JP2004119691A - 配線基板 - Google Patents

配線基板 Download PDF

Info

Publication number
JP2004119691A
JP2004119691A JP2002281011A JP2002281011A JP2004119691A JP 2004119691 A JP2004119691 A JP 2004119691A JP 2002281011 A JP2002281011 A JP 2002281011A JP 2002281011 A JP2002281011 A JP 2002281011A JP 2004119691 A JP2004119691 A JP 2004119691A
Authority
JP
Japan
Prior art keywords
wiring
core layer
wiring board
thermal expansion
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281011A
Other languages
English (en)
Other versions
JP3822549B2 (ja
Inventor
Motoaki Tani
谷 元昭
Nobuyuki Hayashi
林 伸之
Tomoyuki Abe
阿部 知行
Yasuhito Takahashi
高橋 康仁
Yoshiyasu Saeki
佐伯 佳泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002281011A priority Critical patent/JP3822549B2/ja
Priority to US10/644,004 priority patent/US6869665B2/en
Priority to TW092123276A priority patent/TWI246369B/zh
Priority to KR1020030062975A priority patent/KR100932457B1/ko
Priority to CNB031585264A priority patent/CN1258958C/zh
Publication of JP2004119691A publication Critical patent/JP2004119691A/ja
Application granted granted Critical
Publication of JP3822549B2 publication Critical patent/JP3822549B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • H05K3/4608Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated comprising an electrically conductive base or core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0281Conductive fibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】適切に低熱膨張率化を図ることのできる配線基板を提供すること。
【解決手段】配線基板Xは、カーボンファイバ材11a、および、無機フィラーを含有する樹脂組成物11bからなるコア層10と、コア層10上に形成された絶縁層21および当該絶縁層21上に設けられた配線パターン22を含む積層配線部20と、コア層10内を厚み方向に延び且つ積層配線部20における配線パターン22と電気的に接続している導電部30とを備える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップ実装基板、マザーボード、プローブカード用基板などに適用することのできる配線基板に関する。
【0002】
【従来の技術】
近年、電子機器に対する高性能化および小型化などの要求に伴い、電子機器に組み込まれる電子部品の高密度実装化が急速に進んでいる。そのような高密度実装化に対応すべく、半導体チップについては、ベアチップの状態で配線基板に面実装される即ちフリップチップ実装される場合が多い。半導体チップを搭載するための配線基板については、半導体チップの多ピン化に伴って、配線の高密度化を達成するうえで好適な多層配線基板が採用される傾向にある。このような半導体チップおよび多層配線基板による実装構造を有する半導体パッケージは、所定の電子回路の一部を構成すべく、更にマザーボードに実装される。マザーボードについても、配線の高密度化を達成するうえで好適な多層配線基板が採用される場合がある。一方、複数の半導体素子が造り込まれた半導体ウエハや単一の半導体チップを検査する際に当該ウエハやチップが搭載されるプローブカードの基板においても、素子やチップの多ピン化に応じて多層配線基板が採用されている。
【0003】
フリップチップ実装においては、一般に、配線基板とこれに搭載された半導体チップの間の隙間に対してアンダーフィル剤が充填される。アンダーフィル剤が充填されない状態では、配線基板および半導体チップにおける面内方向の熱膨張率の差に起因して、配線基板および半導体チップの間の電気的接続の信頼性は低い場合が多い。一般的な半導体材料による半導体チップにおける面内方向の熱膨張率は約3.5ppm/℃であって、コア基板としてガラスエポキシ基板を採用する一般的な配線基板における面内方向の熱膨張率は12〜20ppm/℃であり、両者の熱膨張率の差は比較的大きい。そのため、環境温度の変化により、或は、環境温度の変化を経ることにより、配線基板と半導体チップの間における電気的接続部には応力が発生しやすい。電気的接続部にて所定以上の応力が発生すると、当該接続部における半導体チップのバンプと配線基板の電極パッドとの界面などにて、クラックや剥がれが生じやすくなる。フリップチップ実装における半導体チップと配線基板の間に充填されるアンダーフィル剤は、電気的接続部に発生するこのような応力を緩和する機能を有する。この応力緩和機能により、電気的接続部におけるクラックや剥がれが抑制され、フリップチップ実装における接続信頼性の確保が図られる。
【0004】
しかしながら、大型の半導体チップを配線基板に実装する場合には、アンダーフィル剤の応力緩和機能のみでは、充分な接続信頼性を確保できない場合が多い。半導体チップおよび配線基板の熱膨張率の差に起因する両者の熱膨張差の絶対量は、チップが大型であるほど大きくなるためである。熱膨張差が大きいほど、電気的接続部にて発生する応力も大きくなる。このような不具合は、半導体ウエハや比較的大型の半導体チップの所機能を検査する際に、これらをプローブカードに搭載した状態においても生じ得る。
【0005】
配線基板および半導体チップにおける面内方向の熱膨張率差に起因する上述の不具合を解消ないし軽減するための手法の一つとして、熱膨張率の小さな配線基板を採用することが考えられる。熱膨張率の小さな配線基板としては、従来より、低熱膨張率の金属材料をコア基板として採用する配線基板が知られている。金属コア基板を構成する金属材料としては、一般に、アルミニウム、銅、ケイ素鋼、ニッケル−鉄合金、CIC(銅/インバー/銅の積層構造を有するクラッド材)などが採用される。金属コア基板を有する配線基板については、例えば特許文献1や特許文献2に開示されている。しかしながら、金属材料は比重が相当程度に大きいので、得られる配線基板の重量が大きくなり、金属コア基板を採用するのは好ましくない場合がある。また、金属コア基板は、微細なプロセスによる加工性に乏しく、例えば、孔加工や薄板化が困難な場合が多い。
【0006】
一方、配線基板の熱膨張率を低減する手法として、炭素繊維材料を利用する技術が知られている。炭素繊維の熱膨張率は、一般に、−5〜3ppm/℃程度である。例えば、特許文献3には、基材である炭素繊維シートを含有する絶縁層と銅配線とが交互に積層された多層配線構造を有する配線基板が開示されている。特許文献4には、基材として炭素繊維シートを含有するコア基板の両面に、ガラス繊維を含有するプリプレグによる絶縁層と銅配線とが積層された多層配線構造を有する配線基板が開示されている。特許文献5には、炭素繊維シートを含有するコア基板の両面に、ガラス繊維を含有しないプリプレグによる絶縁層と銅配線の積層構造を有する配線基板が開示されている。炭素繊維の熱膨張率が相当程度に小さいので、基材として炭素繊維シートを含有する絶縁層や基板における面内方向の熱膨張率は相当程度に小さく、従って、これらを含んで構成される配線基板における面内方向の熱膨張率は、相当程度に小さくなり得る。
【0007】
【特許文献1】
特開平11−112145号公報
【特許文献2】
特開2000−138453号公報
【特許文献3】
特開昭60−140898号公報
【特許文献4】
特開平11−40902号公報
【特許文献5】
特開2001−332828号公報
【0008】
【発明が解決しようとする課題】
しかしながら、基材として炭素繊維シートを採用する従来の技術においては、絶縁層やコア基板の厚み方向の熱膨張率は、絶縁層やコア基板が炭素繊維シートを含有しない場合よりも大きくなる傾向にある。特に、面内方向の熱膨張率を10ppm/℃以下に抑制すべく比較的高含有率で炭素繊維シートを含むコア基板においては、厚み方向の熱膨張率の増大は顕著である場合が多い。このような現象が生ずるのは、炭素繊維シートとこれを包容する樹脂との間の熱膨張率差が過大であるためと考えられる。炭素繊維シートを包容してこれに接合する樹脂は、本来は比較的大きな熱膨張率を有するが、熱膨張率の極めて小さな炭素繊維シートによって面内方向の熱膨張については厳しく抑制される。そのため、熱膨張時においては、当該樹脂と炭素繊維シートの間の過大な熱膨張率差に起因して、基板内には許容可能な上限を超える応力が発生し、その結果、この超過応力を解放するために基板厚み方向へと樹脂が一層膨張するものと、考えられる。
【0009】
配線基板が具備するコア基板の厚み方向の熱膨張率が大きいと、このコア基板を厚み方向に貫通するスルーホールビアが形成されている場合には、当該スルーホールビアに対してその延び方向に比較的大きな応力が作用する。その結果、当該スルーホールビアが断線してしまう場合がある。このように、絶縁層やコア基板の基材として炭素繊維材料を利用する従来の配線基板においては、スルーホールビアの断線を充分に抑制しつつ適切に低熱膨張率化を図るのには、困難性がある。
【0010】
本発明は、このような事情のもとで考え出されたものであって、適切に低熱膨張率化を図ることのできる配線基板を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の第1の側面によると配線基板が提供される。この配線基板は、カーボンファイバ材、および、無機フィラーを含有する樹脂組成物からなるコア層と、コア層上に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む積層配線部と、コア層内を厚み方向に延び、且つ、積層配線部における配線パターンと電気的に接続している導電部と、を備えることを特徴とする。
【0012】
このような構成の配線基板においては、適切に低熱膨張率化を図ることができる。具体的には、コア層の厚み方向に延びるスルーホールビアなどの導電部の断線を抑制しつつ、配線基板における面内方向の熱膨張率を充分に小さく設定することができる。
【0013】
本発明の第1の側面に係る配線基板のコア層は、カーボンファイバ材を基材として含有する。カーボンファイバ材とは、例えば、カーボンファイバを束ねたカーボンファイバ糸から構成されるカーボンファイバメッシュ、カーボンファイバ糸から織られたカーボンファイバクロス、或は、カーボンファイバ糸から構成されるカーボンファイバ不織布である。カーボンファイバ材は、一般に、−5〜3ppm/℃(25℃)程度の低い熱膨張率を示す。本発明の第1の側面においては、これらのようなカーボンファイバ材が、コア層の内部において、当該コア層の面内方向に展延している。そのため、コア層の面内方向における熱膨張率は小さい。配線基板全体における面内方向の熱膨張率は、コア層の熱膨張率に強く依存するため、コア層におけるカーボンファイバ材の含有率を調節することによって、配線基板における面内方向の熱膨張率を半導体チップのそれに近似する値に設定することも可能である。
【0014】
