JP4513590B2 - 光学部品及び露光装置 - Google Patents

光学部品及び露光装置 Download PDF

Info

Publication number
JP4513590B2
JP4513590B2 JP2005028724A JP2005028724A JP4513590B2 JP 4513590 B2 JP4513590 B2 JP 4513590B2 JP 2005028724 A JP2005028724 A JP 2005028724A JP 2005028724 A JP2005028724 A JP 2005028724A JP 4513590 B2 JP4513590 B2 JP 4513590B2
Authority
JP
Japan
Prior art keywords
substrate
liquid
plate member
stage
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005028724A
Other languages
English (en)
Other versions
JP2005268759A5 (ja
JP2005268759A (ja
Inventor
隆一 星加
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005028724A priority Critical patent/JP4513590B2/ja
Publication of JP2005268759A publication Critical patent/JP2005268759A/ja
Publication of JP2005268759A5 publication Critical patent/JP2005268759A5/ja
Application granted granted Critical
Publication of JP4513590B2 publication Critical patent/JP4513590B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、液浸法を用いた投影露光装置に使用される光学部品、及び該光学部品を用いた投影露光装置に関するものである。さらに、本発明は液体又は蒸気と接する環境で使用されるのに好適な光学部品に関する。
半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長はKrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のマージンが不足するおそれがある。また、短波長化する露光光に対して使用可能な光学部品材料は限定されるようになる。このような観点から、投影光学系を通過後の露光光の波長を実質的に短くして、且つ焦点深度を広くする方法として、例えば、国際公開第99/49504号公報や特開平10−303114号公報に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液体中での露光光の波長が空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
ところで、図18に示す模式図のように、液浸法を採用した露光装置においても、基板Pのエッジ領域Eを露光する場合がある。この場合、投影領域100の一部が基板Pの外側にはみ出て、露光光が基板Pを保持する基板テーブル120上にも照射される。液浸露光の場合、投影領域100を覆うように液体の液浸領域が形成されるが、エッジ領域Eを露光するときは、液体の液浸領域の一部が基板Pの外側にはみ出て、基板テーブル120上に形成される。また、基板テーブル120上の基板Pの周囲に各種の計測部材や計測用センサが配置されている場合には、これらの計測部材や計測センサを使うために、基板テーブル120上に液浸領域が形成される場合もある。液浸領域の一部が基板テーブル120上に形成されると基板テーブル120上に液体が残留する可能性が高くなり、その気化によって、例えば基板Pの置かれている環境(温度、湿度)が変動したり、基板テーブル120が熱変形したり、あるいは基板Pの位置情報などを計測する各種計測光の光路の環境が変動するなどして露光精度が低下する可能性がある。また、残留した液体が気化した後に、ウォーターマーク(水跡)が残ってしまい、基板Pや液体などの汚染要因となったり、各種計測の誤差要因となる可能性もある。
本発明の目的は、紫外レーザ照射耐久性を備えた撥水性膜を有する光学部品、及び該光学部品を搭載した露光装置を提供することである。
上記の課題を解決するため、本発明は実施の形態に示す図1〜図21に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。
本発明の第1の態様に従えば、露光ビーム(EL)でマスク(M)を照明し、投影光学系により前記マスクのパターンを基板ステージ上に保持される基板(P)上に液体(1)を介して転写する投影露光装置(EX)のステージ上に搭載される光学部品(650、652、654)であって、前記露光ビームにより照射される光照射面(660)と、前記光照射面の表面に形成された二酸化ケイ素、フッ化マグネシウム及びフッ化カルシウムの中の少なくとも1つからなる微粒子層により構成される接着微粒子層(662)と、前記接着微粒子層の表面に形成された非晶質フッ素樹脂により構成される撥水性膜(664)とを備える光学部品が提供される。
本発明者がフルオロアルキルシランと基材ガラスとの密着性について分析したところ、フルオロアルキルシランの末端基−CFが化学的に安定であるため、基材ガラスとの間で水素結合や縮合反応など化学的な結合を期待できないことが分った。そこで、本発明者は化学的な結合にたよらず、分子間引力を増大させる方法を検討した。この結果、基材ガラスと接着する接着層の表面積を大きくすることによって付着エネルギーを首尾よく増大させることに成功した。本発明の光学部品によれば、接着微粒子層を形成する二酸化ケイ素(SiO)、フッ化マグネシウム(MgF)及びフッ化カルシウム(CaF)の中の少なくとも1つからなる微粒子層は、基材のガラス(主成分SiO)と親和性が良く、基材ガラスと程よい密着性が得られる。また、表面に粒子の径に由来する凹凸を生じる。更に、二酸化ケイ素等は紫外線透過率が非常に高い材料であるので、それ自身のレーザ照射耐久性も高い。従って、二酸化ケイ素(SiO)、フッ化マグネシウム(MgF)及びフッ化カルシウム(CaF)の中の少なくとも1つからなる微粒子層を成膜した後、非晶質フッ素樹脂により構成される撥水性膜を形成すると、非晶質フッ素樹脂は、二酸化ケイ素等の微粒子の空隙に入り込み、抱きかかえるように乾燥・固化する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水性膜の強度は高いものとなる。
また、本発明の第2の態様に従えば、露光ビーム(EL)でマスク(M)を照明し、投影光学系(PL)により前記マスクのパターンを基板ステージ(PST)上に保持される基板上に液体(1)を介して転写する投影露光装置のステージ(PST)上に搭載される光学部品(650、652、654)であって、前記露光ビームにより照射される光照射面(660)と、前記光照射面の表面に形成された接着面(668)と、前記接着面の表面に形成された非晶質フッ素樹脂により構成される撥水性膜(664)とを備える光学部品が提供される。この態様の光学部品では、前記接着面がフッ化水素によりエッチングされた面であることが好ましい。
本発明の第2の態様の光学部品によれば、光照射面に、例えば、フッ化水素によりエッチングしたエッチング面により構成される接着面を有するため、接着面上に非晶質フッ素樹脂により構成される撥水性膜を形成すると、非晶質フッ素樹脂は、接着面の空隙に入り込み、抱きかかえるように乾燥・固化する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水性膜の強度は高いものとなる。
また、上記態様の光学部品は、前記光照射面が基材ガラスの表面を含み得る。また、上記態様の光学部品は、前記光照射面が前記基材ガラスの少なくとも一部に形成された金属膜の表面を含み得る。これらの光学部品によれば、光照射面上に形成された撥水性膜は、レーザ照射耐久性を有することから、投影露光装置のステージ上に搭載されている光学部品の光照射面の撥水性を長期間にわたって維持することができる。また、前記ステージは、基板ステージあるいは計測ステージであることを特徴とする。
また、本発明では、上記いずれかの態様の光学部品を備える露光装置もまた提供される。この露光装置によれば、ステージ上に光照射面の撥水性を長期間にわたって維持することができる光学部品を搭載しているため、液浸露光を繰り返した場合においても、光学部品の光照射面上の排水を確実に行うことができる。
また、本発明の第3の態様に従えば、露光ビーム(EL)でマスク(M)を照明し、投影光学系(PL)により前記マスクのパターンを基板ステージ(PST)上に保持される基板上に液体を介して転写する露光装置(EX)であって、ステージ上に、前記露光ビームにより照射される光照射面(660)と、前記光照射面の表面に形成された接着微粒子層(662)と、前記接着微粒子層の表面に形成された非晶質フッ素樹脂により構成される撥水性膜(664)とを有する光学部品とを有する露光装置が提供される。
本発明の第3の態様の露光装置によれば、ステージ上に搭載された光学部品が光照射面に接着微粒子層を有するため、非晶質フッ素樹脂により構成される撥水性膜が接着微粒子層に密着する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水性膜の強度は高いものとなる。
また、第3の態様の露光装置は、前記光照射面が、基材ガラスの表面を含み得る。また、第3の態様の露光装置は、前記光照射面が、前記基材ガラスの少なくとも一部に形成された金属膜の表面を含み得る。これらの露光装置によれば、ステージ上に搭載されている光学部品の光照射面上に形成された撥水性膜は、レーザ照射耐久性を有することから、投影露光装置のステージ上に搭載されている光学部品の光照射面の撥水性を長期間にわたって維持することができる。また、前記ステージは、基板ステージあるいは計測ステージであることを特徴とする。
本発明の第4の態様に従えば、光学部品(300,400,500、650、652、654)であって、光照射面を有する部品本体(660)と、前記光照射面の表面に形成された二酸化ケイ素、フッ化マグネシウム及びフッ化カルシウムからなる群から選ばれた少なくとも1種の微粒子により形成された微粒子層(662)と、前記微粒子層の表面に、非晶質フッ素樹脂により形成された撥水性膜(664)とを備える光学部品が提供される。撥水性膜は微粒子層を介して光照射面と強固に接続されているので、本発明は液体または蒸気雰囲気中で使用される光学センサやレンズなどの用途に極めて有用である。
本発明の第4の態様に従えば、光学部品(300、400、500、650、652、654)であって、光照射面を有する部品本体(660)と、前記光照射面の表面にエッチングにより形成された接着面(668)と、前記接着面に、非晶質フッ素樹脂により形成された撥水性膜(664)とを備える光学部品が提供される。撥水性膜は微粒子層を介して光照射面と強固に接続されているので、本発明は液体または蒸気雰囲気中で使用される光学センサやレンズなどの用途に極めて有用である。
本発明の露光装置によれば、液体の流出を抑えて露光処理をすることができ、液体の残留を防止することができるので、高い露光精度で液浸露光することができる。
本発明の光学部品によれば、接着微粒子層を形成する二酸化ケイ素(SiO)、フッ化マグネシウム(MgF)及びフッ化カルシウム(CaF)の中の少なくとも1つからなる微粒子層は、基材のガラス(主成分SiO)と親和性が良く、基材ガラスと程よい密着性が得られる。また、表面に粒子の径に由来する凹凸を生じる。更に、二酸化ケイ素等は紫外線透過率が非常に高い材料であるので、それ自身のレーザ照射耐久性も高い。従って、二酸化ケイ素(SiO)、フッ化マグネシウム(MgF)及びフッ化カルシウム(CaF)の中の少なくとも1つからなる微粒子層を成膜した後、非晶質フッ素樹脂により構成される撥水性膜を形成する。非晶質フッ素樹脂は、二酸化ケイ素等の微粒子の空隙に入り込み、抱きかかえるように乾燥・固化する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水性膜の強度は高いものとなる。それゆえ、液体と接する広範な環境で使用される光学備品や光学センサに適用可能である。
また、本発明の光学部品によれば、光照射面に、例えば、フッ化水素によりエッチングしたエッチング面により構成される接着面を有するため、接着面上に非晶質フッ素樹脂により構成される撥水性膜を形成すると、非晶質フッ素樹脂は、接着面の空隙に入り込み、抱きかかえるように乾燥・固化する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水性膜の強度は高いものとなる。それゆえ、液体と接する広範な環境で使用される光学備品や光学センサに適用可能である。
また、本発明の露光装置によれば、ステージ上に光照射面の撥水性を長期間にわたって維持することができる光学部品を搭載しているため、液浸露光を繰り返した場合においても、光学部品の光照射面上の排水を確実に行うことができる。
以下、図面を参照して、本発明の実施の形態に係る露光装置について説明する。
<第1実施形態>
図1は本発明の露光装置の一実施形態を示す概略構成図である。図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、基板Pを基板テーブルPTを介して支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。
本実施形態の露光装置EXには、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法が適用される。この液浸露光装置は、基板P上に液体1を供給する液体供給機構10と、基板P上の液体1を回収する液体回収機構20とを備えている。本実施形態において、液体1には純水が用いられる。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、液体供給機構10から供給した液体1により投影光学系PLの投影領域AR1を含む基板P上の少なくとも一部に(局所的に)液浸領域AR2を形成する。具体的には、露光装置EXは、投影光学系PLの先端部の光学素子2と基板Pの表面(露光面)との間に液体1を満たし、この投影光学系PLと基板Pとの間の液体1及び投影光学系PLを介してマスクMのパターン像を基板P上に投影し、基板Pを露光する。
ここで、本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びX軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。なお、ここでいう「基板」は半導体ウエハ上に感光性材料であるフォトレジストを塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパターンが形成されたレチクルを含む。
照明光学系ILはマスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ(ホモジナイザー)、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。上述したように、本実施形態における液体1は純水であって、露光光ELがArFエキシマレーザ光であっても透過可能である。また、純水は紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。
マスクステージMSTはマスクMを支持しつつ、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能であり、またθZ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDにより駆動される。マスクステージ駆動装置MSTDは制御装置CONTにより制御される。マスクステージMST上には移動鏡50が設けられている。また、移動鏡50に対向する位置にはレーザ干渉計51が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計51によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計51の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。
投影光学系PLはマスクMのパターンを所定の投影倍率βで基板Pに投影露光する。投影光学系PLは、基板P側の先端部に設けられた光学素子(レンズ)2を含む複数の光学素子で構成されており、これら光学素子は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4あるいは1/5の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、屈折素子を含まない反射系、反射素子を含まない屈折系、屈折素子と反射素子とを含む反射屈折系のいずれであってもよい。また、本実施形態の投影光学系PLの先端部の光学素子2は鏡筒PKに対して着脱(交換)可能に設けられており、光学素子2には液浸領域AR2の液体1が接触する。
光学素子2は蛍石で形成されている。水は蛍石との親和性が高いので、光学素子2の液体接触面2aのほぼ全面に液体1を密着させることができる。すなわち、本実施形態においては光学素子2の液体接触面2aとの親和性が高い水を液体1として供給するようにしているので、光学素子2の液体接触面2aと液体1との密着性が高く、光学素子2と基板Pとの間の光路を液体1で確実に満たすことができる。なお、光学素子2は水との親和性が高い石英であってもよい。また光学素子2の液体接触面2aに親水化(親液化)処理を施して、液体1との親和性をより高めるようにしてもよい。また、鏡筒PKは、その先端付近が液体(水)1に接することになるので、少なくとも先端付近はTi(チタン)等の錆びに対して耐性のある金属で形成される。
基板ステージPSTは基板Pを支持するものであって、基板Pを基板テーブルPTを介して保持するZステージ52と、Zステージ52を支持するXYステージ53と、XYステージ53を支持するベース54とを備えている。基板テーブルPTは基板Pを保持するものであって、基板ステージPST(Zステージ52)上に設けられている。基板ステージPSTはリニアモータ等の基板ステージ駆動装置PSTDにより駆動される。基板ステージ駆動装置PSTDは制御装置CONTにより制御される。Zステージ52を駆動することにより、基板テーブルPTに保持されている基板PのZ軸方向における位置(フォーカス位置)、及びθX、θY方向における位置が制御される。また、XYステージ53を駆動することにより、基板PのXY方向における位置(投影光学系PLの像面と実質的に平行な方向の位置)が制御される。すなわち、Zステージ52は、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面をオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ込み、XYステージ53は基板PのX軸方向及びY軸方向における位置決めを行う。なお、ZステージとXYステージとを一体的に設けてよいことは言うまでもない。なお、オートフォーカス・レベリング検出系の構成としては、例えば特開平8−37149号公報に開示されているものを用いることができる。
基板ステージPST(基板テーブルPT)上には、基板ステージPSTとともに投影光学系PLに対して移動する移動鏡55が設けられている。また、移動鏡55に対向する位置にはレーザ干渉計56が設けられている。基板ステージPST(基板テーブルPT)上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計56によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計56の計測結果に基づいて基板ステージ駆動装置PSTDを駆動することで基板ステージPSTに支持されている基板Pの位置決めを行う。
基板ステージPST(基板テーブルPT)の近傍上方には、基板P上のアライメントマークあるいは基板ステージPST(基板テーブルPT)上に設けられた基準マーク(後述)を検出する基板アライメント系350が配置されている。また、マスクステージMSTの近傍には、露光光ELと同一の波長の光を使い、マスクMと投影光学系PLとを介して基板ステージPST(基板テーブルPT)上の基準マークを検出するマスクアライメント系360が設けられている。なお、基板アライメント系350の構成としては、特開平4−65603号公報(対応米国特許第5,493,403号)に開示されているものを用いることができ、マスクアライメント系360の構成としては、特開平7−176468号公報(対応米国特許第5,646,413号)に開示されているものを用いることができる。
基板テーブルPT上には、この基板テーブルPTに保持された基板Pを囲むプレート部材30が設けられている。プレート部材30は基板テーブルPTとは別の部材であって、基板テーブルPTに対して脱着可能に設けられており、交換可能である。プレート部材30は、基板テーブルPTに保持された基板Pの表面とほぼ面一の平坦面(平坦部)30Aを有している。平坦面30Aは、基板テーブルPTに保持された基板Pの周囲に配置されている。更に、基板テーブルPT上においてプレート部材30の外側には、プレート部材30の平坦面30Aとほぼ面一となる平坦面32Aを有する第2プレート部材32が設けられている。第2プレート部材32も基板テーブルPTに対して脱着可能に設けられており、交換可能である。
所定の液体1を基板P上に供給する液体供給機構10は、液体1を供給可能な第1液体供給部11及び第2液体供給部12と、第1液体供給部11に流路を有する供給管11Aを介して接続され、この第1液体供給部11から送出された液体1を基板P上に供給する供給口13Aを有する第1供給部材13と、第2液体供給部12に流路を有する供給管12Aを介して接続され、この第2液体供給部12から送出された液体1を基板P上に供給する供給口14Aを有する第2供給部材14とを備えている。第1、第2供給部材13、14は基板Pの表面に近接して配置されており、基板Pの面方向において互いに異なる位置に設けられている。具体的には、液体供給機構10の第1供給部材13は投影領域AR1に対して走査方向一方側(−X側)に設けられ、第2供給部材14は投影領域AR1に対して走査方向他方側(+X側)に設けられている。
第1、第2液体供給部11、12のそれぞれは、液体1を収容するタンク、及び加圧ポンプ等(いずれも不図示)を備えており、供給管11A、12A及び供給部材13、14のそれぞれを介して基板P上に液体1を供給する。また、第1、第2液体供給部11、12の液体供給動作は制御装置CONTにより制御され、制御装置CONTは第1、第2液体供給部11、12による基板P上に対する単位時間あたりの液体供給量を独立して制御可能である。また、第1、第2液体供給部11、12のそれぞれは液体の温度調整機構を有しており、この温度調整機構により装置が収容されるチャンバ内の温度とほぼ同じ温度(例えば23℃)の液体1を基板P上に供給することができる。なお、第1、第2液体供給部11、12のタンク、加圧ポンプ、温度調整機構は、必ずしも露光装置EXが備えている必要はなく、露光装置EXが設置される工場などの設備を代用することもできる。
液体回収機構20は基板P上の液体1を回収するものであって、基板Pの表面に近接して配置された回収口23A、24Aを有する第1、第2回収部材23、24と、この第1、第2回収部材23、24に流路を有する回収管21A、22Aを介してそれぞれ接続された第1、第2液体回収部21、22とを備えている。第1、第2液体回収部21、22は例えば真空ポンプ等の真空系(吸引装置)、気液分離器、及び回収した液体1を収容するタンク等(いずれも不図示)を備えており、基板P上の液体1を第1、第2回収部材23、24、及び回収管21A、22Aを介して回収する。第1、第2液体回収部21、22の液体回収動作は制御装置CONTにより制御される。制御装置CONTは第1、第2液体回収部21、22による単位時間あたりの液体回収量を独立して制御可能である。なお、第1、第2液体回収部21、22の真空系、気液分離器、タンクは、必ずしも露光装置EXが備えている必要はなく、露光装置EXが設置される工場などの設備を代用することもできる。
図2は液体供給機構10及び液体回収機構20の概略構成を示す平面図である。図2に示すように、投影光学系PLの投影領域AR1はY軸方向(非走査方向)を長手方向とするスリット状(矩形状)に設定されており、液体1が満たされた液浸領域AR2は投影領域AR1を含むように基板P上の一部に形成される。そして、投影領域AR1の液浸領域AR2を形成するための液体供給機構10の第1供給部材13は投影領域AR1に対して走査方向一方側(−X側)に設けられ、第2供給部材14は他方側(+X側)に設けられている。
第1、第2供給部材13、14のそれぞれは平面視略円弧状に形成されており、その供給口13A、14AのY軸方向におけるサイズは、少なくとも投影領域AR1のY軸方向におけるサイズより大きくなるように設定されている。そして、平面視略円弧状に形成されている供給口13A、14Aは、走査方向(X軸方向)に関して投影領域AR1を挟むように配置されている。液体供給機構10は、第1、第2供給部材13、14の供給口13A、14Aを介して投影領域AR1の両側で液体1を同時に供給する。
液体回収機構20の第1、第2回収部材23、24のそれぞれは基板Pの表面に向くように円弧状に連続的に形成された回収口23A、24Aを有している。そして、互いに向き合うように配置された第1、第2回収部材23、24により略円環状の回収口が形成されている。第1、第2回収部材23、24それぞれの回収口23A、24Aは液体供給機構10の第1、第2供給部材13、14、及び投影領域AR1を取り囲むように配置されている。
第1、第2供給部材13、14の供給口13A、14Aから基板P上に供給された液体1は、投影光学系PLの先端部(光学素子2)の下端面と基板Pとの間に濡れ拡がるように供給される。また、投影領域AR1に対して第1、第2供給部材13、14の外側に流出した液体1は、この第1、第2供給部材13、14より投影領域AR1に対して外側に配置されている第1、第2回収部材23、24の回収口23A、24Aより回収される。
本実施形態において、基板Pを走査露光する際、走査方向に関して投影領域AR1の手前から供給する単位時間あたりの液体供給量が、その反対側で供給する液体供給量よりも多く設定される。例えば、基板Pを+X方向に移動しつつ露光処理する場合、制御装置CONTは、投影領域AR1に対して−X側(すなわち供給口13A)からの液体量を+X側(すなわち供給口14A)からの液体量より多くし、一方、基板Pを−X方向に移動しつつ露光処理する場合、投影領域AR1に対して+X側からの液体量を−X側からの液体量より多くする。また、走査方向に関して、投影領域AR1の手前での単位時間あたりの液体回収量が、その反対側での液体回収量よりも少なく設定される。例えば、基板Pが+X方向に移動しているときには、投影領域AR1に対して+X側(すなわち回収口24A)からの回収量を−X側(すなわち回収口23A)からの回収量より多くする。
なお、基板P(基板ステージPST)上に局所的に液浸領域AR2を形成するための機構は、上述に限られず、例えば米国特許公開第2004/020782号公報や国際公開第2004/055803号公報に開示されている機構を採用することもできる。
図3は基板テーブルPTを上方から見た平面図、図4は基板Pを保持した基板テーブルPTを上方から見た平面図である。図3及び図4において、平面視矩形状の基板テーブルPTの互いに垂直な2つの縁部に移動鏡55が配置されている。また、基板テーブルPTのほぼ中央部に凹部31が形成されており、この凹部31に、基板テーブルPTの一部を構成する基板ホルダPHが配置されており、基板Pは基板ホルダPHに保持される。基板P(基板ホルダPH)の周囲には、基板Pの表面とほぼ同じ高さ(面一)の平坦面30Aを有するプレート部材30が設けられている。プレート部材30は環状部材であって、基板ホルダPH(基板P)を囲むように配置されている。プレート部材30は、例えばポリ四フッ化エチレン(テフロン(登録商標))のようなフッ化物などの撥液性を有する材料によって形成されている。基板Pの周囲に、基板P表面とほぼ面一の平坦面30Aを有するプレート部材30を設けたので、基板Pのエッジ領域Eを液浸露光するときにおいても、投影光学系PLの像面側に液浸領域AR2を良好に形成することができる。
なお、投影光学系PLの像面側の光路空間が液体1で満たされるように液浸領域AR2を形成することができるならば、基板Pの表面とプレート部材30の平坦面30Aとに段差があってもよく、例えば、Z方向に関して、基板Pの表面よりも平坦面30Aを低くしてもよい。
図1、3及び4に示すように、基板テーブルPT上のプレート部材30(基板ホルダPH)の外側には第2プレート部材32が設けられている。第2プレート部材32は、基板Pの表面やプレート部材30の平坦面30Aとほぼ同じ高さ(面一)の平坦面32Aを有しており、基板ホルダPH(基板P)及びプレート部材30以外の基板テーブルPTの上面のぼぼ全域を覆うように設けられている。第2プレート部材32も、例えばポリ四フッ化エチレンなどの撥液性を有する材料によって形成されている。
なお、プレート部材30の平坦面30A表面における液体1の接触角、及び第2プレート部材32の平坦面32A表面における液体1の接触角は、露光光ELが照射される前の初期状態において、それぞれ110°以上である。
また、第2プレート部材32の所定位置には、複数の開口部32K、32L、32Nが形成されている。開口部32Kには、基準部材300が配置されている。基準部材300には、基板アライメント系350により検出される基準マークPFMと、マスクアライメント系360により検出される基準マークMFMとが所定の位置関係で設けられている。また、基準部材300の上面301Aはほぼ平坦面となっており、フォーカス・レベリング検出系の基準面として使ってもよい。更に、基準部材300の上面301Aは基板P表面、プレート部材30の表面(平坦面)30A、及び第2プレート部材32の表面(平坦面)32Aとほぼ同じ高さ(面一)に設けられている。また、基準部材300は平面視において矩形状に形成されており、開口部32Kに配置された基準部材300と第2プレート部材32との間にはギャップKが形成される。本実施形態において、ギャップKは例えば0.3mm程度である。
開口部32Lには、光学センサとして照度ムラセンサ400が配置されている。照度ムラセンサは、例えば特開昭57−117238号公報(対応米国特許第4,465,368号)に開示されている。照度ムラセンサ400の上板401の上面401Aはほぼ平坦面となっており、基板P表面、プレート部材30の表面30A、及び第2プレート部材32の表面32Aとほぼ同じ高さ(面一)に設けられている。照度ムラセンサ400の上面401Aには、光を通過可能なピンホール部470が設けられている。光透過性の上板401の上面401Aのうち、ピンホール部470以外はクロムなどの遮光性材料で覆われている。また、照度ムラセンサ400(上板401)は平面視において矩形状に形成されており、開口部32Lに配置された照度ムラセンサ400(上板401)と第2プレート部材32との間にはギャップLが形成されている。本実施形態において、ギャップLは例えば0.3mm程度である。
開口部32Nには、光学センサとして空間像計測センサ500が配置されている。空間像計測センサ500は、例えば特開2002−14005号公報(対応米国特許公開2002/0041377号)に開示されている。空間像計測センサ500の上板501の上面501Aはほぼ平坦面となっており、フォーカス・レベリング検出系の基準面として使ってもよい。そして、基板P表面、プレート部材30の表面30A、及び第2プレート部材32の表面32Aとほぼ同じ高さ(面一)に設けられている。空間像計測センサ500の上面501Aには、光を通過可能なスリット部570が設けられている。光透過性の上板501の上面501Aのうち、スリット部570以外はクロムなどの遮光性材料で覆われている。また、空間像計測センサ500(上板501)は平面視において矩形状に形成されており、空間像計測センサ500(上板501)と開口部32Nとの間にはギャップNが形成されている。本実施形態において、ギャップNは基板Pの外形の製造公差と同程度、例えば0.3mm程度にする。このように、基板Pを保持する基板テーブルPTの上面は、全面でほぼ面一となっている。
なお、投影光学系PLの像面側の光路空間が液体1で満たされるように液浸領域AR2を形成することができるならば、プレート部材30の平坦面30Aと第2プレート部材32の表面32Aと基準部材300の上面301Aと照度ムラセンサ400の上面401Aと空間像計測センサ500の上面501Aとの間に互いに段差があってもよい。
また、不図示ではあるが、基板テーブルPTには、照射量センサ(照度センサ)も設けられており、第2プレート部材32に形成された開口部に配置されている。照射量センサは、例えば特開平11−16816号(対応米国特許2002/0061469号)に開示されている。
なお、基板テーブルPT上に搭載する計測器は、上述したものに限られることなく、各種の計測器を必要に応じて搭載することができる。例えば、波面収差計測器を基板テーブルPT上に配置してもよい。波面収差計測器は、例えば国際公開99/60361号公報(対応欧州特許公開第1,079,223号公報)や米国特許第6,650,399号に開示されている。もちろん、基板テーブルPT上に計測器を搭載しなくてもよい。
また、プレート部材30のうち円環状に形成されている平坦面30Aの幅は少なくとも投影領域AR1より大きく形成されている(図4参照)。このため、基板Pのエッジ領域Eを露光するときにおいて、露光光ELは第2プレート部材32に照射されない。これにより、露光光が照射されることに起因する第2プレート部材32の撥液性の劣化を抑えることができ、第2プレート部材32の交換頻度をプレート部材30の交換頻度よりも少なくすることができる。更には、平坦面30Aの幅は、投影光学系PLの像面側に形成される液浸領域AR2よりも大きく形成されていることが好ましい。これにより、基板Pのエッジ領域Eを液浸露光するときに、液浸領域AR2はプレート部材30の平坦面30A上に配置され、第2プレート部材32上には配置されないので、液浸領域AR2の液体1がプレート部材30と第2プレート部材32との隙間であるギャップGに浸入する不都合を防止できる。なお、プレート部材30の平坦面30Aの幅はこれらに限定されず、液浸領域AR2よりも小さくてもよいことは言うまでもない。
図3及び基板Pを保持した基板テーブルPTの要部拡大断面図である図5に示すように、基板テーブルPTの一部を構成する基板ホルダPHは、略円環状の周壁部33と、この周壁部33の内側のベース部35上に設けられ、基板Pを支持する複数の支持部34と、支持部34の間に配置され、基板Pを吸着保持するための複数の吸引口41とを備えている。支持部34及び吸引口41は周壁部33の内側において一様に配置されている。なお、図5においては、周壁部33の上端面は比較的広い幅を有しているが、実際には1〜2mm程度の幅しか有していない。また、ベース部35には、基板Pを昇降するピン部材からなる昇降部材70を配置した穴部71が設けられている。本実施形態において、昇降部材70は3箇所に設けられている。昇降部材70は不図示の駆動装置により昇降するようになっており、制御装置CONTは、駆動装置を介して昇降部材70の昇降動作を制御する。
また、図5に示したように、基板テーブルPT上面のうち、プレート部材30の下面と対向する位置には、このプレート部材30を基板テーブルPTに対して吸着保持するための吸着孔72が複数設けられている。更に、基板テーブルPTには、プレート部材30を基板テーブルPTに対して昇降するピン部材からなる昇降部材74が複数位置(ここでは3箇所)に設けられている。昇降部材74は不図示の駆動装置により昇降するようになっており、制御装置CONTは、駆動装置を介して昇降部材74の昇降動作を制御する(図7(d)参照)。更に、不図示ではあるが、基板テーブルPT上面のうち、第2プレート部材32の下面と対向する位置には、この第2プレート部材32を基板テーブルPTに対して吸着保持するための吸着孔が複数設けられている。また、基板テーブルPTには、第2プレート部材32を基板テーブルPTに対して昇降する昇降部材が複数位置に設けられている。
なお、第2プレート部材32は先に述べたように交換頻度が少ないので、基板テーブルPTに吸着保持せずに、ねじ止めなどによって固定し、手動で交換作業を行うようにしてもよい。また、第2プレート部材32は交換可能にしなくてもよい。
ただし、基準部材300や照度ムラセンサ400などを使用するときに、露光光EL、もしくは露光光と同一波長の光が第2プレート部材32に照射されてしまう場合には、第2プレート部材32表面の撥液性が劣化する虞があり、プレート部材30と同様の交換頻度が必要となる可能性がある。
また、図4及び5に示すように、基板ホルダPH(基板テーブルPT)に保持されている基板Pの側面PBとプレート部材30との間には所定のギャップAが形成されている。
図5において、基板テーブルPTの凹部31内部に、基板Pを保持する基板ホルダPHが配置されている。基板テーブルPTは、凹部31に基板ホルダPHを配置したとき、その基板ホルダPHの上端面34Aが基板テーブルPTのプレート部材30及び第2プレート部材32に対する載置面PTaよりも高くなるように形成されている。周壁部33及び支持部34は、基板ホルダPHの一部を構成する略円板状のベース部35上に設けられている。支持部34のそれぞれは断面視台形状であり、基板Pはその裏面PCを複数の支持部34の上端面34Aに保持される。また、周壁部33の上面33Aは平坦面となっている。周壁部33の高さは支持部34の高さよりも低くなっており、基板Pと周壁部33との間にはギャップBが形成されている。ギャップBは、プレート部材30と基板Pの側面PBとの間のギャップAより小さい。また、凹部31の内側面36と、この内側面36に対向する基板ホルダPHの側面37との間にギャップCが形成されている。ここで、基板ホルダPHの径は基板Pの径より小さく形成されており、ギャップAはギャップCより小さい。なお、本実施形態においては、基板Pには位置合わせのための切欠部(オリフラ、ノッチ等)は形成されておらず、基板Pはほぼ円形であり、その全周にわたってギャップAは0.1mm〜1.0mm、本実施形態では0.3mm程度になっているため、液体の流入を防止できる。なお、基板Pに切欠部が形成されている場合には、その切欠部に応じてプレート部材30や周壁部33に突起部を設けるなど、プレート部材30や周壁部33を切欠部に応じた形状にすればよい。こうすることにより、基板Pの切欠部においても基板Pとプレート部材30との間でギャップAを確保することができる。
