CN1774394A - 臭氧发生装置和臭氧发生方法 - Google Patents

臭氧发生装置和臭氧发生方法 Download PDF

Info

Publication number
CN1774394A
CN1774394A CNA2004800098362A CN200480009836A CN1774394A CN 1774394 A CN1774394 A CN 1774394A CN A2004800098362 A CNA2004800098362 A CN A2004800098362A CN 200480009836 A CN200480009836 A CN 200480009836A CN 1774394 A CN1774394 A CN 1774394A
Authority
CN
China
Prior art keywords
mentioned
ozone
nitrogen
electrode
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800098362A
Other languages
English (en)
Other versions
CN100364882C (zh
Inventor
田畑要一郎
冲原雄二郎
石川政幸
西津彻哉
四元初男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of CN1774394A publication Critical patent/CN1774394A/zh
Application granted granted Critical
Publication of CN100364882C publication Critical patent/CN100364882C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/12Plate-type dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/32Constructional details of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/34Composition of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/80Additional processes occurring alongside the electrical discharges, e.g. catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/80Additional processes occurring alongside the electrical discharges, e.g. catalytic processes
    • C01B2201/82Treatment with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

利用不添加氮气的以氧气为主体的原料气体,能够不生成NOx副产物,高效高地获得高浓度的臭氧的臭氧发生装置和臭氧发生方法。向臭氧发生器300内供给不含氮气以氧气为主体的原料气体25,施加交流电压,产生至少具有428nm~620nm的光波长的放电光,在放电区域的电极或电介质上设置含有带隙为2.0eV~2.9eV的光催化物质303的催化物质,将气压保持在0.1MPa~0.4MPa,生成臭氧。

