EP2625031A2 - Composites structuraux intérieurement renforcés et procédés de fabrication associés - Google Patents
Composites structuraux intérieurement renforcés et procédés de fabrication associésInfo
- Publication number
- EP2625031A2 EP2625031A2 EP10814155.7A EP10814155A EP2625031A2 EP 2625031 A2 EP2625031 A2 EP 2625031A2 EP 10814155 A EP10814155 A EP 10814155A EP 2625031 A2 EP2625031 A2 EP 2625031A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- layers
- forming
- precursor
- exfoliating
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000002243 precursor Substances 0.000 claims abstract description 97
- 239000013078 crystal Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 44
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 98
- 229910002804 graphite Inorganic materials 0.000 claims description 77
- 239000010439 graphite Substances 0.000 claims description 77
- 238000004299 exfoliation Methods 0.000 claims description 40
- 125000004432 carbon atom Chemical group C* 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001868 water Inorganic materials 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 229920002530 polyetherether ketone Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 claims description 2
- 238000005553 drilling Methods 0.000 claims 2
- 239000007769 metal material Substances 0.000 claims 2
- 238000010926 purge Methods 0.000 claims 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 239000013077 target material Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 19
- 239000012528 membrane Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 11
- 239000012212 insulator Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 7
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 7
- 230000003750 conditioning effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- -1 siloxanes Chemical class 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- CHJAYYWUZLWNSQ-UHFFFAOYSA-N 1-chloro-1,2,2-trifluoroethene;ethene Chemical group C=C.FC(F)=C(F)Cl CHJAYYWUZLWNSQ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920006169 Perfluoroelastomer Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229920003230 addition polyimide Polymers 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
- C01B32/22—Intercalation
- C01B32/225—Expansion; Exfoliation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/108—Production of gas hydrates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/02—Diaphragms; Spacing elements characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C50/00—Obtaining minerals from underwater, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
- F02G5/04—Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/18—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
- F03B13/1885—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G3/00—Other motors, e.g. gravity or inertia motors
- F03G3/08—Other motors, e.g. gravity or inertia motors using flywheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
- F03G7/05—Ocean thermal energy conversion, i.e. OTEC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B33/00—Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
- F22B33/18—Combinations of steam boilers with other apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/002—Central heating systems using heat accumulated in storage masses water heating system
- F24D11/005—Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H8/00—Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/40—Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/30—Arrangements for concentrating solar-rays for solar heat collectors with lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/186—Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0211—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
- C01B2203/0216—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/061—Methanol production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/84—Energy production
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/16—Waste heat
- F24D2200/26—Internal combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/16—Waste heat
- F24D2200/29—Electrical devices, e.g. computers, servers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/16—Waste heat
- F24D2200/30—Friction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/71—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/103—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/20—Improvements relating to chlorine production
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/33—Wastewater or sewage treatment systems using renewable energies using wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0391—Affecting flow by the addition of material or energy
Definitions
- the present disclosure is related to internally reinforced structural composites, suitable uses for such composites, and associated methods of manufacturing.
- U.S. Patent No. 3,404,061 discloses a graphite material having expanded particles compressed together without a binder material.
- graphite material is not sufficiently strong and highly variable in quality.
- U.S. Patent No. 3,935,354 discloses a dense carbon-carbon composite that is strong.
- a deficiency of this carbon-carbon composite is that its production requires large investments in equipment and energy, and the production has low yields of desired results per mass of carbon. Accordingly, several improvements in reinforcing composite structural materials may be desirable.
- Figure 1 is a flow chart illustrating a process of manufacturing a reinforced structural composite in accordance with embodiments of the technology.
- Figures 2A-2C are perspective views of a precursor undergoing certain stages of the process in Figure 1.
- Figure 3 is a cross-sectional view of a reactor configured to manufacture a reinforced structural composite in accordance with embodiments of the technology.
- Figures 4A and 4B are perspective views of an elongated structure incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- Figures 5A and 5B are perspective views of a racket incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- Figure 6 is a cross-sectional view of a pressure vessel incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- Figure 7 is another cross-sectional view of the pressure vessel in Figure 6.
- Figure 8 is a cross-sectional view of a fuel injector incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- Figure 9 is a cross-sectional view of a tube valve incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- Figure 10 is a cross-sectional view of a tube valve in an inward open application in accordance with embodiments of the technology.
- Patent Applications filed concurrently herewith on August 16, 2010 and titled: METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS (Attorney Docket No. 69545-8003US); COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY, MATERIAL RESOURCES AND NUTRIENT REGIMES (Attorney Docket No. 69545-8025US); ELECTROLYTIC CELL AND METHOD OF USE THEREOF (Attorney Docket No.
- exfoliate and “exfoliation” generally refer to the act or the operation for spreading or opening up particle aggregates (e.g., molecular layers) from a closed or folded state.
- particle aggregates e.g., molecular layers
- Figure 1 is a flow chart illustrating a process of manufacturing a reinforced structural composite in accordance with embodiments of the technology.
- graphite is used as an example for manufacturing the reinforced structural composite.
- embodiments of the process discussed below may also be applied to hexagonal boron nitride (BN) and/or other materials with generally similar crystal structure.
- an initial stage of the process includes forming a precursor structural component (block 1).
- forming the precursor structural component can include forming a single crystal precursor by decomposing methane and/or other hydrocarbons as follows:
- the single crystal precursor may be produced via graphite conversion and/or other suitable techniques.
- the endothermic heat requirement for the foregoing reactions is approximately 18 to 20 Kcal/mol of light paraffin (e.g., methane).
- the required heat may be provided by combustion of the same or similar hydrocarbons.
- the heating process may be supplemented by waste heat from a suitable energy conversion process.
- the energy content of the carbon materials (e.g., graphite) produced is quite low. Thus, less energy is required to produce structures with greater strength and stiffness than producing steel I-beams and trusses.
- the precursor may be a right cylinder of a suitable cross- sectional shape and length.
- the precursor can include a cylindrical graphite crystal with a plurality of basal (or a-b) planes defining cross sections of the crystal, and a c-axis along an axis of rotation for the cylinder, as discussed in more detail below with reference to Figures 2A-2C.
- the precursor can also include cross sections that are squares, triangles, rectangles, hexagons, octagons, ellipses, and/or irregular shapes based on particular design criteria.
- the cross sections of the precursor can have rounded corners to reduce stress risers.
- the formed precursor according to the foregoing processes can have superior material properties in comparison with other materials.
- the precursor can have high strength at elevated temperatures.
- the precursor can be resistant to oxidation in air up to about 650°C.
- the precursor can provide thermal conductivity generally similar to copper (Cu) in any direction in the basal planes at room temperature.
- the precursor can also have a thermal conductivity like ceramics along the c-axis. Thermal expansion can be low in the basal planes but can become large (e.g., nearly 12 times greater) along the c-axis at elevated temperatures (e.g., 2200°C).
- the precursor can have high tensile strength in the basal planes but low tensile strength along the c-axis.
- the bonding strength in basal planes is believed to be about 150-170 Kcal/g-atom.
- the Van der Waal bonding energy along the c-axis between basal planes is believed to be about 1.3 to 1.6 Kcal/g-atom.
- the basal planes may be forced apart to cause cleavage of the crystal structure in the precursor.
- forming the precursor structural composite can also include mechanically processing the formed precursor based on a target structural configuration and/or dimension.
- the precursor may be machined to near net finish dimensions and ground to produce desired smoothness and finish.
- the precursor may be milled, cut, shaped, detailed, degreased, and/or otherwise altered mechanically.
- a subsequent stage of the process can include preparing the precursor for exfoliation (block 2).
- the precursor may be subject to chemical conditioning and subsequent hydrating.
- the precursor may be soaked in a suitable oxidizing medium (e.g., chromic acid, nitric acid, potassium chlorate, sulfuric acid, and/or a combination thereof) under agitation at about 80°C to 100°C for a period of time (e.g., 8 hours).
- the precursor may also be pressurized (e.g., at 10 atmospheres or higher) and at higher temperatures (e.g., about 150°C to 180°C).
- the precursor can then be washed in distilled or deionized water to remove the oxidizing medium and to hydrate the precursor.
- the precursor may be subject to hydration and/or other suitable operations to implant interstitial molecules without chemical conditioning.
- the process may also include neutralizing the oxidizing medium and/or other suitable operations.
- the stage of preparing the precursor for exfoliation may be omitted.
- graphite crystals (at least in the a form) have a layered structure.
- the carbon atoms are arranged in a hexagonal lattice with an atomic separation of 0.142 nm. Adjacent layers of the hexagonal lattice are separated by a distance of 0.335 nm.
- the basal planes may be expanded and small molecules (e.g., water, hydrogen, oxygen, nitrogen, argon, silicon, phosphorous, boron, fluorine, a metal, etc.) may be "sandwiched" between layers of the hexagonal lattice.
- small molecules e.g., water, hydrogen, oxygen, nitrogen, argon, silicon, phosphorous, boron, fluorine, a metal, etc.
- another stage of the process can include exfoliating the precursor based on a target density and/or strength to form a reinforced structural composite (block 3).
- the prepared precursor can be quickly heated in a furnace at an elevated exfoliation temperature (e.g., 900°C) in an inert atmosphere and continuous removal of emissions (e.g., water vapor) from the precursor.
