JPS5982761A - 半導体メモリ - Google Patents
半導体メモリInfo
- Publication number
- JPS5982761A JPS5982761A JP57192478A JP19247882A JPS5982761A JP S5982761 A JPS5982761 A JP S5982761A JP 57192478 A JP57192478 A JP 57192478A JP 19247882 A JP19247882 A JP 19247882A JP S5982761 A JPS5982761 A JP S5982761A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- substrate
- insulating film
- groove
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 5
- 239000003990 capacitor Substances 0.000 claims abstract description 55
- 238000003860 storage Methods 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims 2
- 239000000758 substrate Substances 0.000 abstract description 37
- 239000010410 layer Substances 0.000 abstract description 28
- 238000009792 diffusion process Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 11
- 239000011229 interlayer Substances 0.000 abstract description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/403—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
- G11C11/404—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/92—Capacitors having potential barriers
- H01L29/94—Metal-insulator-semiconductors, e.g. MOS
- H01L29/945—Trench capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/37—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/39—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
- H10B12/395—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は半導体メモリに係シ、特に平面面積を増大する
ことなく大容量を実現し、大規模化に適する1トランジ
スタ型ダイナミ、りMOSメモリに関する。
ことなく大容量を実現し、大規模化に適する1トランジ
スタ型ダイナミ、りMOSメモリに関する。
MO8ダイナミ、クメモリは1970年初頭にIKbの
ダイナミックランダムアクセスメモリ(以下d RAM
と略す)が発売されてから、3年 ・に4倍の大規模
化が達成されてきた。しかるに、このメモリチップを入
れるパッケージは、主に16ピンD工P(デュアルイン
ランパッケージ)が用いられてきておシ、チップを入れ
るキャビティサイズも制限されていることから、メモリ
チップも4倍の大規模化に伴なってもたかだか1.4倍
程度にしか増大していない。(またdRAMは大量に用
いられることから、コスト面でもチップ増大をおさえる
必要がある。)従って、1記憶容量率位たる1ビット分
のメモリセル面積も大きく減少しており、4倍の大規模
化に伴なって、約1/3に微小化している。キャパシタ
容量CはC=εA/T、 (ここでε:絶縁膜の誘電
率、A:キャパシタ面積、T1:絶縁膜厚)で表わされ
るので、面積人が1/3になればεとTが同じである限
6cもまた1/3になる。記憶容量としての信号量Sは
、貯えられる電荷量Q8に比例しておし、Q、はCと記
憶電圧v8 との積であることから、Aが小さくなれば
比例してQsも小さくなシ、信号Sはそれに伴なって小
さくなる。
ダイナミックランダムアクセスメモリ(以下d RAM
と略す)が発売されてから、3年 ・に4倍の大規模
化が達成されてきた。しかるに、このメモリチップを入
れるパッケージは、主に16ピンD工P(デュアルイン
ランパッケージ)が用いられてきておシ、チップを入れ
るキャビティサイズも制限されていることから、メモリ
チップも4倍の大規模化に伴なってもたかだか1.4倍
程度にしか増大していない。(またdRAMは大量に用
いられることから、コスト面でもチップ増大をおさえる
必要がある。)従って、1記憶容量率位たる1ビット分
のメモリセル面積も大きく減少しており、4倍の大規模
化に伴なって、約1/3に微小化している。キャパシタ
容量CはC=εA/T、 (ここでε:絶縁膜の誘電
率、A:キャパシタ面積、T1:絶縁膜厚)で表わされ
るので、面積人が1/3になればεとTが同じである限
6cもまた1/3になる。記憶容量としての信号量Sは
、貯えられる電荷量Q8に比例しておし、Q、はCと記
憶電圧v8 との積であることから、Aが小さくなれば
比例してQsも小さくなシ、信号Sはそれに伴なって小
さくなる。
雑#電圧をNとすれば信号対雑音比(S/N比)はSの
減少に伴なって小さくなり、回路動作上大きな問題とな
る。従って通常はAの減少分をT。
減少に伴なって小さくなり、回路動作上大きな問題とな
る。従って通常はAの減少分をT。
の減少で補なってきており、4Kb 、16Kb 。
64KbとdRAMが大規模化されるに伴ない、絶縁膜
としてのSiO2膜の典型的な厚さT1は、1100n
、75nm、50nmと小さくなってきた。
としてのSiO2膜の典型的な厚さT1は、1100n
、75nm、50nmと小さくなってきた。
さらに最近、パッケージなどに含まれる重金属(U、T
h等)から放射されるα粒子によってSi基板内に約2
00fCの電荷が発生して、これが雑音となることが確
認され高信頼動作上信号量としての電荷もほぼ200f
C以下にすることが困難となってきた。
h等)から放射されるα粒子によってSi基板内に約2
00fCの電荷が発生して、これが雑音となることが確
認され高信頼動作上信号量としての電荷もほぼ200f
C以下にすることが困難となってきた。
従って絶縁膜をさらに加速して薄くすることが実行され
ており、この場合には絶縁膜の絶縁破壊が問題となって
きた。SiO2膜の絶縁耐圧電界は、最大10 ’ V
/ cmであわ、従って10nmのSiO2膜はIO
V印加によってほとんど永久破壊を起すか、あるいは劣
化する。また永久破壊を起さないまでも最大電界付近で
使用することは、長期信頼上大きな問題である。
ており、この場合には絶縁膜の絶縁破壊が問題となって
きた。SiO2膜の絶縁耐圧電界は、最大10 ’ V
/ cmであわ、従って10nmのSiO2膜はIO
V印加によってほとんど永久破壊を起すか、あるいは劣
化する。また永久破壊を起さないまでも最大電界付近で
使用することは、長期信頼上大きな問題である。
本発明の目的はこれらのメモリセルの微小化に伴なうα
粒子による擾乱、S/N比の悪化、絶縁耐圧の問題の深
刻化に対処し、メモリセルを微小化してもなお絶縁膜厚
を減少することなく、キャパシタ面積Aを保つか、ある
いは増大できる方法を提供することである。
粒子による擾乱、S/N比の悪化、絶縁耐圧の問題の深
刻化に対処し、メモリセルを微小化してもなお絶縁膜厚
を減少することなく、キャパシタ面積Aを保つか、ある
いは増大できる方法を提供することである。
本発明の骨子は、Si基板に堀り込んだ溝の側壁部をプ
レートとし、この溝に絶縁膜でへだてて埋め込んだ電極
をキャパシタ電極の主部として用いることにより平面面
積を増大することなく電極面積を増大することにある。
レートとし、この溝に絶縁膜でへだてて埋め込んだ電極
をキャパシタ電極の主部として用いることにより平面面
積を増大することなく電極面積を増大することにある。
これによシ、絶縁膜を薄くしてその絶縁膜の破壊、劣化
の恐れを増大させることなしに所望のキャパシタ容量を
得ることができる。
の恐れを増大させることなしに所望のキャパシタ容量を
得ることができる。
第1図はlトランジスタ型dRAMメモリセルの構成図
を示すものであシ、電荷を貯えるキャパシタ1とスイッ
チトランジスタ2で構成され、スイッチトランジスタの
ドレインはビット線3に接、続されておシ、ゲートはワ
ード線4に接続されている。
を示すものであシ、電荷を貯えるキャパシタ1とスイッ
チトランジスタ2で構成され、スイッチトランジスタの
ドレインはビット線3に接、続されておシ、ゲートはワ
ード線4に接続されている。
このメモリセルは、キャパシタ1に貯えた信号電荷をス
イッチトランジスタ2によって読み出すことによって動
作が行われる。実際にNビットのメモリを構成するには
メモリアレーを形成するが、大別して以下に述べる2つ
の方法がある0第2図には信号を差動で増幅するセンス
アンプ5に対し、両側にビット線3−1と3−2を配列
するいわゆる”開放ビット線”構成を示す0これは1本
のワード線4−!に対して一方のビット線3−1のみが
電気的に交叉しているものであシ、ビット線3−1と3
−2の信号の差をセンスアンプ5で検出するものである
。
イッチトランジスタ2によって読み出すことによって動
作が行われる。実際にNビットのメモリを構成するには
メモリアレーを形成するが、大別して以下に述べる2つ
の方法がある0第2図には信号を差動で増幅するセンス
アンプ5に対し、両側にビット線3−1と3−2を配列
するいわゆる”開放ビット線”構成を示す0これは1本
のワード線4−!に対して一方のビット線3−1のみが
電気的に交叉しているものであシ、ビット線3−1と3
−2の信号の差をセンスアンプ5で検出するものである
。
第3図は他方の”折シ返しビット線”構成を示すもので
あシ、センスアンプ5に接続されている二本のビット線
3−1.3−2が平行に配列されており、一本のワード
線4−1が二本のビット線3−1.3−2と交叉してい
る。
あシ、センスアンプ5に接続されている二本のビット線
3−1.3−2が平行に配列されており、一本のワード
線4−1が二本のビット線3−1.3−2と交叉してい
る。
後述する本発明の実施例は主に折り返しビット線構成の
場合を示すが、同様に開放ビット線構成にも適用可能で
ある。
場合を示すが、同様に開放ビット線構成にも適用可能で
ある。
第2図と第3図に示すようにピッ)ffs3−2の寄生
容量6の値をCDとし、メモリセルのキャパシタ1−2