プレート部材30の内側には内側段部30Dが形成されており、その内側段部30Dにより基板下面PCのエッジ部に対向する支持面30Sが形成されている。プレート部材30は、支持面30Sによって基板下面PCのエッジ部を支持可能である。ここで、図5に示すように、基板ホルダPHに保持された基板下面PCのエッジ部と、基板テーブルPTの載置面PTaに保持されたプレート部材30の支持面30Sとの間には、ギャップDが形成されるようになっている。これにより、プレート部材30(支持面30S)が基板下面PCのエッジ部に当たって、その基板Pのエッジ部が上側に反る不都合の発生を回避することができる。
また、第2プレート部材32の内側には内側段部32Dが形成されており、プレート部材30の外側には、第2プレート部材32の内側段部32Dの形状に対応するように、外側段部30Fが形成されている。これにより、第2プレート部材32の一部に、プレート部材30の一部が載置された状態となる。また、プレート部材30の外側面と第2プレート部材32の内側面との間には所定のギャップGが形成される。本実施形態におけるギャップGは例えば0.3mm程度であり、表面が撥液性を有するポリ四フッ化エチレン製のプレート部材30と第2プレート部材32とで挟まれているので、プレート部材30と第2プレート部材32との境界に液浸領域が形成されたとしても、ギャップGへの液体の浸入を防止することができる。
基板Pの露光面である表面PAにはフォトレジスト(感光材)90が塗布されている。本実施形態において、感光材90はArFエキシマレーザ用の感光材(例えば、東京応化工業株式会社製TARF−P6100)であって撥液性(撥水性)を有しており、その接触角は70〜80°程度である。
また、本実施形態において、基板Pの側面PBは撥液処理(撥水処理)されている。具体的には、基板Pの側面PBにも、撥液性を有する上記感光材90が塗布されている。これにより、表面が撥液性のプレート部材30と基板P側面とのギャップAからの液体の浸入を防止することができる。更に、基板Pの裏面PCにも上記感光材90が塗布されて撥液処理されている。
本実施形態において、基板テーブルPTのうち、載置面PTa、及び内側面36が撥液性を有している。更に、基板ホルダPHの一部の表面も撥液処理されて撥液性となっている。本実施形態において、基板ホルダPHのうち、周壁部33の上面33A、及び側面37が撥液性を有している。基板テーブルPT及び基板ホルダPHの撥液処理としては、例えば、フッ素系樹脂材料あるいはアクリル系樹脂材料等の撥液性材料を塗布、あるいは前記撥液性材料からなる薄膜を貼付する。撥液性にするための撥液性材料としては液体1に対して非溶解性の材料が用いられる。なお、基板テーブルPTや基板ホルダPH全体を撥液性を有する材料(フッ素系樹脂など)で形成してもよい。
基板ホルダPHの周壁部33に囲まれた第1空間38は、吸引装置40によって負圧にされる。吸引装置40は、基板ホルダPHのベース部35上面に設けられた複数の吸引口41と、基板テーブルPT外部に設けられた真空ポンプを含むバキューム部42と、ベース部35内部に形成され、複数の吸引口41のそれぞれとバキューム部42とを接続する流路43とを備えている。吸引口41はベース部35上面のうち支持部34以外の複数の所定位置にそれぞれ設けられている。吸引装置40は、周壁部33と、ベース部35と、支持部34に支持された基板Pとの間に形成された第1空間38内部のガス(空気)を吸引してこの第1空間38を負圧にすることで、支持部34に基板Pを吸着保持する。なお、基板Pの裏面PCと周壁部33の上面33AとのギャップBは僅かであるので、第1空間38の負圧は維持される。
また、凹部31の内側面36と基板ホルダPHの側面37との間の第2空間39に流入した液体1は、回収部60で回収される。本実施形態において、回収部60は、液体1を収容可能なタンク61と、基板テーブルPT内部に設けられ、空間39と外部のタンク61とを接続する流路62とを有している。そして、この流路62の内壁面にも撥液処理が施されている。なお、空間39に流入した液体を基板ステージPST(基板テーブルPT)に一時的に保持しておき、所定のタイミングで、基板ステージPSTとは別に設けられた外部タンクなどへ排出するようにしてもよい。
基板テーブルPTには、凹部31の内側面36と基板ホルダPHの側面37との間の第2空間39と、基板テーブルPT外部の空間(大気空間)とを接続する流路45が形成されている。ガス(空気)は流路45を介して第2空間39と基板テーブルPT外部とを流通可能となっており、第2空間39はほぼ大気圧に設定される。
図6に示すように、基板ホルダPH、プレート部材30、及び第2プレート部材32は、独立した部品であり、基板テーブルPTに対して脱着可能に設けられている。そして、基板テーブルPTのうち基板ホルダPHとの接触面57が撥液処理されて撥液性であるとともに、基板テーブルPTに対する接触面である基板ホルダPHの裏面58も撥液処理されて撥液性を有している。接触面57や裏面58に対する撥液処理としては、上述したように、フッ素系樹脂材料やアクリル系樹脂材料等の撥液性材料を塗布する等して行うことができる。
次に、上述した構成を有する露光装置EXを用いて基板Pを露光する方法について、図7及び図8の模式図を参照しながら説明する。
図7(a)に示すように、プレート部材30が基板テーブルPTの載置面PTaに吸着保持されているとともに、第2プレート部材32も基板テーブルPTの載置面PTaに吸着保持されている。そして、露光処理対象である基板Pが搬送アーム(搬送装置)80によって基板テーブルPTに搬入される。このとき、昇降部材70は上昇しており、搬送アーム80は基板Pを上昇している昇降部材70に渡す。なお昇降部材74は上昇していない。昇降部材70は搬送アーム80より渡された基板Pを保持して下降する。これにより、図7(b)に示すように、基板Pはプレート部材30の内側に配置され、基板テーブルPT(基板ホルダPH)によって保持される。そして、図7(c)に示すように、制御装置CONTは、液体供給機構10及び液体回収機構20によって液体1の供給及び回収を行い、基板テーブルPTに保持された基板Pと投影光学系PLとの間に液体1の液浸領域AR2を形成する。そして、制御装置CONTは、投影光学系PLと液体1とを介して基板Pに露光光ELを照射し、基板Pを支持した基板ステージPSTを移動しながら液浸露光を行う。
基板Pのエッジ領域Eを露光することにより、露光光ELがプレート部材30の平坦面30Aに照射され、その露光光ELの照射により、平坦面30Aの撥液性が劣化する可能性がある。平坦面30Aの撥液性が劣化すると、平坦面30A上に配置された液浸領域AR2の液体1が残留し易くなり、基板Pの置かれている環境変動を引き起こすなどの不都合が生じる。そこで、制御装置CONTは、プレート部材30(平坦面30A)の撥液性の劣化に応じて、その撥液性の劣化したプレート部材30を新たな(撥液性を十分に有する)プレート部材30と交換する。
具体的には、液浸露光処理の完了後に、基板P上や平坦面30A上に残留した液体1を液体回収機構20などを使って回収した後、図7(d)に示すように、制御装置CONTは、プレート部材30に対する吸着保持を解除した後、昇降部材74を上昇する。このとき、基板ホルダPHによる基板Pの吸着保持も解除される。昇降部材74は、プレート部材30の下面を支持した状態で上昇する。なおこのとき、昇降部材70は上昇しない。これにより、プレート部材30は基板テーブルPTに対して離れる。このとき、プレート部材30の支持面30Sが基板下面PCのエッジ部を支持しているため、基板Pはプレート部材30と一緒に上昇し、基板テーブルPTから離れる。このように、プレート部材30を基板テーブルPTに対して脱着する脱着機構を構成する昇降部材74は、プレート部材30を基板Pと一緒に基板テーブルPTから取り外しすることができる。そして、昇降部材74によって上昇したプレート部材30と基板テーブルPTとの間に搬送アーム80が進入し、プレート部材30の下面を支持する。そして、搬送アーム80は、基板Pを保持したプレート部材30を基板テーブルPT(基板ステージPST)から搬出する。
搬出されたプレート部材30は、新たなプレート部材30と交換される。そして、図8(a)に示すように、制御装置CONTは、露光処理対象である基板Pを保持した新たなプレート部材30を搬送アーム80を使って基板テーブルPT(基板ステージPST)に搬入する。このとき、昇降部材74は上昇しており、搬送アーム80は基板Pを保持しているプレート部材30を上昇している昇降部材74に渡す。なお昇降部材70は上昇していない。昇降部材74は搬送アーム80より渡されたプレート部材30を保持して下降する。これにより、図8(b)に示すように、基板Pを保持したプレート部材30は第2プレート部材32の内側に配置され、基板テーブルPT(基板ホルダPH)によって保持される。そして、図8(c)に示すように、制御装置CONTは、液体供給機構10及び液体回収機構20によって液体1の供給及び回収を行い、基板テーブルPTに保持された基板Pと投影光学系PLとの間に液体1の液浸領域AR2を形成する。そして、制御装置CONTは、投影光学系PLと液体1とを介して基板Pに露光光ELを照射し、基板Pを支持した基板ステージPSTを移動しながら液浸露光を行う。
そして、プレート部材30の撥液性がまだ劣化していないときには、液浸露光の完了後、基板P上やプレート部材30の上面30A上などに残留した液体1を液体回収機構20などを使って回収した後、制御装置CONTは、基板Pに対する吸着保持を解除した後、図8(d)に示すように、昇降部材70を上昇する。このとき、プレート部材30は基板テーブルPTに吸着保持されている。昇降部材70は、基板Pの下面を支持した状態で上昇する。なおこのとき、昇降部材74は上昇しない。これにより、基板Pは基板テーブルPTに対して離れる。そして、昇降部材70によって上昇した基板Pと基板テーブルPTとの間に搬送アーム80が進入し、基板Pの下面を支持する。そして、搬送アーム80は、基板Pを基板テーブルPT(基板ステージPST)から搬出する。
なお、搬送アーム80としては、プレート部材30を搬送するための搬送アームと、基板Pを搬送するための搬送アームとを別々に設けてもよいが、図9に示すように、搬送アーム80の支持面80Aを大きく形成し、基板Pとプレート部材30との双方に接触できるようにすることにより、基板Pとプレート部材30との双方を支持することができるので、1つの搬送アーム80で基板Pとプレート部材30との双方を搬送することができる。
以上説明したように、基板テーブルPTに設けられた撥液性のプレート部材30、32を交換可能に設けたので、そのプレート部材30、32の撥液性が劣化したときに、新たなプレート部材30、32と交換するだけで、基板テーブルPT上の撥液性を維持することができる。
基板テーブルPT上のプレート部材30,32の上面を撥液性にするために撥液性材料を塗布したり、あるいはプレート部材30,32を撥液性材料で形成した場合、露光光が照射されると、その撥液性が劣化する場合がある。特に、撥液性材料として例えばフッ素系樹脂を用い、露光光として紫外光を用いた場合、そのプレート部材30,32の撥液性が劣化しやすい(親液化しやすい)。すると、液体がプレート部材30,32上に残留しやすくなる。
これに対して、本実施形態においては、プレート部材30、32の撥液性が劣化したときに、新たなプレート部材30、32と交換するようしている。
したがって、基板テーブルPT上に液体1が残留することを抑えることができ、たとえ残留してもその液体1を液体回収機構20などを使って円滑に回収できる。したがって、残留した液体1に起因する露光精度の劣化を防止することができ、所望の性能を発揮できるデバイスを製造することができる。
また、基板Pの周囲に平坦部30Aを有するプレート部材30を基板Pと一緒に基板テーブルPTに対して搬入及び搬出することで、プレート部材30を基板Pとともに基板テーブルPTに対して容易に交換することができる。また、プレート部材30は基板Pの周囲に平坦面30Aを有しているので、そのプレート部材30を基板Pとともに基板テーブルPTに搬入して基板Pのエッジ領域Eを液浸露光するときに、液体1の液浸領域AR2の一部が基板Pの外側にはみ出ても、平坦面30Aによって液浸領域AR2の形状が維持され、液体1の流出などを招くことなく投影光学系PLの像面側に液体1を良好に保持した状態で液浸露光することができる。
そして、プレート部材30の内側に内側段部30Dを設けて支持面30Sを形成し、基板下面PCのエッジ部を支持可能としたので、プレート部材30を保持して移動するだけで、そのプレート部材30と一緒に基板Pも移動することができる。また、内側段部30Dによって、プレート部材30と基板Pとの間の隙間に、断面視において曲がり角部が形成されるので、仮にプレート部材30と基板Pとの間のギャップAに液体1が浸入しても、曲がり角部がシール部として機能し、その液体1が基板Pの裏面PC側や基板ステージPST(基板テーブルPT)内部に浸入する不都合を防止することができる。更に、基板Pの側面PBも撥液処理されているので、基板Pの側面PBとプレート部材30との間のギャップAからの液体1の浸入を更に良好に防止することができる。
また、基板Pの裏面PC及びこれに対向する周壁部33の上面33Aを撥液性にしたことにより、ギャップBを介して第1空間38に液体1が浸入する不都合を防止することができる。したがって、吸引口41に液体1が流入する不都合の発生を回避し、基板Pを良好に吸着保持した状態で露光処理できる。
また、本実施形態では、基板テーブルPTに対して着脱可能な基板ホルダPHの裏面58や、基板テーブルPTのうち基板ホルダPHとの接触面57に撥液処理を施したことにより、第2空間39に液体1が流入した場合でも、基板ホルダPHの裏面58とZステージ52の接触面57との間に対する液体1の流入を抑えることができる。したがって、基板ホルダPHの裏面58や基板テーブルPTの接触面57における錆びの発生等を防止することができる。また、基板ホルダPHの裏面58と基板テーブルPTの接触面57との間に液体1が浸入すると、基板ホルダPHとZステージ52とが接着して分離し難くなる状況が生じるが、撥液性にすることで分離し易くなる。
また、プレート部材30を基板テーブルPTに対して脱着するための脱着機構として、昇降装置としての昇降部材74や、プレート部材30を吸着保持する吸着保持装置としての吸着孔72を設けたので、プレート部材30の交換作業を円滑に行うことができ、交換後の新たなプレート部材30を基板テーブルPTに良好に保持することができる。
また、第2プレート部材32の内側に内側段部32Dを形成し、プレート部材30の外側に外側段部30Fを形成したことにより、プレート部材30と第2プレート部材32との間の隙間にも断面視において曲がり角部が形成されるので、ギャップGから液体1が浸入しても、曲がり角部がシール部として機能し、基板テーブルPT内部にまで達する不都合を防止することができる。
また、プレート部材30の外側段部30Fを、第2プレート部材32の内側段部32Dで支持することができるので、第2プレート部材32を基板テーブルPTで吸着保持すれば、プレート部材30は第2プレート部材32に支持されているので、基板テーブルPTに必ずしも保持されなくてもよい。そのため、図10に示す模式図のように、基板テーブルPTのうち、プレート部材30に対向する領域に空間部(さぐり)130を形成することができ、基板テーブルPT(基板ステージPST)の軽量化を図ることができる。
また、基板Pをプレート部材30で保持した状態で搬送アーム80で搬送する構成であるため、基板Pは比較的広い領域をプレート部材30で支持されることになる。したがって、例えば基板Pが大型化しても、プレート部材30で保持した状態で搬送することで、基板Pの撓み(反り)を抑制することができる。
なお、第2プレート部材32の平坦面32Aの撥液性が劣化して、第2プレート部材32を交換する場合には、第2プレート部材32がプレート部材30を支持しているので、基板Pの液浸露光終了後に、搬送アーム80を使って、基板P及びプレート部材30と一緒に搬出するようにしてもよい。この場合、昇降部材74と同様に、第2プレート部材32を昇降するための昇降部材を設けてもよい。また、第2プレート部材32の内側段部32Dを設けずに、プレート部材30と第2プレート部材32とを別々に搬出及び搬入できるようにしてもよい。この場合、第2プレート部材32を搬出及び搬入するための搬送機構をさらに設けてもよい。
なお、プレート部材30、32の交換のタイミングは、前述のように平坦面30A、32Aの撥液性の劣化に応じて決定する。プレート部材30、32を交換するタイミングとしては、例えば所定基板処理枚数毎や所定時間間隔毎など、予め定められた所定間隔でプレート部材30、32を交換することができる。あるいは、露光光ELの照射量(照射時間、照度)とプレート部材30、32の撥液性レベルとの関係を実験やシミュレーションによって予め求めておき、その求めた結果に基づいて、プレート部材30、32を交換するタイミングを設定するようにしてもよい。撥液性の劣化の評価は、例えば、平坦面30A、32Aなどを顕微鏡または目視で観察する、液滴を評価面に垂らして液滴の状態を目視または顕微鏡で観察する、あるいは液滴の接触角を測定することで行うことができる。そのような評価を露光光などの紫外線の積算照射量との関係で予め制御装置CONTに記録しておくことにより、その関係からプレート部材30、32などの寿命、すなわち交換時間(時期)を制御装置CONTは決定することができる。
また露光装置EXは、投影光学系PLの像面側に照射される露光光ELの強度を計測可能なインテグレータセンサ(不図示)を使って、プレート部材30、32に照射される露光光ELの積算照射量を求めることができる。制御装置CONTは、レーザ干渉計56を使って計測される基板ステージPSTの位置情報とインテグレータセンサを使って計測される露光光ELの強度情報とに基づいて、プレート部材30やプレート部材32に照射された露光光ELの強度と照射時間(照射パルス数)とを計測することができるので、その計測結果に基づいてプレート部材30やプレート部材32に照射された露光光ELの積算照射量を求めることができる。なお、露光光ELの強度を計測するインテグレータセンサは、例えば、米国特許第5,728,495号公報や米国特許第5,591,958号に開示されている。
本実施形態においては、制御装置CONTは、プレート部材30,32の交換の要否を、プレート部材30,32の上面30A,32Aにおける液体の接触角に基づいて判断する。例えば、プレート部材30,32の使用時間や紫外光の積算照射量などに基づいて、液体の接触角が所定角度(例えば100°)以下に低下したと推定される場合に、プレート部材30,32の交換が必要であると判断する。あるいは、プレート部材30,32の使用時間や紫外光の積算照射量などに基づいて、プレート部材30,32の表面30A,32Aにおける液体1の接触角が初期状態より所定角度(例えば10°)以上低下したと推定される場合に、プレート部材30,32の交換が必要であると判断する。
なお、プレート部材30,32などの撥液性の劣化は、露光装置EXの制御装置CONTで判断しなくてもよく、例えば、露光装置EXが設置されている工場などのホストコンピュータと露光装置EXとを各種データが交換できるように接続し、そのホストコンピュータで判断してもよい。
また、液体回収機構20の液体回収能力が高い場合には、プレート部材30,32の撥液性が劣化しても液体を十分に回収することができる可能性があるので、液体回収機構20の液体回収能力と撥液性の劣化(接触角の低下)との関係も考慮して、プレート部材30、32などの交換時期を決定することもできる。
また、撥液性の劣化の速度や劣化の度合いは、露光光ELの照射時間だけでなく、撥液性をもたらす材料、液体、露光波長、温度などの要素により異なるのでそれらの要素と共に評価データを用意しておくのがよい。以下に述べる撥液性が付与されたその他の部材の交換時期についても同様である。
なお本実施形態においては、プレート部材30、32は、撥液性材料である例えばポリ四フッ化エチレンによって形成されているが、もちろん他の撥液性を有する材料によって形成してもよい。また、例えば所定の金属などでプレート部材30、32を形成し、その金属製のプレート部材30の表面に、撥液性を有する撥液性材料(ポリ四フッ化エチレンなどのフッ化物)をコーティングするようにしてもよい。また、撥液性材料のコーティング領域としては、プレート部材30、32の表面全部をコーティングしてもよいし、例えば平坦面30Aなど撥液性を必要とする一部の領域のみをコーティングするようにしてもよい。
もちろん、プレート部材30と第2プレート部材32とを別々の部材で設けてもよいし、別々の撥液性材料を用いてコーティングするようにしてもよい。また、プレート部材30、及び第2プレート部材32の全ての表面が均一なレベルで撥液性を有する必要はなく、部分的に撥液性の強い部分を設けてもよい。また、プレート部材30、及び第2プレート部材32の全ての表面が、同様の撥液性の劣化耐久性を有する必要はなく、露光光の照射量が多い部分の劣化耐久性を他の部分よりも強化するようにしてもよい。例えば、プレート部材30の表面は、第2プレート部材32の表面よりも劣化耐久性が強いことが好ましい。
本実施形態では、プレート部材30を交換するとき、プレート部材30を基板Pとともに搬出するように説明したが、もちろん、プレート部材30のみを基板テーブルPTに対して搬入及び搬出するようにしてもよい。
また、プレート部材30は昇降部材74と搬送アーム80とを用いて交換できるようになっているが、昇降部材74やプレート部材30を搬送可能な搬送アーム80は必ずしも必要ではなく、オペレータが手動でプレート部材30を交換するようにしてもよい。また、上述の実施形態においては、プレート部材30、及び第2プレート部材32は各々一体的に設けられているが、それぞれを分割して、部分的に交換できるようにしてもよい。これにより撥液性の劣化が激しい部分のみを頻繁に交換することも可能となる。
あるいは、プレート部材30とプレート部材32とを一つのプレート部材として形成し、基板テーブルPTに保持するようにしてもよい。
なお、本実施形態では、図5から分るように、基板ホルダPHと基板テーブルPTとは脱着可能であるが、基板ホルダPHを基板テーブルPTと一体で設けてもよい。
なお、本実施形態では、基板Pの表面PA、側面PB、及び裏面PCの全面に撥液処理のために感光材90が塗布されているが、ギャップAを形成する領域、すなわち基板Pの側面PBと、ギャップBを形成する領域、すなわち基板Pの裏面PCのうち周壁部33の上面33Aに対向する領域のみを撥液処理する構成であってもよい。更に、ギャップAが十分に小さく、また撥液処理するために塗布する材料の撥液性(接触角)が十分に大きければ、ギャップAを介して第2空間39に液体1が流入する可能性が更に低くなるため、ギャップBを形成する基板Pの裏面PCには撥液処理を施さず、基板Pの側面PBのみを撥液処理する構成であってもよい。もちろん、表面PA,側面PB,及び裏面PCのすべての撥液処理が施されていない基板Pを用いることもできる。
なお、本実施形態では、周壁部33の高さは支持部34の高さより低く、基板Pの裏面PCと周壁部33の上面33Aとの間にギャップBが形成されているが、基板Pの裏面PCと周壁部33の上面33Aとが接触してもよい。
本実施形態において、基板Pの側面PB及び裏面PCの撥液処理として、撥液性を有する感光材90を塗布しているが、側面PBや裏面PCには感光材90以外の撥液性(撥水性)を有する所定の材料を塗布するようにしてもよい。例えば、基板Pの露光面である表面PAに塗布された感光材90の上層にトップコート層と呼ばれる保護層(液体から感光材90を保護する膜)を塗布する場合があるが、このトップコート層の形成材料(例えばフッ素系樹脂材料)は、例えば接触角110°程度で撥液性(撥水性)を有する。したがって、基板Pの側面PBや裏面PCにこのトップコート層形成材料を塗布するようにしてもよい。もちろん、感光材90やトップコート層形成用材料以外の撥液性を有する材料を塗布するようにしてもよい。
また、本実施形態では、基板テーブルPTや基板ホルダPHの撥液処理として、フッ素系樹脂材料やアクリル系樹脂材料を塗布する等しているが、上記感光材やトップコート層形成材料を基板テーブルPTや基板ホルダPHに塗布するようにしてもよいし、逆に、基板Pの側面PBや裏面PCに、基板ステージPSTや基板ホルダPHの撥液処理に用いた材料を塗布するようにしてもよい。
上記トップコート層は、液浸領域AR2の液体1が感光材90に浸透するのを防止するために設けられる場合が多いが、例えばトップコート層上に液体1の付着跡(所謂ウォーターマーク)が形成されても、液浸露光後にこのトップコート層を除去することにより、ウォーターマークをトップコート層とともに除去した後に現像処理等の所定のプロセス処理を行うことができる。ここで、トップコート層が例えばフッ素系樹脂材料から形成されている場合、フッ素系溶剤を使って除去することができる。これにより、ウォーターマークを除去するための装置(例えばウォーターマーク除去用基板洗浄装置)等が不要となり、トップコート層を溶剤で除去するといった簡易な構成で、ウォーターマークを除去した後に所定のプロセス処理を良好に行うことができる。
なお、上述の実施形態においては、プレート部材30,32は、基板テーブルPTに真空吸着方式で保持されているが、電磁チャック機構等の他のチャック機構を用いることもできる。
<第2実施形態>
次に、本発明の別の実施形態について説明する。以下の説明において、上述した実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。
図11は基板テーブルPT(基板ステージPST)に対して脱着される基板ホルダPHを示す図であって、図11(a)は側断面図、図11(b)は基板ホルダPHが外された後の基板テーブルPTを上方から見た平面図である。
図11に示すように、基板テーブルPTはその上面(基板ホルダPHに対する保持面)に、基板ホルダPHを嵌合可能な凹部157と、凹部157内部に設けられ、凹部157に配置された基板ホルダPHを吸着保持する複数の真空吸着孔158と、凹部157内部に設けられた後述する流路159とを備えている。凹部157に基板ホルダPHを嵌合することにより基板テーブルPTと基板ホルダPHとが位置決めされる。真空吸着孔158は凹部157に配置された基板ホルダPHを保持するチャック機構の一部を構成しており、不図示のバキューム装置に接続されている。バキューム装置の駆動は制御装置CONTにより制御される。制御装置CONTはバキューム装置を制御し、真空吸着孔158を介して基板テーブルPTの基板ホルダPHに対する吸着保持及び保持解除を行う。保持解除することにより、基板ホルダPHと基板テーブルPTとが分離可能となり、基板ホルダPHは交換可能となる。
なおここでは、基板テーブルPTは基板ホルダPHを真空吸着保持するように説明したが、例えば電磁チャック機構等の他のチャック機構により基板ホルダPHを保持及び保持解除するようにしてもよい。またここでは、基板テーブルPTと基板ホルダPHとの位置決めは凹部157を用いて行うように説明したが、例えば基板ホルダPHと基板テーブルPTとの位置関係を光学的に検出し、この検出結果に基づいて基板テーブルPTに対して基板ホルダPHを所定の位置に位置決めする構成としてもよい。
また、基板ホルダPHは、基板Pを配置するための凹部150と、凹部150に配置された基板Pの表面とほぼ面一となる平坦面30Aとを有している。平坦面30Aは、基板Pの周囲に環状に設けられている。平坦面30Aの周りには、その平坦面30Aよりも高い側壁部151が形成されている。側壁部151は平坦面30Aの周りに連続して環状に形成されており、その側壁部151の内側(基板P上や平坦面30A上)に液体1を保持することができる。
基板ホルダPHは、例えばポリ四フッ化エチレン等の撥液性を有する材料によって形成されている。なお基板ホルダPHを例えば所定の金属で形成し、その金属製の基板ホルダPHのうち、少なくとも平坦面30Aに対して撥液性を有する撥液性材料(ポリ四フッ化エチレンなど)をコーティングするようにしてもよい。もちろん、金属製の基板ホルダPHの表面全域に撥液性材料をコーティングするようにしてもよい。
搬送アーム80は、基板テーブルPTより外された基板ホルダPHを搬送可能である。例えば、搬送アーム80は、露光処理された後の基板Pを保持した基板ホルダPHを基板テーブルPT(基板ステージPST)から搬出(アンロード)し、基板ホルダPHを別の基板ホルダPHと交換した後、その基板ホルダPHを基板テーブルPTに搬入(ロード)可能である。また、搬送アーム80は、基板ホルダPHを基板テーブルPTに搬入する際、基板ホルダPHのみを搬入することもできるし、露光処理される前の基板Pを保持した基板ホルダPHを搬入することもできる。
図12は基板ホルダPHを示す図であって、図12(a)は側断面図、図12(b)は上方から見た平面図である。
図12において、基板ホルダPHは、上述した液体1を保持可能な側壁部151と、凹部150の底面部PHTに形成された複数の凸部161と、凸部161の上端面に形成された真空吸着孔162とを備えている。凸部161の上端面は平坦面であり、基板ホルダPHは複数の凸部161の上端面で基板Pを支持するとともに、真空吸着孔162を介して基板Pを吸着保持する。ここで、凸部161は支持した基板Pを撓ませないように基板ホルダPHの凹部150の底面部PHTの複数の所定位置のそれぞれに設けられている。凸部161で基板Pを支持することにより、基板Pと基板ホルダPHの底面部PHTとの間に離間部164が形成される。なお本実施形態において、基板ホルダPHの平面視形状は略円形状であるが矩形状であってもよい。
また、基板テーブルPTと基板ホルダPHとが接続された際、基板ホルダPHの真空吸着孔162は基板ホルダPHに形成された流路162Aを介して、基板テーブルPTの上面に設けられている流路159(図11(b)等参照)に接続されるようになっている。流路159はバキューム装置に接続されており、制御装置CONTはバキューム装置を駆動することにより、基板テーブルPTの流路159、基板ホルダPHの流路162A、及び真空吸着孔162を介して、凸部161に支持された基板Pを吸着保持する。ここで、流路162Aのそれぞれには制御装置CONTの制御のもとで駆動する電磁弁等からなる弁部162Bが設けられており、流路162Aの開放・閉塞動作を遠隔操作可能となっている。制御装置CONTは、バキューム装置を駆動した際に弁部162Bを制御して流路162Aを開放し、バキューム装置を停止した際に流路162Aを閉塞する。したがって、真空吸着孔162を介した基板Pに対する吸引動作の後に、バキューム装置の駆動を停止するとともに弁部162Bにより流路162Aを閉塞することにより、流路162Aの負圧が維持されるようになっている。したがって、基板テーブルPTと基板ホルダPHとを分離した際にも、流路162Aを負圧にしておくことにより基板ホルダPHは基板Pに対する吸着保持を維持可能である。
次に、上述した構成を有する露光装置EXの動作について、図13の模式図を参照しながら説明する。
図13(a)に示すように、露光処理対象である基板Pを保持した基板ホルダPHが搬送アーム(搬送装置)80によって基板Pと一緒に基板テーブルPTに搬入される。図13(b)に示すように、基板ホルダPHは基板テーブルPTに設けられた凹部157に嵌合するように配置され、真空吸着孔158(図11)を有するチャック機構に保持される。そして、制御装置CONTはバキューム装置を駆動し、流路159、流路162A、及び真空吸着孔162を介して基板Pを真空吸着保持する(なお図13では不図示)。このとき、弁部162Bは流路162Aを開放している。そして、図13(c)に示すように、制御装置CONTは、液体供給機構10及び液体回収機構20によって液体1の供給及び回収を行い、基板テーブルPT上に基板ホルダPHを介して保持された基板Pと投影光学系PLとの間に液体1の液浸領域AR2を形成する。そして、制御装置CONTは、投影光学系PLと液体1とを介して基板Pに露光光ELを照射し、基板テーブルPT(基板ステージPST)に基板ホルダPHを介して保持された基板Pを移動しながら液浸露光を行う。このとき、吸着保持された基板Pにより真空吸着孔162は塞がれているので、液体1が供給されても真空吸着孔162に浸入することがない。また、基板ホルダPHの側壁部151によって、基板P上や平坦面30A上の液体1が基板ホルダPHの外側に流出することもない。
基板Pの液浸露光終了後、制御装置CONTは、基板P上や平坦面30A上に残留した液体1を液体回収機構20(図2参照)などを使って回収する。次いで、制御装置CONTは、真空吸着孔158を含むチャック機構による基板ホルダPHに対する保持を解除するとともに、弁部162Bを用いて流路162Aを閉塞する。そして、図13(d)に示すように、制御装置CONTは、露光処理を終えた基板Pを保持した状態の基板ホルダPHを搬送アーム80により基板テーブルPTから基板Pと一緒に搬出(アンロード)する。基板ホルダPHと基板テーブルPTとを分離する際、図12を参照して説明したように、基板Pを吸着保持した真空吸着孔162に接続する流路162Aは弁部162Bにより閉塞されて負圧状態を維持されているので、凸部161の上端面による基板Pに対する吸着保持は維持される。また、基板Pを基板ホルダPHとともに搬送する際、仮に基板P上や平坦面30A上に液体1が残留していても、その残留した液体1は流路162Aを介して流出することがない。また、残留した液体1は側壁部151内部に保持されるので、基板ホルダPHの外側に流出して搬送経路中に飛散することもない。
搬出された基板ホルダPHは、新たな基板ホルダPHと交換される。そして、制御装置CONTは、露光処理対象である基板Pを保持した新たな基板ホルダPHを搬送アーム80を使って基板テーブルPT(基板ステージPST)に搬入する(図13参照)。
このように、本実施形態においても、基板ホルダPHを交換するようにしているので、表面が撥液性の基板ホルダPHで基板Pを保持することができる。
<第3実施形態>
ところで、上記実施形態においては、基板Pの周囲に平坦面30Aを有する部材(プレート部材30、第2プレート部材32、基板ホルダPH)を、その撥液性の劣化に応じて交換するように説明したが、基板テーブルPT上に設けられたプレート部材30、第2プレート部材32、および基板ホルダPH以外の部材も、その表面が撥液性であることが望ましく、その撥液性の劣化に応じて交換可能にしておくとよい。特に液体1と接触する部材の表面は撥液性であることが望ましく、その撥液性の劣化に応じて交換可能にしておくとよい。具体的には、表面に液浸領域を形成して使用される、基準部材300の構成部材、光学センサ400、500の構成部材も交換可能である。
図14は、基板テーブルPT上に設けられた基準部材300を示す断面図である。図14において、基準部材300は、ガラス(クリアセラム)からなる光学部材301と、光学部材301の上面301Aに形成された基準マークMFM、PFMとを備えている。基準部材300は、基板テーブルPT上に取り付けられており、上述したように、第2プレート部材32に設けられた開口部32Kに配置され、上面301Aを露出している。そして、基準部材300(光学部材301)は、基板テーブルPTに対して脱着可能となっており、交換可能となっている。基準部材300を基板テーブルPTの所定位置に再装着する際に、基準部材300を基板テーブルPTに対して位置決めするために互いに嵌合する凹凸または雄雌部材を基準部材300と基板テーブルPTに設けることができる。あるいは、磁力で基準部材300が基板テーブルPTに対して位置決めできるように磁石とそれに吸引される材料を基準部材300と基板テーブルPTに埋め込んでも良い。あるいは、真空吸着力で基準部材が基板テーブルPTに位置決めできるようにしてもよい。なお、光学部材301として、石英を用いてもよい。
基準部材300と開口部32Kとの間には、例えば0.3mm程度のギャップKが設けられている。光学部材301(基準部材300)の上面301Aはほぼ平坦面となっており、基板P表面、プレート部材30の表面30A、及び第2プレート部材32の表面32Aとほぼ同じ高さ(面一)に設けられている。
第2プレート部材32のうち基準部材300近傍は薄肉化されており、その薄肉化された薄肉部32Sのうち基準部材300側の端部は下方に曲げられて曲げ部32Tを形成している。また、基板テーブルPT上には、上方に突出する壁部310が形成されている。壁部310は、基準部材300に対して曲げ部32Tより外側に設けられ、基準部材300(曲げ部32T)を囲むように連続して形成されている。そして、曲げ部32Tの外側面32Taと壁部310の内側面310Aとが対向し、曲げ部32Tの内側面32Tbと光学部材301(基準部材300)の側面301Bとが対向している。光学部材301の側面301B、曲げ部32Tの内側面32Tb及び外側面32Ta、壁部310の内側面310A及び上端面310Bのそれぞれは平坦面である。また、第2プレート部材32の曲げ部32Tを含む薄肉部32Sと壁部310とは僅かに離れており、その間に所定のギャップ(隙間)が形成されている。
光学部材301の上面301A、側面301Bのうち少なくとも曲げ部32Tと対向する領域、壁部310の内側面310A、及び上端面310Bは、撥液処理されて撥液性となっている。撥液処理としては、上述したように、フッ素系樹脂材料やアクリル系樹脂材料等の撥液性材料を塗布する等して行うことができる。
また、第2プレート部材32の曲げ部32T(壁部310)と基準部材301との間の空間370に流入した液体1は、回収部380で回収される。本実施形態において、回収部380は、真空系383と、液体1を収容可能なタンクを含む気液分離器381と、基板テーブルPT内部に設けられ、空間370と気液分離器381とを接続する流路382とを備えている。流路382の内壁面にも撥液処理が施されている。
