제 2 액체 회수부 (21, 22) 의 진공계, 기액 분리기, 탱크는 반드시 노광 장치 (EX) 가 구비하고 있을 필요는 없고, 노광 장치 (EX) 가 설치되는 공장 등의 설비를 대용할 수도 있다.
도 2 는 액체 공급 기구 (10) 및 액체 회수 기구 (20) 의 개략 구성을 나타내는 평면도이다. 도 2 에 나타내는 바와 같이, 투영 광학계 (PL) 의 투영 영역 (AR1) 은 Y 축 방향 (비주사 방향) 을 길이 방향으로 하는 슬릿형상 (직사각형 형상) 으로 설정되어 있고, 액체 (1) 가 채워진 액침 영역 (AR2) 은 투영 영역 (AR1) 을 포함하도록 기판 (P) 상의 일부에 형성된다. 그리고, 투영 영역 (AR1) 의 액침 영역 (AR2) 을 형성하기 위한 액체 공급 기구 (10) 의 제 1 공급 부재 (13) 는 투영 영역 (AR1) 에 대하여 주사 방향 일측 (-X 측) 에 형성되고, 제 2 공급 부재 (14) 는 타측 (+X 측) 에 형성되어 있다.
제 1, 제 2 공급 부재 (13, 14) 의 각각은 평면에서 보아 대략 원호 형상으로 형성되어 있고, 그 공급구 (13A, 14A) 의 Y 축 방향에서의 사이즈는 적어도 투영 영역 (AR1) 의 Y 축 방향에서의 사이즈보다 커지도록 설정되어 있다. 그리고, 평면에서 보아 대략 원호 형상으로 형성되어 있는 공급구 (13A, 14A) 는 주사 방향 (X 축 방향) 에 대하여 투영 영역 (AR1) 을 사이에 두도록 배치되어 있다. 액체 공급 기구 (10) 는 제 1, 제 2 공급 부재 (13, 14) 의 공급구 (13A, 14A) 를 통해 투영 영역 (AR1) 의 양측에서 액체 (1) 를 동시에 공급한다.
액체 회수 기구 (20) 의 제 1, 제 2 회수 부재 (23, 24) 의 각각은 기판 (P) 의 표면을 향하도록 원호 형상으로 연속적으로 형성된 회수구 (23A, 24A) 를 갖고 있다. 그리고, 서로 마주보도록 배치된 제 1, 제 2 회수 부재 (23, 24) 에 의해 대략 둥근 고리 형상의 회수구가 형성되어 있다. 제 1, 제 2 회수 부재 (23, 24) 각각의 회수구 (23A, 24A) 는 액체 공급 기구 (10) 의 제 1, 제 2 공급 부재 (13, 14) 및 투영 영역 (AR1) 을 둘러싸도록 배치되어 있다.
제 1, 제 2 공급 부재 (13, 14) 의 공급구 (13A, 14A) 로부터 기판 (P) 상에 공급된 액체 (1) 는 투영 광학계 (PL) 의 선단부 (광학 소자 (2)) 의 하단면과 기판 (P) 의 사이에 적셔지면서 퍼지도록 공급된다. 또한, 투영 영역 (AR1) 에 대하여 제 1, 제 2 공급 부재 (13, 14) 의 외측으로 유출된 액체 (1) 는 이 제 1, 제 2 공급 부재 (13, 14) 보다 투영 영역 (AR1) 에 대하여 외측에 배치되어 있는 제 1, 제 2 회수 부재 (23, 24) 의 회수구 (23A, 24A) 로부터 회수된다.
본 실시 형태에 있어서, 기판 (P) 을 주사 노광할 때, 주사 방향에 대하여 투영 영역 (AR1) 의 앞에서 공급하는 단위 시간당의 액체 공급량이 그 반대측에서 공급하는 액체 공급량보다 많게 설정된다. 예를 들어, 기판 (P) 을 +X 방향으로 이동하면서 노광 처리하는 경우, 제어 장치 (CONT) 는 투영 영역 (AR1) 에 대하여 -X 측 (즉 공급구 (13A)) 으로부터의 액체량을 +X 측 (즉 공급구 (14A)) 으로부터의 액체량보다 많게 하고, 한편 기판 (P) 을 -X 방향으로 이동하면서 노광 처리하는 경우, 투영 영역 (AR1) 에 대하여 +X 측으로부터의 액체량을 -X 측으로부터의 액체량보다 많게 한다. 또한, 주사 방향에 대하여 투영 영역 (AR1) 앞에서의 단위 시간당의 액체 회수량이 그 반대측에서의 액체 회수량보다 적게 설정된다. 예를 들어, 기판 (P) 이 +X 방향으로 이동하고 있을 때에는 투영 영역 (AR1) 에 대하여 +X 측 (즉 회수구 (24A)) 으로부터의 회수량을 -X측 (즉 회수구 (23A)) 으로부터의 회수량보다 많게 한다.
또, 기판 (P) (기판 스테이지 (PST)) 상에 국소적으로 액침 영역 (AR2) 을 형성하기 위한 기구는 상기 기술한 것에 한정되지 않고, 예를 들어 미국 특허 공개 제2004/020782호나 국제 공개 제2004/055803호에 개시되어 있는 기구를 채용할 수도 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
도 3 은 기판 테이블 (PT) 을 상측으로부터 본 평면도, 도 4 는 기판 (P) 을 유지한 기판 테이블 (PT) 을 상측으로부터 본 평면도이다. 도 3 및 도 4 에 있어서, 평면에서 보아 직사각형 형상의 기판 테이블 (PT) 의 서로 수직인 2 개의 가장자리부에 이동경 (55) 이 배치되어 있다. 또한, 기판 테이블 (PT) 의 거의 중앙부에 오목부 (31) 가 형성되어 있고, 이 오목부 (31) 에 기판 테이블 (PT) 의 일부를 구성하는 기판 홀더 (PH) 가 배치되어 있고, 기판 (P) 은 기판 홀더 (PH) 에 유지된다. 기판 (P) (기판 홀더 (PH)) 의 주위에는 기판 (P) 의 표면과 거의 동일한 높이 (면일치) 의 평탄면 (30A) 을 갖는 플레이트 부재 (30) 가 형성되어 있다. 플레이트 부재 (30) 는 고리 형상 부재로서, 기판 홀더 (PH) (기판 (P)) 를 둘러싸도록 배치되어 있다. 플레이트 부재 (30) 는, 예를 들어 폴리사불화에틸렌 (테플론 (등록 상표)) 과 같은 불화물 등의 발액성을 갖는 재료에 의해 형성되어 있다. 기판 (P) 의 주위에 기판 (P) 표면과 거의 면이 일치하는 평탄면 (30A) 을 갖는 플레이트 부재 (30) 를 형성했기 때문에, 기판 (P) 의 에지 영역 (E) 을 액침 노광할 때에도, 투영 광학계 (PL) 의 이미지면측에 액침 영역 (AR2) 을 양호하게 형성할 수 있다.
또, 투영 광학계 (PL) 의 이미지면측의 광로 공간이 액체 (1) 로 채워지도록 액침 영역 (AR2) 을 형성할 수 있으면, 기판 (P) 의 표면과 플레이트 부재 (30) 의 평탄면 (30A) 에 단차 (段差) 가 있어도 되고, 예를 들어 Z 방향에 대하여 기판 (P) 의 표면보다 평탄면 (30A) 을 낮게 해도 된다.
도 1, 3 및 4 에 나타내는 바와 같이, 기판 테이블 (PT) 상의 플레이트 부재 (30) (기판 홀더 (PH)) 의 외측에는 제 2 플레이트 부재 (32) 가 형성되어 있다. 제 2 플레이트 부재 (32) 는 기판 (P) 의 표면이나 플레이트 부재 (30) 의 평탄면 (30A) 과 거의 동일한 높이 (면일치) 의 평탄면 (32A) 을 갖고 있고, 기판 홀더 (PH) (기판 (P)) 및 플레이트 부재 (30) 이외의 기판 테이블 (PT) 의 상면 (上面) 의 거의 전체 영역을 덮도록 형성되어 있다. 제 2 플레이트 부재 (32) 도, 예를 들어 폴리사불화에틸렌 등의 발액성을 갖는 재료에 의해 형성되어 있다.
또, 플레이트 부재 (30) 의 평탄면 (30A) 표면에서의 액체 (1) 의 접촉각, 및 제 2 플레이트 부재 (32) 의 평탄면 (32A) 표면에서의 액체 (1) 의 접촉각은 노광광 (EL) 이 조사되기 전의 초기 상태에서 각각 110°이상이다.
또한, 제 2 플레이트 부재 (32) 의 소정 위치에는 복수의 개구부 (32K, 32L, 32N) 가 형성되어 있다. 개구부 (32K) 에는 기준 부재 (300) 가 배치되어 있다. 기준 부재 (300) 에는 기판 얼라인먼트계 (350) 에 의해 검출되는 기준 마크 (PFM) 와, 마스크 얼라인먼트계 (360) 에 의해 검출되는 기준 마크 (MFM) 가 소정의 위치 관계로 형성되어 있다. 또한, 기준 부재 (300) 의 상면 (301A) 은 거의 평탄면으로 되어 있고, 포커스ㆍ레벨링 검출계의 기준면으로서 사용해도 된다. 또한, 기준 부재 (300) 의 상면 (301A) 은 기판 (P) 표면, 플레이트 부재 (30) 의 표면 (평탄면; 30A), 및 제 2 플레이트 부재 (32) 의 표면 (평탄면; 32A) 과 거의 동일한 높이 (면일치) 로 형성되어 있다. 또, 기준 부재 (300) 는 평면에서 보아 직사각형 형상으로 형성되어 있고, 개구부 (32K) 에 배치된 기준 부재 (300) 와 제 2 플레이트 부재 (32) 의 사이에는 갭 (K) 이 형성된다. 본 실시 형태에 있어서, 갭 (K) 은 예를 들어 0.3㎜ 정도이다.
개구부 (32L) 에는 광학 센서로서 조도 불균일 센서 (400) 가 배치되어 있다. 조도 불균일 센서는, 예를 들어 일본 공개특허공보 소57-117238호 (대응 미국 특허 제4,465,368호) 에 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다. 조도 불균일 센서 (400) 의 상판 (401) 의 상면 (401A) 은 거의 평탄면으로 되어 있고, 기판 (P) 표면, 플레이트 부재 (30) 의 표면 (30A) 및 제 2 플레이트 부재 (32) 의 표면 (32A) 과 거의 동일한 높이 (면일치) 로 형성되어 있다. 조도 불균일 센서 (400) 의 상면 (401A) 에는 광이 통과할 수 있는 핀 홀부 (490) 가 형성되어 있다. 광투과성의 상판 (401) 의 상면 (401A) 중, 핀 홀부 (490) 이외에는 크롬 등의 차광성 재료로 덮여 있다. 또한, 조도 불균일 센서 (400) (상판 (401)) 는 평면에서 보아 직사각형 형상으로 형성되어 있고, 개구부 (32L) 에 배치된 조도 불균일 센서 (400) (상판 (401)) 와 제 2 플레이트 부재 (32) 의 사이에는 갭 (L) 이 형성되어 있다. 본 실시 형태에 있어서, 갭 (L) 은 예를 들어 0.3㎜ 정도이다.
개구부 (32N) 에는 광학 센서로서 공간 이미지 계측 센서 (500) 가 배치되어 있다. 공간 이미지 계측 센서 (500) 는 예를 들어 일본 공개특허공보 2002-14005호 (대응 미국 특허 공개 제2002/0041377호) 에 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다. 공간 이미지 계측 센서 (500) 의 상판 (501) 의 상면 (501A) 은 거의 평탄면으로 되어 있고, 포커스ㆍ레벨링 검출계의 기준면으로서 사용해도 된다. 그리고, 기판 (P) 표면, 플레이트 부재 (30) 의 표면 (30A), 및 제 2 플레이트 부재 (32) 의 표면 (32A) 과 거의 동일한 높이 (면일치) 로 형성되어 있다. 공간 이미지 계측 센서 (500) 의 상면 (501A) 에는 광이 통과할 수 있는 슬릿부 (570) 가 형성되어 있다. 광투과성 상판 (501) 의 상면 (501A) 중 슬릿부 (570) 이외에는 크롬 등의 차광성 재료로 덮여 있다. 또한, 공간 이미지 계측 센서 (500) (상판 (501)) 는 평면에서 보아 직사각형 형상으로 형성되어 있고, 공간 이미지 계측 센서 (500) (상판 (501)) 와 개구부 (32N) 사이에는 갭 (N) 이 형성되어 있다. 본 실시 형태에 있어서, 갭 (N) 은 기판 (P) 의 외형의 제조 공차 (公差) 와 동일한 정도, 예를 들어 0.3㎜ 정도로 한다. 이와 같이, 기판 (P) 을 유지하는 기판 테이블 (PT) 의 상면은 전체면에서 거의 면이 일치되어 있다.
또, 투영 광학계 (PL) 의 이미지면측의 광로 공간이 액체 (1) 로 채워지도록 액침 영역 (AR2) 을 형성할 수 있으면, 플레이트 부재 (30) 의 평탄면 (30A) 과 제 2 플레이트 부재 (32) 의 표면 (32A) 과 기준 부재 (300) 의 상면 (301A) 과 조도 불균일 센서 (400) 의 상면 (401A) 과 공간 이미지 계측 센서 (500) 의 상면 (501A) 의 사이에 서로 단차가 있어도 된다.
또한, 도시를 생략하긴 했지만, 기판 테이블 (PT) 에는 조사량 센서 (조도 센서) 도 형성되어 있고, 제 2 플레이트 부재 (32) 에 형성된 개구부에 배치되어 있다. 조사량 센서는, 예를 들어 일본 공개특허공보 평11-16816호 (대응 미국 특허 제2002/0061469호) 에 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
또, 기판 테이블 (PT) 상에 탑재하는 계측기는 상기 기술한 것에 한정되지 않고, 각종 계측기를 필요에 따라 탑재할 수 있다. 예를 들어, 파면 수차 계측기를 기판 테이블 (PT) 상에 배치해도 된다. 파면 수차 계측기는, 예를 들어 국제 공개 제99/60361호 (대응 유럽 특허 공개 제1,079,223호) 나 미국 특허 제6,650,399호에 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다. 물론, 기판 테이블 (PT) 상에 계측기를 탑재하지 않아도 된다.
또한, 플레이트 부재 (30) 중 둥근 고리 형상으로 형성되어 있는 평탄면 (30A) 의 폭은 적어도 투영 영역 (AR1) 보다 크게 형성되어 있다 (도 4 참조). 이 때문에, 기판 (P) 의 에지 영역 (E) 을 노광할 때, 노광광 (EL) 은 제 2 플레이트 부재 (32) 에 조사되지 않는다. 이에 의해, 노광광이 조사되는 것에 기인하는 제 2 플레이트 부재 (32) 의 발액성의 열화를 억제할 수 있고, 제 2 플레이트 부재 (32) 의 교환 빈도를 플레이트 부재 (30) 의 교환 빈도보다 적게 할 수 있다. 또한, 평탄면 (30A) 의 폭은 투영 광학계 (PL) 의 이미지면측에 형성되는 액침 영역 (AR2) 보다 크게 형성되어 있는 것이 바람직하다. 이에 의해, 기판 (P) 의 에지 영역 (E) 을 액침 노광할 때, 액침 영역 (AR2) 은 플레이트 부재 (30) 의 평탄면 (30A) 상에 배치되고, 제 2 플레이트 부재 (32) 상에는 배치되지 않기 때문에, 액침 영역 (AR2) 의 액체 (1) 가 플레이트 부재 (30) 와 제 2 플레이트 부재 (32) 의 틈인 갭 (G) 에 침입하는 문제를 방지할 수 있다. 또, 플레이트 부재 (30) 의 평탄면 (30A) 의 폭은 이들에 한정되지 않고, 액침 영역 (AR2) 보다 작아도 되는 것은 말할 필요도 없다.
도 3 및 기판 (P) 을 유지한 기판 테이블 (PT) 의 요부 확대 단면도인 도 5 에 나타내는 바와 같이, 기판 테이블 (PT) 의 일부를 구성하는 기판 홀더 (PH) 는 대략 둥근 고리 형상의 주벽부 (周壁部; 33), 이 주벽부 (33) 내측의 베이스부 (35) 상에 형성되어 기판 (P) 을 지지하는 복수의 지지부 (34), 및 지지부 (34) 의 사이에 배치되어 기판 (P) 을 흡착 유지하기 위한 복수의 흡인구 (41) 를 구비하고 있다. 지지부 (34) 및 흡인구 (41) 는 주벽부 (33) 의 내측에서 일정하게 배치되어 있다. 또, 도 5 에서는 주벽부 (33) 의 상단면은 비교적 넓은 폭을 갖고 있지만, 실제로는 1 ? 2㎜ 정도의 폭밖에 갖고 있지 않다. 또한, 베이스부 (35) 에는 기판 (P) 을 승강하는 핀 부재로 이루어지는 승강 부재 (70) 를 배치한 구멍부 (71) 가 형성되어 있다. 본 실시 형태에 있어서, 승강 부재 (70) 는 3 개소 (箇所) 에 형성되어 있다. 승강 부재 (70) 는 도시를 생략한 구동 장치에 의해 승강하게 되어 있고, 제어 장치 (CONT) 는 구동 장치를 통해 승강 부재 (70) 의 승강 동작을 제어한다.
또한, 도 5 에 나타낸 바와 같이, 기판 테이블 (PT) 상면 중 플레이트 부재 (30) 의 하면과 대향하는 위치에는 이 플레이트 부재 (30) 를 기판 테이블 (PT) 에 대하여 흡착 유지하기 위한 흡착 구멍 (72) 이 복수 형성되어 있다. 또한, 기판 테이블 (PT) 에는 플레이트 부재 (30) 를 기판 테이블 (PT) 에 대하여 승강시키는 핀 부재로 이루어지는 승강 부재 (74) 가 복수 위치 (여기에서는 3 개소) 에 형성되어 있다. 승강 부재 (74) 는 도시를 생략한 구동 장치에 의해 승강하게 되어 있고, 제어 장치 (CONT) 는 구동 장치를 통해 승강 부재 (74) 의 승강 동작을 제어한다 (도 7(d) 참조). 또한, 도시를 생략하기는 했지만, 기판 테이블 (PT) 상면 중 제 2 플레이트 부재 (32) 의 하면과 대향하는 위치에는 이 제 2 플레이트 부재 (32) 를 기판 테이블 (PT) 에 대하여 흡착 유지하기 위한 흡착 구멍이 복수 형성되어 있다. 또한, 기판 테이블 (PT) 에는 제 2 플레이트 부재 (32) 를 기판 테이블 (PT) 에 대하여 승강시키는 승강 부재가 복수 위치에 형성되어 있다.
또, 제 2 플레이트 부재 (32) 는 상기 기술한 바와 같이 교환 빈도가 적기 때문에, 기판 테이블 (PT) 에 흡착 유지하지 않고, 나사 고정 등에 의해 고정시켜 수동으로 교환 작업을 행하도록 해도 된다. 또, 제 2 플레이트 부재 (32) 는 교환 가능하게 하지 않아도 된다.
단, 기준 부재 (300) 나 조도 불균일 센서 (400) 등을 사용할 때, 노광광 (EL) 또는 노광광과 동일 파장의 광이 제 2 플레이트 부재 (32) 에 조사되는 경우에는, 제 2 플레이트 부재 (32) 표면의 발액성이 열화될 우려가 있고, 플레이트 부재 (30) 와 동일한 교환 빈도가 필요하게 될 가능성이 있다.
또한, 도 4 및 5 에 나타내는 바와 같이, 기판 홀더 (PH) (기판 테이블 (PT)) 에 유지되어 있는 기판 (P) 의 측면 (PB) 과 플레이트 부재 (30) 의 사이에는 소정의 갭 (A) 이 형성되어 있다.
도 5 에 있어서, 기판 테이블 (PT) 의 오목부 (31) 내부에 기판 (P) 을 유지하는 기판 홀더 (PH) 가 배치되어 있다. 기판 테이블 (PT) 은 오목부 (31) 에 기판 홀더 (PH) 를 배치했을 때, 그 기판 홀더 (PH) 의 상단면 (34A) 이 기판 테이블 (PT) 의 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 에 대한 재치면 (PTa) 보다 높아지도록 형성되어 있다. 주벽부 (33) 및 지지부 (34) 는 기판 홀더 (PH) 의 일부를 구성하는 대략 원판상의 베이스부 (35) 상에 형성되어 있다. 지지부 (34) 의 각각은 단면에서 보아 사다리꼴 형상이고, 기판 (P) 은 그 이면 (PC) 을 복수의 지지부 (34) 의 상단면 (34A) 에 유지한다. 또한, 주벽부 (33) 의 상면 (33A) 은 평탄면으로 되어 있다. 주벽부 (33) 의 높이는 지지부 (34) 의 높이보다 낮게 되어 있고, 기판 (P) 과 주벽부 (33) 의 사이에는 갭 (B) 이 형성되어 있다. 갭 (B) 은 플레이트 부재 (30) 와 기판 (P) 의 측면 (PB) 사이의 갭 (A) 보다 작다. 또한, 오목부 (31) 의 내측면 (36) 과, 이 내측면 (36) 에 대향하는 기판 홀더 (PH) 의 측면 (37) 사이에 갭 (C) 이 형성되어 있다. 여기에서, 기판 홀더 (PH) 의 직경은 기판 (P) 의 직경보다 작게 형성되어 있고, 갭 (A) 은 갭 (C) 보다 작다. 또, 본 실시 형태에서는, 기판 (P) 에는 위치맞춤을 위한 절결부 (오리엔테이션 플랫 (orientation flat, 노치 등)) 는 형성되어 있지 않고, 기판 (P) 은 거의 원형이고, 그 전체 둘레에 걸쳐 갭 (A) 은 0.1㎜ ? 1.0㎜, 본 실시 형태에서는 0.3㎜ 정도로 되어 있기 때문에, 액체의 유입을 방지할 수 있다. 또, 기판 (P) 에 절결부가 형성되어 있는 경우에는 그 절결부에 따라 플레이트 부재 (30) 나 주벽부 (33) 에 돌기부를 형성하는 등, 플레이트 부재 (30) 나 주벽부 (33) 를 절결부에 따른 형상으로 하면 된다. 이렇게 함으로써, 기판 (P) 의 절결부에 있어서도 기판 (P) 과 플레이트 부재 (30) 사이에서 갭 (A) 을 확보할 수 있다.