の値を08とすれば、このメモリアレーの主要な性能指
標の一つがC8/CD となる。
容量6の値をCDとし、メモリセルのキャパシタ1−2
の値を08とすれば、このメモリアレーの主要な性能指
標の一つがC8/CD となる。
このメモリアレーの87N比はC8/CDと一対一対応
しており、メモリセルのキャパシタの値を大きくすると
同時に、ビット線3の寄生容量CDの値を小さくするこ
とも同様にS/N比を向上することになる。
しており、メモリセルのキャパシタの値を大きくすると
同時に、ビット線3の寄生容量CDの値を小さくするこ
とも同様にS/N比を向上することになる。
第4図に折り返しビット線方式のメモリセルの平面の1
例を示す。通常1100n 以上の厚いフィールド酸化
膜に囲まれた活性領域7の一部がキャパシタを形成する
ため、プレート8で覆われている。スイッチトランジス
タを形成する部分と、8i基板上のドレインヘビ、ト線
電極接続を行うコンタクト孔9の部分はプレート・8が
選択的に除去されており、この部分にワー)−線4−1
.4−2が被着されて、スイッチトランジスタ2を形成
している。理解を助けるため第5図には、第4図のAA
’断面図を示す。
例を示す。通常1100n 以上の厚いフィールド酸化
膜に囲まれた活性領域7の一部がキャパシタを形成する
ため、プレート8で覆われている。スイッチトランジス
タを形成する部分と、8i基板上のドレインヘビ、ト線
電極接続を行うコンタクト孔9の部分はプレート・8が
選択的に除去されており、この部分にワー)−線4−1
.4−2が被着されて、スイッチトランジスタ2を形成
している。理解を助けるため第5図には、第4図のAA
’断面図を示す。
以後説明の便のためトランジスタはnチャネル型を用い
た例を示す。pチャネル型にするには、一般にSi基板
と拡散層の導電型をそれぞれnチャネルの場合と逆にす
ればよい。
た例を示す。pチャネル型にするには、一般にSi基板
と拡散層の導電型をそれぞれnチャネルの場合と逆にす
ればよい。
第5図に示した従来のメモリセルは、p型、10Ω−c
m程度の8i基板10上に、通常は100〜11000
n厚程度のフィールドSiO2膜11を5i3N4を熱
酸化マスクとして用いるいわゆるLOCO8法によって
選択的に被着する。この後リンやAs添加した多結晶S
i(以下poly8iと略す)に代表されるプレート8
を選択的に被着し、このpoly 8i のプレート
8を酸化して、第1#間酸化膜13を形成する。しかる
後に、poly 8i+Moシリサイド、あるいはりフ
ラクトリー金属(MoやW等)に代表されるワード線4
を被着し、リンやAsをイオン打込みすると、プレート
8とワード線4の被着されていない活性領域にn の拡
散層15が形成されて、スイッチトランジスタ2のソー
スとドレインとなる。この後リンを含んだいわゆるCV
D法にょるPSG(phosoho−silicate
glass )を200〜11000n厚に被着して
第2層間絶縁膜14を形成しAI電極で代表されるビッ
ト線3の拡散層15への接続を行う部分にコンタクト孔
9を形成してビット線3を選択的に被着する。
m程度の8i基板10上に、通常は100〜11000
n厚程度のフィールドSiO2膜11を5i3N4を熱
酸化マスクとして用いるいわゆるLOCO8法によって
選択的に被着する。この後リンやAs添加した多結晶S
i(以下poly8iと略す)に代表されるプレート8
を選択的に被着し、このpoly 8i のプレート
8を酸化して、第1#間酸化膜13を形成する。しかる
後に、poly 8i+Moシリサイド、あるいはりフ
ラクトリー金属(MoやW等)に代表されるワード線4
を被着し、リンやAsをイオン打込みすると、プレート
8とワード線4の被着されていない活性領域にn の拡
散層15が形成されて、スイッチトランジスタ2のソー
スとドレインとなる。この後リンを含んだいわゆるCV
D法にょるPSG(phosoho−silicate
glass )を200〜11000n厚に被着して
第2層間絶縁膜14を形成しAI電極で代表されるビッ
ト線3の拡散層15への接続を行う部分にコンタクト孔
9を形成してビット線3を選択的に被着する。
このメモリセルにおいては、記憶容量となるキャパシタ
1の領域16は第4図の斜線で示される部分であ夛、メ
モリセル自体が小さくなればまた領域16も小さくなり
、ゲート酸化膜12を薄くしない限シ、前述したように
キャパシタ容量CBが小さくなシメモリ動作上大きな障
害となる。
1の領域16は第4図の斜線で示される部分であ夛、メ
モリセル自体が小さくなればまた領域16も小さくなり
、ゲート酸化膜12を薄くしない限シ、前述したように
キャパシタ容量CBが小さくなシメモリ動作上大きな障
害となる。
上記説明では、便宜上、プレート8とワード線4(すな
わちスイッチトランジスタ2のゲート)下の絶縁膜は同
じ8i02膜12としたが、メモリセルのキャパシタの
値C8を大きくすることを主目的とし、グレート8下の
絶縁膜は、5in2とS is N 4のどちらか一方
あるいは両方を用いて1層〜3層構造の絶縁膜が用いら
れることもある。
わちスイッチトランジスタ2のゲート)下の絶縁膜は同
じ8i02膜12としたが、メモリセルのキャパシタの
値C8を大きくすることを主目的とし、グレート8下の
絶縁膜は、5in2とS is N 4のどちらか一方
あるいは両方を用いて1層〜3層構造の絶縁膜が用いら
れることもある。
本発明は従来の上記構造の欠点を補ない、平面面積を拡
大することなくC8を増大することを目的としている。
大することなくC8を増大することを目的としている。
以下実施例を用いて本発明の詳細な説明する。
まず第6図に本発明の1つの実施例の平面図を示す。第
4図に示した従来のメモリセルと対比して異なる点はS
i基板10に堀シ込んだ溝17の側壁部に8i基板と同
等型の低い抵抗層を設け、とれをプレート8とし、この
溝に埋め込んだ電極をキャパシタ電極20としたところ
にある。
4図に示した従来のメモリセルと対比して異なる点はS
i基板10に堀シ込んだ溝17の側壁部に8i基板と同
等型の低い抵抗層を設け、とれをプレート8とし、この
溝に埋め込んだ電極をキャパシタ電極20としたところ
にある。
以下本発明にかかる半導体メモリの製造工程を詳細に記
す。まず第8図に示すように、p型、1〜20Ω−cm
のSi基板10に前述のLOCO8法でフィールド酸化
膜11を形成した後FやCIを含むガス例えばSF、や
CC74等を主成分とした平行平板型プラズマエツチン
グで所定の大きさの溝17を形成する。通常は1〜5μ
m深さのエツチング溝を形成するので、通常のホトレジ
ストで一旦CVD5i0211Kに溝のパターンを転写
し、とのCVD5i02膜をマスクとして溝17を形成
する。この後よく知られた拡散法等によって8i基板と
同導電型の導電率1Ω−cm以下のp+層8を溝の側壁
と下部に形成しプレート8とする。
す。まず第8図に示すように、p型、1〜20Ω−cm
のSi基板10に前述のLOCO8法でフィールド酸化
膜11を形成した後FやCIを含むガス例えばSF、や
CC74等を主成分とした平行平板型プラズマエツチン
グで所定の大きさの溝17を形成する。通常は1〜5μ
m深さのエツチング溝を形成するので、通常のホトレジ
ストで一旦CVD5i0211Kに溝のパターンを転写
し、とのCVD5i02膜をマスクとして溝17を形成
する。この後よく知られた拡散法等によって8i基板と
同導電型の導電率1Ω−cm以下のp+層8を溝の側壁
と下部に形成しプレート8とする。
その後第9図に示すように、 8i0 や5i3N4
の単層あるいはそれらの複合膜、あるいはTa205等
で代表されるキャパシタ絶縁膜18を被着する。
の単層あるいはそれらの複合膜、あるいはTa205等
で代表されるキャパシタ絶縁膜18を被着する。
このキャパシタ絶縁膜18の所定の部分にSi基板10
に達するキャパシタ電極接続孔2oを形成し、この接続
孔20を介して、poly Si のキャパシタ電
極19をSi基板1oに接続されるように所定の部分に
被着する。poly 8i19の厚さが溝17の向壁
間幅の1/2以上であれば第9図に示すごとく溝17は
ほぼpoly 5i19で埋めることかできる。po
ly Si 19は導電性を持たせるため、P+As
を添加するので結果として8i基板10中にn+の拡散
層15が形成される0 0 その後第10図に示すように、poly 5i19を
800〜1100℃の乾燥あるいは湿式酸化法で酸化し
、100〜200nmの第1層間絶縁膜13を形成し、
スイッチトランジスタ2を形成すべき部分に10〜50
nm厚のゲート酸化膜12を形成しさらにその上にpo
ly Siや、MOシリサイド、あるいはMo、W等
のゲート(ワード線4)を被着する。その後イオン打込
み法でAs等を打込み、n+拡散層15を形成する。
に達するキャパシタ電極接続孔2oを形成し、この接続
孔20を介して、poly Si のキャパシタ電
極19をSi基板1oに接続されるように所定の部分に
被着する。poly 8i19の厚さが溝17の向壁
間幅の1/2以上であれば第9図に示すごとく溝17は
ほぼpoly 5i19で埋めることかできる。po
ly Si 19は導電性を持たせるため、P+As
を添加するので結果として8i基板10中にn+の拡散
層15が形成される0 0 その後第10図に示すように、poly 5i19を
800〜1100℃の乾燥あるいは湿式酸化法で酸化し
、100〜200nmの第1層間絶縁膜13を形成し、
スイッチトランジスタ2を形成すべき部分に10〜50
nm厚のゲート酸化膜12を形成しさらにその上にpo
ly Siや、MOシリサイド、あるいはMo、W等
のゲート(ワード線4)を被着する。その後イオン打込
み法でAs等を打込み、n+拡散層15を形成する。
さらにCVDPSGで代表される第2層間絶縁膜14を
被着してn+拡散層15へのコンタクト孔9を形成し、
ILIに代表されるビット線3を被着する。
被着してn+拡散層15へのコンタクト孔9を形成し、
ILIに代表されるビット線3を被着する。
このようにすることによって、キャパシタ1は、キャパ
シタ絶縁膜18とそれをはさんだ二つの電極すなわちキ
ャパシタ電極19とプレート8によって形成される。プ
レート8がSi基板10と同じp型であるとすると、キ
ャパシタ電極19が正電位になるので最大の電位でプレ
ート8表面が空乏化あるいは反転層が形成されないよう
に十分にp型不純物濃度を高めておく必要がある。一方
、プレート8をn型にした本発明の他の実施例の場合に
はキャパシタ電極19が正電位となったとしても、プレ
ート8表面は蓄積態であるから問題はない。プレート8
をn型とした場合には、第6図の溝17に示すように、
溝17の周辺にn+層が離間して設けられているので、
これらを接続する必要があり、第11図に示すようにS
i基板にn型を用い、この表面上にp型のエピタキシャ
ル層を形成すれば離間したプレート8はすべてn型のS
i基板10に接続される。このSi基板は接地電位にし
うるので雑音電圧の影響も小さい。製造法は第8図〜第
10図で説明した前実施例のSi基板のかわりに、エピ
タキシャル層21を積層したSi基板10を用いればよ