上述した基準部材300においては、例えばその上面301A上に液体1の液浸領域AR2を形成した状態で、基準マーク検出動作が行われる構成が考えられるが、上面301Aは撥液性であるので、基準マーク検出動作完了後において、上面301A上の液浸領域AR2の液体1の回収を良好に行うことができ、液体1が残留する不都合を防止できる。また、光学部材301の側面301Bが撥液性であるとともに、その側面301Bに対向する曲げ部32Tの内側面32Tbも撥液性であるため、ギャップKには液体1が浸入し難くなっている。そのため、空間370に液体1が浸入する不都合を防止することができる。また、仮に空間370に液体1が浸入しても、回収部380によって液体1を良好に回収することができる。更に、空間370に液体1が浸入しても、壁部310の内側面310A及び上端面310Bが撥液性であるとともに、その壁部310に対向する第2プレート部32(曲げ部32T)も撥液性であるため、空間370に浸入した液体1が壁部310を越えて基板テーブルPT内部に浸入して錆びなどを生じさせる不都合を防止することができる。このように、壁部310は液体1の拡散を防止する液体拡散防止壁としての機能を有する。また、第2プレート部材32と壁部310との隙間には、曲げ部32Tによって、断面視において曲がり角部が形成されており、その曲がり角部がシール部として機能するため、基板テーブルPT内部への液体1の浸入を確実に防止することができる。
そして、基準部材300(光学部材301)は交換可能であるため、その撥液性が劣化した場合には、プレート部材30と同様に、新たな(十分な撥液性を有する)基準部材300と交換すればよい。
なお、基準部材300を使う場合には、マーク部分に局所的に計測光が照射されるので、基準部材300上に同一の基準マークを複数形成しておき、マーク部分の表面の撥液性が劣化したら、他の基準マークを使うようにしてもよいし、撥液性の劣化速度を低下させるために、それらのマークを計測毎に交互に使用するようにしてもよい。これにより基準部材300の交換頻度を少なくすることが可能となる。これは、露光波長と同一の計測光が使用される基準マークMFMを含む部分は撥液性の劣化が早いので、特に有効である。
図15は、基板テーブルPT上に設けられた照度ムラセンサ400を示す断面図である。図15において、照度ムラセンサ400は、石英ガラスなどからなる上板401と、上板401の下に設けられた石英ガラスなどからなる光学素子402とを備えている。本実施形態において、上板401と光学素子402とは一体で設けられている。以下の説明においては、上板401及び光学素子402を合わせて適宜「光学部材404」と称する。また、上板401及び光学素子402は、支持部403を介して基板テーブルPT上に支持されている。支持部403は、光学部材404を囲む連続した壁部を有している。照度ムラセンサ400は、上述したように、第2プレート部材32に設けられた開口部32Lに配置され、上面401Aを露出している。そして、上板401及び光学素子402を含む光学部材404は、基板テーブルPTに対して脱着可能となっており、交換可能となっている。光学部材404を基板テーブルPTの所定位置に再装着する際に、光学部材404を基板テーブルPTに対して位置決めするために互いに嵌合する凹凸または雄雌部材を光学部材404と基板テーブルPTに設けることができる。あるいは、磁力で光学部材404が基板テーブルPTに対して位置決めできるように磁石とそれに吸引される材料を光学部材404と基板テーブルPTに埋め込んでも良い。あるいは、真空吸着力で基準部材が基板テーブルPTに位置決めできるようにしてもよい。
上板401上には、光を通過可能なピンホール部470が設けられている。また、上板401上のうち、ピンホール部470以外の部分は、クロムなどの遮光性材料を含む薄膜460が設けられている。本実施形態において、ピンホール部470内部にも石英ガラスからなる光学部材が設けられており、これにより、薄膜460とピンホール部470とが面一となっており、上面401Aは平坦面となる。
光学部材404の下方には、ピンホール部470を通過した光を受光する光センサ450が配置されている。光センサ450は基板テーブルPT上に取り付けられている。光センサ450は、受光信号を制御装置CONTに出力する。ここで、支持部403と基板テーブルPTと光学部材404とで囲まれた空間405は略密閉空間であり、液体1は空間405に浸入しない。なお、光学部材404と光センサ450との間に光学系(光学素子)を配置してもよい。
光学部材404及び支持部403を含む照度ムラセンサ400と開口部32Lとの間には、例えば0.3mm程度のギャップLが設けられている。照度ムラセンサ400の上面401Aはほぼ平坦面となっており、基板P表面、プレート部材30の表面30A、及び第2プレート部材32の表面32Aとほぼ同じ高さ(面一)に設けられている。
第2プレート部材32のうち照度ムラセンサ400近傍は薄肉化されており、その薄肉化された薄肉部32Sのうち照度ムラセンサ400側の端部は下方に曲げられて曲げ部32Tを形成している。また、基板テーブルPT上には、上方に突出する壁部310が形成されている。壁部310は、照度ムラセンサ400に対して曲げ部32Tより外側に設けられ、照度ムラセンサ400(曲げ部32T)を囲むように連続して形成されている。そして、曲げ部32Tの外側面32Taと壁部310の内側面310Aとが対向し、曲げ部32Tの内側面32Tbと照度ムラセンサ400の光学部材404及び支持部403の側面401Bとが対向している。側面401B、曲げ部32Tの内側面32Tb及び外側面32Ta、壁部310の内側面310A及び上端面310Bのそれぞれは平坦面である。また、第2プレート部材32の曲げ部32Tを含む薄肉部32Sと壁部310とは僅かに離れており、その間に所定のギャップ(隙間)が形成されている。
照度ムラセンサ400の上面401A、側面401Bのうち少なくとも曲げ部32Tと対向する領域、壁部310の内側面310A及び上端面310Bは、撥液処理されて撥液性となっている。撥液処理としては、上述したように、フッ素系樹脂材料やアクリル系樹脂材料等の撥液性材料を塗布する等して行うことができる。
また、第2プレート部材32の曲げ部32T(側部310)と照度ムラセンサ400との間の空間470に流入した液体1は、回収部480で回収される。本実施形態において、回収部480は、真空系483と、液体1を収容可能なタンクを含む気液分離器481と、基板テーブルPT内部に設けられ、空間470と気液分離器481とを接続する流路482とを備えている。流路482の内壁面にも撥液処理が施されている。
上述した照度ムラセンサ400においては、例えばその上面401A上に液体1の液浸領域AR2を形成した状態で、露光光ELが照射される照射領域(投影領域)内の複数の位置で順次ピンホール部470を移動させる。上面401Aは撥液性であるので、照度ムラ計測完了後において、上面401A上の液浸領域AR2の液体1の回収を良好に行うことができ、液体1が残留する不都合を防止できる。また、照度ムラセンサ400(光学部材404、支持部403)の側面401Bが撥液性であるとともに、その側面401Bに対向する曲げ部32Tの内側面32Tbも撥液性であるため、ギャップLには液体1が浸入し難くなっている。そのため、空間470に液体1が浸入する不都合を防止することができる。また、仮に空間470に液体1が浸入しても、回収部480によって液体1を良好に回収することができる。更に、空間470に液体1が浸入しても、壁部310の内側面310A及び上端面310Bが撥液性であるとともに、その壁部310に対向する第2プレート部32(曲げ部32T)も撥液性であるため、空間470に浸入した液体1が壁部310を越えて基板テーブルPT内部に浸入して錆びなどを生じさせる不都合を防止することができる。また、第2プレート部材32と壁部310との隙間には、曲げ部32Tによって断面視において曲がり角部が形成されており、その曲がり角部がシール部として機能するため、基板テーブルPT内部への液体1の浸入を確実に防止することができる。
そして、光学部材404は交換可能であるため、プレート部材30と同様に、その撥液性が劣化した場合には、新たな(十分な撥液性を有する)光学部材404と交換すればよい。
なお、空間像計測センサ500は照度ムラセンサ400とほぼ同等の構成を有するため、その詳細な説明は省略するが、空間像計測センサ500も、基板テーブルPT上で支持部を介して支持された上板及び光学素子からなる光学部材を有し、その上面501Aには、光を通過可能なスリット部570及びそのスリット部以外を覆う遮光性材料からなる薄膜が設けられている。そして、スリット部570を通過した光を受光する光センサが光学部材の下に設けられている。スリット部570を有する光学部材は、その撥液性の劣化に応じて交換可能となっている。
なお、上述の図14、図15を参照して説明した実施形態においては、ギャップK、Lを形成する部材表面に撥液性を持たせることで、液体1の浸入を防止しているが、計測部材やセンサの周りのギャップに限らず、基板テーブルPTの上面に存在するギャップに同様に撥液性を持たせることで、そのギャップへの液体1の浸入を防ぐことができる。また、ギャップK、Lに樹脂などから形成されたシール部材を配置して、液体1の浸入を防止するようにしてもよいし、液体(例えば真空グリースや磁性流体など)をギャップK、Lに充填して液体シール機能を持たせ、液体1の浸入を防止するようにしてもよい。この場合、シール用の液体は液体1に溶け出しにくいものが好ましい。もちろん、これらの液体浸入防止策を併用してもよいことは言うまでもない。
また、基板ステージPST(基板テーブルPT)に搭載されているすべての計測部材(基準部材300の光学部材301、光学センサ400の上板401、光学センサ500の上板501など)の表面(液体接触面)を撥液性にする必要はなく、それらの一部だけに撥液性を持たせてもよい。
また、上述の実施形態においては、部材表面の撥液性が劣化した場合に交換を行うことになっているが、ある一つの部材を交換するときに、交換時期の近い部材も同時に交換するようにしてもよい。
また、液体(水)の回収をより確実に行うために、基板テーブルPTの表面、すなわちプレート部材30、及び第2プレート部材32の表面、基準部材300などの表面は、液体(水)に対する接触角が80°より大きい程度、望ましくは100°以上(上述のポリ四フッ化エチレンの液体(水)に対する接触角は110°程度)にしておくことが望ましい。
また、基板P表面に塗布されている感光材(ArF露光光用レジスト)も液体(水)に対する接触角が80°より大きい程度のものを用いるのが望ましい。もちろん、露光光としてKrFエキシマレーザ光を用いる場合には、KrF露光光用レジストとして液体に対する接触角が80°より大きいものを用いることが望ましい。
上記具体例では基板テーブルと、基準部材300、照度ムラセンサ400や空間像計測センサ500などの計測具とを共に備えた基板ステージを例示したが、基板を保持して露光が行われるステージと計測用のステージが別々である露光装置にも本発明を適用することができる。すなわち、本発明は、ウエハ等の被処理基板を保持して移動可能な露光ステージと、各種の基準部材や計測センサなどの計測部材を備えた計測ステージとを備えた露光装置をも意図している。この場合、上述の実施形態において基板ステージPSTに配置されている基準部材や各種計測センサの少なくとも一部を計測ステージに配置することができる。露光ステージと計測ステージとを備えた露光装置は、例えば特開平11−135400号に記載されている。
本実施形態では、基板Pを保持する基板ステージ(基板テーブル)を2つ搭載した、ツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の構造及び露光動作は、例えば特開平10−163099号及び特開平10−214783号(対応米国特許6,341,007、6,400,441、6,549,269及び6,590,634)、特表2000−505958号(対応米国特許5,969,441)あるいは米国特許6,208,407に開示されている。
<第4実施形態>
図16は、本発明を適用したツインステージ型露光装置の概略構成図である。ツインステージ型露光装置は、共通のベース54上を各々独立に移動可能な第1、第2基板ステージPST1、PST2を備えている。第1,第2基板ステージPST1、PST2は、図1〜15との関係で説明してきたような構造及び機能を備える基板ステージであり、第1、第2基板テーブルPT1、PT2をそれぞれ有しており、第1、第2基板テーブルPT1、PT2上には、プレート部材30及び第2プレート部材32が交換可能にそれぞれ設けられている。また、ツインステージ型露光装置は、露光ステーションST1と計測・交換ステーションST2とを有しており、露光ステーションST1には投影光学系PLが設けられ、計測・交換ステーションST2には、基板アライメント系、フォーカス・レベリング検出系などが搭載されている(図16では不図示)。そして、露光ステーションST1において、第1基板テーブルPT1上に保持された基板Pに対して液浸露光処理が行われている間、計測・交換ステーションST2において、基板Pがプレート部材30と一緒に第2基板ステージPST2(第2基板テーブルPT2)に対してロード・アンロードされるようになっている。また、計測・交換ステーションST2においては、露光ステーションST1における液浸露光と並行して、第2基板ステージPST2上の基板Pに対する計測動作(フォーカス検出動作、アライメント動作)が行われ、その計測動作が終了した後、第2基板ステージPST2が露光ステーションST2に移動し、第2基板ステージPST上の基板Pに対して液浸露光処理が行われる。
このように、ツインステージ型露光装置の場合には、一方のステージで液浸露光処理中に、他方のステージで基板交換や計測処理のみならず、プレート部材30の交換を行うことができるので、露光処理のスループットを向上することができる。
なお、上記各実施形態においては、プレート部材30などはその撥液性に応じて交換されるように説明したが、例えば何らかの原因で損傷したり汚染した場合など、撥液性の劣化以外の別の理由に応じて交換できることは言うまでもない。例えば、プレート部材30などが長い間液体1と接触している場合には、その表面が劣化して物質が溶出し、液体1を汚染してしまう可能性があるので、物質溶出を伴うプレート部材30などの表面劣化も考慮して交換時期を決めてもよい。
上記実施形態においては、光学素子2は蛍石で形成されているが、例えば、その蛍石の表面の結晶方位が(111)面である蛍石を用い得る。また、図1に示した光学素子2の先端部2a、即ち、液体1と接触する部分には、単層膜により構成される溶解防止膜としてフッ化マグネシウム(MgF)が真空蒸着法により成膜されていてもよい。
<第5実施形態>
上述の第1実施形態で説明したように、基板ステージPST上に、照射量モニタ、照度むらセンサなどの装置を構成する光学部品、空間像計測装置の指標板、レチクルのアライメントの際に用いられるフィデューシャルマーク(基準部材)などが搭載されている場合、これらの光学部品の表面(液体接触面)は撥液性を有することが望ましい。照射量モニタ、照度むらセンサなどの表面上の排水が完全に行われない場合には、光照射量や光照度の計測を正確に行うことができなくなってしまう虞がある。また、空間像計測装置の指標板上の排水が完全に行われない場合には、指標板上の液体が蒸発することにより指標板の面形状が変化し空間像計測装置による計測に誤差が生じる可能性がある。また、フィデューシャルマーク上の排水が完全に行われない場合には、フィデューシャルマーク上の液体が蒸発することによりフィデューシャルマークの形状が変化しレチクルアライメントを正確に行うことができない可能性がある。そのため、基板ステージ上に配置される光学部品の表面は長期にわたり撥水性を有することが要求される。
この場合、非晶質フッ素樹脂を光学部品の表面に塗布・薄膜化することによって光学性能の高い撥水性光学薄膜を作成することが考えられる。即ち、非晶質フッ素樹脂は樹脂の中でも特に透明で紫外線透過率が高い材料であり、なおかつ樹脂表面に配位している−CF結合によって有機物中で最も小さい表面張力を示すものであるために、すぐれた撥水性能を持つ材料でもある。
しかしながら、光学部品の表面に施した撥水性光学薄膜は、液浸状態でエネルギーの高い紫外レーザを照射すると、薄膜が吸収した微量な光のエネルギーが温度に変換され、比較的短い期間で薄膜が膨潤してしまい膜中に水が浸入する。この場合に、フッ素樹脂薄膜と光学部品表面との密着性が悪いと膜が剥離してしまい、光学性能に悪影響が生じ、撥水性能が劣化するために基板ステージ上に水滴が残ってしまう虞がある。
一般に、光学部品表面にフルオロアルキルシランのようなカップリング剤を反応させてバインダ層を形成し、その上にフッ素樹脂薄膜を成膜すると密着性の良い薄膜が得られることが知られているが、本発明者の調査によると、フルオロアルキルシランは紫外レーザ光を吸収し、分解してしまうため、レーザ照射後の密着性を得ることができないことが分った。
この実施形態では、長期間にわたって撥水性を維持することが可能な、液浸型投影露光装置に好適な光学部品について、図を参照しながら説明する。図19は、ウエハステージに搭載されている光学部品を示す図である。また、図20は、ウエハステージに搭載されている光学部品の構成を示す図である。
図19に示すウエハステージ609上には、露光光の照射量をモニタするための照射量モニタの光入射窓(光照射面を含む)650、露光光の照度むらを検出するための照度むらセンサの光入射窓(光照射面を含む)652などの光学部品が搭載されている。また、投影光学系の光学特性等の計測を行う空間像計測装置(AIS系)の指標板(光照射面を含む)654、レチクルのアライメントの際に用いられるフィデューシャルマーク(FM)(光照射面を含む)656などの光学部品が搭載されている。ここで照射量モニタの光入射窓(光照射面を含む)650(及び照度むらセンサの光入射窓(光照射面)652)は、図20に示すように、石英ガラス660により構成され、その表面に二酸化ケイ素(SiO)により形成される微粒子層(接着微粒子層)662が成膜され、微粒子層の表面に非晶質フッ素樹脂により構成される撥水性膜664が成膜されている。
また、空間像計測装置(AIS系)の指標板654、フィデューシャルマーク(FM)656は、石英ガラス及びこの石英ガラスの表面に形成されたクロム(金属)パターンより構成され、その表面に二酸化ケイ素(SiO)により形成される微粒子層(接着微粒子層)が成膜され、微粒子層の表面に非晶質フッ素樹脂により構成される撥水性膜が成膜されている。
この実施の形態にかかる光学部品によれば、接着微粒子層を形成する二酸化ケイ素(SiO)からなる微粒子層は、基材のガラス(主成分SiO)と親和性が良く、基材のガラスと程よい密着性を得ることができる。また、表面に粒子の径に由来する凹凸を生じる。更に、二酸化ケイ素等は紫外線透過率が非常に高い材料であるので、それ自身のレーザ照射耐久性も高い。本実施形態では、二酸化ケイ素(SiO)からなる微粒子層を成膜した後、その微粒子層上に非晶質フッ素樹脂により構成される撥水性膜を形成する。非晶質フッ素樹脂は、二酸化ケイ素等の微粒子の空隙に入り込み、抱きかかえるように乾燥・固化する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水膜の強度は高いものとなる。
また、光照射面上に形成された撥水性膜は、高いレーザ照射耐久性を有することから、投影露光装置の基板ステージ上に搭載されている光学部品の表面の撥水性を長期間にわたって維持することができる。
また、この実施形態にかかる投影露光装置によれば、基板ステージ上に表面の撥水性を長期間にわたって維持することができる光学部品を搭載しているため、液浸露光を繰り返した場合においても、光学部品の表面上の排水を確実に行うことができる。