플레이트 부재 (30) 의 내측에는 내측 단부 (30D) 가 형성되어 있고, 그 내측 단부 (30D) 에 의해 기판 하면 (PC) 의 에지부에 대향하는 지지면 (30S) 이 형성되어 있다. 플레이트 부재 (30) 는 지지면 (30S) 에 의해 기판 하면 (PC) 의 에지부를 지지할 수 있다. 여기에서, 도 5 에 나타내는 바와 같이, 기판 홀더 (PH) 에 유지된 기판 하면 (PC) 의 에지부와, 기판 테이블 (PT) 의 재치면 (PTa) 에 유지된 플레이트 부재 (30) 의 지지면 (30S) 의 사이에는 갭 (D) 이 형성되어 있다. 이에 의해, 플레이트 부재 (30) (지지면 (30S)) 가 기판 하면 (PC) 의 에지부에 닿아 그 기판 (P) 의 에지부가 상측으로 휘는 문제의 발생을 회피할 수 있다.
또한, 제 2 플레이트 부재 (32) 의 내측에는 내측 단부 (32D) 가 형성되어 있고, 플레이트 부재 (30) 의 외측에는 제 2 플레이트 부재 (32) 의 내측 단부 (32D) 의 형상에 대응하도록 외측 단부 (30F) 가 형성되어 있다. 이에 의해, 제 2 플레이트 부재 (32) 의 일부에 플레이트 부재 (30) 의 일부가 탑재된 상태가 된다. 또한, 플레이트 부재 (30) 의 외측면과 제 2 플레이트 부재 (32) 의 내측면의 사이에는 소정의 갭 (G) 이 형성된다. 본 실시 형태에서의 갭 (G) 은 예를 들어 0.3㎜ 정도이고, 표면이 발액성을 갖는 폴리사불화에틸렌제의 플레이트 부재 (30) 와 제 2 플레이트 부재 (32) 의 사이에 있으므로, 플레이트 부재 (30) 와 제 2 플레이트 부재 (32) 의 경계에 액침 영역이 형성되었다고 해도, 갭 (G) 으로의 액체의 침입을 방지할 수 있다.
기판 (P) 의 노광면인 표면 (PA) 에는 포토레지스트 (감광재; 90) 가 도포되어 있다. 본 실시 형태에 있어서, 감광재 (90) 는 ArF 엑시머 레이저용 감광재 (예를 들어, 도오꾜오까고오교가부시키가이샤 제조 TARF-P6100) 로서 발액성 (발수성) 을 갖고 있고, 그 접촉각은 70 ? 80°정도이다.
또한, 본 실시 형태에 있어서, 기판 (P) 의 측면 (PB) 은 발액 처리 (발수 처리) 되어 있다. 구체적으로는 기판 (P) 의 측면 (PB) 에도 발액성을 갖는 상기 감광재 (90) 가 도포되어 있다. 이에 의해, 표면이 발액성인 플레이트 부재 (30) 와 기판 (P) 측면의 갭 (A) 으로부터의 액체의 침입을 방지할 수 있다. 또한, 기판 (P) 의 이면 (PC) 에도 상기 감광재 (90) 가 도포되어 발액 처리되어 있다.
본 실시 형태에 있어서, 기판 테이블 (PT) 중 재치면 (PTa) 및 내측면 (36) 이 발액성을 갖고 있다. 또한, 기판 홀더 (PH) 의 일부의 표면도 발액 처리되어 발액성으로 되어 있다. 본 실시 형태에 있어서, 기판 홀더 (PH) 중 주벽부 (33) 의 상면 (33A) 및 측면 (37) 이 발액성을 갖고 있다. 기판 테이블 (PT) 및 기판 홀더 (PH) 의 발액 처리로는, 예를 들어 불소계 수지 재료 또는 아크릴계 수지 재료 등의 발액성 재료를 도포, 또는 상기 발액성 재료로 이루어지는 박막을 붙인다. 발액성으로 하기 위한 발액성 재료로는 액체 (1) 에 대하여 비용해성의 재료가 사용된다. 또, 기판 테이블 (PT) 이나 기판 홀더 (PH) 전체를 발액성을 갖는 재료 (불소계 수지 등) 로 형성해도 된다.
기판 홀더 (PH) 의 주벽부 (33) 에 둘러싸인 제 1 공간 (38) 은 흡인 장치 (40) 에 의해 부압 (負壓) 이 된다. 흡인 장치 (40) 는 기판 홀더 (PH) 의 베이스부 (35) 상면에 형성된 복수의 흡인구 (41), 기판 테이블 (PT) 외부에 형성된 진공 펌프를 포함하는 진공부 (42), 및 베이스부 (35) 내부에 형성되고 복수의 흡인구 (41) 의 각각과 진공부 (42) 를 접속하는 유로 (43) 를 구비하고 있다. 흡인구 (41) 는 베이스부 (35) 상면 중 지지부 (34) 이외의 복수의 소정 위치에 각각 형성되어 있다. 흡인 장치 (40) 는 주벽부 (33), 베이스부 (35), 및 지지부 (34) 에 지지된 기판 (P) 사이에 형성된 제 1 공간 (38) 내부의 가스 (공기) 를 흡인하여 이 제 1 공간 (38) 을 부압으로 함으로써, 지지부 (34) 에 기판 (P) 을 흡착 유지한다. 또, 기판 (P) 의 이면 (PC) 과 주벽부 (33) 의 상면 (33A) 의 갭 (B) 은 작으므로, 제 1 공간 (38) 의 부압은 유지된다.
또한, 오목부 (31) 의 내측면 (36) 과 기판 홀더 (PH) 의 측면 (37) 사이의 제 2 공간 (39) 에 유입한 액체 (1) 는 회수부 (60) 에서 회수된다. 본 실시 형태에 있어서, 회수부 (60) 는 액체 (1) 를 수용 가능한 탱크 (61) 와, 기판 테이블 (PT) 내부에 형성되고, 공간 (39) 과 외부의 탱크 (61) 를 접속하는 유로 (62) 를 갖고 있다. 그리고, 이 유로 (62) 의 내벽면에도 발액 처리가 실시되어 있다. 또, 공간 (39) 에 유입한 액체를 기판 스테이지 (PST) (기판 테이블 (PT)) 에 일시적으로 유지해 두고, 소정의 타이밍으로 기판 스테이지 (PST) 와는 별도로 형성된 외부 탱크 등으로 배출하도록 해도 된다.
기판 테이블 (PT) 에는 오목부 (31) 의 내측면 (36) 과 기판 홀더 (PH) 의 측면 (37) 사이의 제 2 공간 (39) 과, 기판 테이블 (PT) 외부의 공간 (대기 (大氣) 공간) 을 접속하는 유로 (45) 가 형성되어 있다. 가스 (공기) 는 유로 (45) 를 통해 제 2 공간 (39) 과 기판 테이블 (PT) 외부를 유통 가능하게 되어 있고, 제 2 공간 (39) 은 거의 대기압으로 설정된다.
도 6 에 나타내는 바와 같이, 기판 홀더 (PH), 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 는 독립된 부품이고, 기판 테이블 (PT) 에 대하여 탈착 가능하게 형성되어 있다. 그리고, 기판 테이블 (PT) 중 기판 홀더 (PH) 와의 접촉면 (57) 이 발액 처리되어 발액성임과 함께, 기판 테이블 (PT) 에 대한 접촉면인 기판 홀더 (PH) 의 이면 (58) 도 발액 처리되어 발액성을 갖고 있다. 접촉면 (57) 이나 이면 (58) 에 대한 발액 처리로는, 상기 기술한 바와 같이, 불소계 수지 재료나 아크릴계 수지 재료 등의 발액성 재료를 도포하거나 하여 처리할 수 있다.
다음으로, 상기 기술한 구성을 갖는 노광 장치 (EX) 를 사용하여 기판 (P) 을 노광하는 방법에 대하여 도 7 및 도 8 의 모식도를 참조하면서 설명한다.
도 7(a) 에 나타내는 바와 같이, 플레이트 부재 (30) 가 기판 테이블 (PT) 의 재치면 (PTa) 에 흡착 유지되어 있음과 함께, 제 2 플레이트 부재 (32) 도 기판 테이블 (PT) 의 재치면 (PTa) 에 흡착 유지되어 있다. 그리고, 노광 처리 대상인 기판 (P) 이 반송 아암 (반송 장치; 80) 에 의해 기판 테이블 (PT) 에 반입된다. 이 때, 승강 부재 (70) 는 상승하고 있고, 반송 아암 (80) 은 기판 (P) 을 상승하고 있는 승강 부재 (70) 에 건네준다. 아직 승강 부재 (74) 는 상승하고 있지 않다. 승강 부재 (70) 는 반송 아암 (80) 으로부터 건네진 기판 (P) 을 유지하여 하강한다. 이에 의해, 도 7(b) 에 나타내는 바와 같이, 기판 (P) 은 플레이트 부재 (30) 의 내측에 배치되고, 기판 테이블 (PT) (기판 홀더 (PH)) 에 의해 유지된다. 그리고, 도 7(c) 에 나타내는 바와 같이, 제어 장치 (CONT) 는 액체 공급 기구 (10) 및 액체 회수 기구 (20) 에 의해 액체 (1) 를 공급 및 회수하고, 기판 테이블 (PT) 에 유지된 기판 (P) 과 투영 광학계 (PL) 의 사이에 액체 (1) 의 액침 영역 (AR2) 을 형성한다. 그리고, 제어 장치 (CONT) 는 투영 광학계 (PL) 와 액체 (1) 를 통해 기판 (P) 에 노광광 (EL) 을 조사하고, 기판 (P) 을 지지한 기판 스테이지 (PST) 를 이동하면서 액침 노광한다.
기판 (P) 의 에지 영역 (E) 을 노광함으로써, 노광광 (EL) 이 플레이트 부재 (30) 의 평탄면 (30A) 에 조사되고, 그 노광광 (EL) 의 조사에 의해 평탄면 (30A) 의 발액성이 열화될 가능성이 있다. 평탄면 (30A) 의 발액성이 열화되면, 평탄면 (30A) 상에 배치된 액침 영역 (AR2) 의 액체 (1) 가 잔류하기 쉬워지고, 기판 (P) 이 놓여져 있는 환경 변동을 일으키는 등의 문제가 생긴다. 그래서, 제어 장치 (CONT) 는 플레이트 부재 (30) (평탄면 (30A)) 의 발액성의 열화에 따라 그 발액성이 열화된 플레이트 부재 (30) 를 새로운 (발액성을 충분히 갖는) 플레이트 부재 (30) 와 교환한다.
구체적으로는 액침 노광 처리의 완료 후에, 기판 (P) 상이나 평탄면 (30A) 상에 잔류한 액체 (1) 를 액체 회수 기구 (20) 등을 사용하여 회수한 후, 도 7(d) 에 나타내는 바와 같이, 제어 장치 (CONT) 는 플레이트 부재 (30) 에 대한 흡착 유지를 해제한 후, 승강 부재 (74) 를 상승시킨다. 이 때, 기판 홀더 (PH) 에 의한 기판 (P) 의 흡착 유지도 해제된다. 승강 부재 (74) 는 플레이트 부재 (30) 의 하면을 지지한 상태로 상승한다. 또, 이 때, 승강 부재 (70) 는 상승하지 않는다. 이에 의해, 플레이트 부재 (30) 는 기판 테이블 (PT) 에 대하여 멀어진다. 이 때, 플레이트 부재 (30) 의 지지면 (30S) 이 기판 하면 (PC) 의 에지부를 지지하고 있기 때문에, 기판 (P) 은 플레이트 부재 (30) 와 함께 상승하고, 기판 테이블 (PT) 로부터 멀어진다. 이와 같이, 플레이트 부재 (30) 를 기판 테이블 (PT) 에 대하여 탈착하는 탈착 기구를 구성하는 승강 부재 (74) 는 플레이트 부재 (30) 를 기판 (P) 과 함께 기판 테이블 (PT) 로부터 분리할 수 있다. 그리고, 승강 부재 (74) 에 의해 상승한 플레이트 부재 (30) 와 기판 테이블 (PT) 의 사이에 반송 아암 (80) 이 진입하고, 플레이트 부재 (30) 의 하면을 지지한다. 그리고, 반송 아암 (80) 은 기판 (P) 을 유지한 플레이트 부재 (30) 를 기판 테이블 (PT) (기판 스테이지 (PST)) 로부터 반출한다.
반출된 플레이트 부재 (30) 는 새로운 플레이트 부재 (30) 와 교환된다. 그리고, 도 8(a) 에 나타내는 바와 같이, 제어 장치 (CONT) 는 노광 처리 대상인 기판 (P) 을 유지한 새로운 플레이트 부재 (30) 를 반송 아암 (80) 을 사용하여 기판 테이블 (PT) (기판 스테이지 (PST)) 에 반입한다. 이 때, 승강 부재 (74) 는 상승하고 있고, 반송 아암 (80) 은 기판 (P) 을 유지하고 있는 플레이트 부재 (30) 를 상승하고 있는 승강 부재 (74) 에 넘겨준다. 또, 승강 부재 (70) 는 상승하고 있지 않다. 승강 부재 (74) 는 반송 아암 (80) 으로부터 넘어온 플레이트 부재 (30) 를 유지하여 하강한다. 이에 의해, 도 8(b) 에 나타내는 바와 같이, 기판 (P) 을 유지한 플레이트 부재 (30) 는 제 2 플레이트 부재 (32) 의 내측에 배치되고, 기판 테이블 (PT) (기판 홀더 (PH)) 에 의해 유지된다. 그리고, 도 8(c) 에 나타내는 바와 같이, 제어 장치 (CONT) 는 액체 공급 기구 (10) 및 액체 회수 기구 (20) 에 의해 액체 (1) 를 공급 및 회수하고, 기판 테이블 (PT) 에 유지된 기판 (P) 과 투영 광학계 (PL) 의 사이에 액체 (1) 의 액침 영역 (AR2) 을 형성한다. 그리고, 제어 장치 (CONT) 는 투영 광학계 (PL) 와 액체 (1) 를 통해 기판 (P) 에 노광광 (EL) 을 조사하고, 기판 (P) 을 지지한 기판 스테이지 (PST) 를 이동하면서 액침 노광한다.
그리고, 플레이트 부재 (30) 의 발액성이 아직 열화되어 있지 않을 때에는 액침 노광의 완료 후, 기판 (P) 상이나 플레이트 부재 (30) 의 상면 (30A) 위 등에 잔류한 액체 (1) 를 액체 회수 기구 (20) 등을 사용하여 회수한 후, 제어 장치 (CONT) 는 기판 (P) 에 대한 흡착 유지를 해제한 후, 도 8(d) 에 나타내는 바와 같이, 승강 부재 (70) 를 상승시킨다. 이 때, 플레이트 부재 (30) 는 기판 테이블 (PT) 에 흡착 유지되어 있다. 승강 부재 (70) 는 기판 (P) 의 하면을 지지한 상태에서 상승한다. 또, 이 때, 승강 부재 (74) 는 상승하지 않는다. 이에 의해, 기판 (P) 은 기판 테이블 (PT) 에 대하여 멀어진다. 그리고, 승강 부재 (70) 에 의해 상승한 기판 (P) 과 기판 테이블 (PT) 의 사이에 반송 아암 (80) 이 진입하고, 기판 (P) 의 하면을 지지한다. 그리고, 반송 아암 (80) 은 기판 (P) 을 기판 테이블 (PT) (기판 스테이지 (PST)) 로부터 반출한다.
또, 반송 아암 (80) 으로는 플레이트 부재 (30) 를 반송하기 위한 반송 아암과, 기판 (P) 을 반송하기 위한 반송 아암을 별개로 형성해도 되는데, 도 9 에 나타내는 바와 같이, 반송 아암 (80) 의 지지면 (80A) 을 크게 형성하고, 기판 (P) 과 플레이트 부재 (30) 의 쌍방에 접촉할 수 있도록 함으로써, 기판 (P) 과 플레이트 부재 (30) 의 쌍방을 지지할 수 있기 때문에, 1 개의 반송 아암 (80) 으로 기판 (P) 과 플레이트 부재 (30) 의 쌍방을 반송할 수 있다.
이상 설명한 바와 같이, 기판 테이블 (PT) 에 형성된 발액성의 플레이트 부재 (30, 32) 를 교환 가능하게 형성했기 때문에, 그 플레이트 부재 (30, 32) 의 발액성이 열화되었을 때, 새로운 플레이트 부재 (30, 32) 와 교환하는 것만으로 기판 테이블 (PT) 상의 발액성을 유지할 수 있다.
기판 테이블 (PT) 상의 플레이트 부재 (30, 32) 의 상면을 발액성으로 하기 위해 발액성 재료를 도포하거나, 또는 플레이트 부재 (30, 32) 를 발액성 재료로 형성한 경우, 노광광이 조사되면, 그 발액성이 열화되는 경우가 있다. 특히, 발액성 재료로서 예를 들어 불소계 수지를 사용하고, 노광광으로서 자외광을 사용한 경우, 그 플레이트 부재 (30, 32) 의 발액성이 열화되기 쉽다 (친액화되기 쉬움). 그러면, 액체가 플레이트 부재 (30, 32) 상에 잔류하기 쉬워진다.
이것에 대하여, 본 실시 형태에서는 플레이트 부재 (30, 32) 의 발액성이 열화되었을 때, 새로운 플레이트 부재 (30, 32) 와 교환하도록 하고 있다.
따라서, 기판 테이블 (PT) 상에 액체 (1) 가 잔류하는 것을 억제할 수 있고, 설사 잔류해도 그 액체 (1) 를 액체 회수 기구 (20) 등을 사용하여 원활하게 회수할 수 있다. 따라서, 잔류한 액체 (1) 에 기인하는 노광 정밀도의 열화를 방지할 수 있어 원하는 성능을 발휘할 수 있는 디바이스를 제조할 수 있다.
또한, 기판 (P) 의 주위에 평탄부 (30A) 를 갖는 플레이트 부재 (30) 를 기판 (P) 과 함께 기판 테이블 (PT) 에 대하여 반입 및 반출함으로써, 플레이트 부재 (30) 를 기판 (P) 과 함께 기판 테이블 (PT) 에 대하여 용이하게 교환할 수 있다. 또한, 플레이트 부재 (30) 는 기판 (P) 의 주위에 평탄면 (30A) 을 갖고 있기 때문에, 그 플레이트 부재 (30) 를 기판 (P) 과 함께 기판 테이블 (PT) 에 반입하여 기판 (P) 의 에지 영역 (E) 을 액침 노광할 때, 액체 (1) 의 액침 영역 (AR2) 의 일부가 기판 (P) 의 외측에 밀려나가도 평탄면 (30A) 에 의해 액침 영역 (AR2) 의 형상이 유지되고, 액체 (1) 의 유출 등을 초래하지 않고 투영 광학계 (PL) 의 이미지면측에 액체 (1) 를 양호하게 유지한 상태로 액침 노광할 수 있다.
그리고, 플레이트 부재 (30) 의 내측에 내측 단부 (30D) 를 형성하여 지지면 (30S) 을 형성하고, 기판 하면 (PC) 의 에지부를 지지 가능하게 했기 때문에, 플레이트 부재 (30) 를 유지하여 이동하는 것만으로 그 플레이트 부재 (30) 와 함께 기판 (P) 도 이동할 수 있다. 또한, 내측 단부 (30D) 에 의해 플레이트 부재 (30) 와 기판 (P) 사이의 틈에 단면에서 보아 굴곡 모서리부가 형성되므로, 가령 플레이트 부재 (30) 와 기판 (P) 사이의 갭 (A) 에 액체 (1) 가 침입해도, 굴곡 모서리부가 시일 (seal) 부로서 기능하고, 그 액체 (1) 가 기판 (P) 의 이면 (PC) 측이나 기판 스테이지 (PST) (기판 테이블 (PT)) 내부에 침입하는 문제를 방지할 수 있다. 또한, 기판 (P) 의 측면 (PB) 도 발액 처리되어 있기 때문에, 기판 (P) 의 측면 (PB) 과 플레이트 부재 (30) 사이의 갭 (A) 으로부터의 액체 (1) 의 침입을 더욱 양호하게 방지할 수 있다.
또한, 기판 (P) 의 이면 (PC) 및 이것에 대향하는 주벽부 (33) 의 상면 (33A) 을 발액성으로 함으로써, 갭 (B) 을 통해 제 1 공간 (38) 에 액체 (1) 가 침입하는 문제를 방지할 수 있다. 따라서, 흡인구 (41) 에 액체 (1) 가 유입하는 문제의 발생을 회피하여 기판 (P) 을 양호하게 흡착 유지한 상태에서 노광 처리할 수 있다.
또한, 본 실시 형태에서는 기판 테이블 (PT) 에 대하여 착탈 가능한 기판 홀더 (PH) 의 이면 (58) 이나, 기판 테이블 (PT) 중 기판 홀더 (PH) 와의 접촉면 (57) 에 발액 처리를 실시함으로써, 제 2 공간 (39) 에 액체 (1) 가 유입한 경우에도, 기판 홀더 (PH) 의 이면 (58) 과 Z 스테이지 (52) 의 접촉면 (57) 의 사이에 대한 액체 (1) 의 유입을 억제할 수 있다. 따라서, 기판 홀더 (PH) 의 이면 (58) 이나 기판 테이블 (PT) 의 접촉면 (57) 에서의 녹의 발생 등을 방지할 수 있다. 또한, 기판 홀더 (PH) 의 이면 (58) 과 기판 테이블 (PT) 의 접촉면 (57) 의 사이에 액체 (1) 가 침입하면, 기판 홀더 (PH) 와 Z 스테이지 (52) 가 접착하여 분리되기 어려워지는 상황이 생기는데, 발액성으로 함으로써 분리되기 쉬워진다.
또한, 플레이트 부재 (30) 를 기판 테이블 (PT) 에 대하여 탈착하기 위한 탈착 기구로서, 승강 장치로서의 승강 부재 (74) 나, 플레이트 부재 (30) 를 흡착 유지하는 흡착 유지 장치로서의 흡착 구멍 (72) 을 형성했기 때문에, 플레이트 부재 (30) 의 교환 작업을 원활하게 행할 수 있고, 교환 후의 새로운 플레이트 부재 (30) 를 기판 테이블 (PT) 에 양호하게 유지할 수 있다.
또한, 제 2 플레이트 부재 (32) 의 내측에 내측 단부 (32D) 를 형성하고, 플레이트 부재 (30) 의 외측에 외측 단부 (30F) 를 형성함으로써, 플레이트 부재 (30) 와 제 2 플레이트 부재 (32) 사이의 틈에도 단면에서 보아 굴곡 모서리부가 형성되기 때문에, 갭 (G) 으로부터 액체 (1) 가 침입해도 굴곡 모서리부가 시일부로서 기능하여 기판 테이블 (PT) 내부까지 도달하는 문제를 방지할 수 있다.
또, 플레이트 부재 (30) 의 외측 단부 (30F) 를 제 2 플레이트 부재 (32) 의 내측 단부 (32D) 에서 지지할 수 있기 때문에, 제 2 플레이트 부재 (32) 를 기판 테이블 (PT) 에서 흡착 유지하면, 플레이트 부재 (30) 는 제 2 플레이트 부재 (32) 에 지지되어 있기 때문에, 기판 테이블 (PT) 에 반드시 유지되지 않아도 된다. 그 때문에, 도 10 에 나타내는 모식도와 같이, 기판 테이블 (PT) 중 플레이트 부재 (30) 에 대향하는 영역에 공간부 (오목부; 130) 를 형성할 수 있고, 기판 테이블 (PT) (기판 스테이지 (PST)) 의 경량화를 도모할 수 있다.
또한, 기판 (P) 을 플레이트 부재 (30) 로 유지한 상태에서 반송 아암 (80) 으로 반송하는 구성이기 때문에, 기판 (P) 은 비교적 넓은 영역을 플레이트 부재 (30) 에 의해 지지받게 된다. 따라서, 예를 들어 기판 (P) 이 대형화되어도, 플레이트 부재 (30) 로 유지한 상태에서 반송함으로써, 기판 (P) 의 굴곡 (휨) 을 억제할 수 있다.
또, 제 2 플레이트 부재 (32) 의 평탄면 (32A) 의 발액성이 열화되어 제 2 플레이트 부재 (32) 를 교환하는 경우에는, 제 2 플레이트 부재 (32) 가 플레이트 부재 (30) 를 지지하고 있기 때문에, 기판 (P) 의 액침 노광 종료후에, 반송 아암 (80) 을 사용하여 기판 (P) 및 플레이트 부재 (30) 와 함께 반출하도록 해도 된다. 이 경우, 승강 부재 (74) 와 마찬가지로, 제 2 플레이트 부재 (32) 를 승강하기 위한 승강 부재를 형성해도 된다. 또한, 제 2 플레이트 부재 (32) 의 내측 단부 (32D) 를 형성하지 않고, 플레이트 부재 (30) 와 제 2 플레이트 부재 (32) 를 별개로 반출 및 반입할 수 있도록 해도 된다. 이 경우, 제 2 플레이트 부재 (32) 를 반출 및 반입하기 위한 반송 기구를 추가로 형성해도 된다.
또, 플레이트 부재 (30, 32) 의 교환 타이밍은 상기 기술한 바와 같이 평탄면 (30A, 32A) 의 발액성의 열화에 따라 결정한다. 플레이트 부재 (30, 32) 를 교환하는 타이밍으로는, 예를 들어 소정 기판 처리 매수마다, 또는 소정 시간 간격마다 등, 미리 정해진 소정 간격으로 플레이트 부재 (30, 32) 를 교환할 수 있다. 또는, 노광광 (EL) 의 조사량 (조사 시간, 조도) 과 플레이트 부재 (30, 32) 의 발액성 레벨의 관계를 실험이나 시뮬레이션에 의해 미리 구해 놓고, 그 구한 결과에 기초하여 플레이트 부재 (30, 32) 를 교환하는 타이밍을 설정하도록 해도 된다. 발액성 열화의 평가는, 예를 들어 평탄면 (30A, 32A) 등을 현미경 또는 육안으로 관찰하거나, 액적 (液滴) 을 평가면에 흘려 액적의 상태를 육안 또는 현미경으로 관찰하거나, 또는 액적의 접촉각을 측정함으로써 행할 수 있다. 그와 같은 평가를 노광광 등의 자외선의 적산 조사량과의 관계에서 미리 제어 장치 (CONT) 에 기록해 둠으로써, 그 관계로부터 플레이트 부재 (30, 32) 등의 수명, 즉 교환 시간 (시기) 을 제어 장치 (CONT) 는 결정할 수 있다.
또, 노광 장치 (EX) 는 투영 광학계 (PL) 의 이미지면측에 조사되는 노광광 (EL) 의 강도를 계측 가능한 인테그레이터 센서 (도시 생략) 를 사용하여 플레이트 부재 (30, 32) 에 조사되는 노광광 (EL) 의 적산 조사량을 구할 수 있다. 제어 장치 (CONT) 는 레이저 간섭계 (56) 를 사용하여 계측되는 기판 스테이지 (PST) 의 위치 정보와 인테그레이터 센서를 사용하여 계측되는 노광광 (EL) 의 강도 정보에 기초하여 플레이트 부재 (30) 나 플레이트 부재 (32) 에 조사된 노광광 (EL) 의 강도와 조사 시간 (조사 펄스수) 을 계측할 수 있기 때문에, 그 계측 결과에 기초하여 플레이트 부재 (30) 나 플레이트 부재 (32) 에 조사된 노광광 (EL) 의 적산 조사량을 구할 수 있다. 또, 노광광 (EL) 의 강도를 계측하는 인테그레이터 센서는, 예를 들어 미국 특허 제5,728,495호나 미국 특허 제5,591,958호에 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
본 실시 형태에서는, 제어 장치 (CONT) 는 플레이트 부재 (30, 32) 의 교환 여부를 플레이트 부재 (30, 32) 의 상면 (30A, 32A) 에서의 액체의 접촉각에 기초하여 판단한다. 예를 들어, 플레이트 부재 (30, 32) 의 사용 시간이나 자외광의 적산 조사량 등에 기초하여 액체의 접촉각이 소정 각도 (예를 들어 100°) 이하로 저하되었다고 추정되는 경우, 플레이트 부재 (30, 32) 의 교환이 필요하다고 판단한다. 또는, 플레이트 부재 (30, 32) 의 사용 시간이나 자외광의 적산 조사량 등에 기초하여 플레이트 부재 (30, 32) 의 표면 (30A, 32A) 에서의 액체 (1) 의 접촉각이 초기 상태보다 소정 각도 (예를 들어 10°) 이상 저하되었다고 추정되는 경우, 플레이트 부재 (30, 32) 의 교환이 필요하다고 판단한다.
또, 플레이트 부재 (30, 32) 등의 발액성의 열화는 노광 장치 (EX) 의 제어 장치 (CONT) 로 판단하지 않아도 되고, 예를 들어 노광 장치 (EX) 가 설치되어 있는 공장 등의 호스트 컴퓨터와 노광 장치 (EX) 를 각종 데이터를 교환할 수 있도록 접속하고, 그 호스트 컴퓨터로 판단해도 된다.
또한, 액체 회수 기구 (20) 의 액체 회수 능력이 높은 경우에는 플레이트 부재 (30, 32) 의 발액성이 열화되어도 액체를 충분히 회수할 수 있을 가능성이 있으므로, 액체 회수 기구 (20) 의 액체 회수 능력과 발액성의 열화 (접촉각의 저하) 의 관계도 고려하여 플레이트 부재 (30, 32) 등의 교환 시기를 결정할 수도 있다.
또, 발액성의 열화 속도나 열화 정도는 노광광 (EL) 의 조사 시간 뿐만 아니라, 발액성을 초래하는 재료, 액체, 노광 파장, 온도 등의 요소에 따라 다르기 때문에 그들 요소와 함께 평가 데이터를 준비해 두는 것이 좋다. 이하에 기술하는 발액성이 부여된 그 밖의 부재의 교환 시기에 대해서도 동일하다.
또, 본 실시 형태에서는, 플레이트 부재 (30, 32) 는 발액성 재료인 예를 들어 폴리사불화에틸렌에 의해 형성되어 있지만, 물론 다른 발액성을 갖는 재료에 의해 형성해도 된다. 또, 예를 들어 소정의 금속 등으로 플레이트 부재 (30, 32) 를 형성하고, 그 금속제 플레이트 부재 (30) 의 표면에 발액성을 갖는 발액성 재료 (폴리사불화에틸렌 등의 불화물) 를 코팅하도록 해도 된다. 또, 발액성 재료의 코팅 영역으로는 플레이트 부재 (30, 32) 의 표면 전부를 코팅해도 되고, 예를 들어 평탄면 (30A) 등 발액성을 필요로 하는 일부의 영역만을 코팅하도록 해도 된다.
물론, 플레이트 부재 (30) 와 제 2 플레이트 부재 (32) 를 별개의 부재로 형성해도 되고, 별개의 발액성 재료를 사용하여 코팅하도록 해도 된다. 또, 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 의 모든 표면이 균일한 레벨로 발액성을 가질 필요는 없고, 부분적으로 발액성이 강한 부분을 형성해도 된다. 또, 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 의 모든 표면이 동일한 발액성의 열화 내구성을 가질 필요는 없고, 노광광의 조사량이 많은 부분의 열화 내구성을 다른 부분보다 강화하도록 해도 된다. 예를 들어, 플레이트 부재 (30) 의 표면은 제 2 플레이트 부재 (32) 의 표면보다 열화 내구성이 강한 것이 바람직하다.
본 실시 형태에서는 플레이트 부재 (30) 를 교환할 때, 플레이트 부재 (30) 를 기판 (P) 과 함께 반출하도록 설명했지만, 물론 플레이트 부재 (30) 만을 기판 테이블 (PT) 에 대하여 반입 및 반출하도록 해도 된다.
또한, 플레이트 부재 (30) 는 승강 부재 (74) 와 반송 아암 (80) 을 사용하여 교환할 수 있도록 되어 있지만, 승강 부재 (74) 나 플레이트 부재 (30) 를 반송 가능한 반송 아암 (80) 은 반드시 필요한 것은 아니고, 오퍼레이터가 수동으로 플레이트 부재 (30) 를 교환하도록 해도 된다. 또, 상기 기술한 실시 형태에서는 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 는 각각 일체적으로 형성되어 있지만, 각각을 분할하여 부분적으로 교환할 수 있도록 해도 된다. 이에 의해 발액성의 열화가 심한 부분만을 빈번히 교환하는 것도 가능해진다.
또는, 플레이트 부재 (30) 와 플레이트 부재 (32) 를 하나의 플레이트 부재로서 형성하여 기판 테이블 (PT) 에 유지하도록 해도 된다.
또, 본 실시 형태에서는 도 5 로부터 알 수 있는 바와 같이, 기판 홀더 (PH) 와 기판 테이블 (PT) 은 탈착 가능하지만, 기판 홀더 (PH) 를 기판 테이블 (PT) 과 일체로 형성해도 된다.
또한, 본 실시 형태에서는 기판 (P) 의 표면 (PA), 측면 (PB) 및 이면 (PC) 의 전체면에 발액 처리하기 위해 감광재 (90) 가 도포되어 있지만, 갭 (A) 을 형성하는 영역, 즉 기판 (P) 의 측면 (PB) 과, 갭 (B) 을 형성하는 영역, 즉 기판 (P) 의 이면 (PC) 중 주벽부 (33) 의 상면 (33A) 에 대향하는 영역만을 발액 처리하는 구성이어도 된다. 또한, 갭 (A) 이 충분히 작고, 또한 발액 처리하기 위해 도포하는 재료의 발액성 (접촉각) 이 충분히 크면, 갭 (A) 을 통해 제 2 공간 (39) 에 액체 (1) 가 유입할 가능성이 더욱 낮아지므로, 갭 (B) 을 형성하는 기판 (P) 의 이면 (PC) 에는 발액 처리를 실시하지 않고, 기판 (P) 의 측면 (PB) 만을 발액 처리하는 구성이어도 된다. 물론, 표면 (PA), 측면 (PB) 및 이면 (PC) 의 모든 발액 처리가 실시되어 있지 않은 기판 (P) 을 사용할 수도 있다.
또, 본 실시 형태에서는, 주벽부 (33) 의 높이는 지지부 (34) 의 높이보다 낮고, 기판 (P) 의 이면 (PC) 과 주벽부 (33) 의 상면 (33A) 의 사이에 갭 (B) 이 형성되어 있지만, 기판 (P) 의 이면 (PC) 과 주벽부 (33) 의 상면 (33A) 이 접촉해도 된다.
본 실시 형태에 있어서, 기판 (P) 의 측면 (PB) 및 이면 (PC) 의 발액 처리로서 발액성을 갖는 감광재 (90) 를 도포하고 있지만, 측면 (PB) 이나 이면 (PC) 에는 감광재 (90) 이외의 발액성 (발수성) 을 갖는 소정의 재료를 도포하도록 해도 된다. 예를 들어, 기판 (P) 의 노광면인 표면 (PA) 에 도포된 감광재 (90) 의 상층에 톱 코트층이라고 불리우는 보호층 (액체로부터 감광재 (90) 를 보호하는 막) 을 도포하는 경우가 있지만, 이 톱 코트층의 형성 재료 (예를 들어 불소계 수지 재료) 는 예를 들어 접촉각 110°정도로 발액성 (발수성) 을 갖는다. 따라서, 기판 (P) 의 측면 (PB) 이나 이면 (PC) 에 이 톱 코트층 형성 재료를 도포하도록 해도 된다. 물론, 감광재 (90) 나 톱 코트층 형성용 재료 이외의 발액성을 갖는 재료를 도포하도록 해도 된다.
또한, 본 실시 형태에서는 기판 테이블 (PT) 이나 기판 홀더 (PH) 의 발액 처리로서 불소계 수지 재료나 아크릴계 수지 재료를 도포하거나 하고 있지만, 상기 감광재나 톱 코트층 형성 재료를 기판 테이블 (PT) 이나 기판 홀더 (PH) 에 도포하도록 해도 되고, 반대로 기판 (P) 의 측면 (PB) 이나 이면 (PC) 에 기판 스테이지 (PST) 나 기판 홀더 (PH) 의 발액 처리에 사용한 재료를 도포하도록 해도 된다.
상기 톱 코트층은 액침 영역 (AR2) 의 액체 (1) 가 감광재 (90) 에 침투하는 것을 방지하기 위해 형성되는 경우가 많은데, 예를 들어 톱 코트층 상에 액체 (1) 의 부착 자국 (이른바 워터 마크) 이 형성되어도, 액침 노광후에 이 톱 코트층을 제거함으로써, 워터 마크를 톱 코트층과 함께 제거한 후에 현상 처리 등의 소정의 프로세스 처리를 실시할 수 있다. 여기에서, 톱 코트층이 예를 들어 불소계 수지 재료로 형성되어 있는 경우, 불소계 용제를 사용하여 제거할 수 있다. 이에 의해, 워터 마크를 제거하기 위한 장치 (예를 들어 워터 마크 제거용 기판 세정 장치) 등이 필요 없게 되고, 톱 코트층을 용제로 제거하는 등의 간단한 구성으로 워터 마크를 제거한 후에 소정의 프로세스 처리를 양호하게 실시할 수 있다.
또, 상기 기술한 실시 형태에서는, 플레이트 부재 (30, 32) 는 기판 테이블 (PT) 에 진공 흡착 방식으로 유지되어 있지만, 전자 척 (chuck) 기구 등의 다른 척 기구를 사용할 수도 있다.
<제 2 실시 형태>
다음으로, 본 발명의 다른 실시 형태에 대하여 설명한다. 이하의 설명에서, 상기 기술한 실시 형태와 동일 또는 동등한 구성 부분에 대해서는 동일한 부호를 붙여 그 설명을 간략 또는 생략한다.
도 11 은 기판 테이블 (PT) (기판 스테이지 (PST)) 에 대하여 탈착되는 기판 홀더 (PH) 를 나타내는 도면으로서, 도 11(a) 는 측단면도, 도 11(b) 는 기판 홀더 (PH) 가 분리된 후의 기판 테이블 (PT) 을 상측으로부터 본 평면도이다.
도 11 에 나타내는 바와 같이, 기판 테이블 (PT) 은 그 상면 (기판 홀더 (PH) 에 대한 유지면) 에 기판 홀더 (PH) 를 끼워 맞춤 가능한 오목부 (157), 오목부 (157) 내부에 형성되고 오목부 (157) 에 배치된 기판 홀더 (PH) 를 흡착 유지하는 복수의 진공 흡착 구멍 (158), 및 오목부 (157) 내부에 형성된 후술하는 유로 (159) 를 구비하고 있다. 오목부 (157) 에 기판 홀더 (PH) 를 끼워 맞춤으로써 기판 테이블 (PT) 과 기판 홀더 (PH) 가 위치 결정된다. 진공 흡착 구멍 (158) 은 오목부 (157) 에 배치된 기판 홀더 (PH) 를 유지하는 척 기구의 일부를 구성하고 있고, 도시를 생략한 진공 장치에 접속되어 있다. 진공 장치의 구동은 제어 장치 (CONT) 에 의해 제어된다. 제어 장치 (CONT) 는 진공 장치를 제어하고, 진공 흡착 구멍 (158) 을 통해 기판 테이블 (PT) 의 기판 홀더 (PH) 에 대한 흡착 유지 및 유지 해제를 한다. 유지 해제함으로써 기판 홀더 (PH) 와 기판 테이블 (PT) 이 분리 가능해져 기판 홀더 (PH) 는 교환 가능해진다.
또 여기에서는 기판 테이블 (PT) 은 기판 홀더 (PH) 를 진공 흡착 유지하도록 설명했지만, 예를 들어 전자 척 기구 등의 다른 척 기구에 의해 기판 홀더 (PH) 를 유지 및 유지 해제하도록 해도 된다. 또 여기에서는 기판 테이블 (PT) 과 기판 홀더 (PH) 의 위치 결정은 오목부 (157) 를 사용하여 행하도록 설명했지만, 예를 들어 기판 홀더 (PH) 와 기판 테이블 (PT) 의 위치 관계를 광학적으로 검출하고, 이 검출 결과에 기초하여 기판 테이블 (PT) 에 대하여 기판 홀더 (PH) 를 소정의 위치에 위치 결정하는 구성으로 해도 된다.
또한, 기판 홀더 (PH) 는 기판 (P) 을 배치하기 위한 오목부 (150), 및 오목부 (150) 에 배치된 기판 (P) 의 표면과 거의 면이 일치하게 되는 평탄면 (30A) 을 갖고 있다. 평탄면 (30A) 은 기판 (P) 의 주위에 고리 형상으로 형성되어 있다. 평탄면 (30A) 의 주위에는 그 평탄면 (30A) 보다 높은 측벽부 (151) 가 형성되어 있다. 측벽부 (151) 는 평탄면 (30A) 의 주위에 연속하여 고리 형상으로 형성되어 있고, 그 측벽부 (151) 의 내측 (기판 (P) 상이나 평탄면 (30A) 상) 에 액체 (1) 를 유지할 수 있다.
기판 홀더 (PH) 는, 예를 들어 폴리사불화에틸렌 등의 발액성을 갖는 재료에 의해 형성되어 있다. 또 기판 홀더 (PH) 를 예를 들어 소정의 금속으로 형성하고, 그 금속제 기판 홀더 (PH) 중 적어도 평탄면 (30A) 에 대하여 발액성을 갖는 발액성 재료 (폴리사불화에틸렌 등) 를 코팅하도록 해도 된다. 물론, 금속제 기판 홀더 (PH) 의 표면 전체 영역에 발액성 재료를 코팅하도록 해도 된다.
반송 아암 (80) 은 기판 테이블 (PT) 로부터 분리된 기판 홀더 (PH) 를 반송할 수 있다. 예를 들어, 반송 아암 (80) 은 노광 처리된 후의 기판 (P) 을 유지한 기판 홀더 (PH) 를 기판 테이블 (PT) (기판 스테이지 (PST)) 로부터 반출 (언로드 (unload)) 하고, 기판 홀더 (PH) 를 별도의 기판 홀더 (PH) 와 교환한 후, 그 기판 홀더 (PH) 를 기판 테이블 (PT) 에 반입 (로드 (load)) 할 수 있다. 또한, 반송 아암 (80) 은 기판 홀더 (PH) 를 기판 테이블 (PT) 에 반입할 때, 기판 홀더 (PH) 만을 반입할 수도 있고, 노광 처리되기 전의 기판 (P) 을 유지한 기판 홀더 (PH) 를 반입할 수도 있다.
도 12 는 기판 홀더 (PH) 를 나타내는 도면으로서, 도 12(a) 는 측단면도, 도 12(b) 는 상측으로부터 본 평면도이다.
도 12 에 있어서, 기판 홀더 (PH) 는 상기 기술한 액체 (1) 를 유지 가능한 측벽부 (151), 오목부 (150) 의 저면부 (PHT) 에 형성된 복수의 볼록부 (161), 및 볼록부 (161) 의 상단면에 형성된 진공 흡착 구멍 (162) 을 구비하고 있다. 볼록부 (161) 의 상단면은 평탄면이고, 기판 홀더 (PH) 는 복수의 볼록부 (161) 의 상단면에서 기판 (P) 을 지지함과 함께, 진공 흡착 구멍 (162) 을 통해 기판 (P) 을 흡착 유지한다. 여기에서, 볼록부 (161) 는 지지한 기판 (P) 이 구부러지지 않도록 기판 홀더 (PH) 오목부 (150) 의 저면부 (PHT) 의 복수의 소정 위치의 각각에 형성되어 있다. 볼록부 (161) 로 기판 (P) 을 지지함으로써, 기판 (P) 과 기판 홀더 (PH) 의 저면부 (PHT) 사이에 이간부 (164) 가 형성된다. 또 본 실시 형태에 있어서, 기판 홀더 (PH) 의 평면에서 본 형상은 대략 원형상이지만 직사각형 형상이어도 된다.
또한, 기판 테이블 (PT) 과 기판 홀더 (PH) 가 접속되었을 때, 기판 홀더 (PH) 의 진공 흡착 구멍 (162) 은 기판 홀더 (PH) 에 형성된 유로 (162A) 를 통해 기판 테이블 (PT) 의 상면에 형성되어 있는 유로 (159) (도 11(b) 등 참조) 에 접속되어 있다. 유로 (159) 는 진공 장치에 접속되어 있고, 제어 장치 (CONT) 는 진공 장치를 구동함으로써, 기판 테이블 (PT) 의 유로 (159), 기판 홀더 (PH) 의 유로 (162A) 및 진공 흡착 구멍 (162) 을 통해 볼록부 (161) 에 지지된 기판 (P) 을 흡착 유지한다. 여기에서, 유로 (162A) 의 각각에는 제어 장치 (CONT) 의 제어 하에서 구동하는 전자 (電磁) 밸브 등으로 이루어지는 밸브부 (162B) 가 형성되어 있고, 유로 (162A) 의 개방ㆍ폐색 동작을 원격 조작 가능하게 되어 있다. 제어 장치 (CONT) 는 진공 장치를 구동했을 때 밸브부 (162B) 를 제어하여 유로 (162A) 를 개방하고, 진공 장치를 정지했을 때 유로 (162A) 를 폐색한다. 따라서, 진공 흡착 구멍 (162) 을 통해 기판 (P) 에 대한 흡인 동작후에 진공 장치의 구동을 정지시킴과 함께 밸브부 (162B) 에 의해 유로 (162A) 를 폐색함으로써, 유로 (162A) 의 부압이 유지되도록 되어 있다. 따라서, 기판 테이블 (PT) 과 기판 홀더 (PH) 를 분리했을 때에도, 유로 (162A) 를 부압으로 해 둠으로써 기판 홀더 (PH) 는 기판 (P) 에 대한 흡착 유지를 유지할 수 있다.
다음으로, 상기 기술한 구성을 갖는 노광 장치 (EX) 의 동작에 대하여 도 13 의 모식도를 참조하면서 설명한다.
도 13(a) 에 나타내는 바와 같이, 노광 처리 대상인 기판 (P) 을 유지한 기판 홀더 (PH) 가 반송 아암 (반송 장치; 80) 에 의해 기판 (P) 과 함께 기판 테이블 (PT) 에 반입된다. 도 13(b) 에 나타내는 바와 같이, 기판 홀더 (PH) 는 기판 테이블 (PT) 에 형성된 오목부 (157) 에 끼워 맞춰지도록 배치되고, 진공 흡착 구멍 (158) (도 11) 을 갖는 척 기구에 유지된다. 그리고, 제어장치 (CONT) 는 진공 장치를 구동하고, 유로 (159), 유로 (162A) 및 진공 흡착 구멍 (162) 을 통해 기판 (P) 을 진공 흡착 유지한다 (또 도 13 에서는 도시 생략). 이 때, 밸브부 (162B) 는 유로 (162A) 를 개방하고 있다. 그리고, 도 13(c) 에 나타내는 바와 같이, 제어 장치 (CONT) 는 액체 공급 기구 (10) 및 액체 회수 기구 (20) 에 의해 액체 (1) 를 공급 및 회수하고, 기판 테이블 (PT) 상에 기판 홀더 (PH) 를 통해 유지된 기판 (P) 과 투영 광학계 (PL) 사이에 액체 (1) 의 액침 영역 (AR2) 을 형성한다. 그리고, 제어 장치 (CONT) 는 투영 광학계 (PL) 와 액체 (1) 를 통해 기판 (P) 에 노광광 (EL) 을 조사하고, 기판 테이블 (PT) (기판 스테이지 (PST)) 에 기판 홀더 (PH) 를 통해 유지된 기판 (P) 을 이동하면서 액침 노광한다. 이 때, 흡착 유지된 기판 (P) 에 의해 진공 흡착 구멍 (162) 은 막혀 있기 때문에, 액체 (1) 가 공급되어도 진공 흡착 구멍 (162) 에 침입하는 일이 없다. 또한, 기판 홀더 (PH) 의 측벽부 (151) 에 의해 기판 (P) 상이나 평탄면 (30A) 상의 액체 (1) 가 기판 홀더 (PH) 의 외측에 유출하는 일도 없다.
기판 (P) 의 액침 노광 종료후, 제어 장치 (CONT) 는 기판 (P) 상이나 평탄면 (30A) 상에 잔류한 액체 (1) 를 액체 회수 기구 (20) (도 2 참조) 등을 사용하여 회수한다. 이어서, 제어 장치 (CONT) 는 진공 흡착 구멍 (158) 을 포함하는 척 기구에 의한 기판 홀더 (PH) 에 대한 유지를 해제함과 함께, 밸브부 (162B) 를 사용하여 유로 (162A) 를 폐색한다. 그리고, 도 13(d) 에 나타내는 바와 같이, 제어 장치 (CONT) 는 노광 처리를 끝낸 기판 (P) 을 유지한 상태의 기판 홀더 (PH) 를 반송 아암 (80) 에 의해 기판 테이블 (PT) 로부터 기판 (P) 과 함께 반출 (언로드) 한다. 기판 홀더 (PH) 와 기판 테이블 (PT) 을 분리할 때, 도 12 를 참조하여 설명한 바와 같이, 기판 (P) 을 흡착 유지한 진공 흡착 구멍 (162) 에 접속하는 유로 (162A) 는 밸브부 (162B) 에 의해 폐색되어 부압 상태를 유지하고 있기 때문에, 볼록부 (161) 상단면에 의한 기판 (P) 에 대한 흡착 유지는 유지된다. 또한, 기판 (P) 을 기판 홀더 (PH) 와 함께 반송할 때, 가령 기판 (P) 상이나 평탄면 (30A) 상에 액체 (1) 가 잔류하고 있어도, 그 잔류한 액체 (1) 는 유로 (162A) 를 통해 유출되는 일이 없다. 또한, 잔류한 액체 (1) 는 측벽부 (151) 내부에 유지되므로, 기판 홀더 (PH) 의 외측에 유출하여 반송 경로 중에 비산 (飛散) 되는 일도 없다.
반출된 기판 홀더 (PH) 는 새로운 기판 홀더 (PH) 와 교환된다. 그리고, 제어 장치 (CONT) 는 노광 처리 대상인 기판 (P) 을 유지한 새로운 기판 홀더 (PH) 를 반송 아암 (80) 을 사용하여 기판 테이블 (PT) (기판 스테이지 (PST)) 에 반입한다 (도 13 참조).
이와 같이, 본 실시 형태에서도 기판 홀더 (PH) 를 교환하도록 하고 있기 때문에, 표면이 발액성인 기판 홀더 (PH) 에서 기판 (P) 을 유지할 수 있다.
<제 3 실시 형태>
그런데, 상기 실시 형태에서는 기판 (P) 의 주위에 평탄면 (30A) 을 갖는 부재 (플레이트 부재 (30), 제 2 플레이트 부재 (32), 기판 홀더 (PH)) 를 그 발액성의 열화에 따라 교환하도록 설명했지만, 기판 테이블 (PT) 상에 형성된 플레이트 부재 (30), 제 2 플레이트 부재 (32) 및 기판 홀더 (PH) 이외의 부재도 그 표면이 발액성인 것이 바람직하고, 그 발액성의 열화에 따라 교환 가능하게 해 두면 된다. 특히 액체 (1) 와 접촉하는 부재의 표면은 발액성인 것이 바람직하고, 그 발액성의 열화에 따라 교환 가능하게 해 두면 된다. 구체적으로는 표면에 액침 영역을 형성하여 사용되는 기준 부재 (300) 의 구성 부재, 광학 센서 (400, 500) 의 구성 부재도 교환 가능하다.
도 14 는 기판 테이블 (PT) 상에 형성된 기준 부재 (300) 를 나타내는 단면도이다. 도 14 에 있어서, 기준 부재 (300) 는 유리 (클리어세럼) 로 이루어지는 광학 부재 (301), 및 광학 부재 (301) 의 상면 (301A) 에 형성된 기준 마크 (MFM, PFM) 를 구비하고 있다. 기준 부재 (300) 는 기판 테이블 (PT) 상에 장착되어 있고, 상기 기술한 바와 같이, 제 2 플레이트 부재 (32) 에 형성된 개구부 (32K) 에 배치되고, 상면 (301A) 을 노출하고 있다. 그리고, 기준 부재 (300) (광학 부재 (301)) 는 기판 테이블 (PT) 에 대하여 탈착 가능하게 되어 있고, 교환 가능하게 되어 있다. 기준 부재 (300) 를 기판 테이블 (PT) 의 소정 위치에 재장착할 때, 기준 부재 (300) 를 기판 테이블 (PT) 에 대하여 위치 결정하기 위해 서로 끼워 맞추는 요철 또는 암수 부재를 기준 부재 (300) 와 기판 테이블 (PT) 에 형성할 수 있다. 또는, 자력 (磁力) 으로 기준 부재 (300) 가 기판 테이블 (PT) 에 대하여 위치 결정할 수 있도록 자석과 그것에 흡인되는 재료를 기준 부재 (300) 와 기판 테이블 (PT) 에 매립해도 된다. 또는, 진공 흡착력으로 기준 부재가 기판 테이블 (PT) 에 위치 결정할 수 있도록 해도 된다. 또, 광학 부재 (301) 로서 석영을 사용해도 된다.
기준 부재 (300) 와 개구부 (32K) 의 사이에는, 예를 들어 0.3㎜ 정도의 갭 (K) 이 형성되어 있다. 광학 부재 (301) (기준 부재 (300)) 의 상면 (301A) 은 거의 평탄면으로 되어 있고, 기판 (P) 표면, 플레이트 부재 (30) 의 표면 (30A) 및 제 2 플레이트 부재 (32) 의 표면 (32A) 과 거의 동일한 높이 (면일치) 로 형성되어 있다.
제 2 플레이트 부재 (32) 중 기준 부재 (300) 근방은 박육 (薄肉) 화되어 있고, 그 박육화된 박육부 (32S) 중 기준 부재 (300) 측의 단부는 하측으로 구부러져 굴곡부 (32T) 를 형성하고 있다. 또한, 기판 테이블 (PT) 상에는 상측에 돌출하는 벽부 (310) 가 형성되어 있다. 벽부 (310) 는 기준 부재 (300) 에 대하여 굴곡부 (32T) 보다 외측에 형성되고, 기준 부재 (300) (굴곡부 (32T)) 를 둘러싸도록 연속하여 형성되어 있다. 그리고, 굴곡부 (32T) 의 외측면 (32Ta) 과 벽부 (310) 의 내측면 (310A) 이 대향하고, 굴곡부 (32T) 의 내측면 (32Tb) 과 광학 부재 (301) (기준 부재 (300)) 의 측면 (301B) 이 대향하고 있다. 광학 부재 (301) 의 측면 (301B), 굴곡부 (32T) 의 내측면 (32Tb) 및 외측면 (32Ta), 벽부 (310) 의 내측면 (310A) 및 상단면 (310B) 의 각각은 평탄면이다. 또한, 제 2 플레이트 부재 (32) 의 굴곡부 (32T) 를 포함하는 박육부 (32S) 와 벽부 (310) 는 약간 떨어져 있고, 그 사이에 소정의 갭 (틈) 이 형성되어 있다.
광학 부재 (301) 의 상면 (301A), 측면 (301B) 중 적어도 굴곡부 (32T) 와 대향하는 영역, 벽부 (310) 의 내측면 (310A) 및 상단면 (310B) 은 발액 처리되어 발액성으로 되어 있다. 발액 처리로는, 상기 기술한 바와 같이, 불소계 수지 재료나 아크릴계 수지 재료 등의 발액성 재료를 도포하거나 하여 실시할 수 있다.
또한, 제 2 플레이트 부재 (32) 의 굴곡부 (32T) (벽부 (310)) 와 기준 부재 (301) 사이의 공간 (370) 에 유입한 액체 (1) 는 회수부 (380) 에서 회수된다. 본 실시 형태에 있어서, 회수부 (380) 는 진공계 (383), 액체 (1) 를 수용할 수 있는 탱크를 포함하는 기액 분리기 (381), 및 기판 테이블 (PT) 내부에 형성되고 공간 (370) 과 기액 분리기 (381) 를 접속하는 유로 (382) 를 구비하고 있다. 유로 (382) 의 내벽면에도 발액 처리가 실시되어 있다.
상기 기술한 기준 부재 (300) 에 있어서는, 예를 들어 그 상면 (301A) 상에 액체 (1) 의 액침 영역 (AR2) 을 형성한 상태에서 기준 마크 검출 동작이 행해지는 구성을 생각할 수 있는데, 상면 (301A) 은 발액성이기 때문에, 기준 마크 검출 동작 완료 후에 있어서, 상면 (301A) 상의 액침 영역 (AR2) 의 액체 (1) 의 회수를 양호하게 할 수 있어 액체 (1) 가 잔류하는 문제를 방지할 수 있다. 또한, 광학 부재 (301) 의 측면 (301B) 이 발액성임과 함께, 그 측면 (301B) 에 대향하는 굴곡부 (32T) 의 내측면 (32Tb) 도 발액성이기 때문에, 갭 (K) 에는 액체 (1) 가 침입하기 어렵게 되어 있다. 따라서, 공간 (370) 에 액체 (1) 가 침입하는 문제를 방지할 수 있다. 또한, 가령 공간 (370) 에 액체 (1) 가 침입해도, 회수부 (380) 에 의해 액체 (1) 를 양호하게 회수할 수 있다. 또한, 공간 (370) 에 액체 (1) 가 침입해도, 벽부 (310) 의 내측면 (310A) 및 상단면 (310B) 이 발액성임과 함께, 그 벽부 (310) 에 대향하는 제 2 플레이트부 (32) (굴곡부 (32T)) 도 발액성이기 때문에, 공간 (370) 에 침입한 액체 (1) 가 벽부 (310) 를 넘어 기판 테이블 (PT) 내부에 침입하여 녹 등을 발생시키는 문제를 방지할 수 있다. 이와 같이, 벽부 (310) 는 액체 (1) 의 확산을 방지하는 액체 확산 방지벽으로서의 기능을 갖는다. 또한, 제 2 플레이트 부재 (32) 와 벽부 (310) 의 틈에는 굴곡부 (32T) 에 의해 단면에서 보아 굴곡 모서리부가 형성되어 있고, 그 굴곡 모서리부가 시일부로서 기능하기 때문에, 기판 테이블 (PT) 내부로의 액체 (1) 의 침입을 확실하게 방지할 수 있다.
그리고, 기준 부재 (300) (광학 부재 (301)) 는 교환 가능하므로, 그 발액성이 열화된 경우에는 플레이트 부재 (30) 와 마찬가지로, 새로운 (충분한 발액성을 갖는) 기준 부재 (300) 와 교환하면 된다.
또, 기준 부재 (300) 를 사용하는 경우에는 마크 부분에 국소적으로 계측광이 조사되기 때문에, 기준 부재 (300) 상에 동일한 기준 마크를 복수 형성해 두고, 마크 부분의 표면의 발액성이 열화되면, 다른 기준 마크를 사용하도록 해도 되고, 발액성의 열화 속도를 저하시키기 위해 그들 마크를 계측마다 번갈아 사용하도록 해도 된다. 이에 의해 기준 부재 (300) 의 교환 빈도를 적게 하는 것이 가능해진다. 이것은 노광 파장과 동일한 계측광이 사용되는 기준 마크 (MFM) 를 포함하는 부분은 발액성의 열화가 빠르므로 특히 유효하다.
도 15 는 기판 테이블 (PT) 상에 형성된 조도 불균일 센서 (400) 를 나타내는 단면도이다. 도 15 에 있어서, 조도 불균일 센서 (400) 는 석영 유리 등으로 이루어지는 상판 (401), 및 상판 (401) 의 아래에 형성된 석영 유리 등으로 이루어지는 광학 소자 (402) 를 구비하고 있다. 본 실시 형태에 있어서, 상판 (401) 과 광학 소자 (402) 는 일체로 형성되어 있다. 이하의 설명에 있어서는, 상판 (401) 및 광학 소자 (402) 를 합쳐 적당히 「광학 부재 (404)」 라고 한다. 또한, 상판 (401) 및 광학 소자 (402) 는 지지부 (403) 를 통해 기판 테이블 (PT) 상에 지지되어 있다. 지지부 (403) 는 광학 부재 (404) 를 둘러싸는 연속된 벽부 (壁部) 를 갖고 있다. 조도 불균일 센서 (400) 는 상기 기술한 바와 같이, 제 2 플레이트 부재 (32) 에 형성된 개구부 (32L) 에 배치되고, 상면 (401A) 을 노출하고 있다. 그리고, 상판 (401) 및 광학 소자 (402) 를 포함하는 광학 부재 (404) 는 기판 테이블 (PT) 에 대하여 탈착 가능하게 되어 있고, 교환 가능하게 되어 있다. 광학 부재 (404) 를 기판 테이블 (PT) 의 소정 위치에 재장착할 때, 광학 부재 (404) 를 기판 테이블 (PT) 에 대하여 위치 결정하기 위해 서로 끼워 맞추는 요철 또는 암수 부재를 광학 부재 (404) 와 기판 테이블 (PT) 에 형성할 수 있다. 또는, 자력으로 광학 부재 (404) 가 기판 테이블 (PT) 에 대하여 위치 결정할 수 있도록 자석과 그것에 흡인되는 재료를 광학 부재 (404) 와 기판 테이블 (PT) 에 매립해도 된다. 또는, 진공 흡착력으로 기준 부재가 기판 테이블 (PT) 에 위치 결정할 수 있도록 해도 된다.
상판 (401) 위에는 광이 통과할 수 있는 핀 홀부 (490) 가 형성되어 있다. 또한, 상판 (401) 위 중 핀 홀부 (490) 이외의 부분은 크롬 등의 차광성 재료를 포함하는 박막 (460) 이 형성되어 있다. 본 실시 형태에 있어서, 핀 홀부 (490) 내부에도 석영 유리로 이루어지는 광학 부재가 형성되어 있고, 이에 의해 박막 (460) 과 핀 홀부 (490) 가 면이 일치되어 있고, 상면 (401A) 은 평탄면이 된다.
광학 부재 (404) 의 하측에는 핀 홀부 (490) 를 통과한 광을 수광하는 광센서 (450) 가 배치되어 있다. 광센서 (450) 는 기판 테이블 (PT) 상에 장착되어 있다. 광센서 (450) 는 수광 신호를 제어 장치 (CONT) 에 출력한다. 여기에서, 지지부 (403) 와 기판 테이블 (PT) 과 광학 부재 (404) 로 둘러싸인 공간 (405) 은 거의 밀폐 공간이고, 액체 (1) 는 공간 (405) 에 침입하지 않는다. 또, 광학 부재 (404) 와 광센서 (450) 사이에 광학계 (광학 소자) 를 배치해도 된다.
광학 부재 (404) 및 지지부 (403) 를 포함하는 조도 불균일 센서 (400) 와 개구부 (32L) 의 사이에는, 예를 들어 0.3㎜ 정도의 갭 (L) 이 형성되어 있다. 조도 불균일 센서 (400) 의 상면 (401A) 은 거의 평탄면으로 되어 있고, 기판 (P) 표면, 플레이트 부재 (30) 의 표면 (30A) 및 제 2 플레이트 부재 (32) 의 표면 (32A) 과 거의 동일한 높이 (면일치) 로 형성되어 있다.
제 2 플레이트 부재 (32) 중 조도 불균일 센서 (400) 근방은 박육화되어 있고, 그 박육화된 박육부 (32S) 중 조도 불균일 센서 (400) 측의 단부는 하측으로 구부러져 굴곡부 (32T) 를 형성하고 있다. 또한, 기판 테이블 (PT) 상에는 상측에 돌출하는 벽부 (310) 가 형성되어 있다. 벽부 (310) 는 조도 불균일 센서 (400) 에 대하여 굴곡부 (32T) 보다 외측에 형성되고, 조도 불균일 센서 (400) (굴곡부 (32T)) 를 둘러싸도록 연속하여 형성되어 있다. 그리고, 굴곡부 (32T) 의 외측면 (32Ta) 과 벽부 (310) 의 내측면 (310A) 이 대향하고, 굴곡부 (32T) 의 내측면 (32Tb) 과 조도 불균일 센서 (400) 의 광학 부재 (404) 및 지지부 (403) 의 측면 (401B) 이 대향하고 있다. 측면 (401B), 굴곡부 (32T) 의 내측면 (32Tb) 및 외측면 (32Ta), 벽부 (310) 의 내측면 (310A) 및 상단면 (310B) 의 각각은 평탄면이다. 또한, 제 2 플레이트 부재 (32) 의 굴곡부 (32T) 를 포함하는 박육부 (32S) 와 벽부 (310) 는 약간 떨어져 있고, 그 사이에 소정의 갭 (틈) 이 형성되어 있다.
조도 불균일 센서 (400) 의 상면 (401A), 측면 (401B) 중 적어도 굴곡부 (32T) 와 대향하는 영역, 벽부 (310) 의 내측면 (310A) 및 상단면 (310B) 은 발액 처리되어 발액성으로 되어 있다. 발액 처리로는 상기 기술한 바와 같이, 불소계 수지 재료나 아크릴계 수지 재료 등의 발액성 재료를 도포하거나 하여 실시할 수 있다.
또한, 제 2 플레이트 부재 (32) 의 굴곡부 (32T) (측부 (310)) 와 조도 불균일 센서 (400) 사이의 공간 (470) 에 유입한 액체 (1) 는 회수부 (480) 에서 회수된다. 본 실시 형태에 있어서, 회수부 (480) 는 진공계 (483), 액체 (1) 를 수용할 수 있는 탱크를 포함하는 기액 분리기 (481), 및 기판 테이블 (PT) 내부에 형성되고 공간 (470) 과 기액 분리기 (481) 를 접속하는 유로 (482) 를 구비하고 있다. 유로 (482) 의 내벽면에도 발액 처리가 실시되어 있다.
상기 기술한 조도 불균일 센서 (400) 에 있어서는, 예를 들어 그 상면 (401A) 상에 액체 (1) 의 액침 영역 (AR2) 을 형성한 상태에서, 노광광 (EL) 이 조사되는 조사 영역 (투영 영역) 내의 복수의 위치에서 순차적으로 핀 홀부 (490) 를 이동시킨다. 상면 (401A) 은 발액성이기 때문에, 조도 불균일 계측 완료 후에 있어서, 상면 (401A) 위의 액침 영역 (AR2) 의 액체 (1) 의 회수를 양호하게 할 수 있고, 액체 (1) 가 잔류하는 문제를 방지할 수 있다. 또한, 조도 불균일 센서 (400) (광학 부재 (404), 지지부 (403)) 의 측면 (401B) 이 발액성임과 함께, 그 측면 (401B) 에 대향하는 굴곡부 (32T) 의 내측면 (32Tb) 도 발액성이기 때문에, 갭 (L) 에는 액체 (1) 가 침입하기 어렵게 되어 있다. 따라서, 공간 (470) 에 액체 (1) 가 침입하는 문제를 방지할 수 있다. 또한, 가령 공간 (470) 에 액체 (1) 가 침입해도, 회수부 (480) 에 의해 액체 (1) 를 양호하게 회수할 수 있다. 또한, 공간 (470) 에 액체 (1) 가 침입해도, 벽부 (310) 의 내측면 (310A) 및 상단면 (310B) 이 발액성임과 함께, 그 벽부 (310) 에 대향하는 제 2 플레이트부 (32) (굴곡부 (32T)) 도 발액성이기 때문에, 공간 (470) 에 침입한 액체 (1) 가 벽부 (310) 를 넘어 기판 테이블 (PT) 내부에 침입하여 녹 등을 발생시키는 문제를 방지할 수 있다. 또, 제 2 플레이트 부재 (32) 와 벽부 (310) 의 틈에는 굴곡부 (32T) 에 의해 단면에서 보아 굴곡 모서리부가 형성되어 있고, 그 굴곡 모서리부가 시일부로서 기능하므로, 기판 테이블 (PT) 내부로의 액체 (1) 의 침입을 확실하게 방지할 수 있다.
그리고, 광학 부재 (404) 는 교환 가능하기 때문에, 플레이트 부재 (30) 와 마찬가지로, 그 발액성이 열화된 경우에는 새로운 (충분한 발액성을 갖는) 광학 부재 (404) 와 교환하면 된다.
또, 공간 이미지 계측 센서 (500) 는 조도 불균일 센서 (400) 와 거의 동등한 구성을 가지므로, 그 상세한 설명은 생략하는데, 공간 이미지 계측 센서 (500) 도 기판 테이블 (PT) 상에서 지지부를 통해 지지된 상판 및 광학 소자로 이루어지는 광학 부재를 가지며, 그 상면 (501A) 에는 광이 통과할 수 있는 슬릿부 (570) 및 그 슬릿부 이외를 덮는 차광성 재료로 이루어지는 박막이 형성되어 있다. 그리고, 슬릿부 (570) 를 통과한 광을 수광하는 광센서가 광학 부재의 아래에 형성되어 있다. 슬릿부 (570) 를 갖는 광학 부재는 그 발액성의 열화에 따라 교환 가능하게 되어 있다.
또, 상기 기술한 도 14, 도 15 를 참조하여 설명한 실시 형태에서는 갭 (K, L) 을 형성하는 부재 표면에 발액성을 갖게 함으로써, 액체 (1) 의 침입을 방지하고 있는데, 계측 부재나 센서 주위의 갭에 한정하지 않고, 기판 테이블 (PT) 의 상면에 존재하는 갭에 동일하게 발액성을 갖게 함으로써, 그 갭으로의 액체 (1) 의 침입을 막을 수 있다. 또한, 갭 (K, L) 에 수지 등으로 형성된 시일 부재를 배치하여 액체 (1) 의 침입을 방지하도록 해도 되고, 액체 (예를 들어 진공 그리스 9grease) 나 자성 유체 등) 를 갭 (K, L) 에 충전하여 액체 시일 기능을 갖게 하고, 액체 (1) 의 침입을 방지하도록 해도 된다. 이 경우, 시일용 액체는 액체 (1) 로 용출 (溶出) 되기 어려운 것이 바람직하다. 물론, 이들 액체 침입 방지책을 병용해도 되는 것은 말할 필요도 없다.
또, 기판 스테이지 (PST) (기판 테이블 (PT)) 에 탑재되어 있는 모든 계측 부재 (기준 부재 (300) 의 광학 부재 (301), 광학 센서 (400) 의 상판 (401), 광학 센서 (500) 의 상판 (501) 등) 의 표면 (액체 접촉면) 을 발액성으로 할 필요는 없고, 그들 일부에만 발액성을 갖게 해도 된다.
또한, 상기 기술한 실시 형태에서는 부재 표면의 발액성이 열화된 경우에 교환을 하는 것으로 되어 있지만, 어느 하나의 부재를 교환할 때 교환 시기가 가까운 부재도 동시에 교환하도록 해도 된다.
또, 액체 (물) 의 회수를 보다 확실하게 하기 위해, 기판 테이블 (PT) 의 표면, 즉 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 의 표면, 기준 부재 (300) 등의 표면은 액체 (물) 에 대한 접촉각이 80°보다 큰 정도, 바람직하게는 100° 이상 (상기 기술한 폴리사불화에틸렌의 액체 (물) 에 대한 접촉각은 110°정도) 으로 해 두는 것이 바람직하다.
또한, 기판 (P) 표면에 도포되어 있는 감광재 (ArF 노광광용 레지스트) 도 액체 (물) 에 대한 접촉각이 80°보다 큰 정도의 것을 사용하는 것이 바람직하다. 물론, 노광광으로서 KrF 엑시머 레이저광을 사용하는 경우에는 KrF 노광광용 레지스트로서 액체에 대한 접촉각이 80°보다 큰 것을 사용하는 것이 바람직하다.
상기 구체예에서는 기판 테이블과, 기준 부재 (300), 조도 불균일 센서 (400) 나 공간 이미지 계측 센서 (500) 등의 계측구를 함께 구비한 기판 스테이지를 예시했는데, 기판을 유지하여 노광이 행해지는 스테이지와 계측용 스테이지가 별개인 노광 장치에도 본 발명을 적용할 수 있다. 즉, 본 발명은 웨이퍼 등의 피처리 기판을 유지하여 이동 가능한 노광 스테이지와, 각종 기준 부재나 계측 센서 등의 계측 부재를 구비한 계측 스테이지를 구비한 노광 장치도 의도하고 있다. 이 경우, 상기 기술한 실시 형태에서 기판 스테이지 (PST) 에 배치되어 있는 기준 부재나 각종 계측 센서의 적어도 일부를 계측 스테이지에 배치할 수 있다. 노광 스테이지와 계측 스테이지를 구비한 노광 장치는, 예를 들어 일본 공개특허공보 평11-135400호에 기재되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
본 실시 형태에서는 기판 (P) 을 유지하는 기판 스테이지 (기판 테이블) 를 2 개 탑재한 트윈 스테이지형 노광 장치에도 적용할 수 있다. 트윈 스테이지형 노광 장치의 구조 및 노광 동작은, 예를 들어 일본 공개특허공보 평10-163099호 및 일본 공개특허공보 평10-214783호 (대응 미국 특허 제6,341,007호, 제6,400,441호, 제6,549,269호 및 제6,590,634호), 일본 특허공표공보 2000-505958호 (대응 미국 특허 제5,969,441호) 또는 미국 특허 제6,208,407호에 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 그들의 개시를 원용하여 본문의 기재의 일부로 한다.
<제 4 실시 형태>
도 16 은 본 발명을 적용한 트윈 스테이지형 노광 장치의 개략 구성도이다. 트윈 스테이지형 노광 장치는 공통의 베이스 (54) 상을 각각 독립적으로 이동 가능한 제 1, 제 2 기판 스테이지 (PST1, PST2) 를 구비하고 있다. 제 1, 제 2 기판 스테이지 (PST1, PST2) 는 도 1 ? 15 와의 관계에서 설명한 구조 및 기능을 구비하는 기판 스테이지이고, 제 1, 제 2 기판 테이블 (PT1, PT2) 을 각각 갖고 있고, 제 1, 제 2 기판 테이블 (PT1, PT2) 상에는 플레이트 부재 (30) 및 제 2 플레이트 부재 (32) 가 교환 가능하게 각각 형성되어 있다. 또한, 트윈 스테이지형 노광 장치는 노광 스테이션 (ST1) 과 계측ㆍ교환 스테이션 (ST2) 을 갖고 있고, 노광 스테이션 (ST1) 에는 투영 광학계 (PL) 가 형성되고, 계측ㆍ교환 스테이션 (ST2) 에는 기판 얼라인먼트계, 포커스ㆍ레벨링 검출계 등이 탑재되어 있다 (도 16 에서는 도시 생략). 그리고, 노광 스테이션 (ST1) 에 있어서, 제 1 기판 테이블 (PT1) 상에 유지된 기판 (P) 에 대하여 액침 노광 처리가 실시되고 있는 동안, 계측ㆍ교환 스테이션 (ST2) 에 있어서, 기판 (P) 이 플레이트 부재 (30) 와 함께 제 2 기판 스테이지 (PST2) (제 2 기판 테이블 (PT2)) 에 대하여 로드ㆍ언로드되도록 되어 있다. 또한, 계측ㆍ교환 스테이션 (ST2) 에서는 노광 스테이션 (ST1) 에서의 액침 노광과 병행하여 제 2 기판 스테이지 (PST2) 상의 기판 (P) 에 대한 계측 동작 (포커스 검출 동작, 얼라인먼트 동작) 이 행해지고, 그 계측 동작이 종료한 후, 제 2 기판 스테이지 (PST2) 가 노광 스테이션 (ST2) 에 이동하고, 제 2 기판 스테이지 (PST) 상의 기판 (P) 에 대하여 액침 노광 처리가 실시된다.
이와 같이, 트윈 스테이지형 노광 장치의 경우에는 일측의 스테이지에서 액침 노광 처리 중에 타측의 스테이지에서 기판 교환이나 계측 처리 뿐만 아니라, 플레이트 부재 (30) 의 교환을 할 수 있기 때문에, 노광 처리의 스루풋 (throughput) 을 향상시킬 수 있다.
또, 상기 각 실시 형태에서는 플레이트 부재 (30) 등은 그 발액성에 따라 교환되도록 설명했는데, 예를 들어 어떠한 원인으로 손상되거나 오염된 경우 등, 발액성의 열화 이외의 다른 이유에 따라 교환할 수 있는 것은 말할 필요도 없다. 예를 들어, 플레이트 부재 (30) 등이 오랫동안 액체 (1) 와 접촉하고 있는 경우에는 그 표면이 열화되어 물질이 용출하고, 액체 (1) 를 오염시킬 가능성이 있으므로, 물질 용출을 수반하는 플레이트 부재 (30) 등의 표면 열화도 고려하여 교환 시기를 정해도 된다.
상기 실시 형태에서는 광학 소자 (2) 는 형석으로 형성되어 있지만, 예를 들어 그 형석의 표면의 결정 방위가 (111) 면인 형석을 사용할 수 있다. 또한, 도 1 에 나타낸 광학 소자 (2) 의 선단부 (2a), 즉 액체 (1) 와 접촉하는 부분에는 단층막에 의해 구성되는 용해 방지막으로서 불화 마그네슘 (MgF2) 이 진공 증착법에 의해 막형성되어 있어도 된다.
<제 5 실시 형태>
상기 기술한 제 1 실시 형태에서 설명한 바와 같이, 기판 스테이지 (PST) 상에 조사량 모니터, 조도 불균일 센서 등의 장치를 구성하는 광학 부품, 공간 이미지 계측 장치의 지표판, 레티클의 얼라인먼트시에 사용되는 피듀셜 (feducial) 마크 (기준 부재) 등이 탑재되어 있는 경우, 이들 광학 부품의 광조사면 (액체 접촉면) 은 발액성을 갖는 것이 바람직하다. 조사량 모니터, 조도 불균일 센서 등의 광조사면 상의 배수가 완전히 행해지지 않은 경우에는 광조사량이나 광조도의 계측을 정확하게 할 수 없게 될 우려가 있다. 또한, 공간 이미지 계측 장치의 지표판 상의 배수가 완전히 행해지지 않은 경우에는 지표판 상의 액체가 증발함으로써 지표판의 면 (面) 형상이 변화하여 공간 이미지 계측 장치에 의한 계측에 오차가 생길 가능성이 있다. 또한, 피듀셜 마크 상의 배수가 완전히 행해지지 않은 경우에는 피듀셜 마크 상의 액체가 증발함으로써 피듀셜 마크의 형상이 변화하여 레티클 얼라인먼트를 정확하게 행할 수 없을 가능성이 있다. 따라서, 기판 스테이지 상에 배치되는 광학 부품의 표면은 장기간에 걸쳐 발수성을 갖는 것이 요구된다.
이 경우, 비정질 불소 수지를 광학 부품의 표면에 도포ㆍ박막화함으로써 광학 성능이 높은 발수성 광학 박막을 작성하는 것을 생각할 수 있다. 즉, 비정질 불소 수지는 수지 중에서도 특히 투명하고 자외선 투과율이 높은 재료이고, 또한 수지 표면에 배위하고 있는 -CF3 결합에 의해 유기물 중에서 가장 작은 표면 장력을 나타내는 것이기 때문에, 우수한 발수 성능을 갖는 재료이기도 하다.
그러나, 광학 부품의 표면에 형성한 발수성 광학 박막은 액침 상태에서 에너지가 높은 자외 레이저를 조사하면, 박막이 흡수한 미량의 광의 에너지가 온도로 변환되고, 비교적 짧은 기간에 박막이 팽윤되어 막 중에 물이 침입한다. 이 경우, 불소 수지 박막과 광학 부품 표면의 밀착성이 나쁘면 막이 박리되고, 광학 성능에 악영향이 생기고 발수 성능이 열화되어 기판 스테이지 상에 물방울이 남아 있을 우려가 있다.
일반적으로, 광학 부품 표면에 플루오로알킬실란과 같은 커플링제를 반응시켜 바인더층을 형성하고, 그 위에 불소 수지 박막을 형성하면 밀착성이 좋은 박막이 얻어지는 것이 알려져 있지만, 본 발명자의 조사 (調査) 에 의하면, 플루오로알킬실란은 자외 레이저광을 흡수하고, 분해하기 때문에, 레이저 조사 후의 밀착성을 얻을 수 없는 것을 알았다.
이 실시 형태에서는 장기간에 걸쳐 발수성을 유지하는 것이 가능한 액침형 투영 노광 장치에 바람직한 광학 부품에 대하여 도면을 참조하면서 설명한다. 도 19 는 웨이퍼 스테이지에 탑재되어 있는 광학 부품을 나타내는 도면이다. 또, 도 20 은 웨이퍼 스테이지에 탑재되어 있는 광학 부품의 구성을 나타내는 도면이다.
도 19 에 나타내는 웨이퍼 스테이지 (609) 상에는 노광광의 조사량을 모니터하기 위한 조사량 모니터의 광입사창 (광조사면; 650), 노광광의 조도 불균일을 검출하기 위한 조도 불균일 센서의 광입사창 (광조사면; 652) 등의 광학 부품이 탑재되어 있다. 또한, 투영 광학계의 광학 특성 등을 계측하는 공간 이미지 계측 장치 (AIS 계) 의 지표판 (광조사면; 654), 레티클의 얼라인먼트시에 사용되는 피듀셜 마크 (FM) (광조사면; 656) 등의 광학 부품이 탑재되어 있다. 여기에서 조사량 모니터의 광입사창 (광조사면; 650) (및 조도 불균일 센서의 광입사창 (광조사면; 652)) 은 도 20 에 나타내는 바와 같이, 석영 유리 (660) 에 의해 구성되고, 그 표면에 이산화 규소 (SiO2) 에 의해 형성되는 미립자층 (접착 미립자층; 662) 이 막형성되고, 미립자층의 표면에 비정질 불소 수지에 의해 구성되는 발수성막 (664) 이 형성되어 있다.
또한, 공간 이미지 계측 장치 (AIS 계) 의 지표판 (654), 피듀셜 마크 (FM; 656) 는 석영 유리 및 이 석영 유리의 표면에 형성된 크롬 (금속) 패턴으로 구성되고, 그 표면에 이산화 규소 (SiO2) 에 의해 형성되는 미립자층 (접착 미립자층) 이 막형성되고, 미립자층의 표면에 비정질 불소 수지에 의해 구성되는 발수성막이 성막되어 있다.
이 실시 형태에 관한 광학 부품에 의하면, 접착 미립자층을 형성하는 이산화 규소 (SiO2) 로 이루어지는 미립자층은 기재의 유리 (주성분 SiO2) 와 친화성이 좋고, 기재 유리와 적당한 밀착성을 얻을 수 있다. 또한, 표면에 입자 직경에 의해 유래하는 요철을 발생시킨다. 또한, 이산화 규소 등은 자외선 투과율이 매우 높은 재료이기 때문에, 그 자체의 레이저 조사 내구성도 높다. 본 실시 형태에서는 이산화 규소 (SiO2) 로 이루어지는 미립자층을 막형성한 후, 그 미립자층 상에 비정질 불소 수지에 의해 구성되는 발수성막을 형성한다. 비정질 불소 수지는 이산화 규소 등의 미립자의 틈에 들어가고, 끌어안듯이 건조ㆍ고화된다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수성막의 강도는 높은 것이 된다.
또한, 광조사면 상에 형성된 발수성막은 높은 레이저 조사 내구성을 가지므로, 투영 노광 장치의 기판 스테이지 상에 탑재되어 있는 광학 부품의 광조사면의 발수성을 장기간에 걸쳐 유지할 수 있다.
또한, 이 실시 형태에 관한 투영 노광 장치에 의하면, 기판 스테이지 상에 광조사면의 발수성을 장기간에 걸쳐 유지할 수 있는 광학 부품을 탑재하고 있기 때문에, 액침 노광을 반복한 경우에도 광학 부품의 광조사면 상의 배수를 확실하게 실시할 수 있다.
또, 상기 기술한 실시 형태에서는 광학 부품의 광조사면 상에 이산화 규소 (SiO2) 로 이루어지는 미립자층에 의해 구성되는 접착 미립자층을 막형성한 위에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하고 있는데, 광조사면의 표면에 이산화 규소 (SiO2) 대신에 불화 마그네슘 (MgF2) 또는 불화 칼슘 (CaF2) 으로 구성되는 접착 미립자층을 막형성한 위에 비정질 불소 수지에 의해 구성되는 발수성막을 막형성하도록 해도 된다. 또는, 이산화 규소 (SiO2), 불화 마그네슘 (MgF2) 및 불화 칼슘 (CaF2) 중의 임의의 2 종을 혼합하여 또는 적층하여 접착 미립자층을 구성해도 되고, 그들 3 종을 혼합하여 또는 적층하여 접착 미립자층을 구성해도 된다. 이 경우에도, 이산화 규소 (SiO2) 로 이루어지는 미립자층에 의해 구성되는 접착 미립자층을 막형성한 위에 비정질 불소 수지에 의해 구성되는 발수성막을 형성한 경우와 마찬가지로, 발수성막을 레이저 조사 내구성이 우수한 것으로 할 수 있다.
또한, 상기 기술한 실시 형태에서는 광학 부품 (예를 들어, 광입사창 (650)) 의 광조사면 상에 이산화 규소 (SiO2) 로 이루어지는 미립자층에 의해 구성되는 접착 미립자층을 막형성한 위에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하고 있지만, 도 21 에 나타내는 바와 같이, 석영 유리 (666) 에 의해 형성되는 광조사면의 표면에 예를 들어 불화 수소 (또는 불화 수소를 물에 용해한 불화 수소산) 를 사용하여 에칭함으로써 접착면 (에칭면; 668) 을 형성하고, 접착면 (668) 의 표면에 비정질 불소 수지에 의해 구성되는 발수성막 (670) 을 성막하도록 해도 된다. 이 경우에는 광조사면에 불화 수소를 사용하여 에칭한 에칭면으로 구성되는 접착면을 가지므로, 접착면 상에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하면, 비정질 불소 수지는 접착면의 틈에 들어가고, 끌어안듯이 건조ㆍ고화된다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수막의 강도는 높은 것이 된다.
또한, 본 실시 형태에서는 광조사면이 기재 유리와 기재 유리의 표면의 일부에 패턴을 형성하기 위한 금속막 (크롬 등) 을 가지며, 그 위에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하고 있지만, 기재 유리와 기재 유리의 전체면에 형성된 금속막을 가지며, 그 위에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하도록 해도 된다. 이러한 광학 부품은 투영 렌즈의 투과율 등을 모니터할 때 사용되는 고반사판으로서 사용된다.
또한, 본 실시 형태에서는 기재 유리로서 석영 유리를 사용하고 있지만, 저팽창 유리를 사용해도 된다.
이하에 본 실시 형태의 광학 부품의 제조 방법을 실시예에 의해 구체적으로 설명한다.
실시예 A
막형성하는 광학 부품 (석영 유리) 의 광조사면의 표면을 초음파를 조사하는 자동 세정 장치에 의해 세정함으로써, 또는 알코올을 스며들게 한 천 등으로 닦아냄으로써 고도로 청정하게 세정한다.
다음으로, 평균 입경 (粒徑) 80㎚ 의 MgF2 의 미립자를 알칼리 용액에 안정하게 분산시킨 코트액을 광학 부품의 표면에 상당량 적하 (滴下) 하고, 고속 회전 장치로 스핀 코트한다. 코트액이 유동성을 잃을 때까지 건조시키면 고속 회전 장치로부터 광학 부품을 분리시키고, 코트액을 완전히 건조시키기 위해 약 150℃ 의 건조로에서 1 ? 2 시간 건조시킨다. 실온까지 냉각된 광학 부품에 추가로 비정질 불소 수지 (아사히가라스 (주) 의 「사이톱」) 를 용해한 코트액을 상당량 적하하고, 고속 회전 장치로 스핀 코트한다. 코트액이 유동성을 잃을 때까지 건조시키면 고속 회전 장치로부터 광학 부품을 분리시키고, 코트액을 완전히 건조시키기 위해 약 100℃ 의 건조로에서 1 ? 2 시간 건조시킨다. 상기 기술한 공정에 의해 기재 유리 (석영 유리) 상에 MgF2 막 및 비정질 불소 수지막을 갖는 광학 부품이 제조된다.
실시예 B
막형성하는 광학 부품 (석영 유리) 의 광조사면의 표면을 초음파를 조사하는 자동 세정 장치에 의해 세정함으로써, 또는 알코올을 스며들게 한 천 등으로 닦아냄으로써 고도로 청정하게 세정한다.
다음으로, 평균 입경 80㎚ 의 SiO2 의 미립자를 알칼리 용액에 안정하게 분산시킨 코트액을 광학 부품의 표면에 상당량 적하하고, 고속 회전 장치로 스핀 코트한다. 코트액이 유동성을 잃을 때까지 건조시키면 고속 회전 장치로부터 광학 부품을 분리시키고, 코트액을 완전히 건조시키기 위해 약 150℃ 의 건조로에서 1 ? 2 시간 건조시킨다. 실온까지 냉각된 광학 부품에 추가로 비정질 불소 수지 (아사히가라스 (주) 의 「사이톱」) 를 용해한 코트액을 상당량 적하하고, 고속 회전 장치로 스핀 코트한다. 코트액이 유동성을 잃을 때까지 건조시키면 고속 회전 장치로부터 광학 부품을 분리시키고, 코트액을 완전히 건조시키기 위해 약 100℃ 의 건조로에서 1 ? 2 시간 건조시킨다. 상기 기술한 공정에 의해 기재 유리 (석영 유리) 상에 SiO2 막 및 비정질 불소 수지막을 갖는 광학 부품이 제조된다.
실시예 C
0.2㎚ RMS 정도의 조도 (粗度) 까지 고정밀도로 연마된 광학 부품 (석영 유리) 의 표면을 5% 로 희석한 불화 수소산에 5 초간 침지한 후, 순수로 불화 수소산을 헹구고, 알코올을 스며들게 한 천 등으로 닦아낸다. 이 표면에 비정질 불소 수지 (아사히가라스 (주) 의 「사이톱」) 를 용해한 코트액을 상당량 적하하고, 고속 회전 장치로 스핀 코트한다. 코트액이 유동성을 잃을 때까지 건조시키면 고속 회전 장치로부터 광학 부품을 분리시키고, 코트액을 완전히 건조시키기 위해 약 100℃ 의 건조로에서 1 ? 2 시간 건조시킨다. 상기 기술한 공정에 의해 기재 유리 (석영 유리) 상에 비정질 불소 수지막을 갖는 광학 부품이 제조된다.
비교예
막형성하는 광학 부품 (석영 유리) 의 광조사면의 표면을 초음파를 조사하는 자동 세정 장치에 의해 세정함으로써, 또는 알코올을 스며들게 한 천 등으로 닦아냄으로써 고도로 청정하게 세정한다. 다음으로, 비정질 불소 수지 (아사히가라스 (주) 의 「사이톱」) 를 용해한 코트액을 상당량 적하하고, 고속 회전 장치로 스핀 코트한다.
코트액이 유동성을 잃을 때까지 건조시키면 고속 회전 장치로부터 광학 부품을 분리시키고, 코트액을 완전히 건조시키기 위해 약 100℃ 의 건조로에서 1 ? 2 시간 건조시킨다. 상기 기술한 공정에 의해 기재 유리 (석영 유리) 상에 비정질 불소 수지막을 갖는 광학 부품이 제조된다.
(박리 테스트)
상기 기술한 실시예 A ? C 및 비교예에서 얻어진 광학 부품에 대하여 셀로판 점착 테이프를 사용한 박리 테스트 (테이프 테스트) 를 하였다. 테이프 테스트는 니치반가부시키가이샤의 셀로판 점착 테이프 (JIS-468006), 폭 18㎜ 를 사용하고, 테이프를 점착했을 때, 3 회 강하게 손가락으로 문지르고, 빠르게 수직으로 벗겨냄으로써 막의 박리 정도를 판단하였다. 테스트는 각각의 예에서 얻어진 광학 부품을 시료로서 3 개씩 준비하여 각각에 대하여 행하였다.
평가값의 기준으로는 발수 코트에 φ5㎜ 이상의 박리가 있는 경우를 「박리 발생」이라고 하고, 그 이외의 것을 「박리 없음」이라고 했다. 3/3 은 3 개의 시료 중 모두 박리한 것을 나타낸다.
(시험 결과)
실시예 A 0/3 개 박리 없음
실시예 B 0/3 개 박리 없음
실시예 C 0/3 개 박리 없음
비교예 3/3 개 박리 발생
이 시험 결과로부터 명확한 바와 같이, 실시예 A ? 실시예 C 의 발수성막은 접착층 또는 에칭면을 형성했기 때문에 기재 유리에 강력하게 접착되어 있다. 따라서, 본 발명의 광학 부재는 액침 노광과 같은 액체와 접촉하는 환경에서 매우 내액성 (내수성) 이 높은 것을 알 수 있다.
이 실시예에서는 발수성막은 기재 유리에 접착한 경우를 예로 들어 설명했는데, 이 결과로부터 본 발명을 임의의 광범위한 광학 부품에 사용할 수 있는 것을 알 수 있다. 즉, 액침 노광 장치의 기판 스테이지에 형성되는 기준 부재나 각종 센서에 한정되지 않고, 액체 또는 증기와 접촉하는 환경에서 사용되는 모든 광학 렌즈, 광학 센서에 사용하는 것도 가능하다. 또한, 노광 장치에 사용되는 투영 광학계, 특히 기판측의 선단에 장착되는 렌즈나 조명 광학계에 사용되는 렌즈나 센서에 적용하는 것도 가능하다.
또, 상기 기술한 실시 형태에 기재되어 있는 「접촉각」 은 정적인 접촉각 뿐만 아니라, 동적인 접촉각도 포함한다.
상기 노광 장치의 실시 형태에서는 액체 (1) 로서 순수를 사용하였다. 순수는 반도체 제조 공장 등에서 용이하게 대량으로 입수할 수 있음과 함께, 기판 (P) 상의 포토레지스트나 광학 소자 (렌즈) 등에 대한 악영향이 없는 이점이 있다. 또한, 순수는 환경에 대한 악영향이 없음과 함께, 불순물의 함유량이 매우 낮으므로, 기판 (P) 의 표면 및 투영 광학계 (PL) 의 선단면에 형성되어 있는 광학 소자의 표면을 세정하는 작용도 기대할 수 있다. 또 공장 등으로부터 공급되는 순수의 순도가 낮은 경우에는 노광 장치가 초순수 (超純水) 제조기를 갖도록 해도 된다.
상기 각 실시 형태의 액체 (1) 는 물이지만, 물 이외의 액체이어도 되고, 예를 들어 노광광 (EL) 의 광원이 F2 레이저인 경우, 이 F2 레이저광은 물을 투과하지 않으므로, 액체 (1) 로는 F2 레이저광이 투과할 수 있는, 예를 들어 과불화 폴리에테르 (PFPE) 나 불소계 오일 등의 불소계 유체이어도 된다. 이 경우, 액체 (1) 와 접촉하는 부분에는, 예를 들어 불소를 포함하는 극성이 작은 분자 구조의 물질로 박막을 형성함으로써 친액화 처리한다. 또한, 액체 (1) 로는 그 외에도 노광광 (EL) 에 대한 투과성이 있고 가능한 한 굴절률이 높고, 투영 광학계 (PL) 나 기판 (P) 표면에 도포되어 있는 포토레지스트에 대하여 안정적인 것 (예를 들어 시더유 (cedar oil)) 을 사용하는 것도 가능하다. 이 경우에도 표면 처리는 사용하는 액체 (1) 의 극성에 따라 행해진다.
파장이 193㎚ 정도인 노광광 (EL) 에 대한 순수 (물) 의 굴절률 (n) 은 거의 1.44 정도라고 여겨지고 있고, 노광광 (EL) 의 광원으로서 ArF 엑시머 레이저광 (파장 193㎚) 을 사용한 경우, 기판 (P) 상에서는 1/n, 즉 약 134㎚ 정도로 단파장화되어 높은 해상도가 얻어진다. 또한, 초점 심도는 공기 중에 비하여 약 n 배, 즉 약 1.44 배 정도로 확대되기 때문에, 공기 중에서 사용하는 경우와 동일한 정도의 초점 심도를 확보할 수 있으면 되는 경우에는, 투영 광학계 (PL) 의 개구수를 보다 증가시킬 수 있고, 이 점에서도 해상도가 향상된다.
또, 상기 기술한 바와 같이 액침법을 사용한 경우에는 투영 광학계의 개구수 (NA) 가 0.9 ? 1.3 이 되는 경우도 있다. 이와 같이 투영 광학계의 개구수 (NA) 가 커지는 경우에는 종래부터 노광광으로서 사용되고 있는 랜덤 편광광에서는 편광 효과에 따라 결상 성능이 악화되는 경우도 있으므로, 편광 조명을 사용하는 것이 바람직하다. 그 경우, 마스크 (레티클) 의 라인ㆍ앤드ㆍ스페이스 패턴의 라인 패턴의 길이 방향에 맞춘 직선 편광 조명을 행하고, 마스크 (레티클) 의 패턴으로부터는 S 편광 성분 (TE 편광 성분), 즉 라인 패턴의 길이 방향에 따른 편광 방향 성분의 회절광이 많이 사출되도록 하면 된다. 투영 광학계 (PL) 와 기판 (P) 표면에 도포된 레지스트 사이가 액체로 채워져 있는 경우, 투영 광학계 (PL) 와 기판 (P) 표면에 도포된 레지스트 사이가 공기 (기체) 로 채워져 있는 경우에 비해 콘트라스트의 향상에 기여하는 S 편광 성분 (TE 편광 성분) 의 회절광의 레지스트 표면에서의 투과율이 높아지므로, 투영 광학계의 개구수 (NA) 가 1.0 을 넘는 경우에도 높은 결상 성능을 얻을 수 있다. 또한, 위상 시프트 마스크나 일본 공개특허공보 평6-188169호에 개시되어 있는 라인 패턴의 길이 방향에 맞춘 경사입사 (斜入射) 조명법 (특히 다이볼 조명법) 등을 적절히 조합하면 더욱 효과적이다.
또한, 예를 들어 ArF 엑시머 레이저를 노광광으로 하고, 1/4 정도의 축소 배율의 투영 광학계 (PL) 를 사용하여 미세한 라인ㆍ앤드ㆍ스페이스 패턴 (예를 들어 25 ? 50㎚ 정도의 라인ㆍ앤드ㆍ스페이스) 을 기판 (P) 상에 노광하는 경우, 마스크 (M) 의 구조 (예를 들어 패턴의 미세도나 크롬의 두께) 에 따라서는 Wave guide 효과에 의해 마스크 (M) 가 편광판으로서 작용하고, 콘트라스트를 저하시키는 P 편광 성분 (TM 편광 성분) 의 회절광보다 S 편광 성분 (TE 편광 성분) 의 회절광이 많이 마스크 (M) 로부터 사출되므로, 상기 기술한 직선 편광 조명을 사용하는 것이 바람직하지만, 랜덤 편광광으로 마스크 (M) 를 조명해도 투영 광학계 (PL) 의 개구수 (NA) 가 0.9 ? 1.3 과 같이 큰 경우에도 높은 해상 (解像) 성능을 얻을 수 있다. 또한, 마스크 (M) 상의 극미세한 라인ㆍ앤드ㆍ스페이스 패턴을 기판 (P) 상에 노광하는 경우, Wire Grid 효과에 의해 P 편광 성분 (TM 편광 성분) 이 S 편광 성분 (TE 편광 성분) 보다 커질 가능성도 있지만, 예를 들어 ArF 엑시머 레이저를 노광광으로 하고, 1/4 정도의 축소 배율의 투영 광학계 (PL) 를 사용하여 25㎚ 보다 큰 라인ㆍ앤드ㆍ스페이스 패턴을 기판 (P) 상에 노광하는 경우에는 S 편광 성분 (TE 편광 성분) 의 회절광이 P 편광 성분 (TM 편광 성분) 의 회절광보다 많이 마스크 (M) 로부터 사출되므로, 투영 광학계 (PL) 의 개구수 (NA) 가 0.9 ? 1.3 과 같이 큰 경우에도 높은 해상 성능을 얻을 수 있다.
또한, 마스크 (레티클) 의 라인 패턴의 길이 방향에 맞춘 직선 편광 조명 (S 편광 조명) 뿐만 아니라, 일본 공개특허공보 평6-53120호에 개시되어 있는 바와 같이, 광축을 중심으로 한 원의 접선 (둘레) 방향으로 직선 편광하는 편광 조명법과 경사입사 조명법의 조합도 효과적이다. 특히, 마스크 (레티클) 의 패턴이 소정의 일방향으로 연장되는 라인 패턴 뿐만 아니라, 복수의 다른 방향으로 연장되는 라인 패턴이 혼재하는 경우에는 마찬가지로 일본 공개특허공보 평6-53120호에 개시되어 있는 바와 같이, 광축을 중심으로 한 원의 접선 방향으로 직선 편광하는 편광 조명법과 윤대 조명법을 병용함으로써, 투영 광학계의 개구수 (NA) 가 큰 경우에도 높은 결상 성능을 얻을 수 있다.
상기 각 실시 형태에서는 투영 광학계 (PL) 의 선단에 광학 소자 (2) 가 장착되어 있고, 이 렌즈에 의해 투영 광학계 (PL) 의 광학 특성, 예를 들어 수차 (구면 수차, 코마 수차 등) 를 조정할 수 있다. 또, 투영 광학계 (PL) 의 선단에 장착되는 광학 소자로는 투영 광학계 (PL) 의 광학 특성의 조정에 사용하는 광학 플레이트이어도 된다. 또는 노광광 (EL) 을 투과 가능한 평행 평면판이어도 된다. 액체 (1) 와 접촉하는 광학 소자를 렌즈보다 저렴한 평행 평면판으로 함으로써, 노광 장치 (EX) 의 운반, 조립, 조정시 등에 있어서 투영 광학계 (PL) 의 투과율, 기판 (P) 상에서의 노광광 (EL) 의 조도 및 조도 분포의 균일성을 저하시키는 물질 (예를 들어 규소계 유기물 등) 이 그 평행 평면판에 부착해도, 액체 (1) 를 공급하기 직전에 그 평행 평면판을 교환하는 것만으로 되고, 액체 (1) 와 접촉하는 광학 소자를 렌즈로 하는 경우에 비하여 그 교환 비용이 낮아진다는 이점이 있다. 즉, 노광광 (EL) 의 조사에 의해 레지스트로부터 발생하는 비산 입자, 또는 액체 (1) 중의 불순물의 부착 등에 기인하여 액체 (1) 에 접촉하는 광학 소자의 표면이 더러워지므로, 그 광학 소자를 정기적으로 교환할 필요가 있는데, 이 광학 소자를 저렴한 평행 평면판으로 함으로써, 렌즈에 비교하여 교환 부품의 비용이 낮고, 또한 교환에 요하는 시간을 짧게 할 수 있고, 보수 유지 비용 (운영 비용) 의 상승이나 스루풋의 저하를 억제할 수 있다.
또, 액체 (1) 의 흐름에 따라 생기는 투영 광학계 (PL) 선단의 광학 소자와 기판 (P) 사이의 압력이 큰 경우에는, 그 광학 소자를 교환 가능하게 하는 것이 아니라, 그 압력에 의해 광학 소자가 움직이지 않도록 견고하게 고정해도 된다.
또한, 상기 각 실시 형태에서는, 투영 광학계 (PL) 와 기판 (P) 표면 사이는 액체 (1) 로 채워져 있는 구성이지만, 예를 들어 기판 (P) 의 표면에 평행 평면판으로 이루어지는 커버 유리를 장착한 상태에서 액체 (1) 를 채우는 구성이어도 된다.
또, 상기 기술한 액침법을 적용한 노광 장치는 투영 광학계 (PL) 의 종단 광학 소자 (2) 의 사출측의 광로 공간을 액체 (순수) 로 채워 기판 (P) 을 노광하는 구성으로 되어 있지만, 국제 공개 제2004/019128호에 개시되어 있는 바와 같이, 투영 광학계 (PL) 의 종단 광학 소자 (2) 의 입사측의 광로 공간도 액체 (순수) 로 채우도록 해도 된다.
또한, 상기 각 실시 형태의 기판 (P) 으로는 반도체 디바이스 제조용 반도체 웨이퍼 뿐만 아니라, 디스플레이 디바이스용 유리 기판이나, 박막 자기 헤드용 세라믹 웨이퍼, 또는 노광 장치에서 사용되는 마스크 또는 레티클의 원판 (합성 석영, 규소 웨이퍼) 등이 적용된다.
노광 장치 (EX) 로는 마스크 (M) 와 기판 (P) 을 동기 이동하여 마스크 (M) 의 패턴을 주사 노광하는 스텝ㆍ앤드ㆍ스캔 방식의 주사형 노광 장치 (스캐닝 스테퍼) 외에, 마스크 (M) 과 기판 (P) 을 정지한 상태로 마스크 (M) 의 패턴을 일괄 노광하고, 기판 (P) 을 순차적으로 단계 이동시키는 스텝ㆍ앤드ㆍ리피트 방식의 투영 노광 장치 (스테퍼) 에도 적용할 수 있다. 또한, 본 발명은 기판 (P) 상에서 적어도 2 개의 패턴을 부분적으로 겹쳐 전사하는 스텝ㆍ앤드ㆍ스티치 방식의 노광 장치에도 적용할 수 있다.
또한, 상기 기술한 실시 형태에서는 투영 광학계 (PL) 와 기판 (P) 사이를 국소적으로 액체로 채우는 노광 장치를 채용하고 있지만, 노광 대상의 기판 표면 전체가 액체로 덮이는 액침 노광 장치에도 본 발명을 적용할 수 있다. 노광 대상의 기판 표면 전체가 액체로 덮이는 액침 노광 장치의 구조 및 노광 동작은, 예를 들어 일본 공개특허공보 평6-124873호, 일본 공개특허공보 평10-303114호, 미국 특허 제5,825,043호 등에 상세하게 기재되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
노광 장치 (EX) 의 종류로는 기판 (P) 에 반도체 소자 패턴을 노광하는 반도체 소자 제조용 노광 장치에 한정되지 않고, 액정 표시 소자 제조용 또는 디스플레이 제조용 노광 장치나, 박막 자기 헤드, 촬상 소자 (CCD) 또는 레티클 또는 마스크 등을 제조하기 위한 노광 장치 등에도 널리 적용할 수 있다.
기판 스테이지 (PST) (웨이퍼 스테이지 (609)) 나 마스크 스테이지 (MST) 에 리니어 모터를 사용하는 경우에는 에어 베어링을 사용한 에어 부상형 및 로렌츠력 또는 리액턴스력을 사용한 자기 부상형의 어느 쪽을 사용해도 된다. 또, 각 스테이지 (PST (609), MST) 는 가이드를 따라 이동하는 타입이어도 되고, 가이드를 형성하지 않은 가이드리스 (guideless) 타입이어도 된다. 스테이지에 리니어 모터를 사용한 예는 미국 특허 제5,623,853호 및 제5,528,118호에 개시되어 있고, 각각 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이들 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
각 스테이지 (PST (609), MST) 의 구동 기구로는 2 차원으로 자석을 배치한 자석 유닛과, 2 차원으로 코일을 배치한 전기자 유닛을 대향시켜 전자력에 의해 각 스테이지 (PST (609), MST) 를 구동하는 평면 모터를 사용해도 된다. 이 경우, 자석 유닛과 전기자 유닛 중 어느 일측을 스테이지 (PST (609), MST) 에 접속하고, 자석 유닛과 전기자 유닛의 타측을 스테이지 (PST (609), MST) 의 이동면측에 형성하면 된다.
기판 스테이지 (PST; 609) 의 이동에 의해 발생하는 반력 (反力) 은 투영 광학계 (PL) 에 전해지지 않도록, 프레임 부재를 사용하여 기계적으로 바닥 (대지) 에 빼내도 된다. 이 반력의 처리 방법은, 예를 들어 미국 특허 제5,528,118호 (일본 공개특허공보 평8-166475호) 에 상세하게 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이 문헌의 기재 내용을 원용하여 본문의 기재의 일부로 한다.
마스크 스테이지 (MST) 의 이동에 의해 발생하는 반력은 투영 광학계 (PL) 에 전해지지 않도록, 프레임 부재를 사용하여 기계적으로 바닥 (대지) 에 빼내도 된다. 이 반력의 처리 방법은, 예를 들어 미국 특허 제5,874,820호 (일본 공개특허공보 평8-330224호) 에 상세하게 개시되어 있고, 본 국제 출원에서 지정 또는 선택된 나라의 법령으로 허용되는 한, 이 문헌의 개시를 원용하여 본문의 기재의 일부로 한다.
이상과 같이, 본원 실시 형태의 노광 장치 (EX) 는 본원 청구의 범위에 언급된 각 구성 요소를 포함하는 각종 서브 시스템을 소정의 기계적 정밀도, 전기적 정밀도, 광학적 정밀도를 유지하도록 조립함으로써 제조된다. 이들 각종 정밀도를 확보하기 위해, 이 조립 전후에는 각종 광학계에 대해서는 광학적 정밀도를 달성하기 위한 조정, 각종 기계계에 대해서는 기계적 정밀도를 달성하기 위한 조정, 각종 전기계에 대해서는 전기적 정밀도를 달성하기 위한 조정이 행해진다. 각종 서브 시스템으로부터 노광 장치로의 조립 공정은 각종 서브 시스템 상호의 기계적 접속, 전기 회로의 배선 접속, 기압 회로의 배관 접속 등이 포함된다. 이 각종 서브 시스템으로부터 노광 장치로의 조립 공정전에 각 서브 시스템 개개의 조립 공정이 있는 것은 말할 필요도 없다. 각종 서브 시스템의 노광 장치로의 조립 공정이 종료하면, 종합 조정이 행해져 노광 장치 전체로서의 각종 정밀도가 확보된다. 또, 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린 룸에서 실시하는 것이 바람직하다.
반도체 디바이스 등의 마이크로 디바이스는 도 17 에 나타내는 바와 같이, 마이크로 디바이스의 기능ㆍ성능 설계를 하는 단계 201, 이 설계 단계에 기초한 마스크 (레티클) 를 제작하는 단계 202, 디바이스의 기재인 기판을 제조하는 단계 203, 상기 기술한 실시 형태의 노광 장치 (EX) 에 의해 마스크의 패턴을 기판에 노광하는 노광 처리 단계 204, 디바이스 조립 단계 (다이싱 공정, 본딩 공정, 패키지 공정을 포함) 205, 검사 단계 206 등을 거쳐 제조된다.
본 발명의 노광 장치에 의하면, 액체의 유출을 억제하여 노광 처리할 수 있고, 액체의 잔류를 방지할 수 있기 때문에, 높은 노광 정밀도로 액침 노광할 수 있다.
본 발명의 광학 부품에 의하면, 접착 미립자층을 형성하는 이산화 규소 (SiO2), 불화 마그네슘 (MgF2) 및 불화 칼슘 (CaF2) 중의 적어도 1 개로 이루어지는 미립자층은 기재의 유리 (주성분 SiO2) 와 친화성이 좋고, 기재 유리와 적당한 밀착성이 얻어진다. 또한, 표면에 입자 직경에 유래하는 요철을 발생시킨다. 또한, 이산화 규소 등은 자외선 투과율이 매우 높은 재료이기 때문에, 그 자체의 레이저 조사 내구성도 높다. 따라서, 이산화 규소 (SiO2), 불화 마그네슘 (MgF2) 및 불화 칼슘 (CaF2) 중의 적어도 1 개로 이루어지는 미립자층을 막형성한 후, 비정질 불소 수지에 의해 구성되는 발수성막을 형성한다. 비정질 불소 수지는 이산화 규소 등의 미립자의 틈에 들어가고, 끌어안듯이 건조ㆍ고화된다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수성막의 강도는 높은 것이 된다. 따라서, 액체와 접하는 광범위한 환경에서 사용되는 광학 비품이나 광학 센서에 적용할 수 있다.
또한, 본 발명의 광학 부품에 의하면, 광조사면에 예를 들어 불화 수소에 의해 에칭한 에칭면에 의해 구성되는 접착면을 가지므로, 접착면 상에 비정질 불소 수지에 의해 구성되는 발수성막을 형성하면, 비정질 불소 수지는 접착면의 틈에 들어가고, 끌어안듯이 건조ㆍ고화된다. 비정질 불소 수지 자체의 기계적인 강도는 높으므로, 기재에 밀착시킨 발수성막의 강도는 높은 것이 된다. 따라서, 액체와 접하는 광범위한 환경에서 사용되는 광학 비품이나 광학 센서에 적용할 수 있다.
또한, 본 발명의 투영 노광 장치에 의하면, 기판 스테이지 상에 광조사면의 발수성을 장기간에 걸쳐 유지할 수 있는 광학 부품을 탑재하고 있기 때문에, 액침 노광을 반복한 경우에 있어서도, 광학 부품의 광조사면 상의 배수를 확실하게 실시할 수 있다.

Claims (1)

  1. 액체를 통해 기판에 노광광을 조사하여 상기 기판을 노광하는 노광 장치로서,
    상기 기판 상에 패턴의 이미지를 투영하는 투영 광학계;
    상기 기판을 유지하기 위한 기판 유지부를 갖는 기판 테이블; 및
    상기 기판 테이블에 탈착 가능하게 형성되고, 표면의 적어도 일부가 발액성을 갖는 부재를 구비하는 노광 장치.
KR1020127025341A 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품 KR101431944B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003404384 2003-12-03
JPJP-P-2003-404384 2003-12-03
JP2004042496 2004-02-19
JPJP-P-2004-042496 2004-02-19
PCT/JP2004/018435 WO2005055296A1 (ja) 2003-12-03 2004-12-03 露光装置、露光方法及びデバイス製造方法、並びに光学部品

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020067005879A Division KR101270413B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학부품

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020137020082A Division KR101442448B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020127028170A Division KR101437254B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품

Publications (2)

Publication Number Publication Date
KR20120115593A true KR20120115593A (ko) 2012-10-18
KR101431944B1 KR101431944B1 (ko) 2014-09-22

Family

ID=34656211

Family Applications (9)

Application Number Title Priority Date Filing Date
KR1020127025341A KR101431944B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020157019719A KR101793800B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020147032572A KR101682884B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020147008198A KR101525367B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020067005879A KR101270413B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학부품
KR1020127028170A KR101437254B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020137020082A KR101442448B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020177025716A KR20170107102A (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020117024388A KR101394764B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품

Family Applications After (8)

Application Number Title Priority Date Filing Date
KR1020157019719A KR101793800B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020147032572A KR101682884B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020147008198A KR101525367B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020067005879A KR101270413B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학부품
KR1020127028170A KR101437254B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020137020082A KR101442448B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020177025716A KR20170107102A (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
KR1020117024388A KR101394764B1 (ko) 2003-12-03 2004-12-03 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품

Country Status (9)

Country Link
US (5) US8054447B2 (ko)
EP (4) EP1699072B1 (ko)
KR (9) KR101431944B1 (ko)
CN (2) CN102163004B (ko)
HK (1) HK1089292A1 (ko)
IL (4) IL176057A (ko)
SG (3) SG148994A1 (ko)
TW (6) TWI440981B (ko)
WO (1) WO2005055296A1 (ko)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3208658B1 (en) * 2004-02-04 2018-06-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
CN1950929B (zh) * 2004-03-25 2011-05-25 株式会社尼康 曝光装置及曝光方法、以及组件制造方法
US7898642B2 (en) * 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005119368A2 (en) * 2004-06-04 2005-12-15 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
EP2637061B1 (en) 2004-06-09 2018-07-18 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
JP4543767B2 (ja) * 2004-06-10 2010-09-15 株式会社ニコン 露光装置及びデバイス製造方法
EP1783823A4 (en) * 2004-07-21 2009-07-22 Nikon Corp EXPOSURE METHOD AND METHOD FOR PRODUCING COMPONENTS
SG155927A1 (en) 2004-09-17 2009-10-29 Nikon Corp Substrate holding device, exposure apparatus, and device manufacturing method
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
KR101771334B1 (ko) 2004-12-15 2017-08-24 가부시키가이샤 니콘 기판 유지 장치, 노광 장치 및 디바이스 제조방법
JP2006270057A (ja) * 2005-02-28 2006-10-05 Canon Inc 露光装置
KR101344142B1 (ko) 2005-04-25 2013-12-23 가부시키가이샤 니콘 노광 방법, 노광 장치, 및 디바이스 제조 방법
US20070004182A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and system for inhibiting immersion lithography defect formation
US7583358B2 (en) * 2005-07-25 2009-09-01 Micron Technology, Inc. Systems and methods for retrieving residual liquid during immersion lens photolithography
US8070145B2 (en) * 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US7456928B2 (en) 2005-08-29 2008-11-25 Micron Technology, Inc. Systems and methods for controlling ambient pressure during processing of microfeature workpieces, including during immersion lithography
US7812926B2 (en) * 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
JP4735186B2 (ja) * 2005-10-21 2011-07-27 株式会社ニコン 液浸顕微鏡装置
US8472004B2 (en) * 2006-01-18 2013-06-25 Micron Technology, Inc. Immersion photolithography scanner
US20070177119A1 (en) * 2006-02-02 2007-08-02 Keiko Chiba Exposure apparatus and device manufacturing method
EP1995768A4 (en) 2006-03-13 2013-02-06 Nikon Corp EXPOSURE DEVICE, MAINTENANCE METHOD, EXPOSURE METHOD AND DEVICE MANUFACTURING METHOD
CA2582112A1 (en) * 2006-03-13 2007-09-13 Clemex Technologies Inc. System and method for automatic measurements and calibration of computerized magnifying instruments
US8027019B2 (en) 2006-03-28 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007266504A (ja) * 2006-03-29 2007-10-11 Canon Inc 露光装置
KR20080108341A (ko) 2006-04-03 2008-12-12 가부시키가이샤 니콘 액침 액체에 대해 소용매성인 입사면 및 광학 윈도우
WO2007139017A1 (ja) * 2006-05-29 2007-12-06 Nikon Corporation 液体回収部材、基板保持部材、露光装置、及びデバイス製造方法
DE102006032491A1 (de) * 2006-07-13 2008-01-17 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Rotorposition bei einem bürstenlosen und sensorlosen Elektromotor
JP2008103493A (ja) * 2006-10-18 2008-05-01 Lintec Corp チップのピックアップ方法及びピックアップ装置
US20080158531A1 (en) * 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP5055971B2 (ja) * 2006-11-16 2012-10-24 株式会社ニコン 表面処理方法及び表面処理装置、露光方法及び露光装置、並びにデバイス製造方法
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8013975B2 (en) * 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8634052B2 (en) * 2006-12-13 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and method involving a ring to cover a gap between a substrate and a substrate table
US8416383B2 (en) * 2006-12-13 2013-04-09 Asml Netherlands B.V. Lithographic apparatus and method
JP2008192854A (ja) * 2007-02-05 2008-08-21 Canon Inc 液浸露光装置
US20080198346A1 (en) * 2007-02-16 2008-08-21 Canon Kabushiki Kaisha Exposure apparatus and method for manufacturing device
US7808612B2 (en) * 2007-04-05 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and method for masking a substrate
US8975599B2 (en) 2007-05-03 2015-03-10 Asml Netherlands B.V. Image sensor, lithographic apparatus comprising an image sensor and use of an image sensor in a lithographic apparatus
WO2008146819A1 (ja) 2007-05-28 2008-12-04 Nikon Corporation 露光装置、デバイス製造方法、洗浄装置、及びクリーニング方法並びに露光方法
US8125611B2 (en) * 2007-06-13 2012-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography
US7561250B2 (en) * 2007-06-19 2009-07-14 Asml Netherlands B.V. Lithographic apparatus having parts with a coated film adhered thereto
JP2009010079A (ja) * 2007-06-27 2009-01-15 Canon Inc 露光装置
JP2009043809A (ja) * 2007-08-07 2009-02-26 Canon Inc 投影光学系の製造方法
JP2009054784A (ja) 2007-08-27 2009-03-12 Canon Inc 補助板およびそれを有する露光装置
US7688518B2 (en) * 2007-10-29 2010-03-30 Corning Incorporated Fluid lens lateral shifting
CN101441278A (zh) * 2007-11-20 2009-05-27 鸿富锦精密工业(深圳)有限公司 固持装置及固持方法
JP2009176838A (ja) * 2008-01-22 2009-08-06 Canon Inc 液浸露光装置及びデバイス製造方法
JP2010118455A (ja) * 2008-11-12 2010-05-27 Canon Inc 液浸露光装置に用いられる部材、液浸露光装置及びデバイス製造方法
JP2010251745A (ja) * 2009-04-10 2010-11-04 Asml Netherlands Bv 液浸リソグラフィ装置及びデバイス製造方法
EP2264528A1 (en) * 2009-06-19 2010-12-22 ASML Netherlands B.V. Sensor and lithographic apparatus
NL2004807A (en) * 2009-06-30 2011-01-04 Asml Netherlands Bv Substrate table for a lithographic apparatus, litographic apparatus, method of using a substrate table and device manufacturing method.
JP5431831B2 (ja) * 2009-08-21 2014-03-05 株式会社ディスコ レーザー加工装置
NL2005874A (en) * 2010-01-22 2011-07-25 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
JP2013004942A (ja) * 2011-06-22 2013-01-07 Renesas Electronics Corp 半導体装置の製造方法
US20130016329A1 (en) 2011-07-12 2013-01-17 Nikon Corporation Exposure apparatus, exposure method, measurement method, and device manufacturing method
JP6004169B2 (ja) * 2011-09-02 2016-10-05 セイコーエプソン株式会社 インクジェット捺染装置
US10371920B2 (en) 2012-03-22 2019-08-06 Nikon Research Corporation Of America Mirror assembly with heat transfer mechanism
JP2013207012A (ja) * 2012-03-28 2013-10-07 Renesas Electronics Corp 半導体装置の製造方法および露光装置
TWI624862B (zh) * 2012-06-11 2018-05-21 應用材料股份有限公司 在脈衝式雷射退火中使用紅外線干涉技術之熔化深度測定
JP2014045090A (ja) * 2012-08-27 2014-03-13 Toshiba Corp 液浸露光装置
US20150270155A1 (en) * 2012-11-21 2015-09-24 Ev Group Inc. Accommodating device for accommodation and mounting of a wafer
CN108336011B (zh) * 2012-11-30 2022-08-02 株式会社尼康 搬入方法、搬送系统及曝光装置、和器件制造方法
CN104956465B (zh) * 2012-11-30 2018-05-29 株式会社尼康 搬送系统、曝光装置、搬送方法、曝光方法及器件制造方法、以及吸引装置
CN104297971A (zh) * 2013-07-15 2015-01-21 睿志达光电(深圳)有限公司 显示面板的基板处理方法
KR102240655B1 (ko) * 2014-02-13 2021-04-16 삼성디스플레이 주식회사 노광 장치 및 이를 이용한 노광 방법
JP6433264B2 (ja) * 2014-11-27 2018-12-05 株式会社ディスコ 透過レーザービームの検出方法
US10242848B2 (en) * 2014-12-12 2019-03-26 Lam Research Corporation Carrier ring structure and chamber systems including the same
JP6466597B2 (ja) 2015-04-29 2019-02-06 エーエスエムエル ネザーランズ ビー.ブイ. サポート装置、リソグラフィ装置およびデバイス製造方法
CN111913368A (zh) * 2015-09-28 2020-11-10 Asml荷兰有限公司 衬底保持器、光刻设备和制造器件的方法
CN111474826A (zh) * 2015-12-15 2020-07-31 Asml荷兰有限公司 衬底保持器、光刻设备及制造器件的方法
JP6709726B2 (ja) 2015-12-18 2020-06-17 日本特殊陶業株式会社 基板保持装置、基板保持部材および基板保持方法
US11191741B2 (en) 2016-12-24 2021-12-07 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of enhancer of zeste homolog 2 polypeptide
TWI619272B (zh) * 2017-02-24 2018-03-21 Ttop Corp Light source sensor lead frame substrate structure
US11482417B2 (en) * 2019-08-23 2022-10-25 Taiwan Semiconductor Manufacturing Company Ltd. Method of manufacturing semiconductor structure
JP7419030B2 (ja) * 2019-11-18 2024-01-22 キヤノン株式会社 保持装置、露光装置、及び物品の製造方法
WO2023096987A1 (en) 2021-11-24 2023-06-01 Arvinas Operations, Inc. Brm targeting compounds and associated methods of use

Family Cites Families (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS62221130A (ja) 1986-03-24 1987-09-29 Toshiba Corp 真空チヤツク装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JP2978192B2 (ja) 1990-02-19 1999-11-15 株式会社ピュアレックス 半導体ウエハー試料作成法
JP2897355B2 (ja) 1990-07-05 1999-05-31 株式会社ニコン アライメント方法,露光装置,並びに位置検出方法及び装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JP3246615B2 (ja) 1992-07-27 2002-01-15 株式会社ニコン 照明光学装置、露光装置、及び露光方法
JPH06188169A (ja) 1992-08-24 1994-07-08 Canon Inc 結像方法及び該方法を用いる露光装置及び該方法を用いるデバイス製造方法
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
US5591958A (en) 1993-06-14 1997-01-07 Nikon Corporation Scanning exposure method and apparatus
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
JPH06326174A (ja) 1993-05-12 1994-11-25 Hitachi Ltd ウェハ真空吸着装置
JPH0781978A (ja) * 1993-06-18 1995-03-28 Olympus Optical Co Ltd ガラス製光学部品における撥水性を有する反射防止膜
JP2890089B2 (ja) 1993-09-06 1999-05-10 東京エレクトロン株式会社 処理装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
JP3555230B2 (ja) 1994-05-18 2004-08-18 株式会社ニコン 投影露光装置
US5623853A (en) 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JP3387075B2 (ja) 1994-12-12 2003-03-17 株式会社ニコン 走査露光方法、露光装置、及び走査型露光装置
JPH08250402A (ja) 1995-03-15 1996-09-27 Nikon Corp 走査型露光方法及び装置
JP3312164B2 (ja) 1995-04-07 2002-08-05 日本電信電話株式会社 真空吸着装置
JPH0936212A (ja) 1995-05-16 1997-02-07 Shinko Electric Co Ltd 静電チャック
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5923408A (en) * 1996-01-31 1999-07-13 Canon Kabushiki Kaisha Substrate holding system and exposure apparatus using the same
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
AU5067898A (en) 1996-11-28 1998-06-22 Nikon Corporation Aligner and method for exposure
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
EP0890136B9 (en) 1996-12-24 2003-12-10 ASML Netherlands B.V. Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JPH10255319A (ja) 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3747566B2 (ja) * 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) * 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
US6381013B1 (en) 1997-06-25 2002-04-30 Northern Edge Associates Test slide for microscopes and method for the production of such a slide
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
JPH1149504A (ja) 1997-07-29 1999-02-23 Toshiba Eng Co Ltd 廃活性炭と水との分離装置
JPH11111819A (ja) 1997-09-30 1999-04-23 Asahi Kasei Micro Syst Co Ltd ウェハーの固定方法及び露光装置
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JPH11163103A (ja) 1997-11-25 1999-06-18 Hitachi Ltd 半導体装置の製造方法および製造装置
JPH11176727A (ja) * 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
JPH11239758A (ja) 1998-02-26 1999-09-07 Dainippon Screen Mfg Co Ltd 基板処理装置
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
WO1999060361A1 (fr) 1998-05-19 1999-11-25 Nikon Corporation Instrument et procede de mesure d'aberrations, appareil et procede de sensibilisation par projection incorporant cet instrument, et procede de fabrication de dispositifs associe
US6819414B1 (en) 1998-05-19 2004-11-16 Nikon Corporation Aberration measuring apparatus, aberration measuring method, projection exposure apparatus having the same measuring apparatus, device manufacturing method using the same measuring method, and exposure method
US6036586A (en) * 1998-07-29 2000-03-14 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
WO2000072375A1 (fr) 1999-05-20 2000-11-30 Nikon Corporation Contenant pour appareil d'exposition de support, procede de fabrication de dispositif et appareil de fabrication de dispositif
DE69930398T2 (de) 1999-09-20 2006-10-19 Nikon Corp. Belichtungssystem mit einem parallelen Verbindungsmechanismus und Belichtungsverfahren
US7187503B2 (en) 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US6995930B2 (en) 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
JP2001332490A (ja) * 2000-03-14 2001-11-30 Nikon Corp 位置合わせ方法、露光方法、露光装置、及びデバイス製造方法
KR20010095087A (ko) 2000-03-30 2001-11-03 시마무라 테루오 노광장치, 노광방법 및 디바이스의 제조방법
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
KR100866818B1 (ko) 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
EP1231514A1 (en) 2001-02-13 2002-08-14 Asm Lithography B.V. Measurement of wavefront aberrations in a lithographic projection apparatus
US20020163629A1 (en) 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
KR100724135B1 (ko) 2001-10-05 2007-06-04 신에쓰 가가꾸 고교 가부시끼가이샤 퍼플루오로폴리에테르-변성 실란, 표면처리제, 및반사방지 필터
JP4412450B2 (ja) * 2001-10-05 2010-02-10 信越化学工業株式会社 反射防止フィルター
JP2003124089A (ja) 2001-10-09 2003-04-25 Nikon Corp 荷電粒子線露光装置及び露光方法
JP2003121977A (ja) * 2001-10-12 2003-04-23 Hitachi Ltd 半導体集積回路装置の製造方法およびマスク
US7160429B2 (en) 2002-05-07 2007-01-09 Microfabrica Inc. Electrochemically fabricated hermetically sealed microstructures and methods of and apparatus for producing such structures
TW521320B (en) 2001-12-10 2003-02-21 Via Tech Inc Device and method for substrate exposure
JP2003240906A (ja) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd 反射防止体およびその製造方法
DE10229818A1 (de) 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
DE10210899A1 (de) 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
US7092069B2 (en) 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
US6828542B2 (en) 2002-06-07 2004-12-07 Brion Technologies, Inc. System and method for lithography process monitoring and control
JP4099116B2 (ja) * 2002-06-14 2008-06-11 エーエスエムエル ネザーランズ ビー.ブイ. 自己集合単分子層を伴う光学エレメントを備えたeuvリソグラフィ投影装置、自己集合単分子層を伴う光学エレメント、自己集合単分子層を適用する方法、デバイス製造法
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20040055803A1 (en) 2002-09-24 2004-03-25 Patmont Motor Werks Variable speed transmission for scooter
TW559895B (en) * 2002-09-27 2003-11-01 Taiwan Semiconductor Mfg Exposure system and exposure method thereof
US6988327B2 (en) 2002-09-30 2006-01-24 Lam Research Corporation Methods and systems for processing a substrate using a dynamic liquid meniscus
US6988326B2 (en) 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US6954993B1 (en) 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
US7383843B2 (en) 2002-09-30 2008-06-10 Lam Research Corporation Method and apparatus for processing wafer surfaces using thin, high velocity fluid layer
US7093375B2 (en) 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US6788477B2 (en) 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
EP1429188B1 (en) * 2002-11-12 2013-06-19 ASML Netherlands B.V. Lithographic projection apparatus
CN101382738B (zh) 2002-11-12 2011-01-12 Asml荷兰有限公司 光刻投射装置
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3977324B2 (ja) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE60335595D1 (de) 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
KR100588124B1 (ko) 2002-11-12 2006-06-09 에이에스엠엘 네델란즈 비.브이. 리소그래피장치 및 디바이스제조방법
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (de) 2002-11-18 2004-06-03 Infineon Technologies Ag Optische Einrichtung zur Verwendung bei einem Lithographie-Verfahren, insbesondere zur Herstellung eines Halbleiter-Bauelements, sowie optisches Lithographieverfahren
DE10258718A1 (de) 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
JP4595320B2 (ja) * 2002-12-10 2010-12-08 株式会社ニコン 露光装置、及びデバイス製造方法
EP1571697A4 (en) 2002-12-10 2007-07-04 Nikon Corp EXPOSURE SYSTEM AND DEVICE PRODUCTION METHOD
WO2004053953A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
EP1429190B1 (en) 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
AU2003289271A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
US7010958B2 (en) 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
JP4364805B2 (ja) 2002-12-19 2009-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 層上にスポットを照射する方法及び装置
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6781670B2 (en) 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
TW200424767A (en) 2003-02-20 2004-11-16 Tokyo Ohka Kogyo Co Ltd Immersion exposure process-use resist protection film forming material, composite film, and resist pattern forming method
EP1450176A1 (en) 2003-02-21 2004-08-25 Liaisons Electroniques-Mecaniques Lem S.A. Magnetic field sensor and electrical current sensor therewith
US7090964B2 (en) 2003-02-21 2006-08-15 Asml Holding N.V. Lithographic printing with polarized light
US7206059B2 (en) 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
KR101177331B1 (ko) 2003-04-09 2012-08-30 가부시키가이샤 니콘 액침 리소그래피 유체 제어 시스템
JP4650413B2 (ja) 2003-04-10 2011-03-16 株式会社ニコン 液浸リソグフラフィ装置用の移送領域を含む環境システム
JP4656057B2 (ja) 2003-04-10 2011-03-23 株式会社ニコン 液浸リソグラフィ装置用電気浸透素子
SG2012050829A (en) 2003-04-10 2015-07-30 Nippon Kogaku Kk Environmental system including vacuum scavange for an immersion lithography apparatus
EP2921905B1 (en) 2003-04-10 2017-12-27 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
SG185136A1 (en) 2003-04-11 2012-11-29 Nikon Corp Cleanup method for optics in immersion lithography
WO2004092830A2 (en) 2003-04-11 2004-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
KR101225884B1 (ko) 2003-04-11 2013-01-28 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침 액체를 유지하는 장치 및 방법
WO2004095135A2 (en) 2003-04-17 2004-11-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
TW200424730A (en) 2003-05-03 2004-11-16 Jiahn-Chang Wu Projector with UV light source.
JP4025683B2 (ja) 2003-05-09 2007-12-26 松下電器産業株式会社 パターン形成方法及び露光装置
JP4146755B2 (ja) 2003-05-09 2008-09-10 松下電器産業株式会社 パターン形成方法
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TW200509205A (en) 2003-05-23 2005-03-01 Nippon Kogaku Kk Exposure method and device-manufacturing method
TWI282487B (en) 2003-05-23 2007-06-11 Canon Kk Projection optical system, exposure apparatus, and device manufacturing method
TWI347741B (en) 2003-05-30 2011-08-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261741A3 (en) 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4084710B2 (ja) 2003-06-12 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4054285B2 (ja) 2003-06-12 2008-02-27 松下電器産業株式会社 パターン形成方法
KR101940892B1 (ko) 2003-06-13 2019-01-21 가부시키가이샤 니콘 노광 방법, 기판 스테이지, 노광 장치, 및 디바이스 제조 방법
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4084712B2 (ja) 2003-06-23 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4029064B2 (ja) 2003-06-23 2008-01-09 松下電器産業株式会社 パターン形成方法
JP2005019616A (ja) 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
JP4343597B2 (ja) 2003-06-25 2009-10-14 キヤノン株式会社 露光装置及びデバイス製造方法
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1491956B1 (en) 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3862678B2 (ja) 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7236232B2 (en) 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
EP2853943B1 (en) 2003-07-08 2016-11-16 Nikon Corporation Wafer table for immersion lithography
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7006209B2 (en) 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145643B2 (en) 2003-08-07 2006-12-05 Asml Netherlands B.V. Interface unit, lithographic projection apparatus comprising such an interface unit and a device manufacturing method
US7061578B2 (en) 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7700267B2 (en) 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7579135B2 (en) 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7014966B2 (en) 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
KR20170070264A (ko) 2003-09-03 2017-06-21 가부시키가이샤 니콘 액침 리소그래피용 유체를 제공하기 위한 장치 및 방법
JP4378136B2 (ja) 2003-09-04 2009-12-02 キヤノン株式会社 露光装置及びデバイス製造方法
JP3870182B2 (ja) 2003-09-09 2007-01-17 キヤノン株式会社 露光装置及びデバイス製造方法
US6961186B2 (en) 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
TW201809911A (zh) * 2003-09-29 2018-03-16 尼康股份有限公司 曝光裝置及曝光方法、以及元件製造方法
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519231B1 (en) 2003-09-29 2005-12-21 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7369217B2 (en) 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
JP2005136374A (ja) 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 半導体製造装置及びそれを用いたパターン形成方法
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524557A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7678527B2 (en) 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
WO2005050324A2 (en) 2003-11-05 2005-06-02 Dsm Ip Assets B.V. A method and apparatus for producing microchips
US7924397B2 (en) 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
EP1531362A3 (en) 2003-11-13 2007-07-25 Matsushita Electric Industrial Co., Ltd. Semiconductor manufacturing apparatus and pattern formation method
JP2005150290A (ja) 2003-11-13 2005-06-09 Canon Inc 露光装置およびデバイスの製造方法
JP4295712B2 (ja) 2003-11-14 2009-07-15 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及び装置製造方法
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1695148B1 (en) 2003-11-24 2015-10-28 Carl Zeiss SMT GmbH Immersion objective
DE10355301B3 (de) 2003-11-27 2005-06-23 Infineon Technologies Ag Verfahren zur Abbildung einer Struktur auf einen Halbleiter-Wafer mittels Immersionslithographie
US7125652B2 (en) 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
JP2005175016A (ja) 2003-12-08 2005-06-30 Canon Inc 基板保持装置およびそれを用いた露光装置ならびにデバイス製造方法
JP2005175034A (ja) 2003-12-09 2005-06-30 Canon Inc 露光装置
WO2005059654A1 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Objective as a microlithography projection objective with at least one liquid lens
KR101941351B1 (ko) 2003-12-15 2019-01-22 가부시키가이샤 니콘 스테이지 장치, 노광 장치, 및 노광 방법
KR101200654B1 (ko) 2003-12-15 2012-11-12 칼 짜이스 에스엠티 게엠베하 고 개구율 및 평평한 단부면을 가진 투사 대물렌즈
JP4308638B2 (ja) 2003-12-17 2009-08-05 パナソニック株式会社 パターン形成方法
US7460206B2 (en) 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US20050185269A1 (en) 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
JP4323946B2 (ja) 2003-12-19 2009-09-02 キヤノン株式会社 露光装置
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050147920A1 (en) 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
JP4371822B2 (ja) 2004-01-06 2009-11-25 キヤノン株式会社 露光装置
JP4429023B2 (ja) 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
US20050153424A1 (en) 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
DE602005008707D1 (de) 2004-01-14 2008-09-18 Zeiss Carl Smt Ag Catadioptrisches projektionsobjektiv
KR101295439B1 (ko) 2004-01-16 2013-08-09 칼 짜이스 에스엠티 게엠베하 편광변조 광학소자
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
JP4843503B2 (ja) 2004-01-20 2011-12-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
US7026259B2 (en) 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
WO2005074606A2 (en) 2004-02-03 2005-08-18 Rochester Institute Of Technology Method of photolithography using a fluid and a system thereof
WO2005076084A1 (en) 2004-02-09 2005-08-18 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070165198A1 (en) 2004-02-13 2007-07-19 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
WO2005081030A1 (en) 2004-02-18 2005-09-01 Corning Incorporated Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
US20050205108A1 (en) 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
US7027125B2 (en) 2004-03-25 2006-04-11 International Business Machines Corporation System and apparatus for photolithography
US7084960B2 (en) 2004-03-29 2006-08-01 Intel Corporation Lithography using controlled polarization
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7712905B2 (en) 2004-04-08 2010-05-11 Carl Zeiss Smt Ag Imaging system with mirror group
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7271878B2 (en) 2004-04-22 2007-09-18 International Business Machines Corporation Wafer cell for immersion lithography
US7244665B2 (en) 2004-04-29 2007-07-17 Micron Technology, Inc. Wafer edge ring structures and methods of formation
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060244938A1 (en) 2004-05-04 2006-11-02 Karl-Heinz Schuster Microlitographic projection exposure apparatus and immersion liquid therefore
WO2005111722A2 (en) 2004-05-04 2005-11-24 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US7091502B2 (en) 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
KR20170129271A (ko) 2004-05-17 2017-11-24 칼 짜이스 에스엠티 게엠베하 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005119368A2 (en) 2004-06-04 2005-12-15 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
KR101199076B1 (ko) 2004-06-04 2012-11-07 칼 짜이스 에스엠티 게엠베하 강도 변동이 보상된 투사 시스템 및 이를 위한 보상 요소
EP2637061B1 (en) 2004-06-09 2018-07-18 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
JP5119666B2 (ja) * 2004-06-21 2013-01-16 株式会社ニコン 露光装置、液体除去方法、及びデバイス製造方法
SG155927A1 (en) 2004-09-17 2009-10-29 Nikon Corp Substrate holding device, exposure apparatus, and device manufacturing method
JP4665712B2 (ja) 2004-10-26 2011-04-06 株式会社ニコン 基板処理方法、露光装置及びデバイス製造方法
US7230681B2 (en) 2004-11-18 2007-06-12 International Business Machines Corporation Method and apparatus for immersion lithography
JP2006270057A (ja) 2005-02-28 2006-10-05 Canon Inc 露光装置
US20080160462A1 (en) * 2007-01-03 2008-07-03 Sokudo Co., Ltd. Method and system for bake plate heat transfer control in track lithography tools

Also Published As

Publication number Publication date
CN102163004A (zh) 2011-08-24
KR20120125563A (ko) 2012-11-15
CN102163005A (zh) 2011-08-24
KR101437254B1 (ko) 2014-09-02
IL223536A (en) 2015-11-30
KR101682884B1 (ko) 2016-12-06
EP3370115A1 (en) 2018-09-05
EP2717295B1 (en) 2018-07-18
TWI530762B (zh) 2016-04-21
US9019469B2 (en) 2015-04-28
IL207790A (en) 2012-08-30
KR20150004866A (ko) 2015-01-13
US10088760B2 (en) 2018-10-02
TW200528919A (en) 2005-09-01
US8054447B2 (en) 2011-11-08
TWI596442B (zh) 2017-08-21
TW201220000A (en) 2012-05-16
CN102163004B (zh) 2014-04-09
KR20140053389A (ko) 2014-05-07
KR101270413B1 (ko) 2013-06-07
IL176057A (en) 2013-01-31
US20180364581A1 (en) 2018-12-20
TWI605315B (zh) 2017-11-11
KR101442448B1 (ko) 2014-09-22
IL207788A0 (en) 2011-07-31
IL207790A0 (en) 2011-07-31
EP1699072B1 (en) 2016-08-31
SG148993A1 (en) 2009-01-29
KR20110132453A (ko) 2011-12-07
KR20170107102A (ko) 2017-09-22
SG2014014955A (en) 2014-07-30
HK1089292A1 (zh) 2006-11-24
TW201316140A (zh) 2013-04-16
KR101793800B1 (ko) 2017-11-03
TW201804262A (zh) 2018-02-01
EP3139214B1 (en) 2019-01-30
EP1699072A4 (en) 2008-10-15
IL176057A0 (en) 2006-10-05
CN102163005B (zh) 2014-05-21
SG148994A1 (en) 2009-01-29
KR101525367B1 (ko) 2015-06-09
US20150286151A1 (en) 2015-10-08
US20070115450A1 (en) 2007-05-24
KR101431944B1 (ko) 2014-09-22
US9182685B2 (en) 2015-11-10
EP3139214A3 (en) 2017-05-31
EP2717295A1 (en) 2014-04-09
EP3139214A2 (en) 2017-03-08
US20070242242A1 (en) 2007-10-18
IL223536A0 (en) 2013-02-03
TW201539156A (zh) 2015-10-16
TWI470371B (zh) 2015-01-21
WO2005055296A1 (ja) 2005-06-16
KR20130095849A (ko) 2013-08-28
KR20070019646A (ko) 2007-02-15
US20140022523A1 (en) 2014-01-23
KR20150090271A (ko) 2015-08-05
TW201624150A (zh) 2016-07-01
KR101394764B1 (ko) 2014-05-27
TWI440981B (zh) 2014-06-11
EP1699072A1 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
KR101394764B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
JP4513590B2 (ja) 光学部品及び露光装置
KR101421870B1 (ko) 기판 유지 장치 및 그것을 구비하는 노광 장치, 노광 방법, 디바이스 제조 방법, 그리고 발액 플레이트
JP4513534B2 (ja) 露光装置及び露光方法、デバイス製造方法
JP5445612B2 (ja) 露光装置及び露光方法、デバイス製造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190730

Year of fee payment: 6