一方、本発明の第1の側面に係る配線基板のコア層において、カーボンファイバ材を包容しているのは、無機フィラーを含有する樹脂組成物である。この無機フィラーは、樹脂組成物において分散しており、当該樹脂組成物の熱膨張率について、基板の面内方向においても厚み方向においても等方的に低減するという機能を呈する。樹脂組成物における面内方向の熱膨張率が低減されているので、樹脂組成物とカーボンファイバ材の面内方向の熱膨張率差は、樹脂のみがカーボンファイバ材を包容する上述の従来の構成における樹脂とカーボンファイバ材の面内方向の熱膨張率差よりも小さい。したがって、環境温度の変化により或は環境温度の変化を経ることにより生ずる、当該熱膨張率差に起因してコア層の厚み方向に樹脂組成物が膨張しようとする作用は、すなわち、樹脂組成物において厚み方向に生ずる熱応力は、小さい。加えて、当該熱膨張率差に起因してコア層の厚み方向に樹脂組成物が熱膨張しようとする作用の少なくとも一部は、樹脂組成物に含まれる無機フィラーにより抑制ないし阻止される。このように、樹脂組成物およびカーボンファイバ材の熱膨張率差に起因して厚み方向に樹脂組成物が熱膨張しようとする作用が低減されるとともに、この膨張作用の少なくとも一部が無機フィラーにより抑制されるため、コア層の厚み方向の熱膨張率は良好に低減されるのである。その結果、コア層の厚み方向に延びるスルーホールビアなどの導電部に作用する応力は低減され、その断線は抑制されることとなる。
【0015】
このように、本発明の第1の側面によると、コア層の厚み方向に延びるスルーホールビアなどの導電部の断線を抑制しつつ、配線基板における面内方向の熱膨張率を充分に小さく設定することができるのである。このような配線基板は、本来的に低熱膨張率の半導体チップを適切に実装するうえで好適である。
【0016】
本発明の第1の側面において、導電部は、コア層を厚み方向に貫通している。このような導電部すなわちスルーホールビアについても、本発明によると、コア層の厚み方向への膨張に起因する断線は抑制される。このような構成によると、積層配線部の配線パターンは、導電部を介して、コア層の反対側に引き回すことが可能である。
【0017】
本発明の第2の側面によると、他の配線基板が提供される。この配線基板は、カーボンファイバ材、および、無機フィラーを含有する樹脂組成物からなるコア層と、コア層の表面側に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む第1の積層配線部と、コア層の裏面側に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む第2の積層配線部と、コア層を貫通し、且つ、第1の積層配線部における配線パターンおよび第2の積層配線部における配線パターンを電気的に接続している導電部と、を備えることを特徴とする。
【0018】
このような配線基板は、本発明の第1の側面に係る配線基板の構成を含んでいる。したがって、本発明の第2の側面によっても、第1の側面に関して上述したのと同様の効果が奏される。加えて、第2の側面に係る構成は、積層配線部がコア層の両側に対称的に配設されているため、配線基板の反り量を低減するうえで好適である。
【0019】
本発明の第1および第2の側面において、導電部は、コア層の内部において絶縁膜で被覆されている。このような構成によると、コア層内のカーボンファイバ材と導電部との絶縁状態を適切に確保することができる。
【0020】
好ましくは、積層配線部は、複数の絶縁層および複数の配線パターンが交互に積層してなる積層構造と、絶縁層に埋め込まれて複数の配線パターンから選択された隣接する配線パターン間を電気的に接続するビアとを有する。本発明の配線基板は、このような積層配線部を有するビルドアップ配線基板として構成してもよい。
【0021】
好ましくは、コア層の厚み方向の熱膨張率は、30〜120ppm/℃(25℃)である。好ましくは、コア層の面内方向の熱膨張率は、0〜17ppm/℃(25℃)である。
【0022】
好ましくは、カーボンファイバ材は、メッシュ、クロス、または、不織布の形態を有する。コア層におけるカーボンファイバ材の含有率は、好ましくは、30〜80vol%である。カーボンファイバ材に関するこれらの構成は、コア層ひいては配線基板全体における面内方向の低熱膨張率化を図るうえで好適である。
【0023】
好ましくは、無機フィラーの熱膨張率は、1〜20ppm/℃(25℃)である。好ましくは、樹脂組成物における無機フィラーの含有率は、5〜50wt%である。無機フィラーは、シリカ、アルミナ、水酸化マグネシウム、窒化アルミニウム、および、水酸化アルミニウムよりなる群から選択される材料よりなるのが好ましい。また、無機フィラーは、好ましくは平均粒径10μm以下の無機粉末よりなる。無機フィラーに関するこれらの構成は、コア層の厚み方向の熱膨張率を低減するうえで好適である。
【0024】
好ましくは、樹脂組成物は、ポリサルホン、ポリエーテルサルホン、ポリフェニルサルホン、ポリフタルアミド、ポリアミドイミド、ポリケトン、ポリアセタール、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリアクリレート、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、テトラフルオロエチレン、エポキシ、シアネートエステル、および、ビスマレイミドよりなる群から選択される樹脂材料を含んで構成されている。
【0025】
【発明の実施の形態】
図1は、本発明に係る多層配線基板Xの部分断面図である。多層配線基板Xは、コア層10と、一対のビルドアップ部20と、コア層10を厚み方向に貫通するスルーホールビア30とを備える。
【0026】
コア層10は、カーボンファイバ強化樹脂(CFRP)の板材から加工されたものであり、CFRP部11と、絶縁樹脂部12とを有する。CFRP部11は、カーボンファイバ材11a、および、これを包容して硬化している樹脂組成物11bよりなる。コア層10においては、CFRP部11が略全ての体積を占める。
【0027】
カーボンファイバ材11aは、カーボンファイバを束ねたカーボンファイバ糸により織られたカーボンファイバクロスであり、コア層10の面内方向に展延するように配向している。本実施形態では、5枚のカーボンファイバ材11aが厚み方向に積層して樹脂組成物11bに埋設されている。カーボンファイバ材11aとしては、カーボンファイバクロスに代えて、カーボンファイバメッシュまたはカーボンファイバ不織布を採用してもよい。本実施形態では、コア層10ないしCFRP部11におけるカーボンファイバ材11aの含有率は、30〜80vol%である。含有率を調節することによって、コア層10ないしCFRP部11の熱膨張率を小さな値において適宜設定することができる。当該含有率が30vol%未満であると、カーボンファイバ材11aによる面内方向の低熱膨張率化の効果を充分に享受できない場合があり、80vol%を超えると、カーボンファイバ材11aと樹脂組成物11bとの間で剥離が生じ易くなる。
【0028】
カーボンファイバ材11aを包容する樹脂組成物11bは、樹脂分と、これに分散する無機フィラーとを含んでいる。樹脂分としては、例えば、ポリサルホン、ポリエーテルサルホン、ポリフェニルサルホン、ポリフタルアミド、ポリアミドイミド、ポリケトン、ポリアセタール、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリアクリレート、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、テトラフルオロエチレン、エポキシ、シアネートエステル、ビスマレイミドなどが挙げられる。無機フィラーとしては、シリカ粉末、アルミナ粉末、水酸化マグネシウム粉末、窒化アルミニウム粉末、水酸化アルミニウム粉末などが挙げられる。本実施形態では、無機フィラーの重量平均粒径は、10μm以下であり、樹脂組成物11bにおける無機フィラーの含有率は5〜50wt%とする。当該含有率が5wt%未満であると、無機フィラーによるコア層10の厚み方向の低熱膨張率化の効果を充分に享受できない場合があり、50wt%を超えると、後述するように、コア層10の穴明けの際のドリル加工性が低下する傾向にある。また、無機フィラーの熱膨張率については、1〜20ppm/℃(25℃)であるのが好ましい。
【0029】
本実施形態においては、これらの構成によって、加工前のコア層10ないしCFRP部11における面内方向の熱膨張率は0〜17ppm/(25℃)とされている。本発明の多層配線基板Xを、LGAパッケージにおけるチップ実装基板、および、マザーボードなどに適用する場合には、当該コア層10の熱膨張率は0〜6ppm/(25℃)に設定するのが好ましい。また、多層配線基板Xを、BGAパッケージにおけるチップ実装基板などに適用する場合には、当該コア層10の熱膨張率は3〜17ppm/(25℃)に設定するのが好ましい。
【0030】
絶縁樹脂部12は、CFRP部11のカーボンファイバ材11aとスルーホールビア30との間の電気的絶縁を確保するためのものである。絶縁樹脂部12を構成するための材料としては、樹脂組成物11bの樹脂分に関して上掲した樹脂を採用することができる。
【0031】
ビルドアップ部20は、いわゆるビルドアップ法により配線が多層化された部位であり、絶縁層21および配線パターン22による積層構造を有する。絶縁層21は、例えば、樹脂組成物11bの樹脂分に関して上掲した樹脂により構成することができる。配線パターン22は、例えば銅により構成されており、各々、単一の絶縁層21上において、所望のパターン形状を有している。隣接する層に形成されている配線パターン22は、ビア23により相互に電気的に接続している。最上位の配線パターン22には、外部接続用の電極パッド22aが形成されている。ビルドアップ部20の最上表面には、電極パッド22aに対応して開口しているオーバーコート層24が設けられている。
【0032】
スルーホールビア30は、コア層10の両側に設けられている2つのビルドアップ部20に形成されている配線構造を、相互に電気的に接続するためのものである。スルーホールビア30は、コア層10を貫通するスルーホール31内に、例えば銅めっきにより形成されている。
【0033】
図2〜図5は、多層配線基板Xの製造方法を表す。多層配線基板Xの製造においては、まず、図2(a)に示すようなCFRP板11’を用意する。CFRP板11’は、5枚のカーボンファイバ材11aと、これを包容して硬化している樹脂組成物11bよりなる。樹脂組成物11bは、上述のように無機フィラーを含んで構成されている。CFRP板11’の作製においては、例えば、まず、1枚のカーボンファイバ材11aに対して液状の樹脂組成物11bを含浸させる。次に、未硬化状態を維持しつつ樹脂組成物11bを乾燥させることによって、カーボンファイバ強化プリプレグを作製する。次に、このようにして作製したプリプレグを5枚積層し、加熱下で積層方向に加圧することによって、5枚のプリプレグを一体化させる。このようにして、CFRP板11’を作製することができる。
【0034】
次に、図2(b)に示すように、CFRP板11’における所定の箇所に貫通孔11cを形成する。貫通孔11cは、上述のスルーホールビア30の横断面の直径よりも大きな開口径で形成される。具体的には、貫通孔11cの開口径は、スルーホールビア30の直径よりも0.2〜1.0mmの範囲で大きい。貫通孔11cを形成する手法としては、ドリルによる切削加工、パンチング金型による打ち抜き加工、或は、レーザによるアブレーション加工を採用することができる。
【0035】
次に、このようにして加工されたCFRP板11’の両面に対して樹脂材料を貼り合わせて熱硬化させることによって、図2(c)に示すように、CFRP板11’の両面にビルドアップ部20の最下絶縁層である絶縁層21を形成するとともに、当該樹脂材料により貫通孔11cを填塞する。樹脂材料としては、樹脂組成物11bの樹脂分に関して上述したのと同様のものを採用することができる。
【0036】
次に、図3(a)に示すように、CFRP板11’および絶縁層21による積層構造を貫通するスルーホール31を形成する。スルーホール31は、その軸心が貫通孔11cのそれと一致するように形成される。スルーホール31の形成手法としては、UV−YAGレーザ、炭酸ガスレーザ、エキシマレーザ、または、プラズマを利用するドライエッチング法などを採用することができる。本工程を経ることにより、貫通孔11cの壁面に絶縁樹脂部12が形成されることとなる。
【0037】
次に、図3(b)に示すように、セミアディティブ法により、絶縁層21の上にビルドアップ部20の最下配線層である配線パターン22を形成するとともに、スルーホール31の壁面にスルーホールビア30を形成する。具体的には、まず、必要に応じてデスミア処理を行って絶縁層21およびスルーホール31の表面を粗化した後、無電解めっき法により、絶縁層21およびスルーホール31の表面に無電解銅めっき膜を形成する。次に、無電解銅めっき膜上にフォトレジストを成膜した後、これを露光および現像することによって、レジストパターンを形成する。当該レジストパターンは、形成を目的とする配線パターン22に対応する非マスク領域を有する。スルーホール31は、当該非マスク領域にて開口している。次に、電気めっき法により、当該非マスク領域に対して、無電解銅めっき膜をシード層として利用して電気銅めっきを堆積させる。このとき、スルーホール31にはスルーホールビア30が形成される。次に、レジストパターンをエッチング除去した後、それまでレジストパターンで被覆されていた無電解銅めっき膜をエッチング除去する。このようにして、配線パターン22およびスルーホールビア30を形成することができる。
【0038】
次に、図3(c)に示すように、上述のようにして形成された配線パターン22を覆うように所定の樹脂材料を成膜することによって、更なる絶縁層21を積層形成する。このとき、例えば、スルーホールビア30が形成されたスルーホール31内を減圧することによって、当該樹脂材料をスルーホール31内に引込み、当該樹脂材料によりスルーホール31を填塞する。
【0039】
次に、図4(a)に示すように、絶縁層21に対してビアホール23aを形成する。ビアホール23aは、UV−YAGレーザ、炭酸ガスレーザ、エキシマレーザ、または、プラズマを利用するドライエッチング法などにより形成することができる。或は、ビアホール23aは、絶縁層21が感光性樹脂により形成されている場合にはフォトリソグラフィにより形成することができる。
【0040】
次に、図4(b)に示すように、セミアディティブ法により、絶縁層21の上に更なる配線パターン22を形成するとともに、ビアホール23aにてビア23を形成する。具体的には、まず、必要に応じてデスミア処理を行って絶縁層21およびビアホール23aの表面を粗化した後、無電解めっき法により、絶縁層21およびビアホール23aの表面に無電解銅めっき膜を形成する。次に、無電解銅めっき膜上にフォトレジストを成膜した後、これを露光および現像することによって、レジストパターンを形成する。当該レジストパターンは、形成を目的とする配線パターン22に対応する非マスク領域を有する。ビアホール23aは、当該非マスク領域にて開口している。次に、電気めっき法により、当該非マスク領域に対して、無電解銅めっき膜をシード層として利用して電気銅めっきを堆積させる。次に、レジストパターンをエッチング除去した後、それまでレジストパターンで被覆されていた無電解銅めっき膜をエッチング除去する。このようにして、配線パターン22およびビア23を形成することができる。
【0041】
多層配線基板Xの製造においては、このようなビルドアップ法による、絶縁層21の形成、並びに、配線パターン22およびビア23の形成を、コア層10の両面にて所定の回数繰り返すことにより、図5(a)に示すようなビルドアップ多層配線構造を形成する。本実施形態では、配線パターン22の積層数は5であり、最上位の配線パターン22には、外部接続用の電極パッド22aが形成されている。電極パッド22aの表面には、ハンダ、Pd、Ag、Ag−Sn合金、または、Ni下地を介してのAuなどの金属層(図示略)が、めっき法および印刷法などにより形成されている。
【0042】
次に、図5(b)に示すように、ビルドアップ多層配線構造の表面にオーバーコート層24を形成する。オーバーコート層24は、電極パッド22aに対応して開口している。オーバーコート層24の形成においては、まず、印刷技術により、オーバーコート層用の樹脂材料を、ビルドアップ多層配線構造を被覆するように成膜する。当該樹脂材料としては、エポキシ系、ポリイミド系、アクリル系、BT系などの絶縁性および耐熱性に優れた樹脂を採用するのが好ましい。次に、フォトリソグラフィにより、所定の開口部を形成する。このようにして、ビルドアップ多層配線構造を有して表面がオーバーコート層24により被覆されたビルドアップ部20が形成される。
【0043】
このような一連の工程を経ることによって、コア層10と、当該コア層10の両面に積層形成されたビルドアップ部20と、コア層10を貫通するスルーホールビア30とを備える多層配線基板Xを製造することができる。
【0044】
多層配線基板Xのコア層10は、その内部で面内方向に展延しているカーボンファイバ材11aを基材として含有するため、コア層10における面内方向の熱膨張率は小さい。一方、多層配線基板Xの全体における面内方向の熱膨張率は、コア層10のそれに強く依存する。したがって、多層配線基板Xの全体における面内方向の熱膨張率については、カーボンファイバ材11aの含有率などを適宜変更することによって、小さな値を容易に設定することができる。例えば、0〜17ppm/℃(25℃)に設定することができる。また、半導体チップにおける面内方向の熱膨張率に近似する値にも設定することもできる。
【0045】
多層配線基板Xのコア層10において、カーボンファイバ材11aを包容しているのは、無機フィラーを含有する樹脂組成物11bである。樹脂組成物11bは無機フィラーを含有しているので、樹脂組成物11bの熱膨張率は等方的に低減されている。そのため、コア層10の面内方向においては、樹脂組成物11bおよびカーボンファイバ材11aの面内方向の熱膨張率差は比較的小さい。したがって、環境温度の変化により或は環境温度の変化を経ることにより生ずる、当該熱膨張率差に起因してコア層10の厚み方向に樹脂組成物11bが膨張しようとする作用は、すなわち、樹脂組成物11bにおいてコア層10の厚み方向に生ずる熱応力は、小さい。加えて、当該熱膨張率差に起因してコア層10の厚み方向に樹脂組成物11bが熱膨張しようとする作用の少なくとも一部は、樹脂組成物11b中の無機フィラーにより抑制ないし阻止される。このように、樹脂組成物11bおよびカーボンファイバ材11aの熱膨張率差に起因して厚み方向に樹脂組成物11bが熱膨張しようとする作用が低減されるとともに、この膨張作用の少なくとも一部が無機フィラーにより抑制されるため、コア層10の厚み方向の熱膨張率は良好に低減されるのである。その結果、コア層10の厚み方向に延びるスルーホールビア30に作用する応力は低減され、その断線は抑制される。
【0046】
このように、多層配線基板Xにおいては、面内方向の熱膨張率が充分に低減されるとともに、コア層10の厚み方向に延びるスルーホールビア30の断線が適切に抑制されている。すなわち、多層配線基板Xは、適切に低熱膨張率化が図られている。このような低熱膨張率の多層配線基板Xは、半導体チップとの間で熱膨張率の差が小さいので、半導体チップを搭載した状態において、熱膨張率差に起因する両者間の接続信頼性の低下を抑制することができる。
【0047】
加えて、多層配線基板Xは、いわゆるビルドアップ法により形成されるビルドアップ部20において微細かつ高密度な配線構造を有しており、ビルドアップ部20の最上位の配線パターン22においては、外部接続用の電極パッド22aを微細なピッチで設けることが可能である。したがって、多層配線基板Xに対しては、外部接続用の電極が微細なピッチで形成された半導体チップを実装ないし搭載することが可能である。
【0048】
【実施例】
次に、本発明の実施例について比較例とともに説明する。
【0049】
【実施例1】
<多層配線基板の作製>
本実施例では、CFRP板として、カーボンファイバクロスとポリイミド樹脂組成物とを複合化したものを用いた。本実施例のCFRP板の作製においては、まず、カーボンファイバクロス(商品名:TORAYCA、東レ製)に熱硬化型のポリイミド樹脂組成物を含浸させた後にこれを乾燥し、厚さ0.2mmのプリプレグを作製した。このカーボンファイバクロスは、断面直径10μm以下のカーボンファイバを平均本数200以上で束ねたカーボンファイバ糸を平織りしたものである。硬化前のポリイミド樹脂組成物は、ポリイミド樹脂へと高分子化するためのモノマなどや硬化剤とともに、無機フィラーとしてアルミナ粉末(重量平均粒径7μm以下)およびシリカ粉末(平均重量平均3μm以下)を含む。CFRP材を構成するポリイミド樹脂組成物におけるアルミナ粉末およびシリカ粉末の含有率は、各々、10wt%である。また、本実施例で使用したアルミナ粉末の熱膨張率は7ppm/℃(25℃)であり、シリカ粉末の熱膨張率は3ppm/℃(25℃)である。
【0050】
CFRP板の作製においては、次に、このようにして用意したプリプレグを5枚積層し、真空プレスにより、200℃で1時間、積層方向に加圧した。このようにして、厚さ1.0mmの未加工のCFRP板を作製した。このCFRP板における温度範囲25〜200℃での平均熱膨張率については、面内方向にて2ppm/℃であり、厚み方向にて80ppm/℃であった。
【0051】
次に、このCFRP板の所定の箇所に対して、ドリルにより、開口径0.5mmの所定数の貫通孔を形成した。次に、CFRP板に対して脱脂処理およびその後の洗浄処理を行った後、CFRP板の両面に対して熱可塑性ポリイミドシート(商品名:エスパネックス、新日鉄化学製)をラミネートすることによって、CFRP板表面を覆う絶縁層を形成した。具体的には、真空プレスにより、200℃および30分の条件で、厚さ0.05mmとなるように熱可塑性ポリイミドシートをラミネートした。このとき、当該ポリイミド樹脂の一部により貫通孔を填塞した。
【0052】
次に、ポリイミド樹脂により填塞された貫通孔の略中央を通るように、UV−YAGレーザにより、開口径0.2mmのスルーホールを形成した。次に、セミアディティブ法により、絶縁層上に銅配線パターンを形成するとともに、スルーホール壁面にスルーホールビアを形成した。具体的には、まず、必要に応じてデスミア処理を行った後、無電解めっき法により、絶縁層およびスルーホールの表面に無電解銅めっき膜を形成した。次に、無電解銅めっき膜上にフォトレジストを成膜した後、これを露光および現像することによって、レジストパターンを形成した。当該レジストパターンは、形成を目的とする配線パターンに対応する非マスク領域を有する。次に、電気めっき法により、当該非マスク領域に対して、無電解銅めっき膜をシード層として利用して電気銅めっきを堆積させた。次に、レジストパターンをエッチング除去した後、それまでレジストパターンで被覆されていた無電解銅めっき膜をエッチング除去した。エッチング液としては、過酸化水素水および硫酸の混合液を使用した。このようなセミアディティブ法により、ビルドアップ部における最下層の配線パターンと、コア層を貫通して当該最下層配線パターン間を電気的に接続するスルーホールビアとを形成した。
【0053】
次に、最下層配線パターンの上方から更にビルドアップ絶縁層を積層形成した。具体的には、真空プレスにより、200℃および30分の条件で、厚さ0.05mmとなるように、熱可塑性ポリイミドシート(商品名:エスパネックス、新日鉄化学製)を基板両面にラミネートした。次に、このようにして積層形成された絶縁層の所定箇所に対して、UV−YAGレーザにより所定数のビアホールを形成した。次に、セミアディティブ法により、絶縁層上に銅配線パターンを形成した。このとき、ビアホール表面にも銅を堆積させることにより、銅配線パターンとともにビアも形成した。具体的には、最下層配線パターンおよびスルーホールビアの形成におけるセミアディティブ法に関して上述したのと同様である。この後、ビルドアップ絶縁層の積層形成から配線パターンおよびビアの形成までの一連の工程を、コア層の両面にて更に3回繰り返すことにより、コア層の両面において5層配線構造のビルドアップ部を形成した。
【0054】
次に、スクリーン印刷およびフォトリソグラフィにより、ビルドアップ部の表面にオーバーコート層を形成した。オーバーコート層の所定箇所には、ビルドアップ部における最上位の配線パターンの一部が電極パッドとして臨むように開口部を設けた。このようにして、本実施例の多層配線基板を製造した。
【0055】
<温度サイクル試験>
本実施例の多層配線基板に対して、外部接続用の複数のバンプ電極を有する所定の半導体チップを搭載し、温度サイクル試験により、半導体チップ−多層配線基板間の接続信頼性を調べた。具体的には、まず、半導体チップと多層配線基板の間の各電気的接続部について初期導通抵抗を測定した。次に、−65℃〜125℃の範囲で温度サイクル試験を行った後、各電気的接続部の導通抵抗を再び測定した。温度サイクル試験は、−65℃での30分間冷却、および、125℃での30分間加熱を1サイクルとし、このサイクルを1000回繰り返した。その結果、各電気的接続部における抵抗変化率は10%未満であり、良好な接続部が維持されていることが確認された。また、半導体チップのバンプ電極と多層配線基板の電極パッドとの間には、クラックや剥がれは生じなかった。
【0056】
また、本実施例の多層配線基板単体について、上述と同様の温度サイクル試験により、所定の電極間の抵抗変化率を調べた。この試験によると、スルーホールビアの導通信頼性を間接的に評価することが可能である。その結果、各電極間における抵抗変化率は5%未満であり、良好な配線構造が維持されていることが確認された。また、本試験を経た多層配線基板のスルーホールビアを観察したところ、スルーホールビアにおいて断線は確認されなかった。
【0057】
【実施例2】
<多層配線基板の作製>
本実施例では、CFRP板として、カーボンファイバクロスとエポキシ樹脂組成物とを複合化したものを用いた。本実施例のCFRP板の作製においては、まず、カーボンファイバクロス(商品名:TORAYCA、東レ製)に熱硬化型のエポキシ樹脂組成物を含浸させた後にこれを乾燥し、厚さ0.2mmのプリプレグを作製した。カーボンファイバクロスについては、実施例1と同様のものを使用した。硬化前のエポキシ樹脂組成物は、エポキシ樹脂へと高分子化するためのモノマなどや硬化剤とともに、無機フィラーとして窒化アルミニウム粉末(重量平均粒径8μm以下)およびシリカ粉末(平均重量平均3μm以下)を含む。CFRP材を構成するエポキシ樹脂組成物における窒化アルミニウム粉末の含有率は5wt%であり、シリカ粉末の含有率は25wt%である。また、本実施例で使用した窒化アルミニウム粉末の熱膨張率は5ppm/℃(25℃)であり、シリカ粉末の熱膨張率は3ppm/℃(25℃)である。
【0058】
CFRP板の作製においては、次に、このようにして用意したプリプレグを5枚積層し、真空プレスにより、200℃で1時間、積層方向に加圧した。このようにして、厚さ1.0mmの未加工のCFRP板を作製した。このCFRP板における温度範囲25〜150℃での平均熱膨張率については、面内方向にて3ppm/℃であり、厚み方向にて70ppm/℃であった。
【0059】
次に、このCFRP板の所定の箇所に対して、ドリルにより、開口径0.5mmの所定数の貫通孔を形成した。次に、CFRP板の両面に対してエポキシシート(商品名:SH−9、味の素製)をラミネートすることによって、CFRP板表面を覆う絶縁層を形成した。具体的には、真空プレスにより、170℃および30分の条件で、厚さ0.05mmとなるようにエポキシシートをラミネートした。このとき、当該エポキシ樹脂の一部により貫通孔を填塞した。
【0060】
次に、エポキシ樹脂により填塞された貫通孔の略中央を通るように、UV−YAGレーザにより、開口径0.2mmのスルーホールを形成した。次に、セミアディティブ法により、絶縁層上に銅配線パターンを形成するとともに、スルーホール壁面にスルーホールビアを形成した。具体的には、実施例1において銅配線パターンとともにスルーホールビアを形成する工程に関して上述したのと同様である。
【0061】
次に、最下層配線パターンの上方から更にビルドアップ絶縁層を積層形成した。具体的には、真空プレスにより、170℃および30分の条件で、厚さ0.05mmとなるように、エポキシシート(商品名:SH−9、味の素製)を基板両面にラミネートした。次に、このようにして積層形成された絶縁層の所定箇所に対して、UV−YAGレーザにより所定数のビアホールを形成した。次に、セミアディティブ法により、絶縁層上に銅配線パターンを形成した。このとき、ビアホール表面にも銅を堆積させることにより、銅配線パターンとともにビアも形成した。具体的には、実施例1において、最下層配線パターンおよびスルーホールビアの形成におけるセミアディティブ法に関して上述したのと同様である。この後、ビルドアップ絶縁層の積層形成から配線パターンおよびビアの形成までの一連の工程を、コア層の両面にて更に3回繰り返すことにより、コア層の両面において5層配線構造のビルドアップ部を形成した。
【0062】
次に、スクリーン印刷およびフォトリソグラフィにより、ビルドアップ部の表面にオーバーコート層を形成した。オーバーコート層の所定箇所には、ビルドアップ部における最上位の配線パターンの一部が電極パッドとして臨むように開口部を設けた。このようにして、本実施例の多層配線基板を製造した。
【0063】
<温度サイクル試験>
本実施例の多層配線基板に対して、外部接続用の複数のバンプ電極を有する所定の半導体チップを搭載し、温度サイクル試験により、実施例1と同様にして半導体チップ−多層配線基板間の接続信頼性を調べた。その結果、各電気的接続部における抵抗変化率は10%未満であり、良好な接続部が形成されていることが確認された。また、半導体チップのバンプ電極と多層配線基板の電極パッドとの間には、クラックや剥がれは生じなかった。
【0064】
また、本実施例の多層配線基板単体について、実施例1と同様にして、所定の電極間の抵抗変化率を調べた。その結果、各電極間における抵抗変化率は5%未満であり、良好な配線構造が維持されていることが確認された。また、本試験を経た多層配線基板のスルーホールビアを観察したところ、スルーホールビアにおいて断線は確認されなかった。
【0065】
【比較例1】
実施例1のCFRP板に代えて、同サイズの有機コア基板を用意し、当該有機コア基板に対して実施例1と同様にしてビルドアップ部を形成することによって、本比較例の多層配線基板を作製した。有機コア基板としては、基材としてガラスクロスを含むBTレジン基板を使用した。本比較例の有機コア多層配線基板に対して、外部接続用の複数のバンプ電極を有する所定の半導体チップを搭載し、温度サイクル試験により、実施例1と同様にして半導体チップ−多層配線基板間の接続信頼性を調べた。その結果、1000サイクルにて、半導体チップのバンプ電極と多層配線基板の電極パッドとの界面にクラックが観察される接合部が存在した。
【0066】
【比較例2】
無機フィラーを含む樹脂組成物に代えて、無機フィラーを含まずに同一の樹脂分を含むエポキシ樹脂組成物を用いた以外は、実施例2と同様にして、本比較例のCFRP板を作製した。このCFRP板における温度範囲25〜150℃での平均熱膨張率については、面内方向にて2ppm/℃であり、厚み方向にて150ppm/℃であった。また、実施例2のCFRP板に代えて、本比較例のCFRP板を用いた以外は、実施例2と同様にして、多層配線基板を作製した。本比較例の多層配線基板単体について、実施例1と同様にして、所定の電極間の抵抗変化率を調べたところ、本試験を経た多層配線基板の一部のスルーホールビアの中央付近において断線が確認された。
【0067】
【評価】
半導体チップ搭載状態の温度サイクル試験によると、カーボンファイバクロスを含有することにより面内方向の熱膨張率が良好に小さくされているコア層を備える実施例1および実施例2の多層配線基板は、比較例1に係る従来の有機コア多層配線基板よりも、半導体チップとの間における接続信頼性が高いことが判る。実施例1および実施例2の多層配線基板において高い接続信頼性が得られたのは、コア層内部にカーボンファイバ材が存在することに起因して、これら多層配線基板における面内方向の熱膨張率が充分に小さいためである。
【0068】
また、多層配線基板単体の温度サイクル試験によると、無機フィラーを含有する樹脂組成物によりカーボンファイバ材を包容してなるコア層を備える実施例1および実施例2の多層配線基板は、無機フィラーを含有しない樹脂組成物によりカーボンファイバ材を包容してなるコア層を備える比較例2の多層配線基板よりも、スルーホールビアの導通信頼性に優れていることが判る。実施例1および実施例2の多層配線基板のスルーホールにおいて優れた導通信頼性が得られたのは、カーボンファイバ材を包容する樹脂組成物が無機フィラーを含有することに起因して、これら多層配線基板のコア層における厚み方向の熱膨張率が充分に小さいためである。
【0069】
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
【0070】
(付記1)カーボンファイバ材、および、無機フィラーを含有する樹脂組成物からなるコア層と、
前記コア層上に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む積層配線部と、
前記コア層内を厚み方向に延び、且つ、前記積層配線部における配線パターンと電気的に接続している導電部と、を備えることを特徴とする、配線基板。
(付記2)前記導電部は、前記コア層を厚み方向に貫通している、付記1に記載の配線基板。
(付記3)カーボンファイバ材、および、無機フィラーを含有する樹脂組成物からなるコア層と、
前記コア層の表面側に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む第1の積層配線部と、
前記コア層の裏面側に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む第2の積層配線部と、
前記コア層を貫通し、且つ、前記第1の積層配線部における配線パターンおよび前記第2の積層配線部における配線パターンを電気的に接続している導電部と、を備えることを特徴とする、配線基板。
(付記4)前記導電部は、前記コア層の内部において絶縁膜で被覆されている、付記1から3のいずれか1つに記載の配線基板。
(付記5)前記積層配線部は、複数の絶縁層および複数の配線パターンが交互に積層してなる積層構造と、絶縁層に埋め込まれて前記複数の配線パターンから選択された隣接する配線パターン間を電気的に接続するビアと、を有するビルドアップ多層配線構造を含む、付記1から4のいずれか1つに記載の配線基板。
(付記6)前記コア層の厚み方向の熱膨張率は、20〜120ppm/℃(25℃)である、付記1から5のいずれか1つに記載の配線基板。
(付記7)前記コア層の面内方向の熱膨張率は、0〜17ppm/℃(25℃)である、付記1から6のいずれか1つに記載の配線基板。
(付記8)前記カーボンファイバ材は、メッシュ、クロス、または、不織布の形態を有する、付記1から7のいずれか1つに記載の配線基板。
(付記9)前記コア層における前記カーボンファイバ材の含有率は、30〜80vol%である、付記1から8のいずれか1つに記載の配線基板。
(付記10)前記無機フィラーの熱膨張率は、1〜20ppm/℃(25℃)である、付記1から9のいずれか1つに記載の配線基板。
(付記11)前記無機フィラーは、シリカ、アルミナ、水酸化マグネシウム、窒化アルミニウム、および、水酸化アルミニウムよりなる群から選択される材料よりなる、付記1から9のいずれか1つに記載の配線基板。
(付記12)前記樹脂組成物における前記無機フィラーの含有率は、5〜50wt%である、付記1から11のいずれか1つに記載の配線基板。
(付記13)前記無機フィラーは、平均粒径10μm以下の無機粉末よりなる、付記1から12のいずれか1つに記載の配線基板。
(付記14)前記樹脂組成物は、ポリサルホン、ポリエーテルサルホン、ポリフェニルサルホン、ポリフタルアミド、ポリアミドイミド、ポリケトン、ポリアセタール、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリアクリレート、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、テトラフルオロエチレン、エポキシ、シアネートエステル、および、ビスマレイミドよりなる群から選択される樹脂材料を含んで構成されている、付記1から13のいずれか1つに記載の配線基板。
【0071】
【発明の効果】
本発明によると、配線基板において、そのコア層ないしコア基板の内部を厚み方向に延びるスルーホールビアなどの導電部の断線を抑制しつつ、低熱膨張率化を適切に達成することができる。このような配線基板は、本来的に低熱膨張率の半導体チップを搭載するうえで好適であり、半導体チップ実装基板、マザーボード、プローブカード用基板などに適用することができる。
【図面の簡単な説明】
【図1】本発明に係る多層配線基板の部分断面図である。
【図2】図1に示す多層配線基板の製造工程の一部を表す。
【図3】図2に続く工程を表す。
【図4】図3に続く工程を表す。
【図5】図4に続く工程を表す。
【符号の説明】
X    多層配線基板
10   コア基板
11   CFRP部
11’  CFRP板
11a  カーボンファイバ材
11b  樹脂組成物
12   絶縁樹脂部
20   ビルドアップ部
21   絶縁層
22   配線パターン
23   ビア
30   スルーホールビア
31   スルーホール