なお、上述の実施の形態においては、光学部品の光照射面上に二酸化ケイ素(SiO)からなる微粒子層により構成される接着微粒子層を成膜した上に非晶質フッ素樹脂により構成される撥水性膜を成膜しているが、光照射面の表面に二酸化ケイ素(SiO)に代えて、フッ化マグネシウム(MgF)またはフッ化カルシウム(CaF)より構成される接着微粒子層を成膜した上に非晶質フッ素樹脂により構成される撥水性膜を成膜するようにしても良い。あるいは、二酸化ケイ素(SiO)、フッ化マグネシウム(MgF)及びフッ化カルシウム(CaF)のうちの任意の二種を混合してあるいは積層して接着微粒子層を構成してもよく、それらの3種を混合してあるいは積層して接着微粒子層を構成してもよい。この場合においても、二酸化ケイ素(SiO)からなる微粒子層により構成される接着微粒子層を成膜した上に非晶質フッ素樹脂により構成される撥水性膜を成膜した場合と同様に、撥水性膜をレーザ照射耐久性に優れたものとすることができる。
また、上述の実施の形態においては、光学部品(例えば、光入射窓650)の光照射面上に二酸化ケイ素(SiO)からなる微粒子層により構成される接着微粒子層を成膜した上に非晶質フッ素樹脂により構成される撥水性膜を成膜しているが、図21に示すように、石英ガラス666により形成される光照射面の表面に例えば、フッ化水素(またはフッ化水素を水に溶解したフッ化水素酸)を用いてエッチングすることにより接着面(エッチング面)668を形成し、接着面668の表面に非晶質フッ素樹脂により構成される撥水性膜670を成膜するようにしてもよい。この場合には、光照射面にフッ化水素を用いてエッチングしたエッチング面で構成される接着面を有するため、接着面上に非晶質フッ素樹脂により構成される撥水性膜を形成すると、非晶質フッ素樹脂は、接着面の空隙に入り込み、抱きかかえるように乾燥・固化する。非晶質フッ素樹脂自身の機械的な強度は高いため、基材に密着させた撥水膜の強度は高いものとなる。
また、本実施形態においては、光照射面が基材ガラスと基材ガラスの表面の一部にパターンを形成するための金属膜(クロム等)とを有し、その上に非晶質フッ素樹脂により構成される撥水性膜を形成しているが、基材ガラスと基材ガラスの全面に形成された金属膜とを有し、その上に非晶質フッ素樹脂により構成される撥水性膜を形成するようにしても良い。このような光学部品は、投影レンズの透過率などをモニタする際に用いられる高反射板として用いられる。
また、本実施形態においては、基材ガラスとして石英ガラスを用いているが、低膨張ガラスを用いても良い。
以下に本実施形態の光学部品の製造方法を実施例により具体的に説明する。
成膜を施す光学部品(石英ガラス)の光照射面の表面を、超音波を照射する自動洗浄装置により洗浄することにより、またはアルコールを滲みこませた布などで払拭することによって高度に清浄に洗浄する。
次に、平均粒径80nmのMgFの微粒子をアルカリ溶液に安定に分散させたコート液を光学部品の表面に相当量滴下し、高速回転装置でスピンコートする。コート液が流動性を失うまでに乾燥したら高速回転装置から光学部品を取り外し、コート液を完全に乾燥させるために約150℃の乾燥炉で1〜2時間乾燥させる。室温までに冷却された光学部品にさらに非晶質フッ素樹脂(旭硝子(株)の「サイトップ」)を溶解したコート液を相当量滴下し、高速回転装置でスピンコートを行う。コート液が流動性を失うまでに乾燥したら高速回転装置から光学部品を取り外し、コート液を完全に乾燥させるために約100℃の乾燥炉で1〜2時間乾燥させる。上述の工程により基材ガラス(石英ガラス)上にMgF膜及び非晶質フッ素樹脂膜を有する光学部品が製造される。
成膜を施す光学部品(石英ガラス)の光照射面の表面を、超音波を照射する自動洗浄装置により洗浄することにより、またはアルコールを滲みこませた布などで払拭することによって高度に清浄に洗浄する。
次に、平均粒径80nmのSiOの微粒子をアルカリ溶液に安定に分散させたコート液を光学部品の表面に相当量滴下し、高速回転装置でスピンコートを行う。コート液が流動性を失うまでに乾燥したら高速回転装置から光学部品を取り外し、コート液を完全に乾燥させるために約150℃の乾燥炉で1〜2時間乾燥させる。室温までに冷却された光学部品にさらに非晶質フッ素樹脂(旭硝子(株)の「サイトップ」)を溶解したコート液を相当量滴下し、高速回転装置でスピンコートを行う。コート液が流動性を失うまでに乾燥したら高速回転装置から光学部品を取り外し、コート液を完全に乾燥させるために約100℃の乾燥炉で1〜2時間乾燥させる。上述の工程により基材ガラス(石英ガラス)上にSiO膜及び非晶質フッ素樹脂膜を有する光学部品が製造される。
0.2nmRMS程度の粗さまでに高精度に研磨された光学部品(石英ガラス)の表面を、5%に希釈したフッ化水素酸に5秒間浸漬した後、純水にてフッ化水素酸をすすぎ、アルコールを滲みこませた布などで払拭する。この表面に非晶質フッ素樹脂(旭硝子(株)の「サイトップ」)を溶解したコート液を相当量滴下し、高速回転装置でスピンコートを行う。コート液が流動性を失うまでに乾燥したら高速回転装置から光学部品を取り外し、コート液を完全に乾燥させるために約100℃の乾燥炉で1〜2時間乾燥させる。上述の工程により基材ガラス(石英ガラス)上に非晶質フッ素樹脂膜を有する光学部品が製造される。
比較例
成膜を施す光学部品(石英ガラス)の光照射面の表面を、超音波を照射する自動洗浄装置により洗浄することにより、またはアルコールを滲みこませた布などで払拭することによって高度に清浄に洗浄する。次に、非晶質フッ素樹脂(旭硝子(株)の「サイトップ」)を溶解したコート液を相当量滴下し、高速回転装置でスピンコートを行う。
コート液が流動性を失うまでに乾燥したら高速回転装置から光学部品を取り外し、コート液を完全に乾燥させるために約100℃の乾燥炉で1〜2時間乾燥させる。上述の工程により基材ガラス(石英ガラス)上に非晶質フッ素樹脂膜を有する光学部品が製造される。
(剥離テスト)
上述の実施例1〜3及び比較例で得られた光学部品について、セロハン粘着テープを用いた剥離テスト(テープテスト)を行った。テープテストは、ニチバン株式会社のセロハン粘着テープ(JIS−468006)、幅18mmを使用し、テープを貼り付けた時、3回強く指のひらで擦り付け、すばやく垂直に剥がすことにより、膜の剥がれの程度を判断した。
評価値の基準としては、撥水コートにφ5mm以上の剥離がある場合を「剥離発生」とし、それ以外のものを「剥離なし」とした。3/3は3個の試料のうちいずれも剥離したことを示す。
(試験結果)
実施例1 0/3個 剥離なし
実施例2 0/3個 剥離なし
実施例3 0/3個 剥離なし
比較例 3/3個 剥離発生
この試験結果から明らかなように、実施例1〜実施例3の撥水性膜は、接着層またはエッチング面を設けたので基材ガラスに強力に接着されている。従って、本発明の光学部材は液浸露光のような液体と接触する環境において極めて耐液性(耐水性)が高いことが分る。
この実施例では、撥水性膜は基材ガラスに接着した場合を例に挙げて説明したが、この結果より本発明を任意の広範な光学部品に使用可能であることが分る。すなわち、液浸露光装置の基板ステージに設けられる基準部材や各種センサに限定されず、液体または蒸気と接触するような環境で使用されるあらゆる光学レンズ、光学センサに用いることも可能である。また、露光装置に用いられる投影光学系、特に基板側の先端に装着されるレンズや照明光学系に使用されるレンズやセンサに適用することも可能である。
なお、上述の実施形態に記載されている「接触角」は、静的な接触角だけでなく、動的な接触角も含む。
上記露光装置の実施形態においては液体1として純水を用いた。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。
上記各実施形態の液体1は水であるが、水以外の液体であってもよい、例えば、露光光ELの光源がFレーザである場合、このFレーザ光は水を透過しないので、液体1としてはFレーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。この場合、液体1と接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体1としては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体1の極性に応じて行われる。
波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.44程度と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134nm程度に短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
なお、上述したように液浸法を用いた場合には、投影光学系の開口数NAが0.9〜1.3になることもある。このように投影光学系の開口数NAが大きくなる場合には、従来から露光光として用いられているランダム偏光光では偏光効果によって結像性能が悪化することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチクル)のライン・アンド・スペースパターンのラインパターンの長手方向に合わせた直線偏光照明を行い、マスク(レチクル)のパターンからは、S偏光成分(TE偏光成分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出されるようにするとよい。投影光学系PLと基板P表面に塗布されたレジストとの間が液体で満たされている場合、投影光学系PLと基板P表面に塗布されたレジストとの間が空気(気体)で満たされている場合に比べて、コントラストの向上に寄与するS偏光成分(TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数NAが1.0を越えるような場合でも高い結像性能を得ることができる。また、位相シフトマスクや特開平6−188169号公報に開示されているようなラインパターンの長手方向に合わせた斜入射照明法(特にダイボール照明法)等を適宜組み合わせると更に効果的である。
また、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、微細なライン・アンド・スペースパターン(例えば25〜50nm程度のライン・アンド・スペース)を基板P上に露光するような場合、マスクMの構造(例えばパターンの微細度やクロムの厚み)によっては、Wave guide効果によりマスクMが偏光板として作用し、コントラストを低下させるP偏光成分(TM偏光成分)の回折光よりS偏光成分(TE偏光成分)の回折光が多くマスクMから射出されるようになるので、上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスクMを照明しても、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。また、マスクM上の極微細なライン・アンド・スペースパターンを基板P上に露光するような場合、Wire Grid効果によりP偏光成分(TM偏光成分)がS偏光成分(TE偏光成分)よりも大きくなる可能性もあるが、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、25nmより大きいライン・アンド・スペースパターンを基板P上に露光するような場合には、S偏光成分(TE偏光成分)の回折光がP偏光成分(TM偏光成分)の回折光よりも多くマスクMから射出されるので、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏光照明)だけでなく、特開平6−53120号公報に開示されているように、光軸を中心とした円の接線(周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラインパターンだけでなく、複数の異なる方向に延びるラインパターンが混在する場合には、同じく特開平6−53120号公報に開示されているように、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数NAが大きい場合でも高い結像性能を得ることができる。
上記の各実施形態では、投影光学系PLの先端に光学素子2が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光光ELを透過可能な平行平面板であってもよい。液体1と接触する光学素子を、レンズより安価な平行平面板とすることにより、露光装置EXの運搬、組立、調整時等において投影光学系PLの透過率、基板P上での露光光ELの照度、及び照度分布の均一性を低下させる物質(例えばシリコン系有機物等)がその平行平面板に付着しても、液体1を供給する直前にその平行平面板を交換するだけでよく、液体1と接触する光学素子をレンズとする場合に比べてその交換コストが低くなるという利点がある。即ち、露光光ELの照射によりレジストから発生する飛散粒子、または液体1中の不純物の付着などに起因して液体1に接触する光学素子の表面が汚れるため、その光学素子を定期的に交換する必要があるが、この光学素子を安価な平行平面板とすることにより、レンズに比べて交換部品のコストが低く、且つ交換に要する時間を短くすることができ、メンテナンスコスト(ランニングコスト)の上昇やスループットの低下を抑えることができる。
なお、液体1の流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
なお、上記の各実施形態では、投影光学系PLと基板P表面との間は液体1で満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体1を満たす構成であってもよい。
また、上述の液浸法を適用した露光装置は、投影光学系PLの終端光学素子2の射出側の光路空間を液体(純水)で満たして基板Pを露光する構成になっているが、国際公開第2004/019128号に開示されているように、投影光学系PLの終端光学素子2の入射側の光路空間も液体(純水)で満たすようにしてもよい。
なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。
また、上述の実施形態においては、投影光学系PLと基板Pとの間を局所的に液体で満たす露光装置を採用しているが、露光対象の基板の表面全体が液体で覆われる液浸露光装置にも本発明を適用可能である。露光対象の基板の表面全体が液体で覆われる液浸露光装置の構造及び露光動作は、例えば特開平6−124873号公報、特開平10−303114号公報、米国特許第5,825,043号などに詳細に記載されている。
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
基板ステージPST(ウエハステージ609)やマスクステージMSTにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST(609)、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。ステージにリニアモータを用いた例は、米国特許5,623,853及び5,528,118に開示されている。
各ステージPST(609)、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST(609)、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST(609)、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST(609)、MSTの移動面側に設ければよい。
基板ステージPST(609)の移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば、米国特許5,528,118(特開平8−166475号公報)に詳細に開示されている。
マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば、米国特許第5,874,820(特開平8−330224号公報)に詳細に開示されている。
以上のように、本願実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図17に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
本発明の露光装置の一実施形態を示す概略構成図である。 図2は、液体供給機構及び液体回収機構を示す概略平面図である。 基板テーブルの平面図である。 基板を保持した状態の基板テーブルの平面図である。 基板テーブルの断面図である。 基板テーブルに対して各部材が脱着可能であることを示す模式図である。 本発明の露光装置の動作の一例を示す模式図である。 本発明の露光装置の動作の一例を示す模式図である。 搬送装置に搬送されている基板保持部材を示す平面図である。 基板テーブルの別の実施形態を示す断面図である。 本発明の露光装置の別の実施形態を示す概略構成図である。 基板保持部材の別の実施形態を示す図である。 本発明の露光装置の動作の別の例を示す模式図である。 本発明の露光装置の別の実施形態を示す概略構成図である。 本発明の露光装置の別の実施形態を示す概略構成図である。 本発明の露光装置の別の実施形態を示す概略構成図である。 半導体デバイスの製造工程の一例を示すフローチャート図である。 従来の課題を説明するための模式図である。 実施の形態にかかるウエハステージに搭載されている光学部品を示す図である。 実施の形態にかかるウエハステージ上に搭載されている光学部品の構成図である。 実施の形態にかかるウエハステージ上に搭載されている光学部品の構成図である。
符号の説明
IL…照明光学系、M…マスク、MST…マスクステージ、MSTD…マスクステージ駆動部、PL…投影光学系、P…基板、PST…基板ステージ、PSTD…基板ステージ駆動部、PT…基板テーブル、PH…基板ホルダ、CONT…制御装置、11…第1液体供給部、12…第2液体供給部、21…第1液体回収部、22…第2液体回収部、30…プレート部材、300…基準部材、400…照度ムラセンサ、500…空間像計測センサ、650,652…光入射窓、654…指標板、660…石英ガラス、662…微粒子層、664…撥水性膜。

