CN1720098A - 含活性金属的中孔材料 - Google Patents

含活性金属的中孔材料 Download PDF

Info

Publication number
CN1720098A
CN1720098A CNA2003801052323A CN200380105232A CN1720098A CN 1720098 A CN1720098 A CN 1720098A CN A2003801052323 A CNA2003801052323 A CN A2003801052323A CN 200380105232 A CN200380105232 A CN 200380105232A CN 1720098 A CN1720098 A CN 1720098A
Authority
CN
China
Prior art keywords
hetero atom
charging
catalyst
combination
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801052323A
Other languages
English (en)
Other versions
CN100441296C (zh
Inventor
单志平
雅各布斯·科尼利厄斯·詹森
叶春渊
菲利普·J·安杰文
托马斯·马施迈尔
穆罕默德·S·哈姆迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
ABB Lummus Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Lummus Global Inc filed Critical ABB Lummus Global Inc
Publication of CN1720098A publication Critical patent/CN1720098A/zh
Application granted granted Critical
Publication of CN100441296C publication Critical patent/CN100441296C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/045Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/046Chromiasilicates; Aluminochromosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • B01J35/30
    • B01J35/31
    • B01J35/60
    • B01J35/615
    • B01J35/617
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Abstract

本发明公开了一种处理有机化合物的方法,该方法包括提供一种组合物,该组合物包括基本上中孔结构的二氧化硅,其包含至少97%体积的孔,孔径范围为约15至约30且微孔体积为至少约0.01cc/g,其中该中孔结构在其中包括至少约0.02wt%的至少一种催化活性和/或化学活性的杂原子,该杂原子选自Al、Ti、V、Cr、Zn、Fe、Sn、Mo、Ga、Ni、Co、In、Zr、Mn、Cu、Mg、Pd、Pt和W,该催化剂的X射线衍射图案在2θ为0.3°至约3.5°处有一个峰。该催化剂在反应条件下与有机进料接触,其中处理方法选自烷基化、酰化、低聚反应、选择性氧化、加氢处理、异构化、脱金属、催化脱蜡、羟基化、氢化、氨解氧化、异构化、脱氢、裂化和吸附。

Description

含活性金属的中孔材料
相关申请的交叉参考
本申请是提交于2001年11月27日的美国专利申请序列号09/995,227的部分继续申请,后者被引入本文以供参考,它是提交于1999年9月7日的美国专利申请序列号09/390,276的部分继续申请,现已被授予美国专利6,358,486 B1,本申请对其要求优先权。
背景
发明领域
本发明涉及中孔材料,尤其是催化材料,以及该中孔材料用于有机化合物尤其是烃的转化。
现有技术背景
大部分现今的烃处理技术以沸石催化剂为基础。沸石催化剂在本领域是众所周知的,具有孔径均匀的排列有序的孔系统。但是,这些材料趋向于仅拥有微孔或仅拥有中孔。微孔是指直径小于约2nm的孔。中孔是指直径范围从约2nm至约50nm的孔。
因为这种烃处理反应是传质有限的,所以具有理想孔径的催化剂会有利于反应物到活性催化剂部位的输送和产品从催化剂中的输出。
但是对于涉及烃和其它有机化合物的催化转化和/或吸附的过程,仍需要在多孔结构中使用具有官能化部位的改良材料。
发明概述
本发明提供了一种处理有机化合物的方法。该方法包括:(a)提供了一种组合物,该组合物包括基本上中孔结构的二氧化硅,其包含至少97%体积的孔,孔径范围为约15至约30且微孔体积为至少约0.01cc/g,其中中孔结构在其中包括至少约0.02wt%的催化活性和/或化学活性的杂原子,杂原子选自Al、Ti、V、Cr、Zn、Fe、Sn、Mo、Ga、Ni、Co、In、Zr、Mn、Cu、Mg、Pd、Pt和W,其中所述催化剂的X射线衍射图案在2θ为0.3°至约3.5°处有一个峰;和,(b)将有机进料在反应条件下与所述催化剂接触,其中处理方法选自烷基化、酰化、低聚反应、选择性氧化、加氢处理、异构化、脱金属、催化脱蜡、羟基化、氢化、氨解氧化、异构化、脱氢、裂化和吸附。
本发明的一个方面涉及对石油润滑油、优选那些具有不希望的高的金属和/或硫和/或氮含量和/或康拉逊残炭值(CCR)的尾馏分进行脱金属和脱硫的改进催化方法。更具体地,本发明涉及降低在石油润滑油、再次优选那些含残余烃组分的物质中高的金属、硫、氮含量和CCR的加氢处理方法。
残余石油润滑油馏分通过原油的常压蒸馏或真空蒸馏获得;它们通常包含大量的金属、硫、氮和CCR含量。之所以发生这种情况,是由于实际上存在于最初原油中的所有金属和CCR保留在残余馏分中,并且最初原油中不成比例的量的硫和氮也保留在该馏分中。主要的金属污染物是镍和钒,有时也有铁和少量的铜存在。
残余馏分中高的金属、硫、氮和CCR含量通常限制了它们在随后的催化剂处理如催化裂化和加氢裂化中作为进料的有效使用。金属污染物在这些裂化方法的特殊催化剂上沉淀,并导致催化剂的过早老化和/或不希望的副反应如裂化成焦炭、干气和氢。在FCC方法中,大量的硫在FCC催化剂的焦炭中终止,其在再生过程中被燃烧,导致SOx的大量释放。残余硫的另一主要结局是在最终的裂化产物中,如汽油和轻循环油(用于柴油和家庭加热燃料的混合组分)。一些氮转化为NOx排放物,一些氮(碱性氮化合物)被束缚在FCC催化剂的活性部位,使其无效。CCR是分子趋向于形成焦炭而不是裂化和/或蒸馏的量度,对于通过催化裂化处理的进料流也是不期望的性质。在催化裂化中使用的高温下,CCR高的分子热降解和/或催化降解为焦炭、轻气体和氢。通常使用比残余馏分轻的烃进料进行催化裂化,所述烃进料的API比重通常小于20。最普通的裂化进料是炼焦器和/或原油蒸馏装置的粗柴油、和减压塔的塔顶馏出物等,给料的API比重为约15至约45。由于这些裂化进料为馏出物,所以它们不包含重大比例的大分子,在这些大分子中金属被浓缩。这种裂化一般在温度为约425至800℃、压力为约1至5个大气压、空速为约1至1000WHSV下操作的反应器中进行。
金属和硫污染物在加氢裂化操作中导致类似的问题,加氢裂化操作典型地在甚至比那些加入裂化装置的进料更轻的进料上进行。典型的加氢裂化反应器的条件由200至550℃的温度和700至20,000KPa的压力组成。
显然,非常需要一种有效的方法,以降低在烃、尤其是残余的石油馏分中金属和/或硫和/或氮和/或CCR的含量。尽管为解决这个问题而用于馏出馏分的技术已经有了相当的进展,但是对残余馏分应用这种技术的努力却常常失败,这是由于催化剂的快速失活,这主要由金属污染物和焦炭沉积引起。
附图简述
以下参照附图描述各种实施方案,其中:
图1是实施例1的中孔材料的X射线衍射图案(“XRD”);
图2是实施例1的中孔材料的透射电子显微镜图(“TEM”);
图3说明了实施例1的中孔材料的孔径分布;
图4是实施例2的中孔材料的XRD图案;
图5显示了实施例3A、3B和3C的中孔材料的XRD图案;
图6说明了实施例3A的中孔材料的孔径分布;
图7是实施例5的含钒中孔材料的XRD图案;
图8是实施例6的含钛中孔材料的XRD图案;
图9说明了实施例6的含钛中孔材料的氮吸附等温线;
图10说明了实施例6的含钛中孔材料的孔径分布;
图11显示了实施例7、8和9的中孔材料的XRD图案;
图12是实施例10的含铝和钒的中孔材料的XRD图案案;
图13说明了实施例10的含铝和钒的中孔材料的孔径分布;
图14是实施例11的含铁中孔材料的XRD图案;
图15显示了实施例的含铁中孔材料的UV-可见光谱;
图16显示了实施例11的含铁中孔材料的孔径分布;
图17是实施例13的含铬中孔材料的XRD图案;
图18显示了实施例13的含铬中孔材料的UV-可见光谱;
图19显示了实施例13的中孔材料的中孔径分布;
图20是实施例15的含钼中孔材料的XRD图案;
图21显示了实施例15的中孔材料的UV-可见光谱;和
图22显示了实施例15的中孔材料的中孔径分布。
优选实施方案详述
本发明的催化剂包括三维的、稳定的、多孔的二氧化硅,它的结构基本上是中孔的。该二氧化硅具有非晶性的但是规则的(假晶性的)结构。中孔材料描述于美国专利6,358,486 B1,该专利被全文引入本文以供参考。
本发明的无定形二氧化硅材料通常既包含中孔又包含微孔。微孔是指直径小于约2nm的孔。中孔是指直径为约2nm至约50nm的孔。本发明的无机氧化物材料的中孔体积百分比为至少约97%,优选至少约98%。
一种制造优选的含多孔二氧化硅的催化剂载体的方法描述于美国专利6,358,486 B1。由N2孔隙率测定法测定的优选催化剂的平均中孔径范围为约2nm至约25nm。
催化剂包括一种或多种掺入多孔硅酸盐结构内的催化活性的金属杂原子,并被这些杂原子官能化。催化活性的金属杂原子(即非硅原子)可选自元素周期表的族IB、IIB、IIIB、IVB、VB、VIB、VIIB、VIII、IVA和IIIA。合适的金属杂原子包括:例如铝(AL)、钛(Ti)、钒(V)、铬(Cr)、锌(Zn)、铁(Fe)、锡(Sn)、钼(Mo)、镓(Ga)、镍(Ni)、钴(Co)、铟(In)、锆(Zr)、锰(Mn)、铜(Cu)、镁(Mg)、钯(Pd)、铂(Pt)和钨(W)。掺入的杂原子可在多孔基体中以簇的形式被分离和/或分布。它们可以是原子形式或分子形式(例如,作为氧化物)。催化剂的杂原子含量占催化剂重量的至少约0.02wt%。催化剂中杂原子与硅原子的原子比可以变化至高达约0.9,优选约0.0001至约0.5。
本发明的组合物具有特征性的X射线衍射图案(“XRD”),其显示在2θ为0.3°至3.5°处至少有一个峰,这与25至440之间的基本间隔相符。氮吸附试验表明可调的孔径范围为约15(1.5nm)至约300(30nm),表面积范围为约300m2/g至约1,250m2/g,孔体积为约0.3cc/g至约2.5cc/g。
本发明的组合物具有三维的、无规连接的中孔系统,该系统有利于反应物和产品的传质,并避免孔的堵塞。
通常,本发明的中孔二氧化硅材料由包含至少一种二氧化硅源、至少一种杂原子源、和至少一种成孔的有机模板剂的合成混合物制得。
在制备本发明催化剂的方法的第一阶段,将二氧化硅源、杂原子源和有机模板剂混合于水溶液中,形成合成混合物(经常为凝胶)。
在该方法的中间阶段,合成混合物的挥发性组分(如水、醇)通过常规方式如带或不带强制空气流动的干燥除去。这种干燥可以例如在40℃至约130℃下进行长达约72小时,更优选在约60℃至约120℃下进行6至36小时。
在最后阶段,有机模板剂通过常规方式如煅烧和萃取除去。典型地,煅烧在约450℃至约900℃的温度下利用含氧气体(如空气)进行2至20小时,优选在540℃至约700℃下进行约4至15小时。根据所用的溶剂,萃取可以使用有机溶剂在约30℃至约100℃的温度下进行。一些低毒或无毒的醇为优选的溶剂。
任选地,该方法包括,在除去合成混合物的挥发性组分前,在10℃下将合成混合物老化长达24小时。
任选地,在除去成孔剂之前,合成混合物在高压釜内在约100℃至约220℃的温度下加热长达约10天,优选在约120℃至约200℃的温度下加热长达96小时。在高压釜内的加热步骤可以调整中孔以满足具体需要。在加热过程中,无机物种如硅和铝会聚结以形成无机结构,而成孔剂形成聚集体以成型为无机结构。聚集体的尺寸分布确定了中孔径分布。然而,聚集体尺寸主要取决于成孔剂的性质、加热温度和加热持续时间。因此对于某种成孔剂,最终材料的中孔度可以通过控制温度和加热时间来调整。
更具体地,在第一阶段,二氧化硅源或二氧化硅前体可以是含一些有机基团的硅化合物。这种化合物可以是醇盐如原硅酸四乙酯(“TEOS”)、和杂氮硅三环(silatranes)如三乙醇胺取代的杂氮硅三环。或者,二氧化硅源可以是无机的,如无水或含水的硅胶或二氧化硅水凝胶。二氧化硅源也可以是地热二氧化硅,但是为了促进反应性,二氧化硅源优选地不是结晶源。
有机模板剂优选地含羟基(-OH),其与无机物种(即二氧化硅和杂原子)形成氢键。它们可以含有具有一对电子的原子,其能与硅或杂原子键合。这些有机模板剂包括二醇类(如丙二醇、丙三醇、二甘醇、三甘醇、四甘醇)、链烷醇胺(如三乙醇胺〔“TEA”〕、三异丙醇胺)、二甘醇二苯甲酸酯、三亚乙基五胺、淀粉、和环丁砜。有机模板剂的沸点应高于150℃,优选高于约180℃。
杂原子源可以有或没有有机基团,典型地以溶液的形式加入。例如,在铝的情况下,杂原子源可以是铝的醇盐(如异丙醇铝)、氧化铝、氢氧化铝、硝酸铝、硫酸铝、或氯化铝。
合成混合物也可以包括碱或酸来调节混合物的pH。碱典型地包括有机碱如氢氧化四乙铵(“TEAOH”)和其它氢氧化四烷基铵、尿素等,或无机碱如氢氧化铵、氢氧化钠、碳酸钠等。
溶剂、反应条件、组分加入和混合的顺序和pH可取决于杂原子,且应被适当选择以避免杂原子的过早分离(如沉淀)。过早分离会导致杂原子不能掺入到二氧化硅结构中。
本发明的组合物可以被应用为催化剂、助催化剂(催化剂的一部分)、催化剂载体、吸附剂和分子筛。根据掺入的杂原子的官能度,该组合物可以为弱酸性、中等酸性和强酸性,因此它能催化如下反应:裂化、异构化、烷基化、酰化、低聚/聚合、有机化合物的脱水、和脱硫。该组合物也具有氧化还原性质,这能催化如下反应:烯烃(如环己烯、辛烯、乙烯或丙烯)的环氧化、烷烃(如环十二烷、环己烷)、醇和胺的选择性氧化、芳烃的羟基化、和酮的氨解氧化。该组合物可被用作助催化剂或催化剂载体。例如,将贵金属如Pd和/或Pt加入到这种组合物中提供了加氢裂化、氢化、脱氢、和脱硫的官能度。该组合物也可以包含所有类型的沸石和类似沸石的结构、以及以上提到的所有可能的杂原子。
本发明组合物的典型例子是含铝和/或镓的一种组合物,它显酸性。一组在工业上很重要的反应是烷基化,通常使用腐蚀性路易斯酸如AlCl3和HF并产生大量废物。本发明的组合物对环境友好并能替代常规催化剂。它可以使用烯烃、卤代烷或醇作为烷化剂来以催化烷烃或芳烃的烷基化(包括弗瑞德-克来福特(Friedel-Crafts)烷基化)。芳香化合物主要包括苯、萘、菲和它们的衍生物,如甲苯、二甲苯、异丙基萘、二苯醚、或2,4-二叔丁基苯酚。烯烃烷化剂主要包括α-烯烃类,优选那些碳原子数大于二、优选大于四的α-烯烃。合适的烯烃包括如乙烯、丙烯和1-十六碳烯。醇烷化剂主要包括甲醇、乙醇、异丙醇、苄醇和肉桂醇。烷基化反应可在约80℃至约400℃的温度、1至50巴之间的压力下进行,优选在约90℃至约300℃和1至30巴之间进行。
烯烃的低聚和聚合可以产生用于汽油、喷气式发动机燃料、柴油和粗润滑油的馏分。本发明的催化剂组合物,特别是那些含铝、铬、镓或铁杂原子的组合物,可以用作烯烃低聚的催化剂,这些烯烃为例如碳原子数大于3的α-烯烃。根据具体进料和所需的产品,反应条件包括从约25℃至约300℃的温度范围、和从常压至约70巴的压力范围。
本发明的催化剂组合物可被用于有机化合物的选择性氧化。尤为优选的是那些含一种或多种杂原子的催化剂组合物,所述杂原子选自过渡金属,包括例如铜、锌、铁、钛、铬、钒、钼和锡。例如,含钛、锌、铬、铁和锰的组合物能催化烯烃的环氧化,该烯烃包括芳烃如菲、蒽和反式1,2-二苯乙烯。这类反应中使用的氧化剂包括有机或无机过氧化物、氮的氧化物、氧、和任意含氧的气体混合物。含铜和锌的组合物尤其优选用于催化将醇选择性氧化为相应的醛。苯酚和1-萘酚的羟基化可以用含锡、铁、铜、钴和钒的催化剂组合物来实现。
在现有技术中,芳烃的酰化通常使用路易斯酸如AlCl3、FeCl3和H2SO4等进行,这产生了大量废物。相反,本发明的组合物,特别是含铝、铁、镓、铟等的实施方案,代替了路易斯酸。酰化剂主要包括酰卤、羧酸和酸酐。芳香化合物主要包括苯、萘、菲和它们的衍生物。酰化可以在约40℃至约300℃的温度、约0.5巴至约20巴的压力下进行,优选地在约60℃至约250℃、和约1巴至15巴的压力下进行。
当作为杂原子掺入本发明的中孔二氧化硅中时,过渡金属如钴、镍、钼、钨或其组合、或贵金属如铂、钯或其组合,提供了特别适用于加氢处理方法的催化剂,这些方法为例如(1)在汽油、喷气式发动机燃料、柴油和润滑油中芳烃的氢化;(2)重馏分如来源于煤(煤馏油)的真空瓦斯油、残油馏分和液体的加氢裂化;(3)烃(包括上述馏分)的CCR降低、脱氮、脱硫和脱金属。脱金属尤其用于除去铁、镍、钒和砷。加氢处理的反应条件典型地包括约40℃至约400℃、优选约60℃至350℃的反应温度、和从常压至约300巴的压力范围。
烃(如正丁烷、正戊烷、1-丁烯和二甲苯)的异构化可以通过使用本发明的催化剂来催化。用于异构化的优选催化剂组合物包含作为杂原子的锆、钨、镓、铁、钛和铝。
饱和烃脱氢成为不饱和烃,这可以使用主要含钒、铁、镓、钴和铬的组合物催化。饱和烃可以是例如丙烷、异丁烷和乙苯。气时空速(GHSV)通常为100至2000hr-1,优选500至1000hr-1。操作压力通常为约7kPa至约600kPa,优选约7kPa至约400kPa。反应温度典型地为约350℃至约650℃,优选约450℃至约600℃。
使用含镍、钨、钴、钼、铝和/或镓的本发明的催化剂组合物,可以有利地进行烃的裂化。此外,本发明的催化剂组合物可以单独使用或与沸石一起使用。烃可以是用于流化床催化裂化和加氢裂化等的进料。该催化剂组合物也可以催化废聚合物的裂化,以回收所需化学品的有用馏分。
该组合物可以用作费-托(Fischer-Tropsch)法的催化剂。该方法包括使含氢和一氧化碳的原料流与催化剂在一个保持在有效的转化-促进条件下的反应区域中接触,以生成含烃的流出气流。气时空速(GHSV)可以为约100体积/小时/体积催化剂(hr-1)至约10,000hr-1,优选约300hr-1至约2,000hr-1。反应温度典型地为约160℃至约300℃,优选约190℃至约260℃。反应压力范围典型地为约5巴至约60巴,优选8巴至约30巴。
该组合物可以用于有效地和选择性地吸附特定化合物。由于它的可调孔和官能化的孔壁,组合物允许各种化合物进入孔并与官能杂原子基团在壁上或壁内相互作用。例如,掺入的杂原子可具有高但不饱和的配位数,这能使杂原子与含氧、含氮和含硫的化合物形成配位键,从而有效地从流中除去这些化合物。它也可以是一种碱-酸相互作用。例如,含铝的组合物能从流中除去有毒化合物如氰尿酸和对氯苯酚。同样地,该组合物可被用作吸附剂和分子筛。
本发明的公开内容提出了一种新类型的含杂原子的中孔或中微孔硅酸盐,其无规连接的三维孔结构具有可调的孔径。它提出了一种新的具有成本效率的方法,以在没有任何表面活性剂参与的情况下合成中孔硅酸盐。它提供了新的各种催化材料。并且它提供了在催化和分离中应用该组合物的方法。
本发明的各种特症特征由如下实施例说明。使用装有石墨单色仪的Philips PW 1840衍射计上的CuKa辐射来记录所得材料的X射线粉末衍射图案。在0.5-40°的2θ范围内以0.02°梯级扫描样品。电子透射显微术(TEM)使用带LaB6灯丝的Philips CM30T电子显微镜实行,电子源在300kV下工作。氮吸附等温线在77k的QuantachromeAutosorb-6B上测定。使用Barrett、Joyner和Halenda(BHJ)法计算中孔度。除非另外说明,所有组成份数都按重量计算。
实施例1
本实施例说明如何将铝掺入到二氧化硅中,在煅烧前无需在高压釜中加热。
首先,在搅拌下将1份异丙醇铝(Al(iso-OC3H6)3)加到26份氢氧化四乙铵(TEAOH,35%)的水溶液中。溶解后,将38份三乙醇铵(TEA)和8份水在搅拌下一起加入到上述溶液。然后,在剧烈搅拌下,加入26份原硅酸四乙酯(TEOS)。得到透明溶液。继续搅拌1小时,然后将合成混合物在室温下过夜老化,并在98℃的空气中干燥24小时。最后,将合成混合物在空气中以升温速率1℃/分钟、在570℃下煅烧10小时。
图1显示了在约1.1°的2θ处具有强烈反射的XRD图案,表明了中孔材料的特征。另外,氧化铝的可分辨峰的缺失表明没有大的氧化铝相的形成。图2是电子透射显微镜术(TEM)的照片,显示了无规相连的中孔结构。元素分析显示它的Si/Al比率为约24.8,这与初始合成混合物的比率25相符。如图3所示,氮吸附显示表面积为983m2/g,总的孔体积为1.27cm3/g,且窄的中孔分布集中在4.2nm。
实施例2
本实施例展示了煅烧前在高压釜中加热下杂原子的掺入。将3.3份异丙醇铝加入到含42份TEOS的瓶中,并搅拌一小时。在搅拌下,将7.6份TEA和25.8份水的混合物加入到TEOS和Al(iso-OC3H6)3的混合物中。搅拌两小时后,将21份TEAOH滴加到上述混合物中,形成稠的凝胶。该凝胶在98℃的烘箱中干燥22小时,然后转移至190℃的高压釜中,保持16小时。最后凝胶在空气中600℃下煅烧10小时。
图4显示了在小角度的2θ处强烈反射的XRD图案,表明了中孔材料的特征。元素分析显示它的Si/Al比率为约24.5,与初始合成混合物的比率25相符。氮吸附显示表面积为799m2/g,总的孔体积为1.24cm3/g,窄的中孔分布集中在4.5nm。
实施例3A
该实施例展示了铝的掺入和组合物的稳定性。将3份异丙醇铝加入到装有38.8份TEOS的瓶中,并搅拌1.5小时。在搅拌下将23份TEA和21份水的混合物加入到上述混合物中。搅拌2小时后,将23份TEAOH滴加入到上述混合物,搅拌0.5小时后变成透明溶液。该溶液在100℃的烘箱中干燥4天,然后转移至190℃的高压釜中保持7.5天。最后在空气中以升温速率1℃/分钟、在600℃下煅烧10小时。
元素分析显示它的Si/Al比率为99.2。图5显示其XRD图案有一个强峰。氮吸附显示窄孔径分布集中在17nm,如图6所示,表面积为约385m2/g,孔体积为约1.32cm3/g。
实施例3B
实施例3A中得到的材料在水中煮沸17小时,但是其XRD图案如图5所示,仍有一个强峰,与原始材料类似。这表明,与其它中孔材料相比,该组合物具有很高的湿热稳定性。
实施例3C
实施例3A中得到的材料在空气中900℃下煅烧,但是其XRD图案(图5)仍显示有一个强峰,表明中孔结构被保留。这个结果表明该组合物具有高达900℃的很高的热稳定性。
实施例4
本实施例使用无机杂原子源将铝掺入二氧化硅中。将7.2份九水合硝酸铝溶于20份水中。然后,加入61.4份TEOS并搅拌0.5小时。将另一种含56.3份四甘醇和24份水的混合物在搅拌下加入到上述混合物中。搅拌1小时后,加入49份氢氧化四乙铵(TEAOH,35wt%)的水溶液,搅拌0.5小时后,最终混合物转变为稠的凝胶。该凝胶在100℃的烘箱中干燥过夜,然后转移至180℃的高压釜中保持3小时。最后,在空气中以升温速率1℃/分钟、在600℃下煅烧10小时。
元素分析显示Si/Al比率为15.3。其XRD图案显示在约1°的2θ处有一个强峰。氮吸附显示窄孔径分布集中在4.5nm,比表面积为约786m2/g,总的孔体积为约1.02cm3/g。
实施例5
本实施例说明将钒掺入到二氧化硅中。将1份乙酰丙酮络钒(IV)加至含41份TEOS的瓶中并搅拌2小时。在搅拌下,将30份TEA和25份水的混合物加入到上述混合物。搅拌2小时后,将20份TEAOH滴加入到上述混合物,搅拌0.5小时后,它转变为硬的凝胶。该凝胶在室温下老化24小时,然后在100℃的烘箱中干燥过夜,然后在空气中700℃下煅烧10小时,最后变成橙色粉末。
元素分析显示Si/V比率为50.5。图7显示其XRD图案有一个强峰对应中结构,而没有来自氧化钒相的任何峰。氮吸附显示窄孔径分布集中在4.1nm,比表面积为约835m2/g,孔体积为约0.91cm3/g。
实施例6
此处展示了钛的掺入。将1份丁醇钛(IV)加入到含31份TEOS的瓶中并搅拌2小时。在搅拌下,将22.5份TEA和17份水的混合物加入到上述混合物。搅拌1小时后,将18.5份TEAOH滴加入到上述混合物,搅拌0.5小时后变成稠的凝胶。该凝胶在室温下老化22小时,然后在98℃的烘箱中干燥过夜,接着在空气中700℃下煅烧10小时,最后变成白色粉末。
元素分析显示Si/Ti比率为49.6。图8显示其XRD图案具有一个强峰对于中结构,而没有氧化钛的可分辨峰。氮吸附等温线如图9所示,显示其孔径分布集中在4.7nm,如图10所示,比表面积为约917m2/g,总的孔体积为约0.84cm3/g。
实施例7-9
此处展示了三种不同杂原子的掺入。将42份原硅酸四乙酯(TEOS)与30份三乙醇胺(TEA)混合1小时得到混合物I。将杂原子源溶于22份水中制得混合物II。1份硝酸镓、0.54份氯化锌和0.9份氯化锡分别用于实施例7、8和9。在搅拌下将混合物II滴加入到混合物I中。在合并的混合物I和II搅拌0.5小时后,边搅拌边滴加24.5份氢氧化四乙铵。在搅拌2小时后,观察到这三种混合物分别成为透明溶液,最后加入0.5g氢氧化铵(27-30wt%)。再搅拌2小时后,混合物被静置老化过夜。该混合物在98℃下干燥24小时,分别变成干凝胶。干凝胶被装入180℃的高压釜中保持2.5小时,最后在空气中600℃下煅烧10小时。
图11分别显示了实施例7、8和9中制备的含镓、锌和锡的硅酸盐的XRD图案。表1显示三种材料的中孔度和化学组成。
                      表1
  实施例7、8和9中分别含镓、锌和锡的硅酸盐的中孔度
实施例    杂原子M    M含量      Dp *   SBET *   V *
                     (wt%)    (nm)   (m2/g)  (cm3/g)
7         Ga          1.3       4      830      0.71
8         Zn          1.9       5      690      0.69
9         Sn          3.3       4.5    780      0.67
*Dp代表孔径,SBET代表比表面积,V代表孔体积
实施例10
本实施例展示了将两类杂原子同时掺入到二氧化硅中。首先,将2.7份异丙醇铝与0.86份乙酰丙酮络钒(IV)和34份原硅酸四乙酯(TEOS)混合得到第一混合物。第二混合物包含34份TEA和21份水。然后,在搅拌下将第二混合物滴加至第一混合物中。搅拌1.5小时后,边搅拌边滴加16.8份氢氧化四乙铵。合成混合物变成稠的凝胶。该凝胶在室温下静置老化过夜,在100℃下干燥42小时,然后在180℃的高压釜中加热3天。最后,在空气中650℃下煅烧10小时。
图12显示了含铝和钒的硅酸盐的XRD图案。氮吸附表明其窄孔径分布在11nm左右(如图13所示),表面积为约433m2/g,总的孔体积为约1.25cm3/g。元素分析显示Si/Al=13.5和Si/V=49.1。
实施例11
本实施例展示了含铁的中孔硅酸盐的制备。将1份硝酸铁(III)溶于5份去离子水中,然后加入到27.4份原硅酸四乙酯(TEOS)中并搅拌1小时。将另一种由19.8份三乙醇胺(TEA)和30.4份去离子水组成的溶液滴加入到第一混合物中。再搅拌1小时后,将16.2份氢氧化四乙铵(TEAOH)滴加入到混合物中。最后的均匀浅黄色溶液在室温下老化24小时,在100℃干燥24小时,最后在650℃下煅烧10小时,得到浅黄色粉末。
图14显示XRD图案在约0.5~2.2°的小角度处有一个强峰,代表了中结构的特征。元素分析显示Si/Fe的原子比为48.8。UV-可见光谱(图15)显示在220nm左右有一个峰,代表四配位铁,并且肩的范围为250~350nm,代表在二氧化硅基体中铁的八面体配位。N2吸附测定表明BET表面积为约630m2/g,平均中孔径为约4.8nm(参照图16),总的孔体积为约1.24cm3/g。
实施例12
制备含铁硅酸盐的方法与实施例11中的方法类似;但是,只使用了0.52份硝酸铁(III)。在煅烧后,元素分析显示该粉末的Si/Fe原子比为98.6。氮吸附显示比表面积为580m2/g,平均孔径为5.96nm,孔体积为1.82cm3/g。
实施例13
本实施例展示了含Cr硅酸盐的制备。将1.2份九水合硝酸铬溶于5份去离子水中,然后加入到26.3份原硅酸四乙酯(TEOS)中并搅拌1小时。将另一种由19份三乙醇胺(TEA)和22.2份去离子水组成的溶液滴加入到上述溶液中。再搅拌1小时后,将26.2份氢氧化四乙铵(TEAOH)滴加入到混合物中。最终的均匀浅绿色溶液在室温下老化24小时,在100℃下干燥24小时,最后在650℃下煅烧10小时,得到微黄的橙色含铬粉末。
图17显示XRD图案在约0.5~2.2°小角度处有一个强峰,代表了中结构的特征。UV-可见光谱(图18)显示在220nm和390nm左右有两个明显的峰,代表了四配位铬,此外在480nm左右的肩代表了二氧化硅基体中多铬酸盐(-Cr-O-Cr-)n的八面体配位。N2吸附测定表明BET表面积为约565m2/g,平均中孔径为1.96nm(参见图19),总的孔体积为约1.54cm3/g。
实施例14
制备中孔的含Cr硅酸盐的方法与实施例13的方法类似;但是,使用了1.31份硝酸铬。在煅烧后,元素分析显示该粉末的Si/Cr原子比为40.3。氮吸附显示比表面积为572m2/g,孔径为2.35nm,孔体积为1.7cm3/g。
实施例15
含钼组合物的制备展示于此。将1.6份四水合七钼酸铵溶液[(NH4)6Mo7O24·4H2O]溶于5份去离子水中,然后加入到27.1份原硅酸四乙酯(TEOS)中,搅拌1小时。将另一种由19.6份三乙醇胺(TEA)和30.4份去离子水组成的溶液滴加入到上述溶液中。再搅拌1小时后,将16.1份氢氧化四乙铵(TEAOH)滴加入到混合物中。最终的均匀浅黄色溶液在室温下老化24小时,在100℃下干燥24小时,最后在650℃下煅烧10小时,得到白色粉末。
图20显示XRD图案在约0.5~2.2°的小角度处有一个强峰,代表了中结构的特征。UV-可见光谱(图21)显示在220nm左右有一个峰,代表了在二氧化硅基体中的四配位钼。N2吸附测定表明BET表面积为约500m2/g,平均中孔径为约8.91nm(参见图22),总的孔体积为约1.31cm3/g。
实施例16
制备中孔含Mo硅酸盐的方法与实施例15中的方法类似;但是,使用了3.9份四水合七钼酸铵溶液[(NH4)6Mo7O24·4H2O]。在煅烧后,元素分析显示该粉末的Si/Mo原子比为39.8。氮吸附显示比表面积为565m2/g,平均孔径为3.93nm,孔体积为0.98cm3/g。
实施例17
此处展示了同时将Ni和Mo掺入到中孔材料中。首先,将7.7份六水合硝酸镍(II)h和32份四水合七钼酸铵在搅拌下溶于54份水中。然后在剧烈搅拌下将67份原硅酸四乙酯(TEOS)加入到上述溶液中。在搅拌1.5小时后,边搅拌边滴加40份氢氧化四乙铵(TEAOH)。合成混合物变成稠的凝胶。该凝胶在室温下静置老化过夜,在100℃下干燥24小时,然后在180℃的高压釜中加热3小时。最后,该合成混合物在空气中600℃下煅烧10小时。
最终粉末的XRD图案显示在1.1°的2θ处左右有一个强峰,代表了中结构的特征。氮吸附显示其窄孔径分布在2.3nm左右,表面积为约633m2/g,总的孔体积为约0.86cm3/g。元素分析显示最终粉末包含6.1wt%的Ni和10.5wt%的Mo。
实施例18
本实施例展示了同时将Ni和W掺入到中孔材料中。首先,将5.8份六水合硝酸镍(II)和35份水合偏钨酸铵在搅拌下溶到42.3份水中。然后在剧烈搅拌下将50.5份原硅酸四乙酯(TEOS)加入到上述溶液中。搅拌1.5小时后,边搅拌边滴加30.0份氢氧化四乙铵。合成混合物变成稠的凝胶。该凝胶在室温下静置老化过夜,在100℃下干燥24小时,然后在180℃的高压釜中加热3小时。最后,该合成混合物在空气中600℃下煅烧10小时。
最终粉末的XRD图案显示在1.0°的2θ处左右有一个强峰,代表了中孔材料的特征。氮吸附显示其窄孔径分布在2.4nm左右,表面积为约649m2/g,总的孔体积为约0.81cm3/g。元素分析显示最终粉末包含6.4wt%的Ni和12.0wt%的W。
实施例19
此处展示了含钯催化剂的制备。将65份实施例1中的材料与35份氧化铝混合,向该混合物中加入水以挤出所得的催化剂。该催化剂在480℃下、在5v/v/min的氮气中煅烧6小时,接着以5v/v/min的空气代替氮气流。通过将温度升至540℃来完成煅烧,在此温度下保持12小时。钯以四氨基钯盐Pd(NH3)4Cl2的水溶液的形式浸渍而掺入。然后使挤出物在120℃下干燥过夜并在空气中300℃下煅烧3小时。最终的催化剂含0.81wt%的钯,表面积为630m2/g,颗粒密度为0.83g/ml,孔体积为1.21cm3/g。
实施例20
萘与1-十六碳烯的烷基化在带有机械搅拌的烧瓶中进行。使用了实施例1、2和3A中的催化剂。将1份催化剂装入烧瓶中,在真空下加热至200℃并保持2小时。催化剂在氮气中被冷却至90-100℃后,在搅拌下将由6.5重量份萘和26份1-十六碳烯组成的混合物注入烧瓶中。温度上升至200-205℃并保持不变。反应混合物用具有WAX52 CB柱的气相色谱分析。使用不同催化剂的反应结果总结于表2中。
                           表2
              萘和1-十六碳烯在不同催化剂上的烷基化
催化剂     组成            反应时间(hr)   萘的转化率(%)  选择性*(%)
实施例1    Si/Al=24.8          4             25.6           57.6
实施例2    Si/Al=24.5          4.5           27.3           56.7
实施例3A   Si/Al=99.2          4             19.6           65.3
*选择性是指对于单烷基化萘的选择性。
实施例21
苯与氯苯的弗瑞德-克来福特烷基化在带有机械搅拌的烧瓶中进行。使用了实施例7、9、11和12中的催化剂。将1份催化剂装入烧瓶中,在真空下加热至180℃并保持4小时。催化剂在氮气中被冷却至80℃后,将由102份苯和8.2份苄基氯组成的混合物装入烧瓶中。温度稳定地保持在60℃或80℃。反应混合物用具有WAX52 CB柱的气相色谱分析。使用不同催化剂的反应结果总结于表3中。
                                    表3
                  在不同催化剂上通过苯的苄基化制备二苯甲烷
  催化剂     组成   反应时间(min)     温度(℃)     转化率(%)   选择性(%)
  实施例12实施例11实施例11实施例11实施例7实施例9   Si/Fe=98.6Si/Fe=50.1Si/Fe=50.1Si/Fe=50.1Si/Ga=71Si/Sn=46     2406015060240240     606060806060     86511009764.915.8     100100100100100100
实施例22
将乙基苯选择性氧化为苯乙酮的反应在带有搅拌的烧瓶内、在氮气中进行。使用了实施例13、14和16中的催化剂。将1份催化剂在真空、180℃下活化4小时,然后冷却至80℃。然后在搅拌下将由100份丙酮、82份乙基苯和9.5份叔丁基氢过氧化物(TBHP)的混合物装入烧瓶中。反应混合物用具有WAX52 CB柱的气相色谱分析。在不同催化剂上的反应结果总结于表4中。
                                            表4
                              在不同催化剂上乙基苯转化为苯乙酮
  催化剂   组成   时间   气流   温度   转化率   选择性
  实施例13实施例13实施例13实施例14实施例16   Si/Cr=130Si/Cr=130Si/Cr=130Si/Cr=40.3Si/Mo=39.8   480480480480360   干N2空气空气空气空气   8080608080   68.573.654.767.324.2   94.595.399.392.958.9
实施例23
1-癸烯的低聚反应在带有搅拌的间歇式反应器中进行。使用了实施例2中的催化剂。在反应器中,通过在氮气中、200℃下加热2小时来活化1份催化剂。在氮气流下通过注射器加入25份1-癸烯。反应在150℃下进行24小时。反应器冷却之后,用具有WAX52 CB柱的气相色谱(GC)分析产品。每次试验的癸烯的摩尔百分比转化率和二聚体的选择性列于表5。
                                表5
                    不同催化剂上1-癸烯的低聚反应
    催化剂     组成     时间     温度     转化率
   实施例2实施例2   Si/Al=24.5Si/Al=24.5     424     150150     12.625.8
实施例24
将2-甲氧基萘酰化为2-乙酰基-6-甲氧基萘的反应在带有搅拌的间歇式反应器中进行。装有实施例2中制备的16份催化剂的反应器在真空中、240℃下加热2小时,然后以干氮气填充。在反应器冷却至120℃后,将250份十氢化萘(作为溶剂)、31份2-甲氧基萘、42份乙酸酐和10份正十四烷(作为内标物)注入到反应器中。反应6小时后,反应混合物用具有WAX52 CB柱的GC分析,发现2-甲氧基萘的转化率达到36.5%,2-乙酰基-6-甲氧基萘的选择性为100%。
实施例25
将环己醇氧化为环己酮的反应在带有搅拌的间歇式反应器中进行。装有1份催化剂的反应器在真空中、180℃下加热4小时,然后以干氮气填充。在反应器冷却至55℃后,将100份丙酮、10份叔丁基氢过氧化物(TBHP)和7.5份环己醇加入到烧瓶中;反应温度保持在55℃。反应5小时后,反应混合物用具有WAX52 CB柱的GC分析;不同催化剂的性能总结于表6中。
                           表6
             在不同催化剂上将环己醇氧化为环己酮
催化剂    组成           温度    时间    转化率    选择性
                         (℃)    (hr)    (%)      (%)
实施例15  Si/Mo=97.9     55      5      79.4      95
实施例16  Si/Mo=39.8     55      5      84.6      93
实施例26
评估实施例17的材料在68巴H2和2.0LHSV下、在改质(upgrading)Paraho页岩油方面的性能。反应温度在260℃至400℃之间变化。页岩油性质如表7所示。改质后的产品性质总结于表8中。
                         表7
                 Paraho页岩油样品的性质
        比重,°API               21.7
        氢,wt%                  11.49
        氮,wt%                  2.2
        硫,wt%                  0.69
        砷,ppmw                  37
        铁,ppmw                  27
        镍,ppmw                  2.4
        溴值                      45
        平均分子量                307
        每摩尔的C=C键            0.85
        模拟蒸馏                 D2887(℃)
        5%                       239
        30%                      373
        50%                      432
        70%                      491
        95%                      -
                             表8
                页岩油的保护塔处理-产品性质
温度    溴值        铁      镍        砷         硫      氮
(℃)              (ppmw)  (ppmw)    (wt.%)    (ppmw)  (ppmw)
260     0.7         3.5    1.95       5.3       0.63    1.98
290     <0.1       2.6    1.85       4.2       0.57    1.89
315     <0.1       2.0    1.61       3.1       0.48    1.78
370     <0.1       0.2    1.3        <0.1     0.25    1.40
400     <0.1       <0.1  0.1        <0.1     <0.1   1.18
该评估显示实施例17的催化材料对烯烃的饱和、铁和镍的去除、脱氮、和脱硫的活性很强。对除砷的活性也很强。
实施例27
润滑油的选择性加氢裂化在上述实施例18的含Ni和W的中孔材料上进行。进料由重质中性馏出液组成,其具有如下表9中所给性质、以及溶剂脱蜡到-18℃倾点(ASTM D-97或等价物如Autopour)后油的性质。溶剂脱蜡后,氮含量为1500ppm;馏出液的粘度指数(“VI”)为53。在润滑油的加氢裂化中,目的是在使润滑油的收率最大的同时,要使未转化的材料的VI值提高至95-100的范围。
                             表9
                       重质中性馏出液的性质
               氢,wt%                   12.83
               氮,ppm                    1500
               碱性氮,ppm                466
               硫,wt%                   0.72
               API比重                    22.0
               KV@100℃,cSt              18.52
               组合物,wt%
               石蜡                       18.3
               环烷                       32.2
               芳烃                       49.5
               模拟蒸馏,wt%           
               IBP                        405
               5%                        452
               10%                       471
               95%                       586
               溶剂脱蜡油的性质
               KV@100℃,cSt              20.1
               粘度指数(VI)               53
               倾点,℃                   0
               润滑油收率,wt%           87
馏出液在385至401℃的温度、138巴的氢气压力、7500 SCF/B进料的氢气循环和0.55至0.61的LHSV下被处理。这些实验性操作的数据总结于下表10中。
                           表10
温度,℃                125       739         754
压力,巴                138       138         138
LHSV                    0.61      0.54        0.55
343℃+转化率,wt%      22.9      37.6        47.3
润滑油的性质
KV@100℃,cSt           11.05     7.89        5.45
SUS@100°F              695       398         201
VI                      86.2      110.2       126.3
倾点,℃                13        28          29
润滑油收率,wt%        71.5      60.6        51.3
用于改质重质中性馏出液的催化材料选自粗馏物VI为53到105的产物,其(未脱蜡)润滑油收率为65wt%。
实施例28
本实施例展示了使用本发明组合物制备FCC催化剂,并将其与用MCM-41制备的催化剂比较了裂化结果。催化剂的制备如下:
制备在二氧化硅-氧化铝-粘土基体中的约35wt%的实施例4的组合物。130份实施例4的组合物在230ml水中被球磨14小时。产品用52.5ml水从磨机中漂洗出来。制得含827g水、33.5份高岭粘土(Georgia Kaolin Kaopaque)和175.4份含水二氧化硅(PhiladelphiaQuartz N-brand)的浆。搅拌该浆,并在30分钟内将16.4份H2SO4(96.7%)加入到浆中。将22.9份Al2(SO4)3·16H2O溶于92.2份水中,并被滴加。将396份球磨过的MCM-41浆(含11.36%固体)加入到二氧化硅-氧化铝-粘土的浆中,混合物在800rpm下剧烈搅拌30分钟,然后过滤。
固体在水中被再次打浆并喷雾干燥。喷雾干燥的产品用水打浆,并除去浆上漂浮的细屑。剩余固体用1N的NH4NO3(5cc NH4NO3/g固体)交换。用水洗涤固体,过滤,并在120℃的烘箱中干燥。
该材料的50g样品在氮气中540℃下煅烧1小时,然后在空气中煅烧6小时。烘箱干燥的固体的剩余物在650℃下在45%的水中蒸4小时。在将蒸汽导入反应器之前,样品在N2中加热到650℃。随着N2流速的升高,空气的流速在半小时内渐渐升高。半小时后,蒸汽被导入,并保持4小时。
作为比较,含35wt%MCM-41的FCC催化剂以上述同样的方法制备。初始MCM-41的表面积为980m2/g,孔径分布集中在2.5nm左右,孔体积为0.72cm3/g。初始MCM-41包含5.4wt%Al2O3,与实施例4的材料中的5.3wt%类似。被蒸过的催化剂的性质列于表11中。
             表11含本发明组合物的FCC催化剂和
             蒸过后含MCM-41的FCC催化剂的比较
催化剂               本发明的组合物            MCM-41
SiO2,wt%          72.6                      71.8
Al2O3,wt%        13.8                      13.7
表面积,m2/g        462                       307
平均粒子尺寸,μm    86                        92
填充密度,g/cc       0.65                      0.43
催化裂化试验
评估表11中的两种催化剂,它们在516℃下的固定流化床中和以生产中的一分钟的方式裂化Joliet Sour Heavy Gas Oil(“JSHGO”)。所用的JSHGO具有表12所示的性质。催化剂和油的比率在2.0至6.0之间变化,以检查转化率的广阔范围。收率总结于表13中,以恒定的焦炭量(4.0wt%)为基础。
                             表12
                         JSHGO样品的性质
               密度,g/cc                     0.8918
               苯胺点,℃                     80.8
               氢,wt%                       12.13
               硫,wt%                       2.4
               氮,wt%                       0.41
               碱性氮,ppm                    382
               Conradson Carbon,wt%         0.54
               KV 100℃,cSt                  8.50
               KV 40℃,cSt                   N/A
               溴值                           8.7
               R.I.21℃                       1.496
               倾点,℃                       90
               Ni,ppm                        0.34
               V,ppm                         0.39
               Na,ppm                        1.3
               Fe.ppm                         0.3
蒸馏分布
            蒸馏的体积百分比%               T℃
                 5                            314
                 10                           346
                 20                           381
                 30                           407
                 40                           428
                 50                           448
                 60                           468
                 70                           489
                 80                           514
                 90                           547
                 100                          601
           未回收的百分比%                   0
           表13含本发明组合物的催化剂和
        含MCM-41的催化剂之间的催化裂化的比较
  催化剂   本发明   MCM   DELTA
  焦炭,wt%转化率,wt%C5+汽油,wt%RONLFO,wt%HFO,wt%C4’s,vol%轻煤气,wt%H2,wt%C5’s,vol%   4.059.939.79331.510.214.76.90.035.5   4.056.837.29232.211.013.37.30.044.7 3.12.51-0.7-0.81.4-0.4-0.010.8
实施例29
中压加氢裂化的底部馏分被催化脱蜡和加氢处理。进料以阶式操作的方式在固定床反应器中处理。将80g的HZSM-5脱蜡催化剂置于第一反应器中,然后将240g实施例19中所述的本发明催化剂置于第二反应器中。进料在175巴下通过这两种催化剂,以1.0LHSV的速度通过脱蜡催化剂,以0.33LHSV的速度通过加氢处理催化剂。第一反应器中的温度保持在307-321℃,得到目标倾点-6.6℃。底部馏分的性质描述于下表14中。
                        表14
在45wt.%337℃下的最重的10%底部沉积物的性质+转化率
    氮,ppm               9摩尔重量              558倾点,℃              >120KV@100℃.,cSt        11.3
组成,wt%
石蜡                  42.1
单环烷                19.9
多环烷                21.2
芳烃                  16.8
               模拟蒸馏                °F
               IBP/5                  209/854
               10/50                  902/982
产品的UV吸收用于确定润滑油基础原料中的芳烃。在226nm处的吸收是总芳烃的量度,而在400nm(×103)处的吸收是多环芳烃的量度。为了比较在Pd/MCM-41上的效果,也测试了根据实施例19所述的方法制备的催化剂。操作结果总结于下表15中。
                     表15
           在274℃下润滑油的加氢处理
    操作金属载体总芳烃,226nm多环芳烃,400nm(×103)    1PdMCM-410.2101.30     2Pd实施例10.1200.78
比较Pd/MCM-41催化剂和在本发明的组合物上包含Pd的催化剂的性能,显然本发明的组合物对于使芳烃饱和更加有效。
实施例30
本实施例展示了使用本发明的组合物作为催化剂,用于煤液的加氢处理。尽管此处例证的具体煤衍生的液体为氢-煤法(使用IllinoisNo.6煤作为原始材料)的液化产品,但是其它煤液(如煤焦油提取物、溶剂精制煤等)可以类似地被改质。以与实施例3A所述相同的方法制备该催化剂样品。但是,该方法包括在190℃的高压釜中热液处理相对短的4天时间。氮吸附显示中孔径集中在11nm,表面积为约630m2/g。元素分析显示Si/Al原子比为约99.6。
该材料还用七钼酸铵溶液浸渍。具体地,将含6.38份七钼酸铵的45.12份水溶液加入到40份上述材料中。所得的湿材料在120℃下干燥,并在足以分解七钼酸铵并产生MoO3的条件下、在空气中538℃下煅烧,从而制得钼浸渍的材料。
然后用硝酸镍溶液浸渍该钼浸渍的材料。具体地,将含9.3份Ni(NO3)2·6H2O的48.2份水溶液加入到钼浸渍的材料中。所得的湿材料在121℃下干燥,并在空气中538℃下煅烧以分解硝酸镍并产生NiO,从而制得镍和钼浸渍的材料。元素分析显示最终材料包含15.0wt%的MoO3和6.4wt%的NiO。
作为比较,使用了MCM-41材料,它的表面积为992m2/g,孔径分布集中在3.5nm,孔体积为0.72cm3/g。它用与上述方法相同的方法浸渍,最终包含15.2wt%的MoO3和6.7wt%的NiO。
使用Illinois氢-煤作为进料来评估它们的加氢处理的活性。表16显示了进料的性质。
                            表16
                      (Illinois氢-煤的性质)
                 比重,°API                  25.8
                 苯胺点,℃                   <-1.1
                 分子量                       147
                 粘度,38℃的cSt              1.645
                 CCR,Wt.%                   0.29
                 溴值                         42
                 碳,Wt.%                    86.96
                 氢,Wt.%                    11.39
                 硫,Wt.%                    0.32
                 氧,Wt.%                    1.80
                 总的氮,Wt.%                0.46
                 碱性氮,Wt.%                0.30
                 铁,ppm                      22
                 氯,ppm                      32
              TBP蒸馏,℃
              St/5                   13/81
              10/30                  101/167
              50                     207
              70/90                  242/309
              95/99                  346/407
这两种催化剂在500cm3/min的含10%H2S的H2流中、在230℃下和680kPa总压力下被预硫化。加氢处理在350℃的温度、6890kPa的压力、500cm3/min的氢气流速和0.33的液体时空速下进行。表17显示了在脱氮、康拉逊残炭值(CCR)降低和脱硫等方面的活性比较。
                        表17
                  加氢处理的活性比较
     催化剂         本发明     MCM-41催化剂
     脱氮(%)         73            48
     CCR降低(%)      98            63
     脱硫(%)         95            58
本发明的催化剂显示了高得多的活性,这部分归因于它独特的孔结构。它具有相对大的三维相连的孔,能够容纳和运输大分子如存在于煤液中的大分子。
实施例31
本实施例展示了费-托催化剂的制备和它的催化性能。将二十(20)份在实施例1中制备的含Al材料在200℃的N2流中干燥半小时。然后将其与2份Co2(CO)8在手套箱中充分混合。该固体混合物被置于密封管中的管式炉舟皿中,并从手套箱中取出。然后在100℃的流动氦气中加热15分钟,经10分钟升至200℃下,然后在200℃的氦气中加热半小时。最终的催化剂包含16wt.%的Co。
上述催化剂在测试前用氢气处理。它被置于在小室内的石英坩埚中,并在室温下用8.5×10-6Nm3/s的氮气净化15分钟。然后在1.8×10-6Nm3/s的流动氢气中以1℃/min的速度加热至100℃,并在100℃下保持1小时。然后以1℃/min的速度加热至400℃,并在400℃下、在1.8×10-6Nm3/s的流动氢气中保持4小时。该催化剂在氢气中冷却,在使用前用氮气净化。
包含该催化剂和正辛烷的压力容器在225℃下、压力为69巴的H2∶CO(2∶1)中加热,并在该温度和压力下保持1小时。反应容器在冰中冷却、放空,加入内标物二正丁基醚。相对于内标物,用GC分析C11-C40烃。
根据每小时每公斤催化剂的C11-C40烃的综合产率,计算出C11 +的生产率(gC11 +/小时/kg催化剂)为234。以各个碳数的重量分数的对数ln(Wn/n)作为纵坐标,以碳原子数(Wn/n)为横坐标作图。从斜率可知,α的值为0.87。
尽管上述描述包含了许多具体实施例,这些具体实施例不应该解释为对本发明范围的限制,而只作为其优选实施方案的例证。本领域的技术人员会预料到在本发明的范围和精神内的许多其它的可能性,如本文附加的权利要求书所指出的。

Claims (36)

1.一种处理有机化合物的方法,该方法包括:
a)提供一种组合物,该组合物包括基本上中孔结构的二氧化硅,其包含至少97%体积的孔,孔径范围为约15至约300且微孔体积为至少约0.01cc/g,其中该中孔结构在其中包括至少约0.02wt%的至少一种催化活性和/或化学活性的杂原子,该杂原子选自Al、Ti、V、Cr、Zn、Fe、Sn、Mo、Ga、Ni、Co、In、Zr、Mn、Cu、Mg、Pd、Ru、Pt、W及其组合,所述催化剂的X射线衍射图案在2θ为0.3°至约3.5°处有一个峰;
b)在反应条件下使含有机化合物的进料与所述催化剂接触,其中处理方法选自烷基化、酰化、低聚反应、选择性氧化、加氢处理、异构化、脱金属、催化脱蜡、羟基化、氢化、氨解氧化、异构化、脱氢、裂化和吸附。
2.如权利要求1所述的方法,其中处理方法为烷基化,且其中含有机化合物的进料包括芳香化合物或烷烃和烷化剂。
3.如权利要求2所述的方法,其中芳香化合物选自苯、萘、菲、甲苯、二甲苯、异丙基萘、二苯醚和2,4-二叔丁基苯酚。
4.如权利要求3所述的方法,其中烷化剂为烯烃或醇。
5.如权利要求4所述的方法,其中至少一种杂原子为Al和/或Ga。
6.如权利要求5所述的方法,其中芳香化合物为萘或苯,且烯烃为1-十六碳烯或乙烯。
7.如权利要求3所述的方法,其中烷化剂为有机卤化物,且其中至少一种杂原子选自Sn、Ga、Fe及其组合。
8.如权利要求7所述的方法,其中芳香化合物为苯,且有机卤化物为氯苯。
9.如权利要求1所述的方法,其中处理方法为选择性氧化,进料包括氧化剂,且所述至少一种杂原子选自Cu、Zn、Fe、Ti、V、Sn、Mn、Cr、Mo及其组合。
10.如权利要求9所述的方法,其中至少一种杂原子包括至少一种选自Ti、Cr和Mo中的原子,且进料包括乙基苯,且其中选择性氧化处理方法的产物包括苯乙酮。
11.如权利要求9所述的方法,其中进料包括醇,且所述至少一种杂原子包括Cu和/或Zn。
12.如权利要求9所述的方法,其中有机进料包括环己醇,且选择性氧化处理方法的产物包括环己酮。
13.如权利要求1所述的方法,其中处理方法为低聚反应,进料包括至少一种烯烃,且所述至少一种杂原子选自Al、Cr、Ga、Fe及其组合。
14.如权利要求13所述的方法,其中有机进料包括1-癸烯,且所述至少一种杂原子包括Al。
15.如权利要求1所述的方法,其中处理方法为酰化,进料包含至少一种芳香化合物和至少一种酰化剂,且所述至少一种杂原子选自Al、Fe、Ga、In及其组合。
16.如权利要求15所述的方法,其中进料包括2-甲氧基萘和乙酸酐。
17.如权利要求1所述的方法,其中处理方法包括加氢处理,且所述至少一种杂原子选自Ni、Mo、Co、W、Pt、Pd及其组合。
18.如权利要求17所述的方法,其中有机进料包括页岩油、或衍生煤液、或残余石油馏分,且加氢处理包括脱氮、脱硫、CCR降低和脱金属中的一种或几种。
19.如权利要求18所述的方法,其中脱金属包括除去铁、镍、钒和砷。
20.如权利要求19所述的方法,其中进料为石油残渣,且加氢处理包括脱氮、脱硫、脱金属和CCR降低中的一种或几种。
21.如权利要求1所述的方法,其中处理方法包括裂化。
22.如权利要求21所述的方法,其中裂化为加氢裂化,且所述至少一种杂原子包括一种或多种选自Ni、W、Mo、Co、Al和Ga中的金属。
23.如权利要求20所述的方法,其中裂化为催化裂化,且所述至少一种杂原子包括Al。
24.如权利要求1所述的方法,其中处理方法为催化脱蜡,且所述至少一种杂原子包括至少一种选自Al、Pt和Pd中的原子。
25.如权利要求1所述的方法,其中处理方法为羟基化,且所述至少一种杂原子选自Ti、Fe、Cu、Co、V、Cr及其组合。
26.如权利要求25所述的方法,其中进料包含苯酚和/或萘酚。
27.如权利要求1所述的方法,其中处理方法为异构化,且所述至少一种杂原子选自Pd、Pt、Ni、Zr、W、Ga、Fe、Ti、Al及其组合。
28.如权利要求27所述的方法,其中进料包括至少一种选自正丁烷、正戊烷、1-丁烯、二甲苯和平均碳原子数大于20的含蜡石油流中的烃。
29.如权利要求1所述的方法,其中处理方法为脱氢,且所述至少一种杂原子选自Zn、W、Ga、Fe、Ti、Al、Sn及其组合。
30.如权利要求29所述的方法,其中进料包括一种或多种饱和烃。
31.如权利要求30所述的方法,其中饱和烃选自正丁烷、正戊烷、1-丁烯和二甲苯。
32.如权利要求1所述的方法,其中处理方法为费-托法,且所述至少一种杂原子选自Fe、Co、Ni、Ru及其组合。
33.如权利要求1所述的方法,其中催化剂和含氢气和一氧化碳的进料在如下条件下接触:压力为约5巴至约60巴,优选8巴至约30巴;GHSV为约100hr-1至约10,000hr-1,优选约300hr-1至约2,000hr-1;温度为约160℃至约300℃,优选约190℃至约260℃。
34.如权利要求1所述的方法,其中组合物还包括沸石。
35.一种催化材料,包括基本上中孔结构的二氧化硅,其包含至少97%体积的孔,孔径范围为约15至约300且微孔体积为至少约0.01cc/g,表面积为300至约1100m2/g,且其中中孔结构在其中包括至少约0.02wt%的至少一种催化活性和/或化学活性的杂原子,该杂原子选自Al、Ti、V、Cr、Zn、Fe、Sn、Mo、Ga、Ni、Co、In、Zr、Mn、Cu、Mg、Pd、Ru、Pt、W及其组合,所述催化剂的X射线衍射图案在2θ为0.3°至约3.5°处有一个峰。
36.如权利要求33所述的催化材料,还包括粘合剂,其选自二氧化硅、氧化铝、粘土和它们的组合。
CNB2003801052323A 2002-12-06 2003-12-03 含活性金属的中孔材料 Expired - Fee Related CN100441296C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/313,720 US6930219B2 (en) 1999-09-07 2002-12-06 Mesoporous material with active metals
US10/313,720 2002-12-06

Publications (2)

Publication Number Publication Date
CN1720098A true CN1720098A (zh) 2006-01-11
CN100441296C CN100441296C (zh) 2008-12-10

Family

ID=32505840

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801052323A Expired - Fee Related CN100441296C (zh) 2002-12-06 2003-12-03 含活性金属的中孔材料

Country Status (14)

Country Link
US (2) US6930219B2 (zh)
EP (1) EP1569750A1 (zh)
JP (1) JP2006515584A (zh)
KR (1) KR20050084122A (zh)
CN (1) CN100441296C (zh)
AU (1) AU2003298790B2 (zh)
BR (1) BR0316981A (zh)
CA (1) CA2508443C (zh)
IN (1) IN202747B (zh)
MX (1) MX259239B (zh)
RU (1) RU2334554C2 (zh)
TW (1) TWI308506B (zh)
WO (1) WO2004052537A1 (zh)
ZA (1) ZA200504555B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452895A (zh) * 2010-10-29 2012-05-16 中国石油化工股份有限公司 一种含锡钛硅分子筛催化环烷烃的方法
CN102476975A (zh) * 2010-11-25 2012-05-30 中国石油化工股份有限公司 一种镁和铝改性的钛硅分子筛催化氧化环酮的方法
CN102701297A (zh) * 2012-05-29 2012-10-03 华南师范大学 一种介孔二氧化硅微球负载纳米零价铁颗粒(SiO2@FeOOH@Fe)及其制备方法与应用
CN102921409A (zh) * 2012-10-26 2013-02-13 中国海洋石油总公司 一种加氢生产1,2环己烷二羧酸酯的催化剂的制法
CN104447209A (zh) * 2014-11-19 2015-03-25 浙江大学 一种贱金属催化剂催化制备环己醇的方法
CN104487428A (zh) * 2012-07-26 2015-04-01 科学设计公司 环氧化方法
CN104487428B (zh) * 2012-07-26 2016-11-30 科学设计公司 环氧化方法
CN109384656A (zh) * 2017-08-09 2019-02-26 中国石油化工股份有限公司 制备环己酮的方法
CN110678263A (zh) * 2017-05-31 2020-01-10 古河电气工业株式会社 加氢脱硫用催化剂结构体、具备该催化剂结构体的加氢脱硫装置、以及加氢脱硫用催化剂结构体的制造方法
CN114073930A (zh) * 2020-08-19 2022-02-22 同济大学 一种沸石/介孔二氧化硅复合微球材料及制备方法
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608747B2 (en) * 1999-09-07 2009-10-27 Lummus Technology Inc. Aromatics hydrogenolysis using novel mesoporous catalyst system
AU2003244381A1 (en) * 2002-02-08 2003-09-02 Sumitomo Chemical Company, Limited Metallized mesoporous silicate and method of oxidation with the same
US7081433B2 (en) * 2003-03-12 2006-07-25 The United States Of America As Represented By The Secretary Of The Navy Catalytic three dimensional aerogels having mesoporous nanoarchitecture
US7985400B2 (en) 2004-01-26 2011-07-26 Lummus Technology Inc. Method for making mesoporous or combined mesoporous and microporous inorganic oxides
JP2005218958A (ja) * 2004-02-05 2005-08-18 Tottori Univ 芳香族化合物の水素化反応触媒および芳香族化合物の水素化方法
US7091365B2 (en) * 2004-03-08 2006-08-15 Abb Lummus Global Inc. Process for olefin epoxidation and co-production of nylon precursor
US7915475B2 (en) * 2004-07-02 2011-03-29 Christopher Newport University Metal remediation using a mesoporous nanocomposite
US20060009666A1 (en) * 2004-07-08 2006-01-12 Abb Lummus Global, Inc. Hydrogenation of aromatics and olefins using a mesoporous catalyst
US7285512B2 (en) 2004-08-31 2007-10-23 Exxonmobile Research And Engineering Company Selective hydrodesulfurization catalyst
WO2006026068A1 (en) * 2004-08-31 2006-03-09 Exxonmobil Research And Engineering Company Selective hydrodesulfurization catalyst and process
US7455762B2 (en) 2004-08-31 2008-11-25 Exxonmobil Research And Engineering Company Selective hydrodesulfurization process
SG155886A1 (en) * 2004-09-07 2009-10-29 Abb Lummus Global Inc Hydroprocessing catalyst with zeolite and high mesoporosity
US20060073961A1 (en) * 2004-09-08 2006-04-06 Mccarthy Stephen J Noble metal-containing catalyst having a specific average pore diameter
US8545694B2 (en) * 2004-09-08 2013-10-01 Exxonmobil Research And Engineering Company Aromatics saturation process for lube oil boiling range feedstreams
ES2249999B1 (es) * 2004-09-22 2007-03-01 Universitat De Valencia Procedimiento de preparacion de oxidos de silicio ordenados con sistema de poros bimodal.
CN1312037C (zh) * 2004-10-14 2007-04-25 中国科学院大连化学物理研究所 一种中孔mzpa-8材料及其制备方法
RU2416462C2 (ru) * 2004-12-29 2011-04-20 Сауди Арабиан Ойл Компани Катализаторы гидрокрекинга для вакуумной газойлевой и деметаллизированной смеси
SG158840A1 (en) * 2005-01-14 2010-02-26 Exxonmobil Chem Patents Inc Ultra pure fluids
JP4600671B2 (ja) * 2005-08-29 2010-12-15 Jx日鉱日石エネルギー株式会社 脱ロウ触媒及びその製造方法、並びに脱ロウ方法
JP4749093B2 (ja) * 2005-09-06 2011-08-17 旭化成株式会社 NOx浄化用触媒の担体
US7678955B2 (en) 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
KR100727288B1 (ko) * 2005-10-14 2007-06-13 한국과학기술원 메조다공성 골격을 갖는 미세다공성 결정성 분자체의제조방법
CN1958730B (zh) * 2005-10-31 2010-05-12 中国石油化工股份有限公司 一种降低汽油硫含量的方法
US7811539B2 (en) * 2005-11-03 2010-10-12 Seagate Technology Llc Device and method for filtering contaminants
WO2007075680A2 (en) * 2005-12-19 2007-07-05 University Of Vermont And State Agricultural College System and method for delivering a desired material to a cell
BRPI0706688A2 (pt) * 2006-01-21 2011-04-05 Tokyo Inst Tech catalisador e método para produzir olefinas usando o catalisador
EP1882676A3 (en) 2006-07-12 2009-07-01 Haldor Topsoe A/S Fabrication of hierarchical zeolite
KR100787117B1 (ko) * 2006-08-18 2007-12-21 요업기술원 니켈 담지 촉매 및 이를 이용한 수소 제조방법
CN100560492C (zh) * 2006-11-09 2009-11-18 中国科学院大连化学物理研究所 一种双功能化中孔氧化硅材料及制备方法与应用
FR2909012B1 (fr) * 2006-11-23 2009-05-08 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.
US7919421B2 (en) * 2006-12-21 2011-04-05 Exxonmobil Chemical Patents Inc. Catalyst composition, the method of manufacturing and the process of use thereof in aromatics alkylation
US7740821B2 (en) * 2007-05-04 2010-06-22 The University Of Massachusetts Highly condensed mesoporous silicate compositions and methods
US8158545B2 (en) * 2007-06-18 2012-04-17 Battelle Memorial Institute Methods, systems, and devices for deep desulfurization of fuel gases
GB2450711A (en) * 2007-07-03 2009-01-07 Univ Southampton An aluminophosphate based redox catalyst
KR100932700B1 (ko) * 2007-10-08 2009-12-21 한국세라믹기술원 일산화탄소 산화용 촉매 및 이의 제조방법
US20090155142A1 (en) * 2007-12-12 2009-06-18 Bauer John E Molecular sieve and catalyst incorporating the sieve
KR100915025B1 (ko) * 2007-12-27 2009-09-02 한국화학연구원 선택산화탈황용 촉매와 이의 제조방법
KR100985053B1 (ko) * 2008-04-28 2010-10-05 한국과학기술원 Dme의 수증기 개질 반응용 메조 기공의 고체산 촉매와구리계 촉매의 혼성촉매 제조 방법
FR2931818B1 (fr) * 2008-05-28 2012-11-30 Inst Francais Du Petrole Procede d'oligomerisation des olefines legeres utilisant un catalyseur a base d'un materiau amorphe a porosite hierarchisee et organisee
FR2935983B1 (fr) * 2008-09-15 2010-09-17 Inst Francais Du Petrole Procede de preparation d'esters alcooliques a partir de triglycerides et d'alcools au moyen de catalyseur heterogene a base d'un solide silicique mesostructure contenant du zinc
KR101489514B1 (ko) * 2009-01-15 2015-02-06 에스케이이노베이션 주식회사 실리카에 담지된 백금-몰리브덴 복합 산화물 촉매를 이용한2-부텐으로부터 1-부텐의 선택적 제조방법
US8314280B2 (en) 2009-03-20 2012-11-20 Lummus Technology Inc. Process for the production of olefins
US20100310441A1 (en) * 2009-06-05 2010-12-09 Basf Corporation Catalytic Article for Removal of Volatile Organic Compounds in Low Temperature Applications
EP2440328B1 (en) 2009-06-12 2016-08-17 Albemarle Europe Sprl. Sapo molecular sieve catalysts and their preparation and uses
JP5788905B2 (ja) * 2010-01-15 2015-10-07 カリフォルニア インスティチュート オブ テクノロジー 糖の異性化
US8729256B2 (en) * 2010-01-15 2014-05-20 California Institute Of Technology Isomerization of sugars
GB201000993D0 (en) * 2010-01-22 2010-03-10 Johnson Matthey Plc Catalyst support
JP5845091B2 (ja) * 2010-01-28 2016-01-20 株式会社豊田中央研究所 捕捉対象物質捕捉材、捕捉対象物質捕捉用フィルタ、液状有機化合物収容容器およびエンジンオイル
JP4586112B1 (ja) * 2010-06-14 2010-11-24 株式会社東産商 フィッシャー・トロプシュ合成用触媒およびその製造方法ならびに炭化水素の製造方法
US20120048777A1 (en) * 2010-08-31 2012-03-01 General Electric Company Method of manufacturing a catalyst and method for preparing fuel from renewable sources using the catalyst
CN101973554B (zh) * 2010-09-16 2012-10-31 昆明理工大学 一种制备介孔二氧化硅材料的方法
US8609568B2 (en) 2010-10-04 2013-12-17 King Fahd University Of Petroleum And Minerals Catalyst for oxidative dehydrogenation of propane to propylene
WO2012085289A1 (en) * 2010-12-23 2012-06-28 Total Raffinage Marketing Method of preparing a hydroconversion catalyst based on silica or silica-alumina having an interconnected mesoporous texture
DE102011017587A1 (de) * 2011-04-27 2012-10-31 Evonik Degussa Gmbh Siliciumdioxidpulver mit großer Porenlänge
BRPI1102638B1 (pt) * 2011-06-16 2020-10-20 Universidade Federal Do Rio Grande Do Sul zeólita e materiais mesoporosos organizados como carga para a formulação de compostos de borracha, borracha termoplástica, plástico e fabricação de produtos
CN102491348A (zh) * 2011-12-07 2012-06-13 江山市华顺有机硅有限公司 一种利用废硅橡胶裂解残余物制备白炭黑的方法
MX352582B (es) 2012-11-06 2017-11-07 Mexicano Inst Petrol Composito mesoporoso de mallas moleculares para la hidrodesintegracion de crudos pesados y residuos.
WO2014121513A1 (en) * 2013-02-08 2014-08-14 Rhodia Operations Oxydation of alcohol compounds via mesostructured vpo catalysts
RU2525178C1 (ru) * 2013-02-28 2014-08-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Адсорбент для осушки газов
CN103193236B (zh) * 2013-03-05 2014-11-12 浙江工业大学 一种利用硅藻土制备二氧化硅的方法
WO2014168697A1 (en) 2013-04-11 2014-10-16 California Institute Of Technology Conversion of glucose to sorbose
CN103480360B (zh) * 2013-09-26 2015-03-18 中国海洋石油总公司 一种控制活性组分分布的低碳烷烃脱氢催化剂的制法
CN103480359B (zh) * 2013-09-26 2015-03-18 中国海洋石油总公司 一种活性组分非均匀分布低碳烷烃脱氢催化剂的制法
JP6108460B2 (ja) * 2013-10-08 2017-04-05 国立研究開発法人国立環境研究所 遷移金属を大量に導入したメソポーラスシリカおよびその製造方法
CN103920496B (zh) * 2014-04-22 2015-11-18 武汉凯迪工程技术研究总院有限公司 介孔材料包覆式钴基费托合成催化剂及其制备方法
RU2565770C1 (ru) * 2014-10-15 2015-10-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ приготовления мезопористого катализатора для получения высокоиндексных синтетических деценовых базовых масел
WO2016094820A1 (en) 2014-12-12 2016-06-16 Exxonmobil Research And Engineering Company Adsorbent for heteroatom species removal and uses thereof
EP3230409A1 (en) 2014-12-12 2017-10-18 ExxonMobil Research and Engineering Company Organosilica materials and uses thereof
WO2016094803A1 (en) 2014-12-12 2016-06-16 Exxonmobil Research And Engineering Company Membrane fabrication methods using organosilica materials and uses thereof
CN107001859B (zh) 2014-12-12 2019-04-05 埃克森美孚研究工程公司 使用有机二氧化硅(organosilica)材料的涂布方法及其用途
WO2016094843A2 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
US10022700B2 (en) 2014-12-12 2018-07-17 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
WO2016094861A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
US10351639B2 (en) 2014-12-12 2019-07-16 Exxonmobil Research And Engineering Company Organosilica materials for use as adsorbents for oxygenate removal
WO2016094830A1 (en) 2014-12-12 2016-06-16 Exxonmobil Research And Engineering Company Methods of separating aromatic compounds from lube base stockes
US10207249B2 (en) 2014-12-12 2019-02-19 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof
US10047304B2 (en) 2014-12-12 2018-08-14 Exxonmobil Research And Engineering Company Aromatic hydrogenation catalysts and uses thereof
US10464045B1 (en) 2015-06-19 2019-11-05 3M Innovative Properties Company Hydrolyzed divinylbenzene/maleic anhydride polymeric sorbents for carbon dioxide
US10058844B2 (en) 2015-06-19 2018-08-28 3M Innovative Properties Company Divinylbenzene/maleic anhydride polymeric sorbents for carbon dioxide
US10066169B2 (en) * 2015-07-14 2018-09-04 Research & Business Foundation Sungkyunkwan University Mesoporous cobalt-metal oxide catalyst for Fischer-Tropsch synthesis reactions and a preparing method thereof
JP6925339B2 (ja) 2015-12-18 2021-08-25 スリーエム イノベイティブ プロパティズ カンパニー アルデヒド用ポリマー吸着剤
US10967359B2 (en) 2015-12-18 2021-04-06 3M Innovative Properties Company Polymeric sorbents for reactive gases
CN108367270B (zh) 2015-12-18 2021-07-09 3M创新有限公司 用于二氧化碳的聚合物吸附剂
CN108472624B (zh) 2015-12-18 2022-03-18 3M创新有限公司 用于含氮化合物的含金属吸附剂
US10597564B2 (en) 2015-12-22 2020-03-24 3M Innovative Properties Company Internally incorporated phenolic resins in water-based (meth)acrylate adhesive compositions, pre-adhesive reaction mixtures, methods, and articles
US10759980B1 (en) 2015-12-22 2020-09-01 3M Innovative Properties Company Packaged pre-adhesive composition including a polylactic acid-containing packaging material, adhesives, and articles
CN108778488B (zh) 2016-03-14 2022-02-18 3M创新有限公司 包括用于反应性气体的聚合物吸附剂的复合颗粒
JP7010452B2 (ja) 2016-03-14 2022-02-10 スリーエム イノベイティブ プロパティズ カンパニー 反応性ガス用のポリマー収着剤を含むエアフィルタ
US10960341B2 (en) 2016-03-14 2021-03-30 3M Innovative Properties Company Air filters comprising polymeric sorbents for aldehydes
EP3468712A1 (en) 2016-06-10 2019-04-17 Exxonmobil Research And Engineering Company Organosilica polymer catalysts and methods of making the same
JP2019523746A (ja) 2016-06-10 2019-08-29 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company オルガノシリカ材料、その製造方法、およびその使用
IT201600077340A1 (it) * 2016-07-22 2018-01-22 Eni Spa Catalizzatori di idrotrattamento e procedimento di preparazione di detti catalizzatori.
KR102305664B1 (ko) 2016-09-16 2021-09-28 루머스 테크놀로지 엘엘씨 경질 올레핀 수율을 최대화하기 위한 유동 촉매 분해 공정 및 장치 및 다른 응용 분야
US10179839B2 (en) 2016-11-18 2019-01-15 Exxonmobil Research And Engineering Company Sulfur terminated organosilica materials and uses thereof
SG11201908902XA (en) * 2017-03-29 2019-10-30 Exxonmobil Chemical Patents Inc Methods for removing impurities from a hydrocarbon stream and their use in aromatic alkylation processes
KR101970811B1 (ko) * 2017-05-12 2019-04-22 한국화학연구원 메조기공 제올라이트에 담지된 피셔-트롭시 공정용 코발트 촉매 및 이를 이용한 합성액체연료 제조 방법
US11278832B2 (en) 2017-06-16 2022-03-22 3M Innovative Properties Company Air filters comprising polymeric sorbents for aldehydes
CN110740808B (zh) 2017-06-16 2023-04-07 3M创新有限公司 醛的聚合物吸附剂
CN108452844B (zh) * 2017-10-27 2021-01-29 中国石油天然气股份有限公司 一种柴油加氢精制催化剂及其制备方法和应用
US10843182B2 (en) 2017-11-17 2020-11-24 Industrial Technology Research Institute Composite material comprising porous silicate particles and active metals
JP7018754B2 (ja) * 2017-12-08 2022-02-14 日鉄エンジニアリング株式会社 合成ガスから炭化水素を製造する触媒、その触媒の製造方法、及び合成ガスから炭化水素を製造する方法、並びに触媒担体
CN111511465B (zh) 2017-12-21 2023-06-06 埃克森美孚科技工程公司 生产有机二氧化硅材料的方法及其用途
US11498059B2 (en) 2018-07-30 2022-11-15 Saudi Arabian Oil Company Catalysts that include iron, cobalt, and copper, and methods for making the same
US10913694B2 (en) 2018-07-30 2021-02-09 Saudi Arabian Oil Company Methods for forming ethylbenzene from polystyrene
RU2691071C1 (ru) * 2018-12-27 2019-06-10 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ приготовления каталитически-сорбционного материала для удаления хлора и способ удаления хлорорганических соединений
RU2691072C1 (ru) * 2018-12-27 2019-06-10 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ совместного извлечения мышьяка и хлора из нефтяных дистиллятов
RU2691070C1 (ru) * 2018-12-27 2019-06-10 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ получения каталитически-сорбционного материала и способ извлечения мышьяка в его присутствии
TW202104562A (zh) 2019-04-03 2021-02-01 美商魯瑪斯科技有限責任公司 用於升級輕油系列材料之合併有固體分離裝置之分段流體化媒裂程序
AR119323A1 (es) 2019-07-02 2021-12-09 Lummus Technology Inc Procesos y aparatos de craqueo catalítico fluido
CN110876955B (zh) * 2019-11-08 2023-01-24 天津大学 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及其制备方法
CN112844406B (zh) * 2019-11-26 2023-02-28 中国石油天然气股份有限公司 一种轻烃裂解碳二馏分选择加氢的催化剂制备方法
BR102020014082A2 (pt) * 2020-07-09 2022-01-18 Universidade Federal De Minas Gerais Material dessecante contendo sílica micro-mesoporosa funcionalizada com heteroátomos metálicos, processo de produção e uso
CN114433117B (zh) * 2020-10-19 2023-09-01 中国石油化工股份有限公司 一种重质柴油馏分加氢精制催化剂的制备方法
KR20220071674A (ko) * 2020-11-24 2022-05-31 현대자동차주식회사 표면처리 용액, 표면처리 용액의 제조방법, 표면처리 용액을 이용하여 활물질을 제조하는 방법 및 이를 통해 제조된 활물질

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959174A (en) 1971-08-24 1976-05-25 W. R. Grace & Co. Method of selectively producing high pore volume silica gel
US3959147A (en) * 1973-05-11 1976-05-25 The Carborundum Company Filter element assembly
IT1222022B (it) * 1987-07-14 1990-08-31 Montedipe Spa Metodo per la preparazione di un catalizzatore per l' ammossimazione di composti carbonilici
EP0987220A1 (en) * 1998-09-17 2000-03-22 Technische Universiteit Delft Mesoporous amorphous silicate materials and process for the preparation thereof
US5183561A (en) * 1990-01-25 1993-02-02 Mobil Oil Corp. Demetallation of hydrocarbon feedstocks with a synthetic mesoporous crystalline material
US5057296A (en) * 1990-12-10 1991-10-15 Mobil Oil Corp. Method for synthesizing mesoporous crystalline material
US5108725A (en) * 1990-01-25 1992-04-28 Mobil Oil Corp. Synthesis of mesoporous crystalline material
US5200058A (en) * 1990-01-25 1993-04-06 Mobil Oil Corp. Catalytic conversion over modified synthetic mesoporous crystalline material
US5264203A (en) * 1990-01-25 1993-11-23 Mobil Oil Corporation Synthetic mesoporous crystalline materials
US5102643A (en) * 1990-01-25 1992-04-07 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis
US5145816A (en) * 1990-12-10 1992-09-08 Mobil Oil Corporation Method for functionalizing synthetic mesoporous crystalline material
AU644136B2 (en) * 1990-01-25 1993-12-02 Mobil Oil Corporation Synthetic porous crystalline material its synthesis and use
US5110572A (en) * 1990-01-25 1992-05-05 Mobil Oil Corp. Synthesis of mesoporous crystalline material using organometallic reactants
US5275720A (en) * 1990-11-30 1994-01-04 Union Oil Company Of California Gasoline hydrocracking catalyst and process
JPH0593190A (ja) * 1991-03-29 1993-04-16 Nippon Oil Co Ltd 残油の水素化処理方法
US5191148A (en) * 1991-05-06 1993-03-02 Mobil Oil Corporation Isoparaffin/olefin alkylation
US5191134A (en) * 1991-07-18 1993-03-02 Mobil Oil Corporation Aromatics alkylation process
JP2676003B2 (ja) * 1991-10-08 1997-11-12 工業技術院長 ニッケル含有触媒
NL9300737A (nl) * 1993-04-29 1994-11-16 Meern Bv Engelhard De Werkwijze voor het selectief oxideren van koolwaterstoffen.
US5374747A (en) * 1993-12-23 1994-12-20 Arco Chemical Technology, L.P. Epoxidation process and catalyst therefore
US5672556A (en) * 1994-08-22 1997-09-30 Board Of Trustees Operating Michigan State University Crystalline silicate compositions and method of preparation
US5795555A (en) * 1994-11-24 1998-08-18 Alive; Keshavaraja Micro-meso porous amorphous titanium silicates and a process for preparing the same
US5538710A (en) * 1994-12-14 1996-07-23 Energy Mines And Resources-Canada Synthesis of mesoporous catalytic materials
IN190356B (zh) * 1994-12-30 2003-07-19 Council Scient Ind Res
US5622684A (en) 1995-06-06 1997-04-22 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant templating route
JPH09208511A (ja) * 1996-01-29 1997-08-12 Sumitomo Metal Ind Ltd 芳香族ヒドロキシ化合物の製造方法
JPH09241185A (ja) * 1996-03-08 1997-09-16 Cosmo Sogo Kenkyusho:Kk ジアルキルナフタレンの製造方法
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
DE19639016A1 (de) * 1996-09-23 1998-03-26 Basf Ag Mesoporöses Siliciumdioxid, Verfahren zu seiner Herstellung und seiner Verwendung
US6133186A (en) * 1997-03-06 2000-10-17 Shell Oil Company Process for the preparation of a catalyst composition
US5948683A (en) * 1997-10-18 1999-09-07 Engelhard Corporation Catalyst for selective oxidation of unsaturated hydrocarbons and methods of making and using the same
DE19857314A1 (de) * 1997-12-12 2000-02-03 Sec Dep Of Science And Technol Stark saurer mensoporöser synergistischer Festkörper-Katalysator und Verwendung desselben
JP2000103758A (ja) * 1998-07-30 2000-04-11 Toray Ind Inc 芳香族ケトンの製造方法
DE69933184T2 (de) * 1998-11-16 2007-08-30 Fushun Research Institute of Petroleum and Petrochemicals, Sinopec, Fushun Kupferhaltiger Katalysator, dessen Verfahren zur Herstellung und seine Verwendung
JP4234244B2 (ja) * 1998-12-28 2009-03-04 富士通マイクロエレクトロニクス株式会社 ウエハーレベルパッケージ及びウエハーレベルパッケージを用いた半導体装置の製造方法
JP2000254512A (ja) * 1999-03-09 2000-09-19 Daicel Chem Ind Ltd 固体酸触媒及びその調製方法
JP4150771B2 (ja) * 1999-04-07 2008-09-17 独立行政法人産業技術総合研究所 シクロヘキサノール脱水素反応用触媒
IT1312337B1 (it) * 1999-05-07 2002-04-15 Agip Petroli Composizione catalitica per l'upgrading di idrocarburi aventi punti di ebollizione nell'intervallo della nafta
US6762143B2 (en) * 1999-09-07 2004-07-13 Abb Lummus Global Inc. Catalyst containing microporous zeolite in mesoporous support
US6906208B2 (en) * 1999-09-07 2005-06-14 Abb Lummus Global Inc. Mesoporous material and use thereof for the selective oxidation of organic compounds
WO2001052985A2 (en) * 2000-01-24 2001-07-26 E.I. Dupont De Nemours And Company Gel catalysts and methods for their use in catalytic dehydrogenation processes
JP3407031B2 (ja) * 2000-03-09 2003-05-19 東北大学長 一酸化炭素の水素化反応触媒および水素化生成物の製造方法
US6320082B1 (en) * 2000-03-30 2001-11-20 Council Of Scientific And Industrial Research Process for acylation of naphthyl ethers
IT1318528B1 (it) * 2000-05-19 2003-08-27 Enichem Spa Catalizzatori solidi basici.

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452895A (zh) * 2010-10-29 2012-05-16 中国石油化工股份有限公司 一种含锡钛硅分子筛催化环烷烃的方法
CN102452895B (zh) * 2010-10-29 2015-03-18 中国石油化工股份有限公司 一种含锡钛硅分子筛催化环烷烃的方法
CN102476975A (zh) * 2010-11-25 2012-05-30 中国石油化工股份有限公司 一种镁和铝改性的钛硅分子筛催化氧化环酮的方法
CN102476975B (zh) * 2010-11-25 2014-04-30 中国石油化工股份有限公司 一种镁和铝改性的钛硅分子筛催化氧化环酮的方法
CN102701297A (zh) * 2012-05-29 2012-10-03 华南师范大学 一种介孔二氧化硅微球负载纳米零价铁颗粒(SiO2@FeOOH@Fe)及其制备方法与应用
CN104487428A (zh) * 2012-07-26 2015-04-01 科学设计公司 环氧化方法
CN104487428B (zh) * 2012-07-26 2016-11-30 科学设计公司 环氧化方法
CN102921409A (zh) * 2012-10-26 2013-02-13 中国海洋石油总公司 一种加氢生产1,2环己烷二羧酸酯的催化剂的制法
CN104447209A (zh) * 2014-11-19 2015-03-25 浙江大学 一种贱金属催化剂催化制备环己醇的方法
CN110678263A (zh) * 2017-05-31 2020-01-10 古河电气工业株式会社 加氢脱硫用催化剂结构体、具备该催化剂结构体的加氢脱硫装置、以及加氢脱硫用催化剂结构体的制造方法
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
CN109384656A (zh) * 2017-08-09 2019-02-26 中国石油化工股份有限公司 制备环己酮的方法
CN109384656B (zh) * 2017-08-09 2021-12-17 中国石油化工股份有限公司 制备环己酮的方法
CN114073930A (zh) * 2020-08-19 2022-02-22 同济大学 一种沸石/介孔二氧化硅复合微球材料及制备方法

Also Published As

Publication number Publication date
IN2005MU00446A (zh) 2005-10-07
RU2005121263A (ru) 2006-01-20
MXPA05005461A (es) 2005-07-25
ZA200504555B (en) 2006-03-29
MX259239B (en) 2008-08-01
KR20050084122A (ko) 2005-08-26
JP2006515584A (ja) 2006-06-01
US20050201920A1 (en) 2005-09-15
IN202747B (zh) 2007-04-13
WO2004052537A1 (en) 2004-06-24
US6930219B2 (en) 2005-08-16
EP1569750A1 (en) 2005-09-07
TW200424011A (en) 2004-11-16
BR0316981A (pt) 2005-10-25
CA2508443A1 (en) 2004-06-24
AU2003298790A1 (en) 2004-06-30
TWI308506B (en) 2009-04-11
US20030188991A1 (en) 2003-10-09
CN100441296C (zh) 2008-12-10
RU2334554C2 (ru) 2008-09-27
CA2508443C (en) 2011-05-17
AU2003298790B2 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
CN1720098A (zh) 含活性金属的中孔材料
CN1265879C (zh) 用于瓦斯油氢化处理的催化剂、该催化剂的制备方法以及瓦斯油的氢化处理方法
CN1033850C (zh) 沸石
CN1074786C (zh) 加氢催化剂:其组合物、制法及用途
CN1211457C (zh) 硅铝酸盐组合物、其制备方法和应用
CN1753731A (zh) 催化剂组合物的制备和应用
CN1044052A (zh) 利用沸石的催化反应
CN1764710A (zh) 将费托法的原料加氢异构化和加氢裂化来制备中间馏出物的方法
CN1055106C (zh) 用于烃转化反应的含有一种加入金属的催化剂
CN1046543C (zh) 烃油的加氢方法
CN1726079A (zh) 有机化合物的催化处理方法
CN1200768C (zh) 提高沸点在石脑油范围的烃的等级的催化剂组合物
CN1310689A (zh) 分子筛cit-6
CN101035881A (zh) 加氢裂化催化剂组合物
CN1264605C (zh) 氧化铝/可溶胀粘土复合材料及其制备和使用方法
CN1245475A (zh) 沸石ssz-48
CN1458865A (zh) 用于烃类氧化脱氢反应的催化剂
CN1192944A (zh) 氧化物沸石的制备方法及其作为催化剂的应用
CN1585673A (zh) 复合氧化物催化剂及其制备方法
CN1088623C (zh) 用于烃类转化反应的含硅催化剂
CN1109800A (zh) 多金属氧化物材料
CN1735457A (zh) 用于处理有机化合物的催化剂
CN1639064A (zh) 钛硅酸盐及其制备方法和在制备氧化化合物中的用途
CN1281500C (zh) 新的三氢氧化铝相和由其制备的催化剂
CN1423620A (zh) 沸石ssz-50

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081210

Termination date: 20161203

CF01 Termination of patent right due to non-payment of annual fee