い。
シタ絶縁膜18とそれをはさんだ二つの電極すなわちキ
ャパシタ電極19とプレート8によって形成される。プ
レート8がSi基板10と同じp型であるとすると、キ
ャパシタ電極19が正電位になるので最大の電位でプレ
ート8表面が空乏化あるいは反転層が形成されないよう
に十分にp型不純物濃度を高めておく必要がある。一方
、プレート8をn型にした本発明の他の実施例の場合に
はキャパシタ電極19が正電位となったとしても、プレ
ート8表面は蓄積態であるから問題はない。プレート8
をn型とした場合には、第6図の溝17に示すように、
溝17の周辺にn+層が離間して設けられているので、
これらを接続する必要があり、第11図に示すようにS
i基板にn型を用い、この表面上にp型のエピタキシャ
ル層を形成すれば離間したプレート8はすべてn型のS
i基板10に接続される。このSi基板は接地電位にし
うるので雑音電圧の影響も小さい。製造法は第8図〜第
10図で説明した前実施例のSi基板のかわりに、エピ
タキシャル層21を積層したSi基板10を用いればよ
い。
第12図に本発明の他の実施例を示す。前述の実施例の
キャパシタ電極19はプレート8との間でキャパシタ1
を形成しているが、本例は、第1層間絶縁膜13を介し
て第2プレート22を被着し、この間でもキャパシタを
形成している点に特徴がある。この場合プレート8との
間のキャパシタに本キャパシタが加わるのでよシ犬容量
のキャパシタを得ることができる。また接地電位にしう
る第2プレート13はキャパシタ電極19のシールドと
もなシ、雑音に強い。
キャパシタ電極19はプレート8との間でキャパシタ1
を形成しているが、本例は、第1層間絶縁膜13を介し
て第2プレート22を被着し、この間でもキャパシタを
形成している点に特徴がある。この場合プレート8との
間のキャパシタに本キャパシタが加わるのでよシ犬容量
のキャパシタを得ることができる。また接地電位にしう
る第2プレート13はキャパシタ電極19のシールドと
もなシ、雑音に強い。
以上の本発明の実施例はスイッチトランジスタ2をSi
基板10かエピタキシャル層21表面上に形成したもの
である。第13図に本発明の他の実施例を示す。
基板10かエピタキシャル層21表面上に形成したもの
である。第13図に本発明の他の実施例を示す。
すでに上記実施例で説明したようにキャパシタ絶縁膜1
8を被着した後にStの単結晶膜を形成し、後の工程で
キャパシタ電極19と拡散層部15になる部分を含む8
0I (5ilicon OnI sul atorの
略)構造を形成する。これは全面あるいは一部の面に多
結晶あるいは無 形(amo−rphous )の8i
膜を被着しておき、全面あるいは一部の面をレーザー光
や熱ヒーターで加熱し、一度溶解するかあるいは固相の
ままで絶縁膜上に単結晶層23を成長させるものである
。(第13図には示していないが、80I構造のSi膜
の一部を8i基板10に接触しておくと、単結晶化が容
易に行えるので利点が大きい。) その後80I部23上にゲート酸化膜12さらにはゲー
ト4を被着し、n+層を形成して一方はキャパシター1
t19とし、他方はビット線3に接続される拡散層15
とする0その後の工程は前実施例と同様である。本実施
例は、スイッチトランジスタ2が8i基板11上にない
ので、基板11は任意の導電型をとりうる。すなわちn
型にすれば特にプレート8を設けなくてもSi基板10
そのものがプレートとなる。
8を被着した後にStの単結晶膜を形成し、後の工程で
キャパシタ電極19と拡散層部15になる部分を含む8
0I (5ilicon OnI sul atorの
略)構造を形成する。これは全面あるいは一部の面に多
結晶あるいは無 形(amo−rphous )の8i
膜を被着しておき、全面あるいは一部の面をレーザー光
や熱ヒーターで加熱し、一度溶解するかあるいは固相の
ままで絶縁膜上に単結晶層23を成長させるものである
。(第13図には示していないが、80I構造のSi膜
の一部を8i基板10に接触しておくと、単結晶化が容
易に行えるので利点が大きい。) その後80I部23上にゲート酸化膜12さらにはゲー
ト4を被着し、n+層を形成して一方はキャパシター1
t19とし、他方はビット線3に接続される拡散層15
とする0その後の工程は前実施例と同様である。本実施
例は、スイッチトランジスタ2が8i基板11上にない
ので、基板11は任意の導電型をとりうる。すなわちn
型にすれば特にプレート8を設けなくてもSi基板10
そのものがプレートとなる。
一般に本ダイナミックメモリはメモリセルの周辺に程々
な機能をもった周辺回路を形成するのでSi基板10全
体をn型にはし難いが、この場合にはプレート8を設け
ればよいし、メモリセルの部分だけn型にすればよい。
な機能をもった周辺回路を形成するのでSi基板10全
体をn型にはし難いが、この場合にはプレート8を設け
ればよいし、メモリセルの部分だけn型にすればよい。
また第13図の実施例には第2プレートを用いていない
が、第12図に示した実施例で用いた第2プレート22
を設けることもできる。
が、第12図に示した実施例で用いた第2プレート22
を設けることもできる。
以上本発明の詳細な説明では第6図に示したごとく溝1
7の平面パターンは単純な長方形の場合を用いたが、キ
ャパシタ電極19のプレート8に対向する面は大きけれ
ば大きい程キャパシタ容量は増大するので、第14図(
a)〜(C)に示すように、(a)<L型に溝17が入
りくんでいる場合、(b)小さな溝が2つ以上設けられ
ている場合、(C)リング状に溝17が形成されている
場合は単純な長方形よ)は同平面面積でいづれもキャパ
シタ容量を増大しうる。
7の平面パターンは単純な長方形の場合を用いたが、キ
ャパシタ電極19のプレート8に対向する面は大きけれ
ば大きい程キャパシタ容量は増大するので、第14図(
a)〜(C)に示すように、(a)<L型に溝17が入
りくんでいる場合、(b)小さな溝が2つ以上設けられ
ている場合、(C)リング状に溝17が形成されている
場合は単純な長方形よ)は同平面面積でいづれもキャパ
シタ容量を増大しうる。
以上説明した実施例は多くの選択肢あるプロセスの中か
ら選んでいる。従って各工程には種々な代替が可能であ
るが、いずれの場合においても、基板に形成した溝の側
壁をキャパシタの一部とすることは共通している。
ら選んでいる。従って各工程には種々な代替が可能であ
るが、いずれの場合においても、基板に形成した溝の側
壁をキャパシタの一部とすることは共通している。
上記実施例では、本発明を、ワード線4がメモリセルア
レー内で連続的なゲートとして説明したが、メモリセル
内のスイッチングトランジスタ2ノpolySi の
トランスファーゲート4をメモリセル間で連続して形成
することなく離間して形成し、新たなコンタクト孔を介
してAjのワード線4で接続することもできる。こうす
ると従来から多くの実績のある多結晶Siゲートの信頼
性と、AIの抵抗の低いことから、高速のメモリのスイ
ッチング時間をうろことができる。
レー内で連続的なゲートとして説明したが、メモリセル
内のスイッチングトランジスタ2ノpolySi の
トランスファーゲート4をメモリセル間で連続して形成
することなく離間して形成し、新たなコンタクト孔を介
してAjのワード線4で接続することもできる。こうす
ると従来から多くの実績のある多結晶Siゲートの信頼
性と、AIの抵抗の低いことから、高速のメモリのスイ
ッチング時間をうろことができる。
上記のように、本発明の趣旨は、基板に堀シ込んだ溝の
側壁をキャパシタの1部とすることにある。従って基板
の溝以外の部分、たとえば基板表面部、あるいは従来か
ら知られている多結晶5i−8i3N4膜−多結晶Si
で構成されるすなわち第にプレート22等の積層コンデ
ンサーを基板表面上に形成して、これを側壁部のキャパ
シタと並列に接続してさらにC8を大としても、本発明
の趣旨は損われることはない。
側壁をキャパシタの1部とすることにある。従って基板
の溝以外の部分、たとえば基板表面部、あるいは従来か
ら知られている多結晶5i−8i3N4膜−多結晶Si
で構成されるすなわち第にプレート22等の積層コンデ
ンサーを基板表面上に形成して、これを側壁部のキャパ
シタと並列に接続してさらにC8を大としても、本発明
の趣旨は損われることはない。
またスイッチトランジスタは、801層中で8i基板と
平行に形成されているが、第15図に示すように80I
層23の縦方向に、トランジスタチャネル部24を形成
することもできる。本縦型チャネルトランジスタは、8
0Iを用いるすべてのメモリセルに適用しうる。
平行に形成されているが、第15図に示すように80I
層23の縦方向に、トランジスタチャネル部24を形成
することもできる。本縦型チャネルトランジスタは、8
0Iを用いるすべてのメモリセルに適用しうる。
また、本発明は冒頭にも述べたように、nチャネル型M
O8)ランジスタを用いて説明したが、Pチャネル型に
するにはすべての不純物の導電型を逆にする不純物を用
いることで達成できる。リンやAsはB−?Ajに、B
はリン、As、Sb などに置換すればよい。
O8)ランジスタを用いて説明したが、Pチャネル型に
するにはすべての不純物の導電型を逆にする不純物を用
いることで達成できる。リンやAsはB−?Ajに、B
はリン、As、Sb などに置換すればよい。
以上本発明を詳細な実施例によって説明してきたが、ス
イッチトランジスタを基板面に形成したものでは同平面
面積で従来型のメモリセルよシキャパシタ容量C8で2
〜3倍、80I層中に形成したものは数倍の08増加が
可能である。実際には、溝の形状の完全に直平面で構成
されるわけではなく、多少丸みを帯び、また微細部での
りソグラフイの解像力低下のため設計形状が正方形であ
ったとしても、円形になる場合があるが、この場合でも
C8の減少は10〜20%にとどまる。
イッチトランジスタを基板面に形成したものでは同平面
面積で従来型のメモリセルよシキャパシタ容量C8で2
〜3倍、80I層中に形成したものは数倍の08増加が
可能である。実際には、溝の形状の完全に直平面で構成
されるわけではなく、多少丸みを帯び、また微細部での
りソグラフイの解像力低下のため設計形状が正方形であ
ったとしても、円形になる場合があるが、この場合でも
C8の減少は10〜20%にとどまる。
α線によるダイナミックメモリの誤動作は、C8が10
%増加しても1桁以上改善される場合が多いので、C8
の2倍以上の増加はその規模のメモリの信頼性を上昇す
るばかシでなく、さらに大規模のメモリ実現を可能とす
る。
%増加しても1桁以上改善される場合が多いので、C8
の2倍以上の増加はその規模のメモリの信頼性を上昇す
るばかシでなく、さらに大規模のメモリ実現を可能とす
る。
また本発明は構造上、α線によってSi基板内に発生す
る大量の電子−正孔対は、直接キャパシタ電極19に流
入することが極めて少なく、特に80Iを用いたもので
は全く流入しないので特にα線に対して強い特長を有す
る。
る大量の電子−正孔対は、直接キャパシタ電極19に流
入することが極めて少なく、特に80Iを用いたもので
は全く流入しないので特にα線に対して強い特長を有す
る。
第1図〜第5図は従来のメモリセルを説明する図、第6
図〜第15図はそれぞれ本発明の実施例を示す図である
。 符号の説明 1・・・キャパシタ 2・・・スイッチトランジスタ 3・・・ビット線 4・・・ワード線 5・・・センスアンプ 6・・・寄生容量 7・・・活性領域 8・・・プレート 9・・・コンタクト孔 10・・・Si基板 11・・・フィールド酸化膜 12・・・ゲート酸化膜 13・・・第1層間絶縁膜 14・・・第2層間絶縁膜 15・・・拡散層 16−°°キャ′(シタ領域 17・・・溝 18・・・キャパシタ絶縁膜 19・・・キャパシタ電極 20・・・キャパシタ電極接続孔 2゛1・・・エピタキシャル層 22・・・第2プレート 23・・・SOI部 24・・・トランジスタチャネル部 1 垣 葛2閏 拓 4■ 85 図 85 目 第8凹 嗅 7 潤 −3 8ノl爾 葛12目 稟14函 17 あ 15 図
図〜第15図はそれぞれ本発明の実施例を示す図である
。 符号の説明 1・・・キャパシタ 2・・・スイッチトランジスタ 3・・・ビット線 4・・・ワード線 5・・・センスアンプ 6・・・寄生容量 7・・・活性領域 8・・・プレート 9・・・コンタクト孔 10・・・Si基板 11・・・フィールド酸化膜 12・・・ゲート酸化膜 13・・・第1層間絶縁膜 14・・・第2層間絶縁膜 15・・・拡散層 16−°°キャ′(シタ領域 17・・・溝 18・・・キャパシタ絶縁膜 19・・・キャパシタ電極 20・・・キャパシタ電極接続孔 2゛1・・・エピタキシャル層 22・・・第2プレート 23・・・SOI部 24・・・トランジスタチャネル部 1 垣 葛2閏 拓 4■ 85 図 85 目 第8凹 嗅 7 潤 −3 8ノl爾 葛12目 稟14函 17 あ 15 図
Claims (1)
- 情報蓄積部がある容量と絶縁ゲート形電界効果トランジ
スタを含んでなシ、上記容量は、半導体基板に形成され
た溝の側壁および底部からなるプレートの主部と、上記
側壁および底部上に絶縁膜を介して形成され上記電界効
果トランジスタのソースもしくはドレインと電気的に接
続されたキャパシタ電極の主部を有することを特徴とす
る半導体メモリ。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57192478A JPS5982761A (ja) | 1982-11-04 | 1982-11-04 | 半導体メモリ |
DE8383110928T DE3375965D1 (en) | 1982-11-04 | 1983-11-02 | Semiconductor memory |
KR1019830005205A KR910002816B1 (ko) | 1982-11-04 | 1983-11-02 | 반도체 메모리 |
EP83110928A EP0108390B1 (en) | 1982-11-04 | 1983-11-02 | Semiconductor memory |
EP86105956A EP0202515B1 (en) | 1982-11-04 | 1983-11-02 | Semiconductor memory |
DE8686105956T DE3382212D1 (de) | 1982-11-04 | 1983-11-02 | Halbleiterspeicher. |
US06/934,556 US4901128A (en) | 1982-11-04 | 1986-11-24 | Semiconductor memory |
US07/452,683 US5214496A (en) | 1982-11-04 | 1989-12-19 | Semiconductor memory |
JP2295338A JPH0618258B2 (ja) | 1982-11-04 | 1990-11-02 | 半導体メモリ |
US07/822,325 US5237528A (en) | 1982-11-04 | 1992-01-17 | Semiconductor memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57192478A JPS5982761A (ja) | 1982-11-04 | 1982-11-04 | 半導体メモリ |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63150281A Division JPH01152661A (ja) | 1988-06-20 | 1988-06-20 | 半導体メモリ |
JP2295338A Division JPH0618258B2 (ja) | 1982-11-04 | 1990-11-02 | 半導体メモリ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5982761A true JPS5982761A (ja) | 1984-05-12 |
JPH0342514B2 JPH0342514B2 (ja) | 1991-06-27 |
Family
ID=16291954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57192478A Granted JPS5982761A (ja) | 1982-11-04 | 1982-11-04 | 半導体メモリ |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP0202515B1 (ja) |
JP (1) | JPS5982761A (ja) |
KR (1) | KR910002816B1 (ja) |
DE (2) | DE3375965D1 (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115362A (ja) * | 1984-06-29 | 1986-01-23 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | ダイナミツクramセル |
JPS6151965A (ja) * | 1984-08-22 | 1986-03-14 | Nec Corp | 半導体記憶装置 |
JPS6167955A (ja) * | 1984-09-11 | 1986-04-08 | Fujitsu Ltd | 半導体記憶装置とその製造方法 |
JPS61124167A (ja) * | 1984-08-31 | 1986-06-11 | テキサス インスツルメンツ インコ−ポレイテツド | メモリセル |
JPS61160969A (ja) * | 1984-12-07 | 1986-07-21 | テキサス インスツルメンツ インコ−ポレイテツド | メモリ・セルとその製法 |
JPS61174670A (ja) * | 1984-10-31 | 1986-08-06 | テキサス インスツルメンツ インコ−ポレイテツド | Dramセルおよびその製作方法 |
JPS61179571A (ja) * | 1984-09-27 | 1986-08-12 | テキサス インスツルメンツ インコ−ポレイテツド | メモリセルおよびそのアレイ |
JPS61184867A (ja) * | 1984-10-31 | 1986-08-18 | テキサス インスツルメンツ インコ−ポレイテツド | Dramセルおよびその製作方法 |
JPS61194768A (ja) * | 1985-02-22 | 1986-08-29 | Nec Corp | Mis型半導体記憶装置及びその製造方法 |
JPS61198772A (ja) * | 1984-12-07 | 1986-09-03 | テキサス インスツルメンツ インコ−ポレイテツド | メモリセル・アレイ |
JPS61207055A (ja) * | 1985-03-11 | 1986-09-13 | Nec Corp | 半導体記憶装置 |
JPS61222256A (ja) * | 1985-03-28 | 1986-10-02 | Toshiba Corp | 半導体メモリセル |
JPS61228658A (ja) * | 1985-04-01 | 1986-10-11 | Nec Corp | 半導体装置 |
JPS61274356A (ja) * | 1985-05-29 | 1986-12-04 | Fujitsu Ltd | 半導体記憶装置 |
JPS61280651A (ja) * | 1985-05-24 | 1986-12-11 | Fujitsu Ltd | 半導体記憶装置 |
JPS6235668A (ja) * | 1985-08-09 | 1987-02-16 | Nec Corp | 半導体記憶装置 |
JPS62219660A (ja) * | 1986-03-20 | 1987-09-26 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置およびその製造方法 |
JPS62276869A (ja) * | 1986-02-05 | 1987-12-01 | テキサス インスツルメンツ インコ−ポレイテツド | 集積回路装置 |
JPS6351666A (ja) * | 1986-08-20 | 1988-03-04 | Nec Corp | 半導体メモリセル |
JPS6360557A (ja) * | 1986-08-29 | 1988-03-16 | Nec Corp | 半導体メモリセル |
JPS63255960A (ja) * | 1987-04-14 | 1988-10-24 | Toshiba Corp | キヤパシタ |
JPS6437865A (en) * | 1987-07-20 | 1989-02-08 | Ibm | Semiconductor memory device and its manufacture |
JPS6445160A (en) * | 1987-08-03 | 1989-02-17 | Ibm | Semiconductor memory device and its manufacture |
US5225697A (en) * | 1984-09-27 | 1993-07-06 | Texas Instruments, Incorporated | dRAM cell and method |
US6617205B1 (en) | 1995-11-20 | 2003-09-09 | Hitachi, Ltd. | Semiconductor storage device and process for manufacturing the same |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237528A (en) * | 1982-11-04 | 1993-08-17 | Hitachi, Ltd. | Semiconductor memory |
JPS6014462A (ja) * | 1983-07-05 | 1985-01-25 | Oki Electric Ind Co Ltd | 半導体メモリ素子 |