Claims (12)

  1. 露光ビームでマスクを照明し、投影光学系により前記マスクのパターンを基板ステージ
    上に保持される基板上に液体を介して転写する投影露光装置のステージ上に搭載される光
    学部品であって、
    前記露光ビームにより照射される光照射面と、
    前記光照射面の表面に形成された二酸化ケイ素、フッ化マグネシウム及びフッ化カルシ
    ウムの中の少なくとも1つからなる微粒子層により構成される接着微粒子層と、
    前記接着微粒子層の表面に形成された非晶質フッ素樹脂により構成される撥水性膜と、
    を備える光学部品。
  2. 露光ビームでマスクを照明し、投影光学系により前記マスクのパターンを基板ステージ
    上に保持される基板上に液体を介して転写する投影露光装置のステージ上に搭載される光
    学部品であって、
    前記露光ビームにより照射される光照射面と、
    前記光照射面の表面に形成された接着面と、
    前記接着面の表面に形成された非晶質フッ素樹脂により構成される撥水性膜と、
    を備える光学部品。
  3. 前記接着面は、フッ化水素によるエッチング面である請求項2に記載の光学部品。
  4. 前記光照射面は、基材ガラスの表面を含む請求項1または2に記載の光学部品。
  5. 前記光照射面は、前記基材ガラスの表面及び前記基材ガラスの少なくとも一部に形成さ
    れた金属膜の表面を含む請求項4に記載の光学部品。
  6. 前記ステージは、基板ステージあるいは計測ステージである請求項1乃至5のいずれか
    一項に記載の光学部品。
  7. 前記基板ステージと、前記ステージ上に設けられた請求項1または2に記載の光学部品
    と、前記マスクのパターンを基板ステージ上に保持される基板上に液体を介して投影する
    投影光学系とを備える露光装置。
  8. 露光ビームでマスクを照明し、投影光学系により前記マスクのパターンを基板ステージ
    上に保持される基板上に液体を介して転写する露光装置であって、
    ステージ上に、
    前記露光ビームにより照射される光照射面と、
    前記光照射面の表面に形成された接着微粒子層と、
    前記接着微粒子層の表面に形成された非晶質フッ素樹脂により構成される撥水性膜とを
    有する光学部品とを備える露光装置。
  9. 前記接着微粒子層は、二酸化ケイ素、フッ化マグネシウム及びフッ化カルシウムの中の
    少なくとも1つからなる微粒子層により構成されている請求項8に記載の露光装置。
  10. 前記光照射面は、基材ガラスの表面を含む請求項8に記載の露光装置。
  11. 前記光照射面は、前記基材ガラスの少なくとも一部に形成された金属膜の表面を含む請
    求項10に記載の露光装置。
  12. 前記光学部品が設けられる前記ステージは、基板ステージあるいは計測ステージである
    請求項7乃至11のいずれか一項に記載の露光装置。
JP2005028724A 2004-02-19 2005-02-04 光学部品及び露光装置 Expired - Fee Related JP4513590B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028724A JP4513590B2 (ja) 2004-02-19 2005-02-04 光学部品及び露光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004042496 2004-02-19
JP2005028724A JP4513590B2 (ja) 2004-02-19 2005-02-04 光学部品及び露光装置

Publications (3)

Publication Number Publication Date
JP2005268759A JP2005268759A (ja) 2005-09-29
JP2005268759A5 JP2005268759A5 (ja) 2008-03-21
JP4513590B2 true JP4513590B2 (ja) 2010-07-28

Family

ID=35092927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028724A Expired - Fee Related JP4513590B2 (ja) 2004-02-19 2005-02-04 光学部品及び露光装置

Country Status (1)

Country Link
JP (1) JP4513590B2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898642B2 (en) * 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7481867B2 (en) 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006173377A (ja) * 2004-12-16 2006-06-29 Nikon Corp 光学部品及び投影露光装置
JP4551758B2 (ja) * 2004-12-27 2010-09-29 株式会社東芝 液浸露光方法および半導体装置の製造方法
US7459669B2 (en) * 2005-12-30 2008-12-02 Asml Netherlands B.V. Sensor and lithographic apparatus
JP2007194503A (ja) * 2006-01-20 2007-08-02 Toshiba Corp 基板処理方法および基板処理装置
US7709813B2 (en) * 2006-04-03 2010-05-04 Nikon Corporation Incidence surfaces and optical windows that are solvophobic to immersion liquids
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
DE102006062480A1 (de) 2006-12-28 2008-07-03 Carl Zeiss Smt Ag Optisches Element mit hydrophober Beschichtung, Projektionsobjektiv und Projektionsbelichtungsanlage damit
EP2062098B1 (en) 2006-09-12 2014-11-19 Carl Zeiss SMT GmbH Optical arrangement for immersion lithography
JP5177736B2 (ja) * 2006-11-01 2013-04-10 レーザーテック株式会社 マスク検査装置
US20080158531A1 (en) * 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2008059916A1 (fr) * 2006-11-15 2008-05-22 Nikon Corporation Appareil et procédé d'exposition et procédé de fabrication de dispositif
US8975599B2 (en) * 2007-05-03 2015-03-10 Asml Netherlands B.V. Image sensor, lithographic apparatus comprising an image sensor and use of an image sensor in a lithographic apparatus
JP4992558B2 (ja) * 2007-06-04 2012-08-08 株式会社ニコン 液浸露光装置、デバイス製造方法、及び評価方法
JP2008300771A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び露光条件の決定方法
DE102008002024A1 (de) 2007-06-05 2008-12-11 Carl Zeiss Smt Ag Optisches Element, Projektionsobjektiv und Projektionsbelichtungsanlage damit
US7561250B2 (en) * 2007-06-19 2009-07-14 Asml Netherlands B.V. Lithographic apparatus having parts with a coated film adhered thereto
JP2010251745A (ja) 2009-04-10 2010-11-04 Asml Netherlands Bv 液浸リソグラフィ装置及びデバイス製造方法
WO2011155529A1 (ja) * 2010-06-10 2011-12-15 株式会社ニコン 計測部材、ステージ装置、露光装置、露光方法、及びデバイス製造方法
JPWO2012011512A1 (ja) * 2010-07-20 2013-09-09 株式会社ニコン 露光方法、露光装置および洗浄方法
JP6004169B2 (ja) * 2011-09-02 2016-10-05 セイコーエプソン株式会社 インクジェット捺染装置
RU2014153544A (ru) * 2012-05-28 2016-07-20 Намикос Корпорейшн Стеклянный контейнер и способ его изготовления

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JPH11176727A (ja) * 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2003238577A (ja) * 2001-10-05 2003-08-27 Shin Etsu Chem Co Ltd パーフルオロポリエーテル変性シラン及び表面処理剤、並びに反射防止フィルター
JP2003240906A (ja) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd 反射防止体およびその製造方法
JP2004207711A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及び露光方法、デバイス製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JPH11176727A (ja) * 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2003238577A (ja) * 2001-10-05 2003-08-27 Shin Etsu Chem Co Ltd パーフルオロポリエーテル変性シラン及び表面処理剤、並びに反射防止フィルター
JP2003240906A (ja) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd 反射防止体およびその製造方法
JP2004207711A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及び露光方法、デバイス製造方法

Also Published As

Publication number Publication date
JP2005268759A (ja) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4513590B2 (ja) 光学部品及び露光装置
KR101394764B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
JP4513534B2 (ja) 露光装置及び露光方法、デバイス製造方法
JP5445612B2 (ja) 露光装置及び露光方法、デバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Ref document number: 4513590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees