JP2020508552A - リチウムバッテリーのためのポリマー結合剤及び製造方法 - Google Patents

リチウムバッテリーのためのポリマー結合剤及び製造方法 Download PDF

Info

Publication number
JP2020508552A
JP2020508552A JP2019546030A JP2019546030A JP2020508552A JP 2020508552 A JP2020508552 A JP 2020508552A JP 2019546030 A JP2019546030 A JP 2019546030A JP 2019546030 A JP2019546030 A JP 2019546030A JP 2020508552 A JP2020508552 A JP 2020508552A
Authority
JP
Japan
Prior art keywords
active material
lithium
anode active
material layer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019546030A
Other languages
English (en)
Inventor
パン,バオフェイ
ホー,フイ
ツァーム,アルナ
ゼット. チャン,ボア
ゼット. チャン,ボア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanotek Instruments Inc
Original Assignee
Nanotek Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanotek Instruments Inc filed Critical Nanotek Instruments Inc
Publication of JP2020508552A publication Critical patent/JP2020508552A/ja
Priority to JP2023219173A priority Critical patent/JP2024038116A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

リチウムバッテリーのためのアノード活物質層が提供される。アノード活物質層は、高弾性ポリマーであって、ポリマー中に添加剤又は強化材の不在下で測定される場合、10%以上の回復可能な又は弾性引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有する高弾性ポリマーを含む結合剤によって一緒に結合される複数のアノード活物質粒子及び任意選択的な導電性添加剤を含む。アノード活物質は、好ましくは、372mAh/gより大きいリチウム貯蔵比容量を有する(例えば、Si、Ge、Sn、SnO2、Co3O4粒子など)。【選択図】図3(A)

Description

関連出願の相互参照
本出願は、2017年2月24日に出願された米国特許出願公開第15/442278号明細書(その内容を参照によって本明細書に組み入れる)に対する優先権を主張する。
本発明は、概して、再充電可能なリチウムバッテリー、より特にリチウムバッテリーアノード及びセル並びにそれを製造する方法の分野に関する。
リチウムイオンバッテリーの単位セル又は構成ブロックは典型的に、アノード集電体、アノード又は陰極層(リチウムをその中に貯蔵するのに関与するアノード活物質、導電性添加剤及び樹脂結合剤を含有する)、電解質及び多孔性セパレーター、カソード又は陽極層(リチウムをその中に貯蔵するのに関与するカソード活物質、導電性添加剤及び樹脂結合剤を含有する)並びに別個のカソード集電体から構成される。電解質は、アノード活物質及びカソード活物質の両方とイオン接触している。電解質がソリッドステート電解質である場合、多孔性セパレーターは必要とされない。
アノード層中の結合剤を使用して、アノード活物質(例えば、黒鉛又はSi粒子)と導電性充填剤(例えば、カーボンブラック粒子又はカーボンナノチューブ)とを一緒に結合して構造統合性のアノード層を形成すると共にアノード層を別個のアノード集電体に結合し、それは、バッテリーが放電されるときにアノード活物質から電子を集めるように作用する。換言すれば、バッテリーの陰極(アノード)側において、典型的に4つの異なった材料:アノード活物質、導電性添加剤、樹脂結合剤(例えば、ポリフッ化ビニリデン、PVDF又はブタジエンスチレンゴム、SBR)及びアノード集電体(典型的にCu箔のシート)が必要とされる。典型的に前者の3つの材料は、別個の、離散アノード活物質層(又は単にアノード層)を形成し、後者の1つの材料は別の離散層を形成する。
カソード活物質及び導電性添加剤粒子を一緒に結合させて構造完全性のカソード活性層を形成するために、カソード中に結合剤樹脂(例えば、PVDF又はPTFE)も使用される。同樹脂結合剤は、このカソード活性層をカソード集電体に結合させるためにも作用する。
リチウムイオンバッテリーのための最も一般的に使用されるアノード活物質は、リチウムでインターカレートされ得る天然黒鉛及び合成黒鉛(又は人工黒鉛)であり、得られた黒鉛内位添加化合物(GIC)は、Li(xが典型的に1未満である)として表わされ得る。完全な黒鉛結晶のグラフェン面間の間隔に可逆的にインターカレートされ得るリチウムの最大量は、372mAh/gの理論比容量を規定する、x=1に相当する。
最初のいくつかの充電−放電サイクル中にリチウムと電解質との間(又はリチウムとアノード表面/エッジ原子又は官能基との間)の反応から得られる、保護固体−電解質境界面層(SEI)の存在のために黒鉛又は炭素アノードは長いサイクル寿命を有することができる。この反応におけるリチウムは、本来は電荷移動の目的のためのものであったリチウムイオンの一部に由来する。SEIが形成されるとき、リチウムイオンは、不活性SEI層の一部になって不可逆的になり、すなわち充電/放電中にアノードとカソードとの間でこれらの陽イオンをもう往復させることはできない。したがって、有効なSEI層の形成のために最小量のリチウムを使用することが望ましい。SEI形成に加えて、不可逆的な容量損失Qirは、電解質/溶媒の共インターカレーション及び他の副反応によって引き起こされた黒鉛剥離にも帰せられ得る。
炭素ベース又は黒鉛ベースのアノード材料に加えて、可能なアノード用途のために評価されている他の無機材料には、金属酸化物、金属窒化物、金属硫化物等並びにリチウム原子/イオンを受け入れることができるか又はリチウムと反応することができる広範な金属、金属合金及び金属間化合物が含まれる。これらの材料の中でも、LiA(Aは、Al及びSiなどの金属又は半導体元素であり、「a」は、0<a≦5を満たす)の組成式を有するリチウム合金、例えばLiSi(3,829mAh/g)、Li4.4Si(4,200mAh/g)、Li4.4Ge(1,623mAh/g)、Li4.4Sn(993mAh/g)、LiCd(715mAh/g)、LiSb(660mAh/g)、Li4.4Pb(569mAh/g)、LiZn(410mAh/g)及びLiBi(385mAh/g)は、それらの高い理論容量のために非常に重要である。しかしながら、図2に図解的に説明されるように、これらの高容量アノード活物質から構成されるアノードにおいて、極度な微粉砕(合金粒子の破砕)及び樹脂結合剤からの活物質粒子の剥離が充電及び放電サイクル中に起こる。これは、これらの粒子への及びそれらからのリチウムイオンの挿入及び抽出によって引き起こされるアノード活物質粒子の極度な膨張及び収縮に起因する。活物質粒子の膨張及び収縮、生じた微粉砕並びに樹脂結合剤からの剥離は、活物質粒子と導電性添加剤との間の接触の低下及びアノード活物質とその集電体との間の接触の低下をもたらす。これらの悪影響は、著しく短縮された充電−放電サイクル寿命をもたらす。
このような機械的崩壊に伴う問題のいくつかを克服するために、3つの技術的方法が提案された:
(1)粒子の亀裂形成の推進力である、おそらく、粒子中に貯蔵され得る全歪エネルギーを低減する目的のために、活物質粒子の粒度を低減すること。しかしながら、低減された粒度は、可能性として液体電解質と反応してより高量のSEIを形成するために利用可能なより大きい表面積を意味する。このような反応は、不可逆的な容量損失の原因であるために望ましくない。
(2)薄膜形態の電極活物質を銅箔などの集電体上に直接に堆積させる。しかしながら、極端に小さい厚さ方向寸法(典型的に500nmよりはるかに小さく、多くの場合に必要に応じて100nmより薄い)を有するこのような薄膜構造物は、(同じ電極又は集電体表面積が与えられたとすると)ごく少量の活物質を電極に混入することができ、(単位質量当たりの容量が大きいことができても)低い全リチウム貯蔵容量及び単位電極表面積当たり低いリチウム貯蔵容量を提供することを意味する。このような薄膜は、サイクル経過によって引き起こされるクラッキングにいっそう耐性であるために100nm未満の厚さを有さなければならず、全リチウム貯蔵容量及び単位電極表面積当たりのリチウム貯蔵容量をさらに減少させる。このような薄膜バッテリーは適用範囲が非常に限定されている。望ましい及び典型的な電極厚さは100μm〜200μmである。(<500nm又はさらに<100nmの厚さを有する)これらの薄膜電極は、必要とされる厚さの1/3ではなく、3桁下回る。
(3)より活性でない又は非活性母材によって保護された(中に分散されるか又はそれによって封入された)小さい電極活性粒子、例えば炭素でコーティングされたSi粒子、ゾルゲル黒鉛で保護されたSi、金属酸化物でコーティングされたSi又はSn及びモノマーでコーティングされたSnナノ粒子から構成される複合物を使用する。おそらく、保護母材は粒子の膨張又は収縮のための緩衝作用を提供し、電解質が電極活物質と接触して反応するのを防ぐ。高容量アノード活性粒子の例はSi、Sn及びSnOである。残念なことに、Si粒子などの活物質粒子がバッテリーの充電工程中に(例えば、380%の体積膨脹まで)膨張するとき、保護コーティングは、保護コーティング材料の機械的弱さ及び/又は脆性のために容易に破断される。それ自体リチウムイオン導電性でもある入手可能な高強度及び高靭性材料はなかった。
活性粒子(例えば、Si及びSn)を保護するために使用されるコーティング又は母材材料は炭素、ゾルゲル黒鉛、金属酸化物、モノマー、セラミック及び酸化リチウムであることをさらに指摘し得る。これらの保護材料は全て非常に脆く、弱く(低強度)且つ/又は不導性である(例えば、セラミック又は酸化物コーティング)。理想的には、保護材料は、以下の要件を満たし得る:(a)コーティング又は母材材料は、電極活物質粒子が、リチウム化されるときに過度に膨張しないのを助けるように高い強度及び剛性を有し得る。(b)保護材料は、反復されるサイクル経過中の砕解を避けるために高い破壊靭性又は亀裂形成に対する高い耐性も有し得る。(c)保護材料は、電解質に対して不活性でなければならないが、良いリチウムイオン導体でなければならない。(d)保護材料は、リチウムイオンを不可逆的に捕捉する相当量の欠陥部位を一切提供してはならない。(e)保護材料は、リチウムイオン導電性並びに電子導電性でなければならない。先行技術の保護材料は全て、これらの要件が不十分である。したがって、得られたアノードは典型的に、予想されるよりもはるかに低い可逆的な比容量を示すことを観察するのは驚くべきことではなかった。多くの場合、第1サイクル効率は極度に低い(主に80%より低く、さらに60%より低いものもある)。さらに、多くの場合、電極は、多数のサイクル数にわたって運転することができなかった。さらに、これらの電極の大部分は、高率性でなく、高い放電率で容認し難いほど低い容量を示す。
これらの及び他の理由のために、先行技術の複合電極及び電極活物質の大部分は、いくつかの仕方で欠陥を有し、例えば、多くの場合、あまり良くない可逆的な容量、不十分なサイクル経過安定性、高い不可逆的な容量、リチウムイオン挿入及び抽出工程中の内部応力又は歪の低減の無効性並びに他の望ましくない副作用を有する。
特に重要な複雑な複合粒子は、炭素母材中に分散された別個のSiと黒鉛粒子との混合物である;例えば、Mao, et al.[“Carbon−coated Silicon Particle Powder as the Anode Material for Lithium Batteries and the Method of Making the Same,”米国特許出願公開第2005/0136330号明細書(2005年6月23日)]によって調製された複合粒子。また、炭素母材を含有する、そのなかに分散された複合ナノSi(酸化物によって保護される)及び黒鉛粒子並びに黒鉛粒子の表面上に分布された炭素でコーティングされたSi粒子も重要である。また、これらの複雑な複合粒子は、低い比容量をもたらすか又は少しのサイクル数までのみ通用した。炭素自体が比較的弱く脆性であり、ミクロンサイズの黒鉛粒子の存在は、黒鉛粒子自体が比較的弱いため、炭素の機械的結着性を改良しないと考えられる。黒鉛は、これらの場合おそらく、アノード材料の電気導電率を改良する目的のために使用された。さらに、ポリマー炭素、非晶質炭素又は予備黒鉛状炭素は、最初の数サイクルにわたってリチウムを不可逆的に捕捉する非常に多くのリチウム捕獲部位を有する場合があり、過度の不可逆性をもたらす。
要約すると、従来技術では、リチウムイオンバッテリーにおいてアノード活物質の膨張/収縮によって誘導される問題を効果的に減少又は排除することができる複合材料及び他の方法が実証されていない。したがって、リチウムイオンバッテリーが長いサイクル寿命を示すことができるようにする新規の保護又は結合剤材料の緊急且つ継続的な必要性が存在する。また、このような材料を大量に直ちに又は容易に製造する方法も必要とされている。
このように、これらの必要を満たして高容量アノード活物質を含有するリチウムバッテリーの急速な容量減衰に伴う問題に対処することが本発明の目的である。
本明細書では、結合剤樹脂の非常にユニークな分類を含有するリチウムバッテリーのためのアノード活物質層が報告される。この結合剤樹脂は、Si、Sn及びSnOなどの高容量アノード活物質を特徴とするリチウムイオンバッテリーに一般的に伴う急速な容量減衰問題を克服することができる高弾性ポリマーを含有する。
特に、本発明は、リチウムバッテリーのためのアノード活物質層を提供する。この層は、構造完全性のアノード活性層を形成するように結合剤樹脂によって一緒に結合される複数のアノード活物質粒子及び任意選択的な導電性添加剤(例えば、カーボンブラック、アセチレンブラックの粒子、膨張黒鉛フレーク、カーボンナノチューブ、グラフェンシート、カーボンナノ繊維など)を含む。この結合剤樹脂は、高弾性ポリマーであって、ポリマー中に添加剤又は強化材の不在下で測定される場合、5%以上の回復可能な引張歪み(弾性歪み)及び室温において10−5S/cm以上のリチウムイオン導電率を有する高弾性ポリマーを含む。
高弾性ポリマーは、一方向引張下でポリマー中に添加剤又は強化材の不在下で測定される場合、5%以上(典型的に10〜700%、より典型的に30〜500%、さらにより典型的且つ望ましくは>50%、最も望ましくは>100%)の回復可能な引張歪みを有する。このポリマーは、室温において10−5S/cm以上(好ましくは且つより典型的に10−4S/cm以上、より好ましくは且つ典型的に10−3S/cm以上)のリチウムイオン導電率も有する。アノード活物質は、好ましくは、黒鉛の理論容量である372mAh/gより大きいリチウム貯蔵の比容量を有する。
高弾性ポリマーは、一方向引張下で(ポリマー中に添加剤又は強化材の不在下で)測定される場合、少なくとも5%である弾性変形を示すポリマーであって、典型的に軽度に架橋したポリマーを意味する。材料科学及び工学の分野において、「弾性変形」とは、負荷の解放時に本質的に完全に回復可能であり、且つ回復プロセスが本質的に瞬間的である(機械的に応力を受けた場合の)材料の変形として定義される。弾性変形は、好ましくは、30%より高く、より好ましくは50%より高く、さらにより好ましくは100%より高く、なおより好ましくは150%より高く、最も好ましくは200%より高い。
いくつかの好ましい実施形態において、高弾性ポリマーは、ポリマー鎖の軽度に架橋したネットワークであって、ポリマー鎖の架橋ネットワーク中において、エーテル結合、ニトリル誘導結合、ベンゾペルオキシド誘導結合、エチレンオキシド結合、プロピレンオキシド結合、ビニルアルコール結合、シアノ−樹脂結合、トリアクリレートモノマー誘導結合、テトラアクリレートモノマー誘導結合又はそれらの組合せを有するポリマー鎖の軽度に架橋したネットワークを含有する。これらのネットワーク又は架橋ポリマーは、高弾性(高い弾性変形歪み)及び高いリチウムイオン導電率のユニークな組合せを示す。
特定の好ましい実施形態において、高弾性ポリマーは、ニトリル含有ポリビニルアルコール鎖、シアノ樹脂鎖、ペンタエリトリトールテトラアクリレート(PETEA)鎖、ペンタエリトリトールトリアクリレート鎖、エトキシル化トリメチロールプロパントリアクリレート(ETPTA)鎖、エチレングリコールメチルエーテルアクリレート(EGMEA)鎖又はそれらの組合せから選択されるポリマー鎖の軽度に架橋したネットワークを含有する。
このアノード活物質層において、アノード活物質は、(a)ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アンチモン(Sb)、ビスマス(Bi)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)及びカドミウム(Cd);(b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Ni、Co又はCdと他の元素との合金又は金属間化合物;(c)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V又はCdの酸化物、炭化物、窒化物、硫化物、リン化物、セレン化物及びテルル化物並びにそれらの混合物、複合物又はリチウム含有複合物;(d)Snの塩及び水酸化物;(e)チタン酸リチウム、マンガン酸リチウム、アルミン酸リチウム、リチウム含有酸化チタン、リチウム遷移金属酸化物、ZnCo;(f)それらのプレリチウム化変種;(g)Li、Li合金又は少なくとも60重量%のリチウム元素をその中に有する表面安定化Liの粒子;及び(h)それらの組合せからなる群から選択され得る。
いくつかの好ましい実施形態において、アノード活物質は、プレリチウム化Si、プレリチウム化Ge、プレリチウム化Sn、プレリチウム化SnO、プレリチウム化SiO、プレリチウム化酸化鉄、プレリチウム化VO、プレリチウム化Co、プレリチウム化Ni又はそれらの組合せを含有し、式中、x=1〜2である。
アノード活物質のプレリチウム化は、この材料がリチウム化生成物中において0.1%〜54.7%のLiの重量分率までリチウムイオンでプレインターカレート又はドープされていることを意味することを指摘し得る。
アノード活物質は、好ましくは、100nmより小さい厚さ又は直径を有するナノ粒子(球形、楕円及び不規則な形状)、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートレット又はナノホーンの形態である。これらの形状は、特に断りがない限り又は上記の種の特定のタイプが望ましいのでなければ一括して「粒子」と称することができる。さらに好ましくは、アノード活物質は、50nmより小さい、さらにより好ましくは20nmより小さい、最も好ましくは10nmより小さい寸法を有する。
いくつかの実施形態において、高弾性ポリマーベースの結合剤樹脂によって複数の粒子を結合させる。樹脂結合剤によって結合させる前にアノード活物質粒子を包含するために炭素層を堆積させ得る。
アノード活物質層は、アノード活物質層内で活物質粒子と混合された黒鉛又は炭素材料をさらに含有し得る。炭素、グラフェン又は黒鉛材料は、ポリマー炭素、非晶質炭素、化学蒸着炭素、コールタールピッチ、石油ピッチ、メソフェーズピッチ、カーボンブラック、コークス、アセチレンブラック、活性炭、100nmより小さい寸法を有する微細膨張黒鉛粒子、人工黒鉛粒子、天然黒鉛粒子又はそれらの組合せから選択される。グラフェンは、純粋(pristine)グラフェン、グラフェンオキシド、還元グラフェンオキシド、グラフェンフルオリド、水素化グラフェン、窒素化グラフェン、官能化グラフェンなどから選択され得る。
アノード活物質粒子は、炭素材料、グラフェン、電子導電性ポリマー、導電性金属酸化物又は導電性金属コーティングから選択される導電性保護コーティングでコーティングされるか又は囲まれ得る。好ましくは、ナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートレット又はナノホーンの形態のアノード活物質がリチウムイオンでプレインターカレートされるか又はプレドープされて、前記プレリチウム化アノード活物質の0.1重量%〜54.7重量%のリチウムの量を有するプレリチウム化アノード活物質を形成する。
好ましくは且つ典型的に、高弾性ポリマーは、10−5S/cm以上、より好ましくは10−4S/cm以上、最も好ましくは10−3S/cm以上のリチウムイオン導電率を有する。選択されたポリマーのいくつかは、10−2S/cmより高いリチウムイオン導電率を示す。いくつかの実施形態において、高弾性ポリマーは、その中に分散された添加剤又は充填剤を含有しないニートポリマーである。他において、高弾性ポリマーは、0.1重量%〜50重量%(好ましくは1重量%〜35重量%)の、高弾性ポリマー母材材料中に分散されたリチウムイオン導電性添加剤を含有するポリマー母材複合物である。いくつかの実施形態において、高弾性ポリマーは、0.1重量%〜10重量%の、カーボンナノチューブ、カーボンナノ繊維、グラフェン又はそれらの組合せから選択される強化材ナノフィラメントを含有する。
いくつかの実施形態において、高弾性ポリマーは、天然ポリイソプレン(例えば、シス−1,4−ポリイソプレン天然ゴム(NR)及びトランス−1,4−ポリイソプレンガタパーチャ)、合成ポリイソプレン(イソプレンゴムのためのIR)、ポリブタジエン(ブタジエンゴムのためのBR)、クロロプレンゴム(CR)、ポリクロロプレン(例えば、ネオプレン、Baypren等)、ハロゲン化ブチルゴム(クロロブチルゴム(CIIR)及びブロモブチルゴム(BIIR)など、ブチルゴム(イソブチレンとイソプレンとのコポリマー、IIR)、スチレン−ブタジエンゴム(スチレンとブタジエンとのコポリマー、SBR)、ニトリルゴム(ブタジエンとアクリロニトリルとのコポリマー、NBR)、EPM(エチレンプロピレンゴム、エチレンとプロピレンとのコポリマー)、EPDMゴム(エチレンプロピレンジエンゴム、エチレン、プロピレン及びジエン成分のターポリマー)、エピクロロヒドリンゴム(ECO)、ポリアクリルゴム(ACM、ABR)、シリコーンゴム(SI、Q、VMQ)、フルオロシリコーンゴム(FVMQ)、フルオロエラストマー(FKM及びFEPM;例えばViton、Tecnoflon、Fluorel、Aflas及びDai−El)、ペルフルオロエラストマー(FFKM:Tecnoflon PFR、Kalrez、Chemraz、Perlast)、ポリエーテルブロックアミド(PEBA)、クロロスルホン化ポリエチレン(CSM;例えばハイパロン)及びエチレン酢酸ビニル(EVA)、熱可塑性エラストマー(TPE)、タンパク質レジリン、タンパク質エラスチン、エチレンオキシド−エピクロロヒドリンコポリマー、ポリウレタン、ウレタン−尿素コポリマー及びそれらの組合せから選択されるエラストマーと混合される。
いくつかの実施形態において、高弾性ポリマーは、高弾性ポリマー母材材料中に分散されたリチウムイオン導電性添加剤(0.1重量%〜50重量%)を含有するポリマー母材複合物であり、リチウムイオン導電性添加剤は、LiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せから選択され、式中、X=F、Cl、I又はBr、R=炭化水素基、x=0〜1、y=1〜4である。

いくつかの実施形態において、高弾性ポリマーは、高弾性ポリマー母材材料中に分散されたリチウムイオン導電性添加剤を含有するポリマー母材複合物であり、リチウムイオン導電性添加剤は、過塩素酸リチウムLiClO、ヘキサフルオロリン酸リチウムLiPF、ホウフッ化リチウムLiBF、ヘキサフルオロヒ化リチウムLiAsF、トリフルオロメタンスルホン酸リチウムLiCFSO、ビス−トリフルオロメチルスルホニルイミドリチウムLiN(CFSO、ビス(オキサラト)ホウ酸リチウムLiBOB、オキサリルジフルオロホウ酸リチウムLiBF、オキサリルジフルオロホウ酸リチウムLiBF、硝酸リチウムLiNO、Li−フルオロアルキル−リン酸塩LiPF(CFCF、リチウムビスペルフルオロ−エチルスルホニルイミドLiBETI、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミドLiTFSI、イオン性液体ベースのリチウム塩又はそれらの組合せから選択されるリチウム塩を含有する。
高弾性ポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、それらの誘導体(例えば、スルホン化変種)又はそれらの組合せから選択される電子導電性ポリマーとの混合物又はブレンドを形成し得る。
いくつかの実施形態において、高弾性ポリマーは、ポリ(エチレンオキシド)(PEO)、ポリプロピレンオキシド(PPO)、ポリ(アクリロニトリル)(PAN)、ポリ(メチルメタクリレート)(PMMA)、ポリ(フッ化ビニリデン)(PVdF)、ポリビス−メトキシエトキシエトキシド−ホスファゼネックス(phosphazenex)、ポリ塩化ビニル、ポリジメチルシロキサン、ポリ(フッ化ビニリデン)−ヘキサフロオロプロピレン(PVDF−HFP)、それらのスルホン化誘導体又はそれらの組合せから選択されるリチウムイオン導電性ポリマーとの混合物又はブレンドを形成し得る。スルホン化は、ここで、改良されたリチウムイオン導電率をポリマーに与えることが見出されている。
また、本発明は、任意選択のアノード集電体と、上に記載されたような本発明のアノード活物質層と、カソード活物質層と、任意選択のカソード集電体と、アノード活物質層及びカソード活物質層とイオン接触する電解質と、任意選択の多孔性セパレーターとを含有するリチウムバッテリーを提供する。リチウムバッテリーは、リチウムイオンバッテリー、リチウム金属バッテリー(主なアノード活物質としてリチウム金属又はリチウム合金を含有し、インターカレーションをベースとするアノード活物質を含有しない)、リチウム−硫黄バッテリー、リチウム−セレンバッテリー又はリチウム空気バッテリーであり得る。
本発明は、リチウムバッテリーを製造する方法も提供する。本方法は、(a)カソード活物質層及びカソード活物質層を支持するための任意選択的なカソード集電体を提供することと、(b)アノード活物質層及びアノード活物質層を支持するための任意選択的なアノード集電体を提供することと、(c)アノード活物質層及びカソード活物質層と接触する電解質並びにアノード及びカソードを電気的に分離する任意選択的なセパレーターを提供することとを含み、アノード活物質層を提供する作業は、添加剤又は強化材の不在下で測定される場合、5%〜700%の回復可能な引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有する高弾性ポリマーを含有する結合剤樹脂により、アノード活物質の複数の粒子及び任意選択的な導電性添加剤を一緒に結合して層を形成することを含む。
好ましくは、高弾性ポリマーは、1×10−5S/cm〜2×10−2S/cmのリチウムイオン導電率を有する。いくつかの実施形態において、高弾性ポリマーは、10%〜300%(より好ましくは>50%、最も好ましくは>100%)の回復可能な引張歪みを有する。
特定の好ましい実施形態において、高弾性ポリマーは、ポリマー鎖の架橋ネットワークであって、ポリマー鎖の架橋ネットワーク中において、エーテル結合、ニトリル誘導結合、ベンゾペルオキシド誘導結合、エチレンオキシド結合、プロピレンオキシド結合、ビニルアルコール結合、シアノ−樹脂結合、トリアクリレートモノマー誘導結合、テトラアクリレートモノマー誘導結合又はそれらの組合せを有するポリマー鎖の架橋ネットワークを含有する。
好ましくは、本方法において、高弾性ポリマーは、ニトリル含有ポリビニルアルコール鎖、シアノ樹脂鎖、ペンタエリトリトールテトラアクリレート鎖、ペンタエリトリトールトリアクリレート鎖、エトキシル化トリメチロールプロパントリアクリレート(ETPTA)鎖、エチレングリコールメチルエーテルアクリレート(EGMEA)鎖又はそれらの組合せから選択されるポリマー鎖の架橋ネットワークを含有する。
特定の実施形態において、結合剤樹脂は、エラストマー、電子導電性ポリマー(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、そのスルホン化誘導体又はそれらの組合せ)、リチウムイオン導電性材料、強化材(例えば、カーボンナノチューブ、カーボンナノ繊維及び/若しくはグラフェン)又はそれらの組合せとの高弾性ポリマーの混合物/ブレンド/複合物を含有する。
この混合物/ブレンド/複合物において、リチウムイオン導電性材料は、高弾性ポリマー中に分散され、且つ好ましくはLiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せから選択され、式中、X=F、Cl、I又はBr、R=炭化水素基、x=0〜1、y=1〜4である。
いくつかの実施形態において、リチウムイオン導電性材料は、高弾性ポリマー中に分散され、且つ過塩素酸リチウム、LiClO、ヘキサフルオロリン酸リチウム、LiPF、ホウフッ化リチウム、LiBF、ヘキサフルオロヒ化リチウム、LiAsF、トリフルオロメタンスルホン酸リチウム、LiCFSO、ビス−トリフルオロメチルスルホニルイミドリチウム、LiN(CFSO、ビス(オキサラト)ホウ酸リチウム、LiBOB、オキサリルジフルオロホウ酸リチウム、LiBF、硝酸リチウム、LiNO、Li−フルオロアルキル−リン酸塩、LiPF(CFCF、リチウムビスペルフルオロ−エチルスルホニルイミド、LiBETI、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミド、LiTFSI、イオン性液体ベースのリチウム塩又はそれらの組合せから選択される。
本発明の方法において、アノード活物質は、(a)ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)及びカドミウム(Cd);(b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V又はCdの酸化物、炭化物、窒化物、硫化物、リン化物、セレン化物及びテルル化物並びにそれらの混合物、複合物又はリチウム含有複合物;(c)チタン酸リチウム、マンガン酸リチウム、アルミン酸リチウム、リチウム含有酸化チタン、リチウム遷移金属酸化物、ZnCo;(d)それらのプレリチウム化変種;(e)炭素、グラフェン又は黒鉛材料とのその混合物;(f)Li、Li合金又は少なくとも60重量%のリチウム元素をその中に有する表面安定化Liの粒子;及び(f)それらの組合せからなる群から選択される。
好ましくは、アノード活物質粒子は、高弾性ポリマーによって結合される前に炭素又はグラフェンの層でコーティングされる。好ましくは、アノード活物質粒子及び炭素又は黒鉛材料の粒子は、高弾性ポリマーによって一緒に結合される。好ましくは、アノード活物質粒子は、可能な場合、炭素又は黒鉛材料と、且つ/又はいくつかの内部グラフェンシートと一緒にグラフェンシートによって包含されてアノード活物質粒状物を形成し、次いで高弾性ポリマーによって結合される。グラフェンシートは、清純グラフェン(例えば、CVD又は直接超音波を使用する液相剥離によって調製される)、グラフェンオキシド、還元グラフェンオキシド(RGO)、グラフェンフルオリド、ドープドグラフェン、官能化グラフェンなどから選択され得る。
本発明は、リチウムバッテリーを製造する別の方法も提供する。本方法は、(a)カソード活物質層及びカソード活物質層を支持するための任意選択的なカソード集電体を提供することと、(b)アノード活物質層及びアノード活物質層を支持するための任意選択的なアノード集電体を提供することと、(c)アノード活物質層及びカソード活物質層と接触する電解質並びにアノード及びカソードを電気的に分離する多孔性セパレーターを提供することとを含み、アノード活物質層を提供する作業は、結合剤樹脂により、アノード活物質の複数の粒子及び任意選択的な導電性添加剤を一緒に結合してアノード活物質層を形成することと、アノード活物質層を被覆及び保護するために高弾性ポリマーの薄膜を適用することとを含み、高弾性ポリマーは、添加剤又は強化材の不在下で測定される場合、5%〜700%の回復可能な又は弾性引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有し、及び薄膜は、1nm〜10μmの厚さを有する。この高弾性ポリマーの薄膜は、アノード活物質層と多孔性セパレーターとの間で実施される。
図1(A)は、アノード層がアノード活物質自体の薄いコーティングである、先行技術のリチウムイオンバッテリーセルの概略図である。 図1(B)は、別の先行技術のリチウムイオンバッテリーの概略図である。アノード層は、アノード活物質の粒子、導電性添加剤(図示せず)及び樹脂結合剤(図示せず)から構成される。 図2は、従来技術のリチウムイオンバッテリーの充電中のリチウムのインターカレーション時、Si粒子の膨張は、Si粒子の微粉砕、粒子からの樹脂結合剤の剥離、及び導電性添加剤によって形成される導電路の遮断、及び集電体との接触の低下をもたらし得るという考えを概略的に説明する。 図3(A)は、4つのBPO開始架橋ETPTAポリマーの代表的な引張応力−歪み曲線である。 図3(B)は、(1)ETPTAポリマー結合剤結合Co粒子及びSBRゴム結合Co粒子を特徴とするアノード活物質を有する2つのリチウムバッテリーセルの比容量値である。 図4(A)は、4つのPF5開始架橋PVA−CNポリマーの代表的な引張応力−歪み曲線である。 図4(B)は、それぞれ(1)高弾性PVA−CNポリマー結合剤結合SnO粒子、及び(2)PVDF結合SnO粒子を特徴とするアノード活物質を有する2つのリチウムバッテリーセルの比容量値である。 図5(A)は、3つの架橋PETEAポリマーの代表的な引張応力−歪み曲線である。 図5(B)は、4つの異なるタイプのアノード活性層:(1)高弾性PETEAポリマー結合剤結合炭素コーティングSn粒子;(2)高弾性PETEAポリマー結合剤結合Sn粒子;(3)SBRゴム結合炭素コーティングSn粒子;及び(d)PVDF結合Sn粒子を有する4つのコインセルの放電容量曲線である。 図6は、それぞれアノード活物質としてSiナノワイヤー(SiNW):高弾性ポリマー結合剤結合SiNW及びSBRゴム結合剤結合SiNWを有する2つのリチウムイオンセルの比容量である。
本発明は、非水電解質、ポリマーゲル電解質、イオン性液体電解質、疑似固体電解質又はソリッドステート電解質に基づいた二次バッテリーであるのが好ましい、リチウム二次バッテリーのための高容量アノード材料を含有するアノード活物質層(アノード集電体を含めない、陰極層)を目的としている。リチウム二次バッテリーの形状は、円筒形、四角形、ボタン状等々であり得る。本発明は、任意のバッテリー形状又は形態また任意のタイプの電解質に限定されない。便宜上、我々は第一に、高容量アノード活物質の例示的な実施例としてSi、Sn及びSnOを使用する。これは、本発明の範囲を限定するものとして解釈されるべきでない。
図1(B)において説明されるように、リチウムイオンバッテリーセルは典型的に、アノード集電体(例えば、Cu箔)、アノード又は陰極活物質層(すなわち典型的にアノード活物質の粒子と、導電性添加剤と、結合剤とを含有するアノード層)、多孔性セパレーター及び/又は電解質成分、カソード又は陽極活物質層(カソード活物質と、導電性添加剤と、樹脂結合剤とを含有する)及びカソード集電体(例えば、Al箔)から構成される。より具体的には、アノード層は、アノード活物質(例えば、黒鉛、Sn、SnO又はSi)の粒子、導電性添加剤(例えば、カーボンブラック粒子)及び樹脂結合剤(例えば、SBR又はPVDF)から構成される。このアノード層は、単位電極面積当たり十分な量の電流を生じるために典型的に厚さ50〜300μm(より典型的に100〜200μm)である。
図1(A)において説明されるように、それほど一般的に使用されないセル形態において、アノード活物質は、銅箔のシート上に堆積されたSiコーティングの層など、薄膜の形でアノード集電体上に直接に堆積される。これは、バッテリー産業において一般的に使用されず、したがって、さらに考察されない。
より高いエネルギー密度のセルを得るために、図1(B)のアノードは、LiA(Aは、Al及びSiなどの金属又は半導体元素であり、「a」は0<a≦5を満たす)の組成式を有するより高容量のアノード活物質を含有するように設計され得る。これらの材料、例えばLiSi(3,829mAh/g)、Li4.4Si(4,200mAh/g)、Li4.4Ge(1,623mAh/g)、Li4.4Sn(993mAh/g)、LiCd(715mAh/g)、LiSb(660mAh/g)、Li4.4Pb(569mAh/g)、LiZn(410mAh/g)及びLiBi(385mAh/g)は、それらの高い理論容量のために非常に重要である。しかしながら、背景技術の欄において考察されたように、これらの高容量アノード活物質の実施に伴ういくつかの問題がある。
図2に図解的に説明されるように、1つの重大な問題は、これらの高容量材料から構成されるアノードにおいて、これらの粒子への及びそれらからのリチウムイオンの挿入及び抽出によって引き起こされるアノード活物質粒子の極度な膨張及び収縮のために極度な微粉砕(合金粒子の破砕)が充電及び放電サイクル中に起こるという考えである。活物質粒子の膨張及び収縮は、活物質粒子の微粉砕及び粒子からの結合剤樹脂の剥離を導き、これにより活物質粒子と導電性添加剤との間の接触の低下及びアノード活物質とその集電体との間の接触の低下がもたらされる。これらの悪影響は、著しく短縮された充電−放電サイクル寿命をもたらす。
30年超にわたってバッテリーの設計者及び電気化学者を等しく煩わせてきたこれらの厄介な問題は、アノード活物質の粒子を一緒に保持するための新規分類の結合剤樹脂を開発することによって解決された。
アノード活物質層は、一方向引張下でポリマー中に添加剤又は強化材の不在下で測定される場合、5%以上の回復可能な引張歪み及び室温において10−5S/cm以上(好ましくは且つ典型的に10−4S/cm以上、より好ましくは且つ典型的に10−3S/cm以上)のリチウムイオン導電率を有する高弾性ポリマーの薄層によって一緒に結合される複数のアノード活物質粒子及び導電性添加剤粒子を含む。アノード活物質は、好ましくは、黒鉛の理論容量である372mAh/gより大きいリチウム貯蔵の比容量を有する高容量アノード物質である。
高弾性ポリマーは、一方向引張下で(ポリマー中に添加剤又は強化材の不在下で)測定される場合、少なくとも5%である弾性変形を示すポリマーであって、典型的に軽度に架橋したポリマーを意味する。材料科学及び工学の分野において、「弾性変形」とは、負荷の解放時に本質的に完全に回復可能であり、且つ回復が本質的に瞬間的である(機械的に応力を受けた場合の)材料の変形として定義される。弾性変形は、好ましくは、30%より高く、より好ましくは50%より高く、さらにより好ましくは100%より高く、なおより好ましくは150%より高く、最も好ましくは200%より高い。高容量ポリマーの好ましいタイプは、後述される。
アノード活物質は、(a)ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アンチモン(Sb)、ビスマス(Bi)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)及びカドミウム(Cd);(b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Ni、Co又はCdと他の元素との合金又は金属間化合物;(c)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V又はCdの酸化物、炭化物、窒化物、硫化物、リン化物、セレン化物及びテルル化物並びにそれらの混合物、複合物又はリチウム含有複合物;(d)Snの塩及び水酸化物;(e)チタン酸リチウム、マンガン酸リチウム、アルミン酸リチウム、リチウム含有酸化チタン、リチウム遷移金属酸化物、ZnCo;(f)それらのプレリチウム化変種;(g)Li、Li合金又は表面安定化Liの粒子;及び(h)それらの組合せからなる群から選択され得る。Li又はLi合金(0.1重量%〜10重量%のZn、Ag、Au、Mg、Ni、Ti、Fe、Co又はV元素を含有するLi合金)の粒子、特に表面安定化Li粒子(例えば、ワックスによってコーティングされたLi粒子)は、そのままで良いアノード活物質であるか又はほかの場合ならカソード活物質のみから供給されるLiイオンの減少を補償する余分のリチウム源であることがわかった。エラストマーシェル内に封入されたこれらのLi又はLi合金粒子の存在は、リチウムセルのサイクル性能を著しく改良することがわかった。
アノード活物質のプレリチウム化は、いくつかの方法(化学インターカレーション、イオン注入及び電気化学インターカレーション)によって実施され得る。これらの中でも、電気化学インターカレーションは最も有効である。リチウムイオンは、非Li元素(例えば、Si、Ge及びSn)及び化合物(例えば、SnO及びCo)中に54.68%の重量パーセントまでインターカレートされ得る(以下の表1を参照のこと)。エラストマーシェル内にZn、Mg、Ag及びAuを封入するために、Liの量は99重量%に達することができる。
Figure 2020508552
アノード活物質の粒子は、ナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノプレートレット、ナノディスク、ナノベルト、ナノリボン又はナノホーンの形態であり得る。それらは、(アノード活物質層中に混入されるとき)リチウム化されないか又は所望の程度に(特定の元素又は化合物について可能な最大容量までプレリチウム化され得る。
好ましくは及び典型的に、高弾性ポリマーは、10−5S/cm以上、より好ましくは10−4S/cm以上、さらに好ましくは10−3S/cm以上、最も好ましくは10−2S/cm以上のリチウムイオン導電率を有する。いくつかの実施形態において、高弾性ポリマーは、添加剤又は充填剤がその中に分散されていないニートポリマーである。他の例では、高弾性ポリマーは、高弾性ポリマー母材材料中に分散されたリチウムイオン導電性添加剤0.1重量%〜50重量%(好ましくは1重量%〜35重量%)を含有するポリマー母材複合物である。高弾性ポリマーは、高弾性(弾性変形歪み値>10%)を有さなければならない。弾性変形は、完全に回復可能である変形であり、回復プロセスは、本質的に瞬間的である(著しい時間遅れはない)。高弾性ポリマーは、5%から1,000%まで(その元の長さの10倍)、より典型的に10%〜800%、さらにより典型的に50%〜500%、最も典型的に及び望ましくは70%〜300%の弾性変形を示すことができる。金属は典型的に高い延性を有するが(すなわち破断せずにかなりの程度伸長され得る)、変形の大部分は塑性変形であり(回復可能でない)且つごく少量の弾性変形である(典型的に<1%及びより典型的に<0.2%)ことを指摘し得る。
いくつかの好ましい実施形態において、高弾性ポリマーは、ポリマー鎖の軽度に架橋したネットワークであって、ポリマー鎖の架橋ネットワーク中において、エーテル結合、ニトリル誘導結合、ベンゾペルオキシド誘導結合、エチレンオキシド結合、プロピレンオキシド結合、ビニルアルコール結合、シアノ−樹脂結合、トリアクリレートモノマー誘導結合、テトラアクリレートモノマー誘導結合又はそれらの組合せを有するポリマー鎖の軽度に架橋したネットワークを含有する。これらのネットワーク又は架橋ポリマーは、高弾性(高い弾性変形歪み)及び高いリチウムイオン導電率のユニークな組合せを示す。
特定の好ましい実施形態において、高弾性ポリマーは、ニトリル含有ポリビニルアルコール鎖、シアノ樹脂鎖、ペンタエリトリトールテトラアクリレート(PETEA)鎖、ペンタエリトリトールトリアクリレート鎖、エトキシル化トリメチロールプロパントリアクリレート(ETPTA)鎖、エチレングリコールメチルエーテルアクリレート(EGMEA)鎖又はそれらの組合せから選択されるポリマー鎖の軽度に架橋したネットワークを含有する。
典型的に、高弾性ポリマーは、元来、硬化して高弾性である架橋ポリマーを形成することが可能なモノマー又はオリゴマー状態にある。硬化前、これらのポリマー又はオリゴマーは、有機溶媒に可溶性でありポリマー溶液を形成する。アノード活物質の粒子(例えば、SnOナノ粒子及びSiナノワイヤー)をこのポリマー溶液中に分散させて活物質粒子−ポリマー(モノマー又はオリゴマー)混合物の懸濁液(分散体又はスラリー)を形成することができる。次に、個別粒子が互いに実質的に分離したままで、この懸濁液を溶媒除去処理に供することができる。ポリマー(又はモノマー若しくはオリゴマー)が沈殿して、これらの活物質粒子の表面上に堆積する。これは、例えば、噴霧乾燥、超音波噴霧、空気補助噴霧、エアロゾール適用及び他の二次粒子形成手順によって達成することができる。
例えば、エトキシル化トリメチロプロパントリアクリレートモノマー(ETPTA、Mw=428、化学式は、下記に示される)は、開始剤と一緒に、炭酸エチレン(EC)又は炭酸ジエチル(DEC)などの有機溶媒中に溶解されることが可能である。次いで、アノード活物質粒子(Si、Sn、SnO及びCo粒子など)をETPTAモノマー/溶媒/開始剤溶液中に分散させてスラリーを形成することが可能であり、これを噴霧乾燥してETPTAモノマー/開始剤包含アノード粒子を形成することができる。次いで、これらの包含された粒子を熱硬化し、高弾性ポリマーの薄層によって封入されるアノード粒子から構成される粒状物を得ることができる。このモノマーの重合及び架橋反応は、開始剤モノマーの熱分解によってベンゾイルペルオキシド(BPO)又はAIBNから誘導されるラジカル開始剤によって開始されることができる。ETPTAモノマーは、次の化学式を有する。
Figure 2020508552
別の例として、封入のための高弾性ポリマーは、スクシノニトリル(SN)中でのシアノエチルポリビニルアルコール(PVA−CN、式2)のカチオン重合及び架橋に基づき得る。
Figure 2020508552
この手順は、混合物溶液を形成するために、PVA−CNをスクシノニトリル(NCCHCHCN)中に溶解することによって開始され得る。続いて、混合物溶液中に開始剤を添加する。例えば、重量比(20:1〜2:1の好ましい範囲から選択される)においてLiPFをPVA−CN/SN混合物溶液中に添加して、前駆体溶液を形成することができる。次いで、選択されたアノード活物質の粒子を混合物溶液中に導入し、スラリーを形成する。次いで、スラリーにマイクロ封入手順を受けさせて、反応塊、PVA−CN/LiPFの包含層によってコーティングされたアノード活物質粒子を作成し得る。次いで、これらの包含粒子を温度(例えば、75〜100℃)において2〜8時間加熱して、高弾性ポリマー封入アノード活物質粒子を得ることができる。このプロセス中、PVA−CN上のシアノ基のカチオン重合及び架橋は、そのような高温でのLiPFの熱分解から誘導されるPFによって開始され得る。
活物質粒子と化学的に結合したポリマー鎖の軽度に架橋したネットワークを形成することは、これらの材料に不可欠である。換言すれば、ネットワークポリマー又は架橋ポリマーは、高弾性変形を与えるために比較的低い架橋度又は低い架橋密度を有するべきである。
ポリマー鎖の架橋ネットワークの架橋密度は、架橋中の分子量(Mc)の逆と定義され得る。架橋密度は、式Mc=ρRT/Ge(式中、Geは、動的機械分析において温度スイープによって決定される平衡弾性率であり、ρは、物理的密度であり、Rは、J/モル*Kの普通気体定数であり、及びTは、Kの絶対温度である)によって決定することができる。Ge及びρが実験的に決定されると、Mc及び架橋密度を算出することができる。
Mcの大きさは、架橋鎖又は連鎖結合中の特徴的な反復単位の分子量でMc値を割って、2つの架橋点間の反復単位の数である数Ncを得ることによって標準化され得る。弾性変形歪みがMc及びNcと非常に関連することが見出された。架橋ポリマーの弾性は、架橋間の多数の反復単位(大きいNc)から誘導される。反復単位は、ポリマーが応力を受けない場合、より緩い立体配座(例えば、ランダムコイル)を想定することができる。しかしながら、ポリマーが機械的に応力を受ける場合、連結鎖は、ほどけるか又は伸張して、大きい変形をもたらす。架橋点間の長鎖連結(より大きいNc)により、より大きい弾性変形が可能となる。負荷の解放時、連結鎖は、より緩いか又はコイル状態に戻る。ポリマーの機械的負荷時、架橋は、塑性変形(回復不可能)を形成する連鎖のすべり(slippage)を防ぐ。
好ましくは、高弾性ポリマーにおけるNc値は、5より高く、より好ましくは10より高く、さらにより好ましくは100より高く、なおより好ましくは200より高い。これらのNc値は、異なる官能性を有する異なる架橋剤を使用することにより、及び異なる期間、異なる温度で進行するように重合及び架橋反応を設計することにより、異なる弾性変形値を達成するために容易に制御され、且つ変更可能である。
代わりに、架橋度を決定するために、ムーニー−リブリン(Mooney−Rilvin)法を使用し得る。膨潤実験によって架橋を測定することもできる。膨潤実験では、架橋した試料を特定の温度で相当する線形ポリマーに対して良好な溶媒中に配置し、質量の変化又は体積の変化が測定される。架橋度が高いほど、少ない膨潤が達成可能である。膨潤度、フローリー相互作用パラメーター(Flory Interaction Parameter)(試料との溶媒相互作用と関連する、フローリー・ハギンズ(Flory Huggins)方程式)及び溶媒の密度に基づき、フローリーのネットワーク説(Flory’s Network Theory)に従って理論的な架橋度を計算することができる。フローリー−レーナー方程式(Flory−Rehner Equation)は、架橋の決定において有用となることが可能である。
高弾性ポリマーは、2つの架橋鎖が互いに巻き付く同時相互貫入ネットワーク(SIN)ポリマー又は架橋ポリマー及び線形ポリマーを含有する半相互貫入ネットワークポリマー(半IPN)を含有し得る。半IPNの例は、エトキシル化トリメチロールプロパントリアクリレート(ETPTA)及びエチレングリコールメチルエーテルアクリレート(EGMEA)オリゴマーから構成されるUV硬化可能/重合可能三価/一価アクリレート混合物である。三価ビニル基を有するETPTAは、架橋鎖のネットワークを形成することが可能な光(UV)架橋性モノマーである。一価ビニル基を有するEGMEAもUV重合可能であり、オリゴマーエチレンオキシド単位の存在のため、高い可撓性を有する線形ポリマーが誘導される。ETPTAの架橋度が中程度であるか又は低い場合、結果として生じるETPTA/EGMEA半IPNポリマーは、良好な機械的可撓性又は弾性及び適切な機械的強度をもたらす。このポリマーのリチウムイオン導電率は、10−4〜5×10−3S/cmの範囲である。
上記高弾性ポリマーは、アノード活物質粒子に化学的に結合するために単独で使用され得る。代わりに、高弾性ポリマーは、広範囲の一連のエラストマー、導電性ポリマー、リチウムイオン導電性材料及び/又は強化材(例えば、カーボンナノチューブ、カーボンナノ繊維又はグラフェンシート)と混合することができる。
アノード活物質粒子を一緒に結合するために、広範囲にわたる一連のエラストマーを高弾性ポリマーと混合させることができる。エラストマー材料は、天然ポリイソプレン(例えば、シス−1,4−ポリイソプレン天然ゴム(NR)及びトランス−1,4−ポリイソプレンガタパーチャ)、合成ポリイソプレン(イソプレンゴムのためのIR)、ポリブタジエン(ブタジエンゴムのためのBR)、クロロプレンゴム(CR)、ポリクロロプレン(例えば、ネオプレン、Baypren等)、ハロゲン化ブチルゴム(クロロブチルゴム(CIIR)及びブロモブチルゴム(BIIR)など、ブチルゴム(イソブチレンとイソプレンとのコポリマー、IIR)、スチレン−ブタジエンゴム(スチレンとブタジエンとのコポリマー、SBR)、ニトリルゴム(ブタジエンとアクリロニトリルとのコポリマー、NBR)、EPM(エチレンプロピレンゴム、エチレンとプロピレンとのコポリマー)、EPDMゴム(エチレンプロピレンジエンゴム、エチレン、プロピレン及びジエン成分のターポリマー)、エピクロロヒドリンゴム(ECO)、ポリアクリルゴム(ACM、ABR)、シリコーンゴム(SI、Q、VMQ)、フルオロシリコーンゴム(FVMQ)、フルオロエラストマー(FKM及びFEPM;例えばViton、Tecnoflon、Fluorel、Aflas及びDai−El)、ペルフルオロエラストマー(FFKM:Tecnoflon PFR、Kalrez、Chemraz、Perlast)、ポリエーテルブロックアミド(PEBA)、クロロスルホン化ポリエチレン(CSM;例えばハイパロン)及びエチレン酢酸ビニル(EVA)、熱可塑性エラストマー(TPE)、タンパク質レジリン、タンパク質エラスチン、エチレンオキシド−エピクロロヒドリンコポリマー、ポリウレタン、ウレタン−尿素コポリマー及びそれらの組合せから選択され得る。
ウレタン−尿素コポリマーフィルムは、通常、2つのタイプのドメイン、軟質ドメイン及び硬質ドメインからなる。ポリ(テトラメチレンエーテル)グリコール(PTMEG)単位からなる絡み合い直鎖主鎖は、軟質ドメインを構成するが、反復メチレンジフェニルジイソシアネート(MDI)及びエチレンジアミン(EDA)単位は、硬質ドメインを構成する。リチウムイオン導電性添加剤を軟質ドメイン又は他のより非晶質の領域に混入することができる。
いくつかの実施形態において、高弾性ポリマーは、高弾性ポリマー母材材料中に分散されたリチウムイオン導電性添加剤を含有するポリマー母材複合物を形成することができ、リチウムイオン導電性添加剤は、LiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せから選択され、式中、X=F、Cl、I又はBr、R=炭化水素基、x=0〜1、y=1〜4である。
いくつかの実施形態において、高弾性ポリマーを、過塩素酸リチウムLiClO、ヘキサフルオロリン酸リチウムLiPF、ホウフッ化リチウムLiBF、ヘキサフルオロヒ化リチウムLiAsF、トリフルオロメタンスルホン酸リチウムLiCFSO、ビス−トリフルオロメチルスルホニルイミドリチウムLiN(CFSO、ビス(オキサラト)ホウ酸リチウムLiBOB、オキサリルジフルオロホウ酸リチウムLiBF、オキサリルジフルオロホウ酸リチウムLiBF、硝酸リチウム(LiNO)、Li−フルオロアルキル−リン酸塩LiPF(CFCF、リチウムビスペルフルオロ−エチルスルホニルイミドLiBETI、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミドLiTFSI、イオン性液体ベースのリチウム塩又はそれらの組合せから選択されるリチウム塩を含有するリチウムイオン導電性添加剤と混合することができる。
高弾性ポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、それらの誘導体(例えば、スルホン化変種)又はそれらの組合せから選択される電子導電性ポリマーとの混合物又はブレンドを形成し得る。
いくつかの実施形態において、高弾性ポリマーは、ポリ(エチレンオキシド)(PEO)、ポリプロピレンオキシド(PPO)、ポリ(アクリロニトリル)(PAN)、ポリ(メチルメタクリレート)(PMMA)、ポリ(フッ化ビニリデン)(PVdF)、ポリビス−メトキシエトキシエトキシド−ホスファゼネックス、ポリ塩化ビニル、ポリジメチルシロキサン、ポリ(フッ化ビニリデン)−ヘキサフロオロプロピレン(PVDF−HFP)、それらの誘導体(例えば、スルホン化変種)又はそれらの組合せから選択されるリチウムイオン導電性ポリマーとの混合物、ブレンド又は半相互貫入ネットワークポリマーを形成し得る。
高弾性ポリマーと混合され得る不飽和ゴムには、天然ポリイソプレン(例えば、シス−1,4−ポリイソプレン天然ゴム(NR)及びトランス−1,4−ポリイソプレンガタパーチャ)、合成ポリイソプレン(イソプレンゴムのためのIR)、ポリブタジエン(ブタジエンゴムのためのBR)、クロロプレンゴム(CR)、ポリクロロプレン(例えば、ネオプレン、Baypren等)、ハロゲン化ブチルゴム(クロロブチルゴム(CIIR)及びブロモブチルゴム(BIIR)など、ブチルゴム(イソブチレンとイソプレンとのコポリマー、IIR)、スチレン−ブタジエンゴム(スチレンとブタジエンとのコポリマー、SBR)、ニトリルゴム(ブタジエンとアクリロニトリルとのコポリマー、NBR)が含まれる。
いくつかのエラストマーは、硫黄加硫によって硬化させることができない飽和ゴムである。それらは、例えば、他の直鎖を一緒に保持するコポリマードメインを有することによって異なった手段によってゴム又はエラストマー材料に製造される。これらのエラストマーの各々を使用して、いくつかの手段の1つによってアノード活物質の粒子を封入することができる:溶融混合(その後に例えばペレット化及びボールミル粉砕)、溶液混合(有機溶媒を使用して又は使用せずに、アノード活物質粒子を未硬化ポリマー、モノマー又はオリゴマー中に溶解する)、その後に乾燥(例えば、噴霧乾燥)、アノード活物質粒子の存在下でエラストマーの界面重合又はin situ重合。
このカテゴリーの飽和ゴム及び関連エラストマーには、EPM(エチレンプロピレンゴム、エチレンとプロピレンとのコポリマー)、EPDMゴム(エチレンプロピレンジエンゴム、エチレン、プロピレン及びジエン成分のターポリマー)、エピクロロヒドリンゴム(ECO)、ポリアクリルゴム(ACM、ABR)、シリコーンゴム(SI、Q、VMQ)、フルオロシリコーンゴム(FVMQ)、フルオロエラストマー(FKM及びFEPM;例えばViton、Tecnoflon、Fluorel、Aflas及びDai−El)、ペルフルオロエラストマー(FFKM:Tecnoflon PFR、Kalrez、Chemraz、Perlast)、ポリエーテルブロックアミド(PEBA)、クロロスルホン化ポリエチレン(CSM;例えばハイパロン)及びエチレン酢酸ビニル(EVA)、熱可塑性エラストマー(TPE)、タンパク質レジリン及びタンパク質エラスチンが含まれる。ポリウレタン及びそのコポリマー(例えば、尿素−ウレタンコポリマー)は、アノード活物質粒子を封入するための特に有用なエラストマーシェル材料である。
結合剤配合物は、典型的に、高弾性ポリマー又はその前駆体(モノマー又はオリゴマー)が溶媒中に不溶性であることを必要とする。幸いにも、本明細書で使用される全ての高弾性ポリマー又はそれらの前駆体は、いくつかの一般的な溶媒中に可溶性である。未硬化ポリマー又はその前駆体は、一般的な有機溶媒中に容易に溶解可能であり、溶液を形成する。次いで、この溶液を使用して、以下で議論される結合剤適用法のいくつかにより、固体粒子を結合することができる。活物質粒子との接触時、次いで前駆体を重合及び架橋させる。
第1の方法は、ポリマー前駆体溶液中にアノード活物質粒子を分散させ、集電体(例えば、Cu箔)の表面上に次いでコーティングされるスラリーを形成することを含む。コーティングされるスラリーの液状媒体は、ポリマー前駆体(モノマー又はオリゴマー)でそれぞれ部分的にコーティングされた活物質粒子及び導電性添加剤粒子を含有する乾燥させた層を形成するために次いで除去される。この手順は、本質的に、リチウムイオンバッテリーにおいて現在一般に使用されるスラリーコーティングプロセスと同一又は非常に類似である。したがって、製造装置又は設備を変更する必要がない。結合剤樹脂を硬化させ、固体粒子を一緒に結合させる重合及び架橋反応を開始するために、この乾燥させた層を熱及び/又はUV光に暴露する。好ましくは、ポリマーの量は、結合剤樹脂が活物質粒子の外部表面の50%未満(好ましくは<20%)のみを被覆するような様式で選択される。
ポリマー前駆体と固体活物質粒子との間の所望の量の接触が達成されるまで前駆体溶液がゆっくりと適用される間に活物質粒子をパン又は同様のデバイス内で混転することを必要とする、変更されたパンコーティングプロセスを使用し得る。溶液中のモノマー/オリゴマーの濃度は、活性粒子の結合を補助するために十分なポリマーを保証するが、活物質粒子の外部表面全体を被覆しないように選択される。好ましくは、活物質粒子の外部表面全体の大部分は、ポリマーによって被覆されない。
固体基材によって支持された活物質粒子の表面に結合剤樹脂を適用するために溶液噴霧も使用され得る。ポリマー前駆体溶液は、活物質及び導電性添加剤の粒子と一緒に集電体の表面上に噴霧コーティングされ得る。液体溶媒の除去時、乾燥部分は、熱的又はUV誘導重合及び架橋を受ける。
実施例1:高弾性ポリマーによって結合された酸化コバルト(Co)アノード粒状物
適切な量の無機塩Co(NO・6HO及びアンモニア溶液(NH・HO、25重量%)を一緒に混合した。得られた懸濁液をアルゴン流下で数時間にわたって撹拌して、完全な反応を確実にした。得られたCo(OH)前駆物質懸濁液を2時間にわたって空気中で450℃において焼成して、層状Coの粒子を形成した。次いで、以下の手順に従って、Co粒子の部分をETPTAベース高弾性ポリマーで結合剤を使用してアノード活物質層とした。
エトキシル化トリメチロプロパントリアクリレートモノマー(ETPTA、Mw=428、Sigma−Aldrich)を、3/97(w/w)のETPTA/溶媒の重量ベース組成比で炭酸エチレン(EC)/炭酸ジエチル(DEC)の溶媒混合物中に溶解した。その後、アノード粒子との混合後に熱架橋反応を可能にするラジカル開始剤としてベンゾイルペルオキシド(BPO、ETPTA含有量に対して1.0重量%)を添加した。次いで、アノード活物質粒子(Co粒子)及び(導電性添加剤として)いくつかのCNTをETPTAモノマー/溶媒/開始剤溶液中に分散してスラリーを形成し、これをCu箔表面上に噴霧コーティングし、ETPTAモノマー/開始剤、CNT及びCo粒子の混合物の層を形成した。次いで、この層を60℃で30分間熱硬化し、高弾性ポリマーベース結合樹脂によって一緒に結合されるCo粒子及びCNTから構成されるアノード活物質層を得た。
個々の基準でいくらかの量のETPTAモノマー/溶媒/開始剤溶液をガラス表面上にキャストして湿潤膜を形成し、これを熱的に乾燥させ、次いで60℃で30分間硬化し、架橋ポリマーの膜を形成した。この実験において、BPO/ETPTA重量比は、いくつかの異なるポリマー膜で架橋度を変更させるために0.1%〜4%で様々であった。硬化ポリマー試料のいくつかに動的機械試験を行い、架橋度を特徴づけるための手段として、2つの架橋点間の数平均分子量及び相当する反復単位数(Nc)の決定のための平衡動的弾性率Geを得た。
いくつかの引張試験試験片をそれぞれの架橋膜から切り取り、万能試験機で試験した。4つのBPO開始架橋ETPTAポリマーの代表的な引張応力−歪み曲線を図3(A)に示す。これは、この一連のネットワークポリマーが約230%〜700%の弾性変形を有することを示す。上記は、何れの添加剤も含まないニートのポリマーに関する。30重量%までのリチウム塩の添加により、この弾性は、典型的に、10%から100%の可逆性引張歪みまで減少する。
電気化学試験のために、従来の結合剤樹脂を使用する比較のための電極も調製した。作業電極は、85重量%の活物質(Co粒子)、7重量%のCNT及びN−メチル−2−ピロリドン(NMP)に溶解された8重量%のポリフッ化ビニリデン(PVDF)結合剤を混合して全固形分5重量%のスラリーを形成することによって作製された。スラリーをCu箔上にコーティングした後、電極を2時間にわたって真空中で120℃において乾燥させて、加圧前に溶媒を除去した。次いで、電極をディスク(φ=12mm)に切断し、真空中で24時間にわたって100℃で乾燥させた。
対向/参照電極としてリチウム金属、セパレーターとしてCelgard2400膜及びエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合物(EC−DEC、1:1v/v)中に溶解された1MのLiPF電解質溶液を有するCR2032(3V)コイン型セルを使用して電気化学測定を実施した。セルの組立をアルゴン充填グローブボックス内で行なった。CV測定は、1mV/sの走査速度でCH−6電気化学ワークステーションを使用して実施された。
高弾性ポリマー結合剤を特徴とするセル及びPVDF結合剤を含有するセルの電気化学的性能は、LAND電気化学ワークステーションを使用して50mA/gの電流密度で定電流充電/放電サイクル経過によって評価された。図3(B)に要約されるように、第1サイクルのリチウム挿入容量値は、それぞれ756mAh/g(SBR結合剤)及び757mAh/g(BPO開始ETPTAポリマーベース結合剤)であり、それらは、黒鉛の理論値(372mAh/g)よりも高い。両方のセルは、いくらかの第1サイクル不可逆性を示す。初期容量損失は、固体電解質境界面(SEI)層の形成による不完全な変換反応及び部分的に不可逆的なリチウム損失の結果として得られた可能性がある。
サイクル数が増加すると、SBR結合Co電極の比容量は、急激に低下する。約756mAh/gのその初期容量値と比較して、その容量は、175サイクル後に20%の損失及び260サイクル後に27.51%の損失がある。対照的に、本発明の高弾性ポリマー結合剤は、大きいサイクル数に対して有意により安定な且つ高い比容量を有するバッテリーセルを提供し、260サイクル後に9.51%の容量損失を受けた。これらのデータは、明らかに本発明の高弾性ポリマー結合剤の驚くべき且つ優れた性能を実証した。
その初期値の80%まで比容量が減衰する充電−放電サイクル数が一般的にリチウムイオンバッテリーの有用なサイクル寿命として定義されることを指摘し得る。
高弾性ポリマー結合剤は、アノード活物質粒子が膨張及び収縮するときに破損することなく、逆戻り可能なように変形することができるように思われる。また、ポリマーは、これらの粒子が膨張又は収縮するとき、アノード活物質粒子に化学的に結合したままである。それとは対照的に、SBR結合剤は、崩壊するか又は活物質粒子のいくつかから剥離する。これらは、SEMを使用して、数回の充電−放電サイクル後にバッテリーセルから再生された電極の表面を調査することによって観察された。
実施例2:高弾性ポリマーと結合剤によって結合された酸化スズ粒状物
酸化スズ(SnO)ナノ粒子は、以下の手順を使用してNaOHによるSnCl・5HOの制御された加水分解によって得られた:SnCl・5HO(0.95g、2.7m−mol)及びNaOH(0.212g、5.3m−mol)をそれぞれ50mLの蒸留水中に溶解した。NaOH溶液を強力な撹拌下で塩化スズ溶液に1mL/分の速度で滴下した。この溶液を5分間にわたって超音波処理によって均質化した。その後、得られたヒドロゾルをHSOと反応させた。この混合溶液に、0.1MのHSOの数滴を添加して生成物を凝集させた。沈殿した固体を遠心分離によって集め、水及びエタノールで洗浄し、真空中で乾燥させた。乾燥された生成物をAr雰囲気下で2時間にわたって400℃で熱処理した。
SnOナノ粒子の結合のための高弾性ポリマーは、スクシノニトリル(SN)中でのシアノエチルポリビニルアルコール(PVA−CN)のカチオン重合及び架橋に基づくものであった。この手順は、混合物溶液を形成するために、PVA−CNをスクシノニトリル中に溶解することによって開始された。このステップに続いて、溶液中に開始剤を添加した。高弾性ポリマーにいくつかのリチウム種を組み込む目的でLiPFを開始剤として使用することを選択した。LiPF及びPVA−CN/SN混合物溶液間の比率は、一連の前駆体溶液を形成するために重量で1/20〜1/2まで種々であった。その後、選択されたアノード活物質(SnO及びグラフェン包含SnO粒子)の粒子及び(導電性添加剤としての)アセチレンブラック粒子をこれらの溶液中に導入し、一連のスラリーを形成した。次いで、スラリーを別々にCu箔表面上にコーティングして、アノード活物質層を作成した。次いで、この層を75〜100℃の温度において2〜8時間加熱して、高弾性ポリマー結合アノード活物質粒子の層を得た。
加えて、反応塊、PVA−CN/LiPFをガラス表面上にキャストして、いくつかの膜を形成し、これを重合及び架橋して、異なる架橋度を有する架橋ポリマーを得た。これらの膜上で引張試験も実行され、いくつかの試験結果は、図4(A)に要約される。この一連の架橋ポリマーは、約80%(より高い架橋度)〜400%(より低い架橋度)まで柔軟に伸張可能である。
高弾性ポリマー結合粒子(ナノ35μmスケールのSnO粒子)及びPVDF結合SnO粒子からのバッテリーセルを実施例1に記載された手順を使用して作製した。図4(B)は、本発明の高弾性ポリマー結合剤の方法に従って作製されたアノードが、PVDF結合SnO粒子をベースとしたアノードと比較して有意により安定な且つより高い可逆的な容量を提供することを示す。高弾性ポリマーは、アノード活物質粒子及び導電性添加剤を一緒に保持し、活物質電極の構造完全性を有意に改善することがより可能である。
実施例3:PETEAベースの高弾性ポリマーによって結合されたスズ(Sn)ナノ粒子
樹脂結合剤としてSnナノ粒子を一緒に結合するために、ペンタエリトリトールテトラアクリレート(PETEA)、式3をモノマーとして使用した。
Figure 2020508552
前駆体溶液は、1,2−ジオキソラン(DOL)/ジメトキシメタン(DME)(体積比で1:1)の溶媒混合物中に溶解された1.5重量%のPETEA(C1720)モノマー及び0.1重量%のアゾジイソブチロニトリル(AIBN、C12)開始剤から構成された。Snのナノ粒子(直径76nm)を前駆体溶液中に添加し、これをCu箔上にコーティングした。PETEA/AIBN前駆体溶液を70℃で30分間重合及び硬化し、アノード層を得た。
反応塊、PETEA/AIBN(Sn粒子なし)をガラス表面上にキャストして、いくつかの膜を形成し、これを重合及び硬化して、異なる架橋度を有する架橋ポリマーを得た。これらの膜上で引張試験も実行され、いくつかの試験結果は、図5(A)に要約される。この一連の架橋ポリマーは、約25%(より高い架橋度)〜80%(より低い架橋度)まで柔軟に伸張可能である。
比較のために、Snナノ粒子のいくらかの量をSBR結合剤によって結合させ、アノードを製造した。図5(B)において、4つの異なるタイプのSnベースのアノード層:(1)高弾性PETEAポリマー結合剤結合炭素コーティングSn粒子;(2)高弾性PETEAポリマー結合剤結合Sn粒子;(3)SBRゴム結合炭素コーティングSn粒子;及び(d)PVDF結合Sn粒子を有する4つのコインセルの放電容量曲線を示す。これらの結果は、高弾性ポリマー結合剤戦略が、高容量アノード活物質(炭素によって封入されたか又は非封入粒子)を特徴とするリチウムイオンバッテリーの容量減衰に対して優れた保護を提供することを明らかに実証した。炭素封入のみでは、容量減衰に対して必要な保護を提供することにおいて効果がない。
高弾性ポリマー結合剤は、アノード活物質粒子が膨張及び収縮するときに破損することなく、逆戻り可能なように変形することができるように思われる。また、ポリマーは、これらの粒子が膨張又は収縮するとき、アノード活物質粒子に化学的に結合したままである。それとは対照的に、2つの従来の結合剤樹脂であるSBR及びPVDFの両方は、崩壊するか又は活物質粒子のいくつかから剥離する。これらは、SEMを使用して、数回の充電−放電サイクル後にバッテリーセルから再生された電極の表面を調査することによって観察された。
実施例4:高弾性ポリマーによって保護されたSiナノワイヤーベースの粒状物
Siナノ粒子及びSiナノワイヤーSiナノ粒子は、Angstron Energy Co.(Dayton,Ohio)から入手可能である。次いで、Siナノワイヤー、Si及び炭素の混合物並びにそれらのグラフェンシート包含型を、それぞれ(導電性添加剤としての)アセチレンブラックの粒子と混合し、結合剤樹脂としてインスタントポリマー(実施例1のように、ETPTA/EGMEAの半相互貫入ネットワークポリマー及び架橋BPO/ETPTAポリマー)を使用して活物質層に形成した。
ETPTA半IPNポリマーによる種々のアノード粒子との結合のために、ETPTA(Mw=428g/モル、三価アクリレートモノマー)、EGMEA(Mw=482g/モル、一価アクリレートオリゴマー)及び2−ヒドロキシ−2−メチル−1−フェニル−1−プロパノン(HMPP、光開始剤)を溶媒(炭酸プロピレン、PC)中に溶解し、溶液を形成した。HMPP及びETPTA/EGMEA混合物間の重量比は、0.2%〜2%で様々であった。溶液中のETPTA/EGMEA比は、異なる封入層厚さを生じるために1%〜5%で様々であった。アクリレート混合物中のETPTA/EGMEA比は、10/0〜1/9で様々であった。
噴霧コーティングを使用して、Cu箔のシート上に電極を作成した。次いで、ETPTA/EGMEA/HMPPを含有する活物質層を20秒間、UV照射に暴露した。UV重合/架橋は、電極の表面上に約2000mW/cmの放射ピーク強度を有するHg UVランプ(100W)を使用して実行された。
上記手順は、架橋ETPTA/EGMEAポリマーによって結合された電極層を作成するために実行された。比較目的で、SBR結合剤によって結合されたSiナノワイヤーを含有する電極も調製し、別のリチウムイオンセルに導入した。これらの2つのセルのサイクル挙動は、図6に示されており、これにより、高弾性ポリマー結合剤結合Siナノワイヤーが有意により安定なサイクル応答を提供することが示される。
実施例5:高弾性ポリマーシェルにおけるリチウムイオン導電性添加剤の効果
電極の構造完全性を維持するための結合剤樹脂材料を調製するために、多様なリチウムイオン導電性添加剤をいくつかの異なるポリマーマトリックス材料に添加した。これらのポリマー複合物材料が適切な結合剤材料であることが見出された。高弾性ポリマーは、活物質粒子表面の有意な部分を被覆することができるため、(リチウムイオン導電性添加剤の有無にかかわらず)このポリマーは、リチウムイオンが容易に拡散することを可能にすることができるはずである。したがって、ポリマーは、室温で10−5S/cm以上のリチウムイオン導電率を有するであろう。
Figure 2020508552
実施例6:様々な再充電可能なリチウムバッテリーセルのサイクル安定性
リチウムイオンバッテリー産業において、必要とされる電気化学的形成後に測定された初期容量に基づき、容量の20%減衰をバッテリーが受ける充電−放電サイクル数としてバッテリーのサイクル寿命を定義することが慣例である。種々の結合剤材料によって結合されたアノード活物質粒子を含有する本発明の電極を特徴とする広範囲にわたる一連のバッテリーのサイクル寿命データを以下の表3に要約する。
Figure 2020508552
これらデータから、高弾性ポリマー結合剤戦略がアノード膨張/収縮誘導容量減衰問題を軽減することに驚くほど効果があることがさらに確認される。

Claims (41)

  1. リチウムバッテリーのためのアノード活物質層において、高弾性ポリマーであって、前記ポリマー中に添加剤又は強化材の不在下で測定される場合、5%〜700%の回復可能な引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有する高弾性ポリマーを含む結合剤によって一緒に結合される複数のアノード活物質粒子及び任意選択的な導電性添加剤を含むことを特徴とするアノード活物質層。
  2. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、ポリマー鎖の架橋ネットワークであって、前記ポリマー鎖の架橋ネットワーク中において、エーテル結合、ニトリル誘導結合、ベンゾペルオキシド誘導結合、エチレンオキシド結合、プロピレンオキシド結合、ビニルアルコール結合、シアノ−樹脂結合、トリアクリレートモノマー誘導結合、テトラアクリレートモノマー誘導結合又はそれらの組合せを有するポリマー鎖の架橋ネットワークを含有することを特徴とするアノード活物質層。
  3. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、ニトリル含有ポリビニルアルコール鎖、シアノ樹脂鎖、ペンタエリトリトールテトラアクリレート鎖、ペンタエリトリトールトリアクリレート鎖、エトキシル化トリメチロールプロパントリアクリレート(ETPTA)鎖、エチレングリコールメチルエーテルアクリレート(EGMEA)鎖又はそれらの組合せから選択されるポリマー鎖の架橋ネットワークを含有することを特徴とするアノード活物質層。
  4. 請求項1に記載のアノード活物質層において、前記アノード活物質は、(a)ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アンチモン(Sb)、ビスマス(Bi)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)及びカドミウム(Cd);(b)、Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Ni、Co又はCdと他の元素との合金又は金属間化合物;(c)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V又はCdの酸化物、炭化物、窒化物、硫化物、リン化物、セレン化物及びテルル化物並びにそれらの混合物、複合物又はリチウム含有複合物;(d)Snの塩及び水酸化物;(e)チタン酸リチウム、マンガン酸リチウム、アルミン酸リチウム、リチウム含有酸化チタン、リチウム遷移金属酸化物、ZnCo;(f)それらのプレリチウム化変種;(g)Li、Li合金又は少なくとも60重量%のリチウム元素をその中に有する表面安定化Liの粒子;及び(h)それらの組合せからなる群から選択されることを特徴とするアノード活物質層。
  5. 請求項4に記載のアノード活物質層において、前記Li合金は、0.1重量%〜10重量%の、Zn、Ag、Au、Mg、Ni、Ti、Fe、Co、V又はそれらの組合せから選択される金属元素を含有することを特徴とするアノード活物質層。
  6. 請求項1に記載のアノード活物質層において、前記アノード活物質は、プレリチウム化Si、プレリチウム化Ge、プレリチウム化Sn、プレリチウム化SnO、プレリチウム化SiO、プレリチウム化酸化鉄、プレリチウム化VO、プレリチウム化Co、プレリチウム化Ni又はそれらの組合せを含有し、式中、x=1〜2であることを特徴とするアノード活物質層。
  7. 請求項1に記載のアノード活物質層において、前記アノード活物質は、0.5nm〜100nmの厚さ又は直径を有するナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートレット又はナノホーンの形態であることを特徴とするアノード活物質層。
  8. 請求項7に記載のアノード活物質層において、前記アノード活物質は、20nmより小さい寸法を有することを特徴とするアノード活物質層。
  9. 請求項1に記載のアノード活物質層において、前記粒子の1つ又は複数は、炭素又はグラフェンの層でコーティングされることを特徴とするアノード活物質層。
  10. 請求項1に記載のアノード活物質層において、前記導電性添加剤は、黒鉛、グラフェン若しくは炭素又はそれらの組合せから選択されることを特徴とするアノード活物質層。
  11. 請求項10に記載のアノード活物質層において、前記黒鉛又は炭素材料は、ポリマー炭素、非晶質炭素、化学蒸着炭素、コールタールピッチ、石油ピッチ、メソフェーズピッチ、カーボンブラック、コークス、アセチレンブラック、活性炭、100nmより小さい寸法を有する微細膨張黒鉛粒子、人工黒鉛粒子、天然黒鉛粒子又はそれらの組合せから選択されることを特徴とするアノード活物質層。
  12. 請求項7に記載のアノード活物質層において、前記ナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートレット又はナノホーンは、炭素材料、グラフェン、電子導電性ポリマー、導電性金属酸化物又は導電性金属コーティングから選択される導電性保護コーティングでコーティングされるか又はそれによって包含されることを特徴とするアノード活物質層。
  13. 請求項12に記載のアノード活物質層において、前記ナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートレット又はナノホーンは、リチウムイオンでプレインターカレート又はプレドープされて、プレリチウム化アノード活物質であって、前記プレリチウム化アノード活物質の0.1重量%〜54.7重量%%のリチウムの量を有するプレリチウム化アノード活物質を形成することを特徴とするアノード活物質層。
  14. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、10−4S/cm以上のリチウムイオン導電率を有することを特徴とするアノード活物質層。
  15. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、10−3S/cm以上のリチウムイオン導電率を有することを特徴とするアノード活物質層。
  16. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、添加剤又は充填剤がその中に分散されていないニートポリマーであることを特徴とするアノード活物質層。
  17. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、0.1重量%〜50重量%の、その中に分散されたリチウムイオン導電性添加剤を含有するか、又はその中に0.1重量%〜10重量%の、カーボンナノチューブ、カーボンナノ繊維、グラフェン若しくはそれらの組合せから選択される強化材ナノフィラメントを含有することを特徴とするアノード活物質層。
  18. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、天然ポリイソプレン、合成ポリイソプレン、ポリブタジエン、クロロプレンゴム、ポリクロロプレン、ブチルゴム、スチレン−ブタジエンゴム、ニトリルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、エピクロロヒドリンゴム、ポリアクリルゴム、シリコーンゴム、フルオロシリコーンゴム、ペルフルオロエラストマー、ポリエーテルブロックアミド、クロロスルホン化ポリエチレン、エチレン酢酸ビニル、熱可塑性エラストマー、タンパク質レジリン、タンパク質エラスチン、エチレンオキシド−エピクロロヒドリンコポリマー、ポリウレタン、ウレタン−尿素コポリマー又はそれらの組合せから選択されるエラストマーとの混合物を形成することを特徴とするアノード活物質層。
  19. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、リチウムイオン導電性添加剤と混合されて複合物を形成し、前記リチウムイオン導電性添加剤は、前記高弾性ポリマー中に分散され、且つLiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せから選択され、式中、X=F、Cl、I又はBr、R=炭化水素基、x=0〜1、y=1〜4であることを特徴とするアノード活物質層。
  20. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、リチウムイオン導電性添加剤と混合されて複合物を形成し、前記リチウムイオン導電性添加剤は、前記高弾性ポリマー中に分散され、且つ過塩素酸リチウムLiClO、ヘキサフルオロリン酸リチウムLiPF、ホウフッ化リチウムLiBF、ヘキサフルオロヒ化リチウムLiAsF、トリフルオロメタンスルホン酸リチウムLiCFSO、ビス−トリフルオロメチルスルホニルイミドリチウムLiN(CFSO、ビス(オキサラト)ホウ酸リチウムLiBOB、オキサリルジフルオロホウ酸リチウムLiBF、オキサリルジフルオロホウ酸リチウムLiBF、硝酸リチウムLiNO、Li−フルオロアルキル−リン酸塩LiPF(CFCF、リチウムビスペルフルオロ−エチルスルホニルイミドLiBETI、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミドLiTFSI、イオン性液体ベースのリチウム塩又はそれらの組合せから選択されることを特徴とするアノード活物質層。
  21. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、それらのスルホン化誘導体又はそれらの組合せから選択される電子導電性ポリマーと混合されることを特徴とするアノード活物質層。
  22. 請求項1に記載のアノード活物質層において、前記高弾性ポリマーは、ポリ(エチレンオキシド)(PEO)、ポリプロピレンオキシド(PPO)、ポリ(アクリロニトリル)(PAN)、ポリ(メチルメタクリレート)(PMMA)、ポリ(フッ化ビニリデン)(PVdF)、ポリビス−メトキシエトキシエトキシド−ホスファゼネックス、ポリ塩化ビニル、ポリジメチルシロキサン、ポリ(フッ化ビニリデン)−ヘキサフロオロプロピレン(PVDF−HFP)、それらのスルホン化誘導体又はそれらの組合せから選択されるリチウムイオン導電性ポリマーとの混合物又はブレンドを形成することを特徴とするアノード活物質層。
  23. リチウムバッテリーのためのアノード活物質層において、高弾性ポリマーであって、前記ポリマー中に添加剤又は強化材の不在下で測定される場合、5%〜700%の回復可能な引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有する高弾性ポリマーの薄層によって被覆及び保護される集積アノード層を形成するために結合剤によって一緒に結合される複数のアノード活物質粒子及び任意選択的な導電性添加剤を含み、前記薄層は、1nm〜10μmの厚さを有することを特徴とするアノード活物質層。
  24. リチウムバッテリーにおいて、任意選択的なアノード集電体と、請求項1に記載のアノード活物質層と、カソード活物質層と、任意選択的なカソード集電体と、前記アノード活物質層及び前記カソード活物質層とイオン接触する電解質と、任意選択的な多孔性セパレーターとを含有することを特徴とするリチウムバッテリー。
  25. 請求項24に記載のリチウムバッテリーにおいて、リチウムイオンバッテリー、リチウム金属バッテリー、リチウム−硫黄バッテリー、リチウム−セレンバッテリー又はリチウム空気バッテリーであることを特徴とするリチウムバッテリー。
  26. リチウムバッテリーにおいて、任意選択的なアノード集電体と、請求項23に記載のアノード活物質層と、カソード活物質層と、任意選択的なカソード集電体と、前記アノード活物質層及び前記カソード活物質層とイオン接触する電解質と、任意選択的な多孔性セパレーターとを含有することを特徴とするリチウムバッテリー。
  27. 請求項26に記載のリチウムバッテリーにおいて、リチウムイオンバッテリー、リチウム金属バッテリー、リチウム−硫黄バッテリー、リチウム−セレンバッテリー又はリチウム空気バッテリーであることを特徴とするリチウムバッテリー。
  28. リチウムバッテリーを製造する方法において、
    (a)カソード活物質層及び前記カソード活物質層を支持するための任意選択的なカソード集電体を提供することと、
    (b)アノード活物質層及び前記アノード活物質層を支持するための任意選択的なアノード集電体を提供することと、
    (c)前記アノード活物質層及び前記カソード活物質層と接触する電解質並びにアノード及びカソードを電気的に分離する任意選択的なセパレーターを提供することと
    を含み、
    前記アノード活物質層を提供する作業は、添加剤又は強化材の不在下で測定される場合、5%〜700%の回復可能な引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有する高弾性ポリマーを含有する結合剤樹脂により、アノード活物質の複数の粒子及び任意選択的な導電性添加剤を一緒に結合して前記層を形成することを含むことを特徴とする方法。
  29. リチウムバッテリーを製造する方法において、
    (a)カソード活物質層及び前記カソード活物質層を支持するための任意選択的なカソード集電体を提供することと、
    (b)アノード活物質層及び前記アノード活物質層を支持するための任意選択的なアノード集電体を提供することと、
    (c)前記アノード活物質層及び前記カソード活物質層と接触する電解質並びにアノード及びカソードを電気的に分離する任意選択的な多孔性セパレーターを提供することと
    を含み、
    前記アノード活物質層を提供する作業は、結合剤樹脂により、アノード活物質の複数の粒子及び任意選択的な導電性添加剤を一緒に結合して前記アノード活物質層を形成することと、前記アノード活物質層を被覆及び保護するために高弾性ポリマーの薄膜を適用することとを含み、前記高弾性ポリマーは、添加剤又は強化材の不在下で測定される場合、5%〜700%の回復可能な又は弾性引張歪み及び室温において10−5S/cm以上のリチウムイオン導電率を有し、及び前記薄膜は、1nm〜10μmの厚さを有することを特徴とする方法。
  30. 請求項29に記載の方法において、前記高弾性ポリマーの薄膜は、前記アノード活物質層と前記多孔性セパレーターとの間で実施されることを特徴とする方法。
  31. 請求項28に記載の方法において、前記高弾性ポリマーは、1×10−5S/cm〜2×10−2S/cmのリチウムイオン導電率を有することを特徴とする方法。
  32. 請求項28に記載の方法において、前記高弾性ポリマーは、10%〜300%の回復可能な引張歪みを有することを特徴とする方法。
  33. 請求項28に記載の方法において、前記高弾性ポリマーは、ポリマー鎖の架橋ネットワークであって、前記ポリマー鎖の架橋ネットワーク中において、エーテル結合、ニトリル誘導結合、ベンゾペルオキシド誘導結合、エチレンオキシド結合、プロピレンオキシド結合、ビニルアルコール結合、シアノ−樹脂結合、トリアクリレートモノマー誘導結合、テトラアクリレートモノマー誘導結合又はそれらの組合せを有するポリマー鎖の架橋ネットワークを含有することを特徴とする方法。
  34. 請求項28に記載の方法において、前記高弾性ポリマーは、ニトリル含有ポリビニルアルコール鎖、シアノ樹脂鎖、ペンタエリトリトールテトラアクリレート鎖、ペンタエリトリトールトリアクリレート鎖、エトキシル化トリメチロールプロパントリアクリレート(ETPTA)鎖、エチレングリコールメチルエーテルアクリレート(EGMEA)鎖又はそれらの組合せから選択されるポリマー鎖の架橋ネットワークを含有することを特徴とする方法。
  35. 請求項28に記載の方法において、前記高弾性ポリマーは、エラストマー、電子導電性ポリマー、リチウムイオン導電性材料、強化材料又はそれらの組合せとの混合物を形成することを特徴とする方法。
  36. 請求項35に記載の方法において、前記リチウムイオン導電性材料は、前記高弾性ポリマー中に分散され、且つLiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せから選択され、式中、X=F、Cl、I又はBr、R=炭化水素基、x=0〜1、y=1〜4であることを特徴とする方法。
  37. 請求項35に記載の方法において、前記リチウムイオン導電性材料は、前記高弾性ポリマー中に分散され、且つ過塩素酸リチウムLiClO、ヘキサフルオロリン酸リチウムLiPF、ホウフッ化リチウムLiBF、ヘキサフルオロヒ化リチウムLiAsF、トリフルオロメタンスルホン酸リチウムLiCFSO、ビス−トリフルオロメチルスルホニルイミドリチウムLiN(CFSO、ビス(オキサラト)ホウ酸リチウムLiBOB、オキサリルジフルオロホウ酸リチウムLiBF、オキサリルジフルオロホウ酸リチウムLiBF、硝酸リチウムLiNO、Li−フルオロアルキル−リン酸塩LiPF(CFCF、リチウムビスペルフルオロ−エチルスルホニルイミドLiBETI、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミドLiTFSI、イオン性液体ベースのリチウム塩又はそれらの組合せから選択されることを特徴とする方法。
  38. 請求項28に記載の方法において、前記アノード活物質は、(a)ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)及びカドミウム(Cd);(b)Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V又はCdの酸化物、炭化物、窒化物、硫化物、リン化物、セレン化物及びテルル化物並びにそれらの混合物、複合物又はリチウム含有複合物;(c)チタン酸リチウム、マンガン酸リチウム、アルミン酸リチウム、リチウム含有酸化チタン、リチウム遷移金属酸化物、ZnCo;(d)それらのプレリチウム化変種;(e)炭素、グラフェン又は黒鉛材料とのその混合物;(f)Li、Li合金又は少なくとも60重量%のリチウム元素をその中に有する表面安定化Liの粒子;(f)及びそれらの組合せからなる群から選択されることを特徴とする方法。
  39. 請求項28に記載の方法において、前記アノード活物質粒子の1つ又は複数は、炭素又はグラフェンの層でコーティングされることを特徴とする方法。
  40. 請求項28に記載の方法において、前記アノード活物質粒子の1つ又は複数は、炭素、グラフェン又は黒鉛材料と混合されて混合物を形成し、及び前記混合物は、グラフェンシートの1つ又は複数によって包含されることを特徴とする方法。
  41. 請求項29に記載の方法において、前記アノード活物質粒子の1つ又は複数は、炭素材料、黒鉛材料及び/又はグラフェンシートと混合されて、外部グラフェンシートによって包含される混合物を形成してグラフェン包含アノード活物質粒子を形成し、前記グラフェン包含アノード活物質粒子は、次いで、前記結合剤樹脂によって結合されることを特徴とする方法。
JP2019546030A 2017-02-24 2018-02-01 リチウムバッテリーのためのポリマー結合剤及び製造方法 Pending JP2020508552A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023219173A JP2024038116A (ja) 2017-02-24 2023-12-26 リチウムバッテリーのためのポリマー結合剤及び製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/442,278 US10840502B2 (en) 2017-02-24 2017-02-24 Polymer binder for lithium battery and method of manufacturing
US15/442,278 2017-02-24
PCT/US2018/016423 WO2018156329A1 (en) 2017-02-24 2018-02-01 Polymer binder for lithium battery and method of manufacturing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023219173A Division JP2024038116A (ja) 2017-02-24 2023-12-26 リチウムバッテリーのためのポリマー結合剤及び製造方法

Publications (1)

Publication Number Publication Date
JP2020508552A true JP2020508552A (ja) 2020-03-19

Family

ID=63246991

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019546030A Pending JP2020508552A (ja) 2017-02-24 2018-02-01 リチウムバッテリーのためのポリマー結合剤及び製造方法
JP2023219173A Pending JP2024038116A (ja) 2017-02-24 2023-12-26 リチウムバッテリーのためのポリマー結合剤及び製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023219173A Pending JP2024038116A (ja) 2017-02-24 2023-12-26 リチウムバッテリーのためのポリマー結合剤及び製造方法

Country Status (5)

Country Link
US (3) US10840502B2 (ja)
JP (2) JP2020508552A (ja)
KR (1) KR102610861B1 (ja)
CN (1) CN110546788B (ja)
WO (1) WO2018156329A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162428A1 (ja) * 2022-02-25 2023-08-31 株式会社村田製作所 二次電池

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US11239466B2 (en) 2018-01-09 2022-02-01 Saudi Arabian Oil Company Nanocomposite cathode materials for use in batteries
US10424782B2 (en) * 2018-01-09 2019-09-24 Saudi Arabian Oil Company Nanocomposite electrode materials for use in high temperature and high pressure rechargeable batteries
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
EP3557676A1 (en) * 2018-04-18 2019-10-23 Brno University Of Technology Alkali and/or alkaline earth ion - monoclinic sulfur allotrope battery with self-supporting electrodes
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
US11152620B2 (en) 2018-10-18 2021-10-19 Global Graphene Group, Inc. Process for producing porous graphene particulate-protected anode active materials for lithium batteries
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
JP2022525933A (ja) * 2019-03-20 2022-05-20 エフエムシー リチウム ユーエスエー コーポレイション プリントされたリチウム箔及びフィルム
CN110212191B (zh) * 2019-06-25 2021-12-14 黑龙江省科学院高技术研究院 一种石墨烯/SnO2/Si@PPy复合材料的制备方法
EP3997747A1 (en) * 2019-07-09 2022-05-18 Saudi Arabian Oil Company Methods for the production of nanocomposites for high temperature electrochemical energy storage devices
JP7281091B2 (ja) * 2020-02-10 2023-05-25 トヨタ自動車株式会社 二次電池の正極材料、および二次電池
US20220109142A1 (en) * 2020-10-05 2022-04-07 Global Graphene Group, Inc. Electrode structures for lithium batteries
US20220115639A1 (en) * 2020-10-13 2022-04-14 Global Graphene Group, Inc. Elastic polymer matrix-protected particles of anode active materials for lithium batteries and method of manufacturing
US11637291B2 (en) * 2020-11-04 2023-04-25 Global Graphene Group, Inc. Lithium-protecting polymer layer for an anode-less lithium metal secondary battery and manufacturing method
US20220166029A1 (en) * 2020-11-24 2022-05-26 Global Graphene Group, Inc. Graphene foam-based protective layer for an anode-less alkali metal battery
US20220181637A1 (en) * 2020-12-03 2022-06-09 Global Graphene Group, Inc. Lithium-protecting polymer composite layer for an anode-less lithium metal secondary battery and manufacturing method
US20220190346A1 (en) * 2020-12-14 2022-06-16 Global Graphene Group, Inc. Lithium-protecting polymer composite layer for a lithium metal secondary battery and manufacturing method
US11677101B2 (en) 2021-01-12 2023-06-13 Global Graphene Group, Inc. High-elasticity polymer for lithium metal protection, lithium secondary battery and manufacturing method
US20220255080A1 (en) * 2021-02-08 2022-08-11 Global Graphene Group, Inc. Flame-retardant high-elasticity polymer for lithium metal protection, lithium secondary battery and manufacturing method
CN113130878B (zh) * 2021-04-02 2022-11-11 中北大学 一种硼掺杂硅基负极材料的制备方法及其应用
US20230246192A1 (en) * 2022-02-03 2023-08-03 Global Graphene Group, Inc. Elastomer-Protected Anode and Lithium Battery
US20230369643A1 (en) * 2022-05-10 2023-11-16 Global Graphene Group, Inc. Rechargeable Sodium Battery Containing a Solid Elastomer Electrolyte and Manufacturing Method
CN115559110B (zh) * 2022-12-02 2023-04-07 杭州德海艾科能源科技有限公司 一种钒电池用碳纳米复合材料改性石墨毡及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040218A (ja) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd リチウム電池用電極材料シート、固体リチウム電池、及び、固体リチウム電池を備えた装置
US20100120179A1 (en) * 2008-11-13 2010-05-13 Aruna Zhamu Method of producing prelithiated anodes for secondary lithium ion batteries
US20150243993A1 (en) * 2012-07-11 2015-08-27 Lg Chem, Ltd. Electrode binder for secondary battery providing excellent adhesion strength and life characteristics
US20150244025A1 (en) * 2014-02-26 2015-08-27 Sogang University Research Foundation Solid polymer electrolyte composition and lithium secondary battery including the same
US20160056502A1 (en) * 2014-08-25 2016-02-25 Samsung Electronics Co., Ltd. Polymer electrolyte for lithium battery and lithium battery including the polymer electrolyte

Family Cites Families (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid
US3836511A (en) 1971-03-12 1974-09-17 Exxon Research Engineering Co Process for sulfonating unsaturated elastomers
US4720910A (en) 1987-06-16 1988-01-26 Mhb Joint Venture Method for preparing encapsulated cathode material
JPH0667981B2 (ja) 1988-04-28 1994-08-31 松下電器産業株式会社 ポリアセチレン又はポリアセン型超長共役ポリマーの製造方法
US5057339A (en) 1988-12-29 1991-10-15 Matsushita Electric Industrial Co., Ltd. Metallized polyacetylene-type or polyacene-type ultralong conjugated polymers and process for producing the same
US5162170A (en) 1989-07-21 1992-11-10 Mistubishi Petrochemical Co., Ltd. Electrode for secondary battery
US5350647A (en) 1990-12-24 1994-09-27 Hope Stephen F Electrodes for electrochemical devices
CA2085549A1 (en) 1991-12-25 1993-06-26 Noboru Nakano Fuel cell and electrolyte membrane therefor
JPH08846B2 (ja) 1992-01-14 1996-01-10 松下電器産業株式会社 ポリアセチレン型共役ポリマーの製造方法
US5342710A (en) 1993-03-30 1994-08-30 Valence Technology, Inc. Lakyer for stabilization of lithium anode
US5460905A (en) 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5340368A (en) 1993-08-04 1994-08-23 Valence Technology, Inc. Method for in situ preparation of an electrode composition
US5961672A (en) 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5648187A (en) 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5536599A (en) 1994-05-16 1996-07-16 Eic Laboratories Inc. Solid polymer electrolyte batteries containing metallocenes
US5434021A (en) 1994-08-12 1995-07-18 Arthur D. Little, Inc. Secondary electrolytic cell and electrolytic process
US6025094A (en) 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US6180284B1 (en) 1998-06-05 2001-01-30 Mine Safety Appliances Company Electrochemical power cells and method of improving electrochemical power cell performance
KR100276656B1 (ko) 1998-09-16 2001-04-02 박찬구 박막형 복합 재료 양극으로 구성된 고체형 이차 전지
US6515101B1 (en) 1998-09-25 2003-02-04 Iowa State University Research Foundation, Inc. High performance fluorinated polymers and methods
US6451484B1 (en) 1999-04-21 2002-09-17 Samsung Sdi Co., Ltd. Lithium secondary battery and manufacturing method thereof
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
US6447952B1 (en) 1999-06-07 2002-09-10 Eltron Research, Inc. Polymer electrolytes
JP2001135359A (ja) 1999-08-24 2001-05-18 Japan Storage Battery Co Ltd 非水電解質電池
US6733924B1 (en) 1999-11-23 2004-05-11 Moltech Corporation Lithium anodes for electrochemical cells
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6391069B1 (en) * 2000-03-29 2002-05-21 Valence Technology (Nevada), Inc. Method of making bonded-electrode rechargeable electrochemical cells
US7332242B2 (en) 2000-09-01 2008-02-19 Itochu Corporation Lithium-based battery having extensible, ion-impermeable polymer covering on the battery container
AU2001290238A1 (en) 2000-09-20 2002-04-02 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
CN1179432C (zh) 2001-05-31 2004-12-08 三星Sdi株式会社 锂电池的锂金属阳级保护层的形成方法
KR100416098B1 (ko) 2001-12-18 2004-01-24 삼성에스디아이 주식회사 캐소드 전극, 이의 제조방법 및 이를 채용한 리튬 설퍼 전지
US7087348B2 (en) 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells
JP3755502B2 (ja) * 2002-09-11 2006-03-15 ソニー株式会社 非水電解質電池
KR20120118511A (ko) 2002-10-15 2012-10-26 폴리플러스 배터리 컴퍼니 활성 금속 애노드를 보호하기 위한 이온 전도성 합성물
US7282302B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7318982B2 (en) 2003-06-23 2008-01-15 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
US20130157141A1 (en) 2003-07-09 2013-06-20 Maxwell Technologies, Inc. Battery with a recyclable dry particle based electrode
EP1508349A1 (en) 2003-08-18 2005-02-23 Medtronic Vascular, Inc. A hyper-elastic, high strength dilation balloon made from multi-block copolymers
KR100497251B1 (ko) 2003-08-20 2005-06-23 삼성에스디아이 주식회사 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지
KR100542213B1 (ko) 2003-10-31 2006-01-10 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
TWI258238B (en) * 2003-11-05 2006-07-11 Lg Chemical Ltd Functional polymer film-coated electrode and electrochemical device using the same
US7618678B2 (en) 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
CN101203628A (zh) 2004-10-01 2008-06-18 普立万公司 阴极保护化合物在经处理的金属制品上的应用
US7615312B2 (en) 2005-05-17 2009-11-10 3M Innovative Properties Company Substituted phenothiazine redox shuttles for rechargeable lithium-ion cell
US8404388B2 (en) 2005-08-09 2013-03-26 Polyplus Battery Company Compliant seal structures for protected active metal anodes
KR100738057B1 (ko) 2005-09-13 2007-07-10 삼성에스디아이 주식회사 음극 전극 및 이를 채용한 리튬 전지
JP2009510233A (ja) 2005-09-30 2009-03-12 レリプサ, インコーポレイテッド 架橋シェルを有するコア−シェルコンポジットを製造する方法および該方法によって生じたコア−シェルコンポジット
KR100670527B1 (ko) 2005-10-06 2007-01-16 삼성에스디아이 주식회사 용출 방지막을 갖는 양극 극판, 이의 제조 방법 및 이를이용한 이차 전지
KR20080110817A (ko) 2006-03-17 2008-12-19 산요덴키가부시키가이샤 비수전해질 전지 및 그 제조 방법
US8053112B2 (en) 2006-03-17 2011-11-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US8039152B2 (en) 2007-04-03 2011-10-18 Toyota Motor Engineering & Manufacturing North America, Inc. Tin in an active support matrix
US20080318128A1 (en) 2007-06-22 2008-12-25 Sion Power Corporation Lithium alloy/sulfur batteries
FR2920255B1 (fr) 2007-08-24 2009-11-13 Commissariat Energie Atomique Generateur electrochimique au lithium fonctionnant avec un electrolyte aqueux.
CN101383408A (zh) 2007-09-03 2009-03-11 德固赛(中国)投资有限公司 锂离子二次电池用负极及采用该负极的锂离子二次电池
US20120070746A1 (en) 2007-09-21 2012-03-22 Sion Power Corporation Low electrolyte electrochemical cells
US9722275B2 (en) 2007-12-14 2017-08-01 Nanotek Instruments, Inc. Anode protective layer compositions for lithium metal batteries
US9564629B2 (en) 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
KR101196798B1 (ko) 2008-02-25 2012-11-05 주식회사 엘지화학 LiF계 화합물로 코팅된 음극 및 그 제조방법과 상기 음극을 포함하는 리튬이온 이차전지
BRPI0913852A2 (pt) 2008-06-16 2015-10-20 Polyplus Battery Co Inc células de bateria de ar/lítio aquoso
JP2010097843A (ja) 2008-10-17 2010-04-30 Panasonic Corp リチウムイオン二次電池
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US8241793B2 (en) 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
JP2010160984A (ja) 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US20110262816A1 (en) 2009-01-12 2011-10-27 Glenn Amatucci Polyhydrogen fluoride based battery
EP2353203B9 (en) 2009-02-04 2014-04-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
CN102317348A (zh) * 2009-02-11 2012-01-11 陶氏环球技术有限责任公司 延性聚合物粘合剂和使用其的电池组元件
DE112010006104A5 (de) 2009-05-22 2015-04-16 Sharp Kabushiki Kaisha Aktives Material für eine Kathode, Kathode, nichtwässrige Sekundärbatterie, Modul und Energiespeichersystem
KR101798061B1 (ko) 2009-06-25 2017-11-16 삼성전자주식회사 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지
KR101125013B1 (ko) 2009-07-29 2012-03-27 한양대학교 산학협력단 이온성 고분자를 포함하는 가교형 세라믹 코팅 분리막의 제조 방법, 이로부터 제조된 세라믹 코팅 분리막 및 이를 채용한 리튬이차전지
IN2012DN02063A (ja) 2009-08-28 2015-08-21 Sion Power Corp
US8236452B2 (en) 2009-11-02 2012-08-07 Nanotek Instruments, Inc. Nano-structured anode compositions for lithium metal and lithium metal-air secondary batteries
JP2011124122A (ja) 2009-12-11 2011-06-23 Konica Minolta Holdings Inc 電気化学デバイス
JP5653637B2 (ja) 2010-03-01 2015-01-14 古河電気工業株式会社 正極活物質材料、正極、2次電池及びこれらの製造方法
JP2012033279A (ja) 2010-07-28 2012-02-16 Nec Energy Devices Ltd リチウムイオン二次電池
JP5891655B2 (ja) 2010-08-30 2016-03-23 ソニー株式会社 非水電解質電池および非水電解質電池の製造方法、並びに絶縁材および絶縁材の製造方法、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
US8691441B2 (en) 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
US9558860B2 (en) 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
US8753772B2 (en) 2010-10-07 2014-06-17 Battelle Memorial Institute Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
DE102010043400A1 (de) 2010-11-04 2012-05-10 Robert Bosch Gmbh Kathodenmaterial für Lithium-Schwefel-Zelle
CN102157731B (zh) 2011-03-18 2015-03-04 上海交通大学 一种锂离子电池硅碳复合负极材料及其制备方法
EP2720303B1 (en) 2011-06-11 2017-05-31 Positec Power Tools (Suzhou) Co., Ltd Electrode composite material, method thereof, positive electrode and battery including the same
KR101947353B1 (ko) 2011-09-30 2019-02-12 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 고성능 리튬/황 전지들에서 황 고정제로서의 그래핀 옥시드
KR101465490B1 (ko) 2011-11-30 2014-11-26 주식회사 코캄 안전성과 안정성이 향상된 리튬 이차 전지
US20130164615A1 (en) 2011-12-22 2013-06-27 Arumugam Manthiram Conductive polymer-coated, shaped sulfur-nanocomposite cathodes for rechargeable lithium-sulfur batteries and methods of making the same
CN103187570B (zh) 2011-12-28 2015-09-30 清华大学 硫-石墨烯复合材料的制备方法
US9437370B2 (en) 2012-02-27 2016-09-06 Nanotek Instruments, Inc. Lithium-ion cell having a high-capacity anode and a high-capacity cathode
US9711797B2 (en) 2012-05-07 2017-07-18 Seeo, Inc. Coated particles for lithium battery cathodes
US10079389B2 (en) 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
US9692039B2 (en) 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
KR20150048707A (ko) 2012-08-30 2015-05-07 가부시키가이샤 가네카 전지용 집전체 및 이를 사용한 전지
US9923206B2 (en) 2012-09-10 2018-03-20 Nanotek Instruments, Inc. Encapsulated phthalocyanine particles, high-capacity cathode containing these particles, and rechargeable lithium cell containing such a cathode
TWI472484B (zh) 2012-10-09 2015-02-11 Taiwan Textile Res Inst 順向排列石墨烯片高分子複合材料及其製造方法
WO2014076304A2 (de) * 2012-11-19 2014-05-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Partikuläres elektrodenmaterial mit einer beschichtung aus einem kristallinen anorganischen material und/oder einem anorganisch-organischen hybridpolymer und verfahren zu dessen herstellung
KR20140076161A (ko) 2012-12-12 2014-06-20 현대자동차주식회사 리튬유황 이차전지 양극용 분말구조체와 그 제조 방법
TWI499115B (zh) 2012-12-25 2015-09-01 Ind Tech Res Inst 鋰二次電池複合電極材料與鋰二次電池
JP5594379B2 (ja) 2013-01-25 2014-09-24 トヨタ自動車株式会社 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
WO2014119256A1 (ja) 2013-01-29 2014-08-07 三洋電機株式会社 非水電解質二次電池用負極活物質、当該負極活物質を用いた非水電解質二次電池用負極、及び当該負極を用いた非水電解質二次電池
KR101479320B1 (ko) 2013-02-12 2015-01-05 (주)포스코켐텍 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
US10557014B2 (en) 2013-02-19 2020-02-11 Nanotech Industrial Solutions, Inc. Composite materials including inorganic fullerene-like particles and inorganic tubular-like particles in a polymer matrix
CN103258990B (zh) 2013-04-24 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 锂硫电池正极材料及其制备方法
KR101745678B1 (ko) 2013-05-09 2017-06-09 주식회사 엘지화학 고분자 필름, 플렉서블 발광 소자 디스플레이 장치 및 감김 가능 디스플레이 장치
US9368831B2 (en) 2013-06-10 2016-06-14 Nanotek Instruments, Inc. Lithium secondary batteries containing non-flammable quasi-solid electrolyte
US20140370388A1 (en) 2013-06-18 2014-12-18 Seeo, Inc. Method for determining state of charge in lithium batteries through use of a novel electrode
CN105393396A (zh) * 2013-07-03 2016-03-09 加州理工学院 用于不含分离器的硅-硫电池的碳纳米管-石墨烯混合结构
WO2015005117A1 (ja) 2013-07-08 2015-01-15 三洋化成工業株式会社 リチウムイオン電池活物質被覆用樹脂、リチウムイオン電池活物質被覆用樹脂組成物及びリチウムイオン電池用被覆活物質
US9203084B2 (en) 2013-08-08 2015-12-01 Nanotek Instrurments, Inc. Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same
US9059481B2 (en) 2013-08-30 2015-06-16 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte and non-lithium alkali metal or alkali-ion secondary batteries containing same
US11721831B2 (en) 2013-08-30 2023-08-08 Sila Nanotechnologies, Inc. Electrolyte or electrode additives for increasing metal content in metal-ion batteries
KR102155696B1 (ko) 2013-09-13 2020-09-15 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함한 리튬 공기 전지
JP2015084320A (ja) 2013-09-17 2015-04-30 株式会社東芝 電池用活物質材料、電極、非水電解質電池及び電池パック
US10109856B2 (en) 2013-09-27 2018-10-23 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries
KR101783567B1 (ko) 2013-10-07 2017-09-29 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지용 전극 재료, 및 이것을 사용한 비수전해질 이차 전지용 전극 및 비수전해질 이차 전지
KR101783568B1 (ko) 2013-10-07 2017-09-29 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지용 전극 재료, 및 이것을 사용한 비수전해질 이차 전지용 전극 및 비수전해질 이차 전지
KR101744089B1 (ko) * 2013-10-29 2017-06-07 삼성에스디아이 주식회사 리튬 이차 전지용 바인더 조성물, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2015074065A1 (en) 2013-11-18 2015-05-21 California Institute Of Technology Electrochemical separators with inserted conductive layers
US20150162641A1 (en) 2013-12-09 2015-06-11 Polyplus Battery Company Protected lithium electrodes having a liquid anolyte reservoir architecture and associated rechargeable lithium battery cells
WO2015090607A1 (en) 2013-12-19 2015-06-25 Basf Se Polymer for use as protective layers and other components in electrochemical cells
CN105849944A (zh) 2013-12-26 2016-08-10 三洋电机株式会社 非水电解质二次电池用负极
KR102258220B1 (ko) 2013-12-26 2021-06-01 마쓰모토유시세이야쿠 가부시키가이샤 열팽창성 미소구의 제조방법 및 그 이용
US9437871B2 (en) 2014-02-05 2016-09-06 GM Global Technology Operations LLC Sulfur based active material for a positive electrode
JP6158360B2 (ja) 2014-02-06 2017-07-05 日産自動車株式会社 非水電解質二次電池
US10147966B2 (en) 2014-02-20 2018-12-04 Sila Nanotechnologies, Inc. Metal sulfide composite materials for batteries
DE102014203750A1 (de) 2014-02-28 2015-09-03 Wacker Chemie Ag Polymerzusammensetzung als Bindersystem für Lithiumionenbatterien
KR20160132040A (ko) 2014-03-12 2016-11-16 도레이 카부시키가이샤 사이징제 도포 강화 섬유, 사이징제 도포 강화 섬유의 제조 방법, 프리프레그 및 섬유 강화 복합 재료
JP2015176656A (ja) 2014-03-13 2015-10-05 本田技研工業株式会社 正極材料
TWI651879B (zh) 2014-03-19 2019-02-21 日商積水化學工業股份有限公司 片積層型鋰離子二次電池及片積層型鋰離子二次電池之製造方法
KR101606898B1 (ko) 2014-04-03 2016-03-28 숭실대학교산학협력단 유연한 리튬 이차전지 및 제조방법
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR20170003604A (ko) 2014-05-05 2017-01-09 보드 오브 리전츠 더 유니버시티 오브 텍사스 시스템 리튬-황 배터리용 이작용성 세퍼레이터
KR101724196B1 (ko) 2014-05-09 2017-04-06 주식회사 엘지화학 그래핀 피복된 다공성 실리콘-탄소 복합체 및 이의 제조방법
EP3152792B1 (de) 2014-06-06 2020-10-21 Robert Bosch GmbH Polymerelektrolyt für lithium-schwefel-zelle
KR20160008041A (ko) 2014-07-11 2016-01-21 오씨아이 주식회사 이차전지용 음극활물질 및 이의 제조방법
JP6256855B2 (ja) 2014-07-15 2018-01-10 川上 総一郎 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法
DE102014214899A1 (de) 2014-07-30 2016-02-04 Bayerische Motoren Werke Aktiengesellschaft Kompositelektrode für eine elektrochemische Zelle und elektrochemische Zelle
CN104103809B (zh) 2014-07-31 2017-02-01 中国科学院上海硅酸盐研究所 一种锂离子电池合金负极用三层电极结构
CN105322132A (zh) 2014-07-31 2016-02-10 中国科学院上海硅酸盐研究所 一种具有多功能弹性保护层的锂硫电池正极
US9742001B2 (en) 2014-08-07 2017-08-22 Nanotek Instruments, Inc. Graphene foam-protected anode active materials for lithium batteries
JP6620102B2 (ja) 2014-08-25 2019-12-18 日産自動車株式会社 電極
US10547088B2 (en) 2014-09-10 2020-01-28 Battelle Memorial Institute High Coulombic efficiency cycling of metal batteries
US9819015B2 (en) 2014-09-18 2017-11-14 Toyota Motor Engineering & Manufacturing North America, Inc. Encapsulated sulfur sub-micron particles as electrode active material
CN104327762A (zh) * 2014-09-30 2015-02-04 河南师范大学 一种锂离子电池增强型复合粘合剂、制备方法和应用
KR101984719B1 (ko) 2014-10-23 2019-05-31 주식회사 엘지화학 다층구조의 리튬금속 전극 및 이의 제조방법
KR102619076B1 (ko) 2014-10-30 2024-01-05 더 리젠츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 안정한 실리콘-이온성 액체 계면 리튬-이온 배터리
KR101755121B1 (ko) 2014-10-31 2017-07-06 주식회사 엘지화학 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지
EP4037007A1 (en) 2014-11-03 2022-08-03 24M Technologies, Inc. Battery cell comprising a semi-solid electrode
KR102314045B1 (ko) 2014-12-18 2021-10-18 삼성에스디아이 주식회사 복합 양극 활물질, 그 제조방법, 이를 포함한 양극 및 리튬 전지
EP3041066B1 (en) 2014-12-19 2017-11-29 Samsung Electronics Co., Ltd Composite membrane, preparation method thereof, anode structure including the composite membrane, and lithium secondary battery including the anode structure
KR102284341B1 (ko) 2015-01-07 2021-08-03 에스케이이노베이션 주식회사 음극 활물질, 이차 전지 및 음극 활물질 제조방법
KR101829097B1 (ko) 2015-01-14 2018-02-13 주식회사 엘지화학 리튬-황 전지용 양극 및 그의 제조방법 및 그를 포함하는 리튬-황 전지
US10062922B2 (en) 2015-01-26 2018-08-28 University Of Dayton Lithium batteries having artificial solid electrolyte interphase membrane for anode protection
CA2973832C (en) 2015-02-06 2022-03-29 Fathy Mohamed HASSAN Method for the preparation of anodes for lithium batteries
US9755236B2 (en) 2015-04-08 2017-09-05 Nonotek Instruments, Inc. Dendrite-intercepting layer for alkali metal secondary battery
KR102411660B1 (ko) 2015-05-06 2022-06-21 삼성전자주식회사 리튬전지용 음극 및 이를 포함하는 리튬전지
US10573933B2 (en) 2015-05-15 2020-02-25 Samsung Electronics Co., Ltd. Lithium metal battery
US9780379B2 (en) 2015-05-21 2017-10-03 Nanotek Instruments, Inc. Alkali metal secondary battery containing a carbon matrix- or carbon matrix composite-based dendrite intercepting layer
US10347904B2 (en) 2015-06-19 2019-07-09 Solidenergy Systems, Llc Multi-layer polymer coated Li anode for high density Li metal battery
US10115998B2 (en) 2015-06-22 2018-10-30 SiNode Systems, Inc. Cathode additives to provide an excess lithium source for lithium ion batteries
KR102475886B1 (ko) 2015-06-25 2022-12-08 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
JP6403278B2 (ja) 2015-06-30 2018-10-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
US11031587B2 (en) 2015-07-02 2021-06-08 Showa Denko K. K. Negative electrode material for lithium-ion batteries including non-flaky artificial graphite including silicon-containing particles, artificial graphite particles and carbonaceous material
KR101766020B1 (ko) 2015-07-07 2017-08-08 한국과학기술원 미세기공을 포함하는 고전도성 탄소와 금속 초박막이 코팅된 전도성 단결정 실리콘 입자, 이를 포함하는 고용량 이차전지용 음극활물질 및 그 제조방법
US10388983B2 (en) 2015-08-24 2019-08-20 Nanotek Instruments, Inc. Rechargeable lithium batteries having an ultra-high volumetric energy density and required production process
US10601049B2 (en) 2015-08-31 2020-03-24 The Board Of Trustees Of The Leland Stanford Junior University High performance battery anodes with polymeric coatings including molecules cross-linked through dynamic bonds
US10361460B2 (en) 2015-10-02 2019-07-23 Nanotek Instruments, Inc. Process for producing lithium batteries having an ultra-high energy density
US20170104217A1 (en) 2015-10-07 2017-04-13 City University Of Hong Kong Material for use in a battery, a battery and a method of manufacturing a material for use in a battery
US10276856B2 (en) 2015-10-08 2019-04-30 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
KR102537225B1 (ko) 2015-10-23 2023-05-30 삼성전자주식회사 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
US20170117538A1 (en) 2015-10-23 2017-04-27 Ensor, Inc. Nanocomposite anode structure and methods of manufacture thereof
JP6867777B2 (ja) 2015-10-27 2021-05-12 株式会社半導体エネルギー研究所 電子機器の作製方法
US11189825B2 (en) 2015-11-13 2021-11-30 Nanograf Corporation Graphene-encapsulated electroactive material for use in a lithium ion electrochemical cell
US9926427B2 (en) 2015-12-10 2018-03-27 Nanotek Instruments, Inc. Chemical-free production of graphene-reinforced polymer matrix composites
US11316166B2 (en) 2015-12-30 2022-04-26 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity
US10069141B2 (en) 2015-12-30 2018-09-04 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid sulfur particles and cathode active materials containing the hybrid particles
US11152639B2 (en) 2016-01-15 2021-10-19 Global Graphene Group, Inc. Alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
CN105514488B (zh) * 2016-01-19 2018-11-02 宁德新能源科技有限公司 一种粘结剂及其锂离子电池
JP2017152123A (ja) 2016-02-23 2017-08-31 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP7227766B2 (ja) 2016-02-23 2023-02-22 テスラ・インコーポレーテッド エネルギー貯蔵装置のための元素金属および炭素の混合物
US10734642B2 (en) * 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
KR102659163B1 (ko) 2016-04-20 2024-04-22 삼성전자주식회사 양극 및 이를 포함하는 리튬전지
US10741846B2 (en) 2016-05-09 2020-08-11 Samsung Electronics Co., Ltd. Negative electrode for lithium metal battery and lithium metal battery comprising the same
KR102464364B1 (ko) 2016-05-09 2022-11-08 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
US9899672B2 (en) 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
US10396360B2 (en) 2016-05-20 2019-08-27 Gm Global Technology Operations Llc. Polymerization process for forming polymeric ultrathin conformal coatings on electrode materials
KR101926917B1 (ko) 2016-08-17 2018-12-07 현대자동차주식회사 리튬 공기 전지용 음극 및 이의 제조방법
KR102140122B1 (ko) 2016-08-19 2020-07-31 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
US20200058927A1 (en) 2016-10-17 2020-02-20 The Board Of Trustees Of The University Of Illinois Protected Anodes and Methods for Making and Using Same
US9905856B1 (en) 2016-12-28 2018-02-27 Nanotek Instruments, Inc. Flexible and shape-conformal rope-shape alkali metal-sulfur batteries
DE102016226291A1 (de) 2016-12-29 2018-07-05 Robert Bosch Gmbh Schutzschicht mit verbesserter Kontaktierung für Lithium-Zellen und/oder Lithium-Batterien
US10559817B2 (en) 2017-02-01 2020-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Sulfur particles coated with inorganic-organic hybrid membranes as cathode active material and batteries containing the particles
US10651464B2 (en) 2017-02-13 2020-05-12 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a nano sulfur-loaded cathode and manufacturing method
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
EP3584871B1 (en) 2017-02-16 2023-08-16 FUJIFILM Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
US10211455B2 (en) 2017-02-20 2019-02-19 Nanotek Instruments, Inc. Lithium secondary batteries containing protected particles of anode active materials and method of manufacturing
US10084182B2 (en) 2017-02-23 2018-09-25 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US20180277913A1 (en) 2017-03-23 2018-09-27 Nanotek Instruments, Inc. Non-flammable Quasi-Solid Electrolyte and Lithium Secondary Batteries Containing Same
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10770721B2 (en) 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10526204B2 (en) 2017-09-11 2020-01-07 Global Graphene Group, Inc. Production of graphene materials directly from carbon/graphite precursor
JP7140480B2 (ja) 2017-09-14 2022-09-21 トヨタ自動車株式会社 リチウムイオン二次電池と該電池の負極用黒鉛材およびその製造方法
US20190088958A1 (en) 2017-09-15 2019-03-21 Sion Power Corporation Protective membrane for electrochemical cells
CN107732108A (zh) 2017-10-09 2018-02-23 上海恩捷新材料科技股份有限公司 一种电化学装置隔离膜及其制备方法
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
KR101856925B1 (ko) 2018-03-23 2018-05-10 주식회사 엘지화학 표면 코팅된 다공성 실리콘계 음극 활물질 및 이의 제조방법
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10734646B2 (en) 2018-06-21 2020-08-04 Global Graphene Group, Inc. Lithium metal secondary battery containing an electrochemically stable anode-protecting layer
US10727531B2 (en) 2018-06-21 2020-07-28 Global Graphene Group, Inc. Lithium metal secondary battery featuring an anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
CN108878748A (zh) 2018-06-25 2018-11-23 宁德新能源科技有限公司 电化学装置
CN108899472B (zh) 2018-07-23 2022-01-11 中国科学技术大学 一种锂金属电池用电极片及其制备方法以及一种锂金属电池
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040218A (ja) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd リチウム電池用電極材料シート、固体リチウム電池、及び、固体リチウム電池を備えた装置
US20100120179A1 (en) * 2008-11-13 2010-05-13 Aruna Zhamu Method of producing prelithiated anodes for secondary lithium ion batteries
US20150243993A1 (en) * 2012-07-11 2015-08-27 Lg Chem, Ltd. Electrode binder for secondary battery providing excellent adhesion strength and life characteristics
US20150244025A1 (en) * 2014-02-26 2015-08-27 Sogang University Research Foundation Solid polymer electrolyte composition and lithium secondary battery including the same
US20160056502A1 (en) * 2014-08-25 2016-02-25 Samsung Electronics Co., Ltd. Polymer electrolyte for lithium battery and lithium battery including the polymer electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162428A1 (ja) * 2022-02-25 2023-08-31 株式会社村田製作所 二次電池

Also Published As

Publication number Publication date
US10840502B2 (en) 2020-11-17
CN110546788B (zh) 2023-05-12
US20210098778A1 (en) 2021-04-01
US11990608B2 (en) 2024-05-21
KR102610861B1 (ko) 2023-12-08
US20180248173A1 (en) 2018-08-30
CN110546788A (zh) 2019-12-06
US20210020920A1 (en) 2021-01-21
KR20190120304A (ko) 2019-10-23
WO2018156329A1 (en) 2018-08-30
JP2024038116A (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
CN110546788B (zh) 用于锂电池的聚合物粘合剂以及制造方法
KR102643834B1 (ko) 애노드 활물질의 보호된 입자를 함유하는 리튬 이차 배터리 및 제조방법
JP6902046B2 (ja) リチウムバッテリーのための高容量アノード活物質のエラストマー封入粒子
JP7382231B2 (ja) リチウム金属二次バッテリーのためのリチウムアノード保護ポリマー層及び製造方法
JP7154222B2 (ja) 封入されたアノード活物質粒子、それを含有するリチウム二次バッテリー、及び製造方法
CN110582872B (zh) 锂电池阴极以及制造方法
CN110402508B (zh) 制造有受保护的高容量阳极活性材料的锂二次电池的方法
JP7300390B2 (ja) リチウム二次バッテリーのためのカソード活物質層及び製造方法
JP2020509540A (ja) 保護された硫黄カソードを含むアルカリ金属−硫黄二次電池及び製造方法
US20190267663A1 (en) Method of Producing Elastomer Composite-Encapsulated Particles of Anode Active Materials for Lithium Batteries
US20220115639A1 (en) Elastic polymer matrix-protected particles of anode active materials for lithium batteries and method of manufacturing
US11978904B2 (en) Polymer binder for lithium battery and method of manufacturing
JP2023548598A (ja) アノードレス型リチウム金属二次電池のためのリチウム保護ポリマー層及びその製造方法
US20220190322A1 (en) Elastic crosslinked polymer-encapsulated anode particles for lithium batteries and method of manufacturing
WO2022126138A1 (en) Elastic crosslinked network of polymer-encapsulated anode particles for lithium batteries and method of manufacturing
US20230163271A1 (en) Elastic Polymer-Protected Anode Particles, Anode, and Lithium-Ion Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230905