JP2015168971A - 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム - Google Patents

海底鉱物の揚鉱方法および海底鉱物の揚鉱システム Download PDF

Info

Publication number
JP2015168971A
JP2015168971A JP2014044225A JP2014044225A JP2015168971A JP 2015168971 A JP2015168971 A JP 2015168971A JP 2014044225 A JP2014044225 A JP 2014044225A JP 2014044225 A JP2014044225 A JP 2014044225A JP 2015168971 A JP2015168971 A JP 2015168971A
Authority
JP
Japan
Prior art keywords
pipe
sea
mineral
seawater
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014044225A
Other languages
English (en)
Inventor
名塚 龍己
Tatsuki Nazuka
龍己 名塚
健司 向山
Kenji Mukoyama
健司 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2014044225A priority Critical patent/JP2015168971A/ja
Publication of JP2015168971A publication Critical patent/JP2015168971A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

【課題】低コスト且つ簡便で定常的に採掘鉱物を海底から海上に運搬する。【解決手段】管路内1aに海水が満たされて下部1bが海底SB側まで延設され且つ上部1cが海上まで到達する揚鉱管1を用い、その揚鉱管1の下部開口1dから、採掘したスラリー状の鉱物Mを導入するとともに、海水を海底SB側で電気分解して発生させた水素ガスHを導入し、その水素ガスHの浮上力でスラリー状の鉱物Mを海上まで運搬する。【選択図】図1

Description

本発明は、海底で採掘した鉱物を海上に運搬する海底鉱物の揚鉱方法および海底鉱物の揚鉱システムに関する。
近年、各種産業機器を製造する上で必要不可欠な金属であり存在量が少ない、いわゆるレアメタルの価格が高騰している。レアメタルは産業上必要不可欠なものであるが、可採量が少ないだけでなく、産出国が限られているため地政学的リスクが存在している。そこで、海底鉱物の中でも、海底下に存在するレアメタル含有鉱物が注目されている。
海底鉱物中には、現在地上で採掘されている鉱物と比較して、高濃度でレアメタルが存在していることが各種調査で明らかにされている。そこで、近年様々な機関で試掘調査が行なわれ、また、海底鉱物の揚鉱方法や揚鉱システムも種々提案されている(例えば特許文献1、2参照)。
特許文献1ないし2には揚鉱システムおよび揚鉱方法が開示されている。これら文献記載の技術では、海上の揚鉱母船から海底まで揚鉱用移送管と循環用移送管をそれぞれ配設している。揚鉱母船上には、スラリー状の鉱石と海水を分離するセパレータと、分離された海水を循環用移送管に送り込む循環ポンプが装備される。一方、海底には、海底で採掘されるスラリー状の鉱石を海水と共に吸込口から吸入して揚鉱用移送管に送り込む水中ポンプと、循環用移送管から海底に戻される海水を駆動水にして水中ポンプを駆動させるハイドロモーターとが配置される。
これら文献記載の技術によれば、循環ポンプの駆動によりハイドロモーターが循環用移送管から海底に戻される海水を駆動水にして駆動され、これにより、水中ポンプを駆動され、海底で採掘されるスラリー状の鉱石を海水と共に吸込口から吸入して揚鉱用移送管に送り込み、揚鉱母船上にスラリー状の鉱石を揚鉱することができる。
特開2011−196047号公報 特開2012−193578号公報
しかしながら、特許文献1ないし2記載の技術は、海水自体を駆動水にして揚鉱するとともにハイドロモーターをも駆動する構成なので、大きな駆動動力が必要であり、また、海水を循環するための往復管路が必要なので、海上の揚鉱母船から海底まで揚鉱用移送管と循環用移送管それぞれの配設を要するという問題がある。したがって、海底で採掘した鉱物を低コスト且つ簡便で定常的に海面近くまで輸送する上では、未だ改善の余地が残されている。
そこで、本発明は、このような問題点に着目してなされたものであって、低コスト且つ簡便で定常的に採掘鉱物を海底から海上若しくはその近傍まで運搬し得る海底鉱物の揚鉱方法および海底鉱物の揚鉱システムを提供することを課題とする。
上記課題を解決するために、本発明の一態様に係る海底鉱物の揚鉱方法は、管路内に海水が満たされて下部が海底側まで延設され且つ上部が海上若しくはその近傍まで到達する揚鉱管を用い、その揚鉱管の下部開口から採掘したスラリー状の鉱物を導入するとともに、海水を海底側で電気分解して発生させた水素ガスを前記揚鉱管の下部開口から導入し、その導入した水素ガスの浮上力でスラリー状の鉱物を海上若しくはその近傍まで運搬することを特徴とする。
ここで、本発明の一態様に係る海底鉱物の揚鉱方法において、前記スラリー状の鉱物を運搬するために運搬船を用い、該運搬船のバラスト水を洗浄するための薬剤として、前記電気分解時に発生した次亜塩素酸ナトリウムを使用することは好ましい。また、前記発生させた水素ガスを海上で吸蔵し、その吸蔵した水素を用いて発電する燃料電池から前記電気分解するために必要な電力の一部を供給することは好ましい。
また、上記課題を解決するために、本発明の一態様に係る海底鉱物の揚鉱システムは、管路内に海水が満たされて下部が海底側まで延設され且つ上部が海上若しくはその近傍まで到達する揚鉱管と、該揚鉱管の下部開口に接続された混合槽と、該混合槽に採掘した鉱物をスラリー状にして導入するサイクロン装置と、海水を海底側で電気分解して発生させた水素ガスを前記混合槽に導入する電気分解装置とを備えることを特徴とする。
ここで、本発明の一態様に係る海底鉱物の揚鉱システムにおいて、前記スラリー状の鉱物を運搬するために運搬船を用いており、該運搬船のバラスト水を洗浄するための薬剤として、前記電気分解装置で電気分解時に発生した次亜塩素酸ナトリウムを使用することは好ましい。また、前記発生させた水素ガスを海上で吸蔵し、その吸蔵した水素を用いて発電する燃料電池を備え、該燃料電池から前記電気分解装置で電気分解するために必要な電力の一部を供給することは好ましい。
海水を電気分解すると水素ガスが発生するところ、本発明によれば、海水を海底側で電気分解を行なって水素ガスを発生させ、この水素ガスとともにスラリー状の鉱物を揚鉱管の下部開口に導入することにより、採掘した鉱物を水素ガスの浮上力によって海上若しくはその近傍まで運搬することができる。海底で採掘した鉱物はスラリー状なので、密度が小さく、水素の上昇力で運搬が可能である。そして、このような構成であると、海水自体を駆動水にして揚鉱する技術と比べて、大きな駆動動力が不要であり、また、揚鉱用の海水を循環するための管路も不要なので、低コスト且つ簡便で定常的に採掘鉱物を海底から海上若しくはその近傍まで運搬することができる。
ここで、海水を電気分解すると副産物として次亜塩素酸ナトリウムが発生するところ、船のバラスト水洗浄のための薬剤として、海水の電気分解時に発生した次亜塩素酸ナトリウムを使用すれば、電気分解時に発生する副産物である次亜塩素酸ナトリウムの有効活用が可能である。つまり、通常は別途に用意が必要なバラスト水洗浄のための薬剤として、副産物として発生する次亜塩素酸ナトリウムを貯留した後、これをバラスト水を洗浄するための酸化剤として使用することができるから、より低コスト化に貢献する。
さらに、発生させた水素ガスを海上で吸蔵し、その吸蔵した水素を用いて発電する燃料電池から電気分解するために必要な電力の一部を供給すれば、通常の鉱物運搬システムと比較して、発生させた水素を燃料電池の電気分解に使用する電力の一部として運用することにより、使用する電力の低減が可能であるから、より一層低コスト化に貢献する。
上述のように、本発明によれば、低コスト且つ簡便で定常的に採掘鉱物を海底から海上若しくはその近傍まで運搬することができる。
本発明の一態様に係る海底鉱物の揚鉱システムの一実施形態を説明する模式図である。
以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
図1に示すように、この揚鉱システムは、運搬船10を揚鉱基地として、この運搬船10を目的とする海域の洋上に停泊させ、鉱物を採掘するための採掘機6を海底に配置し、この採掘機6で採掘したスラリー状の鉱物を運搬船10に揚鉱するものである。
詳しくは、この揚鉱システムでは、同図に示すように、運搬船10から海底まで一本の揚鉱管1が上下に配設される。揚鉱管1は、採掘機6で採掘したスラリー状の鉱物を運搬船10まで移送する円筒構造物であり、管路内は海水が満たされる。揚鉱管1の下部1bが海底SB側まで延設され且つ上部1cが海面SL上の運搬船10まで到達している。揚鉱管1の途中部分の適宜な位置には制御弁41が設けられている。制御弁41は、運搬船10と信号線で接続され、運搬船10からの遠隔操作によって適宜開閉および開度調整することができる。制御弁41を開閉するタイミングは、制御弁41より下方の揚鉱管1又は混合槽2の内部圧力に基づいて制御することができる。ここで、本実施形態の揚鉱管1は真空断熱の二重管構造を有する。
運搬船10には、発電機11、揚鉱貯蔵容器12、燃料電池13、蓄電池14および直流交流交換装置15が搭載されている。
発電機11は、採掘機用電力供給ケーブル23を介して海底の採掘機6に接続され、採掘機6の作動に必要な電力を供給可能である。また、この発電機11は、送電ケーブル31を介して上記直流交流交換装置15に接続され、直流交流交換装置15に対しても電力を供給可能である。
揚鉱貯蔵容器12は、その底面部が、上記揚鉱管1の上部1cに船底を介して接続され、揚鉱管1から運搬されたスラリー状の鉱物が同容器内に貯蔵されるようになっている。揚鉱貯蔵容器12は、上部が上方に凸の曲面状とされた箱型容器であり、その最も高い位置に、水素ガス送気管30の一端が接続されている。水素ガス送気管30の他端は、上記燃料電池13の水素吸蔵部(不図示)に水素を導入可能に接続されている。これにより、揚鉱貯蔵容器12は、スラリー状の鉱物と水素ガス(後述)とを内部で分離し、分離された水素ガスを、水素ガス送気管30を介して燃料電池13の水素吸蔵部に送気可能になっている。
燃料電池13は、自身の水素吸蔵部に水素を吸蔵および放出可能とされ、この水素吸蔵部の水素に、空気中の酸素等を常温または高温環境で供給して反応させることにより、継続的に発電可能になっている。燃料電池13の近傍には上記蓄電池14が付設され、燃料電池13により発電された電力は蓄電池14に蓄電される。蓄電池14は、送電ケーブル31を介して上記直流交流交換装置15に接続され、直流交流交換装置15に電力を供給するようになっている。
上記揚鉱管1の下部1bは、海中に位置する混合槽2の上部に接続される。混合槽2は、内部に混合機構を有するミキシングチャンバであり、混合槽2には、揚鉱管1の接続位置に隣接して、略漏斗状のサイクロン装置3が付設されている。混合槽2の下部には、混合槽2および揚鉱管1の内部に満たすべき海水を導入可能な海水導入管27が設けられている。海水導入管27には、運搬船10と信号線で接続された制御弁42が設けられ、制御弁42は、運搬船10からの遠隔操作によって適宜開閉可能とされている。制御弁42を開閉するタイミングは、混合槽2の底部に堆積する堆積物の堆積レベル(堆積量)に基づいて制御することができる。
さらに、この揚鉱システムは、海水を電気分解する電気分解装置4、および次亜塩素酸ナトリウム貯蔵容器5が海底に配置される。
電気分解装置4および次亜塩素酸ナトリウム貯蔵容器5は、上記混合槽2の近傍に配置され、特に混合槽2よりも低い位置に配置されることが好ましい。少なくとも本実施形態では、電気分解装置4は、混合槽2の近傍且つ混合槽2の底面よりも低い位置に配置されている。電気分解装置4の下部には、電気分解装置4の内部に満たす海水を導入可能な海水導入管25が設けられている。海水導入管25には、運搬船10と信号線で接続された制御弁43が設けられ、制御弁43は、運搬船10からの遠隔操作によって適宜開閉可能とされ、電気分解される海水を電気分解装置4の電解槽内に適宜導入可能になっている。
電気分解装置4は、一対の電気分解用電力供給ケーブル24を介して上記直流交流交換装置15から所要電圧の直流電流が供給されるように接続されている。一対の電気分解用電力供給ケーブル24は、電気分解装置4の電解槽内に交互に対向配置されたアノードとカソードにそれぞれ接続され、海水は電解槽内で電気分解されて次亜塩素酸ナトリウムと水素ガスを生成するようになっている。
電気分解装置4の上部には、水素ガス放出管28の一端が接続され、水素ガス放出管28の他端が混合槽2の下部に接続されるとともに混合槽2の内部まで連通している。これにより、電気分解にて発生した水素ガスが水素ガス放出管28を介して混合槽2の下部から混合槽2内に導入されるようになっている。
また、電気分解装置4の下部には、海水導入管25とは反対の側に、次亜塩素酸ナトリウム吐出管26の一端が接続され、次亜塩素酸ナトリウム吐出管26の他端が次亜塩素酸ナトリウム貯蔵容器5に接続されている。次亜塩素酸ナトリウム吐出管26の途中部分には、運搬船10と信号線で接続された制御弁44が設けられ、制御弁44は、運搬船10からの遠隔操作によって適宜開閉可能とされている。これにより、次亜塩素酸ナトリウム吐出管26を介し、電気分解で生成された次亜塩素酸ナトリウムを海水とともに次亜塩素酸ナトリウム貯蔵容器5に導いて同容器内に収容可能とされている。なお、次亜塩素酸ナトリウム貯蔵容器5は、制御弁44の位置で着脱可能になっている。
採掘機6は、採掘機本体6aと、採掘機本体6aの後部に連結機構6bを介して接続された動力ユニット6cとを有する。
採掘機本体6aおよび動力ユニット6cは、移動用の車輪を下部に有し、内蔵する不図示の駆動装置により走行可能とされている。採掘機本体6aの前方にはドラムカッター6dが設けられるとともに、採掘機本体6aの上部にはスラリーポンプ7が付設されている。ドラムカッター6dの支持枠6eの上部には、ドラムカッター6dの駆動により採掘されたスラリー状の鉱物を海水と共に吸入するための吸込管20の一端が接続され、吸込管20の他端が上記スラリーポンプ7の吸込側に接続されている。スラリーポンプ7の吐出側には移送管22の一端が接続され、移送管22の他端が上記サイクロン装置3の上部側面に接続されている。サイクロン装置3の上部中央には、移送管22に沿って配管された還流管21の一端が接続され、還流管21の他端がドラムカッター6dの支持枠6eの前方近傍で保持されている。なお、還流管21および移送管22には、フレキシブル管を用いている。
次に、上述の揚鉱システムによって、海底から鉱物を揚鉱する手順、並びにこの海底鉱物の揚鉱システムによる揚鉱方法の作用・効果について説明する。
まず、運搬船10に設置されているクレーン等の作業機(不図示)を用い、揚鉱管1、混合槽2、サイクロン装置3、電気分解装置4および次亜塩素酸ナトリウム貯蔵容器5、並びに採掘機6を海中に降ろし、これらの機材が図1に示す配置となるように海中ないし海底の必要な位置に設置する。混合槽2および揚鉱管1の内部には、制御弁41,42を開いて海水を満たしておく。混合槽2および揚鉱管1の内部に海水が満たされたら、その後、制御弁42を閉じる。
上記機材の設置後、採鉱機6を駆動して海底を移動しながら海底の鉱床を粉砕する。採鉱機6で採掘されたスラリー状の鉱物を海水と共にスラリーポンプ7で吸込管20から吸入する。スラリーポンプ7で吸入したスラリー状の鉱物は、移送管22を介してサイクロン装置3に移送される。
サイクロン装置3は、鉱物と海水の比重差によって遠心力により鉱物と海水を分離する。分離されたスラリー状の鉱物は、漏斗状のサイクロン装置3のテーパーに沿って下降して混合槽2に導入され、これにより、採掘した鉱物を混合槽2に集積することができる。分離された海水は、サイクロン装置3の中心部の上昇流に導かれ還流管21を介してドラムカッター6dの支持枠6eの前方に戻される。
採鉱機6の駆動とほぼ同時に、海上の直流交流交換装置15から所要電圧の直流電流を電気分解装置4に供給する。これにより、電気分解装置4は、電解槽内で海水を電気分解して次亜塩素酸ナトリウムと水素ガスを生成する。なお、電気分解に係る反応は以下のとおりである。
[陽極反応] 2Cl→Cl2+2e
[陰極反応] 2Na+2H2O+2e→2NaOH+H2
[電解槽内反応] Cl2+2NaOH→NaClO+NaCl+H2O
[全反応] NaCl+H2O→NaClO+H2↑
電気分解装置4で生成された水素ガスHは、水素ガス放出管28を介して混合槽2の下部から混合槽2の内部に導入される。これにより、混合槽2の内部で水素ガスHとスラリー状の鉱物が混合される。ここで、海水を電気分解すると水素ガスが発生するところ、海底で採掘した鉱物はスラリー状であり、その密度が小さい。そのため、水素ガスと混合されると水素ガスの浮上力で揚鉱管1に沿って揚鉱管1内を上昇し、運搬船10内に設けられた海上の揚鉱貯蔵容器12まで運搬される。
ここで、上記制御弁41は、電気分解装置4での電気分解の開始時には一旦閉の状態にしておき、その後、制御弁41よりも下方側の揚鉱管1内に、ある程度水素ガスHを貯めたところで制御弁41を開放する。制御弁41を開放するタイミングは、制御弁41より下方の揚鉱管1又は混合槽2の内部圧力に基づいて制御することができる。これにより、揚鉱管1内の上昇方向への流れを円滑に作ることができる。
なお、上記サイクロン装置3で回収した鉱物のすべてが水素ガスHと共に同伴されて揚鉱管1内を上昇する訳ではなく、一部は混合槽2の内底部に堆積する可能性がある。そのため、混合槽2の内部での堆積物の堆積レベル(堆積量)を感知して、堆積物が設定値以上に堆積した場合には、制御弁42を開放して堆積物を制御弁42から海中に排出する。
運搬船10の揚鉱貯蔵容器12では、運搬されたスラリー状の鉱物が容器内部に貯蔵される。一方、軽い水素ガスは、上方に凸の曲面に沿って水素ガス送気管30に導かれて燃料電池13の水素吸蔵部に吸蔵される。これにより、発生した水素ガスを海上で吸蔵し、その吸蔵した水素を用いて燃料電池13で発電を行い、燃料電池13から(蓄電池14、直流交流交換装置15を介し)電気分解装置4で電気分解するために必要な電力の一部を供給することができる。
また、電気分解装置4で生成された次亜塩素酸ナトリウムは、次亜塩素酸ナトリウム吐出管26を介して海水とともに次亜塩素酸ナトリウム貯蔵容器5に導かれて同容器内に収容される。ここで、本実施形態の揚鉱システムでは、海水を電気分解すると副産物として次亜塩素酸ナトリウムが発生するところ、この次亜塩素酸ナトリウムを次亜塩素酸ナトリウム貯蔵容器5に貯留した後、上記運搬船10のバラスト水を洗浄するための酸化剤として使用することができる。
このように、この海底鉱物の揚鉱システムの揚鉱方法によれば、管路内に海水が満たされて下部が海底側まで延設され且つ上部が海上まで到達する揚鉱管1を用い、その揚鉱管1の下部開口から採掘したスラリー状の鉱物Mを導入するとともに、海水を海底側で電気分解して発生させた水素ガスHを揚鉱管1の下部開口から導入し、その導入した水素ガスの浮上力でスラリー状の鉱物を海上まで運搬するので、海水自体を駆動水とすることなく、採掘した鉱物Mを水素ガスHの浮上力によって海上まで運搬することができる。
そのため、この揚鉱システムの揚鉱方法によれば、海水自体を駆動水にして揚鉱する技術と比べて、大きな駆動動力が不要であり、水圧の影響が大きい深海の過酷な環境下においても安定して揚鉱することができる。また、深海の環境下においても揚鉱に必要な動力を節約して安定的に揚鉱することができる。さらに、海水を循環する管路も不要なので、海底で採掘した鉱物を揚鉱する設備構造が簡素化される。よって、低コスト且つ簡便で定常的に採掘鉱物を海底から海上に運搬することができる。
また、この揚鉱システムの揚鉱方法によれば、運搬船10のバラスト水洗浄のための薬剤として、海水の電気分解時に発生した次亜塩素酸ナトリウムを使用するので、電気分解時に発生する副産物である次亜塩素酸ナトリウムを有効活用することができる。つまり、通常は別途に用意が必要なバラスト水洗浄のための薬剤として、副産物として発生する次亜塩素酸ナトリウムを貯留した後、これをバラスト水を洗浄するための酸化剤として使用することができるから、より低コスト化に貢献する。
さらに、この揚鉱システムの揚鉱方法によれば、発生させた水素ガスHを海上で吸蔵し、その吸蔵した水素を用い燃料電池13から電気分解するために必要な電力の一部を供給するので、使用する電力の低減が可能であるから、より一層低コスト化に貢献する。
なお、本発明に係る海底鉱物の揚鉱方法および海底鉱物の揚鉱システムは、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能なことは勿論である。
例えば、上記実施形態では、揚鉱基地として運搬船10を例に説明したが、揚鉱基地はこれに限定されず、揚鉱基地として機能すれば、例えば海上に建設されたプラットホームなどであってもよい。
また、例えば上記実施形態では、スラリー状の鉱物を、運搬船10内に設けられた海上の揚鉱貯蔵容器12まで運搬する例で説明したが、これに限定されず、海底で採掘した鉱物を海上の近傍まで運搬すれば、海面下(例えば船底近くに揚鉱貯蔵容器を設ける)で揚鉱貯蔵を行ってもよい。
また、例えば上記実施形態では、揚鉱管として、真空断熱の二重管構造を有するものを例に説明したが、これに限定されず、管路内に海水が満たされて下部が海底側まで延設され且つ上部が海上まで到達する揚鉱管を用いるならば、種々の態様とすることができる。例えば、海洋では潮流などの影響を受けるので、揚鉱管1は、可撓性を有する管を用いることが好ましい。但し、揚鉱管1が可撓性を有する管に限定されることはなく剛性の高い鋼管であってもよい。本実施形態のように、真空断熱の二重管構造を有するものは特に好ましい。
1 揚鉱管
2 混合槽
3 サイクロン装置
4 電気分解装置
5 次亜塩素酸ナトリウム貯蔵容器
6 採掘機
7 スラリーポンプ
10 運搬船
11 発電機
12 揚鉱貯蔵容器
13 燃料電池
14 蓄電池
15 直流交流交換装置
20 吸込管
21 還流管
22 移送管
23 採掘機用電力供給ケーブル
24 電気分解用電力供給ケーブル
25 海水導入管
26 次亜塩素酸ナトリウム吐出管
27 海水導入管
28 水素ガス放出管
29 送電ケーブル
30 水素ガス送気管
31 送電ケーブル
SL 海面
SB 海底
41〜44 制御弁

Claims (6)

  1. 管路内に海水が満たされて下部が海底側まで延設され且つ上部が海上若しくはその近傍まで到達する揚鉱管を用い、その揚鉱管の下部開口から採掘したスラリー状の鉱物を導入するとともに、海水を海底側で電気分解して発生させた水素ガスを前記揚鉱管の下部開口から導入し、その導入した水素ガスの浮上力でスラリー状の鉱物を海上若しくはその近傍まで運搬することを特徴とする海底鉱物の揚鉱方法。
  2. 前記スラリー状の鉱物を運搬するために運搬船を用い、該運搬船のバラスト水を洗浄するための薬剤として、前記電気分解時に発生した次亜塩素酸ナトリウムを使用することを特徴とする請求項1に記載の海底鉱物の揚鉱方法。
  3. 前記発生させた水素ガスを海上で吸蔵し、その吸蔵した水素を用いて発電する燃料電池から前記電気分解するために必要な電力の一部を供給することを特徴とする請求項1または2に記載の海底鉱物の揚鉱方法。
  4. 管路内に海水が満たされて下部が海底側まで延設され且つ上部が海上若しくはその近傍まで到達する揚鉱管と、該揚鉱管の下部開口に接続された混合槽と、該混合槽に採掘した鉱物をスラリー状にして導入するサイクロン装置と、海水を海底側で電気分解して発生させた水素ガスを前記混合槽に導入する電気分解装置とを備えることを特徴とする海底鉱物の揚鉱システム。
  5. 前記スラリー状の鉱物を運搬するために運搬船を用いており、該運搬船のバラスト水を洗浄するための薬剤として、前記電気分解装置で電気分解時に発生した次亜塩素酸ナトリウムを使用することを特徴とする請求項4に記載の海底鉱物の揚鉱システム。
  6. 前記発生させた水素ガスを海上で吸蔵し、その吸蔵した水素を用いて発電する燃料電池を備え、該燃料電池から前記電気分解装置で電気分解するために必要な電力の一部を供給することを特徴とする請求項4または5に記載の海底鉱物の揚鉱システム。
JP2014044225A 2014-03-06 2014-03-06 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム Pending JP2015168971A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014044225A JP2015168971A (ja) 2014-03-06 2014-03-06 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044225A JP2015168971A (ja) 2014-03-06 2014-03-06 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム

Publications (1)

Publication Number Publication Date
JP2015168971A true JP2015168971A (ja) 2015-09-28

Family

ID=54201969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044225A Pending JP2015168971A (ja) 2014-03-06 2014-03-06 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム

Country Status (1)

Country Link
JP (1) JP2015168971A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105735999A (zh) * 2016-04-27 2016-07-06 长沙矿冶研究院有限责任公司 水下空间采矿装置
CN108204235A (zh) * 2018-02-27 2018-06-26 嘉兴市禾东船业有限责任公司 一种用于海底矿物运输装置
CN109026008A (zh) * 2018-09-18 2018-12-18 长沙矿冶研究院有限责任公司 一种海底集矿作业车的集矿机构
CN113294158A (zh) * 2021-06-18 2021-08-24 中国船舶工业集团公司第七0八研究所 一种深海采矿矿物处理系统
CN113982590A (zh) * 2021-12-27 2022-01-28 中国海洋大学 一种浮力自升式传输多金属结核系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145601A (en) * 1974-08-16 1976-04-19 Tax Hans Kaiteino kokaio saishusurusochi
JPS55119888A (en) * 1979-03-09 1980-09-13 Taguchi Chobee Method of picking up submarine substance
JP2004068638A (ja) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd 海流発電装置
JP2005342626A (ja) * 2004-06-03 2005-12-15 Jfe Engineering Kk バラスト水処理方法及び装置、該装置を搭載した船舶
WO2012047187A2 (en) * 2009-08-27 2012-04-12 Mcalister Technologies, Llc Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
JP5403473B1 (ja) * 2013-03-28 2014-01-29 坂本 美穂 海底資源リフト装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145601A (en) * 1974-08-16 1976-04-19 Tax Hans Kaiteino kokaio saishusurusochi
JPS55119888A (en) * 1979-03-09 1980-09-13 Taguchi Chobee Method of picking up submarine substance
JP2004068638A (ja) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd 海流発電装置
JP2005342626A (ja) * 2004-06-03 2005-12-15 Jfe Engineering Kk バラスト水処理方法及び装置、該装置を搭載した船舶
WO2012047187A2 (en) * 2009-08-27 2012-04-12 Mcalister Technologies, Llc Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
JP5403473B1 (ja) * 2013-03-28 2014-01-29 坂本 美穂 海底資源リフト装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105735999A (zh) * 2016-04-27 2016-07-06 长沙矿冶研究院有限责任公司 水下空间采矿装置
CN108204235A (zh) * 2018-02-27 2018-06-26 嘉兴市禾东船业有限责任公司 一种用于海底矿物运输装置
CN108204235B (zh) * 2018-02-27 2024-03-01 浙江禾东船业科技股份有限公司 一种用于海底矿物运输装置
CN109026008A (zh) * 2018-09-18 2018-12-18 长沙矿冶研究院有限责任公司 一种海底集矿作业车的集矿机构
CN109026008B (zh) * 2018-09-18 2024-03-22 长沙矿冶研究院有限责任公司 一种海底集矿作业车的集矿机构
CN113294158A (zh) * 2021-06-18 2021-08-24 中国船舶工业集团公司第七0八研究所 一种深海采矿矿物处理系统
CN113982590A (zh) * 2021-12-27 2022-01-28 中国海洋大学 一种浮力自升式传输多金属结核系统及方法
CN113982590B (zh) * 2021-12-27 2022-03-22 中国海洋大学 一种浮力自升式传输多金属结核系统及方法

Similar Documents

Publication Publication Date Title
EP2980352B1 (en) Seabed resource lifting device
JP2015168971A (ja) 海底鉱物の揚鉱方法および海底鉱物の揚鉱システム
EP3342976A1 (en) Mineral lifting system and mineral lifting method
JP5490582B2 (ja) 揚鉱システムおよび揚鉱方法
CN107338451B (zh) 电解海水氢气回收与发电系统
CN103998716A (zh) 用于海底开采的可断开方法和系统
CN106884629B (zh) 一种海底可燃冰钻式开采装备
CA2835615A1 (en) Blue power generation system
JP2017071959A (ja) ガス回収装置及び水底メタンハイドレートからのガス回収方法
JP2009280960A (ja) 揚水機構および水底資源回収装置
CN108204235B (zh) 一种用于海底矿物运输装置
JP2019078018A (ja) 採掘装置およびこれを備える海洋資源揚鉱装置、並びに、海洋資源の揚鉱方法
WO2014109173A1 (ja) メタンハイドレートからのメタンガス生産装置
JP5713143B1 (ja) 海底採鉱船
JP7067325B2 (ja) 水素ガス生成システム、および水素ガスの生成方法
JP6341518B2 (ja) メタンガス回収付随水の処理装置及び処理方法
MXPA01000035A (es) Mejoras en proceso de obtencion de hidrogeno.
JP5226895B1 (ja) 発電システム
JP6903293B2 (ja) 海洋資源揚鉱装置および海洋資源の揚鉱方法並びに海洋資源の集鉱方法
JP2015074925A (ja) 堆積物搬送方法および堆積物搬送システム
KR101411642B1 (ko) 라이저 가이드 장치
CN115349053A (zh) 发电系统
JP5729890B1 (ja) 高深度浮上筒
JP2018076743A (ja) ガスハイドレート回収方法およびガスハイドレート回収装置
JP5750527B1 (ja) 水循環装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703