- an elevated exfoliation temperature e.g., 900°C
- continuous removal of emissions e.g., water vapor
- the precursor can be greatly expanded to form a reinforced structural composite with low density and little residual stress in the expanded basal planes.
- the precursor may include a central hole, and a pin and/or other support structures may be inserted into the central hole to help keep the basal planes stacked during the exfoliation operation.
- the pin and/or other support structures may also serve as a central heat source during the exfoliation operation for improving heat transfer to the precursor.
- the precursor may be exfoliated via radio frequency irradiation, resistive electrical heating, and/or other suitable heating techniques.
- the exfoliation operation can include exfoliating every other basal plane, every third basal plane, every fourth basal plane, and so forth based on a target density, specific heat, thermal conductivity, structural and other properties of the reinforced structural composite. For example, in one embodiment, by adjusting a concentration of the exfoliating agent, an average target exfoliation percentage (e.g., 50%, 33.3%, 25%, and/or other suitable percentage values) may be achieved. In other embodiments, the exfoliation operation can also include adjusting at least one of an exfoliation temperature, an exfoliation duration, and/or other suitable operating parameters based on the target property of the reinforced structural composite.
- an average target exfoliation percentage e.g. 50%, 33.3%, 25%, and/or other suitable percentage values
- the exfoliation operation can also include cooling the precursor to a desired process temperature (e.g., 600°C) and closing the expanded crystal via press forming along the c-axis based on a target density and/or other property of the reinforced structural composite.
- the resulting reinforced structural composite may have a density of about 0.08 g/cc or less, or may have a density up to about 2.00 g/cc or more depending upon a target strength of the reinforced structural composite. Generally, it is believed that the higher the density, the greater the tensile and compressive strengths in the reinforced structural composite.
- furnace fixtures and/or a central pin with stops may be provided to limit the degree of initial expansion and to directly produce the desired density during the exfoliation operation.
- the process can optionally include post treating the formed reinforced structural composite (block 4).
- the formed reinforced structural composite may be fitted with heat exchanger tubing, axially reinforcing rods, and/or other suitable components.
- the formed reinforced structural composite can be stabilized by forming a surface support material on the reinforced structural composite.
- the surface support material may be selected based on particular application results such as pressure containment, maximization of section modulus per resulting truss weight, load spreading and absorption of impact forces, heat transfer into and out of the volume between the basal planes, and/or other suitable results.
- the surface support material can include glass or carbon fibers coated with epoxy and/or other suitable adhesives. Such surface support material may be layered along the c-axis or within 60° of the c-axis of the reinforced structural composite for stabilizing the spaced apart basal planes.
- the surface support material can include one or more layers of graphite film (e.g., adhesively coated pyrolytic graphite films with about 5-50 ⁇ thickness). The resulting composite structure can have a low adhesive content and low surface membrane anisotropy because the pyrolytic graphite film has high strength in all directions.
- the graphite film may be provided with various surface capabilities. For example, when high strength, high temperature, and/or high heat transfer capabilities are desired, the graphite film may be coated with diamond-like carbon, a suitable braze metal or metal alloy (e.g., as copper, nickel, cobalt, aluminum, or a combination thereof). The coated reinforced structural composite may then be heat treated to diffuse or braze bond the reinforced structural composite to the graphite film. Diffusion bonding provides high integrity of the graphite films to each other and good heat and load transfer between the reinforced structural composite and the graphite films.
- a suitable braze metal or metal alloy e.g., as copper, nickel, cobalt, aluminum, or a combination thereof.
- the coated reinforced structural composite may then be heat treated to diffuse or braze bond the reinforced structural composite to the graphite film. Diffusion bonding provides high integrity of the graphite films to each other and good heat and load transfer between the reinforced structural composite and the graphite films.
- heat treating the coated reinforced structural composite may include reordering of diamond-like carbon to graphite during the heat treatment.
- diamond-like carbon coatings may be used for bonding short strips of graphite film into a long strip with a target length.
- Spontaneous reordering from diamond-like carbon to graphite during heat treatment can also provide activation energy for diffusion bonding of the surface support material to the reinforced structural composite.
- Diamond-like carbon may be coated onto the graphite film via chemical vapor deposition and/or other suitable techniques with a precursor gas.
- the chemistry of the precursor gas may be adjusted to dope the diamond-like coating with oxygen, fluorine, hydrogen, phosphorous, silicon, and/or other suitable dopants.
- the diffusion bonding process may be controlled based on target physical and electrical properties of a final product.
- diamond-like coatings may be formed via direct ion beam source deposition.
- the outside surface of the reinforced stmctural composite may be insulated with a suitable organic or ceramic closed-cell foam or hardened plastic.
- the surface support material may be formed on the reinforced structural composite when the reinforced structural composite is under a vacuum while the surface support material is under pressure.
- FIGS 2A-2C are perspective views of a precursor 5 undergoing certain stages of the process in Figure 1.
- the precursor 5 includes a plurality of basal planes 6 (identified individually as first, second, and third basal planes 6a, 6b, and 6c, respectively) extending along the c-axis.
- the basal planes 6 are generally parallel to one another.
- Adjacent basal planes 6a, 6b, and 6c have a first spacing Dj (e.g., 0.142 nm).
- Dj e.g. 0.142 nm
- Three basal planes 6a, 6b, and 6c each with a circular shape are illustrated in Figures 2A-2C for illustration purposes.
- the precursor 5 can include any suitable number of basal planes.
- the precursor 5 can include a plurality of exfoliation agents 7 "sandwiched" between adjacent basal planes 6.
- the exfoliation agents 7 can include water, hydrogen, oxygen, nitrogen, argon, silicon, phosphorous, boron, fluorine, a metal, and/or a combination thereof.
- the concentration and/or composition of the exfoliation agents 7 may be controlled by adjusting at least one of a hydration time, a period of chemical conditioning, compositions of chemical conditioning, and/or other suitable operating parameters of the precursor preparation operation.
- the exfoliation agents 7 are expanded and optionally removed from the interstitial spaces in the precursor 5.
- the expansion of the exfoliation agents 7 cause the basal planes 6 to have a second spacing D 2 that is larger than the first spacing Di.
- the second spacing D 2 can be 300 times, 200 times, or 100 times larger than the first spacing D 1 .
- the second spacing D 2 can have other relations with the first spacing Di.
- the spacing between the adjacent basal planes 6 may be adjusted based on a target density, tensile strength, compressive strength, shear strength, yield strength, brittleness, specific heat, thermal conductivity, structural and other properties of the reinforced structural composite.
- FIG 3 is a cross-sectional view of a reactor 100 configured to manufacture a reinforced structural composite in accordance with embodiments of the technology.
- the reactor 100 can include a ceramic stand 104, a resistor tube 106, and two cooling disks 110 (only one cooling disk 1 10 is illustrated in Figure 3 for clarity). Even though only particular components are shown in Figure 3, in other embodiments, the reactor 100 may include other suitable mechanical and/or electrical components.
- the resistor tube 106 can include a first end 106a configured to receive a precursor 102 and the stand 104.
- the resistor tube 106 can also include a second end 106b coupled to the cooling disk 110.
- Suitable resistor tube materials include carbon, polycr stalline graphite, molybdenum disilicide, silicon carbide, single crystal graphite, and/or others with suitable materials with adequate thermal shock resistance and capable of sustained heating to about 1,000°C.
- the resistor tube 106 may be thermally insulated by placement of foils of reflective material around the resistor tube 106 and/or by wrapping the resistor tube 106 with a high temperature ceramic wool.
- the resistor tube 106 also includes conductors 108 (e.g., copper, aluminum, etc.).
- the conductors 108 can be cooled by passing of water or other suitable coolant through ports 120 and passages 122 in the cooling disk 110. Water or other suitable coolant may be sealed by O-rings 112 and 1 14.
- a protective atmosphere which may be vacuum or a protective gas (e.g., carbon dioxide, argon, and/or other inert gases) may be provided to the interior of resistor tube 106 through a port 116 in the cooling disk 1 10. Emitted exfoliation agents during exfoliation of the precursor 102 may be removed by flushing of the protective gas and/or by removal to vacuum.
- a protective atmosphere may be provided on the outside of resistor tube 106 by injecting carbon dioxide, argon, and/or another inert gas through a port 124 and held in place by a generally impervious insulator membrane 128 (e.g., bonded ceramic felt) wrapped around top and bottom disks 110 and held in place by at least one circumferential clamp (not shown) to the cooling disk 1 10.
- a generally impervious insulator membrane 128 e.g., bonded ceramic felt
- three or any other desired number of high temperature super-alloy bolts 1 17 may be used to hold the resistor tube 106 between the cooling disks 110.
- the bolts 117 may be electrically insulated with insulators 118. Electrical cables that deliver alternating or direct current can be attached by suitable cable nuts, washers, and spring washers (not shown). Matching thread 126 allows the cable nuts to be tightened to assure low resistance contact between electrical cables and the conductors 108.
- the reactor 100 can also include spring washers 130 (one is shown) to accommodate thermal expansion and contraction of the resistor tube 106. The spring washers 130 may be placed on the insulators 118 and the cooling disks 110.
- the precursor 102 (e.g., generally similar to the precursor 5 in Figure 2A) can be mounted on the stand 104 and inserted together into the bore of the resistor tube 106 (as shown in phantom lines).
- the resistor tube 106 is then heated by passing electric current from the conductor 108 proximate the second end 106b of the resistor tube 106 through the resistor tube 106 to another conductor 108 (not shown) proximate the first end 106a of the resistor tube 106.
- Several embodiments of the reinforced structural composite discussed above with reference to Figures 1 -2C may have applications in a wide range of technical fields.
- several embodiments of the reinforced structural composite may be used to construct truss assemblies for transportation applications.
- Such truss assemblies can have lower curb weight, longer life, and improved safety compared to conventional materials such as aluminum alloys, steel, and conventional composites.
- several embodiments of the reinforced structural composite may be used to construct airplane wings, rudders, flaps, spoilers, nacelle components, passenger seat assemblies, interior panels, and/or other airplane components.
- airplane components are lighter in weight, stronger, and last much longer because of high fatigue life and high endurance strength.
- reinforced structural composite may also be used in virtually all transportation systems from roller skates to rail trains to produce stiffer, higher strength, lower weight, and longer life components.
- devices constructed with several embodiments of the reinforced structural composite are discussed below with reference to Figures 4A-10.
- Figures 4A and 4B are perspective views of an elongated structure incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- the elongated structure 10 may be a vaulting pole.
- the elongated structure 10 may be a ski pole, a hiking pole, a golf club, a shin guard, a face guard, a helmet, a bat, a shoe, and/or any other suitable structures.
- the elongated structure 10 includes a reinforced structural composite 12 and a surface membrane 14 adhered thereon.
- the elongated structure 10 may also include a port 18 and an optionally internal lumen (not shown) in the reinforced structural composite 12.
- the stiffness of the elongated structure may be adjusted by pressurizing the interior space formed by the reinforced structural composite 12 and adhered surface membrane 14. Fill port 18 allows the interior pressure to be increased or decreased based on a target stiffness.
- the flexibility, strength, and/or other characteristics of the elongated structure 10 may also be controlled by adjusting the spacing between basal planes 6 ( Figures 2A-2C) of the reinforced structural composite. The extreme strength and capability of providing strength in all directions of the basal planes 6 provides a safety factor while allowing precision tuning of the characteristics of the elongated structure 10 based on local conditions and/or other suitable parameters.
- FIGs 5A and 5B are perspective views of a racket 20 incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- the racket 20 can be a tennis racket.
- the racket 20 can be a badminton racket and/or other suitable types of racket.
- the racket 20 includes a shaft 21 attached and/or formed integral with an head 23, at least one of which can be constructed from several embodiments of the reinforced structural composite 22 discussed above.
- fibers 24 e.g., epoxy coated
- fibers 24 can be used to stabilize the reinforced structural composite 22.
- the shaft 21 and/or the head 23 can have high section modulus for tensioning the strings 26.
- the shaft 21 can include an internal space 25 in fluid communication with a charge port 34.
- the shaft 21 of the racket 20 may be pressurized with a fluid (e.g., air) to tension the strings 26 by increasing the circumference of the composite and the distance each string 26 traverses.
- a fluid e.g., air
- Figure 6 is a cross-sectional view of a pressure vessel 80 incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- Figure 7 is another cross-sectional view of the pressure vessel 80 in Figure 6.
- the pressure vessel 80 includes a reinforced structural composite 87 and a central hole 81 bored therethrough to accommodate a suitable perforated tube or wire cloth 78 with perorations 86.
- the reinforced structural composite 87 can include a plurality of basal planes 88 extending longitudinally along the bore 81.
- the perforated tube or wire cloth 78 can hold the basal planes 88 in place during exfoliation, provide longitudinal reinforcement to the pressure vessel 80, and circulate fluids through the perforations 86 into and out of the basal planes 88.
- the pressure vessel 80 can also include fittings 82 and 84 with a separation designed to allow the crystals to exfoliate to a desired basal-plane spacing. Further heat transfer and or fluid transfer may be provided by tubes (not shown) that pass substantially perpendicular to the basal planes 88 in the pressure vessel 80.
- outer perimeters of the basal planes 88 can be coated with an adhesive or diffusion braze formula (not shown) and encased within a suitable low-permeability membrane 90. Exfoliated basal planes 88 can thus form a high strength radial reinforcement to the membrane 90.
- Suitable adhesives can include a thermoset composition (e.g., epoxies, phenol- formaldehyde, melamine-formaldehyde, silicones and addition-polyimide), a composition containing siloxanes, a thermoplastic (e.g., aromatic polyesters, unsated polyesters, and polyetherimides).
- the outer perimeters of the basal planes 88 may also be coated for diffusion bonding (e.g., a diamond-like material).
- Suitable materials for the membrane 90 include graphite foils, deep-drawn or spin formed titanium, aluminum, stainless steel, electro-formed nickel, and/or other suitable materials.
- the membrane 90 can also include composite membranes having metallized thin films of polyethylene terephthalate, ethylene chlorotrifluoroethylene, polyvinylidene fluoride, and polyolefins. Suitable metallizing materials include iron, aluminum, titanium, chromium, nickel, or alloys thereof.
- carbon deposits including those described in “Dual Ion Beam Deposition of Carbon Films with Diamond Like Properties” (NASA TM-83743), the disclosure of which ins incorporated herein in its entirety, may also be used for joining of basal planes 88 to the membrane 90.
- heat transfer to/from the pressure vessel 80 may be controlled by incorporating a heat spreader 92 over the membrane 90.
- the heat spreader 92 can include corrugated fins covered by an insulative membrane 94 to form a honeycomb of passageways 96 with an inlet 89a and an outlet 89b ( Figure 6).
- a heat transfer fluid may be circulated through the passageways 96.
- Suitable heat transfer fluids can include hydrogen, air, water, engine exhaust, and other heat transfer.
- filtered ambient-temperature air may be circulated through the passageways 96 to remove heat from the basal planes 88 as fuel gases are loaded into storage as adsorbed monolayers and as "arrested" gases between monolayers.
- the term “arrested” generally refers to gases that have entered the space between the monolayers on exfoliated basal planes 88, transferred energy to the basal planes 88, and as a result have reduced vapor pressures.
- Materials suitable for the insulative membrane 94 include thermoplastics and thermosetting compounds which may be foamed, laminated, reinforced, or un-reinforced.
- the heat spreader 92 may be formed on the cylindrical portion of the membrane 90 continuing over a portion of the ends of the membrane 90 via diffusion or metallurgically bonding. In other embodiments, the heat spreader 92 may have other configurations.
- the basal planes 88 may be longitudinally reinforced by applying high-strength roving, yarns, and/or fibers over the membrane 90.
- axial reinforcement roving 98 may be applied over the corrugated surface of the heat spreader 92, allowing the corrugated surface of the heat spreader 92 to serve as a load spreader against the membrane 90 while avoiding interfering with heat exchange between the membrane 90 and heat spreader 92.
- Suitable high strength reinforcement yarns and cables may be made from boron, boron nitride, carbon, graphite, glass, silicon carbide, refractory metals, and/or ceramic fibers.
- Epoxy, polyamide varnishes and/or other suitable adhesion and matrix resins may be suitable as adhesive coatings on yarns and cables.
- FIG 8 is a cross-sectional view of a fuel injector 400 incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- the fuel injector 400 overcomes a difficult problem with many modern diesel engines that limit the size of the diesel fuel injector port to about 8.4 mm (0.33") in diameter.
- the fuel injector 400 includes a stationary ignition conductor 404 (e.g., a Liz wire bundle or conductive rod).
- a cable group 406 e.g., fiber optic cables
- the cable group 406 may be insulated with a stationary coaxial tube 408.
- the insulator tube 408 can be constructed from a ceramic insulator as disclosed copending applications incorporated above.
- the insulator tube 408 can be constructed from other suitable materials that can contain 80KV DC or AC at temperatures up to about 1000°F.
- the insulator tube 408 can also serve as a low friction central journal bearing surface for guiding unidirectional motion of a tube valve 410 along with a coaxial plunger 414.
- the plunger 414 is normally closed to urge the tube valve 410 to stay in a closed position at the flared area against a valve seat 412. As such, an outward opening valve is formed.
- ignition voltage applied to a stationary terminal 424 is transmitted to the ignition conductor 404 to develop plasma discharge blasts of ionized fuel that is rapidly accelerated as injected into a combustion chamber 428.
- the plasma generating ignition conductor 404 includes a central stationary electrode 406 in which plasma can be started by acicular features (e.g., sharp threads 440) and the internal diameter of the port bore 402.
- a thin electrode liner 403 may be used to protect the bore 402 instead of using high frequency AC to eliminate plasma erosion as disclosed in co-pending applications incorporated above.
- the tube valve 410 can include reinforced structural composite.
- Figure 9 is a cross-sectional view of a tube valve 410, shown as the tube valve 600 in Figure 9, incorporating embodiments of the reinforced structural composite in accordance with embodiments of the technology.
- a relatively low density spaced graphite structural core 602 provides a desired geometry.
- the core 602 can include a valve seat 614 at one end and One or more provisions such as concentric tubes 608 and/or 610 bonded to the outside of surface 606 at a second end.
- the core 602 can also include a suitable low-friction coating 604 (e.g., polyimide, PEEK, Parylene H, or PTFE copolymer) formed on the inside surfaces of a tubular elastomer (e.g., fluorosilicone).
- a tubular elastomer e.g., fluorosilicone
- the elastomer may be applied to the flared valve surface 612 for inward opening valve operation.
- High strength materials such as graphite filament reinforced polyimide or graphite tape with thermoset adhesives is applied to the outside surfaces 606.
- an elastomer seal (e.g., fluorosilicone, perfluoroelastomer, or other fluoroelastomers) of conforming shape may be applied to a valve seal 614.
- One or more provisions such as concentric tubes 608 and/or 610 are bonded to the outside of surface 606 at locations such as 432 and/or 430 for allowing plunger 414 to apply unidirectional force to rapidly push valve 410 off of valve seat 412 and to close the tube valve 410 when compression spring 432 returns plunger 414 to the normally closed position.
- Fuel flow may be routed as desired including from fitting 442 through or around a system for operating plunger 414 such as a piezoelectric or solenoid winding 426, then through ports 444 to enter the concentric flow channel 446.
- the flow channel 446 may be supported and spaced between a suitable ceramic or polymer insulator 418 and the insulator tube 408 by a long- lead spiral 422 constructed from, e.g., PTFE or PEEK monofilament.
- an inward opening tube valve 500 system includes a core assembly 600 that provides for an opening seal 612 from a valve seat 618 when fuel delivery is desired in response the plunger 620 impacting against concentric feature 610.
- the concentric feature 610 is bonded to tube surface 606 to apply tensile force to the open valve 500 after plunger 620 has gained kinetic energy by motion through unidirectional distance Di.
- the tube valve 500 is moved to open seal 612 from seat 618 (D 2 -Di).
- Ceramic 640 provides high voltage containment and supports ceramic tube 408'.
- a suitable metal alloy cap 642 holds ceramic end-cap 640 in place.
- At least the tubular portion 616 of the tube valve 500 can be constructed from a light weight but strong graphite structural core 616 reinforced by a carbon-carbon layer.
- the core 616 can be generally similar in structure as the elongated structure 10 in Figure 4A.
- the carbon-carbon layer may be prepared from a suitable precursor application of carbon donor (e.g., petroleum pitch or a thermoplastic such as a polyolefin or PAN).
- carbon donor e.g., petroleum pitch or a thermoplastic such as a polyolefin or PAN
- Radio frequency shielding and protection 650 may be provided by carbon-carbon outside layer 630. Additional protection may be established by plating surface 636 with a suitable alloy such as a nickel alloy that may be brazed to the threaded portion 640 by a suitable braze alloy composition.
- the tube 420 ( Figure 8) and housing 460 ( Figure 8) may be prepared as a low density spaced graphite structural core with carbon-carbon layers on the inside and outside diameters. Such components may be joined by threads or by brazing with a suitable alloy.
- a hydrogen-characterized fuel e.g., ammonia
- other fuels with low energy density e.g., carbon monoxide and hydrogen
- the carried commodity may be reformed using waste heat from the engines as follow:
- propulsion engines including heat engines such as compression-ignition diesel type engines, various rotary combustion engines, and gas turbines to operation on fuels that may be reformed from such commodities by endothermic reactions in which the heat rejected by such heat engines is utilized to drive such reactions.
- heat engines such as compression-ignition diesel type engines, various rotary combustion engines, and gas turbines
- gas turbines to operation on fuels that may be reformed from such commodities by endothermic reactions in which the heat rejected by such heat engines is utilized to drive such reactions.
- several embodiments of the fuel injector 400 may also be used in power plants, chemical plants, and/or other suitable locations with heat producing engines.
- Thermo-chemical regeneration using heat rejected by an engine provides attractive fuel savings because the hydrogen characterized fuels that are produced yield 15 to 30% more energy upon combustion than their feedstock.
- the embodiments of the fuel injector 400 allows hydrogen characterized fuels to combust up to 12 times faster than diesel or bunker fuels, thus greatly improving engine efficiency and eliminating particulates in the exhaust of the engine.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Oceanography (AREA)
- Geochemistry & Mineralogy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Carbon And Carbon Compounds (AREA)
- Processing Of Solid Wastes (AREA)
- Separation Of Gases By Adsorption (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23747609P | 2009-08-27 | 2009-08-27 | |
US30440310P | 2010-02-13 | 2010-02-13 | |
US12/707,653 US8172990B2 (en) | 2009-02-17 | 2010-02-17 | Apparatus and method for controlling nucleation during electrolysis |
PCT/US2010/024499 WO2010096505A1 (fr) | 2009-02-17 | 2010-02-17 | Appareil et procédé de capture de gaz au cours d'une électrolyse |
PCT/US2010/024498 WO2010096504A1 (fr) | 2009-02-17 | 2010-02-17 | Appareil et procédé de contrôle de la nucléation au cours d'une électrolyse |
US12/707,656 US8075749B2 (en) | 2009-02-17 | 2010-02-17 | Apparatus and method for gas capture during electrolysis |
PCT/US2010/024497 WO2010096503A1 (fr) | 2009-02-17 | 2010-02-17 | Cellule électrolytique et son procédé d'utilisation |
US12/707,651 US8075748B2 (en) | 2009-02-17 | 2010-02-17 | Electrolytic cell and method of use thereof |
PCT/US2010/045658 WO2011028400A2 (fr) | 2009-08-27 | 2010-08-16 | Composites structuraux intérieurement renforcés et procédés de fabrication associés |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2625031A2 true EP2625031A2 (fr) | 2013-08-14 |
EP2625031A4 EP2625031A4 (fr) | 2016-06-08 |
Family
ID=49302451
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10814156.5A Withdrawn EP2470787A4 (fr) | 2009-08-27 | 2010-08-16 | Système énergétique destiné à une habitation |
EP10855997.2A Withdrawn EP2470786A4 (fr) | 2009-08-27 | 2010-08-16 | Systèmes et procédés de développement économique durable par production à spectre complet intégré d'énergie renouvelable |
EP10817626.4A Withdrawn EP2470752A4 (fr) | 2009-08-27 | 2010-08-16 | Ensembles de conversion d'énergie et procédés d'utilisation et de fabrication correspondants |
EP10858212.3A Withdrawn EP2567066A4 (fr) | 2009-08-27 | 2010-08-16 | Système de conversion d'hydrate de gaz pour la récolte de dépôts d'hydrate d'hydrocarbure |
EP10814157.3A Withdrawn EP2470788A4 (fr) | 2009-08-27 | 2010-08-16 | Augmentation de l'efficacité de systèmes de conversion de l'énergie thermique océanique complétés (sotec) |
EP10814155.7A Withdrawn EP2625031A4 (fr) | 2009-08-27 | 2010-08-16 | Composites structuraux intérieurement renforcés et procédés de fabrication associés |
EP10846282.1A Withdrawn EP2470822A4 (fr) | 2009-08-27 | 2010-08-16 | Appareils et procédés pour stocker et/ou filtrer une substance |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10814156.5A Withdrawn EP2470787A4 (fr) | 2009-08-27 | 2010-08-16 | Système énergétique destiné à une habitation |
EP10855997.2A Withdrawn EP2470786A4 (fr) | 2009-08-27 | 2010-08-16 | Systèmes et procédés de développement économique durable par production à spectre complet intégré d'énergie renouvelable |
EP10817626.4A Withdrawn EP2470752A4 (fr) | 2009-08-27 | 2010-08-16 | Ensembles de conversion d'énergie et procédés d'utilisation et de fabrication correspondants |
EP10858212.3A Withdrawn EP2567066A4 (fr) | 2009-08-27 | 2010-08-16 | Système de conversion d'hydrate de gaz pour la récolte de dépôts d'hydrate d'hydrocarbure |
EP10814157.3A Withdrawn EP2470788A4 (fr) | 2009-08-27 | 2010-08-16 | Augmentation de l'efficacité de systèmes de conversion de l'énergie thermique océanique complétés (sotec) |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10846282.1A Withdrawn EP2470822A4 (fr) | 2009-08-27 | 2010-08-16 | Appareils et procédés pour stocker et/ou filtrer une substance |
Country Status (11)
Country | Link |
---|---|
EP (7) | EP2470787A4 (fr) |
JP (6) | JP2013503310A (fr) |
KR (1) | KR101547007B1 (fr) |
CN (9) | CN104848032A (fr) |
AU (1) | AU2010289904A1 (fr) |
BR (1) | BR112012004093A2 (fr) |
CA (1) | CA2770510A1 (fr) |
IL (1) | IL217860A (fr) |
RU (4) | RU2499949C1 (fr) |
WO (8) | WO2011028402A2 (fr) |
ZA (1) | ZA201200791B (fr) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8147599B2 (en) | 2009-02-17 | 2012-04-03 | Mcalister Technologies, Llc | Apparatuses and methods for storing and/or filtering a substance |
US9234665B2 (en) | 2010-06-24 | 2016-01-12 | Nortek Air Solutions Canada, Inc. | Liquid-to-air membrane energy exchanger |
CZ304079B6 (cs) * | 2011-06-23 | 2013-10-02 | Gascontrol, Spolecnost S R.O. | Energetický systém vyuzívající spojení generátoru vodíku a kyslíku se systémem plynové mikroturbíny v kombinaci s organickým Rankinovým cyklem |
JP2013040606A (ja) * | 2011-08-17 | 2013-02-28 | Kazuhiko Nagashima | 高効率常温熱エネルギーの回収法及び回収装置 |
US9810439B2 (en) | 2011-09-02 | 2017-11-07 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
EP2578379A1 (fr) * | 2011-10-05 | 2013-04-10 | Sumika Polymer Compounds (France) SA | Solutions thermiques solaires utilisant des technologies de moulage par soufflage |
US9816760B2 (en) | 2012-08-24 | 2017-11-14 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
NL2010039C2 (en) | 2012-12-21 | 2014-06-24 | S4 Energy B V | Device for reducing the load on a supporting structure, in particular an inertial energy accumulating device. |
US9366238B2 (en) | 2013-03-13 | 2016-06-14 | Lockheed Martin Corporation | System and process of cooling an OTEC working fluid pump motor |
US10352628B2 (en) | 2013-03-14 | 2019-07-16 | Nortek Air Solutions Canada, Inc. | Membrane-integrated energy exchange assembly |
US10584884B2 (en) | 2013-03-15 | 2020-03-10 | Nortek Air Solutions Canada, Inc. | Control system and method for a liquid desiccant air delivery system |
WO2014145882A1 (fr) | 2013-03-15 | 2014-09-18 | Mcalister Technologies, Llc | Procédés de fabrication de dispositifs et de matériaux reconstitués |
JP2014200769A (ja) * | 2013-04-09 | 2014-10-27 | 日東電工株式会社 | 吸着材 |
FR3006681B1 (fr) | 2013-06-11 | 2015-07-17 | Faurecia Sys Echappement | Cartouche de stockage d'ammoniac a duree de remplissage optimisee, notamment pour un systeme d'echappement de gaz d'un vehicule automobile |
CN103615357B (zh) * | 2013-11-15 | 2016-05-25 | 韩树君 | 一种风能、太阳能、海浪能循环互补发电和海水淡化系统 |
CN104674291A (zh) * | 2013-11-28 | 2015-06-03 | 哈尔滨市三和佳美科技发展有限公司 | 混合氢氧发生器 |
JP2015168971A (ja) * | 2014-03-06 | 2015-09-28 | 古河機械金属株式会社 | 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム |
DK3183051T3 (da) | 2014-08-19 | 2020-06-02 | Nortek Air Solutions Canada Inc | Væske-til-luftmembranenergivekslere |
EA036536B1 (ru) * | 2015-03-13 | 2020-11-20 | Сенерджи Солюшнс Инк. | Увеличенная вместимость резервуаров высокого давления для хранения газа |
WO2016205750A1 (fr) * | 2015-06-18 | 2016-12-22 | Kevin Kremeyer | Dépôt d'énergie dirigé pour faciliter des applications haute vitesse |
EP3314188B1 (fr) | 2015-06-26 | 2021-05-12 | Nortek Air Solutions Canada, Inc. | Échangeur d'énergie à membrane liquide-air à triple fluide |
FR3038456B1 (fr) * | 2015-06-30 | 2019-10-18 | Jomi Leman | Dispositif electrochimique pour le stockage de l’energie electrique. |
RU2617215C1 (ru) * | 2015-11-16 | 2017-04-24 | Юрий Владимирович Семынин | Тепловой двигатель |
CN105570672A (zh) * | 2015-12-22 | 2016-05-11 | 重庆市高新技术产业开发区潞翔能源技术有限公司 | 一种天然气吸附罐体热交换系统 |
EA201900243A1 (ru) * | 2016-11-28 | 2019-09-30 | Евгений Иванович КАСАТКИН | Способ утилизации углекислого газа |
EP3612771B1 (fr) | 2017-04-18 | 2023-03-22 | Nortek Air Solutions Canada, Inc. | Systèmes et procédés de refroidissement par évaporation, améliorés par déshydratant |
NL2019407B1 (en) * | 2017-08-10 | 2019-02-21 | L2 Consultancy B V | Refueling station for supplying energy carriers to vehicles |
CN107514823B (zh) * | 2017-08-10 | 2019-12-31 | 中广核工程有限公司 | 一种旋转式光热电站吸热器及均匀吸热控制方法 |
US20200182405A1 (en) | 2017-08-10 | 2020-06-11 | L2 Consultancy B.V. | Refueling station for supplying energy carriers to vehicles |
CN107559161B (zh) * | 2017-10-09 | 2019-05-31 | 上海海事大学 | 一种结合化学蓄热与海水发电的热电两用系统 |
CN107989681A (zh) * | 2017-12-06 | 2018-05-04 | 佛山早稻田环保节能科技有限公司 | 一种汽车尾气处理器 |
CN107893243B (zh) * | 2017-12-20 | 2024-05-07 | 中科京投环境科技江苏有限公司 | 一种旋流矿浆电解脱除重金属的装置及脱除方法 |
US10619794B2 (en) | 2018-03-13 | 2020-04-14 | Ford Global Technologies, Llc | Pressurized-fluid storage device |
CA3164688A1 (fr) | 2018-05-08 | 2019-11-08 | Enginuity Power Systems, Inc. | Systemes mixtes et methodes connexes pour offrir de l'energie, le chauffage et le refroidissement |
WO2019227162A1 (fr) * | 2018-05-30 | 2019-12-05 | Royal Melbourne Institute Of Technology | Système de réaction de pyrolyse et procédé de pyrolyse d'une charge organique |
RU2688061C1 (ru) * | 2018-06-05 | 2019-05-17 | Николай Артёмович Седых | Арктическая ветроэнергетическая установка |
RU196410U1 (ru) * | 2018-07-27 | 2020-02-28 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дагестанский Государственный Технический Университет" (Дгту) | Геотермальная энергетическая установка |
RU2689488C1 (ru) * | 2018-11-01 | 2019-05-28 | Александр Алексеевич Соловьев | Биогазовая аэродинамическая установка |
RU2697274C1 (ru) * | 2018-11-21 | 2019-08-13 | Владимир Алексеевич Чернорот | Способ переработки твердых коммунальных и промышленных отходов |
KR102431612B1 (ko) * | 2019-02-26 | 2022-08-12 | 한국자동차연구원 | 수소충전소용 수분제거장치 |
DE202020005978U1 (de) * | 2019-08-07 | 2024-02-06 | Oleksandr Oleksandrovych Riepkin | Energiesystem mit in das System integriertem Wasserstoff, der unter Verwendung von erneuerbaren Energiequellen erzeugt wurde |
AU2021252436A1 (en) * | 2020-04-09 | 2022-11-03 | Woodside Energy Technologies Pty Ltd | Renewable energy hydrocarbon processing method and plant |
CN112302892A (zh) * | 2020-11-24 | 2021-02-02 | 房盼盼 | 一种提升海温差发电的方法及装置 |
MX2023008003A (es) * | 2021-01-08 | 2023-07-13 | Alakai Tech Corporation | Metodo y sistema para una infraestructura de reabastecimiento de combustible de hidrogeno de estado variable fuera de la red. |
CN112600139A (zh) * | 2021-01-20 | 2021-04-02 | 深圳市红越电子科技有限公司 | 一种导电电缆接口检测后处理终端 |
CN112871332B (zh) * | 2021-02-04 | 2022-11-11 | 台州锐祥机械设备有限公司 | 一种汽车高强度减震避震件生产工艺 |
CN113546951A (zh) * | 2021-07-13 | 2021-10-26 | 东方电气集团东方锅炉股份有限公司 | 适于氢能开发利用的填埋场治理和循环利用方法及系统 |
DE102022104030A1 (de) | 2022-02-21 | 2023-08-24 | Stablegrid Engineers GmbH | Anordnung zur Stabilisierung von Elektrizitätsnetzen mit Kaverne zur Gasspeicherung |
WO2023195158A1 (fr) * | 2022-04-08 | 2023-10-12 | 日本電信電話株式会社 | Système et procédé de conversion de chaleur |
WO2023239792A1 (fr) * | 2022-06-07 | 2023-12-14 | Koloma, Inc. | Intégration de capacité de stockage de réservoir d'hydrogène naturel ou de réservoirs souterrains appropriés avec d'autres sources et puits d'hydrogène |
CN115099508B (zh) * | 2022-07-01 | 2024-06-07 | 西南石油大学 | Srb与co2耦合作用的页岩气集输管道腐蚀速率预测方法 |
Family Cites Families (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB991581A (en) * | 1962-03-21 | 1965-05-12 | High Temperature Materials Inc | Expanded pyrolytic graphite and process for producing the same |
JPS5216468Y1 (fr) * | 1969-06-14 | 1977-04-13 | ||
US4060988A (en) * | 1975-04-21 | 1977-12-06 | Texaco Inc. | Process for heating a fluid in a geothermal formation |
JPS5213048A (en) * | 1975-07-22 | 1977-02-01 | Ebara Corp | Operation method of a marine generating set |
JPS52168347U (fr) * | 1976-06-14 | 1977-12-20 | ||
US4091313A (en) * | 1976-08-23 | 1978-05-23 | Salvatore Genovese | Current recycling electric motor system |
US4170878A (en) * | 1976-10-13 | 1979-10-16 | Jahnig Charles E | Energy conversion system for deriving useful power from sources of low level heat |
DE2934647A1 (de) * | 1979-08-28 | 1981-03-12 | Fritz Ing.(grad.) 7612 Haslach Thoma | Heizungssystem mit waermemotor. |
JPS56105244A (en) * | 1980-01-24 | 1981-08-21 | Hiroyuki Morita | Hot water feeder |
JPS56138468A (en) * | 1980-03-13 | 1981-10-29 | Mitsubishi Heavy Ind Ltd | Ocean temperature difference generator |
DE3014357A1 (de) * | 1980-04-15 | 1981-10-22 | Küppersbusch AG, 4650 Gelsenkirchen | Heizaggregat |
DE3016410A1 (de) * | 1980-04-29 | 1981-11-05 | Wilhelm 5000 Köln Jülich | Warmwasser-zentralheizungsanlage |
JPS5791384A (en) * | 1980-11-27 | 1982-06-07 | Toshiba Corp | Evaporator |
DE3044666A1 (de) * | 1980-11-27 | 1982-07-08 | Morath, Karl Günther, 6670 St. Ingbert | Waerme-kraft-koppelungsanlage als kleinkraftwerk fuer den hausgebrauch |
US4437963A (en) * | 1981-09-10 | 1984-03-20 | Yeoman David R | Apparatus for electrolyzing water |
US4490232A (en) * | 1981-10-29 | 1984-12-25 | The Laitram Corporation | Wave-powered electrolysis of water |
JPS5897461U (ja) * | 1981-12-23 | 1983-07-02 | 株式会社 ト−タルシステム | タンクと弓形チユ−ブによる熱交換器 |
JPS5946375A (ja) * | 1982-09-08 | 1984-03-15 | Mitsubishi Electric Corp | 海水による発電装置 |
JPS59110872A (ja) * | 1982-12-17 | 1984-06-26 | Mitsubishi Heavy Ind Ltd | 海洋温度差および太陽熱を利用した複合発電装置 |
JPS59165873A (ja) * | 1983-03-09 | 1984-09-19 | Toshiba Corp | 海洋温度差発電装置 |
JPS59188058A (ja) * | 1983-04-08 | 1984-10-25 | Yamaha Motor Co Ltd | 内燃機関の廃熱利用装置 |
JPS6321366A (ja) * | 1986-07-16 | 1988-01-28 | Kajima Corp | 蓄熱式海洋温度差発電装置 |
JPH0661195B2 (ja) * | 1986-12-25 | 1994-08-17 | 三菱重工業株式会社 | 高生産海域造成システム |
JPS63243463A (ja) * | 1987-03-30 | 1988-10-11 | Agency Of Ind Science & Technol | 発電装置 |
JP2680674B2 (ja) * | 1989-04-12 | 1997-11-19 | 財団法人電力中央研究所 | 海洋・廃熱温度差発電システム |
US6155212A (en) * | 1989-06-12 | 2000-12-05 | Mcalister; Roy E. | Method and apparatus for operation of combustion engines |
JPH0346161U (fr) * | 1989-09-09 | 1991-04-26 | ||
JP2587297B2 (ja) * | 1989-09-27 | 1997-03-05 | 富士電機株式会社 | 熱併給発電装置 |
JPH03173788A (ja) * | 1989-12-01 | 1991-07-29 | Tanaka Kikinzoku Kogyo Kk | アンモニアの合成方法 |
JPH03175136A (ja) * | 1989-12-05 | 1991-07-30 | Sanden Corp | 内燃機関の排熱利用装置 |
FI89969C (fi) * | 1989-12-21 | 1993-12-10 | Waertsilae Diesel Int | Foerfarande och arrangemang foer effektivering av tillvaratagande av avgasernas vaermeenergi vid stora dieselmotorer |
JPH0476211A (ja) * | 1990-07-19 | 1992-03-11 | Meidensha Corp | 熱電併給装置 |
JP2889668B2 (ja) * | 1990-08-06 | 1999-05-10 | 三洋電機株式会社 | エネルギーシステム |
JPH0816475B2 (ja) * | 1990-11-27 | 1996-02-21 | 工業技術院長 | 温度差発電方法およびその装置ならびに温度差発電・海洋生物増養殖複合装置 |
US5167786A (en) * | 1991-01-25 | 1992-12-01 | Eberle William J | Wave-power collection apparatus |
JPH0678713U (ja) * | 1991-04-24 | 1994-11-04 | 国立環境研究所長 | 家庭用コ−ジェネレ−ション |
JPH05223268A (ja) * | 1992-02-06 | 1993-08-31 | Nippondenso Co Ltd | 熱電併給装置 |
JP2527288B2 (ja) * | 1992-06-16 | 1996-08-21 | 株式会社新燃焼システム研究所 | 燃料電池反応を利用したアンモニア分離方法 |
JPH06147098A (ja) * | 1992-11-11 | 1994-05-27 | Ikeda Takeshi | 対流温度差原動機 |
JPH06234502A (ja) * | 1993-02-10 | 1994-08-23 | Mitsui Eng & Shipbuild Co Ltd | 水素吸蔵合金スラリを用いたエネルギ貯蔵方法 |
EP0686114B1 (fr) * | 1993-04-20 | 1998-10-14 | Widenhammar, Rustan | Appareil de nettoyage de coque de bateau |
JP2942852B2 (ja) * | 1993-10-15 | 1999-08-30 | 株式会社テイエルブイ | コ―ジェネレ―ションの気化冷却エンジン |
JPH07238866A (ja) * | 1994-02-28 | 1995-09-12 | Hazama Gumi Ltd | コージェネレーションシステム |
GT199600032A (es) * | 1995-06-07 | 1997-11-28 | Sistema para la conversion de energia termica del oceano (otec sistema) | |
JPH0925871A (ja) * | 1995-07-07 | 1997-01-28 | Mitsubishi Heavy Ind Ltd | 太陽エネルギー収集装置 |
CN1163988A (zh) * | 1997-01-21 | 1997-11-05 | 罗伊·麦克埃里斯特 | 波浪发电方法和装置 |
US5950732A (en) * | 1997-04-02 | 1999-09-14 | Syntroleum Corporation | System and method for hydrate recovery |
US6503584B1 (en) * | 1997-08-29 | 2003-01-07 | Mcalister Roy E. | Compact fluid storage system |
JPH1193826A (ja) * | 1997-09-18 | 1999-04-06 | Nkk Corp | 自然エネルギー・ベストミックス・システム |
US6525431B1 (en) * | 1998-02-09 | 2003-02-25 | Whisper Tech Limited | Co-generation system employing a stirling engine |
US6126726A (en) * | 1998-07-06 | 2000-10-03 | Siemens Westinghouse Power Corporation | Generator hydrogen purge gas economizer with membrane filter |
US6295827B1 (en) * | 1998-09-24 | 2001-10-02 | Exxonmobil Upstream Research Company | Thermodynamic cycle using hydrostatic head for compression |
DE19859654A1 (de) * | 1998-12-15 | 2000-06-29 | Mannesmann Ag | Vorrichtung zum Speichern von Druckgas |
JP2000205044A (ja) | 1999-01-19 | 2000-07-25 | Shigeaki Kimura | コ―ジェネレ―ション装置 |
US6104097A (en) * | 1999-03-04 | 2000-08-15 | Lehoczky; Kalman N. | Underwater hydro-turbine for hydrogen production |
JP3620701B2 (ja) * | 1999-04-14 | 2005-02-16 | 本田技研工業株式会社 | コジェネレーション装置 |
CA2391845A1 (fr) * | 1999-08-11 | 2001-02-22 | Roy Edward Mcalister | Stockage de gaz sur un adsorbant muni de lamelles exfoliees |
AU2122100A (en) * | 2000-02-01 | 2001-08-14 | Roy Edward Mcalister | Process for production of hydrogen from anaerobically decomposed organic material |
FR2805410B1 (fr) * | 2000-02-23 | 2002-09-06 | Andre Rene Georges Gennesseaux | Systeme autonome de cogeneration d'electricite et de chaleur comportant un stockage d'energie par volant d'inertie |
JP2001254897A (ja) * | 2000-03-10 | 2001-09-21 | Honda Motor Co Ltd | 水素貯蔵装置 |
JP2001295995A (ja) * | 2000-04-11 | 2001-10-26 | Honda Motor Co Ltd | 水素貯蔵タンク |
JP2001338672A (ja) * | 2000-05-26 | 2001-12-07 | Shinko Pantec Co Ltd | 家庭用電力供給システム |
JP2002098412A (ja) * | 2000-09-26 | 2002-04-05 | Noritz Corp | 加熱貯湯装置 |
JP2002128501A (ja) * | 2000-10-18 | 2002-05-09 | Sony Corp | ガス吸蔵方法及び燃料電池 |
JP2002147867A (ja) * | 2000-11-07 | 2002-05-22 | Honda Motor Co Ltd | 水電解システム |
US6669919B1 (en) * | 2000-11-16 | 2003-12-30 | Advanced Energy Technology Inc. | Intercalated graphite flakes exhibiting improved expansion characteristics and process therefor |
JP2002180902A (ja) * | 2000-12-14 | 2002-06-26 | Sagami Sekiyu Kk | コージェネレーションシステム |
US6516754B2 (en) * | 2001-02-20 | 2003-02-11 | Thomas Chadwick | Convective heating system for liquid storage tank |
GB0106358D0 (en) * | 2001-03-13 | 2001-05-02 | Printable Field Emitters Ltd | Field emission materials and devices |
CN2489098Y (zh) * | 2001-06-11 | 2002-05-01 | 郭广明 | 热机余热再利用装置 |
US6603069B1 (en) * | 2001-09-18 | 2003-08-05 | Ut-Battelle, Llc | Adaptive, full-spectrum solar energy system |
US6984305B2 (en) | 2001-10-01 | 2006-01-10 | Mcalister Roy E | Method and apparatus for sustainable energy and materials |
CN1417527A (zh) * | 2001-11-02 | 2003-05-14 | 量子能技术股份有限公司 | 改进的水加热器 |
GB2383978B (en) * | 2002-01-11 | 2004-09-08 | Dominic Michaelis | Platform provided with renewable energy converter systems |
JP3903798B2 (ja) * | 2002-01-22 | 2007-04-11 | 株式会社デンソー | 燃料電池システム |
RU2232914C2 (ru) * | 2002-02-04 | 2004-07-20 | Открытое акционерное общество "Заволжский моторный завод" | Способ работы и устройство парогенератора поршневого двигателя внутреннего сгорания |
JP3882664B2 (ja) * | 2002-04-15 | 2007-02-21 | 日産自動車株式会社 | 燃料電池システム |
GB2387641A (en) * | 2002-04-19 | 2003-10-22 | Gasforce Ltd | Combined heat and power unit |
JP2004154762A (ja) * | 2002-09-10 | 2004-06-03 | Sanyo Electric Co Ltd | 廃棄物処理システム |
JP2004239149A (ja) * | 2003-02-05 | 2004-08-26 | Osaka Gas Co Ltd | エンジンシステム及び熱源システム |
US7201841B2 (en) * | 2003-02-05 | 2007-04-10 | Water Visions International, Inc. | Composite materials for fluid treatment |
JP2004245049A (ja) * | 2003-02-10 | 2004-09-02 | Osaka Gas Co Ltd | 熱源システム |
JP2004268022A (ja) * | 2003-02-18 | 2004-09-30 | Nissan Motor Co Ltd | 水素吸蔵材料、水素吸蔵材料の製造方法、水素貯蔵タンク、水素貯蔵システム、及び燃料電池自動車 |
WO2004086585A2 (fr) | 2003-03-24 | 2004-10-07 | Ion America Corporation | Systeme sorfc (pile a combustible regeneratrice a oxyde solide) et procede faisant intervenir une reaction d'electrolyse nette exothermique |
KR100620303B1 (ko) * | 2003-03-25 | 2006-09-13 | 도요다 지도샤 가부시끼가이샤 | 가스저장탱크 및 그 제조방법 |
JP4163541B2 (ja) * | 2003-03-25 | 2008-10-08 | トヨタ自動車株式会社 | ガス貯蔵タンクの製造方法 |
JP4167521B2 (ja) * | 2003-03-25 | 2008-10-15 | トヨタ自動車株式会社 | ガス貯蔵タンク及びその製造方法 |
US7575822B2 (en) | 2003-04-09 | 2009-08-18 | Bloom Energy Corporation | Method of optimizing operating efficiency of fuel cells |
US7364810B2 (en) * | 2003-09-03 | 2008-04-29 | Bloom Energy Corporation | Combined energy storage and fuel generation with reversible fuel cells |
CN1813371A (zh) * | 2003-06-05 | 2006-08-02 | 太阳能反应器技术公司 | 处理烟气排放物的方法 |
US6956300B2 (en) * | 2003-08-04 | 2005-10-18 | Andrew Roman Gizara | Gimbal-mounted hydroelectric turbine |
US7758842B2 (en) * | 2003-09-02 | 2010-07-20 | Kaneka Corporation | Filmy graphite and process for producing the same |
CN2644957Y (zh) * | 2003-09-04 | 2004-09-29 | 柳溪立 | 一种利用地温的冷暖空调装置 |
US7378188B2 (en) * | 2003-09-18 | 2008-05-27 | Enernext, Llc | Storage device and method for sorption and desorption of molecular gas contained by storage sites of nano-filament laded reticulated aerogel |
EP1670578A2 (fr) * | 2003-09-30 | 2006-06-21 | General Electric Company | Compositions de stockage d'hydrogene et procedes de production associes |
RO121819B1 (ro) * | 2003-10-01 | 2008-05-30 | Petru Baciu | Procedeu şi instalaţie pentru colectarea gazului metan liber, de pe fundul mării |
US6994159B2 (en) * | 2003-11-04 | 2006-02-07 | Charles Wendland | System for extracting natural gas hydrate |
US7605326B2 (en) * | 2003-11-24 | 2009-10-20 | Anderson Christopher M | Solar electrolysis power co-generation system |
US7152675B2 (en) * | 2003-11-26 | 2006-12-26 | The Curators Of The University Of Missouri | Subterranean hydrogen storage process |
JP4203810B2 (ja) * | 2003-12-08 | 2009-01-07 | 富士電機ホールディングス株式会社 | 有機性廃棄物の処理方法とそのシステム |
JP2005291112A (ja) * | 2004-03-31 | 2005-10-20 | Takeo Saito | 温度差発電装置 |
US20050269211A1 (en) * | 2004-06-07 | 2005-12-08 | Zachar Oron D | Method of and apparatus for producing hydrogen using geothermal energy |
JP2006009713A (ja) * | 2004-06-28 | 2006-01-12 | Hitachi Ltd | コージェネレーションシステム及びエネルギー供給システム |
JP2006035174A (ja) * | 2004-07-29 | 2006-02-09 | Toyota Motor Corp | 水素吸蔵物及びその製造と利用 |
KR100550573B1 (ko) * | 2004-08-17 | 2006-02-10 | 엘지전자 주식회사 | 코제너레이션 시스템 |
US7254944B1 (en) * | 2004-09-29 | 2007-08-14 | Ventoso Systems, Llc | Energy storage system |
JP4741718B2 (ja) * | 2004-10-20 | 2011-08-10 | 株式会社豊田自動織機 | 開閉用バルブの交換方法 |
US7178337B2 (en) * | 2004-12-23 | 2007-02-20 | Tassilo Pflanz | Power plant system for utilizing the heat energy of geothermal reservoirs |
CA2599835A1 (fr) * | 2005-03-11 | 2006-09-14 | Nissan Motor Co., Ltd. | Materiau de stockage de l'hydrogene, structure de stockage de l'hydrogene, dispositif de stockage de l'hydrogene, appareil de stockage de l'hydrogene, transporteur cellulaire de carburant, et un procede de production du materiau de stockage de l'hydrogene |
CN1297744C (zh) * | 2005-03-24 | 2007-01-31 | 上海交通大学 | 海洋温差能-太阳能重热循环发电方法 |
JP5154746B2 (ja) * | 2005-09-14 | 2013-02-27 | Jx日鉱日石エネルギー株式会社 | 多孔性物質およびその製造方法 |
US7948101B2 (en) * | 2005-09-02 | 2011-05-24 | John Christopher Burtch | Apparatus for production of hydrogen gas using wind and wave action |
US7658901B2 (en) * | 2005-10-14 | 2010-02-09 | The Trustees Of Princeton University | Thermally exfoliated graphite oxide |
US7233079B1 (en) * | 2005-10-18 | 2007-06-19 | Willard Cooper | Renewable energy electric power generating system |
JP2007205645A (ja) * | 2006-02-02 | 2007-08-16 | Matsushita Electric Ind Co Ltd | 太陽熱集熱器およびこれを有する太陽熱利用装置 |
KR20060096413A (ko) * | 2006-02-28 | 2006-09-11 | 카네카 코포레이션 | 필름 형상 그라파이트와 그 제조 방법 |
US7448214B2 (en) * | 2006-03-24 | 2008-11-11 | Erik Monostory | Geothermal hydrogen production facility and method |
US20070228739A1 (en) * | 2006-03-31 | 2007-10-04 | John Troy Kraczek | Offshore Energy Capture and Storage Device |
RU2319893C1 (ru) * | 2006-08-01 | 2008-03-20 | Институт физики им. Л.В. Киренского Сибирского отделения РАН | Способ и установка для аккумулирования газа внутри нанопор твердого носителя |
US20090077969A1 (en) * | 2007-09-25 | 2009-03-26 | Prueitt Melvin L | Heat Transfer Methods for Ocean Thermal Energy Conversion and Desalination |
KR100910059B1 (ko) * | 2006-12-06 | 2009-07-30 | 한국전자통신연구원 | 가스 저장 매체, 가스 저장 장치 및 그 저장 방법 |
US20080135403A1 (en) * | 2006-12-11 | 2008-06-12 | Jang Bor Z | Home hydrogen fueling station |
JP2008151282A (ja) * | 2006-12-19 | 2008-07-03 | Honda Motor Co Ltd | ガス貯蔵用容器 |
WO2008115933A1 (fr) * | 2007-03-19 | 2008-09-25 | Doty Scientific, Inc. | Hydrocarbures et carburants à base d'alcool provenant d'une énergie renouvelable variable à très haut rendement |
US7456512B2 (en) * | 2007-03-23 | 2008-11-25 | Bernard Nadel | Portable sea-powered electrolysis generator |
US20080245672A1 (en) * | 2007-04-03 | 2008-10-09 | New Sky Energy, Inc. | Electrochemical methods to generate hydrogen and sequester carbon dioxide |
RU2342542C1 (ru) * | 2007-04-04 | 2008-12-27 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" | Установка для получения энергии |
US9966763B2 (en) * | 2007-06-07 | 2018-05-08 | Allen L. Witters | Integrated multiple fuel renewable energy system |
JP2009047052A (ja) * | 2007-08-17 | 2009-03-05 | Honda Motor Co Ltd | コージェネレーション装置 |
JP5306621B2 (ja) * | 2007-09-12 | 2013-10-02 | 高砂熱学工業株式会社 | 電力供給システム |
JP2009077457A (ja) * | 2007-09-18 | 2009-04-09 | Tokyo Gas Co Ltd | 分散型電源の運転システムおよびその運転方法 |
JP5127385B2 (ja) * | 2007-09-28 | 2013-01-23 | 学校法人同志社 | アンモニア電解合成装置 |
CN201103949Y (zh) * | 2007-10-17 | 2008-08-20 | 李建军 | 太阳能纳米加热低温供地板辐射采暖设备 |
KR101042299B1 (ko) * | 2007-12-13 | 2011-06-17 | 기아자동차주식회사 | 연료전지 자동차용 수소저장 시스템 |
JP2009293447A (ja) * | 2008-06-03 | 2009-12-17 | Honda Motor Co Ltd | コージェネレーション装置 |
CN101614198A (zh) * | 2009-07-30 | 2009-12-30 | 江苏亿隆新能源科技发展有限公司 | 压力发电机 |
-
2010
- 2010-08-16 AU AU2010289904A patent/AU2010289904A1/en not_active Abandoned
- 2010-08-16 JP JP2012526835A patent/JP2013503310A/ja active Pending
- 2010-08-16 KR KR1020127004326A patent/KR101547007B1/ko not_active IP Right Cessation
- 2010-08-16 EP EP10814156.5A patent/EP2470787A4/fr not_active Withdrawn
- 2010-08-16 RU RU2012111668/06A patent/RU2499949C1/ru not_active IP Right Cessation
- 2010-08-16 BR BR112012004093A patent/BR112012004093A2/pt not_active IP Right Cessation
- 2010-08-16 CN CN201510137060.2A patent/CN104848032A/zh active Pending
- 2010-08-16 EP EP10855997.2A patent/EP2470786A4/fr not_active Withdrawn
- 2010-08-16 CN CN201510098366.1A patent/CN104912705A/zh active Pending
- 2010-08-16 CN CN201080048882.9A patent/CN102884361B/zh not_active Expired - Fee Related
- 2010-08-16 CA CA2770510A patent/CA2770510A1/fr not_active Abandoned
- 2010-08-16 WO PCT/US2010/045670 patent/WO2011028402A2/fr active Application Filing
- 2010-08-16 JP JP2012526836A patent/JP2013503299A/ja active Pending
- 2010-08-16 JP JP2012526834A patent/JP5922577B2/ja not_active Expired - Fee Related
- 2010-08-16 CN CN201080048874.4A patent/CN102713282B/zh not_active Expired - Fee Related
- 2010-08-16 CN CN201080048872.5A patent/CN102712020B/zh not_active Expired - Fee Related
- 2010-08-16 EP EP10817626.4A patent/EP2470752A4/fr not_active Withdrawn
- 2010-08-16 EP EP10858212.3A patent/EP2567066A4/fr not_active Withdrawn
- 2010-08-16 RU RU2012111681/06A patent/RU2537321C2/ru not_active IP Right Cessation
- 2010-08-16 WO PCT/US2010/002260 patent/WO2011028233A2/fr active Application Filing
- 2010-08-16 CN CN201080048888.6A patent/CN103124692B/zh not_active Expired - Fee Related
- 2010-08-16 EP EP10814157.3A patent/EP2470788A4/fr not_active Withdrawn
- 2010-08-16 WO PCT/US2010/045629 patent/WO2012047187A2/fr active Application Filing
- 2010-08-16 EP EP10814155.7A patent/EP2625031A4/fr not_active Withdrawn
- 2010-08-16 CN CN2010800488710A patent/CN102713154A/zh active Pending
- 2010-08-16 JP JP2012537875A patent/JP5852576B2/ja not_active Expired - Fee Related
- 2010-08-16 WO PCT/US2010/045653 patent/WO2011034677A2/fr active Application Filing
- 2010-08-16 WO PCT/US2010/045658 patent/WO2011028400A2/fr active Application Filing
- 2010-08-16 EP EP10846282.1A patent/EP2470822A4/fr not_active Withdrawn
- 2010-08-16 RU RU2012111666/06A patent/RU2012111666A/ru not_active Application Discontinuation
- 2010-08-16 CN CN201080037896.0A patent/CN102713281B/zh not_active Expired - Fee Related
- 2010-08-16 CN CN201080048875.9A patent/CN102713280B/zh not_active Expired - Fee Related
- 2010-08-16 WO PCT/US2010/045664 patent/WO2011028401A2/fr active Application Filing
- 2010-08-16 RU RU2012111665/06A patent/RU2562336C2/ru not_active IP Right Cessation
- 2010-08-16 WO PCT/US2010/045668 patent/WO2011102851A1/fr active Application Filing
- 2010-08-16 WO PCT/US2010/045669 patent/WO2012047188A1/fr active Application Filing
-
2012
- 2012-01-31 IL IL217860A patent/IL217860A/en not_active IP Right Cessation
- 2012-02-01 ZA ZA2012/00791A patent/ZA201200791B/en unknown
-
2013
- 2013-09-02 JP JP2013181500A patent/JP2014025587A/ja active Pending
-
2014
- 2014-08-08 JP JP2014163086A patent/JP2015028339A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9683299B2 (en) | Internally reinforced structural composites and associated methods of manufacturing | |
EP2625031A2 (fr) | Composites structuraux intérieurement renforcés et procédés de fabrication associés | |
US6503584B1 (en) | Compact fluid storage system | |
US20220021290A1 (en) | Magnetohydrodynamic hydrogen electrical power generator | |
Liu et al. | Carbon nanotubes for clean energy applications | |
JP5424210B2 (ja) | グラフィンロールトロールコーティング装置及びこれを用いたグラフィンロールトロールコーティング方法 | |
JP5695050B2 (ja) | 一体化された燃料噴射器及び点火器並びに関連する使用及び製造方法 | |
WO2002088593A1 (fr) | Contenant etanche au gaz | |
US20100258111A1 (en) | Solar receiver utilizing carbon nanotube infused coatings | |
US20160169180A1 (en) | Integrated fuel injector ignitor having a preloaded piezoelectric actuator | |
CN101469409B (zh) | 一种由氧化铝和氧化铒构成的阻氢涂层及其制备方法 | |
WO2008140504A2 (fr) | Préparation d'un réseau de longs nanotubes de carbone et de fibres | |
US20140356744A1 (en) | Energy storage and conversion with hot carbon deposition | |
WO2014200601A9 (fr) | Réacteur endothermique de collecteur d'échappement de moteur ainsi que systèmes et procédés associés | |
AU5378799A (en) | Gas storage on an adsorbent with exfoliated laminae | |
CN106978593A (zh) | 一种顶面为钛掺杂类金刚石多层隔热厚膜的活塞及其制备方法和应用 | |
CN209641357U (zh) | 一种基于碳纳米管导热的无冷却剂聚变堆第一壁部件 | |
US20170114756A1 (en) | Carbon collection and unthrottled engine operation | |
WO2015103391A1 (fr) | Procédés et appareil utilisables en vue de la production et de l'utilisation de combustibles issus de déchets organiques | |
CN105222117B (zh) | 一种具有石墨烯层的u型管 | |
JP2015135116A (ja) | 燃料噴射器及び燃料噴射器を作動させる方法 | |
AU2005209634B2 (en) | Gas Storage on an Adsorbent with Exfoliated Laminae | |
WO2015143167A1 (fr) | Câble auto-cicatrisant | |
Gencay | A mesophase pitch derived carbon foam: effect of pressure and release time | |
Liu et al. | The influence of process parameters and carbon nanotubes on composite material joints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120222 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MCALISTER TECHNOLOGIES, LLC |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20160511 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28D 7/10 20060101ALI20160504BHEP Ipc: C25B 1/00 20060101ALI20160504BHEP Ipc: F02D 35/02 20060101ALI20160504BHEP Ipc: F03G 7/00 20060101AFI20160504BHEP Ipc: C25B 13/02 20060101ALI20160504BHEP Ipc: F24J 2/07 20060101ALI20160504BHEP Ipc: C25B 9/06 20060101ALI20160504BHEP Ipc: F02D 41/00 20060101ALI20160504BHEP Ipc: F01N 5/02 20060101ALI20160504BHEP Ipc: C25B 1/02 20060101ALI20160504BHEP Ipc: F24J 2/12 20060101ALI20160504BHEP Ipc: C01B 31/04 20060101ALI20160504BHEP Ipc: C12P 3/00 20060101ALI20160504BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20161210 |