KR920010461B1 (ko) * | 1983-09-28 | 1992-11-28 | 가부시끼가이샤 히다찌세이사꾸쇼 | 반도체 메모리와 그 제조 방법 |
FR2554954B1 (fr) * | 1983-11-11 | 1989-05-12 | Hitachi Ltd | Dispositif de memoire a semi-conducteurs |
JPS60152058A (ja) * | 1984-01-20 | 1985-08-10 | Toshiba Corp | 半導体記憶装置 |
ATE41267T1 (de) * | 1984-04-25 | 1989-03-15 | Siemens Ag | Ein-transistor-speicherzelle fuer hochintegrierte dynamische halbleiterspeicher und verfahren zu ihrer herstellung. |
EP0167764B1 (en) * | 1984-06-14 | 1989-08-16 | International Business Machines Corporation | Dynamic ram cell |
US4688063A (en) * | 1984-06-29 | 1987-08-18 | International Business Machines Corporation | Dynamic ram cell with MOS trench capacitor in CMOS |
US5170234A (en) * | 1984-07-03 | 1992-12-08 | Texas Instruments Incorporated | High density dynamic RAM with trench capacitor |
US4672410A (en) * | 1984-07-12 | 1987-06-09 | Nippon Telegraph & Telephone | Semiconductor memory device with trench surrounding each memory cell |
US4658283A (en) * | 1984-07-25 | 1987-04-14 | Hitachi, Ltd. | Semiconductor integrated circuit device having a carrier trapping trench arrangement |
JPS6151869A (ja) * | 1984-08-20 | 1986-03-14 | Mitsubishi Electric Corp | 半導体記憶装置およびその製造方法 |
JPS6155957A (ja) * | 1984-08-27 | 1986-03-20 | Toshiba Corp | 半導体記憶装置 |
US4890145A (en) * | 1984-08-31 | 1989-12-26 | Texas Instruments Incorporated | dRAM cell and array |
US5208657A (en) * | 1984-08-31 | 1993-05-04 | Texas Instruments Incorporated | DRAM Cell with trench capacitor and vertical channel in substrate |
US4824793A (en) * | 1984-09-27 | 1989-04-25 | Texas Instruments Incorporated | Method of making DRAM cell with trench capacitor |
US4797373A (en) * | 1984-10-31 | 1989-01-10 | Texas Instruments Incorporated | Method of making dRAM cell with trench capacitor |
JPS61135151A (ja) * | 1984-12-05 | 1986-06-23 | Mitsubishi Electric Corp | 半導体記憶装置 |
US4713678A (en) * | 1984-12-07 | 1987-12-15 | Texas Instruments Incorporated | dRAM cell and method |
CN1004734B (zh) * | 1984-12-07 | 1989-07-05 | 得克萨斯仪器公司 | 动态随机存取存贮器单元(dram)和生产方法 |
DE3689004T2 (de) * | 1985-02-13 | 1994-01-20 | Toshiba Kawasaki Kk | Halbleiterspeicherzelle. |
KR930007522B1 (ko) * | 1985-03-08 | 1993-08-12 | 가부시끼 가이샤 히다찌세이사꾸쇼 | 종형 커패시터를 사용한 반도체메모리 |
US5102817A (en) * | 1985-03-21 | 1992-04-07 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4673962A (en) * | 1985-03-21 | 1987-06-16 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4737829A (en) * | 1985-03-28 | 1988-04-12 | Nec Corporation | Dynamic random access memory device having a plurality of one-transistor type memory cells |
DE3681490D1 (de) * | 1985-04-01 | 1991-10-24 | Nec Corp | Dynamische speicheranordnung mit wahlfreiem zugriff mit einer vielzahl von eintransistorspeicherzellen. |
JP2604705B2 (ja) * | 1985-04-03 | 1997-04-30 | 松下電子工業株式会社 | Mosキヤパシタの製造方法 |
US5164917A (en) * | 1985-06-26 | 1992-11-17 | Texas Instruments Incorporated | Vertical one-transistor DRAM with enhanced capacitance and process for fabricating |
JPS6267862A (ja) * | 1985-09-19 | 1987-03-27 | Mitsubishi Electric Corp | 半導体記憶装置およびその製造方法 |
US4649625A (en) * | 1985-10-21 | 1987-03-17 | International Business Machines Corporation | Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor |
US4751558A (en) * | 1985-10-31 | 1988-06-14 | International Business Machines Corporation | High density memory with field shield |
US4745081A (en) * | 1985-10-31 | 1988-05-17 | International Business Machines Corporation | Method of trench filling |
US4864375A (en) * | 1986-02-05 | 1989-09-05 | Texas Instruments Incorporated | Dram cell and method |
US4801989A (en) * | 1986-02-20 | 1989-01-31 | Fujitsu Limited | Dynamic random access memory having trench capacitor with polysilicon lined lower electrode |
US4811067A (en) * | 1986-05-02 | 1989-03-07 | International Business Machines Corporation | High density vertically structured memory |
US4829017A (en) * | 1986-09-25 | 1989-05-09 | Texas Instruments Incorporated | Method for lubricating a high capacity dram cell |
JP2681887B2 (ja) * | 1987-03-06 | 1997-11-26 | シ−メンス、アクチエンゲゼルシヤフト | 3次元1トランジスタメモリセル構造とその製法 |
EP0283964B1 (en) * | 1987-03-20 | 1994-09-28 | Nec Corporation | Dynamic random access memory device having a plurality of improved one-transistor type memory cells |
JPH0795568B2 (ja) * | 1987-04-27 | 1995-10-11 | 日本電気株式会社 | 半導体記憶装置 |
JPS643893A (en) * | 1987-06-25 | 1989-01-09 | Nec Corp | Semiconductor storage device |
US4794434A (en) * | 1987-07-06 | 1988-12-27 | Motorola, Inc. | Trench cell for a dram |
US5109259A (en) * | 1987-09-22 | 1992-04-28 | Texas Instruments Incorporated | Multiple DRAM cells in a trench |
US4942554A (en) * | 1987-11-26 | 1990-07-17 | Siemens Aktiengesellschaft | Three-dimensional, one-transistor cell arrangement for dynamic semiconductor memories comprising trench capacitor and method for manufacturing same |
US4999811A (en) * | 1987-11-30 | 1991-03-12 | Texas Instruments Incorporated | Trench DRAM cell with dynamic gain |
US4864374A (en) * | 1987-11-30 | 1989-09-05 | Texas Instruments Incorporated | Two-transistor dram cell with high alpha particle immunity |
KR910000246B1 (ko) * | 1988-02-15 | 1991-01-23 | 삼성전자 주식회사 | 반도체 메모리장치 |
US5100823A (en) * | 1988-02-29 | 1992-03-31 | Motorola, Inc. | Method of making buried stacked transistor-capacitor |
US4980734A (en) * | 1988-05-31 | 1990-12-25 | Texas Instruments Incorporated | Dynamic memory cell using silicon-on-insulator transistor with trench capacitor |
US5105245A (en) * | 1988-06-28 | 1992-04-14 | Texas Instruments Incorporated | Trench capacitor DRAM cell with diffused bit lines adjacent to a trench |
US4958206A (en) * | 1988-06-28 | 1990-09-18 | Texas Instruments Incorporated | Diffused bit line trench capacitor dram cell |
US5225363A (en) * | 1988-06-28 | 1993-07-06 | Texas Instruments Incorporated | Trench capacitor DRAM cell and method of manufacture |
JPH07109876B2 (ja) * | 1988-09-09 | 1995-11-22 | 株式会社東芝 | 半導体記憶装置の製造方法 |
US5057887A (en) * | 1989-05-14 | 1991-10-15 | Texas Instruments Incorporated | High density dynamic ram cell |
US5701022A (en) * | 1989-05-22 | 1997-12-23 | Siemens Aktiengesellschaft | Semiconductor memory device with trench capacitor |
US5111259A (en) * | 1989-07-25 | 1992-05-05 | Texas Instruments Incorporated | Trench capacitor memory cell with curved capacitors |
US5017506A (en) * | 1989-07-25 | 1991-05-21 | Texas Instruments Incorporated | Method for fabricating a trench DRAM |
US4978634A (en) * | 1989-07-25 | 1990-12-18 | Texas Instruments, Incorporated | Method of making trench DRAM cell with stacked capacitor and buried lateral contact |
JP3251778B2 (ja) * | 1993-09-27 | 2002-01-28 | 三菱電機株式会社 | 半導体記憶装置およびその製造方法 |
US5442584A (en) * | 1993-09-14 | 1995-08-15 | Goldstar Electron Co., Ltd. | Semiconductor memory device and method for fabricating the same dynamic random access memory device construction |
KR0171072B1 (ko) * | 1994-04-12 | 1999-02-01 | 문정환 | 반도체 메모리 셀 제조방법 및 구조 |
DE10053966A1 (de) * | 2000-10-31 | 2002-05-23 | Infineon Technologies Ag | DRAM-Speicherzelle |
TWI230392B (en) | 2001-06-18 | 2005-04-01 | Innovative Silicon Sa | Semiconductor device |
US20040228168A1 (en) | 2003-05-13 | 2004-11-18 | Richard Ferrant | Semiconductor memory device and method of operating same |
US7335934B2 (en) | 2003-07-22 | 2008-02-26 | Innovative Silicon S.A. | Integrated circuit device, and method of fabricating same |
US7606066B2 (en) | 2005-09-07 | 2009-10-20 | Innovative Silicon Isi Sa | Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same |
US7683430B2 (en) | 2005-12-19 | 2010-03-23 | Innovative Silicon Isi Sa | Electrically floating body memory cell and array, and method of operating or controlling same |
US7492632B2 (en) | 2006-04-07 | 2009-02-17 | Innovative Silicon Isi Sa | Memory array having a programmable word length, and method of operating same |
WO2007128738A1 (en) | 2006-05-02 | 2007-11-15 | Innovative Silicon Sa | Semiconductor memory cell and array using punch-through to program and read same |
US8069377B2 (en) | 2006-06-26 | 2011-11-29 | Micron Technology, Inc. | Integrated circuit having memory array including ECC and column redundancy and method of operating the same |
US7542340B2 (en) | 2006-07-11 | 2009-06-02 | Innovative Silicon Isi Sa | Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same |
KR101277402B1 (ko) | 2007-01-26 | 2013-06-20 | 마이크론 테크놀로지, 인코포레이티드 | 게이트형 바디 영역으로부터 격리되는 소스/드레인 영역을 포함하는 플로팅-바디 dram 트랜지스터 |
WO2009031052A2 (en) | 2007-03-29 | 2009-03-12 | Innovative Silicon S.A. | Zero-capacitor (floating body) random access memory circuits with polycide word lines and manufacturing methods therefor |
US8064274B2 (en) | 2007-05-30 | 2011-11-22 | Micron Technology, Inc. | Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same |
US8085594B2 (en) | 2007-06-01 | 2011-12-27 | Micron Technology, Inc. | Reading technique for memory cell with electrically floating body transistor |
US8194487B2 (en) | 2007-09-17 | 2012-06-05 | Micron Technology, Inc. | Refreshing data of memory cells with electrically floating body transistors |
US8536628B2 (en) | 2007-11-29 | 2013-09-17 | Micron Technology, Inc. | Integrated circuit having memory cell array including barriers, and method of manufacturing same |
US8349662B2 (en) | 2007-12-11 | 2013-01-08 | Micron Technology, Inc. | Integrated circuit having memory cell array, and method of manufacturing same |
US8773933B2 (en) | 2012-03-16 | 2014-07-08 | Micron Technology, Inc. | Techniques for accessing memory cells |
US8014195B2 (en) | 2008-02-06 | 2011-09-06 | Micron Technology, Inc. | Single transistor memory cell |
US8189376B2 (en) | 2008-02-08 | 2012-05-29 | Micron Technology, Inc. | Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same |
US7957206B2 (en) | 2008-04-04 | 2011-06-07 | Micron Technology, Inc. | Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same |
US7947543B2 (en) | 2008-09-25 | 2011-05-24 | Micron Technology, Inc. | Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation |
US7933140B2 (en) | 2008-10-02 | 2011-04-26 | Micron Technology, Inc. | Techniques for reducing a voltage swing |
US7924630B2 (en) | 2008-10-15 | 2011-04-12 | Micron Technology, Inc. | Techniques for simultaneously driving a plurality of source lines |
US8223574B2 (en) | 2008-11-05 | 2012-07-17 | Micron Technology, Inc. | Techniques for block refreshing a semiconductor memory device |
US8213226B2 (en) | 2008-12-05 | 2012-07-03 | Micron Technology, Inc. | Vertical transistor memory cell and array |
US8319294B2 (en) | 2009-02-18 | 2012-11-27 | Micron Technology, Inc. | Techniques for providing a source line plane |
WO2010102106A2 (en) | 2009-03-04 | 2010-09-10 | Innovative Silicon Isi Sa | Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device |
WO2010114890A1 (en) | 2009-03-31 | 2010-10-07 | Innovative Silicon Isi Sa | Techniques for providing a semiconductor memory device |
US8139418B2 (en) | 2009-04-27 | 2012-03-20 | Micron Technology, Inc. | Techniques for controlling a direct injection semiconductor memory device |
US8508994B2 (en) | 2009-04-30 | 2013-08-13 | Micron Technology, Inc. | Semiconductor device with floating gate and electrically floating body |
US8498157B2 (en) | 2009-05-22 | 2013-07-30 | Micron Technology, Inc. | Techniques for providing a direct injection semiconductor memory device |
US8537610B2 (en) | 2009-07-10 | 2013-09-17 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
US9076543B2 (en) | 2009-07-27 | 2015-07-07 | Micron Technology, Inc. | Techniques for providing a direct injection semiconductor memory device |
US8199595B2 (en) | 2009-09-04 | 2012-06-12 | Micron Technology, Inc. | Techniques for sensing a semiconductor memory device |
US8174881B2 (en) | 2009-11-24 | 2012-05-08 | Micron Technology, Inc. | Techniques for reducing disturbance in a semiconductor device |
US8310893B2 (en) | 2009-12-16 | 2012-11-13 | Micron Technology, Inc. | Techniques for reducing impact of array disturbs in a semiconductor memory device |
US8416636B2 (en) | 2010-02-12 | 2013-04-09 | Micron Technology, Inc. | Techniques for controlling a semiconductor memory device |
US8411513B2 (en) | 2010-03-04 | 2013-04-02 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device having hierarchical bit lines |
US8576631B2 (en) | 2010-03-04 | 2013-11-05 | Micron Technology, Inc. | Techniques for sensing a semiconductor memory device |
US8369177B2 (en) | 2010-03-05 | 2013-02-05 | Micron Technology, Inc. | Techniques for reading from and/or writing to a semiconductor memory device |
CN102812552B (zh) | 2010-03-15 | 2015-11-25 | 美光科技公司 | 半导体存储器装置及用于对半导体存储器装置进行偏置的方法 |
US8411524B2 (en) | 2010-05-06 | 2013-04-02 | Micron Technology, Inc. | Techniques for refreshing a semiconductor memory device |
US8531878B2 (en) | 2011-05-17 | 2013-09-10 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
US9559216B2 (en) | 2011-06-06 | 2017-01-31 | Micron Technology, Inc. | Semiconductor memory device and method for biasing same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53121480A (en) * | 1977-02-03 | 1978-10-23 | Texas Instruments Inc | Mos memory cell and method of producing same |
JPS5519820A (en) * | 1978-07-27 | 1980-02-12 | Nec Corp | Semiconductor device |
JPS55132062A (en) * | 1979-04-02 | 1980-10-14 | Pioneer Electronic Corp | Semiconductor memory device |
JPS55148438A (en) * | 1979-05-07 | 1980-11-19 | Ibm | Method of fabricating mosfet ram element |
JPS57176757A (en) * | 1981-04-22 | 1982-10-30 | Nec Corp | Semiconductor device |
JPS583260A (ja) * | 1981-06-29 | 1983-01-10 | Fujitsu Ltd | 竪型埋め込みキヤパシタ |
JPS583261A (ja) * | 1981-06-29 | 1983-01-10 | Fujitsu Ltd | 竪型埋め込みキヤパシタの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2441385C3 (de) * | 1974-08-29 | 1981-05-07 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum Vergrößern des Lesesignals bei einem Ein- Transistor-Speicherelement |
DE2728927C2 (de) * | 1977-06-27 | 1984-06-28 | Siemens AG, 1000 Berlin und 8000 München | Ein-Transistor-Speicherelement |
US4353086A (en) * | 1980-05-07 | 1982-10-05 | Bell Telephone Laboratories, Incorporated | Silicon integrated circuits |
-
1982
- 1982-11-04 JP JP57192478A patent/JPS5982761A/ja active Granted
-
1983
- 1983-11-02 KR KR1019830005205A patent/KR910002816B1/ko not_active IP Right Cessation
- 1983-11-02 DE DE8383110928T patent/DE3375965D1/de not_active Expired
- 1983-11-02 DE DE8686105956T patent/DE3382212D1/de not_active Expired - Lifetime
- 1983-11-02 EP EP86105956A patent/EP0202515B1/en not_active Expired
- 1983-11-02 EP EP83110928A patent/EP0108390B1/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53121480A (en) * | 1977-02-03 | 1978-10-23 | Texas Instruments Inc | Mos memory cell and method of producing same |
JPS5519820A (en) * | 1978-07-27 | 1980-02-12 | Nec Corp | Semiconductor device |
JPS55132062A (en) * | 1979-04-02 | 1980-10-14 | Pioneer Electronic Corp | Semiconductor memory device |
JPS55148438A (en) * | 1979-05-07 | 1980-11-19 | Ibm | Method of fabricating mosfet ram element |
JPS57176757A (en) * | 1981-04-22 | 1982-10-30 | Nec Corp | Semiconductor device |
JPS583260A (ja) * | 1981-06-29 | 1983-01-10 | Fujitsu Ltd | 竪型埋め込みキヤパシタ |
JPS583261A (ja) * | 1981-06-29 | 1983-01-10 | Fujitsu Ltd | 竪型埋め込みキヤパシタの製造方法 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115362A (ja) * | 1984-06-29 | 1986-01-23 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | ダイナミツクramセル |
JPH0444428B2 (ja) * | 1984-06-29 | 1992-07-21 | Intaanashonaru Bijinesu Mashiinzu Corp | |
JPS6151965A (ja) * | 1984-08-22 | 1986-03-14 | Nec Corp | 半導体記憶装置 |
JPS61124167A (ja) * | 1984-08-31 | 1986-06-11 | テキサス インスツルメンツ インコ−ポレイテツド | メモリセル |
JPH0365904B2 (ja) * | 1984-09-11 | 1991-10-15 | ||
JPS6167955A (ja) * | 1984-09-11 | 1986-04-08 | Fujitsu Ltd | 半導体記憶装置とその製造方法 |
JPS61179571A (ja) * | 1984-09-27 | 1986-08-12 | テキサス インスツルメンツ インコ−ポレイテツド | メモリセルおよびそのアレイ |
US5225697A (en) * | 1984-09-27 | 1993-07-06 | Texas Instruments, Incorporated | dRAM cell and method |
JPS61174670A (ja) * | 1984-10-31 | 1986-08-06 | テキサス インスツルメンツ インコ−ポレイテツド | Dramセルおよびその製作方法 |
JPS61184867A (ja) * | 1984-10-31 | 1986-08-18 | テキサス インスツルメンツ インコ−ポレイテツド | Dramセルおよびその製作方法 |
JPS61160969A (ja) * | 1984-12-07 | 1986-07-21 | テキサス インスツルメンツ インコ−ポレイテツド | メモリ・セルとその製法 |
JPS61198772A (ja) * | 1984-12-07 | 1986-09-03 | テキサス インスツルメンツ インコ−ポレイテツド | メモリセル・アレイ |
JPS61194768A (ja) * | 1985-02-22 | 1986-08-29 | Nec Corp | Mis型半導体記憶装置及びその製造方法 |
JPS61207055A (ja) * | 1985-03-11 | 1986-09-13 | Nec Corp | 半導体記憶装置 |
JPS61222256A (ja) * | 1985-03-28 | 1986-10-02 | Toshiba Corp | 半導体メモリセル |
JPS61228658A (ja) * | 1985-04-01 | 1986-10-11 | Nec Corp | 半導体装置 |
JPH053746B2 (ja) * | 1985-04-01 | 1993-01-18 | Nippon Electric Co | |
JPS61280651A (ja) * | 1985-05-24 | 1986-12-11 | Fujitsu Ltd | 半導体記憶装置 |
JPS61274356A (ja) * | 1985-05-29 | 1986-12-04 | Fujitsu Ltd | 半導体記憶装置 |
JPS6235668A (ja) * | 1985-08-09 | 1987-02-16 | Nec Corp | 半導体記憶装置 |
JPS62276869A (ja) * | 1986-02-05 | 1987-12-01 | テキサス インスツルメンツ インコ−ポレイテツド | 集積回路装置 |
JPS62219660A (ja) * | 1986-03-20 | 1987-09-26 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置およびその製造方法 |
JPS6351666A (ja) * | 1986-08-20 | 1988-03-04 | Nec Corp | 半導体メモリセル |
JPS6360557A (ja) * | 1986-08-29 | 1988-03-16 | Nec Corp | 半導体メモリセル |
JPS63255960A (ja) * | 1987-04-14 | 1988-10-24 | Toshiba Corp | キヤパシタ |
JPS6437865A (en) * | 1987-07-20 | 1989-02-08 | Ibm | Semiconductor memory device and its manufacture |
JPS6445160A (en) * | 1987-08-03 | 1989-02-17 | Ibm | Semiconductor memory device and its manufacture |
JPH0587188B2 (ja) * | 1987-08-03 | 1993-12-15 | Ibm | |
US6617205B1 (en) | 1995-11-20 | 2003-09-09 | Hitachi, Ltd. | Semiconductor storage device and process for manufacturing the same |
US6791134B2 (en) | 1995-11-20 | 2004-09-14 | Hitachi, Ltd. | Semiconductor memory device and manufacturing method thereof |
US6798005B2 (en) | 1995-11-20 | 2004-09-28 | Hitachi, Ltd. | Semiconductor memory device having large storage capacity and minimal step height between memory cell and peripheral circuits |
US7196368B2 (en) | 1995-11-20 | 2007-03-27 | Renesas Technology Corp. | Semiconductor memory arrangements with crown shaped capacitor arrangements trenched in interlayer dielectric film |
Also Published As
Publication number | Publication date |
---|---|
KR910002816B1 (ko) | 1991-05-04 |
DE3375965D1 (en) | 1988-04-14 |
KR840006873A (ko) | 1984-12-03 |
JPH0342514B2 (ja) | 1991-06-27 |
EP0202515A1 (en) | 1986-11-26 |
EP0202515B1 (en) | 1991-03-13 |
DE3382212D1 (de) | 1991-04-18 |
EP0108390A1 (en) | 1984-05-16 |
EP0108390B1 (en) | 1988-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5982761A (ja) | 半導体メモリ | |
EP0241948B1 (en) | Semiconductor memory and method for fabricating the same | |
US4984030A (en) | Vertical MOSFET DRAM | |
JPS6050065B2 (ja) | メモリセル | |
US5977580A (en) | Memory device and fabrication method thereof | |
JPH0430573A (ja) | 半導体記憶装置 | |
JPS60214558A (ja) | 半導体装置の製造方法 | |
JP2621181B2 (ja) | Mis型半導体記憶装置 | |
EP0154871A2 (en) | One-transistor dynamic random-access memory | |
JPS6065559A (ja) | 半導体メモリ | |
US6069819A (en) | Variable threshold voltage DRAM cell | |
JPH0640573B2 (ja) | 半導体集積回路装置 | |
JPH0576785B2 (ja) | ||
JPH0638485B2 (ja) | 半導体メモリ | |
JP2574231B2 (ja) | 半導体メモリ装置 | |
JPH0795566B2 (ja) | 半導体メモリ装置 | |
JPH077823B2 (ja) | 半導体集積回路装置 | |
JPH0691216B2 (ja) | 半導体記憶装置 | |
JPH01152661A (ja) | 半導体メモリ | |
JPS62248248A (ja) | 半導体記憶装置 | |
JPS6110271A (ja) | 半導体装置 | |
US5124766A (en) | Filament channel transistor interconnected with a conductor | |
JPS61140171A (ja) | 半導体記憶装置 | |
JPH0618258B2 (ja) | 半導体メモリ | |
KR910009453B1 (ko) | 반도체 메모리 및 그 제조방법 |