Claims (10)

  1. カーボンファイバ材、および、無機フィラーを含有する樹脂組成物からなるコア層と、
    前記コア層上に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む積層配線部と、
    前記コア層内を厚み方向に延び、且つ、前記積層配線部における配線パターンと電気的に接続している導電部と、を備えることを特徴とする、配線基板。
  2. 前記導電部は、前記コア層を厚み方向に貫通している、請求項1に記載の配線基板。
  3. カーボンファイバ材、および、無機フィラーを含有する樹脂組成物からなるコア層と、
    前記コア層の表面側に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む第1の積層配線部と、
    前記コア層の裏面側に形成された絶縁層および当該絶縁層上に設けられた配線パターンを含む第2の積層配線部と、
    前記コア層を貫通し、且つ、前記第1の積層配線部における配線パターンおよび前記第2の積層配線部における配線パターンを電気的に接続している導電部と、を備えることを特徴とする、配線基板。
  4. 前記導電部は、前記コア層の内部において絶縁膜で被覆されている、請求項1から3のいずれか1つに記載の配線基板。
  5. 前記積層配線部は、複数の絶縁層および複数の配線パターンが交互に積層してなる積層構造と、絶縁層に埋め込まれて前記複数の配線パターンから選択された隣接する配線パターン間を電気的に接続するビアとを有する、ビルドアップ多層配線構造を含む、請求項1から4のいずれか1つに記載の配線基板。
  6. 前記コア層の厚み方向の熱膨張率は、20〜120ppm/℃(25℃)である、請求項1から5のいずれか1つに記載の配線基板。
  7. 前記コア層の面内方向の熱膨張率は、0〜17ppm/℃(25℃)である、請求項1から6のいずれか1つに記載の配線基板。
  8. 前記コア層における前記カーボンファイバ材の含有率は、30〜80vol%である、請求項1から7のいずれか1つに記載の配線基板。
  9. 前記無機フィラーの熱膨張率は、1〜20ppm/℃(25℃)である、請求項1から8のいずれか1つに記載の配線基板。
  10. 前記樹脂組成物における前記無機フィラーの含有率は、5〜50wt%である、請求項1から9のいずれか1つに記載の配線基板。
JP2002281011A 2002-09-26 2002-09-26 配線基板 Expired - Fee Related JP3822549B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002281011A JP3822549B2 (ja) 2002-09-26 2002-09-26 配線基板
US10/644,004 US6869665B2 (en) 2002-09-26 2003-08-20 Wiring board with core layer containing inorganic filler
TW092123276A TWI246369B (en) 2002-09-26 2003-08-25 Wiring board with core layer containing inorganic filler
KR1020030062975A KR100932457B1 (ko) 2002-09-26 2003-09-09 배선 기판
CNB031585264A CN1258958C (zh) 2002-09-26 2003-09-18 具有含无机填料的芯层的布线板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281011A JP3822549B2 (ja) 2002-09-26 2002-09-26 配線基板

Publications (2)

Publication Number Publication Date
JP2004119691A true JP2004119691A (ja) 2004-04-15
JP3822549B2 JP3822549B2 (ja) 2006-09-20

Family

ID=32275577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281011A Expired - Fee Related JP3822549B2 (ja) 2002-09-26 2002-09-26 配線基板

Country Status (5)

Country Link
US (1) US6869665B2 (ja)
JP (1) JP3822549B2 (ja)
KR (1) KR100932457B1 (ja)
CN (1) CN1258958C (ja)
TW (1) TWI246369B (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012885A (ja) * 2004-06-22 2006-01-12 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2006222216A (ja) * 2005-02-09 2006-08-24 Fujitsu Ltd 配線基板及びその製造方法
JP2006237619A (ja) * 2005-02-25 2006-09-07 Samsung Electro Mech Co Ltd 印刷回路基板、フリップチップボールグリッドアレイ基板およびその製造方法
JP2006303387A (ja) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp プリント配線板
JP2007103605A (ja) * 2005-10-03 2007-04-19 Fujitsu Ltd 多層配線基板及びその製造方法
US7521799B2 (en) 2005-04-19 2009-04-21 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
JP2009182366A (ja) * 2009-05-22 2009-08-13 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2009212146A (ja) * 2008-02-29 2009-09-17 Fujitsu Ltd 基板およびその製造方法
JP2009290125A (ja) * 2008-05-30 2009-12-10 Fujitsu Ltd コア基板およびプリント配線板
JP2010050261A (ja) * 2008-08-21 2010-03-04 Fujitsu Ltd 配線基板の製造方法、配線基板
WO2011105440A1 (ja) * 2010-02-26 2011-09-01 三菱電機株式会社 プリント配線板の製造方法およびプリント配線板
US8119923B2 (en) 2007-09-28 2012-02-21 Fujitsu Limited Circuit board
US8153908B2 (en) 2007-10-12 2012-04-10 Fujitsu Limited Circuit board and method of producing the same
US8151456B2 (en) 2007-10-12 2012-04-10 Fujitsu Limited Method of producing substrate
US8186052B2 (en) 2007-10-12 2012-05-29 Fujitsu Limited Method of producing substrate
US8186053B2 (en) 2008-11-14 2012-05-29 Fujitsu Limited Circuit board and method of manufacturing the same
JP2012147032A (ja) * 2012-05-07 2012-08-02 Fujitsu Ltd 基板の製造方法
JP5810083B2 (ja) * 2010-07-14 2015-11-11 日本碍子株式会社 セラミックフィルタ
WO2020231545A1 (en) * 2019-05-10 2020-11-19 Applied Materials, Inc. Package structure and fabrication methods

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515610A (ja) * 2000-12-12 2004-05-27 シュリ ディクシャ コーポレイション 伝導性制約コアを含む軽量回路板
JP4119205B2 (ja) * 2002-08-27 2008-07-16 富士通株式会社 多層配線基板
US7173325B2 (en) * 2003-08-29 2007-02-06 C-Core Technologies, Inc. Expansion constrained die stack
JP4000160B2 (ja) * 2003-09-19 2007-10-31 富士通株式会社 プリント基板およびその製造方法
CN100413070C (zh) * 2004-01-30 2008-08-20 松下电器产业株式会社 部件内置模块、配备部件内置模块的电子设备以及部件内置模块的制造方法
TW200603694A (en) * 2004-05-15 2006-01-16 Kalu K Vasoya Printed wiring board with conductive constraining core including resin filled slots
WO2006024009A2 (en) * 2004-08-24 2006-03-02 C-Core Technologies, Inc. Edge plated printed wiring boards
US7301105B2 (en) * 2004-08-27 2007-11-27 Stablcor, Inc. Printed wiring boards possessing regions with different coefficients of thermal expansion
US20060231198A1 (en) * 2005-03-15 2006-10-19 Vasoya Kalu K Manufacturing process: how to construct constraining core material into printed wiring board
US7730613B2 (en) * 2005-08-29 2010-06-08 Stablcor, Inc. Processes for manufacturing printed wiring boards
USRE45637E1 (en) * 2005-08-29 2015-07-28 Stablcor Technology, Inc. Processes for manufacturing printed wiring boards
JP2007149870A (ja) * 2005-11-25 2007-06-14 Denso Corp 回路基板及び回路基板の製造方法。
KR100751995B1 (ko) * 2006-06-30 2007-08-28 삼성전기주식회사 인쇄회로기판 및 그 제조방법
CN101507058B (zh) * 2006-07-14 2013-05-01 斯塔布科尔技术公司 具有构成电路一部分的核心层的增层印刷线路板衬底
KR100847003B1 (ko) * 2006-11-21 2008-07-17 대덕전자 주식회사 인쇄 회로 기판을 위한 탄소 섬유 보강재
KR20080111316A (ko) 2007-06-18 2008-12-23 삼성전기주식회사 메탈코어를 갖는 방열 기판 및 그 제조방법
JP5114130B2 (ja) * 2007-08-24 2013-01-09 新光電気工業株式会社 配線基板及びその製造方法、及び半導体装置
KR100929839B1 (ko) * 2007-09-28 2009-12-04 삼성전기주식회사 기판제조방법
JP4904242B2 (ja) * 2007-10-12 2012-03-28 新光電気工業株式会社 配線基板及びその製造方法
JP4706690B2 (ja) * 2007-11-05 2011-06-22 パナソニック電工株式会社 回路基板及びその製造方法
JP2009146988A (ja) * 2007-12-12 2009-07-02 Fujitsu Ltd 配線基板の個片化方法およびパッケージ用基板
JP5080234B2 (ja) * 2007-12-19 2012-11-21 新光電気工業株式会社 配線基板およびその製造方法
JP2009167522A (ja) * 2007-12-21 2009-07-30 Shinko Electric Ind Co Ltd 銅膜の形成方法
JP2009290124A (ja) * 2008-05-30 2009-12-10 Fujitsu Ltd プリント配線板
JP2009290135A (ja) * 2008-05-30 2009-12-10 Fujitsu Ltd プリント配線板の製造方法および導電性接合剤
JP5217640B2 (ja) * 2008-05-30 2013-06-19 富士通株式会社 プリント配線板の製造方法およびプリント基板ユニットの製造方法
JP5344394B2 (ja) * 2008-07-10 2013-11-20 山栄化学株式会社 硬化性樹脂組成物、並びにハロゲンフリー樹脂基板及びハロゲンフリービルドアッププリント配線板
JP2010034197A (ja) * 2008-07-28 2010-02-12 Fujitsu Ltd ビルドアップ基板
JP2010056482A (ja) * 2008-08-29 2010-03-11 Fujitsu Ltd プリント配線板および導電材料
TWI402173B (zh) * 2008-11-17 2013-07-21 Fujitsu Ltd 電路板及其製造方法(一)
KR101148628B1 (ko) * 2008-11-20 2012-05-25 후지쯔 가부시끼가이샤 배선 기판 및 배선 기판의 제조 방법
US20100326716A1 (en) * 2009-06-26 2010-12-30 Zhichao Zhang Core via for chip package and interconnect
US20110024165A1 (en) 2009-07-31 2011-02-03 Raytheon Company Systems and methods for composite structures with embedded interconnects
US9420707B2 (en) * 2009-12-17 2016-08-16 Intel Corporation Substrate for integrated circuit devices including multi-layer glass core and methods of making the same
US8207453B2 (en) * 2009-12-17 2012-06-26 Intel Corporation Glass core substrate for integrated circuit devices and methods of making the same
JP2011253911A (ja) * 2010-06-01 2011-12-15 Shinko Electric Ind Co Ltd 配線基板
US8609995B2 (en) * 2010-07-22 2013-12-17 Ngk Spark Plug Co., Ltd. Multilayer wiring board and manufacturing method thereof
US8826640B2 (en) 2010-11-12 2014-09-09 Raytheon Company Flight vehicles including electrically-interconnective support structures and methods for the manufacture thereof
JP5839798B2 (ja) * 2010-12-17 2016-01-06 株式会社オプトニクス精密 プローブカード
TWI596997B (zh) * 2011-09-26 2017-08-21 京瓷股份有限公司 配線基板及其安裝構造體,以及其等之製造方法
JP5874309B2 (ja) * 2011-10-21 2016-03-02 富士通株式会社 配線基板及びその製造方法
JP2013157366A (ja) * 2012-01-27 2013-08-15 Kyocer Slc Technologies Corp 配線基板およびそれを用いた実装構造体
US9445496B2 (en) 2012-03-07 2016-09-13 Intel Corporation Glass clad microelectronic substrate
US9001520B2 (en) 2012-09-24 2015-04-07 Intel Corporation Microelectronic structures having laminated or embedded glass routing structures for high density packaging
JP2014072324A (ja) * 2012-09-28 2014-04-21 Ibiden Co Ltd プリント配線板及びその製造方法
JP2014168007A (ja) * 2013-02-28 2014-09-11 Kyocer Slc Technologies Corp 配線基板およびその製造方法
JP2015023251A (ja) * 2013-07-23 2015-02-02 ソニー株式会社 多層配線基板およびその製造方法、並びに半導体製品
US9153550B2 (en) * 2013-11-14 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design with balanced metal and solder resist density
US9332632B2 (en) 2014-08-20 2016-05-03 Stablcor Technology, Inc. Graphene-based thermal management cores and systems and methods for constructing printed wiring boards
CN106661198B (zh) * 2014-08-29 2019-08-06 松下知识产权经营株式会社 树脂组合物、预浸料、带树脂的金属箔、覆金属层叠板、印刷布线板
KR102253473B1 (ko) * 2014-09-30 2021-05-18 삼성전기주식회사 회로기판
KR102343731B1 (ko) * 2014-12-09 2021-12-27 엘지디스플레이 주식회사 고유전율 절연막, 이를 포함하는 표시장치용 기판 및 표시 장치
JP2016219478A (ja) * 2015-05-15 2016-12-22 イビデン株式会社 配線基板及びその製造方法
KR20170002179A (ko) * 2015-06-29 2017-01-06 삼성전기주식회사 인쇄회로기판 및 인쇄회로기판의 제조방법
KR102412612B1 (ko) * 2015-08-28 2022-06-23 삼성전자주식회사 패키지 기판 및 프리프레그
CN105307386B (zh) * 2015-09-15 2018-07-06 三星半导体(中国)研究开发有限公司 印刷电路板以及包括其的半导体封装件
DE102015115722A1 (de) * 2015-09-17 2017-03-23 Osram Opto Semiconductors Gmbh Träger für ein Bauelement, Bauelement und Verfahren zur Herstellung eines Trägers oder eines Bauelements
JP2018056264A (ja) * 2016-09-28 2018-04-05 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US11018024B2 (en) * 2018-08-02 2021-05-25 Nxp Usa, Inc. Method of fabricating embedded traces

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221925A (en) * 1978-09-18 1980-09-09 Western Electric Company, Incorporated Printed circuit board
US4538622A (en) * 1983-11-10 1985-09-03 Advanced Cardiovascular Systems, Inc. Guide wire for catheters
US4689110A (en) 1983-12-22 1987-08-25 Trw Inc. Method of fabricating multilayer printed circuit board structure
US4812792A (en) 1983-12-22 1989-03-14 Trw Inc. High-frequency multilayer printed circuit board
US4591659A (en) 1983-12-22 1986-05-27 Trw Inc. Multilayer printed circuit board structure
US4642160A (en) * 1985-08-12 1987-02-10 Interconnect Technology Inc. Multilayer circuit board manufacturing
US4748986A (en) * 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
US5061273A (en) * 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5516336A (en) * 1990-02-07 1996-05-14 Advanced Cardiovascular Systems, Inc. Readily exchangeable perfusion dilatation catheter
US5107852A (en) * 1990-04-02 1992-04-28 W. L. Gore & Associates, Inc. Catheter guidewire device having a covering of fluoropolymer tape
US5135503A (en) * 1990-05-16 1992-08-04 Advanced Cardiovascular Systems, Inc. Shaping ribbon for guiding members
US5345945A (en) * 1990-08-29 1994-09-13 Baxter International Inc. Dual coil guidewire with radiopaque distal tip
JP2739726B2 (ja) * 1990-09-27 1998-04-15 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 多層プリント回路板
US5341818A (en) * 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US5606979A (en) * 1993-05-28 1997-03-04 The Microspring Company Inc. Guide wire
US5677045A (en) * 1993-09-14 1997-10-14 Hitachi, Ltd. Laminate and multilayer printed circuit board
US5404887A (en) * 1993-11-04 1995-04-11 Scimed Life Systems, Inc. Guide wire having an unsmooth exterior surface
JP3290295B2 (ja) * 1994-05-13 2002-06-10 太陽インキ製造株式会社 硬化性樹脂組成物並びに該組成物を用いた多層プリント配線板及びその製造方法
US5498250A (en) * 1994-05-18 1996-03-12 Scimed Life Systems, Inc. Catheter guide wire with multiple radiopacity
US5670250A (en) * 1995-02-24 1997-09-23 Polyclad Laminates, Inc. Circuit board prepreg with reduced dielectric constant
JP3487083B2 (ja) * 1996-02-09 2004-01-13 日立化成工業株式会社 熱硬化性樹脂組成物及びその硬化物
US6440088B1 (en) * 1996-05-24 2002-08-27 Precision Vascular Systems, Inc. Hybrid catheter guide wire apparatus and method
JP3197213B2 (ja) * 1996-05-29 2001-08-13 松下電器産業株式会社 プリント配線板およびその製造方法
JPH10107391A (ja) 1996-09-30 1998-04-24 O K Print:Kk 配線基板および配線基板用基材
JPH10212364A (ja) * 1996-11-26 1998-08-11 Ajinomoto Co Inc 積層板用プリプレグ及びこれを用いたプリント配線板の製造方法
JPH1119217A (ja) * 1997-07-04 1999-01-26 Olympus Optical Co Ltd 医療用ガイドワイヤー
JPH1140902A (ja) 1997-07-18 1999-02-12 Cmk Corp プリント配線板及びその製造方法
JP3192619B2 (ja) 1997-10-07 2001-07-30 日本特殊陶業株式会社 配線基板及びその製造方法
US6106485A (en) * 1997-11-18 2000-08-22 Advanced Cardivascular Systems, Inc. Guidewire with shaped intermediate portion
JP3635205B2 (ja) 1998-10-29 2005-04-06 新光電気工業株式会社 配線基板
US6165140A (en) * 1998-12-28 2000-12-26 Micrus Corporation Composite guidewire
US6671951B2 (en) * 1999-02-10 2004-01-06 Matsushita Electric Industrial Co., Ltd. Printed wiring board, and method and apparatus for manufacturing the same
US6224965B1 (en) * 1999-06-25 2001-05-01 Honeywell International Inc. Microfiber dielectrics which facilitate laser via drilling
US6428942B1 (en) * 1999-10-28 2002-08-06 Fujitsu Limited Multilayer circuit structure build up method
US6419745B1 (en) * 1999-11-16 2002-07-16 Advanced Cardiovascular Systems, Inc. Method and apparatus for polymer application to intracorporeal device
JP2001237512A (ja) * 1999-12-14 2001-08-31 Nitto Denko Corp 両面回路基板およびこれを用いた多層配線基板ならびに両面回路基板の製造方法
JP2001332828A (ja) 2000-05-25 2001-11-30 Nitto Denko Corp 両面回路基板およびそれを用いた多層配線基板
US6524301B1 (en) * 2000-12-21 2003-02-25 Advanced Cardiovascular Systems, Inc. Guidewire with an intermediate variable stiffness section
US6554942B2 (en) * 2000-12-28 2003-04-29 Scimed Life Systems, Inc. Method of manufacturing a guidewire with an extrusion jacket

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012885A (ja) * 2004-06-22 2006-01-12 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2006222216A (ja) * 2005-02-09 2006-08-24 Fujitsu Ltd 配線基板及びその製造方法
JP2006237619A (ja) * 2005-02-25 2006-09-07 Samsung Electro Mech Co Ltd 印刷回路基板、フリップチップボールグリッドアレイ基板およびその製造方法
US10283444B2 (en) 2005-04-19 2019-05-07 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US7791204B2 (en) 2005-04-19 2010-09-07 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US7521799B2 (en) 2005-04-19 2009-04-21 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US10714415B2 (en) 2005-04-19 2020-07-14 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8928147B2 (en) 2005-04-19 2015-01-06 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8822269B2 (en) 2005-04-19 2014-09-02 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9496153B2 (en) 2005-04-19 2016-11-15 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9831166B2 (en) 2005-04-19 2017-11-28 Renesas Electronics Corporation Semiconductor device
US8581410B2 (en) 2005-04-19 2013-11-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9299681B2 (en) 2005-04-19 2016-03-29 Renesas Electronics Corporation Semiconductor device and method of manufacturing
US8018066B2 (en) 2005-04-19 2011-09-13 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8575757B2 (en) 2005-04-19 2013-11-05 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8314495B2 (en) 2005-04-19 2012-11-20 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9576890B2 (en) 2005-04-19 2017-02-21 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2006303387A (ja) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp プリント配線板
JP4591181B2 (ja) * 2005-04-25 2010-12-01 三菱電機株式会社 プリント配線板
JP2007103605A (ja) * 2005-10-03 2007-04-19 Fujitsu Ltd 多層配線基板及びその製造方法
US8119923B2 (en) 2007-09-28 2012-02-21 Fujitsu Limited Circuit board
US8186052B2 (en) 2007-10-12 2012-05-29 Fujitsu Limited Method of producing substrate
US8151456B2 (en) 2007-10-12 2012-04-10 Fujitsu Limited Method of producing substrate
US8153908B2 (en) 2007-10-12 2012-04-10 Fujitsu Limited Circuit board and method of producing the same
JP2009212146A (ja) * 2008-02-29 2009-09-17 Fujitsu Ltd 基板およびその製造方法
JP2009290125A (ja) * 2008-05-30 2009-12-10 Fujitsu Ltd コア基板およびプリント配線板
JP2010050261A (ja) * 2008-08-21 2010-03-04 Fujitsu Ltd 配線基板の製造方法、配線基板
US8186053B2 (en) 2008-11-14 2012-05-29 Fujitsu Limited Circuit board and method of manufacturing the same
JP2009182366A (ja) * 2009-05-22 2009-08-13 Casio Comput Co Ltd 半導体装置およびその製造方法
JP5378590B2 (ja) * 2010-02-26 2013-12-25 三菱電機株式会社 プリント配線板の製造方法およびプリント配線板
US9532444B2 (en) 2010-02-26 2016-12-27 Mitsubishi Electric Corporation Method of manufacturing printed wiring board, and printed wiring board
WO2011105440A1 (ja) * 2010-02-26 2011-09-01 三菱電機株式会社 プリント配線板の製造方法およびプリント配線板
JP5810083B2 (ja) * 2010-07-14 2015-11-11 日本碍子株式会社 セラミックフィルタ
US9802143B2 (en) 2010-07-14 2017-10-31 Ngk Insulators, Ltd. Ceramic filter
JP2012147032A (ja) * 2012-05-07 2012-08-02 Fujitsu Ltd 基板の製造方法
WO2020231545A1 (en) * 2019-05-10 2020-11-19 Applied Materials, Inc. Package structure and fabrication methods

Also Published As

Publication number Publication date
CN1494366A (zh) 2004-05-05
US6869665B2 (en) 2005-03-22
US20040151882A1 (en) 2004-08-05
CN1258958C (zh) 2006-06-07
TW200406139A (en) 2004-04-16
TWI246369B (en) 2005-12-21
KR100932457B1 (ko) 2009-12-17
JP3822549B2 (ja) 2006-09-20
KR20040027326A (ko) 2004-04-01

Similar Documents

Publication Publication Date Title
JP3822549B2 (ja) 配線基板
JP4119205B2 (ja) 多層配線基板
JP4199198B2 (ja) 多層配線基板およびその製造方法
TWI407850B (zh) 具有一作為部份電路之核心層的積層式印刷佈線板基材
US7038142B2 (en) Circuit board and method for fabricating the same, and electronic device
US7078816B2 (en) Circuitized substrate
US8704100B2 (en) Heat dissipating substrate and method of manufacturing the same
EP1583108A1 (en) Dielectric composition for forming dielectric layer for use in circuitized substrates
US8163642B1 (en) Package substrate with dual material build-up layers
JP2002246722A (ja) プリント配線板
JP2003273482A (ja) 回路基板及びその製造方法及び電子装置
JP4521223B2 (ja) プリント配線板
JP2007115809A (ja) 配線基板
JP5445007B2 (ja) 回路基板及びその製造方法
KR100703023B1 (ko) 다층 배선 기판, 그 제조 방법, 및 파이버 강화 수지기판의 제조 방법
JP5206217B2 (ja) 多層配線基板及びそれを用いた電子装置
JP2003218287A (ja) 半導体素子搭載用基板及び半導体装置
JP2004179171A (ja) 配線基板
JP4191055B2 (ja) 多層配線基板の製造方法、及び半導体装置の製造方法
KR20100028209A (ko) 인쇄회로기판
JP2004055825A (ja) 実装構造体
TW201414373A (zh) 具有一作爲部份電路之核心層的積層式印刷佈線板基材

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3822549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees