ES2757808T3 - Modificación y regulación del genoma basada en CRISPR - Google Patents

Modificación y regulación del genoma basada en CRISPR Download PDF

Info

Publication number
ES2757808T3
ES2757808T3 ES18156734T ES18156734T ES2757808T3 ES 2757808 T3 ES2757808 T3 ES 2757808T3 ES 18156734 T ES18156734 T ES 18156734T ES 18156734 T ES18156734 T ES 18156734T ES 2757808 T3 ES2757808 T3 ES 2757808T3
Authority
ES
Spain
Prior art keywords
rna
sequence
protein
guided endonuclease
genetically engineered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES18156734T
Other languages
English (en)
Inventor
Fuqiang Chen
Gregory D Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Aldrich Co LLC
Original Assignee
Sigma Aldrich Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50883989&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2757808(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sigma Aldrich Co LLC filed Critical Sigma Aldrich Co LLC
Application granted granted Critical
Publication of ES2757808T3 publication Critical patent/ES2757808T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/10Ophthalmic agents for accommodation disorders, e.g. myopia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/463Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from amphibians
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/21Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
    • C12Y301/21004Type II site-specific deoxyribonuclease (3.1.21.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • C07K2319/81Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

Un complejo de endonucleasa guiado por ARN diseñado por ingeniería genética que comprende: un ARN guía que comprende (i) una primera región complementaria a un sitio diana en una secuencia cromosómica eucariota que puede emparejarse formando pares de bases con el sitio diana, que comprende de aproximadamente 10 nucleótidos a más de aproximadamente 25 nucleótidos, (ii) una segunda región que forma una estructura de tallo y bucle, y (iii) una tercera región que es fundamentalmente monocatenaria, en el que (i), (ii) y (iii) están dispuestos en la dirección 5' a 3', y el ARN guía comprende dos moléculas separadas, en el que se forma un complejo proteína-ARN entre el ARN guía y una proteína CRISPR/Cas9 de tipo II, que comprende además una señal de localización nuclear, y el ARN guía interactúa con la proteína CRISPR/Cas9 de tipo II para guiar a la proteína al sitio diana específico.

Description

DESCRIPCIÓN
Modificación y regulación del genoma basada en CRISPR
Campo de la invención
La presente divulgación se refiere a la modificación del genoma dirigida. En concreto, la divulgación se refiere a endonucleasas guiadas por ARN que comprenden una proteína de tipo CRISPR/Cas y a procedimientos para usar dichas proteínas para modificar o regular secuencias cromosómicas diana.
Antecedentes de la invención
La modificación dirigida del genoma es una herramienta poderosa para la manipulación genética de células eucariotas, embriones y animales. Por ejemplo, pueden integrarse secuencias exógenas en ubicaciones genómicas diana y/o pueden eliminarse, inactivarse o modificarse secuencias cromosómicas endógenas específicas. Los procedimientos actuales se basan en el uso de enzimas nucleasas diseñadas por ingeniería genética, tales como, por ejemplo, nucleasas dedo de zinc (ZFN) o nucleasas efectoras tipo activador de la transcripción (TALEN). Estas nucleasas quiméricas contienen módulos de unión a ADN programables específicos de secuencia unidos a un dominio de escisión de ADN inespecífico. Cada nueva diana genómica, sin embargo, requiere el diseño de un nuevo ZFN o TALEN que comprenda un nuevo módulo de unión a ADN específico de secuencia. Por lo tanto, estas nucleasas diseñadas a medida tienden a ser costosas y su preparación lleva mucho tiempo. Además, las características propias de los ZFN y de los TALEN son tales que pueden mediar escisiones fuera de la diana.
Por lo tanto, existe la necesidad de una tecnología de modificación del genoma dirigida que no requiera el diseño de una nueva nucleasa para cada nueva ubicación genómica diana. Adicionalmente, existe la necesidad de una tecnología con mayor especificidad con pocos o ningún efecto fuera de la diana.
Sumario de la invención
Entre los diversos aspectos de la presente divulgación está la provisión de un complejo de endonucleasa guiado por ARN diseñado por ingeniería genética que comprende:
un ARN guía que comprende
(i) una primera región complementaria a un sitio diana en una secuencia cromosómica eucariota que puede emparejarse formando pares de bases con el sitio diana, que comprende de aproximadamente 10 nucleótidos a más de aproximadamente 25 nucleótidos,
(ii) una segunda región que forma una estructura de tallo y bucle, y
(iii) una tercera región que es fundamentalmente monocatenaria,
en el que (i), (ii) y (iii) están dispuestos en la dirección 5' a 3', y el ARN guía comprende dos moléculas separadas, en las que se forma un complejo proteína-ARN entre el ARN guía y una proteína CRISPR/Cas9 de tipo II, que comprende además una señal de localización nuclear, y
el ARN guía interactúa con la proteína CRISPR/Cas9 de tipo II para guiar a la proteína al sitio diana específico. También se proporciona un ácido nucleico aislado que codifica cualquier componente de los complejos de endonucleasa guiados por ARN diseñados por ingeniería genética desvelados en el presente documento. En algunas realizaciones, el ácido nucleico puede tener codones optimizados para la traducción en células de mamífero, tales como, por ejemplo, células humanas. En otras realizaciones, la secuencia del ácido nucleico que codifica la endonucleasa guiada por ARN diseñada por ingeniería genética que forma un complejo puede unirse de forma operativa a una secuencia promotora control y, opcionalmente, puede ser parte de un vector. En otras realizaciones, un vector que comprende una secuencia que codifica la endonucleasa guiada por ARN, que puede estar unida de forma operativa a una secuencia promotora control, también puede comprender una secuencia que codifica un ARN guía, que puede estar unida de forma operativa a una secuencia promotora control.
Otro aspecto de la presente invención engloba el uso de dicho complejo de endonucleasa guiado por ARN diseñado por ingeniería genética y, opcionalmente, al menos un polinucleótido donador que comprende una secuencia donadora para modificar una secuencia cromosómica, en el que
el uso no comprende un procedimiento para modificar la identidad genética de la línea germinal de un ser humano y, en el que
dicho procedimiento no comprende un procedimiento para el tratamiento del cuerpo humano o animal mediante cirugía o terapia.
A continuación se detallan otros aspectos e interacciones de la divulgación.
Breve descripción de los dibujos
Figura 1 diagramas de modificación del genoma utilizando dos endonucleasas guiadas por ARN. (A) representa una ruptura bicatenaria creada por dos endonucleasas guiadas por ARN que se han convertido en nickasas. (B) representa dos roturas bicatenarias creadas por dos endonucleasas guiadas por ARN que tienen actividad endonucleasa.
La Figura 2 muestra la clasificación de células activadas por fluorescencia (FACS) de células K562 humanas transfectadas con el ácido nucleico de Cas9, con el ARN guía de Cas9 y con el ADN donador AAVS1-GFP. El eje Y representa la intensidad de autofluorescencia en un canal rojo y el eje X representa la intensidad de fluorescencia verde. (A ) células K562 transfectadas con 10 |jg del ARNm de Cas9 transcrito con un análogo de caperuza anti­ inverso, 0,3 nmol del dúplex ARNcr-ARNtracr pre-anillado y 10 jg de ADN plasmídico de AAVS1-GFP; (B) células K562 transfectadas con 10 jg de ARNm de Cas9 transcrito con un análogo de caperuza anti-inverso, 0,3 nmol de ARN quimérico y 10 jg de ADN plasmídico de AAVS1-GFP; (C) células K562 transfectadas con 10 jg de ARNm de Cas9 que se encapuchó por medio de una reacción de encapuchado postranscripcional, 0,3 nmol de ARN quimérico y 10 jg de ADN plasmídico de AAVS1-GFP; (D) células K562 transfectadas con 10 jg de ADN plasmídico de Cas9, 5 jg de ADN plasmídico de ARN quimérico de U6 y 10 jg de ADN plasmídico de AAVS1-GFP; (E) células K562 transfectadas con 10 jg de ADN plasmídico de AAVS1-GFP; (F) células K562 transfectadas solo con reactivos de transfección.
La Figura 3 muestra un análisis de unión mediante PCR que documenta la integración dirigida del GFP en el locus AAVS1 en células humanas. Carril M: marcadores moleculares de ADN de 1 kb; Carril A: Células K562 transfectadas con 10 jg de ARNm de Cas9 transcrito con un análogo de caperuza anti-inverso, 0,3 nmol del dúplex ARNcr-ARNtracr pre-anillado y 10 jg de ADN plasmídico de AAVS1-GFP; Carril B: células K562 transfectadas con 10 jg de ARNm de Cas9 transcrito con un análogo de caperuza anti-inverso, 0,3 nmol de ARN quimérico y 10 jg de ADN plasmídico de AAVS1-GFP; Carril C: células K562 transfectadas con 10 jg de ARNm de Cas9 que se encapuchó por medio de una reacción de encapuchado postranscripcional, 0,3 nmol de ARN quimérico y 10 jg de ADN plasmídico de AAVS1-GFP; Carril D: células K562 transfectadas con 10 jg de ADN plasmídico de Cas9, 5 jg de a Dn plasmídico de ARN quimérico de U6 y 10 jg de ADN plasmídico de AAVS1-GFP; Carril E: células K562 transfectadas con 10 jg de a Dn plasmídico de AAVS1-GFP; Carril F: células K562 transfectadas solo con reactivos de transfección.
Descripción detallada de la invención
En el presente documento se desvelan endonucleasas guiadas por ARN, que comprenden al menos una señal de localización nuclear, al menos un dominio nucleasa y al menos un dominio que interactúa con un ARN guía para dirigir a la endonucleasa a una secuencia de nucleótidos específica para la escisión. También se proporcionan ácidos nucleicos que codifican las endonucleasas guiadas por ARN, así como procedimientos para usar las endonucleasas guiadas por ARN para modificar secuencias cromosómicas de células eucariotas o embriones. La endonucleasa guiada por ARN interactúa con ARN guía específicos, cada uno de los cuales dirige la endonucleasa a un sitio diana específico, sitio en el que la endonucleasa guiada por ARN introduce una ruptura bicatenaria que puede repararse mediante un proceso de reparación de ADN de modo que la secuencia cromosómica se modifica. Dado que la especificidad se proporciona por el ARN guía, la endonucleasa basada en ARN es universal y puede usarse con diferentes ARN guía para dirigirse a diferentes secuencias genómicas. Los procedimientos desvelados en el presente documento pueden usarse para dirigir y modificar secuencias cromosómicas específicas y/o introducir secuencias exógenas en ubicaciones diana en el genoma de células o embriones. Se excluyen los procedimientos que comprenden un procedimiento para modificar la identidad genética de la línea germinal de un ser humano. Además, el direccionamiento es específico con efectos limitados fuera de la diana.
(I) Endonucleasas guiadas por ARN
Un aspecto de la presente divulgación proporciona endonucleasas guiadas por ARN que comprenden al menos una señal de localización nuclear, que permite la entrada de la endonucleasa en los núcleos de células eucariotas y en embriones tales como, por ejemplo, embriones no humanos unicelulares. Las endonucleasas guiadas por ARN también comprenden al menos un dominio nucleasa y al menos un dominio que interactúa con un ARN guía. Un ARN guía dirige a una endonucleasa guiada por ARN a una secuencia específica de un ácido nucleico (o sitio diana). El ARN guía interactúa con la endonucleasa guiada por ARN, así como con el sitio diana de manera que, una vez dirigida al sitio diana, la endonucleasa guiada por ARN puede introducir una ruptura bicatenaria en la secuencia de ácido nucleico del sitio diana. Dado que el ARN guía proporciona la especificidad para la escisión dirigida, la endonucleasa de la endonucleasa guiada por ARN es universal y puede usarse con diferentes ARN guía para escindir diferentes secuencias de ácido nucleico diana. En el presente documento se desvelan endonucleasas guiadas por ARN aisladas, ácidos nucleicos aislados (es decir, ARN o ADN) que codifican las endonucleasas guiadas por ARN, vectores que comprenden ácidos nucleicos que codifican las endonucleasas guiadas por ARN y complejos de proteína-ARN que comprenden la endonucleasa guiada por ARN más un ARN guía.
La endonucleasa guiada por ARN puede derivar de un sistema asociado a repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR)/CRISPR (Cas). El sistema CRISPR/Cas puede ser un sistema de tipo I, de tipo II o de tipo III. Los ejemplos no limitantes de proteínas CRISPR/Cas adecuadas incluyen Cas3, Cas4, Cas5, Cas5e (o CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8a1, Cas8a2, Cas8b, Cas8c, Cas9, Cas10, Cas10d, CasF, CasG, CasH, Csy1, Csy2, Csy3, Cse1 (o CasA), Cse2 (o CasB), Cse3 (o CasE), Cse4 (o CasC), Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csz1, Csx15, Csf1, Csf2, Csf3, Csf4 y Cu1966.
La endonucleasa guiada por ARN utilizada en la presente invención deriva de un sistema CRISPR/Cas de tipo II. Más específicamente, la endonucleasa guiada por ARN deriva de una proteína Cas9. La proteína Cas9 puede ser de Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus sp., Nocardiopsis dassonvillei, Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptosporangium roseum, Alicydobacillus acidocaldarius, Bacillus pseudomycoides, Bacillus selenitireducens, Exiguobacterium sibiricum, Lactobacillus delbrueckii, Lactobacillus salivarius, Microscilla marina, Burkholderiales bacterium, Polaromonas naphthalenivorans, Polaromonas sp., Crocosphaera watsonii, Cyanothece sp., Microcystis aeruginosa, Synechococcus sp., Acetohalobium arabaticum, Ammonifex degensii, Caldicelulosiruptor becscii, Candidatus desulforudis, Clostridium botulinum, Clostridium difficile, Finegoldia magna, Natranaerobius thermophilus, Pelotomaculum thermopropionicum, Acidithiobacillus caldus, Acidithiobacillus ferrooxidans, Allochromatium vinosum, Marinobacter sp., Nitrosococcus halophilus, Nitrosococcus watsoni, Pseudoalteromonas haloplanktis, Ktedonobacter racemifer, Methanohalobium evestigatum, Anabaena variabilis, Nodularia spumigena, Nostoc sp., Arthrospira maxima, Arthrospira platensis, Arthrospira sp., Lyngbya sp., Microcoleus chthonoplastes, Oscillatoria sp., Petrotoga mobilis, Thermosipho africanus, o Acaryochloris marina.
En general, las proteínas CRISPR/Cas comprenden al menos un dominio de reconocimiento de ARN y/o un dominio de unión a ARN. Los dominios de reconocimiento de ARN y/o unión a ARN interactúan con los ARN guía. Las proteínas CRISPR/Cas también pueden comprender dominios nucleasa (es decir, dominios DNasa o RNasa), dominios de unión a ADN, dominios helicasa, dominios RNasa, dominios de interacción proteína-proteína, dominios de dimerización, así como otros dominios.
La proteína tipo CRISPR/Cas puede ser una proteína CRISPR/Cas de tipo salvaje, una proteína CRISPR/Cas modificada o un fragmento de una proteína CRISPR/Cas de tipo salvaje o modificada. La proteína tipo CRISPR/Cas se puede modificar para aumentar la afinidad de unión y/o la especificidad ante un ácido nucleico, alterar una actividad enzimática y/o cambiar otra propiedad de la proteína. Por ejemplo, pueden modificarse, eliminarse o inactivarse dominios nucleasa (es decir, DNasa, RNasa) de la proteína tipo CRISPR/Cas.
En algunas realizaciones, la proteína tipo CRISPR/Cas puede derivar de una proteína Cas9 de tipo salvaje o de un fragmento de la misma. En otras realizaciones, la proteína tipo CRISPR/Cas puede derivar de una proteína Cas9 modificada. Por ejemplo, la secuencia de aminoácidos de la proteína Cas9 se puede modificar para alterar una o más propiedades de la proteína (por ejemplo, la actividad nucleasa, la afinidad, la estabilidad, etc.). Como alternativa, los dominios de la proteína Cas9 que no participan en la escisión guiada por ARN pueden eliminarse de la proteína de modo que la proteína Cas9 modificada es más pequeña que la proteína Cas9 de tipo salvaje.
En general, una proteína Cas9 comprende al menos dos dominios nucleasa (es decir, DNasa). Por ejemplo, una proteína Cas9 puede comprender un dominio nucleasa tipo RuvC y un dominio nucleasa tipo HNH. Los dominios RuvC y HNH trabajan juntos para cortar cadenas sencillas para crear una ruptura bicatenaria en el ADN. (Jinek y col., Science, 337: 816-821). En algunas realizaciones, la proteína derivada de Cas9 puede modificarse para contener solo un dominio nucleasa funcional (ya sea un dominio nucleasa tipo RuvC o tipo HNH). Por ejemplo, la proteína derivada de Cas9 puede modificarse de modo que uno de los dominios nucleasa se elimine o mute de manera que ya no sea funcional (es decir, la actividad nucleasa esté ausente). En algunas realizaciones en las que uno de los dominios de nucleasa está inactivo, la proteína derivada de Cas9 es capaz de introducir un corte en un ácido nucleico bicatenario (dicha proteína se denomina "nickasa"), pero no escinde el ADN bicatenario. Por ejemplo, una conversión de aspartato en alanina (D10A) en un dominio tipo RuvC convierte a la proteína derivada de Cas9 en una nickasa. Asimismo, una conversión de histidina en alanina (H840A o H839A) en un dominio HNH convierte la proteína derivada de Cas9 en una nickasa. Cada dominio nucleasa puede modificarse usando procedimientos muy conocidos, tales como la mutagénesis dirigida al sitio, mutagénesis mediada por PCR y síntesis génica total, así como otros procedimientos conocidos en la técnica.
La endonucleasa guiada por ARN desvelada en el presente documento comprende al menos una señal de localización nuclear. En general, una NLS comprende un tramo de aminoácidos básicos. En la técnica se conocen señales de localización nuclear(véase, por ejemplo, Lange y col., J. Biol. Chem., 2007, 282:5101-5105). Por ejemplo, en una realización, la NLS puede ser una secuencia monopartita, tal como PKKKRKV (SEQ ID NO: 1) o PKKKr Rv (SEQ ID NO: 2). En otra realización, la NLS puede ser una secuencia bipartita. En otra realización más, la NLS puede ser KRPAATKKAGQAKKKK (SEQ ID NO: 3). La NLS puede ubicarse en el extremo N, en el C terminal, o en una ubicación interna de la endonucleasa guiada por ARN.
La endonucleasa guiada por ARN puede comprender además al menos un dominio de penetración celular. El dominio de penetración celular puede ser una secuencia peptídica de penetración celular derivada de la proteína TAT del VIH-1. A modo de ejemplo, la secuencia de penetración celular TAT puede ser GRKKRRQRRRPPQPKKKRKV (SEQ ID NO: 4). Como alternativa, el dominio de penetración celular puede ser TLM (PLSSIFSRIGDPPKKKRKV; SEQ ID NO: 5), una secuencia peptídica de penetración celular derivada del virus de la hepatitis B humana. En otra alternativa, el dominio de penetración celular puede ser MPG (GALFLGWLGAAGs Tm GAPKKKRKV; SEQ ID NO: 6 o GALFLGFLg Aa GSTMGAWSQPKKKRKV; SEQ ID NO: 7). En una alternativa adicional, el dominio de penetración celular puede ser Pep-1 (KETWWETWWTEWSQPKKKRKV; SEQ ID NO: 8), VP22, un péptido de penetración celular del virus Herpes simplex, o una secuencia peptídica de poliarginina. El dominio de penetración celular puede localizarse en el extremo N, en el C terminal o en una ubicación interna de la proteína.
La endonucleasa guiada por ARN también puede comprender al menos un dominio marcador. Los ejemplos no limitantes de dominios marcadores incluyen proteínas fluorescentes, etiquetas de purificación y etiquetas de epítopo. En un ejemplo, el dominio marcador puede ser una proteína fluorescente. Los ejemplos no limitantes de proteínas fluorescentes adecuadas incluyen proteínas fluorescentes verdes (por ejemplo, GFP, GFP-2, tagGFP, turboGFP, EGFP, Esmeralda, Verde Azami, Verde Azami monomérico, CopGFP, AceGFP, ZsGreen1), proteínas fluorescentes amarillas (por ejemplo, YFP, EYFP, Citrino, Venus, YPet, PhiYFP, ZsYellow1,), proteínas fluorescentes azules (por ejemplo, EBFP, EBFP2, Azurita, mKalama1, GFPuv, Sapphire, T-sapphire,), proteínas fluorescentes cian (por ejemplo ECFP, Cerúleo, CyPet, AmCyan1, Cian de Midoriishi), proteínas fluorescentes rojas (mKate, mKate2, mPlum, DsRed monomérica, mCherry, mRFP1, DsRed-Express, DsRed2, DsRed-Monomérica, HcRed-Tandem, HcRed1, AsRed2, eqFP611, mRasberry, mStrawberry, Jred) y proteínas fluorescentes naranjas (mOrange, mKO, Kusabira naranja, Kusabira naranja monomérico, mTangerine, tdTomato) o cualquier otra proteína fluorescente adecuada. En otros ejemplos, el dominio marcador puede ser una etiqueta de purificación y/o una etiqueta de epítopo. Las etiquetas ejemplares incluyen, pero sin limitarse a, glutatión-S-transferasa (GST), proteína de unión a quitina (CBP), proteína de unión a maltosa, tiorredoxina (TRX), poli(NANP), etiqueta de purificación de afinidad en tándem (TAP), myc, AcV5, AU1, AU5, E, ECS, E2, FLAG, HA, nus, Softag 1, Softag 3, Strep, SBP, Glu-Glu, HSV, KT3, S, S1, T7, V5, VSV-G, 6xHis, proteína portadora de biotina carboxilo (BCCP) y calmodulina.
Como se ha desvelado anteriormente, la endonucleasa guiada por ARN es parte de un complejo proteína-ARN que comprende un ARN guía. El ARN guía interactúa con la endonucleasa guiada por ARN para dirigir la endonucleasa a un sitio diana específico, en el que el extremo 5' del ARN guía se empareja formando pares de bases con una secuencia específica protoespaciadora.
(II) Ácidos nucleicos que codifican endonucleasas guiadas por ARN
Otro aspecto de la presente divulgación proporciona ácidos nucleicos que codifican cualquiera de las endonucleasas guiadas por ARN descritas anteriormente en la sección (I). El ácido nucleico puede ser ARN o ADN. En un ejemplo, el ácido nucleico que codifica la endonucleasa guiada por ARN es ARNm. El ARNm puede estar encapuchado en 5' y/o poliadenilado en 3'. En otro ejemplo, el ácido nucleico que codifica la endonucleasa guiada por a Rn es ADN. El ADN puede estar presente en un vector (véase abajo).
El ácido nucleico que codifica la endonucleasa guiada por ARN puede tener codones optimizados para la traducción eficiente en proteína en la célula eucariota o animal de interés. Por ejemplo, los codones se pueden optimizar para la expresión en humanos, ratones, ratas, hámsteres, vacas, cerdos, gatos, perros, peces, anfibios, plantas, levaduras, insectos y similares (véase Codon Usage Database en www.kazusa.or.jp/codon/). Están disponibles programas para la optimización de codones como software gratuito (por ejemplo, OPTIMIZER en genomes.urv.es/OPTIMIZER; OptimumGene™ de GenScript en www.genscript.com/codon_opt.html). También están disponibles programas comerciales de optimización de codones.
El ADN que codifica la endonucleasa guiada por ARN puede unirse de forma operativa a al menos una secuencia promotora control. En algunas iteraciones, la secuencia codificante de ADN puede estar unida de forma operativa a una secuencia promotora control para la expresión en la célula eucariota o en el animal de interés. La secuencia promotora control puede ser constitutiva, regulada o específica de tejido. Las secuencias promotoras control constitutivas adecuadas incluyen, pero sin limitarse a, promotor temprano inmediato de citomegalovirus (CMV), promotor del virus del simio (SV40), promotor tardío principal de adenovirus, promotor del virus del sarcoma de Rous (RSV), promotor del virus del tumor mamario de ratón (MMTV), promotor de la fosfoglicerato quinasa (PGK), promotor alfa del factor de elongación (ED1), promotores de ubiquitina, promotores de actina, promotores de tubulina, promotores de inmunoglobulina, fragmentos de los mismos, o combinaciones de cualquiera de los anteriores. Los ejemplos de secuencias promotoras control reguladas y adecuadas incluyen, sin limitarse a, las reguladas por choque térmico, metales, esteroides, antibióticos o alcohol. Los ejemplos no limitantes de promotores específicos de tejido incluyen el promotor de B29, promotor de CD14, promotor de CD43, promotor de CD45, promotor de CD68, promotor de desmina, promotor de elastasa-1, promotor de endoglina, promotor de la fibronectina, promotor de Flt-1, promotor de GFAP, promotor de GPIIb, promotor de ICAM-2, promotor de INF-p, promotor de Mb, promotor de Nphsl, promotor de OG-2, promotor de SP-B, promotor de SYN1 y promotor de WASP. La secuencia promotora puede ser de tipo salvaje o puede modificarse para una expresión más eficiente o eficaz. En un ejemplo, el ADN codificante puede unirse de forma operativa a un promotor de c Mv para la expresión constitutiva en células de mamífero.
La secuencia que codifica la endonucleasa guiada por ARN puede unirse de forma operativa a una secuencia promotora que es reconocida por una ARN polimerasa de fago para la síntesis in vitro de ARNm. En tales ejemplos, el ARN transcrito in vitro puede purificarse para su uso en los procedimientos detallados a continuación en la sección (III) . Por ejemplo, la secuencia promotora puede ser una secuencia promotora T7, T3 o SP6 o una variación de una secuencia promotora T7, T3 o SP6. En una realización ejemplar, el ADN que codifica la proteína está unido de forma operativa a un promotor T7 para la síntesis de ARNm in vitro utilizando la ARN polimerasa T7.
En una alternativa, la secuencia que codifica la endonucleasa guiada por ARN puede unirse de forma operativa a una secuencia promotora para la expresión in vitro de la endonucleasa guiada por a Rn en células bacterianas o eucariotas. En dichas realizaciones, la proteína expresada se puede purificar para su uso en los procedimientos detallados a continuación en la sección (III). Los promotores bacterianos adecuados incluyen, sin limitarse a, promotores T7, promotores del operón lac, promotores de trp, variaciones de los mismos y combinaciones de los mismos. Un promotor bacteriano ejemplar es tac, que es un híbrido de promotores de trp y lac. Anteriormente se han enumerado ejemplos no limitantes de promotores eucariotas adecuados.
En aspectos adicionales, el ADN que codifica la endonucleasa guiada por ARN también se puede unir a una señal de poliadenilación (por ejemplo, la señal poliA de SV40, la señal poliA de la hormona de crecimiento bovino (BGH), etc.) y/o al menos una secuencia de terminación transcripcional. Adicionalmente, la secuencia que codifica la endonucleasa guiada por ARN también puede unirse a la secuencia que codifica al menos una señal de localización nuclear, al menos un dominio de penetración celular y/o al menos un dominio marcador, que están detallados anteriormente en la sección (I).
En diversas realizaciones, el ADN que codifica la endonucleasa guiada por ARN puede estar presente en un vector. Los vectores adecuados incluyen vectores plasmídicos, fagémidos, cósmidos, cromosomas artificiales/minicromosomas, transposones y vectores virales (por ejemplo, vectores lentivirales, vectores virales adenoasociados, etc.). En un ejemplo, el ADN que codifica la endonucleasa guiada por ARN está presente en un vector plasmídico. Los ejemplos no limitantes de vectores plasmídicos adecuados incluyen pUC, pBR322, pET, pBluescript y variantes de los mismos. El vector puede comprender secuencias de control de la expresión adicionales (por ejemplo, secuencias potenciadoras, secuencias de Kozak, secuencias de poliadenilación, secuencias de terminación de la transcripción, etc.), secuencias marcadoras seleccionables (por ejemplo, genes de resistencia a antibióticos), orígenes de replicación y similares. Se puede encontrar información adicional en "Current Protocols in Molecular Biology" Ausubel y col., John Wiley & Sons, New York, 2003 o "Molecular Cloning: A Laboratory Manual" Sambrook & Russell, Cold Spring Harbor Press, Cold Spring Harbor, NY, 3a edición, 2001.
En algunos ejemplos, el vector de expresión que comprende la secuencia que codifica la endonucleasa guiada por ARN puede comprender además la secuencia que codifica un ARN guía. La secuencia que codifica el ARN guía generalmente está unida de forma operativa a al menos una secuencia de control transcripcional para la expresión del ARN guía en la célula o embrión de interés. Por ejemplo, el ADN que codifica el ARN guía puede estar unido de forma operativa a una secuencia promotora que es reconocida por la ARN polimerasa III (Pol III). Los ejemplos de promotores Pol III adecuados incluyen, pero sin limitarse a, promotores de ARN de mamífero U6, U3, H1 y 7SL.
(III) Procedimiento para modificar una secuencia cromosómica usando una endonucleasa guiada por ARN
Otro aspecto englobado por la presente invención, tal y como se indicó anteriormente, es el uso del complejo de endonucleasa guiado por ARN modificado por ingeniería genética como se desvela en el presente documento y, opcionalmente, al menos un polinucleótido donador que comprende una secuencia donadora, para modificar una secuencia cromosómica, en el que el uso no comprende un procedimiento para modificar la identidad genética de la línea germinal de un ser humano y, en el que el procedimiento no comprende un procedimiento para el tratamiento del cuerpo humano o animal mediante cirugía o terapia. En un ejemplo, la célula o el embrión se cultiva de manera que cada ARN guía dirige una endonucleasa guiada por ARN a un sitio diana en la secuencia cromosómica en la que la endonucleasa guiada por ARN introduce una ruptura bicatenaria en el sitio diana. En un ejemplo de dicho uso, la ruptura bicatenaria se repara mediante un proceso de reparación de ADN de modo que se modifica la secuencia cromosómica.
En algunos usos, el complejo de endonucleasa guiado por ARN (o ácido nucleico codificante) se introduce en una célula o embrión, en el que o en la que la endonucleasa guiada por ARN introduce una ruptura bicatenaria en la secuencia cromosómica diana. En realizaciones en las que el polinucleótido donador opcional no está presente, la ruptura bicatenaria en la secuencia cromosómica puede repararse mediante un proceso de reparación de unión de extremos no homólogos (NHEJ). Debido a que el NHEJ es propenso a errores, pueden producirse deleciones de al menos un nucleótido, inserciones de al menos un nucleótido, sustituciones de al menos un nucleótido o combinaciones de las mismas durante la reparación de la ruptura. Por consiguiente, la secuencia cromosómica diana puede modificarse o desactivarse. Por ejemplo, un solo cambio de nucleótidos (SNP) puede dar lugar a un producto proteico alterado, o un cambio en el marco de lectura de una secuencia codificante puede inactivar o "knock out" la secuencia de manera que no se produzca ningún producto proteico. En realizaciones en las que está presente el polinucleótido donador opcional, la secuencia donadora en el polinucleótido donador puede intercambiarse o integrarse en la secuencia cromosómica en el sitio diana durante la reparación de la ruptura bicatenaria. Por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada por secuencias corriente arriba y corriente abajo que tienen una identidad de secuencia sustancial con secuencias corriente arriba y corriente abajo, respectivamente, con respecto al sitio diana en la secuencia cromosómica, la secuencia donadora puede intercambiarse o integrarse en la secuencia cromosómica en el sitio diana durante la reparación mediada por un proceso de reparación dirigido por homología. Como alternativa, en realizaciones en las que la secuencia donadora está flanqueada por extensiones compatibles (o las extensiones compatibles se generan in situ por la endonucleasa guiada por ARN), la secuencia donadora puede ligarse directamente con la secuencia cromosómica escindida mediante un proceso de reparación no homólogo durante la reparación de la ruptura bicatenaria. El intercambio o la integración de la secuencia donadora en la secuencia cromosómica modifica la secuencia cromosómica diana o introduce una secuencia exógena en la secuencia cromosómica de la célula o del embrión.
En otros ejemplos, el procedimiento puede comprender la introducción de dos endonucleasas guiadas por ARN (o ácido nucleico codificante) y dos ARN guía (o ADN codificante) en una célula o embrión no humano, en el que las endonucleasas guiadas por ARN introducen dos rupturas bicatenarias en la secuencia cromosómica. Véase la Figura 1B. Las dos rupturas pueden estar en varios pares de bases, en decenas de pares de bases o pueden estar separadas por muchos miles de pares de bases. En realizaciones en las que el polinucleótido donador opcional no está presente, las roturas bicatenarias resultantes pueden repararse mediante un proceso de reparación no homólogo de modo que la secuencia entre los dos sitios de escisión se pierda y/o pueden producirse deleciones de al menos un nucleótido, inserciones de al menos un nucleótido, sustituciones de al menos un nucleótido o combinaciones de las mismas durante la reparación de la(s) ruptura(s). En realizaciones en las que está presente el polinucleótido donador opcional, la secuencia donadora en el polinucleótido donador puede intercambiarse o integrarse en la secuencia cromosómica durante la reparación de las roturas bicatenarias mediante un proceso de reparación basado en la homología (por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada por secuencias corriente arriba y corriente abajo que tienen una identidad de secuencia sustancial con secuencias corriente arriba y corriente abajo, respectivamente, con respecto a los sitios diana en la secuencia cromosómica) o un proceso de reparación no homólogo (por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada por extensiones compatibles).
En otras realizaciones más, el uso puede comprender la introducción de una endonucleasa guiada por ARN modificada para escindir una hebra de una secuencia bicatenaria (o ácido nucleico codificante) y dos ARN guía (o ADN codificante) en una célula o embrión, en el que cada ARN guía dirige a la endonucleasa guiada por ARN a un sitio diana específico, sitio en el que la endonucleasa modificada escinde una cadena (es decir, corta) de la secuencia cromosómica bicatenaria, y en el que los dos cortes están en posiciones opuestas y lo suficientemente cerca como para constituir una ruptura bicatenaria. Véase la Figura 1A. En realizaciones en las que el polinucleótido donador opcional no está presente, la ruptura bicatenaria resultante puede repararse mediante un proceso de reparación no homólogo de tal manera que pueden producirse deleciones de al menos un nucleótido, inserciones de al menos un nucleótido, sustituciones de al menos un nucleótido o combinaciones de las mismas durante la reparación de la ruptura. En realizaciones en las que está presente el polinucleótido donador opcional, la secuencia donadora en el polinucleótido donador puede intercambiarse o integrarse en la secuencia cromosómica durante la reparación de la ruptura bicatenaria mediante un proceso de reparación basado en homología (por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada por secuencias corriente arriba y corriente abajo que tienen una identidad de secuencia sustancial con secuencias corriente arriba y corriente abajo, respectivamente, con respecto a los sitios diana en la secuencia cromosómica) o un proceso de reparación no homólogo (por ejemplo, en realizaciones en las que la secuencia donadora está flanqueada por extensiones compatibles).
(a) Endonucleasa guiada por ARN
El uso comprende introducir en un embrión celular o no humano al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear o un ácido nucleico que codifica al menos una endonucleasa guiada por ARN que comprende al menos una señal de localización nuclear. Dichas endonucleasas guiadas por ARN y ácidos nucleicos que codifican las endonucleasas guiadas por ARN se describen anteriormente en las secciones (I) y (II), respectivamente. Sin embargo, los usos reivindicados excluyen aquellos que comprenden un procedimiento para modificar la identidad genética de la línea germinal de un ser humano.
En algunas realizaciones, la endonucleasa guiada por ARN puede introducirse en la célula o en el embrión como una proteína aislada. En dichas realizaciones, la endonucleasa guiada por ARN puede comprender además al menos un dominio de penetración celular, que facilita la captación celular de la proteína. En otras realizaciones, la endonucleasa guiada por ARN puede introducirse en la célula o en el embrión como una molécula de ARNm. En otras realizaciones más, la endonucleasa guiada por ARN puede introducirse en la célula o en el embrión como una molécula de ADN. En general, la secuencia de ADN que codifica la proteína está unida de forma operativa a una secuencia promotora que funcionará en la célula o embrión de interés. La secuencia de ADN puede ser lineal o la secuencia de ADN puede ser parte de un vector. En otras realizaciones más, la proteína se puede introducir en la célula o en el embrión como un complejo ARN-proteína que comprende la proteína y el ARN guía.
En realizaciones alternativas, el ADN que codifica la endonucleasa guiada por ARN puede comprender además una secuencia que codifica un ARN guía. En general, cada una de las secuencias que codifican la endonucleasa guiada por ARN y el ARN guía está unida de forma operativa a la secuencia promotora control apropiada que permite la expresión de la endonucleasa guiada por ARN y del ARN guía, respectivamente, en la célula o en el embrión. La secuencia de ADN que codifica la endonucleasa guiada por ARN y el ARN guía puede comprender además secuencias de control de la expresión, reguladoras y/o de procesamiento adicionales. La secuencia de ADN que codifica la endonucleasa guiada por ARN y el ARN guía puede ser lineal o puede ser parte de un vector
(b) ARN guía
El procedimiento también comprende introducir en una célula o en un embrión al menos un ARN guía o un ADN que codifica al menos un ARN guía. Un ARN guía interactúa con la endonucleasa guiada por ARN para dirigir la endonucleasa a un sitio diana específico, sitio en el que el extremo 5' del ARN guía se empareja formando pares de bases con una secuencia protoespaciadora específica en la secuencia cromosómica.
Cada ARN guía comprende tres regiones: una primera región en el extremo 5' que es complementaria al sitio diana en la secuencia cromosómica, una segunda región interna que forma una estructura de bucle y tallo y una tercera región 3' que permanece esencialmente monocatenaria. La primera región de cada ARN guía es diferente, de modo que cada ARN guía guía a una proteína de fusión a un sitio diana específico. La segunda y tercera regiones de cada ARN guía pueden ser las mismas en todos los ARN guía.
La primera región del ARN guía es complementaria a la secuencia (es decir, la secuencia protoespaciadora) en el sitio diana en la secuencia cromosómica, de modo que la primera región del ARN guía puede emparejarse formando pares de bases con el sitio diana. La primera región del a Rn guía comprende de aproximadamente 10 nucleótidos a más de aproximadamente 25 nucleótidos. Por ejemplo, la región de emparejamiento de bases entre la primera región del ARN guía y el sitio diana en la secuencia cromosómica puede ser de aproximadamente 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25 o más de 25 nucleótidos de longitud. En una realización ejemplar, la primera región del ARN guía tiene aproximadamente 19, 20 o 21 nucleótidos de longitud.
El ARN guía también comprende una segunda región que forma una estructura secundaria. En algunas realizaciones, la estructura secundaria comprende un tallo (o horquilla) y un bucle. La longitud del bucle y el tallo pueden variar. Por ejemplo, el bucle puede variar de aproximadamente 3 a aproximadamente 10 nucleótidos de longitud, y el tallo puede variar de aproximadamente 6 a aproximadamente 20 pares de bases de longitud. El tallo puede comprender una o más protuberancias de 1 a aproximadamente 10 nucleótidos. Por lo tanto, la longitud total de la segunda región puede variar de aproximadamente 16 a aproximadamente 60 nucleótidos de longitud. En una realización ejemplar, el bucle tiene aproximadamente 4 nucleótidos de longitud y el tallo comprende aproximadamente 12 pares de bases.
El ARN guía también comprende una tercera región en el extremo 3' que permanece esencialmente monocatenaria. Por lo tanto, la tercera región no tiene complementariedad con ninguna secuencia cromosómica en la célula de interés y no tiene complementariedad con el resto del ARN guía. La longitud de la tercera región puede variar. En general, la tercera región tiene más de aproximadamente 4 nucleótidos de longitud. Por ejemplo, la longitud de la tercera región puede variar de aproximadamente 5 a aproximadamente 60 nucleótidos de longitud.
La longitud combinada de la segunda y tercera regiones (también llamada región universal o de armazón) del ARN guía puede variar de aproximadamente 30 a aproximadamente 120 nucleótidos de longitud. En un aspecto, la longitud combinada de las regiones segunda y tercera del ARN guía varía de aproximadamente 70 a aproximadamente 100 nucleótidos de longitud.
El ARN guía comprende dos moléculas separadas. La primera molécula de ARN puede comprender la primera región del ARN guía y la mitad del "tallo" de la segunda región del ARN guía. La segunda molécula de ARN puede comprender la otra mitad del "tallo" de la segunda región del ARN guía y la tercera región del ARN guía. Por lo tanto, en esta realización, la primera y segunda moléculas de ARN contienen cada una una secuencia de nucleótidos que son complementarias entre sí. Por ejemplo, en una realización, la primera y segunda moléculas de ARN comprenden cada una una secuencia (de aproximadamente 6 a aproximadamente 20 nucleótidos) que se empareja formando pares de bases con la otra secuencia para formar un ARN guía funcional.
En algunas realizaciones, el ARN guía se puede introducir en la célula o en el embrión como una molécula de ARN. La molécula de ARN se puede transcribir in vitro. Como alternativa, la molécula de ARN puede sintetizarse químicamente.
En otras realizaciones, el ARN guía puede introducirse en la célula o en el embrión como una molécula de ADN. En tales casos, el ADN que codifica el ARN guía puede estar unido de forma operativa a la secuencia promotora control para la expresión del ARN guía en la célula o embrión de interés. Por ejemplo, la secuencia codificante del ARN puede estar unida de forma operativa a una secuencia promotora que es reconocida por la ARN polimerasa III (Pol III). Los ejemplos de promotores Pol III adecuados incluyen, pero sin limitarse a, promotores u 6 o H1 de mamíferos. En realizaciones ejemplares, la secuencia codificante del ARN está unida a un promotor U6 de ratón o humano. En otras realizaciones ejemplares, la secuencia codificante del ARN está unida a un promotor H1 de ratón o humano.
La molécula de ADN que codifica el ARN guía puede ser lineal o circular. En algunas realizaciones, la secuencia de ADN que codifica el ARN guía puede ser parte de un vector. Los vectores adecuados incluyen vectores plasmídicos, fagémidos, cósmidos, cromosomas artificiales/minicromosomas, transposones y vectores virales. En una realización ejemplar, el ADN que codifica la endonucleasa guiada por ARN está presente en un vector plasmídico. Los ejemplos no limitantes de vectores plasmídicos adecuados incluyen pUC, pBR322, pET, pBluescript y variantes de los mismos. El vector puede comprender secuencias de control de la expresión adicionales (por ejemplo, secuencias potenciadoras, secuencias de Kozak, secuencias de poliadenilación, secuencias de terminación de la transcripción, etc.), secuencias marcadoras seleccionables (por ejemplo, genes de resistencia a antibióticos), orígenes de replicación y similares.
En realizaciones en las que tanto la endonucleasa guiada por ARN como el ARN guía se introducen en la célula como moléculas de ADN, cada una puede ser parte de una molécula separada (por ejemplo, un vector que contiene la secuencia de codificación de proteínas y un segundo vector que contiene la secuencia de codificación del ARN guía) o ambas pueden ser parte de la misma molécula (por ejemplo, un vector que contiene la secuencia de codificación (y reguladora) tanto para la proteína como para el ARN guía).
(c) Sitio diana
Una endonucleasa guiada por ARN junto con un ARN guía se dirige a un sitio diana en la secuencia cromosómica, en la que la endonucleasa guiada por ARN introduce una ruptura bicatenaria en la secuencia cromosómica. El sitio diana no tiene limitación de secuencia, excepto que la secuencia va seguida inmediatamente (corriente abajo) por una secuencia de consenso. Esta secuencia consenso también se conoce como motivo adyacente al protoespaciador (PAM). Los ejemplos de PAM incluyen, pero sin limitarse a, NGG, NGGNG y NNAGAAW (en los que N se define como cualquier nucleótido y W se define como A o T). Como se detalla anteriormente en la sección (III) (b), la primera región (en el extremo 5') del ARN guía es complementaria al protoespaciador de la secuencia diana. Típicamente, la primera región del ARN guía tiene una longitud de aproximadamente 19 a 21 nucleótidos. Por lo tanto, en determinados aspectos, la secuencia del sitio diana en la secuencia cromosómica es 5 -N1g-21-NGG-3 '. El PAM está en cursiva.
El sitio diana puede estar en la región codificante de un gen, en un intrón de un gen, en una región de control de un gen, en una región no codificante entre genes, etc. El gen puede ser un gen codificante de proteínas o un gen codificante de ARN. El gen puede ser cualquier gen de interés.
(d) Polinucleótido donador opcional
En algunas realizaciones, el uso comprende además introducir al menos un polinucleótido donador en la célula o el embrión. Un polinucleótido donador comprende al menos una secuencia donadora. En algunos aspectos, una secuencia donadora del polinucleótido donador corresponde a una secuencia cromosómica endógena o nativa. Por ejemplo, la secuencia donadora puede ser esencialmente idéntica a una porción de la secuencia cromosómica en o cerca del sitio diana, pero que comprende al menos un cambio de nucleótido. Por lo tanto, la secuencia donadora puede comprender una versión modificada de la secuencia de tipo salvaje en el sitio diana de manera que, tras la integración o el intercambio con la secuencia nativa, la secuencia en la ubicación cromosómica diana comprende al menos un cambio de nucleótido. Por ejemplo, el cambio puede ser una inserción de uno o más nucleótidos, una deleción de uno o más nucleótidos, una sustitución de uno o más nucleótidos, o combinaciones de las mismas. Como consecuencia de la integración de la secuencia modificada, la célula o el embrión/animal pueden producir un producto génico modificado a partir de la secuencia cromosómica diana.
En otros aspectos, la secuencia donadora del polinucleótido donador corresponde a una secuencia exógena. Tal como se usa en el presente documento, una secuencia "exógena" se refiere a una secuencia que no es nativa de la célula o del embrión, o una secuencia cuya ubicación nativa en el genoma de la célula o el embrión está en una ubicación diferente. Por ejemplo, la secuencia exógena puede comprender una secuencia codificante de proteínas, que se puede unir de forma operativa a una secuencia promotora control exógena de manera que, tras la integración en el genoma, la célula o el embrión/animal es capaz de expresar la proteína codificada por la secuencia integrada. Como alternativa, la secuencia exógena puede integrarse en la secuencia cromosómica de manera que su expresión esté regulada por una secuencia promotora control endógena. En otras iteraciones, la secuencia exógena puede ser una secuencia de control transcripcional, otra secuencia de control de la expresión, una secuencia de codificación de ARN, y así sucesivamente. La integración de una secuencia exógena en una secuencia cromosómica se denomina "knock in".
Como pueden apreciar los expertos en la materia, la longitud de la secuencia donadora puede y variará. Por ejemplo, la secuencia donadora puede variar en longitud desde varios nucleótidos a cientos de nucleótidos a cientos de miles de nucleótidos.
Polinucleótido donador que comprende secuencias corriente arriba y corriente abajo. En algunas realizaciones, la secuencia donadora en el polinucleótido donador está flanqueada por una secuencia corriente arriba y una secuencia corriente abajo, que tienen identidad de secuencia sustancial con respecto a secuencias ubicadas corriente arriba y corriente abajo, respectivamente, con respecto al sitio diana en la secuencia cromosómica. Debido a estas similitudes de secuencia, las secuencias corriente arriba y corriente abajo del polinucleótido donador permiten la recombinación homóloga entre el polinucleótido donador y la secuencia cromosómica diana de manera que la secuencia del donador puede integrarse (o intercambiarse) con la secuencia cromosómica.
La secuencia corriente arriba, como se usa en el presente documento, se refiere a una secuencia de ácido nucleico que comparte una identidad de secuencia sustancial con una secuencia cromosómica corriente arriba del sitio diana. De forma similar, la secuencia corriente abajo se refiere a una secuencia de ácido nucleico que comparte una identidad de secuencia sustancial con una secuencia cromosómica corriente abajo del sitio diana. Tal como se usa en el presente documento, la frase "identidad de secuencia sustancial" se refiere a secuencias que tienen al menos aproximadamente un 75 % de identidad de secuencia. Por lo tanto, las secuencias corriente arriba y corriente abajo en el polinucleótido donante pueden tener aproximadamente un 75%, 76 %, 77 %, 78 %, 79 %, 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 % o 99 % de identidad de secuencia con secuencias corriente arriba o corriente abajo del sitio diana. En una realización ejemplar, las secuencias corriente arriba y corriente abajo en el polinucleótido donador pueden tener una identidad de secuencia de aproximadamente un 95 % o 100 % con secuencias cromosómicas corriente arriba o corriente abajo del sitio diana. En una realización, la secuencia corriente arriba comparte una identidad de secuencia sustancial con una secuencia cromosómica ubicada inmediatamente corriente arriba del sitio diana (es decir, adyacente al sitio diana). En otras realizaciones, la secuencia corriente arriba comparte una identidad de secuencia sustancial con una secuencia cromosómica que se encuentra dentro de aproximadamente cien (100) nucleótidos corriente arriba del sitio diana. Por lo tanto, por ejemplo, la secuencia corriente arriba puede compartir una identidad de secuencia sustancial con una secuencia cromosómica que se encuentra de aproximadamente 1 a aproximadamente 20, de aproximadamente 21 a aproximadamente 40, de aproximadamente 41 a aproximadamente 60, de aproximadamente 61 a aproximadamente 80, o de aproximadamente 81 a aproximadamente 100 nucleótidos corriente arriba del sitio diana. En una realización, la secuencia corriente abajo comparte una identidad de secuencia sustancial con una secuencia cromosómica ubicada inmediatamente corriente abajo del sitio diana (es decir, adyacente al sitio objetivo). En otras realizaciones, la secuencia corriente abajo comparte una identidad de secuencia sustancial con una secuencia cromosómica que se encuentra dentro de aproximadamente cien (100) nucleótidos corriente abajo del sitio diana. Por lo tanto, por ejemplo, la secuencia corriente abajo puede compartir una identidad de secuencia sustancial con una secuencia cromosómica que se encuentra de aproximadamente 1 a aproximadamente 20, de aproximadamente 21 a aproximadamente 40, de aproximadamente 41 a aproximadamente 60, de aproximadamente 61 a aproximadamente 80, o de aproximadamente 81 a aproximadamente 100 nucleótidos corriente abajo del sitio diana.
Cada secuencia corriente arriba o corriente abajo puede variar en longitud de aproximadamente 20 nucleótidos a aproximadamente 5000 nucleótidos. En algunas realizaciones, las secuencias corriente arriba y corriente abajo pueden comprender aproximadamente 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800 o 5000 nucleótidos. En realizaciones ejemplares, las secuencias corriente arriba y corriente abajo pueden variar en longitud de aproximadamente 50 a aproximadamente 1500 nucleótidos.
Los polinucleótidos donadores que comprenden las secuencias corriente arriba y corriente abajo con similitud de secuencia con la secuencia cromosómica diana pueden ser lineales o circulares. En realizaciones en las que el polinucleótido donador es circular, este puede ser parte de un vector. Por ejemplo, el vector puede ser un vector plasmídico.
Polinucleótido donador que comprende uno o más sitios de escisión. En otras realizaciones, el polinucleótido donador puede comprender adicionalmente al menos un sitio de escisión diana que es reconocido por la endonucleasa guiada por ARN. El sitio de escisión diana agregado al polinucleótido donador puede colocarse corriente arriba o corriente abajo o tanto corriente arriba como corriente abajo de la secuencia donadora. Por ejemplo, la secuencia donadora puede estar flanqueada por sitios de escisión diana de manera que, tras la escisión por la endonucleasa guiada por ARN, la secuencia donadora está flanqueada por extensiones que son compatibles con las de la secuencia cromosómica generada tras la escisión por la endonucleasa guiada por ARN. Por consiguiente, la secuencia donadora puede ligarse con la secuencia cromosómica escindida durante la reparación de la ruptura bicatenaria mediante un proceso de reparación no homólogo. En general, los polinucleótidos donadores que comprenden el o los sitios de escisión diana serán circulares (por ejemplo, pueden ser parte de un vector plasmídico).
Polinucleótido donador que comprende una secuencia donadora corta con extensiones opcionales. En otras realizaciones alternativas, el polinucleótido donador puede ser una molécula lineal que comprende una secuencia donadora corta con extensiones cortas opcionales que son compatibles con las extensiones generadas por la endonucleasa guiada por ARN. En dichas realizaciones, la secuencia donadora se puede ligar directamente con la secuencia cromosómica escindida durante la reparación de la ruptura bicatenaria. En algunas ocasiones, la secuencia donadora puede ser inferior a aproximadamente 1000, inferior a aproximadamente 500, inferior a aproximadamente 250 o inferior a aproximadamente 100 nucleótidos. En ciertos casos, el polinucleótido donador puede ser una molécula lineal que comprende una secuencia donadora corta con extremos romos. En otras iteraciones, el polinucleótido donador puede ser una molécula lineal que comprende una secuencia donadora corta con extensiones 5' y/o 3'. Las extensiones pueden comprender 1,2, 3, 4 o 5 nucleótidos.
Típicamente, el polinucleótido donador será ADN. El ADN puede ser monocatenario o bicatenario y/o lineal o circular. El polinucleótido donador puede ser un plásmido de ADN, un cromosoma artificial bacteriano (BAC), un cromosoma artificial de levadura (YAC), un vector viral, una pieza lineal de ADN, un fragmento de PCR, un ácido nucleico desnudo, o un ácido nucleico que forma un complejo con un vehículo de suministro tal como un liposoma o poloxámero. En ciertas realizaciones, el polinucleótido donador que comprende la secuencia donadora puede ser parte de un vector plasmídico. En cualquiera de estas situaciones, el polinucleótido donador que comprende la secuencia donadora puede comprender además al menos una secuencia adicional.
(e) Introducción en la célula o embrión
La o las endonucleasas dirigidas por ARN (o ácido nucleico codificante), el o los ARN guía (o ADN codificante), y el o los polinucleótidos donadores opcionales pueden introducirse en una célula o embrión por una variedad de medios. En algunas realizaciones, se transfecta la célula o el embrión. Los procedimientos de transfección adecuados incluyen transfección mediada por fosfato de calcio, nucleofección (o electroporación), transfección de polímeros catiónicos (por ejemplo, DEAE-dextrano o polietilenimina), transducción viral, transfección con virosomas, transfección con viriones, transfección con liposomas, transfección con liposomas catiónicos, transfección con inmunoliposomas, transfección con lípidos no liposomales, transfección con dendrímeros, transfección por choque térmico, magnetofección, lipofección, biobalística génica, impalefección, sonicación, transfección óptica, y captación de ácidos nucleicos potenciada por agentes patentados. Los procedimientos de transfección son bien conocidos en la técnica (véase, por ejemplo, "Current Protocols in Molecular Biology" Ausubel y col., John Wiley & Sons, New York, 2003 o "Molecular Cloning: A Laboratory Manual" Sambrook & Russell, Cold Spring Harbor Press, Cold Spring Harbor, NY, 3a edición, 2001). En otras realizaciones, las moléculas se introducen en la célula o en el embrión por microinyección. Típicamente, el embrión es un embrión fertilizado en la fase unicelular de la especie de interés. Por ejemplo, las moléculas pueden inyectarse en los pronúcleos de embriones unicelulares.
La o las endonucleasas dirigidas por ARN (o ácido nucleico codificante), el o los ARN guía (o los ADN que codifican el ARN guía), y el o los polinucleótidos donadores opcionales pueden introducirse en la célula o en el embrión simultáneamente o secuencialmente. La relación de la(s) endonucleasa(s) dirigida(s) al ARN (o ácido nucleico codificante) al(los) ARN guía (o ADN codificante) generalmente será aproximadamente estequiométrica de modo que puedan formar un complejo ARN-proteína. En una realización, el ADN que codifica una endonucleasa dirigida por ARN y el ADN que codifica un ARN guía se suministran juntos dentro del vector plasmídico.
(f) Cultivo de la célula o el embrión
El uso comprende además mantener la célula o el embrión en condiciones apropiadas de modo que el o los ARN guía dirigen la o las endonucleasas guiadas por el ARN al sitio o sitios diana en la secuencia cromosómica, y la o las endonucleasas guiadas por el ARN introducen al menos una ruptura bicatenaria en la secuencia cromosómica. Una ruptura bicatenaria puede repararse mediante un proceso de reparación del ADN de modo que la secuencia cromosómica se modifique mediante la deleción de al menos un nucleótido, una inserción de al menos un nucleótido, una sustitución de al menos un nucleótido, o una combinación de las mismas.
En realizaciones en las que no se introduce un polinucleótido donador en la célula o en el embrión, la ruptura bicatenaria se puede reparar mediante un proceso de reparación de unión de extremos no homólogos (NHEJ). Debido a que el NHEJ es propenso a errores, pueden producirse deleciones de al menos un nucleótido, inserciones de al menos un nucleótido, sustituciones de al menos un nucleótido o combinaciones de las mismas durante la reparación de la ruptura. Por consiguiente, la secuencia en la secuencia cromosómica se puede modificar de modo que el marco de lectura de una región codificante se pueda desplazar y que la secuencia cromosómica se inactive o se someta a "knock out". Una secuencia cromosómica codificante de la proteína inactivada no da lugar a la proteína codificada por la secuencia cromosómica de tipo salvaje.
En realizaciones en las que se introduce un polinucleótido donador que comprende secuencias corriente arriba y corriente abajo en la célula o en el embrión, la ruptura bicatenaria puede repararse mediante un proceso de reparación dirigida por homología (HDR) de modo que la secuencia donadora se integre en la secuencia cromosómica. Por consiguiente, una secuencia exógena puede integrarse en el genoma de la célula o en el embrión, o la secuencia cromosómica diana puede modificarse mediante el intercambio de una secuencia modificada por la secuencia cromosómica de tipo salvaje.
En realizaciones en las que se introduce un polinucleótido donador que comprende el sitio de escisión diana en la célula o en el embrión, la endonucleasa guiada por ARN puede escindir tanto la secuencia cromosómica diana como el polinucleótido donador. El polinucleótido donador linealizado puede integrarse en la secuencia cromosómica en el sitio de la ruptura bicatenaria mediante ligación entre el polinucleótido donador y la secuencia cromosómica escindida a través de un proceso NHEJ.
En realizaciones en las que un polinucleótido donador lineal que comprende una secuencia donadora corta se introduce en la célula o en el embrión, la secuencia donadora corta puede integrarse en la secuencia cromosómica en el sitio de la ruptura bicatenaria mediante un proceso NHEJ. La integración puede llevarse a cabo mediante la ligación de extremos romos entre la secuencia corta donadora y la secuencia cromosómica en el sitio de la ruptura bicatenaria. Como alternativa, la integración puede llevarse a cabo mediante ligación de extremos cohesivos (es decir, que tienen extensiones 5' o 3') entre una secuencia corta donadora que está flanqueada por extensiones que son compatibles con las generadas por la endonucleasa dirigida por ARN en la secuencia cromosómica escindida.
En general, la célula se mantiene en condiciones apropiadas para el crecimiento y/o mantenimiento de la célula. Las condiciones adecuadas de cultivo celular son bien conocidas en la técnica y se describen, por ejemplo, en Santiago y col. (2008) PNAS 105:5809-5814; Moehle y col. (2007) PNAS 104:3055-3060; Urnov y col. (2005) Nature 435:646-651; y Lombardo y col. (2007) Nat. Biotechnology 25:1298-1306. Los expertos en la materia aprecian que los procedimientos para cultivar células son conocidos en la técnica y pueden variar y variarán según el tipo de célula. En todos los casos, se puede usar la optimización rutinaria, para determinar las mejores técnicas para un tipo de célula particular.
Un embrión se puede cultivar in vitro (por ejemplo, en cultivo celular). Típicamente, el embrión se cultiva a una temperatura apropiada y en medios apropiados con la proporción O2/CO2 necesaria para permitir la expresión de la endonucleasa de ARN y del ARN guía, si es necesario. Los ejemplos de medios no limitantes adecuados incluyen los medios M2, M16, KSOM, BMOC y HTF. Un experto en la materia apreciará que las condiciones de cultivo pueden variar y variarán según las especies del embrión. En todos los casos, se puede usar la optimización rutinaria, para determinar las mejores condiciones de cultivo para una especie particular de embrión. En algunos casos, una línea celular puede derivar de un embrión cultivado in vitro(por ejemplo, una línea de células madre embrionarias).
Como alternativa, un embrión puede cultivarse in vivo transfiriendo el embrión al útero de un hospedador femenino. En términos generales, el hospedador femenino es de la misma especie o de una especie similar a la del embrión. Preferentemente, la hembra hospedadora está pseudoembarazada. En la técnica se conocen procedimientos para preparar huéspedes hembra pseudoembarazadas. Adicionalmente, se conocen procedimientos para transferir un embrión a un hospedador femenino. Cultivar un embrión in vivo permite que el embrión se desarrolle y pueda dar lugar a un nacimiento vivo de un animal derivado del embrión. Dicho animal comprendería la secuencia cromosómica modificada en cada célula del cuerpo. Los usos que comprenden un procedimiento para modificar la identidad genética de la línea germinal de un ser humano están específicamente excluidos del ámbito de la invención.
(g) Tipos de células y embriones
Una variedad de células eucariotas y embriones no humanos son adecuados para el uso desvelado en el presente documento. Por ejemplo, la célula puede ser una célula humana, una célula de mamífero no humano, una célula de vertebrado no mamífero, una célula de invertebrado, una célula de insecto, una célula vegetal, una célula de levadura o un organismo eucariota unicelular. En general, el embrión es un embrión de mamífero no humano. En realizaciones específicas, los embriones pueden ser un embrión unicelular de mamífero no humano. Los embriones de mamíferos ejemplares, incluyendo embriones unicelulares, incluyen sin limitarse a, embriones de ratón, rata, hámster, roedor, conejo, felino, canino, ovino, porcino, bovino, equino y de primate. En otras realizaciones más, la célula puede ser una célula madre. Las células madre adecuadas incluyen, sin limitarse a, células madre embrionarias, células madre tipo ES, células madre fetales, células madre adultas, células madre pluripotentes, células madre pluripotentes inducidas, células madre multipotentes, células madre oligopotentes, células madre unipotentes y otras. En realizaciones ejemplares, la célula es una célula de mamífero.
Ejemplos no limitantes de células de mamífero adecuadas incluyen células de ovario de hámster chino (CHO), células de riñón de cría de hámster (BHK); células de mieloma de ratón NS0, células de fibroblastos embrionarios de ratón 3T3 (NIH3T3), células de linfoma de linfocitos B de ratón A20; células de melanoma de ratón B16; células de mioblastos de ratón C2C12; células de mieloma de ratón SP2/0; células mesenquimales embrionarias de ratón C3H-10T1/2; células de carcinoma de ratón CT26, células de próstata de ratón DuCuP; células de mama de ratón EMT6; células de hepatoma de ratón Hepa1c1c7; células de mieloma de ratón J5582; células epiteliales de ratón MTD-1A; células de miocardio del ratón MyEnd; células renales de ratón RenCa; células pancreáticas de ratón RIN-5F; células de melanoma de ratón X64; células de linfoma de ratón YAC-1; células de glioblastoma de rata 9L; células de linfoma de linfocitos B de rata RBL; células de neuroblastoma de rata B35; células de hepatoma de rata (HTC); células de hígado de rata búfalo BRL 3A; células de riñón canino (MDCK); células mamarias caninas (CMT); células de osteosarcoma de rata D17; células de monocitos/macrófagos de rata DH82; células de fibroblastos transformados con SV-40 de riñón de mono (COS7); células de riñón de mono CVI-76; células de riñón de mono verde africano (VERO-76); células de riñón embrionario humano (HEK293, HEK293T); células de carcinoma cervical humano (HELA); células de pulmón humano (W138); células hepáticas humanas (Hep G2); células de osteosarcoma humano U2-OS, células humanas A549, células humanas A-431 y células humanas K562. Se puede encontrar una extensa lista de líneas celulares de mamíferos en el catálogo de la American Type Culture Collection (ATCC, Manassas, VA).
(IV) Células y animales genéticamente modificados
La presente divulgación engloba células genéticamente modificadas, embriones no humanos y animales no humanos que comprenden al menos una secuencia cromosómica que se ha modificado usando un complejo de endonucleasa guiada por ARN diseñado por ingeniería genética descrito en el presente documento. La divulgación proporciona células que comprenden al menos una molécula de ADN o ARN que codifica una endonucleasa guiada por ARN dirigida a una secuencia cromosómica de interés, al menos un ARN guía y, opcionalmente, uno o más polinucleótidos donadores. La divulgación también proporciona embriones no humanos que comprenden al menos una molécula de ADN o ARN que codifica una endonucleasa guiada por ARN dirigida a una secuencia cromosómica de interés, al menos un ARN guía y, opcionalmente, uno o más polinucleótidos donadores.
La presente divulgación proporciona animales no humanos genéticamente modificados, embriones no humanos o células animales que comprenden al menos una secuencia cromosómica modificada. La secuencia cromosómica modificada puede modificarse de modo que (1) esté inactivada, (2) tenga una expresión alterada o produzca un producto proteico alterado o (3) comprenda una secuencia integrada. La secuencia cromosómica se modifica con un procedimiento guiado por ARN mediado por endonucleasa o por proteína de fusión, utilizando los procedimientos descritos en el presente documento.
Como se ha tratado, un aspecto de la presente divulgación proporciona un animal genéticamente modificado en el que se ha modificado al menos una secuencia cromosómica. En una realización, el animal modificado genéticamente comprende al menos una secuencia cromosómica inactivada. La secuencia cromosómica modificada puede inactivarse de modo que la secuencia no se transcriba y/o no se produzca un producto proteico funcional. Por lo tanto, un animal genéticamente modificado que comprende una secuencia cromosómica inactivada puede denominarse "knock out" o "knock out condicional". La secuencia cromosómica inactivada puede incluir una mutación de deleción (es decir, deleción de uno o más nucleótidos), una mutación de inserción (es decir, inserción de uno o más nucleótidos), o una mutación sin sentido (es decir, la sustitución de un único nucleótido por otro nucleótido de manera que se introduce un codón de parada). Como consecuencia de la mutación, la secuencia cromosómica diana se inactiva y no se produce una proteína funcional. La secuencia cromosómica inactivada comprende una secuencia introducida de manera no exógena. También se incluyen en el presente documento animales genéticamente modificados en los que dos, tres, cuatro, cinco, seis, siete, ocho, nueve, o diez o más secuencias cromosómicas están inactivadas.
En otra realización, la secuencia cromosómica modificada puede alterarse de modo que codifique una variante proteica como producto. Por ejemplo, un animal genéticamente modificado que comprende una secuencia cromosómica modificada puede comprender una o más mutaciones puntuales u otra modificación de manera que se produzca un producto proteico alterado. En una realización, la secuencia cromosómica se puede modificar de modo que al menos un nucleótido se cambie y la proteína expresada comprenda un resto de aminoácido modificado (mutación de sentido erróneo). En otra realización, la secuencia cromosómica puede modificarse para comprender más de una mutación de sentido erróneo de modo que se cambie más de un aminoácido. Adicionalmente, la secuencia cromosómica se puede modificar para que tenga una deleción o inserción de tres nucleótidos de modo que la proteína expresada comprenda una deleción o inserción de un solo aminoácido. La proteína alterada o variante puede tener propiedades o actividades alteradas en comparación con la proteína de tipo salvaje, tales como la especificidad de sustrato alterada, actividad enzimática alterada, tasas cinéticas alteradas, etc.
En otra realización, el animal modificado genéticamente puede comprender al menos una secuencia cromosómicamente integrada. Un animal genéticamente modificado que comprende una secuencia integrada puede denominarse "knock in" o "knock in condicional". La secuencia cromosómicamente integrada puede, por ejemplo, codificar una proteína ortóloga, una proteína endógena, o combinaciones de ambas. En una realización, una secuencia que codifica una proteína ortóloga o una proteína endógena puede integrarse en una secuencia cromosómica que codifica una proteína de modo que la secuencia cromosómica se inactive, pero la secuencia exógena se exprese. En ese caso, la secuencia que codifica la proteína ortóloga o la proteína endógena puede estar unida de forma operativa a una secuencia promotora control. Como alternativa, una secuencia que codifica una proteína ortóloga o una proteína endógena puede integrarse en una secuencia cromosómica sin afectar a la expresión de una secuencia cromosómica. Por ejemplo, una secuencia que codifica una proteína puede integrarse en un locus de "puerto seguro", como los locus Rosa26, Locus HPRT o locus AAV. La presente divulgación también engloba animales genéticamente modificados en los que dos, tres, cuatro, cinco, seis, siete, ocho, nueve, o diez o más secuencias, incluyendo secuencias que codifican una o más proteínas, están integradas en el genoma.
La secuencia cromosómicamente integrada que codifica una proteína puede codificar la forma de tipo salvaje de una proteína de interés o puede codificar una proteína que comprende al menos una modificación tal que se produce una versión alterada de la proteína. Por ejemplo, una secuencia cromosómicamente integrada que codifica una proteína relacionada con una enfermedad o trastorno puede comprender al menos una modificación tal que la versión alterada de la proteína producida cause o potencie el trastorno asociado. Como alternativa, la secuencia cromosómicamente integrada que codifica una proteína relacionada con una enfermedad o trastorno puede comprender al menos una modificación de tal manera que la versión alterada de la proteína proteja contra el desarrollo del trastorno asociado.
En un ejemplo adicional, el animal modificado genéticamente puede ser un animal "humanizado" que comprende al menos una secuencia cromosómicamente integrada que codifica una proteína humana funcional. La proteína humana funcional puede no tener un ortólogo correspondiente en el animal genéticamente modificado. Como alternativa, el animal de tipo salvaje del que deriva el animal genéticamente modificado puede comprender un ortólogo correspondiente a la proteína humana funcional. En este caso, la secuencia ortóloga en el animal "humanizado" se inactiva de tal manera que no se produce proteína funcional y el animal "humanizado" comprende al menos una secuencia cromosómicamente integrada que codifica la proteína humana.
En otro ejemplo más, el animal modificado genéticamente puede comprender al menos una secuencia cromosómica modificada que codifica una proteína de manera que se altera el patrón de expresión de la proteína. Por ejemplo, regiones reguladoras que controlan la expresión de la proteína, como un promotor o un sitio de unión de un factor de transcripción, pueden alterarse de modo que la proteína se sobreproduce, o se altera la expresión temporal o específica de tejido de la proteína, o una combinación de las mismas. Como alternativa, el patrón de expresión de la proteína se puede alterar utilizando un sistema de knockout condicional. Un ejemplo no limitante de un sistema de knockout condicional incluye un sistema de recombinación Cre-Iox. Un sistema de recombinación Cre-lox comprende una enzima recombinasa Cre, una recombinasa de ADN específica de sitio que puede catalizar la recombinación de una secuencia de ácido nucleico entre sitios específicos (sitios lox) en una molécula de ácido nucleico. Los procedimientos para usar este sistema para producir una expresión temporal y específica de tejido son conocidos en la técnica. En general, se genera un animal genéticamente modificado con sitios lox que flanquean a una secuencia cromosómica. El animal genéticamente modificado que comprende la secuencia cromosómica flanqueada por lox puede cruzarse después con otro animal genéticamente modificado que expresa la recombinasa Cre. Luego se producen animales de la progenie que comprenden la secuencia cromosómica flanqueada por lox y la recombinasa Cre, y la secuencia cromosómica flanqueada por lox se recombina, conduciendo a la deleción o inversión de la secuencia cromosómica que codifica la proteína. La expresión de la recombinasa Cre puede regularse temporal y condicionalmente para efectuar una recombinación regulada temporal y condicionalmente de la secuencia cromosómica.
En cualquiera de estas realizaciones, el animal modificado genéticamente desvelado en el presente documento puede ser heterocigoto para la secuencia cromosómica modificada. Como alternativa, el animal modificado genéticamente puede ser homocigoto para la secuencia cromosómica modificada.
Los animales genéticamente modificados desvelados en el presente documento pueden cruzarse para crear animales que comprenden más de una secuencia cromosómica modificada o para crear animales que sean homocigotos para una o más secuencias cromosómicas modificadas. Por ejemplo, dos animales que comprenden la misma secuencia cromosómica modificada pueden cruzarse para crear un animal homocigoto para la secuencia cromosómica modificada. Como alternativa, los animales con diferentes secuencias cromosómicas modificadas pueden cruzarse para crear un animal que comprenda ambas secuencias cromosómicas modificadas.
Por ejemplo, un primer animal que comprende un gen de secuencia cromosómica inactivada "x" puede cruzarse con un segundo animal que comprende una secuencia cromosómicamente integrada que codifica una proteína "X" de gen humano para dar lugar a una descendencia con el gen "X" "humanizado" que comprende tanto la secuencia cromosómica inactivada del gen "x" como la secuencia "X" del gen humano integrado cromosómicamente. Asimismo, un animal con el gen "X" humanizado puede cruzarse con un animal con el gen "Y" humanizado para crear descendencia con el gen X/gen Y humanizados. Los expertos en la materia apreciarán que son posibles muchas combinaciones.
En otras realizaciones, un animal que comprende una secuencia cromosómica modificada puede cruzarse para combinar la secuencia cromosómica modificada con otros antecedentes genéticos. A modo de ejemplo no limitativo, otros antecedentes genéticos pueden incluir antecedentes genéticos de tipo salvaje, antecedentes genéticos con mutaciones de deleción, antecedentes genéticos con otra integración diana y antecedentes genéticos con integraciones no diana.
El término "animal", como se usa en el presente documento, se refiere a un animal no humano. El animal puede ser un embrión, un juvenil o un adulto. Los animales adecuados incluyen vertebrados tales como mamíferos, aves, reptiles, anfibios, crustáceos y peces. Los ejemplos de mamíferos adecuados incluyen, sin limitarse a, roedores, animales de compañía, ganado y primates. Los ejemplos no limitantes de roedores incluyen ratones, ratas, hámsteres, jerbos y cobayas. Los animales de compañía adecuados incluyen, entre otros, gatos, perros, conejos, erizos y hurones. Los ejemplos no limitantes de ganado incluyen caballos, cabras, ovejas, cerdos, vacas, llamas y alpacas. Los primates adecuados incluyen, entre otros, monos capuchinos, chimpancés, lémures, macacos, titíes, tamarinos, monos araña, monos ardilla y monos de Vervet. Los ejemplos no limitantes de aves incluyen gallinas, pavos, patos y gansos. Como alternativa, el animal puede ser un invertebrado tal como un insecto, un nematodo, y similares. Los ejemplos no limitantes de insectos incluyen Drosophila y mosquitos. Un animal ejemplar es una rata. Los ejemplos no limitantes de cepas de ratas adecuadas incluyen las Dahl Salt-Sensitive, Fischer 344, Lewis, Long Evans Hooded, Sprague-Dawley y Wistar. En una realización, el animal no es un ratón genéticamente modificado. En cada una de las iteraciones anteriores de animales adecuados para la invención, el animal no incluye secuencias de transposones integradas al azar introducidas de forma exógena.
Un aspecto adicional de la presente divulgación proporciona células o líneas celulares genéticamente modificadas que comprenden al menos una secuencia cromosómica modificada. La célula o línea celular genéticamente modificada puede derivar de cualquiera de los animales genéticamente modificados desvelados en el presente documento. Como alternativa, la secuencia cromosómica se puede modificar en una célula como se describe anteriormente en el presente documento (en los párrafos que describen las modificaciones de la secuencia cromosómica en animales) usando los procedimientos descritos en el presente documento. La divulgación también engloba un lisado de dichas células o líneas celulares.
Las células son células eucariotas. Las células hospedadoras adecuadas incluyen hongos o levaduras, tales como Pichia, Saccharomyces o Schizosaccharomyces; células de insectos, tales como células SF9 de Spodoptera frugiperda o células S2 de Drosophila melanogaster; y células animales, tales como células de ratón, rata, hámster, primates no humanos, o humanos. Las células ejemplares son de mamífero. Las células de mamífero pueden ser células primarias. En general, se puede usar cualquier célula primaria que sea sensible a roturas bicatenarias. Las células pueden ser de una variedad de tipos celulares, por ejemplo, fibroblastos, mioblastos, linfocitos T o B, macrófagos, células epiteliales, y similares.
Cuando se usan líneas celulares de mamíferos, la línea celular puede ser cualquier línea celular establecida o una línea celular primaria que aún no esté descrita. La línea celular puede ser adherente o no adherente, o la línea celular puede crecer en condiciones que fomenten el crecimiento adherente, no adherente u organotípico utilizando técnicas estándar conocidas por personas expertas en la materia. En la sección (III) (g) del presente documento se proporcionan ejemplos no limitantes de células y líneas celulares de mamífero adecuadas. En otras realizaciones más, la célula puede ser una célula madre. En la sección (III) (g) se proporcionan ejemplos no limitantes de células madre adecuadas.
La presente divulgación también proporciona un embrión no humano modificado genéticamente que comprende al menos una secuencia cromosómica modificada. La secuencia cromosómica se puede modificar en un embrión como se describe anteriormente en el presente documento (en los párrafos que describen las modificaciones de la secuencia cromosómica en animales) usando los procedimientos descritos en el presente documento. En una realización, el embrión es un embrión unicelular fertilizado no humano de la especie animal de interés. Los embriones de mamíferos ejemplares, incluyendo embriones unicelulares, incluyen sin limitarse a, ratón, rata, hámster, roedor, conejo, felino, canino, ovino, porcino, bovino, equino, y de primate.
Definiciones
A menos que se definan de otra manera, todos los términos técnicos y científicos usados en el presente documento tienen el significado que entiende comúnmente un experto en la materia a la que la presente invención pertenece. Las siguientes referencias proporcionan a los expertos una definición general de muchos de los términos utilizados en la presente invención: Singleton y col., Dictionary of Microbiology and Molecular Biology (2a ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5a Ed., R. Rieger y col. (eds.), Springer Verlag (1991); y Hale & Marham, The Harper Collins Dictionary of Biology (1991). Tal como se usa en el presente documento, los siguientes términos tienen los significados que se les asigna a menos que se especifique otra cosa.
Cuando se introducen elementos de la presente divulgación o la o las realizaciones preferidas de la misma, los artículos "un" o "una", "el", "la" y "dicho", "dicha" pretenden significar que hay uno o más de los elementos. Las expresiones "que comprende", "que incluye" y "que tiene" pretenden ser inclusivos y significan que puede haber elementos adicionales además de los elementos enumerados.
Tal como se usa en el presente documento, la expresión "secuencia endógena" se refiere a una secuencia cromosómica que es nativa de la célula.
El término "exógeno", como se usa en el presente documento, se refiere a una secuencia que no es nativa de la célula, o una secuencia cromosómica cuya ubicación nativa en el genoma de la célula está en una ubicación cromosómica diferente.
Un "gen", como se usa en el presente documento, se refiere a una región de ADN (incluidos exones e intrones) que codifica un producto génico, así como todas las regiones de ADN que regulan la producción del producto genético, estén o no adyacentes tales secuencias reguladoras a las secuencias de codificación y/o transcritas. Por consiguiente, un gen incluye, pero no necesariamente se limita a, secuencias promotoras, terminadores, secuencias reguladoras de la traducción tales como sitios de unión a ribosomas y sitios de entrada de ribosomas internos, potenciadores, silenciadores, aislantes, elementos limítrofes, orígenes de replicación, sitios de unión a matriz y regiones de control de locus.
El término "heterólogo" se refiere a una entidad que no es endógena ni nativa de la célula de interés. Por ejemplo, una proteína heteróloga se refiere a una proteína que deriva o derivó originalmente de una fuente exógena, tal como una secuencia de ácido nucleico introducida de forma exógena. En algunas ocasiones, la proteína heteróloga normalmente no es producida por la célula de interés.
Las expresiones "ácido nucleico" y "polinucleótido" se refieren a un desoxirribonucleótido o polímero de ribonucleótido, en conformación lineal o circular, y en forma monocatenaria o bicatenaria. Para los fines de la presente divulgación, estos términos no deben interpretarse como limitantes con respecto a la longitud de un polímero. Los términos pueden englobar análogos conocidos de nucleótidos naturales, así como los nucleótidos que están modificados en la base, restos del azúcar y/o fosfato (por ejemplo, esqueletos de fosforotioato). En general, un análogo de un nucleótido particular tiene la misma especificidad de emparejamiento de bases; es decir, un análogo de A se emparejará con T.
El término "nucleótido" se refiere a desoxirribonucleótidos o ribonucleótidos. Los nucleótidos pueden ser nucleótidos estándar (es decir, adenosina, guanosina, citidina, timidina y uridina) o análogos de nucleótidos. Un análogo de nucleótido se refiere a un nucleótido que tiene una base de purina o pirimidina modificada o un resto ribosa modificado. Un análogo de nucleótido puede ser un nucleótido de origen natural (por ejemplo, inosina) o un nucleótido de origen no natural. Los ejemplos no limitantes de modificaciones en los restos del azúcar o en la base de un nucleótido incluyen la adición (o eliminación) de grupos acetilo, grupos amino, grupos carboxilo, grupos carboximetilo, grupos hidroxilo, grupos metilo, grupos fosforilo y grupos tiol, así como la sustitución de los átomos de carbono y nitrógeno de las bases con otros átomos (por ejemplo, 7-deaza purinas). Los análogos de nucleótidos también incluyen didesoxinucleótidos, 2'-O-metil nucleótidos, ácidos nucleicos bloqueados (LNA), ácidos péptido-nucleicos (PNA) y morfolinos.
Los términos "polipéptido" y "proteína" se usan indistintamente para referirse a un polímero de restos de aminoácidos.
Las técnicas para determinar la identidad de secuencias de aminoácidos y ácidos nucleicos se conocen en la técnica. Típicamente, tales técnicas incluyen determinar la secuencia de nucleótidos del ARNm para un gen y/o determinar la secuencia de aminoácidos codificada por el mismo, y comparar estas secuencias con una segunda secuencia de nucleótidos o aminoácidos. Las secuencias genómicas también se pueden determinar y comparar de esta manera. En general, la identidad se refiere a una correspondencia exacta de nucleótido a nucleótido o de aminoácido a aminoácido de dos polinucleótidos o secuencias de polipéptidos, respectivamente. Se pueden comparar dos o más secuencias (polinucleótidos o aminoácidos) determinando su porcentaje de identidad. El porcentaje de identidad de dos secuencias, ya sean de ácido nucleico o secuencias de aminoácidos, es el número de coincidencias exactas entre dos secuencias alineadas dividido por la longitud de las secuencias más cortas y multiplicado por 100. El algoritmo de homología local de Smith y Waterman proporciona una alineación aproximada para las secuencias de ácido nucleico, Advances in Applied Mathematics 2:482-489 (1981). Este algoritmo se puede aplicar a secuencias de aminoácidos utilizando la matriz de puntuación desarrollada por Dayhoff, Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA, y normalizada por Gribskov, Nucl. Acids Res. 14(6):6745-6763 (1986). El Genetics Computer Group (Madison, Wisconsin) proporciona una implementación ejemplar de este algoritmo para determinar el porcentaje de identidad de una secuencia en la aplicación de utilidad "BestFit". Otros programas adecuados para calcular el porcentaje de identidad o similitud entre secuencias son generalmente conocidos en la técnica, por ejemplo, otro programa de alineación es BLAST, usado con parámetros por defecto. Por ejemplo, BLASTN y BLASTP se pueden usar con los siguientes parámetros predeterminados: código genético=estándar; filtro=ninguno; cadena=ambas; umbral=60; valores esperados=10; Matriz=BLOSUM62; Descripciones=50 secuencias; ordenar por= PUNTUACIÓN ALTA; Bases de datos=no redundantes, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+Swiss protein+Spupdate+PIR. Los detalles de estos programas se pueden encontrar en el sitio web de GenBank.
Como se podrían realizar varios cambios en las células y procedimientos descritos anteriormente sin apartarse del ámbito de la invención, se pretende que toda la materia contenida en la descripción anterior y en los ejemplos dados a continuación, se interprete como ilustrativa y no en un sentido limitante.
Ejemplos
Los siguientes ejemplos ilustran ciertos aspectos de la invención.
Ejemplo 1: Modificación del gen Cas9 para expresión en mamífero
Un gen Cas9 de la cepa MGAS15252 de Streptococcus pyogenes (número de referencia YP_005388840.1) se optimizó con la preferencia de codones para Homo sapiens para mejorar su traducción en células de mamífero. El gen Cas9 también se modificó agregando una señal de localización nuclear PKKKRKV (SEQ ID NO:1) en el extremo C para dirigir a la proteína a los núcleos de las células de mamífero. La Tabla 1 muestra la secuencia de aminoácidos de Cas9 modificada, con la secuencia de localización nuclear subrayada. La Tabla 2 presenta la secuencia de ADN de Cas9 modificada con codones optimizados.
Figure imgf000016_0001
Figure imgf000017_0001
continuación
Figure imgf000018_0001
continuación
Figure imgf000019_0001
La secuencia de ADN de Cas9 modificada se colocó bajo el control del promotor de citomegalovirus (CMV) para la expresión constituyente en células de mamífero. La secuencia de ADN de Cas9 modificada también se colocó bajo el control del promotor T7 para la síntesis de ARNm in vitro con la ARN polimerasa T7. La transcripción de ARNin vitro se realizó utilizando el kit de transcripción MessageMAX T7 ARCA-Capped Message y el sistema de producción de ARNm estándar T7 mScript (Cellscript).
Ejemplo 2: Direccionamiento de Cas9
El sitio de integración de virus adenoasociados 1 (AAVS1) se usó como una diana para la modificación del genoma humano mediada por Cas9. El locus AAVS1 humano se encuentra en el intrón 1 (4427 pb) de la proteína fosfatasa 1, subunidad reguladora 12C (PPP1R12C). La Tabla 3 muestra el primer exón (gris sombreado) y el primer intrón de PPP1R12C. La secuencia subrayada dentro del intrón es el sitio de modificación diana (es decir, el locus AAVS1).
Figure imgf000019_0002
continuación
Figure imgf000020_0001
(continuación)
Figure imgf000021_0001
Se diseñaron ARN guía de Cas9 para dirigirse al locus AAVS1 humano. Se prepararon un ARN de 42 nucleótidos (denominado en el presente documento secuencia de "ARNcr") que comprende (5' a 3') una secuencia de reconocimiento de la diana (es decir, secuencia complementaria a la cadena no codificante de la secuencia diana) y una secuencia protoespaciadora; un ARN de 85 nucleótidos (denominado en el presente documento secuencia de "ARNtracr") que comprende la secuencia 5' con complementariedad con la secuencia 3' del ARNcr y con la secuencia horquilla adicional; y un ARN quimérico que comprende los nucleótidos 1-32 del ARNcr, un bucle GAAA y los nucleótidos 19-45 del ARNtracr. El ARNcr se sintetizó químicamente por Sigma-Aldrich. El ARNtracr y el ARN quimérico se sintetizaron por transcripción in vitro con la a Rn polimerasa T7 utilizando el kit T7-Scribe Standard RNA IVT (Cellscript). La secuencia codificante de ARN quimérico también se colocó bajo el control del promotor U6 humano para la transcripción in vivo en células humanas. La Tabla 4 muestra las secuencias de los ARN guía.
Figure imgf000022_0001
Ejemplo 3: Preparación del polinucleótido donador para controlar la modificación del genoma
Se usó la integración dirigida de una proteína GFP en el extremo N de PPP1R12C para controlar la modificación del genoma mediada por Cas9. Para mediar la integración por recombinación homóloga se preparó un polinucleótido donador. El donador de ADN AAVS1-GFP contenía un brazo homólogo 5' del locus AAVS1 (1185 pb), un receptor de empalme de ARN, una secuencia de codificación turbo GFP, un terminador de transcripción 3' y un brazo homólogo 3' del locus AAVS1 (1217 pb). La Tabla 5 muestra las secuencias del receptor de empalme de ARN y la secuencia de codificación GFP seguida del terminador de transcripción 3'. El ADN plasmídico se preparó utilizando el kit GenElute Endotoxin-Free Plasmid Maxiprepr (Sigma).
Figure imgf000022_0002
La integración genética dirigida dará como resultado una proteína de fusión entre los primeros 107 aminoácidos del PPP1R12C y el turbo GFP. La proteína de fusión esperada contiene los primeros 107 restos de aminoácidos de PPP1R12C (resaltados en gris) del empalme de ARN entre el primer exón de PPP1R12C y el receptor de empalme diseñado por ingeniería genética (véase Tabla 6).
Figure imgf000023_0001
Ejemplo 4: Integración dirigida mediada por Cas9
La transfección se realizó en células K562 humanas. La línea celular K562 se obtuvo de la American Type Culture Collection (ATCC) y se cultivó en medio de Dulbecco modificado por Iscove, suplementado con 10 % de FBS y L-glutamina 2 mM. Todos los medios y suplementos se obtuvieron de Sigma-Aldrich. Los cultivos se dividieron un día antes de la transfección (a aproximadamente 0,5 millones de células por ml antes de la transfección). Las células se transfectaron con Nucleofector Solution V (Lonza) en un Nucleofector (Lonza) con el programa T-016. Cada nucleofección contenía aproximadamente 0,6 millones de células. Los tratamientos de transfección se detallan en la Tabla 7. Las células se cultivaron a 37 °C y 5 % de CO2 inmediatamente después de la nucleofección.
Figure imgf000023_0002
La clasificación de células activadas por fluorescencia (FACS) se realizó 4 días después de la transfección. Los datos de FACS se muestran en la Figura 2. El porcentaje de GFP detectado en cada uno de los cuatro tratamientos experimentales (A-D) fue mayor que en los tratamientos control (E, F), confirmando la integración de la secuencia donadora y la expresión de la proteína de fusión.
Ejemplo 5: Confirmación por PCR de integración dirigida
El ADN genómico se extrajo de las células transfectadas con el kit GenElute Mammalian Genomic DNA Miniprep (Sigma) 12 días después de la transfección. Luego, el ADN genómico se amplificó por PCR con un cebador directo ubicado fuera del brazo homólogo 5' del plásmido donador AAVS1-GFP y un cebador inverso ubicado en la región 5' de la GFP. El cebador directo fue 5'-CCACTCTGTGCTGACCACTCT-3 '(SEQ ID NO: 18) y el cebador inverso fue 5'-GCGGCACTCGATCTCCA-3' (SEQ ID NO: 19). El tamaño de fragmento esperado de la OCR de unión fue de 1388 pb. La amplificación se realizó con JumpStart Taq ReadyMix (Sigma), utilizando las siguientes condiciones de ciclo: 98 °C durante 2 minutos para la desnaturalización inicial; 35 ciclos de 98 °C durante 15 segundos, 62 °C durante 30 segundos y 72 °C durante 1 minuto y 30 segundos; y una extensión final a 72 °C durante 5 minutos. Los productos de PCR se resolvieron en gel de agarosa al 1%.
Células transfectadas con 10 |jg de ARNm de Cas9 transcritas con un análogo de caperuza anti-inverso, 0,3 nmol del dúplex ARNcr-ARNtracr pre-anillado, y 10 jg de ADN plasmídico de AAVS1-GFP exhibieron un producto de PCR del tamaño esperado (véase el carril A, Figura 3).
Ejemplo 6: Edición del genoma basada en Cas9 en embriones de ratón
El locus Rosa26 de ratón puede ser objeto de modificaciones genómicas. La Tabla 8 presenta una parte de la secuencia de Rosa26 del ratón en la que los sitios diana potenciales se muestran en negrita. Cada sitio diana comprende un protoespaciador.
Figure imgf000024_0001
Se diseñaron ARN guía para dirigirse a cada uno de los sitios diana en el locus Rosa26 de ratón. Las secuencias se muestran en la Tabla 9, cada uno tiene 42 nucleótidos de longitud y la región 5' es complementaria a la cadena que no se presenta en la Tabla 8 (es decir, la cadena que es complementaria a la cadena que se muestra en la Tabla 8).
Figure imgf000024_0002
Los ARNcr se sintetizaron químicamente y se pre-anillaron al ARNtracr (SEQ ID NO: 13; véase el ejemplo 2). El ARNcr/ARNtracr y el ARNm transcrito in vitro que codifica la proteína Cas9 modificada (SEQ ID NO: 9; véase el ejemplo 1) puede microinyectarse en los pronúcleos de embriones de ratón fertilizados. Bajo la guía a la diana establecida por el ARNcr, la proteína Cas9 escinde el sitio diana, y la ruptura bicatenaria resultante se puede reparar mediante un proceso de reparación de unión de extremos no homólogos (NHEJ). Los embriones inyectados pueden incubarse a 37 °C, 5 % de CO2 durante la noche o durante hasta 4 días, seguido de un análisis de genotipado, o los embriones inyectados pueden implantarse en ratones hembra receptores de modo que los animales nacidos vivos puedan genotiparse. En los embriones o tejidos incubados in vitro de animales nacidos vivos puede explorarse la presencia de mutación inducida por Cas9 en el locus Rosa utilizando procedimientos estándar. Por ejemplo, los embriones o tejidos del feto o de animales vivos se pueden recolectar para la extracción y análisis del a Dn . El ADN puede aislarse utilizando procedimientos estándar. La región diana del locus Rosa26 puede amplificarse mediante PCR usando cebadores apropiados. Debido a que el NHEJ es propenso a errores, pueden producirse deleciones de al menos un nucleótido, inserciones de al menos un nucleótido, sustituciones de al menos un nucleótido o combinaciones de las mismas durante la reparación de la ruptura. Las mutaciones se pueden detectar utilizando procedimientos de genotipado basados en PCR, tales como ensayos de emparejamiento erróneo Cel-I y secuenciación de ADN.
Ejemplo 7: Modificación del genoma basada en Cas9 en embriones de ratón
El locus Rosa26 se puede modificar en embriones de ratón mediante la inyección conjunta de un polinucleótido donador, como se detalla anteriormente en la sección (III) (d), junto con el ARNcr/ARNtracr pre-anillado y el ARNm que codifica Cas9 modificado como se describe anteriormente en el ejemplo 6. En los embriones o tejidos incubados in vitro de animales vivos (como se describe en el ejemplo 6) puede explorarse la presencia de un locus Rosa26 modificado utilizando procedimientos de genotipado basados en PCR, tales como ensayos RFLP, PCR de uniones y secuenciación de ADN.
Ejemplo 8: Edición del genoma basada en Cas9 en embriones de rata
El locus Rosa26 de rata puede ser objeto de modificaciones genómicas. La Tabla 10 muestra una parte de la secuencia de rata en la que los sitios diana potenciales se muestran en negrita. Cada sitio diana comprende un protoespaciador.
Figure imgf000025_0001
Se diseñaron ARN guía para dirigirse a cada uno de los sitios diana en el locus Rosa26 de rata. Las secuencias se muestran en la Tabla 11, cada uno tiene 42 nucleótidos de longitud y la región 5' es complementaria a la cadena que no se presenta en la Tabla 10 (es decir, la cadena que es complementaria a la cadena que se muestra en la Tabla 10).
Figure imgf000025_0002
Los ARNcr se sintetizaron químicamente y se pre-anillaron al ARNtracr (SEQ ID NO: 13; véase el ejemplo 2). El ARNcr/ARNtracr y el ARNm transcrito in vitro que codifica la proteína Cas9 modificada (SEQ ID NO: 9; véase el ejemplo 1) puede microinyectarse en los pronúcleos de embriones de rata fertilizados. Tras la guía hacia el sitio diana por parte del ARNcr, la proteína Cas9 escinde el sitio diana, y la ruptura bicatenaria resultante se puede reparar mediante un proceso de reparación de extremos no homólogos (NHEJ). Los embriones inyectados pueden incubarse a 37 °C, 5 % de CO2 durante la noche o durante hasta 4 días, seguido de un análisis de genotipado, o los embriones inyectados pueden implantarse en ratones hembra receptores de modo que los animales nacidos vivos puedan genotiparse. En los embriones o tejidos incubados in vitro de animales nacidos vivos puede explorarse la presencia de mutación inducida por Cas9 en el locus Rosa utilizando procedimientos estándar. Por ejemplo, los embriones o tejidos del feto o de animales vivos se pueden recolectar para la extracción y análisis del ADN. El ADN puede aislarse utilizando procedimientos estándar. La región diana del locus Rosa26 puede amplificarse mediante PCR usando cebadores apropiados. Debido a que el NHEJ es propenso a errores, pueden producirse deleciones de al menos un nucleótido, inserciones de al menos un nucleótido, sustituciones de al menos un nucleótido o combinaciones de las mismas durante la reparación de la ruptura. Las mutaciones se pueden detectar utilizando procedimientos de genotipado basados en PCR, tales como ensayos de emparejamiento erróneo Cel-I y secuenciación de ADN.

Claims (27)

REIVINDICACIONES
1. Un complejo de endonucleasa guiado por ARN diseñado por ingeniería genética que comprende:
un ARN guía que comprende
(i) una primera región complementaria a un sitio diana en una secuencia cromosómica eucariota que puede emparejarse formando pares de bases con el sitio diana, que comprende de aproximadamente 10 nucleótidos a más de aproximadamente 25 nucleótidos,
(ii) una segunda región que forma una estructura de tallo y bucle, y
(iii) una tercera región que es fundamentalmente monocatenaria,
en el que (i), (ii) y (iii) están dispuestos en la dirección 5' a 3', y el ARN guía comprende dos moléculas separadas,
en el que se forma un complejo proteína-ARN entre el ARN guía y una proteína CRISPR/Cas9 de tipo II, que comprende además una señal de localización nuclear, y
el a Rn guía interactúa con la proteína CRISPR/Cas9 de tipo II para guiar a la proteína al sitio diana específico.
2. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 1, en el que la primera molécula del ARN guía comprende la primera región del ARN guía y la mitad del tallo de la segunda región del ARN guía.
3. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 1 o la reivindicación 2, en el que la segunda molécula del ARN guía comprende la otra mitad del tallo de la segunda región del ARN guía y la tercera región del ARN guía.
4. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquiera de las reivindicaciones 1-3, en el que la segunda región del ARN guía tiene una longitud de aproximadamente 16 a aproximadamente 60 nucleótidos.
5. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquiera de las reivindicaciones 1-4, en el que la tercera región del ARN guía tiene una longitud de aproximadamente 5 a aproximadamente 60 nucleótidos.
6. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquiera de las reivindicaciones 1-5, en el que la proteína CRISPR/Cas9 de tipo II comprende solo un dominio nucleasa funcional.
7. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 6, en el que la proteína CRISPR/Cas9 de tipo II comprende un dominio tipo RuvC no funcional.
8. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 6, en el que la proteína CRISPR/Cas9 de tipo II comprende un dominio tipo HNH no funcional.
9. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquier reivindicación anterior, en el que la proteína CRISPR/Cas9 tipo II es de una especie de Streptococcus.
10. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 9, en el que la proteína CRISPR/Cas9 tipo II es de Streptococcus pyogenes.
11. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquier reivindicación anterior, en el que la NLS está localizada en el extremo C de la endonucleasa guiada por ARN.
12. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquier reivindicación anterior, en el que la proteína CRISPR/Cas9 de tipo II está codificada por ADN optimizado para la expresión en eucariotas.
13. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 12, en el que el ADN está unido de forma operativa a una secuencia promotora control para la expresión en eucariotas.
14. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 12 o la reivindicación 13, en el que el ADN que codifica la endonucleasa guiada por ARN diseñada por ingeniería genética está comprendido en un vector.
15. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquier reivindicación anterior, en el que el ARN guía está codificado por ADN unido de forma operativa a una secuencia promotora control para la expresión en eucariotas.
16. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 15, en el que el ADN que codifica el ARN guía está comprendido en un vector.
17. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquier reivindicación anterior, en el que el sitio diana está corriente arriba de un motivo adyacente protoespaciador (PAM).
18. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 17, en el que el PAM está inmediatamente corriente abajo del sitio diana.
19. El complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de la reivindicación 17 o la reivindicación 18, en el que el PAM es NGG o NGGNG, en el que N se define como cualquier nucleótido.
20. Uso del complejo de endonucleasa guiado por ARN diseñado por ingeniería genética de cualquier reivindicación anterior, y opcionalmente al menos un polinucleótido donador que comprende una secuencia donadora, para modificar una secuencia cromosómica, en el que
el uso no comprende un procedimiento para modificar la identidad genética de la línea germinal de un ser humano, en el que el uso no comprende el uso de embriones humanos para fines industriales o comerciales y, en el que dicho procedimiento no comprende un procedimiento para el tratamiento del cuerpo humano o animal mediante cirugía o terapia.
21. El uso de la reivindicación 20, en el que la secuencia cromosómica se repara mediante un proceso de reparación de ADN, de tal manera que la secuencia cromosómica se modifica mediante la deleción de al menos un nucleótido, una inserción de al menos un nucleótido, una sustitución de al menos un nucleótido, o una combinación de las mismas.
22. El uso de acuerdo con la reivindicación 21, en el que el proceso de reparación de ADN es un proceso de reparación de unión de extremos no homólogos (NHEJ).
23. El uso de acuerdo con la reivindicación 21, que comprende además un polinucleótido donador que comprende secuencias corriente arriba y corriente abajo, en el que el proceso de reparación del ADN es una reparación dirigida por homología (HDR) y la secuencia donadora se integra en la secuencia cromosómica.
24. El uso de cualquiera de las reivindicaciones 20-23, en el que la secuencia cromosómica está en una célula eucariota, en el que la célula eucariota es una célula humana, una célula de mamífero no humano o una célula de vertebrado no mamífero.
25. El uso de cualquiera de las reivindicaciones 20-23, en el que la secuencia cromosómica está en una célula eucariota, en el que la célula eucariota es una célula de invertebrado, una célula de insecto, una célula vegetal, una célula de levadura o un organismo eucariota unicelular.
26. El uso de la reivindicación 25, en el que la célula eucariota es una célula vegetal.
27. El uso de cualquiera de las reivindicaciones 20-23 en el que la secuencia cromosómica está en un embrión de mamífero no humano.
ES18156734T 2012-12-06 2013-12-05 Modificación y regulación del genoma basada en CRISPR Active ES2757808T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261734256P 2012-12-06 2012-12-06
US201361758624P 2013-01-30 2013-01-30
US201361761046P 2013-02-05 2013-02-05
US201361794422P 2013-03-15 2013-03-15

Publications (1)

Publication Number Publication Date
ES2757808T3 true ES2757808T3 (es) 2020-04-30

Family

ID=50883989

Family Applications (6)

Application Number Title Priority Date Filing Date
ES16183725T Active ES2713243T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma basada en CRISPR
ES16183724T Active ES2714154T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma en base a CRISPR
ES16183723.2T Active ES2653212T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma en base a CRISPR
ES18160519T Active ES2769310T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma basada en CRISPR
ES18156734T Active ES2757808T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma basada en CRISPR
ES13859964T Active ES2757325T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma en base a CRISPR

Family Applications Before (4)

Application Number Title Priority Date Filing Date
ES16183725T Active ES2713243T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma basada en CRISPR
ES16183724T Active ES2714154T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma en base a CRISPR
ES16183723.2T Active ES2653212T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma en base a CRISPR
ES18160519T Active ES2769310T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma basada en CRISPR

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES13859964T Active ES2757325T3 (es) 2012-12-06 2013-12-05 Modificación y regulación del genoma en base a CRISPR

Country Status (17)

Country Link
US (15) US20160017366A1 (es)
EP (11) EP3138911B1 (es)
JP (6) JP6620018B2 (es)
KR (7) KR102006880B1 (es)
CN (3) CN108715602A (es)
AU (9) AU2013355214B2 (es)
BR (1) BR112015012375A2 (es)
CA (3) CA3034794A1 (es)
DK (6) DK3363902T3 (es)
ES (6) ES2713243T3 (es)
HK (1) HK1218389A1 (es)
IL (5) IL300199A (es)
LT (4) LT3138911T (es)
PL (6) PL3363902T3 (es)
PT (6) PT3138910T (es)
SG (4) SG10201800585VA (es)
WO (1) WO2014089290A1 (es)

Families Citing this family (355)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027558A2 (en) 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
CA3132011A1 (en) 2010-11-12 2012-06-14 Gen9, Inc. Methods and devices for nucleic acids synthesis
WO2012064975A1 (en) 2010-11-12 2012-05-18 Gen9, Inc. Protein arrays and methods of using and making the same
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
JP2014526899A (ja) 2011-08-26 2014-10-09 ジェン9・インコーポレイテッド 核酸の高忠実度アセンブリのための組成物および方法
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
SG10201702445TA (en) 2012-04-25 2017-04-27 Regeneron Pharma Nuclease-mediated targeting with large targeting vectors
RS64622B1 (sr) 2012-05-25 2023-10-31 Univ California Metode i sastavi za modifikaciju ciljane dnk upravljenu pomoću rnk i za modulaciju transkripcije upravljanu rnk
CA2877290A1 (en) 2012-06-19 2013-12-27 Daniel F. Voytas Gene targeting in plants using dna viruses
WO2014004393A1 (en) 2012-06-25 2014-01-03 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
ES2757623T3 (es) 2012-07-25 2020-04-29 Broad Inst Inc Proteínas de unión a ADN inducibles y herramientas de perturbación genómica y aplicaciones de las mismas
JP6517143B2 (ja) 2012-10-23 2019-05-22 ツールゲン インコーポレイテッド 標的dnaに特異的なガイドrnaおよびcasタンパク質コード核酸またはcasタンパク質を含む、標的dnaを切断するための組成物、ならびにその使用
BR112015010911A2 (pt) 2012-11-16 2022-10-25 Transposagen Biopharmaceuticals Inc Enzimas específicas de sítio e métodos de uso
KR102006880B1 (ko) 2012-12-06 2019-08-02 시그마-알드리치 컴퍼니., 엘엘씨 Crispr-기초된 유전체 변형과 조절
US8697359B1 (en) * 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
PT2896697E (pt) * 2012-12-12 2015-12-31 Massachusetts Inst Technology Engenharia de sistemas, métodos e composições guia otimizadas para a manipulação de sequências
DK2931898T3 (en) 2012-12-12 2016-06-20 Massachusetts Inst Technology CONSTRUCTION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH FUNCTIONAL DOMAINS
IL239317B (en) * 2012-12-12 2022-07-01 Broad Inst Inc Providing, engineering and optimizing systems, methods and compositions for sequence manipulation and therapeutic applications
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
EP4286402A3 (en) * 2012-12-12 2024-02-14 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
PT2898075E (pt) 2012-12-12 2016-06-16 Harvard College Manipulação e otimização de sistemas, métodos e composições de enzima melhorados para manipulação de sequências
WO2014093718A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
SG11201504621RA (en) * 2012-12-17 2015-07-30 Harvard College Rna-guided human genome engineering
WO2014131833A1 (en) 2013-02-27 2014-09-04 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Gene editing in the oocyte by cas9 nucleases
US10138509B2 (en) 2013-03-12 2018-11-27 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
ES2901396T3 (es) 2013-03-14 2022-03-22 Caribou Biosciences Inc Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico
US20140273235A1 (en) * 2013-03-15 2014-09-18 Regents Of The University Of Minnesota ENGINEERING PLANT GENOMES USING CRISPR/Cas SYSTEMS
US10119133B2 (en) * 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
RS58255B1 (sr) 2013-04-16 2019-03-29 Regeneron Pharma Ciljana modifikacija genoma pacova
WO2014172470A2 (en) * 2013-04-16 2014-10-23 Whitehead Institute For Biomedical Research Methods of mutating, modifying or modulating nucleic acid in a cell or nonhuman mammal
EP2997146A4 (en) 2013-05-15 2017-04-26 Sangamo BioSciences, Inc. Methods and compositions for treatment of a genetic condition
DK3004349T3 (en) * 2013-05-29 2018-06-06 Cellectis Sa A method for producing precise DNA cleavage using CAS9 nickase activity
WO2014197568A2 (en) * 2013-06-04 2014-12-11 President And Fellows Of Harvard College Rna-guideded transcriptional regulation
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
AU2014274840B2 (en) * 2013-06-05 2020-03-12 Duke University RNA-guided gene editing and gene regulation
AU2014279694B2 (en) 2013-06-14 2020-07-23 Cellectis Methods for non-transgenic genome editing in plants
RU2716420C2 (ru) * 2013-06-17 2020-03-11 Те Брод Инститьют Инк. Доставка и применение систем crispr-cas, векторов и композиций для целенаправленного воздействия и терапии в печени
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
AU2014281027A1 (en) * 2013-06-17 2016-01-28 Massachusetts Institute Of Technology Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
SG10201710487VA (en) * 2013-06-17 2018-01-30 Broad Inst Inc Delivery, Use and Therapeutic Applications of the Crispr-Cas Systems and Compositions for Targeting Disorders and Diseases Using Viral Components
KR20160044457A (ko) 2013-06-17 2016-04-25 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작을 위한 탠덤 안내 시스템, 방법 및 조성물의 전달, 조작 및 최적화
EP3011032B1 (en) * 2013-06-17 2019-10-16 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US11306328B2 (en) * 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
CN105916989A (zh) 2013-08-22 2016-08-31 纳幕尔杜邦公司 大豆u6聚合酶iii启动子及其使用方法
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
EP3418379B1 (en) * 2013-09-18 2020-12-09 Kymab Limited Methods, cells & organisms
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
US10584358B2 (en) 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
KR102523466B1 (ko) 2013-11-07 2023-04-20 에디타스 메디신, 인코포레이티드 지배적인 gRNA를 이용하는 CRISPR-관련 방법 및 조성물
EP4349980A2 (en) 2013-12-11 2024-04-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
WO2015088643A1 (en) 2013-12-11 2015-06-18 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
AU2014361834B2 (en) 2013-12-12 2020-10-22 Massachusetts Institute Of Technology CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes
JP6793547B2 (ja) 2013-12-12 2020-12-02 ザ・ブロード・インスティテュート・インコーポレイテッド 最適化機能CRISPR−Cas系による配列操作のための系、方法および組成物
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
SG10201804976YA (en) 2013-12-12 2018-07-30 Broad Inst Inc Delivery, Use and Therapeutic Applications of the Crispr-Cas Systems and Compositions for Genome Editing
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2014362248A1 (en) 2013-12-12 2016-06-16 Massachusetts Institute Of Technology Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US10787654B2 (en) * 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
KR102496984B1 (ko) 2014-02-11 2023-02-06 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 Crispr 이용의 다중화된 게놈 조작
WO2015126927A2 (en) 2014-02-18 2015-08-27 Duke University Compositions for the inactivation of virus replication and methods of making and using the same
WO2015134812A1 (en) 2014-03-05 2015-09-11 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
AU2015236128A1 (en) * 2014-03-25 2016-11-10 Editas Medicine Inc. CRISPR/CAS-related methods and compositions for treating HIV infection and AIDS
EP3122880B1 (en) 2014-03-26 2021-05-05 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
CN106460003A (zh) 2014-04-08 2017-02-22 北卡罗来纳州立大学 用于使用crispr相关基因rna引导阻遏转录的方法和组合物
WO2015188056A1 (en) 2014-06-05 2015-12-10 Sangamo Biosciences, Inc. Methods and compositions for nuclease design
RU2704283C9 (ru) 2014-06-06 2020-02-07 Регенерон Фармасьютикалз, Инк. Способы и композиции для модификации целевого локуса
CN106852157B (zh) * 2014-06-16 2022-04-12 约翰斯·霍普金斯大学 用于使用h1启动子表达crispr向导rna的组合物和方法
US20170107541A1 (en) * 2014-06-17 2017-04-20 Poseida Therapeutics, Inc. A method for directing proteins to specific loci in the genome and uses thereof
BR112016030145A8 (pt) 2014-06-23 2018-12-11 Regeneron Pharma métodos para a montagem de ao menos dois ácidos nucleicos e de dois ou mais ácidos nucleicos
ES2694629T3 (es) 2014-06-26 2018-12-26 Regeneron Pharmaceuticals, Inc. Métodos y composiciones para modificaciones genéticas objetivo y métodos de uso
US20170198268A1 (en) * 2014-07-09 2017-07-13 Gen9, Inc. Compositions and Methods for Site-Directed DNA Nicking and Cleaving
WO2016011080A2 (en) * 2014-07-14 2016-01-21 The Regents Of The University Of California Crispr/cas transcriptional modulation
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
KR101817482B1 (ko) 2014-08-06 2018-02-22 주식회사 툴젠 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정
EP3186375A4 (en) 2014-08-28 2019-03-13 North Carolina State University NEW CAS9 PROTEINS AND GUIDING ELEMENTS FOR DNA TARGETING AND THE GENOME EDITION
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
CA2956487A1 (en) 2014-09-12 2016-03-17 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
EP3998344A1 (en) * 2014-10-09 2022-05-18 Life Technologies Corporation Crispr oligonucleotides and gene editing
WO2016057850A1 (en) 2014-10-09 2016-04-14 Seattle Children' S Hospital (Dba Seattle Children' S Research Institute) Long poly (a) plasmids and methods for introduction of long poly (a) sequences into the plasmid
ES2741387T3 (es) 2014-10-15 2020-02-10 Regeneron Pharma Métodos y composiciones para generar o mantener células pluripotentes
WO2016065364A1 (en) * 2014-10-24 2016-04-28 Life Technologies Corporation Compositions and methods for enhancing homologous recombination
US20190100769A1 (en) * 2014-10-31 2019-04-04 Massachusetts Institute Of Technology Massively parallel combinatorial genetics for crispr
CA2966731C (en) * 2014-11-06 2023-01-31 E. I. Du Pont De Nemours And Company Peptide-mediated delivery of rna-guided endonuclease into cells
CA2963820A1 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
US20170369848A1 (en) * 2014-11-11 2017-12-28 Q Therapeutics, Inc. Engineering mesenchymal stem cells using homologous recombination
JP2017534294A (ja) * 2014-11-19 2017-11-24 インスティチュート フォー ベーシック サイエンスInstitute For Basic Science 二つのベクターから発現されたcas9タンパク質を利用した遺伝子発現調節方法
PT3221457T (pt) 2014-11-21 2019-06-27 Regeneron Pharma Métodos e composições para modificação genética visada através da utilização de arn guia emparelhados
GB201421096D0 (en) 2014-11-27 2015-01-14 Imp Innovations Ltd Genome editing methods
WO2016089433A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
US9888673B2 (en) 2014-12-10 2018-02-13 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3985115A1 (en) 2014-12-12 2022-04-20 The Broad Institute, Inc. Protected guide rnas (pgrnas)
KR102530821B1 (ko) 2014-12-19 2023-05-10 리제너론 파마슈티칼스 인코포레이티드 단일 단계 다중 표적화를 통한 표적화된 유전자 변형을 위한 방법 및 조성물
US10196613B2 (en) 2014-12-19 2019-02-05 Regeneron Pharmaceuticals, Inc. Stem cells for modeling type 2 diabetes
WO2016120480A1 (fr) 2015-01-29 2016-08-04 Meiogenix Procede pour induire des recombinaisons meiotiques ciblees
CN107787367B (zh) 2015-04-06 2021-10-26 里兰斯坦福初级大学理事会 用于crispr/cas介导的基因调控的化学修饰的引导rna
EP3286571B1 (en) 2015-04-24 2021-08-18 Editas Medicine, Inc. Evaluation of cas9 molecule/guide rna molecule complexes
WO2016176617A2 (en) 2015-04-29 2016-11-03 New York University Method for treating high-grade gliomas
WO2016178207A1 (en) 2015-05-04 2016-11-10 Ramot At Tel-Aviv University Ltd. Methods and kits for fragmenting dna
AU2016261358B2 (en) 2015-05-11 2021-09-16 Editas Medicine, Inc. Optimized CRISPR/Cas9 systems and methods for gene editing in stem cells
JP2018516563A (ja) 2015-05-29 2018-06-28 ノース カロライナ ステート ユニバーシティNorth Carolina State University Crispr核酸を用いて、細菌、古細菌、藻類、および、酵母をスクリーニングする方法
EP3303585A4 (en) 2015-06-03 2018-10-31 Board of Regents of the University of Nebraska Dna editing using single-stranded dna
CN116334142A (zh) 2015-06-09 2023-06-27 爱迪塔斯医药公司 用于改善移植的crispr/cas相关方法和组合物
CA2983874C (en) 2015-06-15 2022-06-21 North Carolina State University Methods and compositions for efficient delivery of nucleic acids and rna-based antimicrobials
EP3310909B1 (en) * 2015-06-17 2021-06-09 Poseida Therapeutics, Inc. Compositions and methods for directing proteins to specific loci in the genome
KR102575342B1 (ko) 2015-06-18 2023-09-05 더 브로드 인스티튜트, 인코퍼레이티드 표적외 효과를 감소시키는 crispr 효소 돌연변이
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
US20160376610A1 (en) * 2015-06-24 2016-12-29 Sigma-Aldrich Co. Llc Cell cycle dependent genome regulation and modification
IL295616A (en) 2015-07-31 2022-10-01 Us Health Adapted cells and treatment methods
EP3334746B1 (en) 2015-08-14 2021-11-24 The University Of Sydney Connexin 45 inhibition for therapy
IL288662B2 (en) 2015-08-25 2023-09-01 Univ Duke Preparations and methods for improving specificity in genomic engineering using RNA-guided endonucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
CN108350449B (zh) 2015-08-28 2022-05-31 通用医疗公司 工程化的CRISPR-Cas9核酸酶
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
CA2999500A1 (en) 2015-09-24 2017-03-30 Editas Medicine, Inc. Use of exonucleases to improve crispr/cas-mediated genome editing
KR101745863B1 (ko) 2015-09-25 2017-06-12 전남대학교산학협력단 Crispr/cas9 시스템을 이용한 프로히비틴2 유전자 제거용 시발체
KR101795999B1 (ko) 2015-09-25 2017-11-09 전남대학교산학협력단 Crispr/cas9 시스템을 이용한 베타2-마이크로글로불린 유전자 제거용 시발체
EP3356533A1 (en) 2015-09-28 2018-08-08 North Carolina State University Methods and compositions for sequence specific antimicrobials
EP3362571A4 (en) 2015-10-13 2019-07-10 Duke University GENOMIC ENGINEERING WITH TYPE I CRISPRISMS IN EUKARYOTIC CELLS
EP3365997B1 (en) 2015-10-22 2021-03-24 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus relating to selective enhancement of radio signals
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
WO2017075335A1 (en) 2015-10-28 2017-05-04 Voyager Therapeutics, Inc. Regulatable expression using adeno-associated virus (aav)
CA3004285A1 (en) 2015-11-03 2017-05-11 President And Fellows Of Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
US11905521B2 (en) 2015-11-17 2024-02-20 The Chinese University Of Hong Kong Methods and systems for targeted gene manipulation
US10240145B2 (en) * 2015-11-25 2019-03-26 The Board Of Trustees Of The Leland Stanford Junior University CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer
WO2017112620A1 (en) 2015-12-22 2017-06-29 North Carolina State University Methods and compositions for delivery of crispr based antimicrobials
EA201891619A1 (ru) 2016-01-11 2019-02-28 Те Борд Оф Трастиз Оф Те Лилэнд Стэнфорд Джуниор Юниверсити Химерные белки и способы регулирования экспрессии генов
EA201891614A1 (ru) 2016-01-11 2019-02-28 Те Борд Оф Трастиз Оф Те Лилэнд Стэнфорд Джуниор Юниверсити Химерные белки и способы иммунотерапии
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
EP3433363A1 (en) 2016-03-25 2019-01-30 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
CA3020181A1 (en) * 2016-04-14 2017-10-19 Boco Silicon Valley, Inc. Genome editing of human neural stem cells using nucleases
WO2017189525A1 (en) 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
EP3448995A1 (en) * 2016-04-25 2019-03-06 Universität Basel Allele editing and applications thereof
NZ747857A (en) 2016-05-20 2023-01-27 Regeneron Pharma Methods for breaking immunological tolerance using multiple guide rnas
KR20220147710A (ko) * 2016-06-02 2022-11-03 시그마-알드리치 컴퍼니., 엘엘씨 프로그램가능한 dna 결합 단백질을 사용한, 표적화된 게놈 변형의 개선
BR112018074930A2 (pt) * 2016-06-03 2019-03-12 Inserm (Institut National De La Sante Et De La Recherche Medicale) ácido nucleico, vetor de ácido nucleico, partícula de entrega, composição farmacêutica, célula hospedeira, método para edição do genoma e método e kit para prevenção e/ou tratamento de uma doença
CA3026332A1 (en) * 2016-06-03 2017-12-14 Temple University - Of The Commonwealth System Of Higher Education Negative feedback regulation of hiv-1 by gene editing strategy
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US10337051B2 (en) 2016-06-16 2019-07-02 The Regents Of The University Of California Methods and compositions for detecting a target RNA
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
CA3029254A1 (en) 2016-06-24 2017-12-28 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
WO2018013720A1 (en) * 2016-07-12 2018-01-18 Washington University Incorporation of internal polya-encoded poly-lysine sequence tags and their variations for the tunable control of protein synthesis in bacterial and eukaryotic cells
DK3491014T3 (da) 2016-07-28 2023-05-30 Regeneron Pharma Allel-specifik primer eller sonde, som er hybridiseret til et nucleinsyremolekyle, som koder for en GPR156 variant
AU2017302657A1 (en) 2016-07-29 2019-02-14 Regeneron Pharmaceuticals, Inc. Mice comprising mutations resulting in expression of c-truncated fibrillin-1
AU2017305404B2 (en) 2016-08-02 2023-11-30 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
IL264565B1 (en) 2016-08-03 2024-03-01 Harvard College Adenosine nuclear base editors and their uses
US11078481B1 (en) 2016-08-03 2021-08-03 KSQ Therapeutics, Inc. Methods for screening for cancer targets
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
US20190185850A1 (en) * 2016-08-20 2019-06-20 Avellino Lab Usa, Inc. Single guide rna/crispr/cas9 systems, and methods of use thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11078483B1 (en) 2016-09-02 2021-08-03 KSQ Therapeutics, Inc. Methods for measuring and improving CRISPR reagent function
US20180105806A1 (en) * 2016-09-07 2018-04-19 Massachusetts Institute Of Technology Method for rna-guided endonuclease-based dna assembly
CN106636197B (zh) * 2016-09-22 2019-09-03 南京市妇幼保健院 一种定向敲降斑马鱼基因组中多拷贝基因的方法
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
GB2569733B (en) 2016-09-30 2022-09-14 Univ California RNA-guided nucleic acid modifying enzymes and methods of use thereof
US20190233820A1 (en) * 2016-10-11 2019-08-01 Stemgenics, Inc. Nanoparticles functionalized with gene editing tools and related methods
JP2019530464A (ja) 2016-10-14 2019-10-24 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸塩基エディターのaav送達
GB201617559D0 (en) 2016-10-17 2016-11-30 University Court Of The University Of Edinburgh The Swine comprising modified cd163 and associated methods
GB2605883B (en) 2016-10-18 2023-03-15 Univ Minnesota Tumor infiltrating lymphocytes and methods of therapy
KR20240043810A (ko) * 2016-11-02 2024-04-03 유니버시타트 바셀 세포 치료에 사용하기 위한 면역학적으로 식별 가능한 세포 표면 변이체
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
KR102151065B1 (ko) * 2016-12-23 2020-09-02 기초과학연구원 동물 배아의 염기 교정용 조성물 및 염기 교정 방법
US11859219B1 (en) 2016-12-30 2024-01-02 Flagship Pioneering Innovations V, Inc. Methods of altering a target nucleotide sequence with an RNA-guided nuclease and a single guide RNA
EP3571321A1 (en) 2017-01-23 2019-11-27 Regeneron Pharmaceuticals, Inc. Hydroxysteroid 17-beta dehydrogenase 13 (hsd17b13) variants and uses thereof
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
CN106978438B (zh) * 2017-02-27 2020-08-28 北京大北农生物技术有限公司 提高同源重组效率的方法
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
CN110914310A (zh) 2017-03-10 2020-03-24 哈佛大学的校长及成员们 胞嘧啶至鸟嘌呤碱基编辑器
EP3596217A1 (en) 2017-03-14 2020-01-22 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
WO2018176009A1 (en) 2017-03-23 2018-09-27 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
WO2018195129A1 (en) 2017-04-17 2018-10-25 University Of Maryland, College Park Embryonic cell cultures and methods of using the same
US11834670B2 (en) 2017-04-19 2023-12-05 Global Life Sciences Solutions Usa Llc Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
AU2018254619B2 (en) 2017-04-21 2022-07-21 The General Hospital Corporation Variants of Cpf1 (CAS12a) with altered PAM specificity
EP3615672A1 (en) 2017-04-28 2020-03-04 Editas Medicine, Inc. Methods and systems for analyzing guide rna molecules
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11326157B2 (en) 2017-05-25 2022-05-10 The General Hospital Corporation Base editors with improved precision and specificity
EP3635102A1 (en) 2017-06-05 2020-04-15 Regeneron Pharmaceuticals, Inc. B4galt1 variants and uses thereof
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
CA3067382A1 (en) 2017-06-15 2018-12-20 The Regents Of The University Of California Targeted non-viral dna insertions
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US11696572B2 (en) 2017-06-27 2023-07-11 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ASGR1 locus
ES2913457T3 (es) 2017-06-30 2022-06-02 Inscripta Inc Métodos, módulos, instrumentos y sistemas de procesamiento celular automatizados
JP2020530307A (ja) 2017-06-30 2020-10-22 インティマ・バイオサイエンス,インコーポレーテッド 遺伝子治療のためのアデノ随伴ウイルスベクター
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
CA3068072A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing crispr/cas-mediated disruption or excision and crispr/cas-induced recombination with an exogenous donor nucleic acid in vivo
CA3067872A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. Cas-transgenic mouse embryonic stem cells and mice and uses thereof
CN110891419A (zh) 2017-07-31 2020-03-17 瑞泽恩制药公司 评价crispr/cas-诱导的与外源供体核酸的体内重组
CA3066798A1 (en) * 2017-07-31 2019-02-07 Sigma Aldrich Co. Llc Synthetic guide rna for crispr/cas activator systems
IL310452A (en) * 2017-08-09 2024-03-01 Ricetec Inc Preparations and methods for genome modification
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
WO2019050948A1 (en) * 2017-09-05 2019-03-14 Regeneron Pharmaceuticals, Inc. ADMINISTRATION OF A GENE EDITION SYSTEM HAVING ONLY ONE RETROVIRAL PARTICLE AND METHODS OF GENERATING AND USING
IL272940B1 (en) 2017-09-06 2024-02-01 Regeneron Pharma Variants linked to the interleukin-1 immunoglobulin-single receptor and their uses
SG11202001792UA (en) 2017-09-07 2020-03-30 Regeneron Pharma Solute carrier family 14 member 1 (slc14a1) variants and uses thereof
MX2020003589A (es) 2017-09-29 2020-07-22 Regeneron Pharma Animales no humanos que comprenden un locus ttr humanizado y metodos de uso.
CN111372650A (zh) 2017-09-30 2020-07-03 因思科瑞普特公司 流通式电穿孔仪器
JP2021501601A (ja) 2017-10-16 2021-01-21 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. コルヌリン(crnn)バリアント及びその使用
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
US11634716B2 (en) 2017-10-16 2023-04-25 University of Pittsburgh—of the Commonwealth System of Higher Education Genetically modified mesenchymal stem cells for use in cardiovascular prosthetics
SG11202003798TA (en) 2017-10-27 2020-05-28 Univ California Targeted replacement of endogenous t cell receptors
EP3585163B1 (en) 2017-11-10 2022-03-09 Regeneron Pharmaceuticals, Inc. Non-human animals comprising slc30a8 mutation and methods of use
JP7423520B2 (ja) * 2017-11-16 2024-01-29 アストラゼネカ・アクチエボラーグ Cas9ベースノックイン方針の効力を改善するための組成物及び方法
AU2018375796A1 (en) 2017-11-30 2020-04-23 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized TRKB locus
WO2019126578A1 (en) * 2017-12-20 2019-06-27 Poseida Therapeutics, Inc. Compositions and methods for directing proteins to specific loci in the genome
AU2018389594B2 (en) * 2017-12-22 2021-03-04 G+Flas Life Sciences Chimeric genome engineering molecules and methods
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
EP3743516A4 (en) * 2018-01-26 2021-10-13 The Children's Medical Center Corporation TARGETING OF DISTAL BCL11A REGULATORY ELEMENTS WITH A CAS9-CAS9 FUSION TO REDUCE FETAL HEMOGLOBIN
KR20230022258A (ko) 2018-02-15 2023-02-14 시그마-알드리치 컴퍼니., 엘엘씨 진핵 게놈 변형을 위한 조작된 cas9 시스템
KR20240038811A (ko) 2018-03-19 2024-03-25 리제너론 파마슈티칼스 인코포레이티드 CRISPR/Cas 시스템을 사용한 동물에서의 전사 조절
WO2019190874A1 (en) 2018-03-29 2019-10-03 Inscripta, Inc. Automated control of cell growth rates for induction and transformation
WO2019200004A1 (en) 2018-04-13 2019-10-17 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
AU2019255789A1 (en) 2018-04-19 2020-10-22 The Regents Of The University Of California Compositions and methods for gene editing
US10501738B2 (en) 2018-04-24 2019-12-10 Inscripta, Inc. Automated instrumentation for production of peptide libraries
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US10526598B2 (en) 2018-04-24 2020-01-07 Inscripta, Inc. Methods for identifying T-cell receptor antigens
JP2021521850A (ja) * 2018-04-27 2021-08-30 シアトル チルドレンズ ホスピタル (ディービーエイ シアトル チルドレンズ リサーチ インスティテュート) X連鎖性高IgM症候群のゲノム編集治療
CN112105732A (zh) * 2018-05-10 2020-12-18 先正达参股股份有限公司 用于多核苷酸的靶向编辑的方法和组合物
EP3790974A1 (en) 2018-05-10 2021-03-17 Auxolytic Ltd Gene therapy methods and compositions using auxotrophic regulatable cells
GB2589246A (en) 2018-05-16 2021-05-26 Synthego Corp Methods and systems for guide RNA design and use
CN108624622A (zh) * 2018-05-16 2018-10-09 湖南艾佳生物科技股份有限公司 一种基于CRISPR-Cas9系统构建的能分泌小鼠白细胞介素-6的基因工程细胞株
EP3575402A1 (en) * 2018-06-01 2019-12-04 Algentech SAS Gene targeting
CN112424365A (zh) 2018-06-07 2021-02-26 以色列国家农业部、农村发展农业研究组织·沃尔卡尼中心 核酸构建体及其使用方法
CN112384063A (zh) 2018-06-07 2021-02-19 以色列国家农业部、农村发展农业研究组织·沃尔卡尼中心 再生及转殖大麻的方法
US20210230664A1 (en) * 2018-06-25 2021-07-29 Bionano Genomics, Inc. Labeling of dna
EP4070802A1 (en) 2018-06-30 2022-10-12 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
KR20210041008A (ko) * 2018-08-03 2021-04-14 빔 테라퓨틱스, 인크. 핵산 표적 서열을 변형시키기 위한 다중-이펙터 핵염기 편집기 및 이를 이용하는 방법
GB201813011D0 (en) 2018-08-10 2018-09-26 Vib Vzw Means and methods for drought tolerance in crops
US11142740B2 (en) 2018-08-14 2021-10-12 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
US10752874B2 (en) 2018-08-14 2020-08-25 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
KR102103104B1 (ko) 2018-08-16 2020-04-22 (주)라트바이오 유전자 편집된 형질전환 동물 및 형질전환 배아
JP2021533797A (ja) * 2018-08-21 2021-12-09 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co. LLC 細胞質dnaセンサー経路の下方制御
CN109055379B (zh) * 2018-09-10 2022-04-15 石铭 一种转基因鸡输卵管生物反应器的制备方法
KR102121817B1 (ko) * 2018-09-12 2020-06-26 한국화학연구원 Crispr 편집 기술을 이용한 재조합 항원을 발현시키는 벡터 및 이를 동시에 다중 삽입시키는 방법
KR102545031B1 (ko) 2018-09-13 2023-06-20 리제너론 파마슈티칼스 인코포레이티드 C3 사구체병증 모델로서의 보체 인자 h 유전자 녹아웃 래트
WO2020072248A1 (en) 2018-10-01 2020-04-09 North Carolina State University Recombinant type i crispr-cas system
CA3116553A1 (en) 2018-10-16 2020-04-23 Blueallele, Llc Methods for targeted insertion of dna in genes
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
CN113227368B (zh) 2018-10-22 2023-07-07 因思科瑞普特公司 工程化酶
US20220380740A1 (en) * 2018-10-24 2022-12-01 The Broad Institute, Inc. Constructs for improved hdr-dependent genomic editing
KR20200071198A (ko) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Nrf2 발현 조절 기반 T 세포 항암면역치료법
AU2019398351A1 (en) 2018-12-14 2021-06-03 Pioneer Hi-Bred International, Inc. Novel CRISPR-Cas systems for genome editing
WO2020128478A1 (en) 2018-12-19 2020-06-25 King's College London Immunotherapeutic methods and compositions
JP7449291B2 (ja) 2018-12-20 2024-03-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヌクレアーゼ媒介リピート伸長
CN113543797A (zh) * 2019-01-04 2021-10-22 芝加哥大学 用于调节rna的系统和方法
WO2020146899A1 (en) * 2019-01-11 2020-07-16 Chan Zuckerberg Biohub, Inc. Targeted in vivo genome modification
US11946040B2 (en) 2019-02-04 2024-04-02 The General Hospital Corporation Adenine DNA base editor variants with reduced off-target RNA editing
CN113728097A (zh) * 2019-02-14 2021-11-30 宏基因组学知识产权技术有限责任公司 具有ruvc结构域的酶
JP2022520104A (ja) 2019-02-15 2022-03-28 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー Crispr/cas融合タンパク質およびシステム
GB201902277D0 (en) 2019-02-19 2019-04-03 King S College London Therapeutic agents
AU2020231380A1 (en) * 2019-03-07 2021-09-23 The Regents Of The University Of California CRISPR-Cas effector polypeptides and methods of use thereof
IL286359B1 (en) 2019-03-18 2024-02-01 Regeneron Pharma A CRISPR/CAS knock-out screening platform for uncovering genetic vulnerabilities associated with tau aggregation
EP4317950A3 (en) 2019-03-18 2024-04-17 Regeneron Pharmaceuticals, Inc. Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation
WO2020191239A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
AU2020247900A1 (en) 2019-03-25 2021-11-04 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
BR112021019512A2 (pt) 2019-04-03 2022-02-15 Regeneron Pharma Métodos para inserir uma sequência de codificação de proteína de ligação ao antígeno e para tratar ou efetuar a profilaxia de uma doença em um animal, animal, célula, genoma, ácido nucleico doador exógeno, gene de porto seguro, e, agente de nuclease ou um ou mais ácidos nucleicos
US11737435B2 (en) 2019-04-04 2023-08-29 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized coagulation factor 12 locus
WO2020206134A1 (en) 2019-04-04 2020-10-08 Regeneron Pharmaceuticals, Inc. Methods for scarless introduction of targeted modifications into targeting vectors
GB201905360D0 (en) 2019-04-16 2019-05-29 Univ Nottingham Fungal strains, production and uses thereof
WO2020229241A1 (en) 2019-05-10 2020-11-19 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
EP3801011A1 (en) 2019-06-04 2021-04-14 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use
WO2020247587A1 (en) 2019-06-06 2020-12-10 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
MX2021015122A (es) 2019-06-07 2022-04-06 Regeneron Pharma Animales no humanos que comprenden un locus de albumina humanizado.
CA3137765A1 (en) 2019-06-14 2020-12-17 Regeneron Pharmaceuticals, Inc. Models of tauopathy
US10907125B2 (en) 2019-06-20 2021-02-02 Inscripta, Inc. Flow through electroporation modules and instrumentation
CN114008070A (zh) 2019-06-21 2022-02-01 因思科瑞普特公司 导致大肠杆菌赖氨酸产量增加的全基因组合理设计的突变
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
WO2021050398A1 (en) * 2019-09-10 2021-03-18 The Regents Of The University Of California Synthetic lethality screening platform for cells undergoing alt
CN114729382A (zh) 2019-09-12 2022-07-08 巴斯夫欧洲公司 增强植物中基因表达的调节性核酸分子
US20210079394A1 (en) 2019-09-13 2021-03-18 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems delivered by lipid nanoparticles
WO2021069387A1 (en) 2019-10-07 2021-04-15 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
CN110628825A (zh) * 2019-10-14 2019-12-31 上海捷易生物科技有限公司 一种依赖nhej的报告基因敲入组合物及其使用方法
EP4054651A1 (en) 2019-11-08 2022-09-14 Regeneron Pharmaceuticals, Inc. Crispr and aav strategies for x-linked juvenile retinoschisis therapy
WO2021102059A1 (en) 2019-11-19 2021-05-27 Inscripta, Inc. Methods for increasing observed editing in bacteria
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
CN114787365A (zh) 2019-12-03 2022-07-22 巴斯夫欧洲公司 用于在植物中增强基因表达的调节性核酸分子
US10883095B1 (en) 2019-12-10 2021-01-05 Inscripta, Inc. Mad nucleases
US10704033B1 (en) 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
CN114829612A (zh) 2019-12-16 2022-07-29 巴斯夫农业种子解决方案美国有限责任公司 使用配对切口酶的改进的基因组编辑
IL292895A (en) 2019-12-18 2022-07-01 Inscripta Inc Cascade/dcas3 complementation assays for in vivo detection of nucleic acid-directed nuclease-edited cells
CN115243711A (zh) * 2020-01-09 2022-10-25 先锋国际良种公司 两步基因交换
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
US11225674B2 (en) 2020-01-27 2022-01-18 Inscripta, Inc. Electroporation modules and instrumentation
CA3169272A1 (en) 2020-01-28 2021-08-05 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized pnpla3 locus and methods of use
EP4099821A1 (en) 2020-02-07 2022-12-14 Regeneron Pharmaceuticals, Inc. <smallcaps/>? ? ?klkb1? ? ? ? ?non-human animals comprising a humanizedlocus and methods of use
CN115485385A (zh) 2020-03-04 2022-12-16 瑞泽恩制药公司 用于使肿瘤细胞对免疫疗法敏感的方法和组合物
WO2021195079A1 (en) 2020-03-23 2021-09-30 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
CA3177051A1 (en) 2020-03-31 2021-10-07 Metagenomi, Inc. Class ii, type ii crispr systems
WO2021202938A1 (en) 2020-04-03 2021-10-07 Creyon Bio, Inc. Oligonucleotide-based machine learning
US20210332388A1 (en) 2020-04-24 2021-10-28 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells
DE112021002672T5 (de) 2020-05-08 2023-04-13 President And Fellows Of Harvard College Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
US20230232796A1 (en) 2020-06-26 2023-07-27 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ace2 locus
CN111849986A (zh) * 2020-07-24 2020-10-30 江苏集萃药康生物科技有限公司 一种减少CRISPR-Cas9基因编辑中双链DNA片段串联的方法及其应用
US11299731B1 (en) 2020-09-15 2022-04-12 Inscripta, Inc. CRISPR editing to embed nucleic acid landing pads into genomes of live cells
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
EP4256052A1 (en) 2020-12-02 2023-10-11 Decibel Therapeutics, Inc. Crispr sam biosensor cell lines and methods of use thereof
US20240058390A1 (en) * 2020-12-16 2024-02-22 The Administrators Of The Tulane Educational Fund Wnt+ adipocytes, exosomes from wnt+ adipocytes, and methods of making and using them
AU2021415461A1 (en) 2021-01-04 2023-08-17 Inscripta, Inc. Mad nucleases
US11332742B1 (en) 2021-01-07 2022-05-17 Inscripta, Inc. Mad nucleases
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
GB202103131D0 (en) 2021-03-05 2021-04-21 Biosystems Tech Limited Method for preparation of research organisms
EP4337769A1 (en) 2021-05-10 2024-03-20 SQZ Biotechnologies Company Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
US20230052243A1 (en) 2021-06-02 2023-02-16 Lyell Immunopharma, Inc. Nr4a-deficient cells expressing c-jun and uses thereof
CA3230927A1 (en) 2021-09-10 2023-03-16 Agilent Technologies, Inc. Guide rnas with chemical modification for prime editing
WO2023064924A1 (en) 2021-10-14 2023-04-20 Codiak Biosciences, Inc. Modified producer cells for extracellular vesicle production
WO2023077053A2 (en) 2021-10-28 2023-05-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
WO2023077148A1 (en) 2021-11-01 2023-05-04 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
AU2022381205A1 (en) 2021-11-04 2024-03-28 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a modified cacng1 locus
WO2023108047A1 (en) 2021-12-08 2023-06-15 Regeneron Pharmaceuticals, Inc. Mutant myocilin disease model and uses thereof
GB202118058D0 (en) 2021-12-14 2022-01-26 Univ Warwick Methods to increase yields in crops
US20230279442A1 (en) 2021-12-15 2023-09-07 Versitech Limited Engineered cas9-nucleases and method of use thereof
WO2023122506A1 (en) 2021-12-20 2023-06-29 Regeneron Pharmaceuticals, Inc. Non-human animals comprising humanized ace2 and tmprss loci
WO2023122764A1 (en) 2021-12-22 2023-06-29 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template
WO2023129974A1 (en) 2021-12-29 2023-07-06 Bristol-Myers Squibb Company Generation of landing pad cell lines
WO2023150181A1 (en) 2022-02-01 2023-08-10 President And Fellows Of Harvard College Methods and compositions for treating cancer
WO2023150620A1 (en) 2022-02-02 2023-08-10 Regeneron Pharmaceuticals, Inc. Crispr-mediated transgene insertion in neonatal cells
WO2023150798A1 (en) 2022-02-07 2023-08-10 Regeneron Pharmaceuticals, Inc. Compositions and methods for defining optimal treatment timeframes in lysosomal disease
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023212677A2 (en) 2022-04-29 2023-11-02 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
WO2023215831A1 (en) 2022-05-04 2023-11-09 Tome Biosciences, Inc. Guide rna compositions for programmable gene insertion
WO2023220603A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. Vectors and methods for in vivo antibody production
WO2023225665A1 (en) 2022-05-19 2023-11-23 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2023235726A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr interference therapeutics for c9orf72 repeat expansion disease
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
WO2023250384A2 (en) * 2022-06-22 2023-12-28 The Regents Of The University Of California Crispr-cas effector polypeptides and methods of use thereof
GB2621813A (en) 2022-06-30 2024-02-28 Univ Newcastle Preventing disease recurrence in Mitochondrial replacement therapy
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion
WO2024026488A2 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a modified transferrin receptor locus
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
WO2024031053A1 (en) 2022-08-05 2024-02-08 Regeneron Pharmaceuticals, Inc. Aggregation-resistant variants of tdp-43
WO2024064958A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
WO2024064952A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells overexpressing c-jun
WO2024073606A1 (en) 2022-09-28 2024-04-04 Regeneron Pharmaceuticals, Inc. Antibody resistant modified receptors to enhance cell-based therapies
WO2024077174A1 (en) 2022-10-05 2024-04-11 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952496A (en) 1984-03-30 1990-08-28 Associated Universities, Inc. Cloning and expression of the gene for bacteriophage T7 RNA polymerase
WO1988008450A1 (en) 1987-05-01 1988-11-03 Birdwell Finlayson Gene therapy for metabolite disorders
US5350689A (en) 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
US5767367A (en) 1990-06-23 1998-06-16 Hoechst Aktiengesellschaft Zea mays (L.) with capability of long term, highly efficient plant regeneration including fertile transgenic maize plants having a heterologous gene, and their preparation
US7150982B2 (en) 1991-09-09 2006-12-19 Third Wave Technologies, Inc. RNA detection assays
FR2763797B1 (fr) * 1997-05-30 1999-07-16 Tabacs & Allumettes Ind Cigarette a tres faible taux de goudron presentant un gout de tabac comparable a celui d'une cigarette classique a plus fort taux de goudron
US20040186071A1 (en) 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US20020182673A1 (en) 1998-05-15 2002-12-05 Genentech, Inc. IL-17 homologous polypedies and therapeutic uses thereof
JP2002535995A (ja) 1999-02-03 2002-10-29 ザ チルドレンズ メディカル センター コーポレイション 染色体標的部位での二本鎖dna切断の誘導を含む遺伝子修復
US8183339B1 (en) * 1999-10-12 2012-05-22 Xigen S.A. Cell-permeable peptide inhibitors of the JNK signal transduction pathway
US20020119570A1 (en) 2000-09-25 2002-08-29 Kyonggeun Yoon Targeted gene correction by single-stranded oligodeoxynucleotides
AU2002214127B2 (en) 2000-10-27 2007-06-07 J. Craig Venter Institute, Inc. Nucleic acids and proteins from streptococcus groups A and B
US7033744B2 (en) * 2001-03-16 2006-04-25 Naoya Kobayashi Method for proliferating a liver cell, a liver cell obtained thereby, and use thereof
CA2453183C (en) 2001-07-12 2016-05-10 University Of Massachusetts In vivo production of small interfering rnas that mediate gene silencing
US20060253913A1 (en) 2001-12-21 2006-11-09 Yue-Jin Huang Production of hSA-linked butyrylcholinesterases in transgenic mammals
CN100575485C (zh) 2002-01-23 2009-12-30 犹他大学研究基金会 使用锌指核酸酶的定向染色体诱变
CA2479858A1 (en) 2002-03-21 2003-10-02 Monika Liljedahl Methods and compositions for using zinc finger endonucleases to enhance homologous recombination
WO2003087993A2 (en) 2002-04-09 2003-10-23 Beattie Kenneth L Oligonucleotide probes for genosensor chips
WO2003104451A2 (en) * 2002-06-06 2003-12-18 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Agri-Food Modifying dna recombination and repair
EP2806025B1 (en) 2002-09-05 2019-04-03 California Institute of Technology Use of zinc finger nucleases to stimulate gene targeting
DE10260805A1 (de) * 2002-12-23 2004-07-22 Geneart Gmbh Verfahren und Vorrichtung zum Optimieren einer Nucleotidsequenz zur Expression eines Proteins
EP2927318B1 (en) 2003-08-08 2020-05-20 Sangamo Therapeutics, Inc. Methods and compositions for targeted cleavage and recombination
WO2005070948A1 (en) 2004-01-23 2005-08-04 Intronn, Inc. Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated rna trans splicing
US7972854B2 (en) 2004-02-05 2011-07-05 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US20050220796A1 (en) 2004-03-31 2005-10-06 Dynan William S Compositions and methods for modulating DNA repair
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
DE602005027747D1 (de) * 2004-12-22 2011-06-09 Alnylam Pharmaceuticals Inc Zum gen-silencing geeignete konservierte hbv- und hcv-sequenzen
US7892224B2 (en) 2005-06-01 2011-02-22 Brainlab Ag Inverse catheter planning
US7534819B2 (en) 2005-06-10 2009-05-19 University Of Washington Compositions and methods for intracellular delivery of biotinylated cargo
US20060282289A1 (en) 2005-06-14 2006-12-14 Healthmatch Solutions, Llc System and method for health care financing
US20100055793A1 (en) * 2005-07-25 2010-03-04 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
CA2615532C (en) 2005-07-26 2016-06-28 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences
US10022457B2 (en) 2005-08-05 2018-07-17 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
EP2325332B1 (en) 2005-08-26 2012-10-31 DuPont Nutrition Biosciences ApS Use of CRISPR associated genes (CAS)
KR100877824B1 (ko) * 2005-11-11 2009-01-12 한국생명공학연구원 E2epf ucp-vhl 상호작용 및 그 용도
EP2522749A1 (en) * 2006-03-02 2012-11-14 The Ohio State University MicroRNA expression profile associated with pancreatic cancer
EP1994182B1 (en) 2006-03-15 2019-05-29 Siemens Healthcare Diagnostics Inc. Degenerate nucleobase analogs
SG170784A1 (en) * 2006-03-28 2011-05-30 Novartis Ag Covalently-linked complexes of hiv tat and env proteins
EP2016183B1 (en) 2006-05-10 2011-06-15 Deinove Process for chromosomal engineering using a novel dna repair system
ATE530669T1 (de) 2006-05-19 2011-11-15 Danisco Markierte mikroorganismen und entsprechende markierungsverfahren
AU2007267874B2 (en) 2006-05-25 2012-03-15 Sangamo Therapeutics, Inc. Methods and compositions for gene inactivation
PL2034848T3 (pl) 2006-06-16 2017-08-31 Dupont Nutrition Bioscences Aps Bakteria Streptococcus thermophilus
EP2518155B1 (en) * 2006-08-04 2014-07-23 Georgia State University Research Foundation, Inc. Enzyme sensors, methods for preparing and using such sensors, and methods of detecting protease activity
NZ592231A (en) 2007-03-02 2012-07-27 Danisco Methods to generate bacteriophage resistant bacterial strains and produce bacteriophage CRISPR loci phage mutants
GB0806086D0 (en) 2008-04-04 2008-05-14 Ulive Entpr Ltd Dendrimer polymer hybrids
US8546553B2 (en) 2008-07-25 2013-10-01 University Of Georgia Research Foundation, Inc. Prokaryotic RNAi-like system and methods of use
JP5908725B2 (ja) 2008-08-22 2016-04-26 サンガモ バイオサイエンシーズ, インコーポレイテッド 標的一本鎖開裂および標的組込みのための方法、並びに組成物
WO2010030963A2 (en) 2008-09-15 2010-03-18 Children's Medical Center Corporation Modulation of bcl11a for treatment of hemoglobinopathies
US20100076057A1 (en) * 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
US9404098B2 (en) * 2008-11-06 2016-08-02 University Of Georgia Research Foundation, Inc. Method for cleaving a target RNA using a Cas6 polypeptide
DK2362915T3 (en) 2008-11-07 2017-03-27 Dupont Nutrition Biosci Aps CRISPR SEQUENCES OF BIFIDOBACTERIA
US8771766B2 (en) 2008-12-12 2014-07-08 Dupont Nutrition Biosciences Aps Genetic cluster of strains of Streptococcus thermophilus having unique rheological properties for dairy fermentation
WO2010075424A2 (en) 2008-12-22 2010-07-01 The Regents Of University Of California Compositions and methods for downregulating prokaryotic genes
GB0823658D0 (en) 2008-12-30 2009-02-04 Angiomed Ag Stent delivery device
US8392349B2 (en) 2009-02-23 2013-03-05 Shalini Vajjhala Global adaptation atlas and method of creating same
WO2010117464A1 (en) 2009-04-09 2010-10-14 Sangamo Biosciences, Inc. Targeted integration into stem cells
SI2424571T1 (sl) 2009-04-30 2020-10-30 Ospedale San Raffaele S.R.L. Genski vektor
US20120192298A1 (en) * 2009-07-24 2012-07-26 Sigma Aldrich Co. Llc Method for genome editing
KR20120097483A (ko) 2009-07-24 2012-09-04 시그마-알드리치 컴퍼니., 엘엘씨 게놈 편집을 위한 방법
EP2727600B1 (en) 2009-07-28 2019-03-27 Sangamo Therapeutics, Inc. Zinc finger fusion proteins for repressing a huntington gene
KR101418355B1 (ko) 2009-10-23 2014-07-11 (주)바이오니아 고밀도 유전자 합성기
DE102009052674B4 (de) 2009-11-12 2012-10-18 Karl Weinhold Verfahren und Vorrichtung zum Verbinden von Doppelmantelrohren
US20110294114A1 (en) 2009-12-04 2011-12-01 Cincinnati Children's Hospital Medical Center Optimization of determinants for successful genetic correction of diseases, mediated by hematopoietic stem cells
PL2816112T3 (pl) 2009-12-10 2019-03-29 Regents Of The University Of Minnesota Modyfikacja DNA za pośrednictwem efektorów TAL
WO2011100058A1 (en) 2010-02-09 2011-08-18 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
KR101867359B1 (ko) 2010-05-10 2018-07-23 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 엔도리보뉴클레아제 조성물들 및 이들의 사용 방법들
WO2011146121A1 (en) 2010-05-17 2011-11-24 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof
EP2392208B1 (en) * 2010-06-07 2016-05-04 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Fusion proteins comprising a DNA-binding domain of a Tal effector protein and a non-specific cleavage domain of a restriction nuclease and their use
US20140148361A1 (en) 2010-06-07 2014-05-29 Barry L. Stoddard Generation and Expression of Engineered I-ONUI Endonuclease and Its Homologues and Uses Thereof
CA2802360A1 (en) 2010-06-14 2011-12-22 Iowa State University Research Foundation, Inc. Nuclease activity of tal effector and foki fusion protein
EP3489359A1 (en) * 2010-07-23 2019-05-29 Sigma Aldrich Co. LLC Genome editing using targeting endonucleases and single-stranded nucleic acids
US9081737B2 (en) 2010-08-02 2015-07-14 Integrated Dna Technologies, Inc. Methods for predicting stability and melting temperatures of nucleic acid duplexes
CN103261213A (zh) 2010-10-20 2013-08-21 杜邦营养生物科学有限公司 乳球菌CRISPR-Cas序列
EP2643343A1 (en) * 2010-11-26 2013-10-02 Institut Pasteur Identification of a human gyrovirus and applications.
US20120214241A1 (en) 2010-12-22 2012-08-23 Josee Laganiere Zinc finger nuclease modification of leucine rich repeat kinase 2 (lrrk2) mutant fibroblasts and ipscs
KR20120096395A (ko) 2011-02-22 2012-08-30 주식회사 툴젠 뉴클레아제에 의해 유전자 변형된 세포를 농축시키는 방법
US20140113376A1 (en) 2011-06-01 2014-04-24 Rotem Sorek Compositions and methods for downregulating prokaryotic genes
US9394545B2 (en) 2011-09-21 2016-07-19 Sangamo Biosciences, Inc. Methods and compositions for regulation of transgene expression
CA2854819C (en) * 2011-11-16 2022-07-19 Sangamo Biosciences, Inc. Modified dna-binding proteins and uses thereof
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
BR112014020625A2 (pt) 2012-02-24 2017-07-04 Hutchinson Fred Cancer Res polinucleotídeo, polipeptídeo, composição, célula e célula tronco editada por genoma
US8841260B2 (en) 2012-02-29 2014-09-23 Sangamo Biosciences, Inc. Methods and compositions for treating Huntington's Disease
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
AU2013204327B2 (en) 2012-04-20 2016-09-01 Aviagen Cell transfection method
BR112014026203A2 (pt) 2012-04-23 2017-07-18 Bayer Cropscience Nv engenharia do genoma direcionado nas plantas
SG10201702445TA (en) 2012-04-25 2017-04-27 Regeneron Pharma Nuclease-mediated targeting with large targeting vectors
CA2872124C (en) 2012-05-02 2022-05-03 Dow Agrosciences Llc Plant with targeted modification of the endogenous malate dehydrogenase gene
CA2871524C (en) 2012-05-07 2021-07-27 Sangamo Biosciences, Inc. Methods and compositions for nuclease-mediated targeted integration of transgenes
WO2013169398A2 (en) 2012-05-09 2013-11-14 Georgia Tech Research Corporation Systems and methods for improving nuclease specificity and activity
RS64622B1 (sr) * 2012-05-25 2023-10-31 Univ California Metode i sastavi za modifikaciju ciljane dnk upravljenu pomoću rnk i za modulaciju transkripcije upravljanu rnk
US20150376645A1 (en) 2012-05-30 2015-12-31 Baylor College Of Medicine Supercoiled minivectors as a tool for dna repair, alteration and replacement
WO2013188037A2 (en) 2012-06-11 2013-12-19 Agilent Technologies, Inc Method of adaptor-dimer subtraction using a crispr cas6 protein
MX2014015204A (es) 2012-06-12 2015-08-07 Genentech Inc Metodos y composiciones para generar alelos con inactivacion condicional.
EP2674501A1 (en) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Method for detecting and identifying enterohemorrhagic Escherichia coli
WO2013188638A2 (en) 2012-06-15 2013-12-19 The Regents Of The University Of California Endoribonucleases and methods of use thereof
CA2877290A1 (en) 2012-06-19 2013-12-27 Daniel F. Voytas Gene targeting in plants using dna viruses
JP6329537B2 (ja) 2012-07-11 2018-05-23 サンガモ セラピューティクス, インコーポレイテッド 生物学的薬剤の送達のための方法および組成物
AU2013289206B2 (en) 2012-07-11 2018-08-09 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of lysosomal storage diseases
ES2757623T3 (es) 2012-07-25 2020-04-29 Broad Inst Inc Proteínas de unión a ADN inducibles y herramientas de perturbación genómica y aplicaciones de las mismas
WO2014022702A2 (en) 2012-08-03 2014-02-06 The Regents Of The University Of California Methods and compositions for controlling gene expression by rna processing
RS60838B1 (sr) 2012-08-29 2020-10-30 Sangamo Therapeutics Inc Postupci i kompozicije za tretman genskog stanja
AU2013312538B2 (en) 2012-09-07 2019-01-24 Corteva Agriscience Llc FAD3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
UA119135C2 (uk) 2012-09-07 2019-05-10 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб отримання трансгенної рослини
UA118090C2 (uk) 2012-09-07 2018-11-26 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб інтегрування послідовності нуклеїнової кислоти, що представляє інтерес, у ген fad2 у клітині сої та специфічний для локусу fad2 білок, що зв'язується, здатний індукувати спрямований розрив
US20150267176A1 (en) 2012-10-12 2015-09-24 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
JP6517143B2 (ja) * 2012-10-23 2019-05-22 ツールゲン インコーポレイテッド 標的dnaに特異的なガイドrnaおよびcasタンパク質コード核酸またはcasタンパク質を含む、標的dnaを切断するための組成物、ならびにその使用
JP2015533284A (ja) 2012-10-30 2015-11-24 リコンビネティクス・インコーポレイテッドRecombinetics,Inc. 動物における性成熟の制御
US20150291967A1 (en) 2012-10-31 2015-10-15 Luc Mathis Coupling herbicide resistance with targeted insertion of transgenes in plants
US20140127752A1 (en) 2012-11-07 2014-05-08 Zhaohui Zhou Method, composition, and reagent kit for targeted genomic enrichment
KR102006880B1 (ko) 2012-12-06 2019-08-02 시그마-알드리치 컴퍼니., 엘엘씨 Crispr-기초된 유전체 변형과 조절
WO2014093479A1 (en) 2012-12-11 2014-06-19 Montana State University Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation
WO2014093718A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
PT2898075E (pt) 2012-12-12 2016-06-16 Harvard College Manipulação e otimização de sistemas, métodos e composições de enzima melhorados para manipulação de sequências
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
DK2931898T3 (en) 2012-12-12 2016-06-20 Massachusetts Inst Technology CONSTRUCTION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH FUNCTIONAL DOMAINS
PT2896697E (pt) 2012-12-12 2015-12-31 Massachusetts Inst Technology Engenharia de sistemas, métodos e composições guia otimizadas para a manipulação de sequências
EP4286402A3 (en) 2012-12-12 2024-02-14 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
IL239317B (en) 2012-12-12 2022-07-01 Broad Inst Inc Providing, engineering and optimizing systems, methods and compositions for sequence manipulation and therapeutic applications
KR102240135B1 (ko) 2012-12-13 2021-04-14 다우 아그로사이언시즈 엘엘씨 부위 특이적 뉴클레아제 활성에 대한 dna 검출 방법
SG11201504621RA (en) 2012-12-17 2015-07-30 Harvard College Rna-guided human genome engineering
FI3491915T3 (fi) 2012-12-27 2023-08-29 Keygene Nv Menetelmä kohdistetun translokaation indusointiin kasvissa
CA2898184A1 (en) 2013-01-16 2014-07-24 Emory University Cas9-nucleic acid complexes and uses related thereto
CN103233028B (zh) 2013-01-25 2015-05-13 南京徇齐生物技术有限公司 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列
WO2014127287A1 (en) 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
ES2904803T3 (es) 2013-02-20 2022-04-06 Regeneron Pharma Modificación genética de ratas
AU2014218621B2 (en) 2013-02-25 2019-11-07 Sangamo Therapeutics, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
ES2901396T3 (es) 2013-03-14 2022-03-22 Caribou Biosciences Inc Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico
US20140273235A1 (en) 2013-03-15 2014-09-18 Regents Of The University Of Minnesota ENGINEERING PLANT GENOMES USING CRISPR/Cas SYSTEMS
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10119133B2 (en) 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US20140364333A1 (en) 2013-03-15 2014-12-11 President And Fellows Of Harvard College Methods for Live Imaging of Cells
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
JP2016522679A (ja) 2013-04-04 2016-08-04 プレジデント アンド フェローズ オブ ハーバード カレッジ CRISPR/Cas系を用いたゲノム編集の治療的使用
EP3679785A3 (en) 2013-04-05 2020-09-16 Dow AgroSciences LLC Methods and compositions for integration of an exogenous sequence within the genome of plants
RS58255B1 (sr) 2013-04-16 2019-03-29 Regeneron Pharma Ciljana modifikacija genoma pacova
CN103224947B (zh) 2013-04-28 2015-06-10 陕西师范大学 一种基因打靶系统
WO2014182700A1 (en) 2013-05-10 2014-11-13 Sangamo Biosciences, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
EP3778899A1 (en) 2013-05-22 2021-02-17 Northwestern University Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis
US9873907B2 (en) 2013-05-29 2018-01-23 Agilent Technologies, Inc. Method for fragmenting genomic DNA using CAS9
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
AU2014281027A1 (en) 2013-06-17 2016-01-28 Massachusetts Institute Of Technology Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
EP3011032B1 (en) 2013-06-17 2019-10-16 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
SG10201710487VA (en) 2013-06-17 2018-01-30 Broad Inst Inc Delivery, Use and Therapeutic Applications of the Crispr-Cas Systems and Compositions for Targeting Disorders and Diseases Using Viral Components
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
RU2716420C2 (ru) 2013-06-17 2020-03-11 Те Брод Инститьют Инк. Доставка и применение систем crispr-cas, векторов и композиций для целенаправленного воздействия и терапии в печени
CN103382468B (zh) * 2013-07-04 2015-04-29 中国科学院遗传与发育生物学研究所 一种水稻基因组定点改造方法
CN103343120B (zh) 2013-07-04 2015-03-04 中国科学院遗传与发育生物学研究所 一种小麦基因组定点改造方法
EP3666892A1 (en) 2013-07-10 2020-06-17 President and Fellows of Harvard College Orthogonal cas9 proteins for rna-guided gene regulation and editing
CN103388006B (zh) 2013-07-26 2015-10-28 华东师范大学 一种基因定点突变的构建方法
US10421957B2 (en) 2013-07-29 2019-09-24 Agilent Technologies, Inc. DNA assembly using an RNA-programmable nickase
EP3066109A4 (en) 2013-11-04 2017-11-29 Dow AgroSciences LLC Optimal soybean loci
UA120502C2 (uk) 2013-11-04 2019-12-26 Дау Агросайєнсиз Елелсі Спосіб отримання трансгенної рослини маїсу
WO2015066643A1 (en) 2013-11-04 2015-05-07 Dow Agrosciences Llc Optimal soybean loci
KR102523466B1 (ko) 2013-11-07 2023-04-20 에디타스 메디신, 인코포레이티드 지배적인 gRNA를 이용하는 CRISPR-관련 방법 및 조성물
WO2015088643A1 (en) 2013-12-11 2015-06-18 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
US9850525B2 (en) 2014-01-29 2017-12-26 Agilent Technologies, Inc. CAS9-based isothermal method of detection of specific DNA sequence
US20150291969A1 (en) 2014-01-30 2015-10-15 Chromatin, Inc. Compositions for reduced lignin content in sorghum and improving cell wall digestibility, and methods of making the same
US20150225801A1 (en) 2014-02-11 2015-08-13 California Institute Of Technology Recording and mapping lineage information and molecular events in individual cells
WO2015127439A1 (en) 2014-02-24 2015-08-27 Sangamo Biosciences, Inc. Methods and compositions for nuclease-mediated targeted integration
ES2879373T3 (es) 2014-03-18 2021-11-22 Sangamo Therapeutics Inc Métodos y composiciones para la regulación de la expresión de proteínas de dedo de zinc

Also Published As

Publication number Publication date
CA2891347C (en) 2018-02-27
KR20180011351A (ko) 2018-01-31
AU2017204031B2 (en) 2018-06-14
US20210079427A1 (en) 2021-03-18
EP3141604A1 (en) 2017-03-15
US10745716B2 (en) 2020-08-18
PL3360964T3 (pl) 2020-03-31
DK3138911T3 (en) 2019-01-21
LT3138912T (lt) 2019-02-25
US20160298133A1 (en) 2016-10-13
US10731181B2 (en) 2020-08-04
LT3138910T (lt) 2017-11-10
EP3611263A1 (en) 2020-02-19
EP3138912A1 (en) 2017-03-08
ES2714154T3 (es) 2019-05-27
IL238856A0 (en) 2015-06-30
US20160298134A1 (en) 2016-10-13
IL257178A (en) 2018-03-29
AU2020230243B2 (en) 2021-10-21
EP3617309A3 (en) 2020-05-06
KR102531576B1 (ko) 2023-05-11
KR20190093680A (ko) 2019-08-09
EP3138910B1 (en) 2017-09-20
AU2013355214A1 (en) 2015-06-04
PL3138912T3 (pl) 2019-04-30
AU2020273316A1 (en) 2020-12-17
KR102243092B1 (ko) 2021-04-22
AU2022200330A1 (en) 2022-02-17
AU2017204031A1 (en) 2017-07-06
AU2023216829A1 (en) 2023-09-14
AU2019201344A1 (en) 2019-03-21
EP3360964A1 (en) 2018-08-15
AU2019201344C1 (en) 2020-12-24
US20160298125A1 (en) 2016-10-13
AU2018229489A1 (en) 2018-10-04
PL2928496T3 (pl) 2020-04-30
US20170191082A1 (en) 2017-07-06
ES2713243T3 (es) 2019-05-20
US20170073705A1 (en) 2017-03-16
IL267598B (en) 2022-05-01
EP2928496A4 (en) 2017-03-01
IL291129A (en) 2022-05-01
PT3138911T (pt) 2018-12-28
KR102006880B1 (ko) 2019-08-02
EP3617309A2 (en) 2020-03-04
PL3363902T3 (pl) 2020-05-18
KR102479178B1 (ko) 2022-12-19
LT3363902T (lt) 2020-02-10
AU2020230246A1 (en) 2020-10-01
SG10202107423UA (en) 2021-08-30
CN105142669B (zh) 2018-07-03
PL3138910T3 (pl) 2018-01-31
EP3138910A1 (en) 2017-03-08
AU2013355214B2 (en) 2017-06-15
JP6620018B2 (ja) 2019-12-11
KR101844123B1 (ko) 2018-04-02
AU2020230243A1 (en) 2020-10-01
PT3360964T (pt) 2019-10-29
IL300199A (en) 2023-03-01
WO2014089290A1 (en) 2014-06-12
CN108913676B (zh) 2023-11-03
US20160298135A1 (en) 2016-10-13
DK3363902T3 (da) 2020-01-02
JP2016502840A (ja) 2016-02-01
IL257178B (en) 2019-07-31
EP3360964B1 (en) 2019-10-02
AU2019201344B2 (en) 2020-09-03
JP2017192392A (ja) 2017-10-26
PT3138912T (pt) 2018-12-28
EP3363902A1 (en) 2018-08-22
BR112015012375A2 (pt) 2017-09-26
US20210388396A1 (en) 2021-12-16
LT3138911T (lt) 2019-02-25
AU2022200330B2 (en) 2023-11-09
AU2020230246B2 (en) 2020-11-05
CN108913676A (zh) 2018-11-30
CA2891347A1 (en) 2014-06-12
JP2019037231A (ja) 2019-03-14
US20160017366A1 (en) 2016-01-21
EP3363902B1 (en) 2019-11-27
CN108715602A (zh) 2018-10-30
CA3034794A1 (en) 2014-06-12
SG10201910987SA (en) 2020-01-30
JP2022115994A (ja) 2022-08-09
US20160298136A1 (en) 2016-10-13
DK3138910T3 (en) 2017-10-16
KR20200098727A (ko) 2020-08-20
EP3138909A1 (en) 2017-03-08
KR20230070065A (ko) 2023-05-19
US20200140897A1 (en) 2020-05-07
US20210207173A1 (en) 2021-07-08
IL238856B (en) 2018-03-29
PT3138910T (pt) 2017-10-18
HK1218389A1 (zh) 2017-02-17
EP3138911A1 (en) 2017-03-08
US20160298138A1 (en) 2016-10-13
KR20210045515A (ko) 2021-04-26
AU2018229489B2 (en) 2018-12-06
IL291129B2 (en) 2023-07-01
CA2977152A1 (en) 2014-06-12
AU2020273316B2 (en) 2023-05-18
JP2021101706A (ja) 2021-07-15
CN105142669A (zh) 2015-12-09
SG10201800585VA (en) 2018-02-27
EP3138911B1 (en) 2018-12-05
US20160298137A1 (en) 2016-10-13
CA2977152C (en) 2019-04-09
EP3138912B1 (en) 2018-12-05
JP2020120674A (ja) 2020-08-13
KR20150091052A (ko) 2015-08-07
US20160298132A1 (en) 2016-10-13
SG11201503824SA (en) 2015-06-29
ES2653212T3 (es) 2018-02-06
EP2928496A1 (en) 2015-10-14
IL267598A (en) 2019-08-29
IL291129B1 (en) 2023-03-01
DK2928496T3 (da) 2019-11-11
KR20230003624A (ko) 2023-01-06
KR102145760B1 (ko) 2020-08-19
PT2928496T (pt) 2019-11-11
DK3360964T3 (da) 2019-10-28
ES2757325T3 (es) 2020-04-28
EP3135765A1 (en) 2017-03-01
PT3363902T (pt) 2019-12-19
PL3138911T3 (pl) 2019-04-30
ES2769310T3 (es) 2020-06-25
EP2928496B1 (en) 2019-10-09
DK3138912T3 (en) 2019-01-21

Similar Documents

Publication Publication Date Title
ES2757808T3 (es) Modificación y regulación del genoma basada en CRISPR