Description

臭氧发生装置和臭氧发生方法
技术领域
本发明涉及臭氧发生装置和臭氧发生方法,特别是涉及具有高压电极和低压电极,在电极间施加交流电压产生放电,高效地生成臭氧气体的臭氧发生装置和臭氧发生方法。更特别涉及可获得纯净的臭氧气体的无氮或抑氮的臭氧发生装置和臭氧发生方法。
背景技术
以下,展开介绍一下以往的各种技术。
文献1所述的技术是:臭氧发生器中,由第1原料供给系统、第2原料供给系统供给原料,在电极间施加高电压的交流电压,使电极间通过电介质产生无声放电(电介质阻挡放电),将原料气体转变成臭氧气体,上述第1原料供给系统是由纯度99.995%以上的氧气储气瓶供给规定流量,第2原料供给系统是按规定流量供给纯度99.99%以上的第2原料气体(氮气、氦气、氩气或二氧化碳)。关于臭氧浓度经时下降的现象的原因还不清楚,但是发现如下现象,即采用高纯度氧气时,在发生装置中一次生成的臭氧气体会出现经时下降,作为抑制该经时下降的手段,向高纯度氧气中添加氮气等被认为是一种有效的方法。
文献2所述的技术要点是:将臭氧装置的原料气体氧气和氮气的混合比设定为1∶0.0002(200ppm)~0.0033(3300ppm)。在文献2的图2中示出了氮气的添加量和臭氧发生装置所得的臭氧浓度的特性,据该文献所述,按可获得足够的臭氧浓度(约100g/m3以上)的氮添加量计,将混合比设定为1∶0.0002。同时为了将从发生装置所产生的反应毒气氮氧化物的产生量控制在低水平,将混合比设定在1∶0.0033以下。氮添加量在100ppm以下的氧原料气体只能得到20g/m3(9333ppm)的臭氧浓度,还不到氮添加率3300ppm时的臭氧浓度120g/m3(56000ppm)的1/6以下。此外,在其说明书中还提到,使用了氩气代替氮气混入高纯度氧气中,但无论氩气的混合率为多少,都只能得到20g/m3(9333m)程度的臭氧浓度,采用氩气不能获得提高臭氧浓度的效果。
专利文献3所述的技术要点是:在臭氧发生装置中,将TiO2膜形成于电介质的放电面上。在发生器内的电介质的放电面上涂敷金属元素比率为10wt%以上的钛氧化物,以此来代替添加高纯度氮气。
专利文献4所提出的技术要点是,在最大可得到180g/m3臭氧浓度的臭氧装置中,为了抑制臭氧浓度经时下降,将氮添加量设定为0.01%~0.5%。
在以往技术中,利用无声放电生成臭氧的历程可以说是按照下述反应式生成的。
R1;     (氧的离解)
R2;
(基于氧原子和氧分子的三体碰撞生成臭氧)
R3; (电子碰撞分解)
R4; (热分解)
R5; (杂质使臭氧分解)
注:N1是与N不同的物质。
臭氧气体的生成是通过从R1的氧分子离解成氧原子,然后经R2的氧原子和氧分子三体碰撞,生成臭氧。
生成的臭氧的分解可以认为是R3的电子碰撞分解,R4的热分解,R5的杂质引起的臭氧的分解等。
可以从发生器取出的臭氧气体是在上述R1~R5的反应式的平衡状态下得到的臭氧气体。即,可以按照下式取出臭氧气体。
可取出的臭氧=(R1*R2)-(R3+R4+R5+…)
此外,由于以往技术中,如果在上述高纯度氧气的情况下,由上述臭氧生成机构生成的臭氧进行运行,则臭氧浓度会经时下降,因此通过在原料气体中添加氮气或在放电极面涂布光催化物质TiO2,引发下述反应,防止臭氧浓度的经时下降。
在文献1、文献2和文献3中,运用这种方法稳定地获得近120g/m3的臭氧浓度,该浓度是较低的臭氧浓度。
在各以往技术中,还明显存在如下不同之处。文献1中提到:除了添加氮气以外,其它气体氦气、氩气、或二氧化碳气体也有效。但据文献2所述,高纯度氧气的情况下,采用氩气无效。
在文献1中,第2原料气体的添加量为10000ppm~100000ppm,而在文献2中不同,为200ppm~3300ppm。
掘文献1所述,在高纯度氧气下,运行1小时左右浓度下降,而文献3所述则不同,运行约7小时后浓度下降。
此外,在文献1中的第6栏第49行~第7栏第2行处,作为运行刚开始后的臭氧浓度,图6显示,含有率0vol%时臭氧浓度只有75g/m3的数据,但在图5中,高纯度氧气下的运行刚开始后的臭氧浓度显示出最大浓度143.5g/m3(参见表3),2个试验数据显示出完全不同的值、现象,呈现出非常不明确的事实。
综上所述表明,通过向氧气中添加氮气等来抑制装置所产生的臭氧的浓度经时下降的以往技术,随条件的不同结果和效果上会有较大的差异,专利文献1、专利文献2和专利文献3,虽然有经过实验性的确认,但是专利文献1和专利文献3中并不能够拿出非常确凿的证据,可以明确,单独添加氮气以外的稀有气体(氦气、氖气、氩气、氙气等)没有效果。
在专利文献1和专利文献4中都记载着,臭氧浓度的降低是经时下降,但是一旦下降,就无法恢复到原来的臭氧浓度。恢复不到原来的浓度的情况不能判断为经时下降,因此添加氮气的作用不明确。
此外,氮添加率如果为近0.15%(1500ppm)以上,则通过无声放电除了生成臭氧以外,还会生成大量N2O5、N2O等NOx副生气体。
如果生成大量的NOx副生气体,则NOx气体成分和原料气体中所含的水分反应生成硝酸(HNO3)类(蒸气),这样就只能以在氧气、臭氧气体中都混有微量的NOx气体、硝酸群的状态下取出臭氧化气体。该微量的硝酸群如果含有数百ppm以上,则存在如下问题,即受该硝酸的影响在臭氧气体出口配管不锈钢配管的内表面上会析出氧化铬等锈斑,使纯净的臭氧气体中混入金属杂质,用作半导体制造装置用反应气体时,则不仅金属杂质会给半导体的制造带来不良影响,而且生成的微量的硝酸群也会作为反应毒气给半导体制造装置的〔利用臭氧的硅氧化膜的蚀刻处理)及〔晶片等的臭氧水清洗〕带来不良影响。
采用以往技术的臭氧装置中,取出的臭氧浓度低,要取出200g/m3以上的高浓度,只有采取增加氮添加率的方法或降低气体流量的方法。增加氮添加率的方法如上所述存在NOx副生气体增加的问题。
而如果降低气体流量,则臭氧发生量会极度减少,从而存在利用臭氧的这一方面的生产效率变差等问题。
还有,在最新的〔采用臭氧的氧化膜的蚀刻装置〕及〔晶片等的臭氧水清洗〕中,需要200g/m3以上的高浓度的臭氧浓度,在臭氧发生量上,按照用户侧的生产上的合算标准,需要具有几拾克/h以上的臭氧容量的臭氧装置,而且用于半导体制造装置时,必须是硝酸等反应毒物少的装置。
此外,为了提高臭氧气体的生成效率,添加约1%的微量N2气,但是在发生器内由于放电N2气转变成NOx、硝酸群(蒸气)。
为此存在如下问题,即,由于在放电空间(放电区域)气体流速越慢、或者放电能量输入得越大,氮氧化物NOx生成量就越大,由此使臭氧生成效率下降,取出的臭氧浓度降低等。
由利用高浓度臭氧气体的具体的主要生产装置和上述生产装置制得的产品有如下这些。
表1                               利用臭氧的主要的生产装置和产品
  生产装置领域   所得的产品   功能
化学气相沉积装置ALD薄膜蒸镀装置 半导体   ·导电薄膜
  ·绝缘薄膜
  ·电介质薄膜
  ·半导体薄膜
  电容   ·高介电常数薄膜
平面板   ·导电薄膜
  ·绝缘薄膜
  ·电介质薄膜
  ·半导体薄膜
太阳能电池   ·导电薄膜
  ·绝缘薄膜
  ·电介质薄膜
  ·半导体薄膜
  磁带   ·高磁性薄膜
  超导薄膜   ·超导薄膜
  臭氧浓缩装置   超高浓度臭氧气体   臭氧浓缩
  纸浆漂白装置   纸   臭氧漂白
图24为以往的采用高浓度臭氧气体制造薄膜的化学气相沉积装置(即CVD装置Chemical Vapor Deposition)或ALD薄膜蒸镀装置(原子层沉积AtomicLayerDeposition)的一个实例。
在图24中,600为利用激光烧蚀得到金属蒸气的CVD装置或ALD蒸镀装置,601为激光装置,602为激光束聚焦透镜,603为工作室,604为激光束导入口,607为激光束导入窗,605a为臭氧气体导入口,605b为稀有气体导入口,606为气体排出口,608为被处理材料台,610为被处理材料(半导体晶片等),612为台架,611为铂、钌、钯等贵金属的薄膜用金属靶材,A3000为臭氧气体供给系统,618为真空装置。10A为稀有气体储气瓶,617为真空阀,619为排气。
在以往的CVD装置或ALD薄膜蒸镀装置中,将来自氧气储气瓶10的氧气和来自氮气储气瓶10B的约为氧气的0.01~1%范围内的氮气的混合气体向臭氧发生装置A300供给,在臭氧发生装置产生高浓度臭氧气体,将该高浓度臭氧气体输入CVD装置或ALD薄膜蒸镀装置,进行臭氧的氧化反应处理。装置的动作是,将被处理材料610装载在被处理材料台608上,由真空装置618抽真空,除去附着在被处理材料610表面的水分。接着,在负压状态下将100g/m3程度的臭氧气体输入工作室603中,由被处理材料台608内的加热器和温度调节部609提高至约数百度,利用臭氧对吸附在被处理材料610表面的碳化合物、水分、氢化合物等进行加热反应处理,实施被处理材料610表面的洁净化处理(0.清洗工序)。
下一工序中,在抽成真空的工作室603,从安装在外部的激光装置601,聚焦工作室内的薄膜材料即薄膜靶材611照射具有强大能量的脉冲激光束613,由此通过局部加热从薄膜靶材611放出金属蒸气615在工作室内,使低气压的金属蒸气充满工作室,通过对装载在被处理材料台608上的被处理材料的温度控制,以原子层级在表面堆积亚微米~数微米级的金属粒子(1.堆积工序)。在负压状态下将300g/m3程度的高浓度臭氧气体输入工作室内,由被处理材料台608内的加热器和温度调节部609提高至约数百度,使以原子层级在被处理材料表面堆积的金属转变成金属氧化物(2.臭氧氧化反应工序)。
最后的工序是,在将工作室内用作为惰性气体的稀有气体置换过的状态下,由被处理材料台608内的加热器和温度调节部609加热至规定温度,使金属氧化物形成有效的金属氧化物晶体(3.退火工序)。重复进行上述1.堆积工序→2.臭氧氧化工序→3.退火工序直至堆积薄膜达到所希望的厚度,形成具有有效功能的薄膜。形成半导体等的薄膜的工序除了上述工序以外还有掺杂工序、蚀刻工序、抗蚀膜剥离工序等各种复杂的工序,这里就不再作介绍了。
利用薄膜的产品有安装在电气装置的基板上的电容、半导体元件、作为显示器的显示部分的平面板、用于太阳能电池的太阳能电池元件、超导薄膜元件、磁带。
这些产品所用的薄膜,主要是为了如下的目的而需要薄膜化。
i)高集成化                ii)元件的低价化
iii)高功能化              iv)低耗电化
为了生产出满足上述目的的产品,希望薄膜是其自身的必备性能具有如下功能的薄膜。
(1)半导体薄膜
(2)绝缘性薄膜
(3)金属氧化物薄膜
(4)电容、半导体用的强电介质薄膜
(5)磁记录用的强磁体性薄膜
(6)光电子元器件用光学材料的薄膜
(7)超导薄膜
(1)半导体用薄膜有氧化硅薄膜。(2)绝缘性薄膜方面,绝缘性优良的ZrO2、HfO2及Ln2O3薄膜受到关注。(3)金属氧化物薄膜有替代铂、铜的RuO2、SrRuO3。(4)铁电薄膜有不挥发储存用的Pb(ZrxTi1-x)O3及(BaxSr1-x)TiO3。(5)强磁性体薄膜有Y3Fe5O12等。(6)光学材料的薄膜方面,LiNbO3等的高速光开关功能倍受瞩目,同时作为波导路的薄膜也受到关注。(7)超导薄膜有YBa2CuO7等金属氧化物。
这些薄膜都是通过IV族、III-V族的过渡金属贵金属的金属氧化物在特殊环境下结晶生长得到的,要获得这些金属氧化物只有依靠臭氧的高热力学氧化能(按等价氧分压计抵得上相当于1018气压的高压力氧的氧化)才能实现,除了采用臭氧气体以外几乎不可能实现。
用于获得具有上述高功能的金属氧化物薄膜的CVD装置和ALD薄膜蒸镀装置存在如下问题。
i)薄膜的性能品质差
iil薄膜的性能不均一
iiil薄膜的堆积速度慢
i)、ii)的原因是:由于在装置内进行的各工序中金属杂质及含碳杂质、含氮杂质、氢气、水分混入,因此存在薄膜元件的绝缘性、漏电流增大,性能的差异大,薄膜自身的机械粘合性劣化等问题。
使用以往的高浓度臭氧气体的臭氧气体浓缩装置是,将由臭氧发生器得到的高浓度臭氧气体通入填充有冷却至约-60℃~-100℃的硅胶等的容器中,转变成液化臭氧,使其吸附于填充的硅胶上(吸附工序),然后将该吸附的液化臭氧加热至约常温,使氧气等载气流入填充有硅胶等的容器中,使液化臭氧蒸发(脱附工序),由此得到浓度比由臭氧发生器所得的高浓度臭氧气体更高的超高浓度臭氧气体。在该臭氧浓缩装置中,如果臭氧中含有氮、氮氧化物(NOx)等杂质,则会存在如下问题,即,不仅臭氧气体,连气体中所含的NOx也液化,在脱附工序中,吸附着的NOx不脱附,蓄积在硅胶上,从而使浓缩装置的浓缩能力下降等。
在现有的纸浆漂白上氯漂白占有主导地位,但是由于纸浆漂白时,会排出有害的二肟等有机氯系化合物,在环保上存在问题,因此漂白力强、且不会排出有害物质的臭氧漂白装置受到关注。但是在这方面还存在一些有待解决的问题,如大规模的臭氧装置难以实现,以及由于臭氧气体中含有氮氧化物,导致纸浆漂白装置因腐蚀发生管道破损,或损伤纸浆纤维等。此外,在臭氧发生器中如果不添加氮气,则存在如下问题,无法获得足够的臭氧发生量,臭氧发生装置增大,同时耗电增加,从而失去臭氧漂白装置经济性上的优势等。
专利文献1:日本特许公表平6-21010号公报(第1-4页,第图1)
专利文献2:日本特许第2641956号公报(第1-4页,第图2-3)
专利文献3:日本特许公开平11-21110号公报
专利文献4:日本特许第2587860号公报
发明内容
发明要解决的课题
本发明是为了解决上述课题而完成的,目的是提供即使不含有氮气或氮副产物,也能够确实地提高臭氧发生效率,生产纯净的臭氧气体的无氮臭氧发生装置和无氮臭氧发生方法。
本发明还提供适合用于化学气相沉积装置或ALD薄膜蒸镀装置、臭氧浓缩装置、或纸浆漂白装置中的臭氧发生装置。
此外,还提供在氧气中可以含有微量的氮气的用途中,添加微量的氮气促进臭氧生成反应的氮抑制臭氧发生装置和氮抑制臭氧发生方法。
解决课题所用的手段
本发明涉及的无氮臭氧发生装置和无氮臭氧发生方法的特征是,具有第1电极、与上述第1电极对向,形成具有间隙的放电区域的第2电极、供给原料气体氧气的原料气体供给手段、设于上述放电区域的电介质或上述电极上,含有带隙为2.0eV~2.9eV的光催化物质的催化物质;由电源在上述第1电极和第2电极间施加交流电压,向上述放电区域输入放电能量,由上述原料气体供给手段向上述放电区域供给氧气,通过放电向上述催化物质照射至少具有428nm~620nm范围的光波长的放电光,激发上述催化物质,使通过上述放电区域的上述氧气离解成氧原子,并且将上述氧气通过的上述放电区域的气压保持在0.1MPa~0.4MPa,对上述氧气和上述离解出的氧原子进行结合处理,产生臭氧。
此外,本发明涉及的臭氧发生装置还是放电区域的间隙间隔在0.6mm以下的装置。
本发明涉及的无氮臭氧发生装置还是用于化学气相沉积装置或ALD(atomiclayer deposition)薄膜蒸镀装置的装置。
本发明涉及的臭氧发生装置还是用于臭氧浓缩装置的装置。
本发明涉及的臭氧发生装置还是用于纸浆漂白装置的装置。
在上述氧气中可含有氮气的臭氧利用用途中,通过添加微量的氮(受到控制的氮量),能够使设在放电区域的电介质或电极上的光催化物质的允许带隙范围达到2.0eV~3.6eV,利用氮气的放电光(紫外光)促进臭氧生成反应。
发明效果
通过本发明的无氮臭氧发生装置和无氮臭氧发生方法,采用不添加氮气的以氧气为主体的原料气体能够确实地提高臭氧发生效率,获得不含NOx等副产物或只含有不可避免的量的纯净臭氧气体(无氮臭氧气体)。
不添加氮气的以氧气为主体的原料气体即使采用纯度99.99%以上的氧气,也不可避免地会混入N2,更具体地说,即使采用99.995%高纯度氧气,也会含有最大容许量为151×102ppb(即15ppm)的N2,这样,就会生成不可避免的量的NOx等副产物,因此在本发明,纯净的臭氧气体(无氮臭氧气体)中含有不可避免的量的NOx等副产物。
本发明的臭氧发生装置由于放电区域的间隙间隔在0.6mm以下,因此由无声放电形成的428nm~620nm范围的光波长的放电光的光强度高,促进带隙2.0eV~2.9eV的光催化物质的激发,从而能够促进氧气的离解,提高臭氧生成效率。
由于本发明的无氮臭氧发生装置用于化学气相沉积装置或ALD薄膜蒸镀装置,因此在化学气相沉积装置或ALD薄膜蒸镀装置中,能够使用纯净的臭氧气体(无氮臭氧气体)有效地实施清洗工序以及臭氧氧化反应工序,提高薄膜自身的氧化膜的品质,上述清洗工序是在生成半导体等功能上有效的薄膜时除去吸附在基板面上的水分、氢化合物、碳化合物的工序,臭氧氧化反应工序是利用臭氧气体将堆积的金属转变成金属氧化物的工序。
由于本发明的臭氧发生装置用于臭氧浓缩装置,因此无氮臭氧气体或氮抑制臭氧气体,能够在臭氧浓缩装置中,抑制杂质气体的附着,抑制杂质气体通过附着而蓄积,从而能够防止浓缩装置的性能下降。
由于本发明的臭氧发生装置用于纸浆漂白装置,因此在纸浆漂白装置中,无氮臭氧气体或氮抑制臭氧气体,可抑制水分和NOx结合生成硝酸,由此能够抑制气体管道的加速腐蚀,提高装置的使用寿命。
此外,在上述氧气中可以含有氮气的臭氧利用用途中,通过添加微量的氮(受到控制的氮量),能够使设在放电区域的电介质或电极上的光催化物质的允许带隙范围达到2.0eV~3.6eV,利用氮气的放电光(紫外光)促进臭氧生成反应。因此,通过使上述氧气中含有微量的、具体为10ppm~500ppm的氮气,能够促进臭氧生成反应。利用氮气的放电光,光催化物质也能够使用带隙为3.6eV以下的光催化物质。
具体实施方式
实施方式1
参照附图1~6说明本发明的实施方式1。图1为实施方式1中的气体系统的结构框图。图2为在实施方式1的气体系统中添加氧气以外的稀有气体等辅助原料气体的结构的框图。图3为表示实施方式1中的臭氧浓度特性的特性图。图4为实施方式1中氧分子和光催化物质发生作用氧分子离解成氧原子的历程的示意图。图5为实施方式1中由氧原子和氧分子的三体碰撞生成臭氧的历程的示意图。图6为从实施方式1的臭氧发生器的截面上所反映出的从氧气到生成臭氧的历程的示意图。在说明书的各图中,同一种符号表示相同或相当的部分。
本发明的臭氧发生装置对于如下情况是非常有效的,即需要200g/m3以上的高浓度臭氧气体,半导体制造装置或清洗装置等用的纯净臭氧气体,无NOx等副产物的无氮臭氧气体、或臭氧生成效率高的装置。
在图1中,供给纯度99.99%以上的氧气(原料气体)的A种原料供给系统100由高纯度氧气储气瓶10、减压阀13、开关阀15构成。通过调整原料气体的供气量的流量调节器(MFC)19向臭氧发生器300供给原料气体25。
此外,氧气即使采用纯度99.99%以上的氧气,也不可避免地会混入N2,更具体说,即使采用99.995%高纯度氧气,也会含有151×102ppb(即15ppm)的N2,但最好是使用N2混入更少的氧气。
在图2中,除了供给氧气(原料气体)的A种原料供给系统以外,还具有按规定量供给纯度99.99%以上、不含氮气、用于增强放电的发光强度的稀有气体等辅助原料气体的B种原料供给系统200。此外,如上所述,即使是纯度99.99%以上的稀有气体,也不可避免地会混入N2,但最好是使用N2混入更少的稀有气体。
B种原料供给系统200由高纯度氩气储气瓶20、减压阀21、开关阀22构成,辅助原料气体25b的供给量为氧气17的500ppm~50000ppm的范围,具体如10000ppm。通过调整第1原料气体的供气量的流量调节器(MFC)19和调整辅助原料气体量的流量调节器(MFC)23,向臭氧发生器300供给原料气体25。
臭氧发生器300中,设置有电极301a、301b和位于两电极的对向侧的电介质302。在电介质302和电极301b的气体通路面(放电区域的壁面=反应空间的壁面)通过涂布或喷涂粘附带隙2.0eV~2.9eV的光催化物质。如图1所示,臭氧发生器300由A种原料供给系统供给原料气体25,将其转变成臭氧气体26后,通过压力调节器(APC)400输出至外部600。
或者如图2所示,臭氧发生器300由A种原料供给系统供给氧气17、由B种原料供给系统供给500ppm程度的微量的辅助原料气体25b,转变成臭氧气体26后,通过压力调节器(APC)400输出至外部600。辅助原料气体、即氩气、氙气、氦气等稀有气体的作用是增强放电光的发光强度,促进臭氧生成反应。
通过含有稀有气体,促进臭氧生成反应。利用稀有气体的放电光(紫外光),光催化物质能够使用带隙达到3.1eV的光催化物质,但是从臭氧发生性能的稳定性上出发,较好是达到2.9eV的光催化物质。
在臭氧发生器300中用于使臭氧产生的臭氧电源500主要由整流器部501、逆变器部502和变压器503构成,形成为如下的结构,即在臭氧发生器300的电极301a、301b之间施加高电压的交流电压,使电极间通过电介质产生无声放电(电介质阻挡放电)。
在电极间施加高电压交流电压使作为反应空间的0.1mm的间隙间隔的放电区域发生无声放电,通过光波长428nm~620nm的高能量的放电光和涂布在放电面上的光催化物质的相互作用,将原料气体中的一部分氧气离解成氧原子,然后将反应空间的气压保持在近0.1MPa~近0.4MPa(具体如,0.1MPa~0.4MPa)的压力,促进离解出的氧原子和其它氧分子的结合作用,转变成高浓度的臭氧气体。
利用放电光和涂布在放电面上的光催化物质的相互作用,将氧气离解成氧原子时,要增加向氧原子离解的量,使涂布有光催化物质的表面积增大是一种有效的方法。
此外,对放电光而言,放电的气体温度越低,放电光的光强度越强,越能够促进向氧原子的离解。为此,臭氧发生器300中对因放电而发热的电极进行冷却。
该冷却有采用水等的冷却方法,这里,对冷却手段不作图示。还有,图示的放电单元部仅显示了1个放电单元,但在实际装置中的结构是,通过将图示的放电单元多段层叠,并且使气体通路并排流过,由此使多个放电单元放电。
实施装置为能够冷却两侧电极的类型,间隙长(间隙间隔)0.1mm、放电面积约750cm2的臭氧发生器300,从臭氧电源输入放电能量W至约2000W,注入臭氧发生器300的原料气体25采用纯度99.99%以上的氧气17,或者再从辅助原料气体储气瓶20添加氩气等稀有气体。在上述条件下测定臭氧浓度特性。
根据上述发生器的设定条件,确定下述设计基准作为装置的容许性能评价基准。
在放电能量2kW、原料气体10L/min的条件下,应能够取出臭氧浓度C为200g/m3(9333ppm)以上的臭氧气体。
即,上述条件下的臭氧发生量Y(g/h)应为120g/h以上。
为此,实际可取出的臭氧产率X(g/kWh)必须在下述值以上。
X=(120g/h)/(2kW)=60g/kWh
臭氧发生器自身的臭氧产率X0和实际可取出的臭氧产率X之比如果为50%,则臭氧自身的臭氧产率X0必须在120g/kWh以上。
由此,如下计算臭氧生成率η(mg/J)
η=(120g/kWh)/(60·60S)/1000=0.033(mg/J)
臭氧生成率η必须为0.033mg/J以上。
将该值作为1个装置的容许基准,用作臭氧发生装置和原料气体的选定标准。
对向氧气中添加氮气的以往的臭氧装置而言,要满足臭氧生成率η为0.033~0.035mg/J以上的条件,如图20所示,氮添加率γ必须为约1.5%以上。
与此相反,在实施装置这一方面,仅向装置供给不添加氮气的高纯度原料气体,就得到了图3中由实测点连成的曲线所示的臭氧浓度特性。这时的臭氧生成效率达到0.039mg/J,相较添加1%氮气时的臭氧浓度特性可知,能够取得相同或更高的臭氧浓度。
此外,还可知,臭氧生成效率提高,得到200g/cm3以上的高浓度臭氧。
其结果是,由于不向原料气体中添加氮气,因此不会因放电生成作为副产物的N2O5及NO等NOx,从而能够不产生由NOx和水分结合而成的硝酸(HNO3)群,这样就不会因硝酸和臭氧出口配管部等的不锈钢金属面接触而生成金属杂质。
根据对这些实施装置、原料气体因放电所引发的化学反应过程、放电所产生的放电光的波长和光催化物质的光化学反应等的调查结果可知,能够以新的臭氧生成机构生成臭氧。涂布在电极面上的光催化物质吸收放电光的高能量的光,将电子从光催化物质内的价电子带激发至传导带,光催化物质自身成激发状态,被激发的光催化物质在价电子带形成空穴。该被激发的光催化物质和氧分子一接触,就会通过氧分子的电子和光催化物质的空穴的反应(氧分子的氧化反应)促进氧分子的离解作用,再通过促进离解出的氧原子和氧分子的结合作用,生成臭氧。
针对本发明的利用光催化反应功能的臭氧生成历程,参照图4的氧(分子)气体的离解历程、图5的由氧原子和氧分子生成臭氧的历程、图6的实施装置中由氧气生成臭氧的历程,对利用放电,由氧气生成臭氧的动作、作用进行说明。
首先,如图21所示,氧分子在紫外光245nm以下的波长中具有连续光谱的光吸收谱(紫外线波长130~200nm),在氧分子吸收紫外光245nm以下的准分子光,离解成氧原子,然后由该离解出的氧原子和氧分子和第三种物质的三体碰撞(反应式R2)生成臭氧的过程中众所周知是采用发出紫外线的准分子灯等。但是,在臭氧发生器这种以氧气为主体的1气压以上的高气压中的无声放电环境下,紫外线245nm以下的准分子光完全不发光。因此,对利用无声放电光的氧原子的离解和生成臭氧的反应过程不作考虑。
图4中模拟地显示了无声放电中的光催化物质的基于固体电子理论(带隙理论)的固体中的电子配位结构和氧分子的离解历程。对光催化物质和放电光的光催化反应功能的动作和作用进行说明。如果在无声放电空间中的电极等的表面上涂布光催化物质,则如图4所示,光催化物质的带隙的电子配位结构吸收具有带隙以上能量的无声放电光。这样,光催化物质中电子从价电子带跃迁向传导带移动(激发)。有电子移出的价电子带中形成空穴(孔)。移动至传导带的电子或向周边移动,或向放电区域放出电子后,完成其使命。即,移动至传导带的电子的寿命非常短暂,只有数十psec。而价电子带的空穴只要不与移动至传导带的电子重新结合,可持续存在,因此空穴的寿命长达200~300nsec。该有空穴存在的激发状态的光催化物质和氧分子量子接触,则会夺取氧分子的共有电子,将氧分子物理离解(由光催化物质引发的氧的吸附离解现象〔氧化反应〕)。
该由光催化物质所引发的氧分子的离解(氧化)反应式如下,氧气的离解有以下2种离解反应。
〔式1〕
在能级带上,光催化物质的材质不同,则如表2所示,价电子带和传导带间(禁带)的带隙能量不同。表2中示出了SiO2、Al2O3、TiO2(锐钛矿型)、TiO2(金红石型)、WO3、Fe2O3、Cr2O3、Cu2O、In2O3、Fe2TiO3、PbO、V2O5、FeTiO3、Bi2O3、Nb2O3、SrTiO3、ZnO、BaTiO3、CaTiO3、SnO2的带隙能量。
表2-(a)
    石英(SiO2)     氧化铝(Al2O3)     TiO2(锐钛矿型)     TiO2(金红石型)     氧化钨(WO3)
能隙   7.8eV     7.0eV     3.2eV     3.0eV     2.8eV
光催化效果的吸收波长   159nm(真空紫外线)     177nm(真空紫外线)     388nm(紫外线)     413nm(可见)     443nm(可见)
表2-(b)
  氧化铁(Fe2O3)   氧化铬(Cr2O3)   Cu2O   In2O3   Fe2TiO3
  能隙   2.2eV   2.07eV   2.2eV   2.5eV   <2.8eV
  光催化效果的吸收波长   564nm(可见)   600nm(可见)   564nm(可见)   496nm(可见)   443nm(可见)
表2-(c)
  PbO   V2O5   FeTiO3   Bi2O3   Nb2O3
  能隙   2.8eV   2.8eV   2.8eV   2.8eV   3.0eV
  光催化效果的吸收波长   443nm(可见)   443nm(可见)   443nm(可见)   443nm(可见)   413nm(可见)
表2-(d)
  SrTiO3   ZnO   BaTiO3   CaTiO3   SnO2
  能隙   3.2eV   <3.3eV   3.3eV   3.4eV   3.6eV
  光催化效果的吸收波长   388nm(紫外线)   376nm(紫外线)   376nm(紫外线)   365nm(紫外线)   344nm(紫外线)
在表2-(a)~表2-(d)中,氧化铝陶瓷、石英的带隙为7.0eV、7.8eV,可用于通过光的作用使该物质成激发状态的光吸收波长为177nm以下或159nm以下的真空紫外光区域,因此在氧气或氧气和氩气的无声放电中不能发出177nm、159nm的光。由此,无声放电光根本无法光激发氧化铝、石英,没有离解氧分子的能力。
此外,带隙3.0eV~3.6eV的光催化物质的光吸收波长为413nm~344nm的紫外光,由此表明含有氮气的无声放电具有发出该紫外区域的光波长的能力(放电),但是氧气或氧气和氩气的无声放电发出该紫外区域的光波长的能力弱。在含有氮气的无声放电中,带隙3.0eV~3.6eV的光催化物质能够光激发,能够利用被激发的该光催化物质的离解氧分子的能力,生成臭氧气体。
再有,带隙2.0eV~2.9eV的光催化物质的光吸收波长为428nm~620nm的可见光,因此不含有氮气的氧气或氧气和氩气的无声放电具有发出该可见光区域的光波长的能力(放电)。由此可知,如果在臭氧发生器的电极表面(壁面)上涂布带隙2.0eV~2.9eV的光催化物质,则光催化物质吸收不含有氮气的氧气或氧气和氩气的放电光,被激发,由该被激发的光催化物质和氧气的吸附离解作用能够离解氧气。还可知,通过离解出的氧原子和氧分子的三体碰撞促进结合作用,能够生成臭氧。
这里,光催化的带隙能量{能隙E(eV)}和吸收光的波长λ(nm)的关系如下。
吸收光的波长λ(nm)≤1240/E(eV)
  能隙E(eV)   吸收光的波长(nm)
  3.63.53.43.33.23.13.02.92.82.72.62.52.42.32.22.12.0   344354365376388400413428443459477496517539564590620
还有,上述氮气或氧气的放电光相对能隙E(eV)和吸收光的波长λ(nm)的分布范围和强度见图7。
由上述表明,在本发明的臭氧发生装置中,选择光催化物质的材质时,如下的光催化物质对波长为428nm~620nm的可见光(放电光)的光吸收优良,使用该光催化物质即使不添加氮气,臭氧生成效率η也高,能够获得高浓度的臭氧,上述光催化物质是含有金属氧化物光催化物质Cu2O、In2O3、Fe2TiO3、Fe2O3、Cr2O3、PbO、V2O5、FeTiO3、WO3、Bi2O3中的任一种以上的物质的光催化物质。
除了上述金属氧化物的光催化物质以外,由稀土类金属离子络合物和多个元素构成的光催化物质Nb2mP4O6m+4、W2mP4O6m+4、Ta2mP4O6m+4、In2mP4O4m+4、BaTi4O9、MnTi6O13、TiOaNbFc、SrTiOaNbFc、BaTiOaNbFc对波长范围为300nm~500nm的光(放电光)的光吸收良好,使用这种光催化物质,即使不添加氮气,臭氧生成效率η也高,能够得到高浓度的臭氧。由稀土类金属离子络合物和多个元素构成的光催化物质中的m、a、b、c表示该元素的元素数。
如果在上述金属氧化物的光催化物质或由稀土类金属离子络合物构成的光催化物质中掺入作为助催化物质的物质Ru、Ni、Pt、RuO2、NiOx、NiO,则光催化物质的激发能力会得到更大的促进,空穴寿命增大(蓄积)的效果提高,从而进一步提高臭氧生成效率,提高得到臭氧的效率。
再有,上述光催化物质由于放电被光激发,在价电子带形成空穴时,空穴不仅利用夺取电子的作用使氧分子离解,而且还有夺取在放电中离解出的氧原子或氧分子的负性电荷离子(例如,O2-、O2 2-)等的电子,形成氧原子及氧分子的作用。因此,通过消除该负性氧离子,放电的阻抗得到进一步提高,与短间隙放电的高电场放电场相比,更容易形成高的高电场放电场,该作用的结果是,具有更高能量的放电光的强度得到提高,臭氧生成效率η提高,具有得到高浓度的臭氧的效果。
图5示出了通过离解的氧原子和氧分子的结合作用生成臭氧的历程。要使氧原子和氧分子结合,如果仅依靠氧原子和氧分子的碰撞是无法有效地进行能量授受的,因而不能有效地促进结合作用。为了有效地促进结合作用,如图5所示,必须在进行氧原子和氧分子的碰撞的同时还进行与板壁等第3物质(M)的三体碰撞,以进行能量授受。
  ----(3)
要有效地促进上述三体碰撞,行之有效的做法是提高气体的压力,形成气体分子密度高的状态。根据实验已知,如果使气体的压力达到0.1MPa以上,则具有如下的作用,即急剧地促进三体碰撞,提高臭氧生成效率。如果反应空间的气体压力低于0.1MPa则反应程度显著下降。此外,随着反应空间的气体压力的上升,放电压上升,如果超过0.4MPa就不合适了,因为这时有效放电光无法照射到电极的整个面。反应空间的气体压力较好是在约0.2MPa~约0.3MPa的范围内。
图6是从实施装置的臭氧发生器截面上所反映出的由氧气生成臭氧的历程的模拟图。图中所示的截面结构中包括2片电极301a、301b和电介质302以及涂布在电介质表面上的光催化物质303。在该图中所示的结构是电介质302分别设置在两电极301a、301b的对面,在两电介质302的与电极相对的表面上分别涂布有光催化物质303。2片电极301a、301b间的放电区域(反应空间)为间距约0.1mm程度的非常窄的狭缝空间。
向该放电区域供给原料气体氧气25,并在2片电极301a、301b间施加约数kV的交流电压时,在整个放电区域产生均一的无声放电,发出光强度非常强的放电光。该强放电光照射光催化物质时,如图4所示,光催化物质变成激发状态,在光催化物质的价电子带产生空穴。通过该激发状态的光催化物质和氧分子的接触,光催化物质从氧分子中夺取电子。于是,氧分子就吸附离解,生成2个氧原子。再通过生成的氧原子和氧分子的三体碰撞生成臭氧。使生成的臭氧气体连续流出,可取出臭氧26。在规定流量下可取出的臭氧量是,随着放电能量的增大,放电光的光量增大,臭氧浓度增大。
此外,我们在臭氧发生器的电极表面(壁面)涂布带隙2.0eV~2.9eV的光催化物质,确认了电极表面的表面电阻越高,臭氧浓度越大。
为此,带着在电极表面的表面电阻低的情况下,无声放电是否有助于生成臭氧的疑问,考察了在如下的电极面上生成臭氧的可能性。
(1)采用带隙非常大、达7eV程度的物质,在仅降低电极表面电阻的状态下进行无声放电,考察了使用高纯度氧气生成臭氧的情况,结果确认几乎没有生成臭氧,只获得几拾克/m3
(2)采用带隙为3.4eV的物质,在降低电极表面电阻的状态下进行无声放电,考察使用高纯度氧气生成臭氧的情况,结果确认,与(1)的条件相比,臭氧浓度提高,但也只得到约100g/m3以下的浓度。
(3)采用带隙为3.4eV的物质,在高纯度氧气中添加了0.005%以上的氮气的气体中,进行无声放电时,得到200g/m3以上的臭氧浓度,而且电极表面电阻越低,臭氧发生效率越高,可得到高浓度的臭氧气体。
由以上(1)~(3)的实验可以确认,电极表面电阻并不直接影响放电来生成臭氧,从实验结果还表明,如果涂布在电极表面的物质的带隙不在规定范围内(能够吸收放电光波长的范围),则不能生成高浓度臭氧。而且还知道了涂布带隙在规定范围内的物质时,电极表面电阻越小,臭氧发生效率越高,经过对电极表面电阻和臭氧发生效率之间的关系进行物理性的调查可知,它们之间的关连性不大,因为受电极表面所涂布的物质的影响大。
为此,详细地调查了电极表面电阻小时的电极表面的状态,由此知道了电极表面的状态为非常凹凸的状态,电极表面积变得非常大。即,发现了如果增大光催化物质的表面积,则光催化物质和放电光的接触面积增大,可有效地激发光催化物质,使氧气和被激发的光催化物质的吸附离解(量子效率)增大,从而使臭氧浓度增大。
还有,通过使放电区域中的气体压力达到0.1MPa以上,能够使离解出的氧原子和氧分子的三体碰撞频率增大,从而增大臭氧浓度。
再有,如果使放电间隙d达到0.1mm程度的短间隙化,则可提高放电场强度,由此能够得到能量高的放电光,发出波长更短的光,这样就能够更有效地激发光催化物质,提高臭氧浓度。在实验中,使间隙越短间隙化以及放电气体温度越低,则无声放电所产生的428nm~620nm范围的光波长的放电光的光强度越高,越能够促进带隙2.0eV~2.9eV的光催化物质的激发,从而在促进氧原子离解出的同时,提高臭氧生成效率。
在实施的装置中,间隙约为0.1mm程度,但实验中显示出如下的倾向,即间隙超过约0.6mm时,无声放电光的光强度变得极其弱,光催化物质的激发变得不充分,氧气的离解减少,臭氧生成减少。实验确认,放电间隙在0.6mm以下时,能够生成臭氧,能够以容许的效率获得100g/m3以上的臭氧。
综上所述,实施方式1的臭氧发生装置,使用以不含氮气的氧气为主体的原料气体,能够获得与以往添加氮气的臭氧装置同等或更胜一筹的臭氧生成效率,能够生成不含NOx等副产物或只含有不能避免的量的高浓度臭氧气体(纯净的臭氧),并且,能够减小用于获得规定的臭氧的放电能量、放电压、电流,具有使臭氧发生器及臭氧电源小型化,运行成本降低的效果。
实施方式2
图8为说明实施方式2所用的臭氧发生器的截面模拟图。在实施方式2中,除了要在这里说明的特有的结构和方法以外,其它结构及方法与上述实施方式1中的结构和方法相同,具有同样的作用。
在实施方式1所述的主要是利用氧气的放电能够生成臭氧的历程,但是,要形成在实际生产中能够高效地生成高浓度臭氧的装置,不仅仅是光催化物质的涂布,将涂布的光催化物质涂布在放电面上时使光催化物质的表面面积尽可能地增大也是不可或缺的。作为使该放电光照射到的表面面积增大的手段之一是,涂布或喷涂在电介质302表面上的光催化物质303呈粉末状,粉末粒径是近于0.1μm~几拾微米,具体为0.1μm~50μm,较好约为几微米。
在图8中,将不含氮气的以氧气为主体的原料气体25向臭氧发生器300供给。其它的结构为与实施方式1中的图1同等的结构。
在实施方式2中,通过在电介质302(或电极301)的放电面侧涂布或喷涂数μm程度的光催化物质粉末(实施方式1的光催化物质粉末),能够使在放电区域发出的放电光和光催化物质粒子的接触表面积增大。由此促进光催化物质303的氧分子的离解作用,高效地生成臭氧,生成高浓度的臭氧。图9为在每单位电介质电极面积涂布光催化物质303粉末时的放电光和光催化物质303的接触表面积的计算图。在1cm2的电介质电极表面涂布光催化物质303粉末时,放电光照射到的表面积增大至约4.14cm2,如图8所示,如果在电极或电介质的两面涂布光催化物质粉末,则能够得到实际放电面面积的8.28倍的表面积。
在实施方式2中,单位电介质电极表面上的光催化物质和放电光的接触表面积S和臭氧生成效率η之间的关系如图10所示。臭氧生成效率η随着上述接触表面积S的增大而增大。从图10表明,随着接触面积S的增加,光催化物质的反应量增加,臭氧生成效率η提高。由图10的特性,求出相对接触面积S的增加,臭氧浓度增加的有效面积S0。即,相对通过增大接触面积S所达到的臭氧浓度,根据图10的特性,估计臭氧浓度会增大约80%程度的接触面积S0约为放电面积的1.5倍,如果高于该值,则能够充分确保臭氧生成效率η。因此,如果使单位电介质电极表面上的光催化物质和放电光的接触面积S达到1.5倍以上,则能够充分提高臭氧生成效率。
在图10中,特性901是光催化物质的带隙为2.9eV以下时的特性,在带隙2.0eV~2.9eV的范围中显示出基本相同的特性。特性902是光催化物质的带隙为3.2eV以下时的特性,特性903是光催化物质的带隙为3.4eV以下时的特性。
从图10可知,在未添加氮气的原料气体的无声放电中,使用具有超过2.9eV的带隙的光催化物质不能有效地生成臭氧,即使增加光催化物质的表面积也无法充分地生成臭氧。
综上所述,在实施方式2中,由于在放电区域的电介质或电极的壁面上粘附有粒径为0.1μm~50μm的光催化物质粉末,因此相比于实际的电极面积,放电光照射到的光催化物质的表面积提高了数倍,能够使放电光照射到更多的催化物质。由此通过被活化的光催化物质和氧气的接触促进氧分子离解为氧原子的作用,从而能够切实地进一步提高臭氧发生效率。因此,能够实现可生成高浓度的臭氧,小型价廉的臭氧发生装置。
实施方式3
图11是说明实施方式3所用的臭氧发生器的截面示意图。在实施方式3中,除了要在这里说明的特有的结构和方法以外,其它结构及方法与上述实施方式1中的结构和方法相同,具有同样的作用。该实施方式3是,在电介质电极表面形成约1μm~几拾微米、具体如1μm~50μm的凹凸,在形成了上述凹凸的电介质电极表面涂布或喷涂上述光催化物质粉末(粉末粒径约0.1μm~50μm)。
在该实施方式3中,通过将电介质302(或电极301)的放电面形成为凹凸,再在形成了凹凸的电介质电极表面涂布或喷涂实施方式1所示的光催化物质,由此增大在放电区域发出的放电光和光催化物质粒子的接触表面积,促进氧分子的离解作用,高效地生成臭氧,生成高浓度的臭氧。实施方式3中是仅在一侧的电介质上形成凹凸,涂布光催化物质,如果在两电介质302或两电极301都形成的话,则能够生成更高浓度的臭氧,提高臭氧生成效率。
综上所述,由于在放电区域的电介质或电极的壁面上形成1μm~50μm的凹凸,在形成了上述凹凸的壁面上设置光催化物质,因此相比于实际的电极面积,光催化物质的表面积提高了数倍,能够使放电光照射到更多的催化物质。由此通过被活化的光催化物质和氧气的接触促进氧分子离解为氧原子的作用,从而能够切实地进一步提高臭氧发生效率。因此,能够实现可生成高浓度的臭氧,小型价廉的臭氧发生装置。
实施方式4
图12是说明实施方式4所用的臭氧发生器的截面示意图。在实施方式4中,除了要在这里说明的特有的结构和方法以外,其它结构及方法与上述实施方式1中的结构和方法相同,具有同样的作用。该实施方式4是,以体积比约1%~约10%将实施方式1的光催化物质粉末(粉末粒径约0.1μm~50μm)分散嵌入式地混合在厚0.725mm的陶瓷制的两电介质302内。
图13是显示电介质302的材质使用厚0.725mm的氧化铝陶瓷板时对光波长的透光率特性的图。由图13可知,氧化铝陶瓷板制的电介质302可透过在放电区域发出的300nm~1000nm的光。光催化物质303被该透过的放电光激发,被激发的光催化物质的价电子带的空穴和氧分子通过电介质进行吸附离解,生成臭氧。这已经过实验确认。
利用该电介质的透过,将光催化物质粉末分散嵌入电介质302内,使放电光照射到的光催化物质的表面积增大。被激发的光催化物质的价电子带的空穴与氧分子通过电介质进行吸附离解,生成臭氧。图14是实施方式4中,在电介质302内添加光催化物质的体积含有比率和臭氧生成效率比率的实验调查结果。由其结果可知,光催化物质粉末在电介质媒质中的含有率以体积比计为约1%~约10%时提高臭氧生成效率的效果最好。其理由可以解释为,如果电介质媒质内的光催化物质粉末的含有率达到10%以上,则放电光会因为光散射而不能有效地照射光催化物质,放电光照射到的表观的表面积减少,从而使臭氧生成效率下降。
在实施方式4中,不将光催化物质直接涂布在放电面上,而是利用可透光的电介质媒质间接涂布,因此具有光催化物质不会受到无声放电的损伤的优点。从而具有延长装置的使用寿命的效果。此外,由于还能够增大光催化物质的表面积,因此也具有提高臭氧生成效率的效果。在实施方式4中,电介质302媒质是采用厚0.725mm的氧化铝陶瓷板,如果换成石英等玻璃制的电介质,则更易于透过放电光,能够有效地激发光催化物质,提高臭氧生成效率。再有,如果对实施方式4的含有光催化物质粉末的电介质应用实施方式2或实施方式3,则效果会更佳。
综上所述,由于放电区域的电介质使用放电光可透过的电介质,并且使放电光可透过的电介质内含有体积比1%~10%的光催化物质粉末,因此电介质物质内所含的光催化物质受放电光照射的表面积能够比实际的电极面积大,能够使放电光照射到更多的催化物质。由此通过被活化的光催化物质和氧气的接触促进氧分子离解为氧原子的作用,从而能够切实地进一步提高臭氧发生效率。因此,能够获得小型价廉的臭氧发生装置,而且装置的寿命得到延长。
实施方式5
图15是说明实施方式5所用的臭氧发生器的截面示意图。在实施方式5中,除了要在这里说明的特有的结构和方法以外,其它结构及方法与上述实施方式1中的结构和方法相同,具有同样的作用。该实施方式5是,在2片电极301a、301b和厚0.725mm的陶瓷制的两电介质302间涂布或喷涂几拾纳米的光催化物质。
厚0.725nm的陶瓷制的电介质302如图13所示可透过300nm~1000nm的光。光催化物质303被该透过的放电光激发,被激发的光催化物质的价电子带的空穴和氧分子通过电介质进行吸附离解,生成臭氧。这已经过实验确认。
该实施方式5与实施方式1~3相比,虽然臭氧生成效率η稍低,但是确认,未涂布光催化物质的电极上的臭氧发生量特性得到提高。图16中示出了实施方式5中的臭氧浓度特性(1502)和以往电极的臭氧浓度特性(1501)。在实施方式5中,由于不将光催化物质直接涂布在放电面上,而是涂布在可透光的电介质媒质的内侧,因此具有光催化物质不会受到无声放电的损伤的优点。从而具有延长装置的使用寿命的效果。
在实施方式5中,电介质302是采用厚0.725mm的陶瓷板,如果换成石英等玻璃制的电介质,则更易于透过放电光,能够有效地激发光催化物质,提高臭氧生成效率。还有,如果对实施方式5的用电介质覆盖的光催化物质的粘附,应用实施方式2、3或4则效果更佳。
综上所述,在放电区域的电极设置光催化物质,并将该光催化物质的放电区域侧用可透过放电光的电介质覆盖,由此能够实现使用寿命长、臭氧生成率提高、可获得高浓度臭氧的臭氧发生装置。
实施方式6
在以上各实施方式中,对以未添加氮气的氧气或添加了稀有气体的氧气作为原料气体,进行生成臭氧的反应,获得不含NOx等副产物的纯净臭氧气体的方法进行了说明。而在某些用途中,即使含有微量的NOx等副产物也不存在问题,因此有些情况下,即使含有微量的NOx等副产物,但只要能够提高臭氧的生成率,则也是非常理想的。
该实施方式6中,在实施方式1~5的臭氧发生装置中,向氧气或主体为氧气的气体中添加微量的氮气,具体如10ppm~500ppm。确认促进了臭氧生成反应,得到浓度增加了5~10%的高浓度臭氧。还有,以该程度的量添加氮气,则所产生的NOx等副产物不会带来任何问题。
在含有氮气的无声放电中,带隙3.0eV~3.6eV的光催化物质能够被光激发,被激发的该光催化物质具有离解氧分子的能力,生成臭氧气体。结果是,通过添加微量的氮气(受到控制的氮气量),设在放电区域的电介质或电极上的光催化物质的容许带隙范围可达到2.0eV~3.6eV,从而能够利用氮气的放电光(紫外光)促进臭氧生成反应。
实施方式6的情况下,较好是使用含带隙为2.0eV~2.9eV的光催化物质的催化物质,此外,2.0eV~3.6eV的光催化物质也可以使用表2所示的TiO2(锐钛矿型)、TiO2(金红石型)、Nb2O3、SrTiO3、ZnO、BaTiO3、CaTiO3、SnO2
还有,在实施方式6中,光催化物质和放电光的接触表面积S与臭氧生成效率η的关系和上述实施方式2相同。因此,将催化物质涂布在放电区域的电介质或电极的壁面上,使催化物质和放电光的接触表面积比电介质或电极的面积大1.5倍以上的做法是有效的。
此外,为了使在放电区域的电介质或电极的壁面上催化物质的表面积增大,行之有效的做法是粘附粒径为0.1μm~50μm的光催化物质粉末。
再有,在放电区域的电介质或电极的壁面上,形成1μm~50μm的凹凸,再在上述形成了凹凸的壁面上设置催化物质,使催化物质的表面积增大的做法也是有效的。
此外,放电区域的电介质使用放电光可透过的电介质,并且使放电光可透过的电介质内含有体积比1%~10%的光催化物质粉末的做法也是有效的。
以下,为了和不使用光催化物质的臭氧发生装置作比较,先例举参考例。
在研究时,使用图17所示的臭氧发生器300,该臭氧发生器300是可冷却两侧电极301的类型,其构成中使用间隙长0.1mm、放电面积约750cm2、电介质302的材质采用氧化铝(Al2O3)的放电单元,不涂布光催化物质。从臭氧电源500输入放电能量W达到约2000W,通过实验对在高纯度氧气中添加氮气时的臭氧浓度特性也进行了彻底的调查。
采用不涂布光催化物质的结构,测定了1)添加氮气时、2)只有高纯度氧气时、3)在高纯度氧气中添加了稀有气体时的臭氧浓度特性。其结果中的一个例子示于图18、19。
图18中示出了氮添加率为0.01%时相对放电能量的臭氧浓度特性为1700A、0.1%时相对放电能量的臭氧浓度特性为1700B、及1%时相对放电能量的臭氧浓度特性为1700C。此外,虚线1700D表示放电能量密度0.25W/cm2条件,该放电能量密度为低功率密度,虚线1700E表示放电能量密度3W/cm2条件,该放电能量密度为高功率密度。(注:图中,单位SLM是指standardL/min,表示20℃时的L/m。)
图19中示出了只添加高纯度氧气2400A时、添加氩气2400C时、添加氙气2400B时相对输入电能的臭氧浓度特性。相对图18中得到的2000W下的臭氧浓度290g/m3,在图19中,无论是何种原料气体,都只得到10g/m3的臭氧浓度,在单独添加氩气、氙气时,几乎没有提高臭氧浓度、发生量的效果。虽然这里所示的只是氩气、氙气的情况,但是添加氦气、氖气等稀有气体时,结果也是相同的。
对氮添加率γ和臭氧生成效率η的关系求实验特性,得到了图20所示的结果,其近似式如下。
近似式η=0.004310g(γ)+0.033〔mg/J〕。
根据这一结果获得了令人惊奇的结论,即氮添加率γ如果为0%,则臭氧生成效率几乎为0mg/J。
从上述一系列的结果可知,氮氧化物促使臭氧生成的因素是依靠氮氧化物气体的光离解及氮氧化物促进氧气(O2分子)自身在光催化物质作用下离解的作用生成氧原子。
以下为对有关臭氧生成所作的更详细的研究的结果。在上述只有高纯度氧气、以及稀有气体等单独添加时,臭氧生成效率η近乎为0mg/J。而以往臭氧生成历程是由下述反应式来表述的,所以对此而言,上述结论是一个完全颠覆的结果。
R1; (氧的离解)
R2;
(基于氧原子和氧分子的三体碰撞生成臭氧)
根据该结论,我们仔细地研究了氮气和臭氧的关系,得到了下述推论。
·臭氧发生器中的露点为-70℃~-60℃的程度,原料气体中所含的水分为3ppm~10ppm。
·用于离解氧分子的吸收光的波长是从130~245ηm的紫外线的连续光谱,氮气的激发光是300~400nm的紫外光,不能直接将氧分子光离解。
·根据氮气添加率生成臭氧气体的历程除了氮气的激发光300~400nm的紫外线以外不作考虑。
为此,调查了能够在300~400nm的紫外光下离解臭氧原子的氮化合物。结果,发现了下述(1)通过放电发出紫外光和水蒸气H2O、氮分子的电离历程、(2)由NO2生成臭氧的历程。此外,还有抑制臭氧生成的(3)由NO2生成硝酸的历程、使生成的臭氧分解的(4)臭氧分解历程,这4个历程在臭氧发生器的无声放电区域发生,决定可取出的臭氧浓度。
(1)通过放电发出紫外光和水蒸气H2O、氮分子的电离历程
N2 *;氮的激发
由氮气产生的紫外光
(水蒸气的电离)
(氮分子的电离)
(2-1)由NO2的热催化反应生成臭氧的历程
R6;
R7;
R8;
R2;
利用二氧化氮NO2和氮气的激发所产生的300nm附近的紫外光产生氧原子O(3P)(R6的反应),生成的氧原子O(3P)和氧分子O2经过三体碰撞生成臭氧(R2的反应)。R6反应生成的一氧化氮NO与R7反应生成的HO2自由基反应,重新生成二氧化氮NO2(R8的反应)。
即,原料气体通过无声放电区域的这段时间中,重复R6→R7→R8→R6的反应循环,重复生成二氧化氮。
还有,在通过无声放电区域时所同时生成的氧原子O(3P)和氧分子经过三体碰撞(R2)生成臭氧气体。
(2-2)由NO2的光催化反应生成臭氧的历程
H1;
H2;
R2;
通过二氧化氮NO2和由氩气等放电光及氮气的放电光所产生的300nm附近的紫外光作用,二氧化氮NO2变成激发状态NO2 *(H1的反应)。激发的NO2 *赋予氧分子相当于氧分子的离解能的能量,而二氧化氮本身又恢复到基底状态的NO2
通过生成的氧原子O(3P)和氧分子O2的三体碰撞,生成臭氧(R2的反应)。
基底状态的NO2再次受到上述放电光所产生的300nm附近的紫外光的作用,又一次变成激发状态NO2 *
即,原料气体通过无声放电区域的这段时间中,重复H1→H2→H1的反应循环,重复生成二氧化氮NO2
此外,由在通过无声放电区域时所同时生成的氧原子O(3P)和氧分子的三体碰撞(R2的反应)生成臭氧气体。
(3)由NO2生成硝酸的历程
R9;
二氧化氮NO2在生成臭氧的同时也生成硝酸HNO3(R9的反应),抑制氧原子的生成,使臭氧生成效率η下降。
(4)臭氧分解的历程
R3; (电子碰撞分解)
R4; (热分解)
R5; (杂质使臭氧分解)
由R2反应生成的臭氧在无声放电区域受电子碰撞而发生分解(R3的反应),因热而发生分解(R4的反应)以及因水分、NOx等杂质等而发生分解(R5的反应)。
因此,从发生器中取出的臭氧,与臭氧生成效率η相比,形成较为饱和的特性。
取出的臭氧浓度=(臭氧生成量)-(臭氧分解量)
=(R2-R9)-(R3+R4+R5)
R3反应随着无声放电的输入功率线性增加,而R9、R4、R5的反应随着输入功率的增大呈斜坡函数式地增加,因此这成为不能取得高浓度臭氧气体的原因。
作为抑制R3、R4以提高可取出的臭氧浓度的手段,已提出过如下的技术方案,即,通过将发生器内的放电间隙长形成短间隙(0.1mm以下),冷却电极面,提高可取出的臭氧浓度。
还有,根据我们的臭氧发生试验表明,通过抑制上述分解所发生的臭氧的反应R3、R4,可取出高浓度臭氧的想法也与实验事实不符。
即,通过将发生器内的放电间隙长(间隙间隔)短间隙化,以及冷却电极面,无声放电的放电阻抗增高,放电空间的电场增大,上述光hv(295~400nm)的光强度提高,由此臭氧生成效率提高的效果大,反应R3、R4的抑制效果小。
输入放电能量臭氧浓度特性就发生饱和的特性表明,如果输入放电能量,则会因为放电空间的气体温度增高,无声放电的放电阻抗下降,这比使臭氧分解的情况更为严重,从而降低臭氧生成效率,最终的结果是臭氧浓度特性发生饱和。
在间隙长为0.1mm的短间隙空间中,放电空间中的平均气温仅比电极冷却温度(20℃)高数度,在平均气温为30℃以下的状态下,不能认为所生成的臭氧的10%以上的臭氧分解是因气温进行的。如果臭氧浓度在250g/m3以上,则根据氧气和臭氧的存在比例的平衡关系,取决于温度的自然分解稍稍增多。
此外,作为抑制R5以提高可取出的臭氧浓度的手段,使用原料气体的露点优良(-50℃以下)的高纯度的原料气体的做法已经是明确的事实。
在以上的参考例的研究结果中,氮气或由氮气生成的NO2气体有助于臭氧的生成,如果(不使用光催化物质)只是高纯度氧气而不添加氮气则不能生成臭氧。
作为以往的由放电生成臭氧的历程的说明,在放电的热力学上,是从波尔兹曼方程式的电子能量的分布(波尔兹曼分布)进行说明,而本发明与此不同。即,在以往的说明中,一直是解释为放电的电子能量直接与氧气碰撞,将氧气分解,但是,不从电子的角度来说,而使用由光的波长和能量激发光催化物质,通过利用该被激发的光催化物质的力量夺取氧分子中的电子的反应(氧化反应),使氧分子离解成氧原子的这种说法,与通过放电来表述的以波尔兹曼分布的电子能量为必须的情况没有不同。
实施方式7
实施方式1的臭氧发生装置是不含有氮气的以氧气为主体的原料气体,能够得到高臭氧效率,能够以高浓度生成不含NOx等副产物的纯净的臭氧气体(无氮臭氧气体),并且,能够减小用于获得规定的臭氧的放电能量、放电压、电流,具有使臭氧发生器及臭氧电源小型化,运行成本降低的效果。
因此,如果将该臭氧发生装置用于化学气相沉积装置或ALD薄膜蒸镀装置、臭氧浓缩装置、或纸浆漂白装置,可以发挥各种效果。
对制造不挥发存储用强电介质薄膜、高介电常数电介质薄膜、氮化物金属薄膜、氧化物金属、光学材料薄膜、高密度光磁记录用薄膜、和高品质电容薄膜的半导体制造装置,平面板(flat pannel)制造装置,和太阳能面板制造装置等所用的CVD装置或ALD薄膜蒸镀装置而言,通过使用无氮臭氧气体,可以利用臭氧气体自身特有的高热力学氧化能,将杂质氧化变成蒸气,从而能够清除吸附在被处理体上的碳化合物、水分、及氢。
对于生产半导体晶片、平面板、太阳能面板、超导薄膜、磁带的CVD装置或ALD薄膜蒸镀装置而言,通过使用无氮臭氧气体,可以利用臭氧气体自身特有的高热力学氧化能,将杂质氧化变成蒸气,从而能够清除吸附在被处理体上的碳化合物、水分、及氢。
由于采用无氮臭氧气体,使堆积薄膜以原子层级发生氧化反应,因此能够形成绝缘性好的绝缘薄膜、漏电少的半导体薄膜、绝缘膜、电介质,并且使形成品质非常优良的金属氧化薄膜成为可能。
此外,由于是无氮臭氧气体,因此臭氧气体中几乎不含NOx等。由此,不仅NOx杂质几乎没有,而且能够极大地减少因NOx杂质及硝酸群所引起的装置或配管部的金属腐蚀而析出的金属、用于形成薄膜的气体气氛中的杂质浓度。其结果是,无氮臭氧气体只在各薄膜自身的氧化反应上发挥作用,提供在提高所形成的薄膜的功能品质上非常重要的作用。
在实施方式7中,例示的是图24所示的激光烧蚀方式的CVD装置或ALD薄膜蒸镀装置,但是由电子束装置的电子束烧蚀的CVD装置或ALD薄膜蒸镀装置也具有同样的效果。
还例示了放出金属蒸气形成薄膜的CVD装置或ALD薄膜蒸镀装置,但是如下的CVD装置或ALD薄膜蒸镀装置,通过使用无氮臭氧气体,也可以有效地形成高品质的薄膜,该CVD装置或ALD薄膜蒸镀装置是将熔点低的金属化合物液体以喷淋状供给到工作室内,使金属化合物蒸气化,附着在被处理体上,利用臭氧气体使金属化合物发生氧化反应形成薄膜。
实施方式8
图22所示为使用无氮臭氧气体的臭氧浓缩装置的结构图。在图中,A300是实施方式1的臭氧发生装置,由氧气瓶10供给氧气。401a、401b是吸附控制阀A、B,402a、402b是臭氧气体吸附塔。403a、403b是用于冷却臭氧气体吸附塔的冷媒入口,404a、404b是用于冷却臭氧气体吸附塔的冷媒出口。405a、405b是控制臭氧气体脱附的阀,406是浓缩后的超高浓度臭氧气体。407a、407b是脱附用阀A、B,作用是供给用于使浓缩臭氧气体脱附的气体。408a、408b是排气用阀A、B,作用是排出在臭氧气体吸附工序中吸附后的残留臭氧气体,661是排气泵。A3000是臭氧浓缩装置。
(1)在吸附塔402a的臭氧气体的吸附工序中,从吸附控制阀401a供给臭氧气体,臭氧气体吸附塔402a用冷却媒质冷却至约-60℃~-100℃。使液化臭氧吸附在硅胶剂上,没有被吸附的氧气作为残留气体从排气用阀A408a排出,一直进行到吸附了规定的液化臭氧量。
(2)在吸附塔402b的臭氧气体吸附工序中,从吸附控制阀B401b供给臭氧气体,臭氧气体吸附塔402b用冷却媒质冷却至约-60℃~-100℃。使液化臭氧吸附在硅胶剂上,没有被吸附的氧气作为残留气体从排气用阀B408b排出,一直进行到吸附了规定的液化臭氧量。
(3)在臭氧气体吸附塔402a,吸附的液化臭氧的脱附工序中,关闭吸附控制阀A401a,将冷却的臭氧气体吸附塔402a加热到约0℃,打开脱附用阀A407a,向臭氧吸附塔402a供给载气(キヤリア一ガス),使吸附的臭氧脱附,从脱附控制阀A405a取出超高浓度的臭氧气体。
(4)在臭氧气体吸附塔402b,吸附的液化臭氧的脱附工序中,关闭吸附控制阀A401b,将冷却的臭氧气体吸附塔402b加热到约0℃,打开脱附用阀B407b,向臭氧吸附塔402b供给载气,使吸附的臭氧脱附,从脱附控制阀B405b取出超高浓度的臭氧气体。
在上述的臭氧气体的吸附工序和脱附工序中,通过交替使用2个臭氧气体吸附塔402a、402b,能够取出超高浓度的臭氧气体。浓缩的臭氧气体如果使用不含有氮气或NOx等的无氮臭氧气体,则在浓缩装置中能够防止吸附杂质,不会蓄积吸附的杂质气体,由此能够防止浓缩装置的性能下降。即使使用氮抑制臭氧发生装置,由于氮含量非常少,因此也能够在一定程度上防止浓缩装置的性能下降。
实施方式9
图23所示的是纸浆漂白装置,它由氧气PSA装置(Pressure Swing Absorber)和生成无氮臭氧的大型臭氧发生装置组成,该氧气PSA装置是压缩大气中的空气制造氧气的装置。
在臭氧漂白中,不仅有臭氧漂白的工序,还包括多阶段的连续漂白工序,在进行以往的氯漂白的工序中,使用臭氧气体,并且将臭氧漂白阶段(Z工序)至少与如下这些工艺阶段组合进行,这些阶段是使用不含氯的氧气漂白阶段(O工序),过氧化物漂白阶段(P工序),碱萃取阶段(E工序),高温碱萃取阶段(HAE工序),酸性化阶段(A工序)。
101是氧气PSA装置,在该装置中,使氧气中所含的氮气尽可能少,氧气纯度为93%以上,其余的气体主要为氩气。3000是超大型的臭氧发生装置,它是通过将多个臭氧发生单元多段层叠,形成组合件,然后再将该组件化的臭氧发生组合件3001多个并列形成的。501是将供给的交流电源整流的整流器部,502是将整流后的直流转变成高频交流的逆变器部,503是将高频交流电压升压的高电压转换部。500A是控制臭氧发生量的臭氧控制指令部。650是在进行臭氧漂白的前一阶段中用于氧漂白的氧漂白塔。
651是对氧漂白后的纸浆进行一次清洗的纸浆第1清洗机。652是纸浆溶解混合部,作用是利用水的稀释和硫酸将纸浆形成为粘性减小的纸浆材料。653是将溶解的纸浆挤出的纸浆送出泵。654是将臭氧气体注入被挤出的纸浆中的臭氧混合部。655是臭氧漂白纸浆贮留箱,作用是通过使注入了臭氧气体的纸浆贮留规定时间,促进纸浆的臭氧漂白。656是将漂白好的纸浆和残留臭氧分离的纸浆-臭氧气体分离箱。657是纸浆送出泵,作用是将分离出的漂白纸浆再挤出到下一处理工序。658是清洗经过臭氧漂白的纸浆的清洗机,从这里将漂白纸浆抽出。660a、b、c是控制阀,作用是将来自臭氧发生装置的臭氧气体导入纸浆漂白装置。661是处理残存的臭氧的臭氧排出装置。
在这种臭氧漂白装置中,由于将减少了氮气的含量的无氮或氮抑制臭氧气体注入纸浆中,由此能够防止下述装置受氮氧化物的影响而劣化,使各装置的寿命延长,这些装置是在纸浆中注入臭氧气体的臭氧混合部654、臭氧漂白纸浆贮留箱655、纸浆-臭氧气体分离箱656、臭氧排出装置661。此外,如果含有氮氧化物或硝酸(HNO3)等,会加速通过臭氧的管道的腐蚀,因此这种情况也能够得到抑制。还有,用该装置生产的纸浆有可能能够抑制纤维强度的劣化。
在以往,要离解氧分子,只能通过吸收紫外光245nm以下的准分子光来离解为氧原子,但在本发明中示出了如下的方法,即,利用具有428nm~620nm的光波长(可见光)的放电光和含带隙2.0eV~2.9eV的光催化物质的催化物质,能够由氧分子的氧化反应,离解成氧原子。
还揭示了,通过添加10ppm~500ppm微量的氮气,利用放电光和含带隙2.0eV~3.6eV的光催化物质的催化物质,可离解为氧原子,上述放电光由于氮气的放电光的作用具有344nm~620nm的光波长。
还有,该领域的技术人员应该能够理解下述情况,即存在如果将氧分子换成高分子的氨基酸、糖或醇(对象物质),也能够依靠无声放电等放电装置和涂布在放电流域的光催化物质、半导体物质,将高分子的氨基酸、糖或醇(对象物质)用比对象物质的光吸收波长长的光有效地分解或发酵成低分子的可能性;及存在通过利用上述放电装置的能量输入控制来控制放电光的波长和光强度,以及选择光催化物质、半导体物质,能够进行更有用的分解或发酵等的可能性。
再有,也存在如下的可能性,即,曲霉菌、酵母菌、醋酸菌的作用是促进米等作物发酵分解成氨基酸或糖(氧化反应)、或发酵分解成醇,如果将曲霉菌、酵母菌、醋酸菌假设成由高分子形成的有机半导体(光催化物质),则如同本发明的氧气的离解历程一样,曲霉菌、酵母菌、醋酸菌的带隙被给予相当于光能的特定温度(约20℃~30℃范围)的热能,由此曲霉菌、酵母菌、醋酸菌本身被激发,该激发出的能量使米等作物发酵。该发明还包含学术理论上的层面,有望在各个领域得到发展、发挥作用。
工业上的应用性
本发明非常适用于臭氧发生装置和臭氧发生方法,同时由于能够以无氮臭氧气体供给高浓度的臭氧气体,因此也非常适用于需利用臭氧气体的CVD装置或ALD薄膜蒸镀装置。此外,由于能够以无氮或氮抑制臭氧气体供给高浓度的臭氧气体,因此还非常适用于臭氧浓缩装置或纸浆漂白装置等的产品制造领域,对小型产品或低耗电产品以及需要考虑环境因素的产品非常适合。
附图说明
图1本发明实施方式1的气体系统的结构框图。
图2为实施方式1的气体系统中添加氧气以外的稀有气体等辅助原料气体的结构的框图。
图3为表示实施方式1中的臭氧浓度特性的特性图。
图4为实施方式1中氧分子和光催化物质发生作用氧分子离解成氧原子的历程的示意图。
图5为实施方式1中由离解出的氧原子和氧分子的三体碰撞生成臭氧的历程的示意图。
图6为从实施方式1的臭氧发生器的截面上所反映出的从氧气到生成臭氧的历程的示意图。
图7为表示氮气或氧气的放电光相对能隙E(eV)和吸收光的波长λ(nm)的分布范围和强度的图。
图8为实施方式2所用的臭氧发生器的截面示意图。
图9为实施方式2中每单位电介质电极面积的放电光与光催化物质接触的表面积的示意图。
图10为表示实施方式2中每单位电介质电极面积的放电光与光催化物质接触的表面积和臭氧生成效率特性的特性图。
图11为实施方式3所用的臭氧发生器的截面示意图。
图12为实施方式4所用的臭氧发生器的截面示意图。
图13为表示实施方式4中相对陶瓷板的放电光波长的光透过率特性的图。
图14为表示实施方式4中相对陶瓷板内所含的光催化物质的含有比率的臭氧生成效率比率的特性的图。
图15为实施方式5所用的臭氧发生器的截面示意图。
图16为表示实施方式5中相对放电能量的臭氧浓度特性的图
图17为参考例的臭氧发生器的结构图。
图18为表示作为参考例的,向高纯度氧气中添加氮气时的臭氧浓度特性的特性图。
图19为表示作为参考例的,不使用光催化物质时,在高纯度氧气、以及向高纯度氧气中添加稀有气体等辅助原料气体情况下的臭氧浓度特性的特性图。
图20为表示作为参考例的,相对氮添加率γ的臭氧生成效率η(mg/J)的特性的图。
图21为表示氧气可离解的光波长和氧气分子的能量吸收系数的特性图。
图22为实施方式8的,使用了生成无氮臭氧气体的大型臭氧发声装置的臭氧浓缩装置的结构图。
图23为实施方式9的,组合了生成无氮臭氧气体的大型臭氧发声装置的纸浆漂白装置的结构图。
图24为利用以往的通过激光烧蚀堆积金属薄膜的方法和臭氧气体,使金属薄膜发生化学反应转变成氧化金属薄膜的CVD装置或ALD薄膜蒸镀装置的结构图。
记号的说明
10高纯度氧气瓶
20氩气瓶
21减压阀
22开关阀
23流量调节器
25原料气体
26臭氧气体
100 A种原料供给系统
200 B种原料供给系统
300臭氧发生器
400压力调节器
301a、301b电极
302电介质
303光催化物质
500臭氧电源
600外部

Claims (32)

1、无氮臭氧发生装置,其特征在于,具有第1电极、与上述第1电极相对,形成具有间隙的放电区域的第2电极、供给作为原料气体的氧气的原料气体供给手段、设于上述放电区域的电介质或上述电极上,含有带隙为2.0eV~2.9eV的光催化物质的催化物质;由电源在上述第1电极和上述第2电极间施加交流电压,向上述放电区域输入放电能量,由上述原料气体供给手段向上述放电区域供给氧气,通过放电向上述催化物质照射至少具有428nm~620nm的光波长的放电光,激发上述催化物质,使通过上述放电区域的上述氧气离解成氧原子,并且将上述氧气通过的上述放电区域的气压保持在0.1MPa~0.4MPa,对上述氧气和上述离解出的氧原子进行结合处理,产生臭氧。
2、根据权利要求1所述的无氮臭氧发生装置,其特征在于,使上述氧气的纯度定在99.99%以上。
3、根据权利要求1所述的无氮臭氧发生装置,其特征在于,使具有上述间隙的放电区域的间隙间隔定在0.6mm以下。
4、根据权利要求1所述的无氮臭氧发生装置,其特征在于,使上述氧气中含有作为辅助原料气体的稀有气体,其含量为氧气的500ppm~50000ppm,促进臭氧生成反应。
5、根据权利要求1所述的无氮臭氧发生装置,其特征在于,将上述催化物质涂布在上述放电区域的上述电介质或上述电极的壁面上,使上述催化物质和放电光的接触表面积比上述电介质或电极的面积大1.5倍或1.5倍以上。
6、根据权利要求1所述的无氮臭氧发生装置,其特征在于,上述催化物质是:为了使表面积增大,在上述放电区域的上述电介质或上述电极的壁面上粘附粒径为0.1μm~50μm的光催化物质的粉末。
7、根据权利要求1所述的无氮臭氧发生装置,其特征在于,在上述放电区域的电介质或上述电极的壁面上形成1μm~50μm的凹凸,在形成了上述凹凸的壁面上设置上述催化物质,使催化物质的表面积增大。
8、根据权利要求1所述的无氮臭氧发生装置,其特征在于,上述催化物质是:将上述放电区域的电介质形成为放电光可透过的电介质,并使放电光透过的上述电介质内含有体积比1%~10%的光催化物质粉末。
9、根据权利要求1所述的无氮臭氧发生装置,其特征在于,在上述放电区域的电极设置光催化物质,以透过上述放电光的上述电介质覆盖该光催化物质的放电区域侧。
10、根据权利要求1所述的无氮臭氧发生装置,其特征在于,上述光催化物质含有Cu2O、In2O3、Fe2TiO3、Fe2O3、Cr2O3、PbO、V2O5、FeTiO3、WO3、Bi2O3中的任1种或者1种以上的物质。
11、根据权利要求1所述的无氮臭氧发生装置,其特征在于,上述光催化物质含有由Nb2mP4O6m+4、W2mP4O6m+4、Ta2mP4O6m+4、In2mP4O4m+4、BaTi4O9、MnTi6O13、TiOaNbFc、SrTiOaNbFc、BaTiOaNbFc的稀土类金属离子络合物和多个元素构成的物质中的任1种或1种以上。
12、根据权利要求1所述的无氮臭氧发生装置,其特征在于,在上述光催化物质中掺入作为助催化的物质Ru、Ni、Pt、RuO2、NiOx、NiO。
13、根据权利要求4所述的无氮臭氧发生装置,其特征在于,将上述催化物质涂布在上述放电区域的上述电介质或上述电极的壁面上,使上述催化物质和放电光的接触表面积比上述电介质或上述电极的面积大1.5倍或1.5倍以上。
14、根据权利要求4所述的无氮臭氧发生装置,其特征在于,上述催化物质是:为使表面积增大,在上述放电区域的电介质或上述电极的壁面上粘附粒径为0.1μm~50μm的光催化物质的粉末。
15、根据权利要求4所述的无氮臭氧发生装置,其特征在于,在上述放电区域的上述电介质或上述电极的壁面上形成1μm~50μm的凹凸,在形成了上述凹凸的壁面上设置上述催化物质,使催化物质的表面积增大。
16、根据权利要求4所述的无氮臭氧发生装置,其特征在于,上述催化物质是:将上述放电区域的电介质形成为放电光可透过的电介质,并使放电光可透过的电介质内含有体积比1%~10%的光催化物质粉末。
17、根据权利要求4所述的无氮臭氧发生装置,其特征在于,在上述放电区域的电极设置光催化物质,以透过上述放电光的上述电介质覆盖该光催化物质的放电区域侧。
18、根据权利要求4所述的无氮臭氧发生装置,其特征在于,上述光催化物质含有Cu2O、In2O3、Fe2TiO3、Fe2O3、Cr2O3、PbO、V2O5、FeTiO3、WO3、Bi2O3中的任1种或者1种以上的物质。
19、根据权利要求4所述的无氮臭氧发生装置,其特征在于,上述光催化物质含有由Nb2mP4O6m+4、W2mP4O6m+4、Ta2mP4O6m+4、In2mP4O4m+4、BaTi4O9、MnTi6O13、TiOaNbFc、SrTiOaNbFc、BaTiOaNbFc的稀土类金属离子络合物和多个元素构成的物质中的任1种或1种以上。
20、根据权利要求4所述的无氮臭氧发生装置,其特征在于,在上述光催化物质中掺入作为助催化的物质Ru、Ni、Pt、RuO2、NiOx、NiO。
21、氮抑制臭氧发生装置,其特征在于,具有第1电极、与上述第1电极相对,形成具有间隙的放电区域的第2电极、供给作为原料气体的氧气的原料气体供给手段、供给氮气的氮气供给手段、设于上述放电区域的电介质或上述电极上,含有带隙为2.0eV~3.6eV的光催化物质的催化物质;由电源在上述第1电极和第2电极间施加交流电压,向上述放电区域输入放电能量,由上述原料气体供给手段向上述放电区域供给氧气,同时由上述氮气供给手段以氧气的10ppm~500ppm的范围供给促进臭氧生成反应用的氮气,通过放电向上述催化物质照射至少具有344nm~620nm的光波长的放电光,激发上述催化物质,使通过上述放电区域的上述氧气离解成氧原子,并且将上述氧气通过的上述放电区域的气压保持0.1MPa~0.4MPa,对上述氧气和上述离解出的氧原子进行结合处理,产生臭氧。
22、根据权利要求21所述的氮抑制臭氧发生装置,其特征在于,使上述氧气中含有作为辅助原料气体的稀有气体,其含量为氧气的500ppm~50000ppm,促进臭氧生成反应。
23、根据权利要求21所述的氮抑制臭氧发生装置,其特征在于,将上述催化物质涂布在上述放电区域的上述电介质或上述电极的壁面上,使上述催化物质和放电光的接触表面积比上述电介质或上述电极的面积大1.5倍或1.5倍以上。
24、根据权利要求21所述的氮抑制臭氧发生装置,其特征在于,上述催化物质是:为了使表面积增大,在上述放电区域的电介质或电极的壁面上粘附粒径为0.1μm~50μm的光催化物质的粉末。
25、根据权利要求21所述的氮抑制臭氧发生装置,其特征在于,在上述放电区域的电介质或上述电极的壁面上形成1μm~50μm的凹凸,在形成了上述凹凸的壁面上设置上述催化物质,使催化物质的表面积增大。
26、根据权利要求21所述的氮抑制臭氧发生装置,其特征在于,上述催化物质是:将上述放电区域的电介质形成为放电光透过的电介质,并且使放电光可透过的电介质内含有体积比1%~10%的光催化物质粉末。
27、根据权利要求1~20中任一项所述的无氮臭氧发生装置,其特征在于,用于化学气相沉积装置或ALD(原子层沉积atomic layer deposition)薄膜蒸镀装置。
28、根据权利要求1~20中任一项所述的无氮臭氧发生装置,其特征在于,用于制造不挥发存储用强电介质薄膜、高介电常数电介质薄膜、氮化物金属薄膜、氧化物金属、光学材料薄膜、高密度光磁记录用薄膜、超导薄膜、和高品质电容薄膜中的任一种的化学气相沉积装置或ALD(原子层沉积atomic layer deposition)薄膜蒸镀装置。
29、根据权利要求1~26中任一项所述的臭氧发生装置,其特征在于,用于臭氧浓缩装置。
30、根据权利要求1~26中任一项所述的臭氧发生装置,其特征在于,用于纸浆漂白装置。
31、无氮臭氧发生方法,其特征在于,具有第1电极、与上述第1电极相对,形成具有间隙的放电区域的第2电极、供给作为原料气体的氧气的原料气体供给手段、设于上述放电区域的电介质或上述电极上,含有带隙为2.0eV~2.9eV的光催化物质的催化物质;由电源在上述第1电极和上述第2电极间施加交流电压,向上述放电区域输入放电能量,由上述原料气体供给手段向上述放电区域供给氧气,通过放电向上述催化物质照射至少具有428nm~620nm的光波长的放电光,激发上述催化物质,使通过上述放电区域的上述氧气离解成氧原子,并将上述氧气通过的上述放电区域的气压保持在0.1MPa~0.4MPa,对上述氧气和上述离解的氧原子进行结合处理,产生臭氧。
32、氮抑制臭氧生成方法,其特征在于,具有第1电极、与上述第1电极相对,形成具有间隙的放电区域的第2电极、供给作为原料气体的氧气的原料气体供给手段、供给氮气的氮气供给手段、设于上述放电区域的电介质或上述电极上,含有带隙为2.0eV~3.6eV的光催化物质的催化物质;由电源在上述第1电极和第2电极间施加交流电压,向上述放电区域输入放电能量,由上述原料气体供给手段向上述放电区域供给氧气,同时由上述氮气供给手段以氧气的10ppm~500ppm范围供给促进臭氧生成反应用的氮气,通过放电向上述催化物质照射至少具有344nm~620nm的光波长的放电光,激发上述催化物质,使通过上述放电区域的上述氧气离解成氧原子,并将上述氧气通过的上述放电区域的气压保持在0.1MPa~0.4MPa,对上述氧气和上述离解出的氧原子进行结合处理,产生臭氧。
CNB2004800098362A 2004-02-25 2004-12-14 臭氧发生装置和臭氧发生方法 Active CN100364882C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004050009 2004-02-25
JP050009/2004 2004-02-25
JPPCT/JP2004/009277 2004-06-24
PCT/JP2004/018647 WO2005080263A1 (ja) 2004-02-25 2004-12-14 オゾン発生装置およびオゾン発生方法

Publications (2)

Publication Number Publication Date
CN1774394A true CN1774394A (zh) 2006-05-17
CN100364882C CN100364882C (zh) 2008-01-30

Family

ID=34879570

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800098362A Active CN100364882C (zh) 2004-02-25 2004-12-14 臭氧发生装置和臭氧发生方法

Country Status (7)

Country Link
US (1) US7382087B2 (zh)
EP (2) EP1719735B1 (zh)
JP (5) JP4953814B2 (zh)
KR (1) KR100756797B1 (zh)
CN (1) CN100364882C (zh)
TW (2) TW200528390A (zh)
WO (2) WO2005080264A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411974C (zh) * 2006-08-10 2008-08-20 中国科学技术大学 一种臭氧产生方法和臭氧发生装置
CN102000503A (zh) * 2010-12-10 2011-04-06 武汉慧邦环境工程技术有限公司 燃煤电厂光催化氧化烟气脱硫脱硝系统
CN103459307A (zh) * 2011-03-24 2013-12-18 东芝三菱电机产业系统株式会社 臭氧气体供给系统
CN103459308A (zh) * 2011-04-13 2013-12-18 东芝三菱电机产业系统株式会社 无氮添加臭氧产生单元及臭氧气体供给系统
CN103702932A (zh) * 2011-06-06 2014-04-02 Mks仪器有限公司 臭氧发生器
CN104105659A (zh) * 2012-08-30 2014-10-15 东芝三菱电机产业系统株式会社 臭氧生成系统
CN104451600A (zh) * 2014-12-04 2015-03-25 华东师范大学 一种氧化铋薄膜材料的制备方法
CN105518838A (zh) * 2013-07-02 2016-04-20 雅达公司 使用快速热加工形成异质外延层以除去晶格位错
TWI548588B (zh) * 2015-03-23 2016-09-11 財團法人工業技術研究院 臭氧產生裝置
CN106687409A (zh) * 2014-09-22 2017-05-17 三菱电机株式会社 臭氧发生系统及其运转方法
CN107428529A (zh) * 2015-03-18 2017-12-01 住友精密工业株式会社 臭氧气体产生装置及臭氧气体产生装置的制造方法
CN107635914A (zh) * 2015-06-08 2018-01-26 株式会社村田制作所 臭氧生成装置
CN108367919A (zh) * 2015-12-08 2018-08-03 东芝三菱电机产业系统株式会社 臭氧产生方法
CN109790023A (zh) * 2016-09-20 2019-05-21 安娜卡伊有限公司 包含氧气的气体混合物用于臭氧生产的应用
CN110407177A (zh) * 2019-08-12 2019-11-05 中国科学院城市环境研究所 一种促进臭氧生成的方法
TWI712450B (zh) * 2014-02-20 2020-12-11 日商奧璐佳瑙股份有限公司 臭氧水供給方法及臭氧水供給裝置
CN112204696A (zh) * 2018-05-29 2021-01-08 万机仪器公司 利用倒磁控管源进行气体分析
CN114763321A (zh) * 2021-01-12 2022-07-19 万华化学集团股份有限公司 一种臭氧组合物及其制备方法,及一种反应精馏制备乙醛酸的方法
CN115594152A (zh) * 2021-07-09 2023-01-13 财团法人工业技术研究院(Tw) 臭氧产生装置以及臭氧产生方法
CN116553482A (zh) * 2023-05-23 2023-08-08 苏州晶拓半导体科技有限公司 无氮添加高浓度臭氧发生装置及其制备方法
CN115427348B (zh) * 2020-04-09 2024-03-01 三菱电机株式会社 氧自由基产生装置及氧自由基产生方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642572B2 (ja) * 2003-05-09 2005-04-27 東芝三菱電機産業システム株式会社 オゾン発生装置およびオゾン発生方法
CN101142022B (zh) * 2005-07-15 2011-06-15 东芝三菱电机产业系统株式会社 光催化材料生产方法和光催化材料生产设备
JP4948007B2 (ja) 2006-03-22 2012-06-06 住友精密工業株式会社 オゾン発生装置用放電セル
US7691342B2 (en) * 2006-04-28 2010-04-06 The United States Of America As Represented By The U.S. Environmental Protection Agency Process using compact embedded electron induced ozonation and activation of nanostructured titanium dioxide photocatalyst for photocatalytic oxidation
US20080128269A1 (en) * 2006-11-30 2008-06-05 Sumitomo Precision Products Co., Ltd. Discharge cell for ozonizer
JP5210596B2 (ja) * 2007-11-02 2013-06-12 メタウォーター株式会社 オゾン発生装置
JP5283400B2 (ja) * 2008-03-05 2013-09-04 住友精密工業株式会社 オゾン発生装置用放電セル
JP2009233590A (ja) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology 有害物質処理方法とその装置
ITRM20090003A1 (it) * 2009-01-07 2010-07-08 Alessio Benedetti Produttore di ozono da ossigeno puro prelevato da bombole o dewar con immissione in atmosfera per disinfestazioni e disinfezioni ambientali
US8337674B2 (en) 2009-01-23 2012-12-25 Air Products And Chemicals, Inc. Ozone production by pressure swing adsorption using a noble gas additive
KR101710495B1 (ko) * 2009-10-02 2017-02-27 스미토모 세이미츠 고교 가부시키가이샤 오존가스 발생장치 및 그 제조방법
JP2011121805A (ja) * 2009-12-09 2011-06-23 Iwatani Internatl Corp オゾンガスに含まれる窒素酸化物および水分の除去方法
WO2011108410A1 (ja) * 2010-03-02 2011-09-09 三菱電機株式会社 無声放電プラズマ装置および無声放電プラズマ発生方法
US20110220148A1 (en) * 2010-03-12 2011-09-15 Tokyo Electron Limited Method for performing preventative maintenance in a substrate processing system
CZ302409B6 (cs) * 2010-06-07 2011-05-04 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Generátor aktivních kyslíkových cástic
US20120234392A1 (en) * 2011-03-17 2012-09-20 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
WO2013051097A1 (ja) * 2011-10-04 2013-04-11 東芝三菱電機産業システム株式会社 窒素添加レス・オゾン発生ユニット
JP5676532B2 (ja) * 2012-08-07 2015-02-25 東芝三菱電機産業システム株式会社 光触媒物質生成方法および光触媒物質生成装置
KR20140043609A (ko) * 2012-10-02 2014-04-10 엘지전자 주식회사 이온 발생기
US9153427B2 (en) * 2012-12-18 2015-10-06 Agilent Technologies, Inc. Vacuum ultraviolet photon source, ionization apparatus, and related methods
GB2576262A (en) * 2014-06-25 2020-02-12 Ultratech Inc Formation of heteroepitaxial layers with rapid thermal processing to remove lattice dislocations
US9318319B2 (en) 2014-08-27 2016-04-19 Ultratech, Inc. Radical-enhanced atomic layer deposition using CF4 to enhance oxygen radical generation
KR102145120B1 (ko) 2014-10-29 2020-08-14 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 오존 발생 장치
SG11201704675RA (en) * 2015-01-20 2017-08-30 Mitsubishi Electric Corp Water treatment apparatus and water treatment method
US10869502B2 (en) * 2015-07-31 2020-12-22 14Th Round Inc. Disposable assembly for vaporizing e-liquid and a method of using the same
CN205143486U (zh) * 2015-09-02 2016-04-13 深圳市合元科技有限公司 雾化头、雾化器及电子烟
CN105271129B (zh) * 2015-09-30 2017-09-29 南京华伯新材料有限公司 一种高浓度臭氧发生装置
JP6589666B2 (ja) * 2016-02-01 2019-10-16 株式会社デンソー オゾン発生装置
JP6374902B2 (ja) * 2016-03-25 2018-08-15 住友精密工業株式会社 オゾンガス発生装置およびオゾンガス発生装置の製造方法
JP6584995B2 (ja) * 2016-04-14 2019-10-02 東芝三菱電機産業システム株式会社 オゾン発生器及びオゾン発生方法
JP6504317B2 (ja) * 2016-07-14 2019-04-24 株式会社村田製作所 オゾン発生装置
US10143763B2 (en) 2016-10-06 2018-12-04 Alfonso Campalans Neutral atmosphere and sanitization storage apparatus, method and system
JP6723661B2 (ja) * 2017-05-16 2020-07-15 東芝三菱電機産業システム株式会社 オゾンガス発生装置
EP3422124A1 (en) 2017-06-30 2019-01-02 SUEZ Groupe Method for controlling an ozone generating machine
CN110997556B (zh) * 2017-08-09 2023-06-13 东芝三菱电机产业系统株式会社 臭氧气体利用系统
JP2019182677A (ja) * 2018-04-03 2019-10-24 株式会社豊田中央研究所 オゾン発生器
WO2019225033A1 (ja) * 2018-05-21 2019-11-28 東芝三菱電機産業システム株式会社 オゾンガス発生システム及びオゾンガス発生方法
JP7154708B2 (ja) * 2018-12-20 2022-10-18 東芝三菱電機産業システム株式会社 オゾンガス利用システム
US11875974B2 (en) * 2020-05-30 2024-01-16 Preservation Tech, LLC Multi-channel plasma reaction cell
JP7383087B1 (ja) 2022-07-15 2023-11-17 日本特殊陶業株式会社 オゾン発生器
CN115253672B (zh) * 2022-08-17 2024-05-10 中国科学院生态环境研究中心 一种用于气固相反应的光电催化器件和用途

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340705A (ja) * 1986-08-05 1988-02-22 Ebara Res Co Ltd 光触媒によりオゾンを製造する方法及びその装置
DE3638401A1 (de) 1986-11-11 1988-05-26 Etec Energieoptimierung Vorrichtung zur erzeugung von ozon
US4988484A (en) 1988-01-29 1991-01-29 Karlson Eskil L High efficiency ozone generator for sterilizing, bleaching and the like
JPH0621010B2 (ja) * 1988-05-06 1994-03-23 住友精密工業株式会社 高純度、高濃度オゾンをほとんど経時変化なく発生させる方法
JP2587860B2 (ja) * 1988-05-27 1997-03-05 クロリンエンジニアズ株式会社 オゾン発生方法
JP2641956B2 (ja) 1989-11-15 1997-08-20 三菱電機株式会社 オゾン発生装置およびオゾン発生方法および半導体製造装置
US5047127A (en) * 1989-11-15 1991-09-10 Mitsubishi Denki Kabushiki Kaisha Ozone generating method
JP3417037B2 (ja) * 1993-08-31 2003-06-16 株式会社明電舎 オゾン発生装置
US5552125A (en) * 1994-01-10 1996-09-03 Kamyr, Inc. Dielectric coating for ozone generator electrodes
JP2983153B2 (ja) * 1994-04-28 1999-11-29 三菱電機株式会社 オゾン発生装置
JPH0859213A (ja) 1994-08-11 1996-03-05 Ebara Corp オゾン発生装置
JP3533538B2 (ja) * 1994-12-13 2004-05-31 富士電機システムズ株式会社 二重管型オゾナイザー
JPH08231206A (ja) * 1995-02-24 1996-09-10 Meidensha Corp オゾン発生装置
JP3628461B2 (ja) 1995-11-27 2005-03-09 住友精密工業株式会社 オゾンガス配管における金属不純物低減方法
DE19648514A1 (de) * 1995-11-27 1997-05-28 Sumitomo Precision Prod Co Verfahren zum verringern metallischer Verunreinigungen in einer Ozongasleitung
TW401373B (en) * 1997-03-07 2000-08-11 Univ Wuhan Electrolytic ozone generating apparatus
JP3740254B2 (ja) 1997-06-27 2006-02-01 住友精密工業株式会社 オゾン発生装置用放電セル
JPH1179709A (ja) * 1997-08-28 1999-03-23 Mitsubishi Heavy Ind Ltd オゾン発生装置
JP4069990B2 (ja) * 1998-03-27 2008-04-02 住友精密工業株式会社 オゾン発生方法
JP2001187390A (ja) * 1999-12-28 2001-07-10 Daido Steel Co Ltd 液体の浄化方法および液体の浄化装置
JP4220090B2 (ja) 2000-02-08 2009-02-04 株式会社ノリタケカンパニーリミテド オゾン発生電極プレート
JP3651780B2 (ja) 2000-02-08 2005-05-25 株式会社東芝 オゾン発生装置
JP4260335B2 (ja) * 2000-04-10 2009-04-30 三菱電機株式会社 オゾン発生装置およびその製造方法
JP4237420B2 (ja) * 2001-02-28 2009-03-11 株式会社東芝 オゾン発生器用ガラス電極およびオゾン発生器用放電管
JP2002274815A (ja) * 2001-03-23 2002-09-25 Fuji Electric Co Ltd オゾン発生装置およびその運転方法
JP2003089507A (ja) * 2001-09-14 2003-03-28 Toshiba Corp オゾン発生装置
JP2004217512A (ja) * 2002-12-27 2004-08-05 Sumitomo Precision Prod Co Ltd オゾン発生方法
JP3642572B2 (ja) * 2003-05-09 2005-04-27 東芝三菱電機産業システム株式会社 オゾン発生装置およびオゾン発生方法
JP3995665B2 (ja) * 2004-05-14 2007-10-24 住友精密工業株式会社 オゾン発生装置用誘電体

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411974C (zh) * 2006-08-10 2008-08-20 中国科学技术大学 一种臭氧产生方法和臭氧发生装置
CN102000503A (zh) * 2010-12-10 2011-04-06 武汉慧邦环境工程技术有限公司 燃煤电厂光催化氧化烟气脱硫脱硝系统
CN103459307A (zh) * 2011-03-24 2013-12-18 东芝三菱电机产业系统株式会社 臭氧气体供给系统
CN103459307B (zh) * 2011-03-24 2016-03-30 东芝三菱电机产业系统株式会社 臭氧气体供给系统
US8980189B2 (en) 2011-03-24 2015-03-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ozone gas supply system
US9067789B2 (en) 2011-04-13 2015-06-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Nitrogen-free ozone generation unit and ozone gas supply system
CN103459308A (zh) * 2011-04-13 2013-12-18 东芝三菱电机产业系统株式会社 无氮添加臭氧产生单元及臭氧气体供给系统
CN103459308B (zh) * 2011-04-13 2016-02-10 东芝三菱电机产业系统株式会社 无氮添加臭氧产生单元及臭氧气体供给系统
US9580318B2 (en) 2011-06-06 2017-02-28 Mks Instruments, Inc. Ozone generator
US9039985B2 (en) 2011-06-06 2015-05-26 Mks Instruments, Inc. Ozone generator
CN103702932B (zh) * 2011-06-06 2016-01-20 Mks仪器有限公司 臭氧发生器
CN105314604A (zh) * 2011-06-06 2016-02-10 Mks仪器有限公司 臭氧发生器
CN103702932A (zh) * 2011-06-06 2014-04-02 Mks仪器有限公司 臭氧发生器
US9114987B2 (en) 2012-08-30 2015-08-25 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ozone generation system
CN104105659A (zh) * 2012-08-30 2014-10-15 东芝三菱电机产业系统株式会社 臭氧生成系统
CN104105659B (zh) * 2012-08-30 2016-09-07 东芝三菱电机产业系统株式会社 臭氧生成系统
CN105518838A (zh) * 2013-07-02 2016-04-20 雅达公司 使用快速热加工形成异质外延层以除去晶格位错
CN105518838B (zh) * 2013-07-02 2019-11-26 雅达公司 使用快速热加工形成异质外延层以除去晶格位错
US11229887B2 (en) 2014-02-20 2022-01-25 Organo Corporation Ozone water supply method and ozone water supply device
TWI712450B (zh) * 2014-02-20 2020-12-11 日商奧璐佳瑙股份有限公司 臭氧水供給方法及臭氧水供給裝置
CN106687409B (zh) * 2014-09-22 2019-05-14 三菱电机株式会社 臭氧发生系统及其运转方法
CN106687409A (zh) * 2014-09-22 2017-05-17 三菱电机株式会社 臭氧发生系统及其运转方法
CN104451600A (zh) * 2014-12-04 2015-03-25 华东师范大学 一种氧化铋薄膜材料的制备方法
CN107428529A (zh) * 2015-03-18 2017-12-01 住友精密工业株式会社 臭氧气体产生装置及臭氧气体产生装置的制造方法
TWI548588B (zh) * 2015-03-23 2016-09-11 財團法人工業技術研究院 臭氧產生裝置
CN107635914A (zh) * 2015-06-08 2018-01-26 株式会社村田制作所 臭氧生成装置
CN107635914B (zh) * 2015-06-08 2020-03-17 株式会社村田制作所 臭氧生成装置
CN108367919A (zh) * 2015-12-08 2018-08-03 东芝三菱电机产业系统株式会社 臭氧产生方法
CN109790023A (zh) * 2016-09-20 2019-05-21 安娜卡伊有限公司 包含氧气的气体混合物用于臭氧生产的应用
TWI811370B (zh) * 2018-05-29 2023-08-11 美商Mks儀器股份有限公司 反磁控管冷陰極電離源和真空計、及測量來自受監視室中的氣體之總壓力和分壓的方法
CN112204696A (zh) * 2018-05-29 2021-01-08 万机仪器公司 利用倒磁控管源进行气体分析
CN112204696B (zh) * 2018-05-29 2021-10-22 万机仪器公司 倒磁控管冷阴极电离真空计、电离源、测量压力的方法
CN110407177A (zh) * 2019-08-12 2019-11-05 中国科学院城市环境研究所 一种促进臭氧生成的方法
CN115427348B (zh) * 2020-04-09 2024-03-01 三菱电机株式会社 氧自由基产生装置及氧自由基产生方法
CN114763321A (zh) * 2021-01-12 2022-07-19 万华化学集团股份有限公司 一种臭氧组合物及其制备方法,及一种反应精馏制备乙醛酸的方法
CN115594152A (zh) * 2021-07-09 2023-01-13 财团法人工业技术研究院(Tw) 臭氧产生装置以及臭氧产生方法
CN116553482A (zh) * 2023-05-23 2023-08-08 苏州晶拓半导体科技有限公司 无氮添加高浓度臭氧发生装置及其制备方法

Also Published As

Publication number Publication date
EP1719735A4 (en) 2009-11-11
JP2011063511A (ja) 2011-03-31
JP4932037B2 (ja) 2012-05-16
JPWO2005080263A1 (ja) 2008-01-10
JP4953814B2 (ja) 2012-06-13
JP4825314B2 (ja) 2011-11-30
CN100364882C (zh) 2008-01-30
WO2005080264A1 (ja) 2005-09-01
EP2287114A3 (en) 2011-03-02
EP2287114B1 (en) 2012-08-29
TWI263617B (en) 2006-10-11
TW200530120A (en) 2005-09-16
EP2287114A2 (en) 2011-02-23
US20060049738A1 (en) 2006-03-09
US7382087B2 (en) 2008-06-03
KR100756797B1 (ko) 2007-09-07
EP1719735A1 (en) 2006-11-08
TW200528390A (en) 2005-09-01
EP1719735B1 (en) 2015-09-02
KR20060012568A (ko) 2006-02-08
JP2011088821A (ja) 2011-05-06
JP5121944B2 (ja) 2013-01-16
JP2011063512A (ja) 2011-03-31
JP5069800B2 (ja) 2012-11-07
WO2005080263A1 (ja) 2005-09-01
JP2011098886A (ja) 2011-05-19

Similar Documents

Publication Publication Date Title
CN1774394A (zh) 臭氧发生装置和臭氧发生方法
CN1294619C (zh) 半导体器件及其制造方法
CN100339945C (zh) 等离子处理装置及其清洗方法
CN1254851C (zh) 基板处理方法和装置、半导体装置的制造装置
CN1204956C (zh) 具有对半导体制造中的废气流进行氧化处理用途的废气流处理系统
CN1161820C (zh) 半导体层制造方法和制造设备、光生伏打电池的制造方法
CN1030722C (zh) 连续形成大面积膜的微波等离子体化学汽相淀积方法及设备
CN1467302A (zh) 层形成方法,和具有通过该方法形成的层的基材
CN1106685C (zh) 杂质的导入方法及其装置和半导体器件的制造方法
CN101142022B (zh) 光催化材料生产方法和光催化材料生产设备
CN1057349C (zh) 等离子体加工方法和等离子体加工装置
CN101054657A (zh) 膜形成装置和膜形成方法以及清洁方法
CN1638818A (zh) 多孔半导体及其制备方法
CN101032006A (zh) 半导体器件的制造方法以及衬底处理装置
CN1240049A (zh) 供电能储存用之高表面积金属氮化物或金属氮氧化物
CN1754013A (zh) β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
CN1654343A (zh) 采用放电的自由基处理方法分解有机物的装置
CN1229401A (zh) 废水处理装置
CN1692477A (zh) 基板处理装置和基板处理方法
CN1320156C (zh) 薄膜的制造方法及溅射装置
CN1045189C (zh) 臭氧发生方法和臭氧发生装置
CN1957110A (zh) 化学气相成长用原料和薄膜的制造方法
CN1643668A (zh) 基板处理装置和基板处理方法、高速旋转阀、清洁方法
CN1238091C (zh) 氟碳的分解处理剂及分解处理方法
CN1813342A (zh) 等离子产生方法、清洗方法以及衬底处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant