CN1557024A - 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt) - Google Patents

绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt) Download PDF

Info

Publication number
CN1557024A
CN1557024A CNA028185021A CN02818502A CN1557024A CN 1557024 A CN1557024 A CN 1557024A CN A028185021 A CNA028185021 A CN A028185021A CN 02818502 A CN02818502 A CN 02818502A CN 1557024 A CN1557024 A CN 1557024A
Authority
CN
China
Prior art keywords
layer
insulating barrier
gesture
laminated
hemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028185021A
Other languages
English (en)
Other versions
CN1557024B (zh
Inventor
P
P·帕里克
U·米史拉
吴益逢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Lighting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23190213&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1557024(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cree Lighting Co filed Critical Cree Lighting Co
Publication of CN1557024A publication Critical patent/CN1557024A/zh
Application granted granted Critical
Publication of CN1557024B publication Critical patent/CN1557024B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明所揭示的AlGaN/GaN HEMT具有一很薄的AlGaN层,以降低陷阱捕捉,而且还具有额外层,以降低栅极漏电流并增加最大驱动电流。依据本发明的一HEMT包括一高电阻半导体层(20),其上具有一势迭半导体层(18)。势迭层(18)具有比高电阻层(20)还宽的能隙,并在各层之间形成一二维电子气体(22)。源极和漏极触点(13,14)接触势迭层(18),势迭层(18)的一部分表面未被触点(13,14)覆盖。一绝缘层(24)在势迭层(18)的未覆盖表面上,而一栅极触点(16)在绝缘层(24)上。绝缘层(24)对栅极漏电流形成阻障,并帮助增加HEMT的最大电流驱动力。本发明也包括本发明HEMT的制作方法。在其中一方法中,HEMT及其绝缘层是用金属有机气相沉积(MOCVD)法制作。在另一方法中,所述绝缘层是在一溅镀室内被溅镀到HEMT的上表面上。

Description

绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(HEMT)
本申请要求享有由Parikh等人在2001年7月24日提出的美国临时专利申请号60/307,546之优先权。
技术领域
本发明涉及以氮化铝镓与氮化镓为基的高电子迁移率晶体管。
背景技术
微波系统一般是使用固态晶体管作为放大器与振荡器,使得系统尺寸大幅缩小且可靠度增加。为能适应不断扩展的各种微波系统,重要的是提高操作频率与功率。较高频的信号能承载更多资讯(频宽),使得较小的天线具有很高增益,并改善雷达的解析度。
场效应晶体管(FETs)以及高电子迁移率晶体管(HEMT)一般是固态晶体管类型,是由诸如硅(Si)或砷化镓(GaAs)的半导体材料制成的。Si的一个缺点是具有较低的电子迁移率(约1450cm2/V-s),会产生高电源电阻。该电阻使得可能以Si为基的HEMT高性能增益严重地降级。[CRC Press出版的“The Electrical EngineeringHandbook”(第二版),Dorf,p.994(1997)]
GaAs也是HEMT中常用到的材料,而且已经变成民用和军用雷达、手持式行动电话以及卫星通讯中信号放大的标准。GaAs具有较高的电子迁移率(约6000cm2/V-s)以及比Si还低的电源电阻,可使以GaAs为基的器件能在较高频下运作。然而,GaAs具有很小的能隙(室温下为1.42eV)以及很小的崩溃电压,这会阻碍以GaAs为基的HEMT在高频下提供高功率。
氮化镓(GaN)和氮化铝镓(AlGaN)半导体材料在制作上的改良,使人们将关注力集中在以AlGaN/GaN为基的HEMT开发上。这些器件可以产生较大的功率,这是因为它们独特地结合了材料的特性,这些特性包括高崩溃电场,宽能隙(GaN在室温下为3.36eV),高传导能带差异以及高饱合电漂移速度。若在相同频率下操作,尺寸相同的AlGaN/GaN放大器所产生的功率可以比GaAs放大器的高十倍。
Khan等人的美国专利编号第5,192,987案,揭示了在一缓冲层和一基材上成长出以AlGaN/GaN为基的HEMT,并揭示了其制作方法。Gaska等人在1997年出版的 IEEE Electron Device Letters第10期第18卷第492页的″High-TemperaturePerformance of AlGaN/GaN HFET’s on SiC Substrates”一文中;以及Wu等人在″High Al-content AlGaN/GaN HEMTs with Very High Performance″( IEDM-1999 Digest pp.925-927,Washington DC,Dec.1999)一文中揭示了其它HEMT。这些器件经已显示出高达100亿赫兹的增益-频宽乘积(fT)(Lu等人的″AlGaN/GaNHEMTs on SiC With Over 100GHz ft and Low Microwave Noise″ IEEE Transactions on Electron Devices,Vol.48,No.3,March 2001,pp.581-585),以及高达10W/mm X频带的高功率密度(Wu等人的″Bias-dependent Performance ofHigh-Power AlGaN/GaN HEMTs″, IEDM-2001,Washington DC,Dec.2-6,2001)。
尽管有这些发展,以AlGaN/GaN为基的FET与HEMT还是无法产生具高效率和高增益的大的总微波功率。它们会产生具有直流栅极驱动的很高功率增益,但是频率提升却低到毫赫兹至数千赫兹,其放大减弱很多。
据信,交流与直流放大之间的差异主要是由器件通道内的表面陷阱引起。虽然名称上有些不同,但是如果补捉到一种载子后最可能的下一步骤是再激发的话,一般把杂质或缺陷中心当作捕获中心(或简称陷阱)。
平衡时,陷阱会提供电子给HEMT内的2维电子气体(2-DEG)。位于深达能隙内的陷阱能阶在释放出捕获的载子时,比位于接近价带传导的其它能阶还慢。这是因为从接近能隙中间的中心处,要将捕获的电子再激发到传导带需要增加能量的关系。
AlxGa1-xN(X=0~1)具有表面陷阱密度,相当于在深层施体状态带有陷阱的晶体管的通道电荷,起动能量的范围由0.7至1.8eV(取决于X)。在HEMT操作期间,该陷阱会捕捉通道电子。较慢的捕捉与释放过程会让晶体管速率降低,将使得微波频率下的功率性能大幅降低。
据信,以AlGaN/GaN为基的HEMT的陷阱密度是取决于AlGaN层的表面以及体积。降低AlGaN层的厚度会降低总陷阱量,进而降低高频时的捕捉效应。然而,降低AlGaN层的厚度会增加栅极漏电流的不需要的效应。正常操作时,偏压将被施加到源极与漏极触点之间,且电流会在触点之间流过,主要是穿过二维区。然而,在具有较薄AlGaN层的HEMT中,电流会代之以漏入栅极,形成从源极到栅极的不需要的电流。而且,较薄的AlGaN层会造成HEMT的可用最大驱动电流降低。
发明内容
本发明是在寻求提供一种解决上述问题的改良的AlGaN/GaN的HEMT,通过具有很薄的AlGaN层来降低陷阱捕捉,并通过具有额外层来降低栅极漏电流以及增加最大驱动电流。本发明还揭示了制作具有这些特性的HEMT的方法。
依据本发明的HEMT包括一高电阻半导体层,其上具有势迭半导体层。势迭层具有比高电阻层还宽的能隙,并在势迭层与高电阻层之间具有二维电子气体。包括会接触到势迭层的源极与漏极触点,而部分势迭层表面并未被这些触点覆盖住。绝缘层是包括在势迭层的未覆盖表面上。沉积在绝缘层上的栅极触点具有对栅极漏电流形成势迭并增加HEMT最大电流驱动的绝缘层。
本发明还包括依据本发明制作HEMT的方法。其中一方法是,在金属有机化学气相沉积反应器内,在基材上形成HEMT的活性层。然后,将源气体加到反应器内,而在HEMT的活性层上″在原位″形成一绝缘层。然后,将该HEMT从反应器中移走以做进一步处理。
依据本发明制作HEMT的另一方法是:在基材上形成HEMT的活性层。然后,将该基材置于溅镀室内,在此,将绝缘层溅镀到HEMT活性层的上表面上。然后,可将HEMT从溅镀室中移走做进一步处理。
本发明的这些特点与优点以及其它进一步的特点与优点,对于熟知该技术领域的人士来说,从以下参照附图的详细说明会变得更明白。
附图说明
图1是依据本发明的在AlGaN层和之间具有绝缘层的AlGaN/GaN HEMT的剖视图;
图2是图1中的其表面上具有介电层的HEMT的剖视图;
图3是依据本发明的只在栅极触点下面具有绝缘层的AlGaN/GaN HEMT的剖视图;
图4是依据本发明的在栅极触点和AlGaN层之间具有双绝缘层的AlGaN/GaNHEMT的剖视图;
图5是图4中的HEMT在其表面上具有一介电层的剖视图;
图6是依据本发明的仅在栅极触点下面具有双绝缘层的AlGaN/GaN HEMT剖视图;
图7是依据本发明制作HEMT的方法中所使用的金属有机化学气相沉积(MOCVD)反应器的简图;以及
图8是依据本发明制作HEMT的方法中所使用的溅镀室的简图。
发明的详细说明
图1显示了依据本发明制作的以AlGaN/GaN为基的HEMT10。它包括基材11,该基材既可以是蓝宝石(Al2O3),也可以是碳化硅(SiC),较佳的基材是4H多晶型的碳化硅。也可使用其它的碳化硅多晶型,包括3C,6H和15R多晶型。它还包括在基材11上的AlxGa1-xN缓冲层12(其中x是在0与1之间),该缓冲层在碳化硅基材和HEMT 10的残留物之间提供适当的晶体结构转移。许多不同的材料可用于缓冲层12,用于SiC上的缓冲层的合适材料是AlxGa1-xN,x=1。
针对III族氮化物,碳化硅比起蓝宝石具有更加接近的晶格匹配,使III族氮化物薄膜的品质更高。碳化硅也具有高导热性,使得碳化硅上III族氮化物器件的总输出功率不受限于基材的热逸散(如同在蓝宝石上形成的某些器件)。而且,半绝缘碳化硅基材的可用性提供器件绝缘的能力以及降低寄生电容,使器件商品化变成可能。SiC基材可由美国北卡罗莱纳州达拉谟(Durham)的Cree Research公司购得,制作方法在科学文献以及美国专利号34,861;4,946,547以及5,200,022案中提出。
HEMT 10包括缓冲层12上的高电阻层20以及该电阻层上的势迭层18,使得高电阻层被夹在势迭层18和缓冲层12之间。势迭层18通常的厚度约为0.1至0.3微米,势迭层18、高电阻层20以及缓冲层12最好是利用磊晶成长或离子注入在基材11上形成。
HEMT还包括在高电阻层20的表面上的源极与漏极触点13,14。势迭层18设置在触点13和14之间,每个触点接触势迭层的边缘。绝缘层24是包括在触点13和14之间的势迭层18上。在所显示的实施例中,绝缘层24覆盖住整个势迭层18,但是在其它实施例(下文将作描述)中,势迭层18并没有被完全覆盖住。绝缘层24可以用许多不同的材料做成,包括但不限于:氮化硅(SiN),氮化铝(AlN),二氧化硅(SiO2)或由上述材料合并成多层的合成物。
对于微波器件来说,触点13和14通常被隔开且间距范围为1.5至10微米。整流萧特基触点(栅极)16位于源极和漏极触点13,14之间的绝缘层24的表面上,而且它的长度范围通常为0.1至2微米。HEMT的总宽度取决于所需的总功率。它可以比30微米还宽,一般的宽度范围是100微米至6毫米。
AlxGa1-xN层18比GaN层20具有更宽的能隙,而且其能隙的不连续性会造成自由电荷从较宽的能隙转移到较低的能隙材料中。电荷会聚集在这两种材料之间的界面处并产生二维电子气体(2DEG)22,使得电流在源极和漏极触点13,14之间流动。2DEG具有高电子迁移率,使HEMT在高频下具有很高跨导。施加在栅极16上的电压是以静电的方式控制正好在栅极底下2DEG内的电子数目,从而控制总电子流。
源极和漏极触点13,14最好由钛,铝,镍及金的合金做成,而栅极16最好由钛,铂,铬,镍,钛钨合金以及硅化铂做成。在一实施例中,触点包括镍,硅及钛的合金,是通过将这些材料分别沉积成层,然后进行退火处理而形成。因为该合金系统剔除掉铝,所以当退火温度超过铝的熔点(660℃)时,可避免不需要的铝污染在器件表面上。
操作期间,以特定的电位(n型隧道器件的正漏极电位)加偏压到漏极触点14,而源极接地。这会造成电流流过隧道和2DEG,从漏极流到源极触点13,14。该电流是通过施加到栅极16上的偏压和频率电位来控制,对隧道电流进行调节并提供增益。
如上所述,AlGaN层18的陷阱密度是取决于薄层体积,而且降低AlGaN层18的厚度也会降低陷阱密度,减少陷阱效应。然而,降低AlGaN层的厚度会增加栅极漏电流以及减低器件的最大电流驱动力。
在栅极16与势迭层18之间具有绝缘层,可降低HEMT的栅极漏电流。这对改善器件的长期可靠性来说会有直接的影响,因为栅极漏电流是HEMT变差的其中一个来源。HEMT 10的启动电压取决于绝缘层24所使用的材料种类,而启动电压可以高达3-4伏。然后,HEMT 10可以在较高电流程度以及较高输入驱动程度的聚集模式下操作。绝缘层也当作是HEMT的天然钝化剂,以改善其可靠性。
图2显示了类似于图1中的HEMT 10的以AlGaN为基的HEMT 30。HEMT 30具有类似的薄层,包括基材11,缓冲层12,GaN层20,2DEG 22,AlxGa1-xN势迭层18和绝缘层24。HEMT 30也具有源极,栅极和漏极触点13,14,16,类似于HEMT 10的。HEMT 30包括一额外的介电层32,该介电层设置在源极、栅极和漏极触点13,14,16之间的绝缘层24表面上。介电层保护HEMT免于在处理时会发生不需要的钝化、杂质以及损坏。介电层可以用许多不同的材料或这些材料的合成物来做成,适当的材料是SixNy
绝缘层24用于降低栅极漏电流,并利用夹在栅极16和势迭层18之间的绝缘层24的区段来增加电流驱动力。该区段的绝缘层24延伸到栅极16外,帮助保护触点之间的势迭层的表面,但是对降低漏电流或增加电流驱动力没有帮助。
图3显示了依据本发明的HEMT 40的另一实施例,类似于图1与2中的HEMT 10和30。HEMT 40具有类似的薄层,包括基材11,缓冲层12,GaN层20,2DEG 22和AlxGa1-xN势迭层18。HEMT 30亦有类似于HEMT 10和40上的源极、栅极和漏极触点13,14和16。然而,HEMT 40的绝缘层42只是包括在栅极触点16底下,使得绝缘层只被夹在栅极触点16和势迭层18之间。触点13,14,16之间的势迭层18的表面没有被绝缘层42覆盖。可以保持不覆盖或可以包括一介电材料料层44,来帮助降低陷阱捕捉效应,以及帮助降低任何对HEMT薄层不需要的钝化和损坏。而且还帮助减少杂质被加到HEMT薄层内。
介电层最好是氮化硅(SixNy),其中的硅是施体电子的来源,它会降低陷阱捕捉作用。最有效的是,薄层22和24应该满足以下条件:第一,应该具有提供施体电子高来源的掺杂物。对于氮化硅,该薄层应该具有高百分比的Si。虽然本申请人并不希望被任何操作理论所约束,但目前相信,来自薄层的电子会填满表面陷阱,使得它们变成中性,而不会在操作时捕捉到势迭层电子。
第二,掺杂物的能阶应该比陷阱的能阶高,为了获得最佳结果,该能阶应该比势迭层的导带边缘能阶高。相信这会降低电子来自处于施体状态的栅极金属的可能性,并防止在该能阶下的陷阱捕捉以及解除捕捉。如果掺杂物的能阶稍微低于势迭层的导带的能阶,该薄层也会工作,但是其能阶愈高,其工作将愈佳。
第三,对器件表面的损坏要很小或没有损坏,而且形成介电层时不应增加表面损坏。相信表面的损坏会产生更多的表面陷阱。
第四,涂布层与传导隧道表面之间的键结应在应力下稳定。如果该键结不稳定,相信当电子电场、电压或温度增加而产生应力时,该薄层在实际器件操作下可能会失效。
具有绝缘层的HEMT会经历低崩溃电压,所述绝缘层是利用金属有机化学气相沉积(MOCVD)法在原位沉积而形成。虽然本申请人并不希望受限于任何理论,但相信,低崩溃电压是由于在SiN层成长时AlGaN势迭层的掺杂/劣化造成的。成长条件,比如SiN层的成长温度,也会影响到HEMT片电荷的迁移率。降低绝缘层的成长温度造成较低的HEMT劣化,但是也造成SiN成长率减低。
为了在没有AlGaN势迭层的掺杂或劣化情况下,以正常成长率提供成长出绝缘层,可以使用双绝缘层的设计来替代单一绝缘层。图4显示了HEMT 50,类似于图1、2和3中的HEMT 10、30和40。HEMT 50具有类似的基材11,缓冲层12,GaN层20,2DEG22以及AlxGa1-xN势迭层18。HEMT 50也具有类似的源极,栅极和漏极触点13,14和16。然而,HEMT 50使用双绝缘层设计,而不是单一绝缘层。该双绝缘层包括源极和漏极触点13,14之间的势迭层18上的AlN间隔层52。SiN绝缘层54是包括在AlN间隔层52上,栅极触点16设置在绝缘层54上。
AlN间隔层52当作SiN绝缘层54和活性AlGaN势迭层18之间的隔层或屏障。SiN绝缘层54在正常条件下成长时,AlN间隔层52可防止势迭层18的掺杂/劣化。
间隔层也可以使用其它材料,只要在SiN绝缘层54以正常成长率沉积出来时,该材料能防止AlGaN势迭层18的掺杂/劣化即可。如果可以避免掉掺杂和劣化,则也可使用在没有间隔层情况下,直接在AlGaN层上提供沉积出SiN绝缘层的方法。本发明这些特点的重要特性可以避免HEMT的低崩溃电压。
图5是依据本发明的另一HEMT 60,它类似于图4中的HEMT 50,具有类似的基材11,缓冲层12,GaN层20,2DEG 22,AlxGa1-xN势迭层18,AlN间隔层52以及SiN绝缘层54。HEMT 60也具有类似的源极,栅极和漏极触点13,14和16。HEMT 60也包括一在触点13与16,14与16之间的SiN绝缘层54的曝露表面上的介电层62,类似于图2中HEMT 30的介电层32。如同HEMT 30的介电层32,介电层54帮助保护HEMT 60免于在控制处理期间发生不需要的钝化、杂质以及损坏。介电层可以用许多不同的材料或这些材料的结合来制成,适当的材料是SixNy
图6是依据本发明的另一HEMT 70,它类似于图3中的HEMT 40,只在栅极触点底下具有一绝缘层。HEMT 70具有类似的基材11,缓冲层12,GaN层20,2DEG 22,AlxGa1-XN势迭层18以及源极,栅极和漏极触点13,14和16。HEMT的SiN绝缘层72以及AlN间隔层74都只在栅极16底下,使得这二层都被夹在栅极16与势迭层18之间。另一实施例(图中未示)中,间隔层74可以延伸到栅极以下,覆盖触点13与16,14与16之间的势迭层的表面。
HEMT 70也包括一介电层76,如图所示,覆盖在触点13与16,14与16之间的势迭层18的表面上。如同图3中HEMT 40的介电层44,介电层76帮助减低陷阱捕捉效应,并帮助降低对HEMT各薄层不需要的钝化和损坏。也帮助减少杂质被加到HEMT各薄层内。介电层76最好是氮化硅(SixNy),硅是施体电子的来源,用来填满所有的陷阱。为了更加有效,介电层76应该满足上述的图3的介电层44的四个条件。
上述HEMT的活性层是由AlGaN/GaN制成,但也可以用其它III族的氮化物材料制成。III族的氮化物是指氮与周期表中III族元素之间所形成的那些半导体化合物,通常是铝(Al)、镓(Ga)以及铟(In)。该用词也是指如AlGaN和AlInGaN的三元和四元化合物。
制作方法
本发明也揭示了制作具有单或双绝缘层的HEMT的方法。可以使用MOCVD法、电浆化学气相沉积(CVD)法、热灯丝裂解法(hot-filament CVD)或溅镀法,将绝缘层沉积在AlGaN/GaN半导体材料上。
图7显示了一MOCVD反应器80,它是在基材上长出AlGaN/GaN活性层以及沉积绝缘层的新方法中使用。反应器80包括一反应室82,该反应室具有由一转轴86支撑的成长平台84。在很多的应用中,如蓝宝石(Al2O3)或是碳化硅(SiC)蓝宝石的基材88是设置在成长平台84上,当然也可以使用其它的基材。
成长期间内,用加热元件90加热平台84,以保持基材88处于预设的温度下。该温度通常是在摄氏400与1200度(℃)之间,但可以更高或更低,视所需的成长类型而定。加热元件90可以是不同的加热器件,但通常是一射频(RF)或电阻线圈。
供应载送气体92给气体管线94,该载送气体是氢或氮。载送气体92也经由质流控制器95a,95b,95c供应给相对应的气泡器96a,96b,96c。气泡器96a具有成长化合物,通常是含有甲基或乙基的烷基化物,比如三甲基镓(TMG),三甲基铝(TMA)或三甲基铟(TMI)。气泡器96b与96c也可以包含类似的金属有机化物,能成长出III族化合物的合金。气泡器96a,96b,96c一般是由恒温槽98a,98b,98c保持在预设温度下,以确保在利用载送气体92传送到反应室82之前,金属有机化物的蒸气压不变。
打开所需组合的阀门100a,100b,100c,让通过气泡器96a,96b,96c的载送气体92与气体管线94内流动的载送气体92混合。然后,经由反应室82上端的气体输入口102,将混合气体注入反应室82内。
诸如氨的含氮气体104,经由质流控制器106供应到气体管线94内。含氮气体的流量是受阀门108控制。如果载送气体92与含氮气体104混合在一起,而且气体管线94内的TMG蒸气被注入到反应室82内,则经由TMG和含氨气体内的分子热分解,会出现元素进而在基材88上成长出氮化镓。
为了对基材88上的氮化镓合金进行掺杂处理,不用于TMG的其中一个气泡器96a、96b、96c可给掺杂材料使用,所述材料通常是镁(Mg)或硅(Si),但可以是其它材料,比如钡,钙,锌或碳。气泡器96b或96c是给合金材料使用,比如硼,铝,铟,磷,砷或其它材料。一旦选定掺杂物与合金,而且打开适当的阀门100a、100b、100c使掺杂物流入装有镓与含氮气体104的气体管线94内,则在基材88上会发生氮化镓掺杂层的成长。
可以经由连接到可液压操作的泵112的气体净化管线110,来清除掉反应室82内的气体。此外,放气阀114可使反应室82内建立气压,或除去压力。
通常是藉关闭阀门110a与100b来阻断镓和掺杂物源,进而停止成长,并保持含氮气体和载送气体流动。另一方式是,可以经由质流控制器118和阀门120来控制气体116,以清洗反应室82。打开阀门114帮助清洗,使用泵112将反应室82内的多余成长气体抽出。通常,净化气体116是氢,但可以是其它气体。关闭加热元件90的电源,以冷却基材88。
依据本发明的一种方法中,在AlGaN/GaN半导体材料成长之后且在冷却反应室82之前(称作在原位)或冷却期间,施加绝缘层/各层。紧接在反应室82中成长出半导体材料之后,藉关闭适当的阀门组合100a,100b,100c使不需要的成长气体流停止。可以完成反应器的短暂清洗,以去除掉上述不需要的气体。然后,让气体流入反应器内以沉积绝缘层,而在一较佳方法中,用于绝缘层的气体由一般的MOCVD源供给。当在AlGaN/GaN半导体材料上沉积Si3N4绝缘层时,二硅甲烷(Si2H6)和氨(NH6)经由气体管线94被注入到反应室82内。现在会有分子出现,经由热分解将Si3N4沉积在AlGaN/GaN材料上。当沉积双绝缘层时,在形成Si3N4层之前,先将适当的气体注入到反应室内,形成AlN层。
在具有介电层的那些HEMT实施例中,介电层也可以在原位沉积出来。在介电层中可以使用到的一些化合物的实例包括Si,Ge,MgOx,MgNxZnO,SiNx,SiOx,ScOx,GdOx以及其合金。多重薄层与适当材料的重复薄堆迭的层可用作为势迭层,比如SiNx/Si,MgNx/SiNx或MgNx/MgOx。不同的势迭层可由以下的源气体来形成:来自硅甲烷或二硅甲烷的Si、来自锗化合物的Ge,来自环戊二烯镁或甲基-环戊二烯镁和氨的MgNx,来自环戊二烯镁或甲基-环戊二烯镁和一氧化二氮的MgO,来自二甲基锌或二甲基锌和一氧化二氮或水的ZnO,来自硅甲烷或二硅甲烷和氨或一氧化二氮的SiNx,以及来自硅甲烷或二硅甲烷和一氧化二氮的SiOx
沉积出绝缘层与介电层后,可以在反应室82内冷却半导体材料。然后,从冷却的反应室82中取出半导体材料。当该结构准备进行额外处理(比如金属化处理)时,可以用一些不同的方法去除掉部分的薄层,包括湿化学氢氟酸(HF)蚀刻,反应性离子蚀刻或电浆蚀刻,但并不受限于此。
依据本发明沉积绝缘层的另一方法是通过溅镀。图8显示了一简化的溅镀室130,可以用它在基材上沉积材料。操作时,半导体器件132是放在阳极134上。然后,将溅镀室136抽空,且将如氩气的惰性气体138注入气体管线140内,并经阀门142排出,以保持背景压力。由待沉积到基材/器件上的材料所做成的阴极144设置在溅镀室136内。当在电极之间加上高电压146时,惰性气体将被离子化,且正离子148会跑到阴极144。当撞击到阴极144时,正离子会与阴极原子150碰撞,使阴极原子获得足够的能量而射出。被溅镀的阴极原子150穿过空间,最后覆盖阳极134和半导体器件132,所述半导体器件具有来自溅镀原子150的涂层133。
其它溅镀装置可以更复杂且更详细,但它们都是在同一基本物理机理下工作。使用更复杂的溅镀系统,有可能溅镀并沉积出某一范围的金属与介电层。
可以使用溅镀法将绝缘层沉积到AlGaN/GaN HEMT上。利用如MOCVD的方法,在半导体晶圆上先形成HEMT。然后,清洗该晶圆(用NH4OH∶H2O(1∶4)冲洗约10至60秒),再将器件132放到溅镀室136中,该溅镀室的阴极144上具有硅源。SixNy绝缘层是以溅镀法沉积到晶圆上。溅镀法包括以下特定的步骤:将反应室抽气,直到压力低至约3×10-7Torr。利用具20-100sccm流率以及约5-10mTorr的源气体,再用200-300W的RF功率约2分钟来起始电浆。这会轰击阴极144上的硅,清洗其表面。然后,改变溅镀条件,使氩气流率为10-12sccm,氮气流率为8-10sccm,反应室压力为2.5-5mTorr以及RF功率为200-300W。保持该条件2分钟,对阴极144的Si进行溅镀。被溅镀的硅与氮起反应,最后的氮化硅被沉积在器件132上。
溅镀后,下个步骤130是要关闭氮气并调高氩气流率至20-100sccm历时2分钟,以清洗Si表面。然后,关闭所有的气体与电源,让反应室冷却五分钟并排气。然后可以从溅镀室中取出器件132。可以对该器件的薄层再进行蚀刻处理。使用不同的方法,包括但不限于湿化学氢氟酸(HF)蚀刻、反应性离子蚀刻或电浆蚀刻,窗口处于器件薄层中作为源极、栅极与漏极触点。
另一方式是,在溅镀室130内沉积绝缘层之前,可以先在器件上沉积触点与栅极。然后对触点与栅极上的介电层进行蚀刻,提供导线连接。
虽然本发明已经参考某些较佳组合以相当详细的方式来做说明,但是其它的版本是可能的。绝缘层可以应用到不同材料系统的HEMT以及半导体器件上。也可以利用许多上述方法以外的其他方法来使用绝缘层,包括PECVD法、电子束沉积法、感应性耦合电浆法以及ICP沉积法。因此,所附的权利要求的精神和范围并不是限定于说明书中所描述的较佳版本。
                                器件标号对照表
序号     器件标号     原文     中文
  1   10,30,40,50   HEMT   高电子流动率晶体管
  2   12,20   High resistance layer   高电阻层
  3   13   Source contact   源极触点
  4   14   Drain contact   漏极触点
  5   16   Gate contact   栅极触点
  6   18   Barrier layer   势迭层
  7   22   Two-dimensional electron gas   二维电子气体
  8   24   Insulating layer   绝缘层
  9   32,44,76   Dielectric layer   介电层
  10   52   Aluminum nitride layer   氮化铝
  11   54   Silicon nitride   氮化硅
  12   80   Reactor   反应器
  13   82   Chamber   反应室
  14   84   Growth platform   成长平台
  15   86   Shaft   转轴
  16   11,88,132   Substrate   基材
  17   90   Heater element   加热元件
  18   92   Carrier gas   载送气体
  19   94,140   Gas line   气体管线
  20   95a,95b,95c,106,118   Mass flow controller   质流控制器
  21   96a,96b,96c   Bubbler   气泡器
  22   98a,98b,98c   Temperature bath   恒温槽
  23   100a,100b,100c,108,114,120,142   Valve   阀门
  24   102   Gas inlet   气体输入口
  25   104   Nitrogen containing gas   含氮气体
  26   110   Line   管线
  27   112   Pump   泵
  28   116   Gas   气体
  29   130,136   Sputtering chamber   溅镀室
  30   132   Semiconductor d eVice   半导体器件
  31   133   Coating   涂层
  32   134   Anode   阳极
  33   138   Inert gas   惰性气体
  34   144   Cathode   阴极
  35   146   High voltage   高电压
  36   150   Cathode atom   阴极原子

Claims (38)

1.一种高电子迁移率晶体管(HEMT),它包括:
一高电阻半导体层(20);
一在所述高电阻层(20)上的势迭半导体层(18),所述势迭层(18)具有一比所述高电阻层(20)还宽的能隙;
一在所述势迭层(18)和所述高电阻层(20)之间的二维电子气体(22);
源极和漏极触点(13,14),它们使所述势迭层(18)与未被所述源极和漏极触点(13,14)覆盖的所述势迭层(18)的部分表面接触;
一在所述势迭层(18)的未被覆盖表面上的绝缘层(24);以及
一在所述绝缘层(24)上的栅极触点(16),所述绝缘层(16)形成对栅极漏电流的障碍并增加HEMT的最大电流驱动力。
2.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述高电阻层(20)和所述势迭半导体层(18)由III族氮化物半导体材料制成。
3.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述高电阻层(20)和所述势迭半导体层(20)由AlGaN/GaN半导体材料制成。
4.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)包括氮化硅(SiN)、氮化铝(AlN)、二氧化硅(SiO2)或这些材料的多重薄层。
5.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)包括氮化硅。
6.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)包括一氮化硅层和一氮化铝,所述氮化铝层被夹在所述势迭层和所述氮化硅绝缘层之间。
7.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述晶体管还包括一介电层(32),该介电层覆盖在所述触点间势迭层(18)和绝缘层(24)的曝露表面上。
8.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)只在所述栅极触点(16)底下并被夹在所述栅极触点(16)和所述势迭层(18)之间。
9.如权利要求8所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)包括一氮化硅层以及一氮化铝层。
10.如权利要求8所述的高电子迁移率晶体管,其特征在于,所述晶体管还包括一介电层(76),该介电层覆盖所述触点(13,14,16)之间的势迭层(18)的曝露表面以及所述栅极触点(16)下缘和所述势迭层(18)之间的所述绝缘层(24)的曝露表面。
11.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)覆盖所述源极和所述触点(13,14)之间的所述势迭层(18)的表面。
12.如权利要求11所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)包括一AlN层和一SiN层,而所述AlN层被夹在所述势迭层(18)和所述SiN层之间。
13.如权利要求11所述的高电子迁移率晶体管,其特征在于,所述晶体管还包括一在所述触点(13,14,16)之间的所述绝缘层(24)的表面上的介电层(32)。
14.一种高电子迁移率晶体管(HEMT),它包括:
一具有高电阻且非导电的GaN半导体层(20);
一在所述GaN层(20)上的AlGaN半导体势迭层(18),所述AlGaN层(18)具有比所述GaN层(20)还宽的能隙;
一在所述AlGaN层(18)和所述GaN层(20)之间的二维电子气体(22);
源极和漏极触点(13,14),它们接触所述AlGaN层(18),所述AlGaN层(18)在所述源极和漏极触点(13,14)之间的表面未被覆盖;
一与所述势迭层(18)电接触的栅极触点(16);以及
一对所述栅极触点(16)和所述势迭层(18)之间的栅极漏电流形成一障碍的器件,所述障碍也会增加HEMT的最大电流驱动力。
15.如权利要求14所述的高电子迁移率晶体管,其特征在于,所述障碍的形成器件包括一在所述势迭层(18)上的绝缘层(24),在所述绝缘层(24)上具有所述栅极触点(16),所述绝缘层(24)对栅极漏电流形成一障碍。
16.如权利要求15所述的高电子迁移率晶体管,其特征在于,所述绝缘层(24)包括氮化硅(SiN)、氮化铝(AlN)、二氧化硅(SiO2)或这些材料的多重薄层。
17.如权利要求15所述的高电子迁移率晶体管,其特征在于,所述晶体管还包括一介电层(32),该介电层在所述触点(13,14,16)之间的所述绝缘层(24)和所述势迭层(18)的表面上。
18.如权利要求14所述的高电子迁移率晶体管,其特征在于,所述障碍的形成器件包括在所述势迭层(18)上的双绝缘层(52,54),而在所述双绝缘层(52,54)上具有所述栅极触点(16),所述双绝缘层的第一层(52)在所述势迭层(18)和所述双绝缘层(52,54)的第二层(54)之间作为一隔层,在沉积出所述双绝缘层(52,54)的第二层(54)时,防止对所述势迭层掺杂或损坏。
19.如权利要求18所述的高电子迁移率晶体管,其特征在于,所述双绝缘层(52,54)包括一AlN层(52)和一SiN层(54),所述AlN层(52)作为所述势迭层(18)和SiN层(54)之间的隔层。
20.如权利要求18所述的高电子迁移率晶体管,其特征在于,所述晶体管还包括一介电层(62),该介电层在所述触点(13,14,16)之间的所述双绝缘层(52,54)和势迭层(18)的表面上。
21.一种对栅极漏电流形成障碍的高电子迁移率晶体管(HEMT)的制作方法,该方法包括以下步骤:
将一基材(88)放入MOCVD反应器(80)中;
使源气体流入所述反应室(82)内,以在所述基材(88)上形成一高电阻GaN层(12);
使源气体流入所述反应室(82)内,在所述高电阻GaN层(12)上形成AlGaN层(18),所述AlGaN层(18)具有比所述高电阻GaN层(12)还宽的能隙;
使源气体流入所述反应室(82)内,在所述AlGaN层上形成一绝缘层(24);
冷却所述反应室(82);以及
将具有沉积层的基材(88)从所述反应室(82)取出。
22.如权利要求21所述的方法,其特征在于,该方法还包括对所述绝缘层(24)和势迭层(18)进行蚀刻,以作为源极和漏极触点(13,14)。
23.如权利要求22所述的方法,其特征在于,该方法还包括在蚀刻区内分别沉积源极和漏极触点(13,14)。
24.如权利要求21所述的方法,其特征在于,该方法还包括在所述绝缘层(24)上沉积一栅极触点(16)。
25.如权利要求21所述的方法,其特征在于,所述绝缘层(24)包括氮化硅(SiN)、氮化铝(AlN)、二氧化硅(SiO2)或这些材料的多重薄层。
26.如权利要求21所述的方法,其特征在于,所述绝缘层(24)包括氮化硅(SiN)。
27.如权利要求21所述的方法,其特征在于,所述绝缘层(24)包括一氮化硅层(54)和一氮化铝层(52),所述氮化铝层(52)被夹在所述势迭层(18)和所述氮化硅层(54)之间。
28.一种对栅极漏电流形成障碍的高电子迁移率晶体管(HEMT)的制作方法,该方法包括以下步骤:
在一基材(132)上制作出所述HEMT的活性层;
将所述基材(132)放入一溅镀室(136)内;
在所述溅镀室(136)内的基材(132)上溅镀一绝缘层(24);以及
将所述基材(132)从所述溅镀室(136)取出。
29.如权利要求28所述的方法,其特征在于,所述绝缘层(24)包括氮化硅(SiN)、氮化铝(AlN)、二氧化硅(SiO2)或这些材料的多重薄层。
30.如权利要求28所述的方法,其特征在于,所述绝缘层(24)包括氮化硅。
31.如权利要求28所述的方法,其特征在于,所述绝缘层(24)包括一氮化硅层(54)和一氮化铝层(52),所述氮化铝层(52)被夹在所述势迭层(18)与氮化硅层(54)之间。
32.如权利要求28所述的方法,其特征在于,该方法还包括形成与所述活性层接触的源极和漏极触点(13,14)。
33.如权利要求32所述的方法,其特征在于,该方法还包括在所述绝缘层(24)上形成一栅极触点(16)。
34.如权利要求33所述的方法,其特征在于,该方法还包括在所述触点(13,14,16)之间的所述势迭层(18)和绝缘层(24)的表面上形成一介电层(32)。
35.如权利要求28所述的方法,其特征在于,所述活性层是用金属-有机气相沉积(MOCVD)法制作。
36.如权利要求28所述的方法,其特征在于,所述绝缘层(24)是氮化硅,所述薄层是通过将所述溅镀室(136)抽气到一预设压力而在所述HEMT活性层上沉积出来,用源气体轰击一硅源(144)来清洗其表面,改变溅镀室(136)的条件以便对硅(144)进行溅镀处理,以及让溅镀的硅与氮反应而沉积出一氮化硅层(133)。
37.如权利要求28所述的方法,其特征在于,所述活性层包括一高电阻GaN层(20)和一AlGaN层(18),所述GaN层(20)被夹在所述基材和所述AlGaN层(18)之间。
38.如权利要求37所述的方法,其特征在于,所述AlGaN层(18)具有比所述GaN层(20)还宽的能隙。
CN028185021A 2001-07-24 2002-07-23 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt) Expired - Lifetime CN1557024B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30754601P 2001-07-24 2001-07-24
US60/307,546 2001-07-24
PCT/US2002/023056 WO2003032397A2 (en) 2001-07-24 2002-07-23 INSULTING GATE AlGaN/GaN HEMT

Publications (2)

Publication Number Publication Date
CN1557024A true CN1557024A (zh) 2004-12-22
CN1557024B CN1557024B (zh) 2010-04-07

Family

ID=23190213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN028185021A Expired - Lifetime CN1557024B (zh) 2001-07-24 2002-07-23 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)

Country Status (9)

Country Link
US (4) US7230284B2 (zh)
EP (3) EP2267783B1 (zh)
JP (3) JP2005527102A (zh)
KR (1) KR100920434B1 (zh)
CN (1) CN1557024B (zh)
AU (1) AU2002357640A1 (zh)
CA (1) CA2454269C (zh)
TW (1) TW552712B (zh)
WO (1) WO2003032397A2 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312207B (zh) * 2007-05-21 2011-01-05 西安捷威半导体有限公司 增强型hemt器件及其制造方法
CN101378074B (zh) * 2007-08-31 2011-02-16 富士通株式会社 氮化物半导体器件、多尔蒂放大器和漏极压控放大器
CN102034859A (zh) * 2009-10-02 2011-04-27 富士通株式会社 化合物半导体装置及其制造方法
WO2012003609A1 (en) * 2010-07-06 2012-01-12 The Hong Kong University Of Science And Technology Normally-off iii-nitride metal-2deg tunnel junction field-effect transistors
CN101410975B (zh) * 2006-03-20 2012-02-01 国际整流器公司 Ⅲ族-氮化物功率半导体器件
CN102369594A (zh) * 2009-04-06 2012-03-07 住友化学株式会社 半导体基板、半导体基板的制造方法、半导体基板的判定方法以及电子器件
CN102834920A (zh) * 2010-01-30 2012-12-19 美国国家半导体公司 低泄漏GaN MOSFET
CN103137682A (zh) * 2011-11-29 2013-06-05 台湾积体电路制造股份有限公司 具有改进击穿电压性能的高电子迁移率晶体管结构
CN103189992A (zh) * 2010-11-04 2013-07-03 住友电气工业株式会社 半导体器件及其制造方法
CN103390639A (zh) * 2012-05-09 2013-11-13 Nxp股份有限公司 第13族氮化物半导体器件及其制造方法
CN103426923A (zh) * 2012-05-14 2013-12-04 英飞凌科技奥地利有限公司 半导体器件、包括其的晶体管及其制造方法
CN103700700A (zh) * 2012-09-27 2014-04-02 富士通株式会社 化合物半导体器件及其制造方法
CN104051504A (zh) * 2013-03-15 2014-09-17 半导体元件工业有限责任公司 半导体晶片及其形成工艺
CN104584217A (zh) * 2012-09-28 2015-04-29 英特尔公司 高击穿电压ⅲ-n耗尽型mos电容器
CN105742348A (zh) * 2014-12-26 2016-07-06 台湾积体电路制造股份有限公司 兼容hemt的横向整流器结构
WO2017080126A1 (zh) * 2015-11-12 2017-05-18 中国科学院上海微系统与信息技术研究所 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
CN107240609A (zh) * 2016-03-28 2017-10-10 恩智浦美国有限公司 具有增强型电阻率区的半导体装置及其制造方法
CN108807500A (zh) * 2018-05-30 2018-11-13 东南大学 一种具有高阈值电压的增强型高电子迁移率晶体管
US10134727B2 (en) 2012-09-28 2018-11-20 Intel Corporation High breakdown voltage III-N depletion mode MOS capacitors
CN109524293A (zh) * 2018-10-30 2019-03-26 江苏晶曌半导体有限公司 一种SiC衬底上生长高质量GaN外延膜的方法
CN109564855A (zh) * 2016-08-18 2019-04-02 雷声公司 使用离子注入的高电阻率氮化物缓冲层的半导体材料生长
CN109786376A (zh) * 2019-01-11 2019-05-21 西安电子科技大学 基于单片异质集成的Cascode结构GaN高电子迁移率晶体管及制作方法
CN110556296A (zh) * 2018-06-04 2019-12-10 半导体元件工业有限责任公司 电子器件以及形成电子器件的方法
CN111009580A (zh) * 2018-10-04 2020-04-14 新唐科技股份有限公司 高电子迁移率晶体管元件及其制造方法
CN111370300A (zh) * 2018-12-26 2020-07-03 杰力科技股份有限公司 氮化镓高电子移动率晶体管的栅极结构的制造方法

Families Citing this family (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3836697B2 (ja) * 2000-12-07 2006-10-25 日本碍子株式会社 半導体素子
AU2002357640A1 (en) * 2001-07-24 2003-04-22 Cree, Inc. Insulting gate algan/gan hemt
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US7320235B2 (en) * 2001-12-05 2008-01-22 Nexpak Corporation Lockable media storage container
JP4134575B2 (ja) * 2002-02-28 2008-08-20 松下電器産業株式会社 半導体装置およびその製造方法
AU2003248649A1 (en) * 2002-06-10 2003-12-22 University Of Florida High gain integrated antenna and devices therefrom
US6982204B2 (en) * 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
JP4385205B2 (ja) * 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
TWI230978B (en) * 2003-01-17 2005-04-11 Sanken Electric Co Ltd Semiconductor device and the manufacturing method thereof
US7112860B2 (en) * 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US7898047B2 (en) 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
US7078743B2 (en) * 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
EP2592655B1 (en) * 2003-09-09 2019-11-06 The Regents of The University of California Fabrication of single or multiple gate field plates
JP2005129696A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7439555B2 (en) * 2003-12-05 2008-10-21 International Rectifier Corporation III-nitride semiconductor device with trench structure
TWI295085B (en) * 2003-12-05 2008-03-21 Int Rectifier Corp Field effect transistor with enhanced insulator structure
US7649215B2 (en) * 2003-12-05 2010-01-19 International Rectifier Corporation III-nitride device passivation and method
JP4741792B2 (ja) * 2003-12-18 2011-08-10 日本電気株式会社 窒化物半導体mis型電界効果トランジスタの製造方法
US7045404B2 (en) * 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7901994B2 (en) 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US8174048B2 (en) * 2004-01-23 2012-05-08 International Rectifier Corporation III-nitride current control device and method of manufacture
US7170111B2 (en) * 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
JP4041075B2 (ja) 2004-02-27 2008-01-30 株式会社東芝 半導体装置
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7084441B2 (en) * 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
US7332795B2 (en) * 2004-05-22 2008-02-19 Cree, Inc. Dielectric passivation for semiconductor devices
US7417266B1 (en) 2004-06-10 2008-08-26 Qspeed Semiconductor Inc. MOSFET having a JFET embedded as a body diode
US7547928B2 (en) * 2004-06-30 2009-06-16 Interuniversitair Microelektronica Centrum (Imec) AlGaN/GaN high electron mobility transistor devices
JP5248743B2 (ja) * 2004-06-30 2013-07-31 アイメック 半導体装置および半導体装置の製造方法
EP1612866B1 (en) 2004-06-30 2014-07-30 Imec AlGaN/GaN Hemt Devices
US7238560B2 (en) * 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US20060017064A1 (en) * 2004-07-26 2006-01-26 Saxler Adam W Nitride-based transistors having laterally grown active region and methods of fabricating same
CN100418199C (zh) * 2004-07-28 2008-09-10 中国科学院半导体研究所 铝镓氮/氮化镓高电子迁移率晶体管的制作方法
JPWO2006022453A1 (ja) * 2004-08-27 2008-05-08 独立行政法人情報通信研究機構 GaN系電界効果トランジスタおよびその製造方法
JP4514584B2 (ja) * 2004-11-16 2010-07-28 富士通株式会社 化合物半導体装置及びその製造方法
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
JP4765301B2 (ja) * 2004-11-25 2011-09-07 沖電気工業株式会社 半導体装置の製造方法
US7355215B2 (en) * 2004-12-06 2008-04-08 Cree, Inc. Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
US7161194B2 (en) * 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
JP4836111B2 (ja) * 2004-12-15 2011-12-14 日本電信電話株式会社 半導体装置
US7217960B2 (en) * 2005-01-14 2007-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device
JP2006245317A (ja) * 2005-03-03 2006-09-14 Fujitsu Ltd 半導体装置およびその製造方法
US7253454B2 (en) * 2005-03-03 2007-08-07 Cree, Inc. High electron mobility transistor
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7465967B2 (en) 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US20060213437A1 (en) * 2005-03-28 2006-09-28 Tokyo Electron Limited Plasma enhanced atomic layer deposition system
US8575651B2 (en) * 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
US7626217B2 (en) * 2005-04-11 2009-12-01 Cree, Inc. Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
GB2425653A (en) * 2005-04-28 2006-11-01 Sharp Kk Manufacture of group III-nitride semiconductor
US7417258B2 (en) 2005-04-28 2008-08-26 Sharp Kabushiki Kaisha Semiconductor light-emitting device, and a method of manufacture of a semiconductor device
US7615774B2 (en) * 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
JP4792814B2 (ja) * 2005-05-26 2011-10-12 住友電気工業株式会社 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法
US7405430B2 (en) * 2005-06-10 2008-07-29 Cree, Inc. Highly uniform group III nitride epitaxial layers on 100 millimeter diameter silicon carbide substrates
US7855401B2 (en) * 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US7598576B2 (en) * 2005-06-29 2009-10-06 Cree, Inc. Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
US7525122B2 (en) * 2005-06-29 2009-04-28 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US9331192B2 (en) * 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
KR101045573B1 (ko) * 2005-07-06 2011-07-01 인터내쇼널 렉티파이어 코포레이션 Ⅲ족 질화물 인헨스먼트 모드 소자
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
US7548112B2 (en) * 2005-07-21 2009-06-16 Cree, Inc. Switch mode power amplifier using MIS-HEMT with field plate extension
US8183595B2 (en) * 2005-07-29 2012-05-22 International Rectifier Corporation Normally off III-nitride semiconductor device having a programmable gate
US7544596B2 (en) 2005-08-30 2009-06-09 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
WO2008027027A2 (en) * 2005-09-07 2008-03-06 Cree, Inc Transistor with fluorine treatment
CN101326646B (zh) * 2005-11-01 2011-03-16 麻省理工学院 单片集成的半导体材料和器件
US8026568B2 (en) 2005-11-15 2011-09-27 Velox Semiconductor Corporation Second Schottky contact metal layer to improve GaN Schottky diode performance
WO2007062589A1 (en) * 2005-11-29 2007-06-07 The Hong Kong University Of Science And Technology MONOLITHIC INTEGRATION OF ENHANCEMENT- AND DEPLETION-MODE AlGaN/GaN HFETS
US7932539B2 (en) * 2005-11-29 2011-04-26 The Hong Kong University Of Science And Technology Enhancement-mode III-N devices, circuits, and methods
US7972915B2 (en) * 2005-11-29 2011-07-05 The Hong Kong University Of Science And Technology Monolithic integration of enhancement- and depletion-mode AlGaN/GaN HFETs
US8044432B2 (en) * 2005-11-29 2011-10-25 The Hong Kong University Of Science And Technology Low density drain HEMTs
US7368971B2 (en) * 2005-12-06 2008-05-06 Cree, Inc. High power, high frequency switch circuits using strings of power transistors
US7338826B2 (en) * 2005-12-09 2008-03-04 The United States Of America As Represented By The Secretary Of The Navy Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AlGaN/GaN HEMTs
US7419892B2 (en) * 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
US7728355B2 (en) * 2005-12-30 2010-06-01 International Rectifier Corporation Nitrogen polar III-nitride heterojunction JFET
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
US8809907B2 (en) * 2006-03-14 2014-08-19 Northrop Grumman Systems Corporation Leakage barrier for GaN based HEMT active device
EP2175494B1 (en) * 2006-03-16 2015-03-25 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US7388236B2 (en) * 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
CN100555660C (zh) * 2006-09-01 2009-10-28 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
JP2008084942A (ja) * 2006-09-26 2008-04-10 Oki Electric Ind Co Ltd Mis型fetのゲート絶縁層
JP5088325B2 (ja) * 2006-09-29 2012-12-05 富士通株式会社 化合物半導体装置およびその製造方法
US7964895B2 (en) * 2006-10-05 2011-06-21 International Rectifier Corporation III-nitride heterojunction semiconductor device and method of fabrication
JP5186096B2 (ja) 2006-10-12 2013-04-17 パナソニック株式会社 窒化物半導体トランジスタ及びその製造方法
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
JP5105160B2 (ja) 2006-11-13 2012-12-19 クリー インコーポレイテッド トランジスタ
JP5192683B2 (ja) * 2006-11-17 2013-05-08 古河電気工業株式会社 窒化物系半導体ヘテロ接合電界効果トランジスタ
TWI439568B (zh) * 2006-11-20 2014-06-01 Univ California 用於電解與電合成的閘控電極
JP5268929B2 (ja) * 2006-11-21 2013-08-21 アイメック AlGaN/GaNHEMTの表面処理およびパッシベーション
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
JP5114947B2 (ja) * 2006-12-28 2013-01-09 富士通株式会社 窒化物半導体装置とその製造方法
US9076852B2 (en) * 2007-01-19 2015-07-07 International Rectifier Corporation III nitride power device with reduced QGD
JP2008198787A (ja) * 2007-02-13 2008-08-28 Rohm Co Ltd GaN系半導体素子
US7939853B2 (en) * 2007-03-20 2011-05-10 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
JP4691060B2 (ja) * 2007-03-23 2011-06-01 古河電気工業株式会社 GaN系半導体素子
US8212290B2 (en) 2007-03-23 2012-07-03 Cree, Inc. High temperature performance capable gallium nitride transistor
US20080258242A1 (en) * 2007-04-19 2008-10-23 Northrop Grumman Space And Mission Systems Corp. Low contact resistance ohmic contact for a high electron mobility transistor and fabrication method thereof
JP2009010107A (ja) * 2007-06-27 2009-01-15 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
TWI460857B (zh) * 2007-08-03 2014-11-11 Univ Hong Kong Science & Techn 可靠之常關型iii族-氮化物主動裝置結構,以及相關方法與系統
US7875537B2 (en) 2007-08-29 2011-01-25 Cree, Inc. High temperature ion implantation of nitride based HEMTs
US20090072269A1 (en) * 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US8431962B2 (en) * 2007-12-07 2013-04-30 Northrop Grumman Systems Corporation Composite passivation process for nitride FET
CN101897029B (zh) * 2007-12-10 2015-08-12 特兰斯夫公司 绝缘栅e模式晶体管
US9024327B2 (en) 2007-12-14 2015-05-05 Cree, Inc. Metallization structure for high power microelectronic devices
US7750370B2 (en) * 2007-12-20 2010-07-06 Northrop Grumman Space & Mission Systems Corp. High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer
US8076699B2 (en) * 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
DE102008020793A1 (de) * 2008-04-22 2009-11-05 Forschungsverbund Berlin E.V. Halbleiterbauelement, Vorprodukt und Verfahren zur Herstellung
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8076700B2 (en) * 2008-06-10 2011-12-13 The United States Of America As Represented By The Secretary Of The Navy P-N junction for use as an RF mixer from GHZ to THZ frequencies
JP2010050280A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 窒化物半導体装置
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US20100084687A1 (en) * 2008-10-03 2010-04-08 The Hong Kong University Of Science And Technology Aluminum gallium nitride/gallium nitride high electron mobility transistors
US8759876B2 (en) * 2008-10-06 2014-06-24 Massachusetts Institute Of Technology Enhancement-mode nitride transistor
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
CN102292812B (zh) * 2009-02-03 2014-04-02 飞思卡尔半导体公司 半导体结构、包括半导体结构的集成电路及制造半导体结构的方法
US8742459B2 (en) * 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
WO2010151857A2 (en) 2009-06-26 2010-12-29 Cornell University Method for forming iii-v semiconductor structures including aluminum-silicon nitride passivation
US8791034B2 (en) 2009-06-26 2014-07-29 Cornell University Chemical vapor deposition process for aluminum silicon nitride
US20110014368A1 (en) * 2009-07-14 2011-01-20 Cfd Research Corporation Carbon nanotube growth at reduced temperature via catalytic oxidation
US8105889B2 (en) * 2009-07-27 2012-01-31 Cree, Inc. Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions
EP3009413A1 (en) * 2009-08-24 2016-04-20 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
JP5589329B2 (ja) * 2009-09-24 2014-09-17 豊田合成株式会社 Iii族窒化物半導体からなる半導体装置、電力変換装置
WO2011039800A1 (ja) * 2009-09-29 2011-04-07 株式会社 東芝 半導体装置
DE102009051521B4 (de) 2009-10-31 2012-04-26 X-Fab Semiconductor Foundries Ag Herstellung von Siliziumhalbleiterscheiben mit III-V-Schichtstrukturen für High Electron Mobility Transistoren (HEMT) und eine entsprechende Halbleiterschichtanordnung
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
WO2011084270A2 (en) * 2009-12-16 2011-07-14 National Semiconductor Corporation Low ohmic contacts containing germanium for gallium nitride or other nitride-based power devices
CN101853880B (zh) * 2010-03-09 2011-10-19 西安电子科技大学 AlGaN/GaN高电子迁移率晶体管及其制作方法
US9105703B2 (en) * 2010-03-22 2015-08-11 International Rectifier Corporation Programmable III-nitride transistor with aluminum-doped gate
KR101679054B1 (ko) 2010-05-04 2016-11-25 삼성전자주식회사 산소처리영역을 포함하는 고 전자 이동도 트랜지스터 및 그 제조방법
JP5665171B2 (ja) * 2010-05-14 2015-02-04 住友電気工業株式会社 Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法
US8829999B2 (en) 2010-05-20 2014-09-09 Cree, Inc. Low noise amplifiers including group III nitride based high electron mobility transistors
US8878246B2 (en) 2010-06-14 2014-11-04 Samsung Electronics Co., Ltd. High electron mobility transistors and methods of fabricating the same
EP2610898B1 (en) * 2010-08-25 2020-11-25 NGK Insulators, Ltd. Method for fabricating epitaxial substrate for semiconductor device, and method for fabricating semiconductor device
KR101680767B1 (ko) 2010-10-06 2016-11-30 삼성전자주식회사 불순물 주입을 이용한 고출력 고 전자 이동도 트랜지스터 제조방법
US8076250B1 (en) * 2010-10-06 2011-12-13 Applied Materials, Inc. PECVD oxide-nitride and oxide-silicon stacks for 3D memory application
CN102054891B (zh) * 2010-10-13 2012-10-10 中国科学院苏州纳米技术与纳米仿生研究所 室温太赫兹波探测器
TWI409951B (zh) * 2010-10-20 2013-09-21 Nat Univ Tsing Hua 增強型氮化鎵系金氧半場效電晶體
US8853709B2 (en) * 2011-07-29 2014-10-07 Hrl Laboratories, Llc III-nitride metal insulator semiconductor field effect transistor
US9470650B2 (en) 2010-10-21 2016-10-18 Carnegie Mellon University Two-dimensional electron gas (2DEG)-based chemical sensors
KR101214742B1 (ko) 2010-12-09 2012-12-21 삼성전기주식회사 질화물계 반도체 소자 및 그 제조 방법
JP6035007B2 (ja) * 2010-12-10 2016-11-30 富士通株式会社 Mis型の窒化物半導体hemt及びその製造方法
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
JP5648523B2 (ja) * 2011-02-16 2015-01-07 富士通株式会社 半導体装置、電源装置、増幅器及び半導体装置の製造方法
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US9070758B2 (en) * 2011-06-20 2015-06-30 Imec CMOS compatible method for manufacturing a HEMT device and the HEMT device thereof
KR20130004760A (ko) * 2011-07-04 2013-01-14 삼성전자주식회사 파워소자 및 이의 제조방법
US8710511B2 (en) 2011-07-29 2014-04-29 Northrop Grumman Systems Corporation AIN buffer N-polar GaN HEMT profile
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
JP5967749B2 (ja) * 2011-09-30 2016-08-10 国立大学法人京都大学 端面発光型フォトニック結晶レーザ素子
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
KR101890749B1 (ko) * 2011-10-27 2018-08-23 삼성전자주식회사 전극구조체, 이를 포함하는 질화갈륨계 반도체소자 및 이들의 제조방법
US9673285B2 (en) 2011-11-21 2017-06-06 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting buried and/or surface layers
US8994035B2 (en) * 2011-11-21 2015-03-31 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting buried and/or surface layers
US8785944B2 (en) * 2011-12-07 2014-07-22 Samsung Electronics Co., Ltd. High electron mobility transistor
US8940620B2 (en) 2011-12-15 2015-01-27 Power Integrations, Inc. Composite wafer for fabrication of semiconductor devices
US10002957B2 (en) * 2011-12-21 2018-06-19 Power Integrations, Inc. Shield wrap for a heterostructure field effect transistor
US8614447B2 (en) * 2012-01-30 2013-12-24 International Business Machines Corporation Semiconductor substrates using bandgap material between III-V channel material and insulator layer
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US8941148B2 (en) 2012-03-06 2015-01-27 Infineon Technologies Austria Ag Semiconductor device and method
KR102005450B1 (ko) 2012-03-14 2019-07-30 삼성전자주식회사 누설전류 보호회로가 구비된 파워모듈
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
US9337332B2 (en) 2012-04-25 2016-05-10 Hrl Laboratories, Llc III-Nitride insulating-gate transistors with passivation
JP2014003222A (ja) * 2012-06-20 2014-01-09 Toshiba Corp 電界効果トランジスタ
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
KR20140012445A (ko) * 2012-07-20 2014-02-03 삼성전자주식회사 질화물계 반도체 소자 및 이의 제조방법
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
US9917080B2 (en) * 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US9099490B2 (en) 2012-09-28 2015-08-04 Intel Corporation Self-aligned structures and methods for asymmetric GaN transistors and enhancement mode operation
US9991399B2 (en) 2012-10-04 2018-06-05 Cree, Inc. Passivation structure for semiconductor devices
US8994073B2 (en) 2012-10-04 2015-03-31 Cree, Inc. Hydrogen mitigation schemes in the passivation of advanced devices
US9812338B2 (en) 2013-03-14 2017-11-07 Cree, Inc. Encapsulation of advanced devices using novel PECVD and ALD schemes
KR101946009B1 (ko) 2012-10-11 2019-02-08 삼성전자주식회사 고전자이동도 트랜지스터 및 그 구동방법
WO2014103901A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9048174B2 (en) * 2013-01-18 2015-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Compound semiconductor device having gallium nitride gate structures
CN105164811B (zh) 2013-02-15 2018-08-31 创世舫电子有限公司 半导体器件的电极及其形成方法
US8928037B2 (en) 2013-02-28 2015-01-06 Power Integrations, Inc. Heterostructure power transistor with AlSiN passivation layer
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9018056B2 (en) * 2013-03-15 2015-04-28 The United States Of America, As Represented By The Secretary Of The Navy Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material
JP6174874B2 (ja) * 2013-03-15 2017-08-02 ルネサスエレクトロニクス株式会社 半導体装置
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
KR102065113B1 (ko) 2013-05-01 2020-01-10 삼성전자주식회사 고전자이동도 트랜지스터 및 그 제조 방법
US20140335666A1 (en) * 2013-05-13 2014-11-13 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Growth of High-Performance III-Nitride Transistor Passivation Layer for GaN Electronics
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
KR20140146887A (ko) * 2013-06-18 2014-12-29 엘지이노텍 주식회사 발광소자
US9407214B2 (en) 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
TWI555209B (zh) * 2013-07-29 2016-10-21 高效電源轉換公司 具有降低的輸出電容之氮化鎵裝置及其製法
US9806158B2 (en) * 2013-08-01 2017-10-31 Taiwan Semiconductor Manufacturing Co., Ltd. HEMT-compatible lateral rectifier structure
US9978844B2 (en) 2013-08-01 2018-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. HEMT-compatible lateral rectifier structure
CN105556678B (zh) 2013-09-30 2018-04-10 Hrl实验室有限责任公司 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管
CN103531626A (zh) * 2013-10-30 2014-01-22 江苏新广联科技股份有限公司 基于二维电子气的可调式恒流管
JP6135487B2 (ja) * 2013-12-09 2017-05-31 富士通株式会社 半導体装置及び半導体装置の製造方法
US10276712B2 (en) 2014-05-29 2019-04-30 Hrl Laboratories, Llc III-nitride field-effect transistor with dual gates
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
US9640620B2 (en) * 2014-11-03 2017-05-02 Texas Instruments Incorporated High power transistor with oxide gate barriers
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10121712B2 (en) 2015-04-06 2018-11-06 Drexel University Accelerated failure test of coupled device structures under direct current bias
TWI559538B (zh) * 2015-04-21 2016-11-21 環球晶圓股份有限公司 半導體元件
US9583607B2 (en) * 2015-07-17 2017-02-28 Mitsubishi Electric Research Laboratories, Inc. Semiconductor device with multiple-functional barrier layer
JP2017031480A (ja) * 2015-08-04 2017-02-09 株式会社デンソー 薄膜製造装置および薄膜製造方法
US9812532B1 (en) 2015-08-28 2017-11-07 Hrl Laboratories, Llc III-nitride P-channel transistor
JP6552925B2 (ja) * 2015-09-04 2019-07-31 株式会社東芝 半導体装置
JP6536318B2 (ja) 2015-09-24 2019-07-03 三菱電機株式会社 半導体装置及びその製造方法
CN108292678B (zh) 2015-11-19 2021-07-06 Hrl实验室有限责任公司 具有双栅极的iii族氮化物场效应晶体管
CN106783994B (zh) * 2015-11-24 2019-08-23 中国科学院苏州纳米技术与纳米仿生研究所 一种抑制电流崩塌效应的增强型hemt器件及其制备方法
CN108604597B (zh) 2016-01-15 2021-09-17 创世舫电子有限公司 具有al(1-x)sixo栅极绝缘体的增强模式iii-氮化物器件
US9960266B2 (en) 2016-05-17 2018-05-01 The United States Of America, As Represented By The Secretary Of The Navy Damage-free plasma-enhanced CVD passivation of AlGaN/GaN high electron mobility transistors
WO2017210323A1 (en) 2016-05-31 2017-12-07 Transphorm Inc. Iii-nitride devices including a graded depleting layer
US9812562B1 (en) * 2016-06-03 2017-11-07 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure, HEMT structure and method of forming the same
US10170580B2 (en) 2017-05-23 2019-01-01 Industrial Technology Research Institute Structure of GaN-based transistor and method of fabricating the same
US10147796B1 (en) 2017-05-26 2018-12-04 Stmicroelectronics Design And Application S.R.O. Transistors with dissimilar square waffle gate patterns
US10403624B2 (en) 2017-05-26 2019-09-03 Stmicroelectronics Design And Application S.R.O. Transistors with octagon waffle gate patterns
DE102017210165A1 (de) 2017-06-19 2018-12-20 Robert Bosch Gmbh Mehrfach-Transistor-Anordnung, Brückengleichrichter und Verfahren zur Herstellung einer Mehrfach-Transistor-Anordnung
JP2017208556A (ja) * 2017-06-27 2017-11-24 株式会社東芝 半導体装置
CN109659361B (zh) 2017-10-12 2022-03-04 电力集成公司 用于异质结器件的栅极堆叠体
US10418474B2 (en) 2017-10-17 2019-09-17 Mitsubishi Electric Research Laboratories, Inc. High electron mobility transistor with varying semiconductor layer
US10276704B1 (en) 2017-10-17 2019-04-30 Mitsubishi Electric Research Laboratiories, Inc. High electron mobility transistor with negative capacitor gate
US10734537B2 (en) * 2017-11-08 2020-08-04 Wisconsin Alumni Research Foundation High performance, high electron mobility transistors with graphene hole extraction contacts
US10644142B2 (en) 2017-12-22 2020-05-05 Nxp Usa, Inc. Semiconductor devices with doped regions functioning as enhanced resistivity regions or diffusion barriers, and methods of fabrication therefor
US10680092B2 (en) 2018-10-01 2020-06-09 Semiconductor Components Industries, Llc Electronic device including a transistor with a non-uniform 2DEG
US11316038B2 (en) * 2018-11-20 2022-04-26 Stmicroelectronics S.R.L. HEMT transistor with adjusted gate-source distance, and manufacturing method thereof
US11049960B2 (en) 2019-03-06 2021-06-29 Texas Instruments Incorporated Gallium nitride (GaN) based transistor with multiple p-GaN blocks
CN112447836A (zh) 2019-08-30 2021-03-05 广东致能科技有限公司 一种具有高耐压能力的高电子迁移率晶体管
KR20210041931A (ko) * 2019-10-08 2021-04-16 삼성전자주식회사 반도체 장치, 그 제조 방법 및 이를 포함하는 디스플레이 장치
US11075271B2 (en) 2019-10-14 2021-07-27 Cree, Inc. Stepped field plates with proximity to conduction channel and related fabrication methods
CN110634946B (zh) * 2019-10-28 2023-04-28 中证博芯(重庆)半导体有限公司 一种增强型异质金属栅AlGaN/GaN MOS-HEMT器件及其制备方法
CN112928161B (zh) 2019-12-06 2024-01-02 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
TWI716230B (zh) * 2019-12-20 2021-01-11 國家中山科學研究院 含鋁氮化物電晶體結構
WO2021120143A1 (zh) * 2019-12-20 2021-06-24 电子科技大学 一种柔性微波功率晶体管及其制备方法
US11469333B1 (en) 2020-02-19 2022-10-11 Semiq Incorporated Counter-doped silicon carbide Schottky barrier diode
US11791388B2 (en) 2020-02-27 2023-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Source leakage current suppression by source surrounding gate structure
US20210359118A1 (en) * 2020-05-18 2021-11-18 Cree, Inc. Group III-Nitride High-Electron Mobility Transistors Configured with Recessed Source and/or Drain Contacts for Reduced On State Resistance and Process for Implementing the Same
EP3971991A1 (en) 2020-09-18 2022-03-23 III-V Technologies GmbH Stacked gate mesfet/hemt transistor eliminating gate leakage current and providing normally off transistor
US11658234B2 (en) 2020-10-27 2023-05-23 Wolfspeed, Inc. Field effect transistor with enhanced reliability
US11502178B2 (en) 2020-10-27 2022-11-15 Wolfspeed, Inc. Field effect transistor with at least partially recessed field plate
US11749726B2 (en) 2020-10-27 2023-09-05 Wolfspeed, Inc. Field effect transistor with source-connected field plate
US11942326B2 (en) * 2020-12-16 2024-03-26 Semiconductor Components Industries, Llc Process of forming an electronic device including a doped gate electrode
US11869964B2 (en) 2021-05-20 2024-01-09 Wolfspeed, Inc. Field effect transistors with modified access regions
US20220376085A1 (en) * 2021-05-20 2022-11-24 Cree, Inc. Methods of manufacturing high electron mobility transistors having improved performance
TWI798728B (zh) * 2021-06-23 2023-04-11 新唐科技股份有限公司 半導體結構及其製造方法
US11621672B2 (en) 2021-08-05 2023-04-04 Wolfspeed, Inc. Compensation of trapping in field effect transistors

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792908A (fr) 1971-12-20 1973-04-16 Western Electric Co Procede de fabrication de dispositifs semi-conducteurs
JPS51129173A (en) 1974-02-01 1976-11-10 Chisso Corp Semi conductor with high voltage proof schottky electrode and it's man uacturing method.
JPS5360567A (en) 1976-11-11 1978-05-31 Mitsubishi Electric Corp Electrode formation method of semiconductor device
JPS5539636A (en) 1978-09-13 1980-03-19 Nec Corp Composite semiconductor
DE3323347A1 (de) 1983-06-29 1985-01-10 Neff Gewindespindeln GmbH, 7035 Waldenbuch Kugelumlauf-schraubgetriebe
JPS62136881A (ja) * 1985-12-11 1987-06-19 Fujitsu Ltd 半導体装置
US4689869A (en) * 1986-04-07 1987-09-01 International Business Machines Corporation Fabrication of insulated gate gallium arsenide FET with self-aligned source/drain and submicron channel length
JPS63188964A (ja) 1987-01-31 1988-08-04 Dainippon Printing Co Ltd 集積回路パツケ−ジ
US4866005A (en) 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
DE3823347A1 (de) 1988-07-09 1990-01-11 Semikron Elektronik Gmbh Leistungs-halbleiterelement
EP0391380B1 (en) 1989-04-04 1997-12-17 Siemens Aktiengesellschaft HEMT Structure
JP2912635B2 (ja) 1989-08-04 1999-06-28 富士通株式会社 半導体装置
US5252843A (en) 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
JPH0446527A (ja) 1990-06-11 1992-02-17 Fuji Electric Co Ltd 高調波抑制装置の電流制御方法
US5200022A (en) 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JP2702338B2 (ja) 1991-10-14 1998-01-21 三菱電機株式会社 半導体装置、及びその製造方法
JP3019885B2 (ja) 1991-11-25 2000-03-13 カシオ計算機株式会社 電界効果型薄膜トランジスタの製造方法
JPH05326890A (ja) 1992-05-07 1993-12-10 Nec Corp 出力バッファ回路
EP0569745A1 (de) 1992-05-14 1993-11-18 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Feldeffekttransistoren mit asymmetrischer Gate-Struktur
JPH06124965A (ja) 1992-10-09 1994-05-06 Sumitomo Electric Ind Ltd 電界効果トランジスタ
JPH07283140A (ja) 1994-04-05 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> 活性原子の供給制御方法
JPH07326737A (ja) 1994-05-31 1995-12-12 Nippon Steel Corp インピーダンス線路、フィルタ素子、遅延素子および半導体装置
US5492868A (en) * 1994-10-24 1996-02-20 Taiwan Semiconductor Manufacturing Corp. Ltd. Capped reflow process to avoid contact autodoping and supress tungsten silicide peeling
GB2296373B (en) 1994-12-14 1997-09-10 Toshiba Cambridge Res Center Semiconductor device
JPH08264760A (ja) 1995-03-23 1996-10-11 Mitsubishi Electric Corp ヘテロ接合電界効果型トランジスタとその製造方法
US5828084A (en) * 1995-03-27 1998-10-27 Sony Corporation High performance poly-SiGe thin film transistor
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5737041A (en) * 1995-07-31 1998-04-07 Image Quest Technologies, Inc. TFT, method of making and matrix displays incorporating the TFT
US5569937A (en) * 1995-08-28 1996-10-29 Motorola High breakdown voltage silicon carbide transistor
JPH09246527A (ja) 1996-03-08 1997-09-19 Toshiba Corp 半導体装置
JP3449116B2 (ja) * 1996-05-16 2003-09-22 ソニー株式会社 半導体装置
JP3376211B2 (ja) * 1996-05-29 2003-02-10 株式会社東芝 半導体装置、半導体基板の製造方法及び半導体装置の製造方法
US5920105A (en) 1996-09-19 1999-07-06 Fujitsu Limited Compound semiconductor field effect transistor having an amorphous gas gate insulation layer
US5930656A (en) 1996-10-21 1999-07-27 Kabushiki Kaisha Toshiba Method of fabricating a compound semiconductor device
JPH10223901A (ja) * 1996-12-04 1998-08-21 Sony Corp 電界効果型トランジスタおよびその製造方法
KR100571071B1 (ko) 1996-12-04 2006-06-21 소니 가부시끼 가이샤 전계효과트랜지스터및그제조방법
JPH10173036A (ja) 1996-12-11 1998-06-26 Nec Corp 半導体装置および半導体の高抵抗化方法
JPH10189565A (ja) 1996-12-26 1998-07-21 Tokyo Electron Ltd ウエハボート
US6004881A (en) 1997-04-24 1999-12-21 The United States Of America As Represented By The Secretary Of The Air Force Digital wet etching of semiconductor materials
JP3147036B2 (ja) 1997-05-02 2001-03-19 日本電気株式会社 化合物半導体装置及びその製造方法
JPH10335637A (ja) 1997-05-30 1998-12-18 Sony Corp ヘテロ接合電界効果トランジスタ
US6316820B1 (en) * 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
JP3457511B2 (ja) 1997-07-30 2003-10-20 株式会社東芝 半導体装置及びその製造方法
JPH11224881A (ja) * 1998-02-06 1999-08-17 Fujitsu Ltd 化合物半導体装置およびその製造方法
JP3161516B2 (ja) 1997-10-03 2001-04-25 日本電気株式会社 半導体装置の製造方法
US5966597A (en) 1998-01-06 1999-10-12 Altera Corporation Method of forming low resistance gate electrodes
JP3372470B2 (ja) 1998-01-20 2003-02-04 シャープ株式会社 窒化物系iii−v族化合物半導体装置
JP3439111B2 (ja) 1998-03-09 2003-08-25 古河電気工業株式会社 高移動度トランジスタ
JPH11261051A (ja) 1998-03-09 1999-09-24 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP2000068498A (ja) 1998-08-21 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 絶縁性窒化物膜およびそれを用いた半導体装置
JP4182376B2 (ja) 1998-12-02 2008-11-19 富士通株式会社 半導体装置
US6495409B1 (en) * 1999-01-26 2002-12-17 Agere Systems Inc. MOS transistor having aluminum nitride gate structure and method of manufacturing same
JP3209270B2 (ja) 1999-01-29 2001-09-17 日本電気株式会社 ヘテロ接合電界効果トランジスタ
JP4224737B2 (ja) * 1999-03-04 2009-02-18 ソニー株式会社 半導体素子
JP2000266117A (ja) 1999-03-15 2000-09-26 Kosuke Nagaya 回転磁気ダンパ
JP4577460B2 (ja) * 1999-04-01 2010-11-10 ソニー株式会社 半導体素子およびその製造方法
JP2001007325A (ja) * 1999-06-18 2001-01-12 Sanyo Electric Co Ltd 電界効果型トランジスタ
JP3710339B2 (ja) 1999-08-31 2005-10-26 シャープ株式会社 GaN系化合物半導体発光素子の製造方法
JP2001085670A (ja) 1999-09-14 2001-03-30 Nec Corp 電界効果型トランジスタ及びその製造方法
JP3414678B2 (ja) 1999-09-29 2003-06-09 三容真空工業株式会社 スパッタによる成膜方法とその装置
JP2001251869A (ja) 2000-03-01 2001-09-14 Osaka Gas Co Ltd 直交変換回路、電力変換装置、及び、発電システム
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
JP2002077353A (ja) 2000-08-25 2002-03-15 Moriguchi:Kk 通信機器用発光装置の通信機器への取付構造
JP3708810B2 (ja) 2000-09-01 2005-10-19 シャープ株式会社 窒化物系iii−v族化合物半導体装置
US6690042B2 (en) * 2000-09-27 2004-02-10 Sensor Electronic Technology, Inc. Metal oxide semiconductor heterostructure field effect transistor
US20030107865A1 (en) * 2000-12-11 2003-06-12 Shinsuke Masuda Wafer handling apparatus and method of manufacturing the same
US20020173062A1 (en) 2001-05-17 2002-11-21 Lung-Chien Chen Method for manufacturing GaN-based LED
US6475857B1 (en) * 2001-06-21 2002-11-05 Samsung Electronics Co., Ltd. Method of making a scalable two transistor memory device
US6794719B2 (en) 2001-06-28 2004-09-21 Koninklijke Philips Electronics N.V. HV-SOI LDMOS device with integrated diode to improve reliability and avalanche ruggedness
AU2002357640A1 (en) 2001-07-24 2003-04-22 Cree, Inc. Insulting gate algan/gan hemt
US20030030123A1 (en) * 2001-08-10 2003-02-13 Masayuki Ichige Semiconductor memory device equipped with memory transistor and peripheral transistor and method of manufacturing the same
JP2003100778A (ja) 2001-09-26 2003-04-04 Toshiba Corp 半導体装置
US6833564B2 (en) 2001-11-02 2004-12-21 Lumileds Lighting U.S., Llc Indium gallium nitride separate confinement heterostructure light emitting devices
JP2003209124A (ja) 2001-11-06 2003-07-25 Sony Corp 電界効果半導体素子の製造方法及び電界効果半導体素子
JP3705431B2 (ja) 2002-03-28 2005-10-12 ユーディナデバイス株式会社 半導体装置及びその製造方法
JP3952383B2 (ja) 2002-05-21 2007-08-01 富士通株式会社 化合物電界効果半導体装置
JP4221697B2 (ja) 2002-06-17 2009-02-12 日本電気株式会社 半導体装置
US6933544B2 (en) 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
JP4568118B2 (ja) 2003-01-29 2010-10-27 株式会社東芝 パワー半導体素子
US7078743B2 (en) 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
JP2005086171A (ja) 2003-09-11 2005-03-31 Fujitsu Ltd 半導体装置及びその製造方法
JP4417677B2 (ja) 2003-09-19 2010-02-17 株式会社東芝 電力用半導体装置
US7071498B2 (en) 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US7170111B2 (en) 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US7465997B2 (en) 2004-02-12 2008-12-16 International Rectifier Corporation III-nitride bidirectional switch
GB2412009B (en) 2004-03-11 2006-01-25 Toshiba Research Europ Limited A semiconductor device and method of its manufacture
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
JP4682541B2 (ja) 2004-06-15 2011-05-11 豊田合成株式会社 半導体の結晶成長方法
JP4810072B2 (ja) 2004-06-15 2011-11-09 株式会社東芝 窒素化合物含有半導体装置
JP4379305B2 (ja) 2004-11-09 2009-12-09 サンケン電気株式会社 半導体装置
JP4866007B2 (ja) 2005-01-14 2012-02-01 富士通株式会社 化合物半導体装置
US11791385B2 (en) 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7365374B2 (en) 2005-05-03 2008-04-29 Nitronex Corporation Gallium nitride material structures including substrates and methods associated with the same
WO2006132419A1 (ja) 2005-06-10 2006-12-14 Nec Corporation 電界効果トランジスタ
CN101976686A (zh) 2005-06-10 2011-02-16 日本电气株式会社 场效应晶体管
US7610639B2 (en) * 2005-06-14 2009-11-03 Earthlite Massage Tables, Inc. Headrest assembly with improved adjustability for a massage device
WO2008027027A2 (en) 2005-09-07 2008-03-06 Cree, Inc Transistor with fluorine treatment
JP5231719B2 (ja) 2006-03-30 2013-07-10 富士通株式会社 電界効果トランジスタの製造方法
US7703945B2 (en) 2006-06-27 2010-04-27 Cree, Inc. Efficient emitting LED package and method for efficiently emitting light
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US7585329B2 (en) 2006-11-28 2009-09-08 Depuy Products, Inc. Modular proximal body trial
US8163196B2 (en) * 2008-10-28 2012-04-24 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410975B (zh) * 2006-03-20 2012-02-01 国际整流器公司 Ⅲ族-氮化物功率半导体器件
CN101312207B (zh) * 2007-05-21 2011-01-05 西安捷威半导体有限公司 增强型hemt器件及其制造方法
CN101378074B (zh) * 2007-08-31 2011-02-16 富士通株式会社 氮化物半导体器件、多尔蒂放大器和漏极压控放大器
CN102369594A (zh) * 2009-04-06 2012-03-07 住友化学株式会社 半导体基板、半导体基板的制造方法、半导体基板的判定方法以及电子器件
CN102034859A (zh) * 2009-10-02 2011-04-27 富士通株式会社 化合物半导体装置及其制造方法
CN102034859B (zh) * 2009-10-02 2013-01-23 富士通株式会社 化合物半导体装置及其制造方法
CN102834920B (zh) * 2010-01-30 2015-06-10 美国国家半导体公司 低泄漏GaN MOSFET
CN102834920A (zh) * 2010-01-30 2012-12-19 美国国家半导体公司 低泄漏GaN MOSFET
WO2012003609A1 (en) * 2010-07-06 2012-01-12 The Hong Kong University Of Science And Technology Normally-off iii-nitride metal-2deg tunnel junction field-effect transistors
US8809987B2 (en) 2010-07-06 2014-08-19 The Hong Kong University Of Science And Technology Normally-off III-nitride metal-2DEG tunnel junction field-effect transistors
CN103189992A (zh) * 2010-11-04 2013-07-03 住友电气工业株式会社 半导体器件及其制造方法
CN103137682A (zh) * 2011-11-29 2013-06-05 台湾积体电路制造股份有限公司 具有改进击穿电压性能的高电子迁移率晶体管结构
CN103137682B (zh) * 2011-11-29 2015-10-07 台湾积体电路制造股份有限公司 具有改进击穿电压性能的高电子迁移率晶体管结构
CN103390639A (zh) * 2012-05-09 2013-11-13 Nxp股份有限公司 第13族氮化物半导体器件及其制造方法
CN103390639B (zh) * 2012-05-09 2018-02-23 安世有限公司 第13族氮化物半导体器件及其制造方法
US9147732B2 (en) 2012-05-09 2015-09-29 Nxp B.V. Group 13 nitride semiconductor device and method of its manufacture
CN103426923B (zh) * 2012-05-14 2018-02-16 英飞凌科技奥地利有限公司 半导体器件、包括其的晶体管及其制造方法
CN103426923A (zh) * 2012-05-14 2013-12-04 英飞凌科技奥地利有限公司 半导体器件、包括其的晶体管及其制造方法
US9666705B2 (en) 2012-05-14 2017-05-30 Infineon Technologies Austria Ag Contact structures for compound semiconductor devices
CN103700700A (zh) * 2012-09-27 2014-04-02 富士通株式会社 化合物半导体器件及其制造方法
CN104584217B (zh) * 2012-09-28 2017-05-03 英特尔公司 高击穿电压ⅲ‑n耗尽型mos电容器
CN104584217A (zh) * 2012-09-28 2015-04-29 英特尔公司 高击穿电压ⅲ-n耗尽型mos电容器
US10134727B2 (en) 2012-09-28 2018-11-20 Intel Corporation High breakdown voltage III-N depletion mode MOS capacitors
CN104051504A (zh) * 2013-03-15 2014-09-17 半导体元件工业有限责任公司 半导体晶片及其形成工艺
CN104051504B (zh) * 2013-03-15 2018-08-17 半导体元件工业有限责任公司 半导体晶片及其形成工艺
CN105742348A (zh) * 2014-12-26 2016-07-06 台湾积体电路制造股份有限公司 兼容hemt的横向整流器结构
WO2017080126A1 (zh) * 2015-11-12 2017-05-18 中国科学院上海微系统与信息技术研究所 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
US10770556B2 (en) 2015-11-12 2020-09-08 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science Fluorinated graphene passivated AlGaN/GaN-based HEMT device and manufacturing method
CN107240609A (zh) * 2016-03-28 2017-10-10 恩智浦美国有限公司 具有增强型电阻率区的半导体装置及其制造方法
CN107240609B (zh) * 2016-03-28 2022-01-25 恩智浦美国有限公司 具有增强型电阻率区的半导体装置及其制造方法
CN109564855B (zh) * 2016-08-18 2023-08-22 雷声公司 使用离子注入的高电阻率氮化物缓冲层的半导体材料生长
CN109564855A (zh) * 2016-08-18 2019-04-02 雷声公司 使用离子注入的高电阻率氮化物缓冲层的半导体材料生长
CN108807500A (zh) * 2018-05-30 2018-11-13 东南大学 一种具有高阈值电压的增强型高电子迁移率晶体管
CN110556296B (zh) * 2018-06-04 2024-02-02 半导体元件工业有限责任公司 电子器件以及形成电子器件的方法
CN110556296A (zh) * 2018-06-04 2019-12-10 半导体元件工业有限责任公司 电子器件以及形成电子器件的方法
CN111009580A (zh) * 2018-10-04 2020-04-14 新唐科技股份有限公司 高电子迁移率晶体管元件及其制造方法
CN111009580B (zh) * 2018-10-04 2023-09-08 新唐科技股份有限公司 高电子迁移率晶体管元件及其制造方法
CN109524293B (zh) * 2018-10-30 2021-10-19 江苏晶曌半导体有限公司 一种SiC衬底上生长高质量GaN外延膜的方法
CN109524293A (zh) * 2018-10-30 2019-03-26 江苏晶曌半导体有限公司 一种SiC衬底上生长高质量GaN外延膜的方法
CN111370300B (zh) * 2018-12-26 2022-11-04 杰力科技股份有限公司 氮化镓高电子移动率晶体管的栅极结构的制造方法
CN111370300A (zh) * 2018-12-26 2020-07-03 杰力科技股份有限公司 氮化镓高电子移动率晶体管的栅极结构的制造方法
CN109786376A (zh) * 2019-01-11 2019-05-21 西安电子科技大学 基于单片异质集成的Cascode结构GaN高电子迁移率晶体管及制作方法

Also Published As

Publication number Publication date
EP2267783B1 (en) 2017-06-21
CN1557024B (zh) 2010-04-07
EP2267783A2 (en) 2010-12-29
WO2003032397A3 (en) 2003-08-14
WO2003032397A2 (en) 2003-04-17
CA2454269A1 (en) 2003-04-17
US20060138456A1 (en) 2006-06-29
US20090315078A1 (en) 2009-12-24
EP2267784A2 (en) 2010-12-29
US20070205433A1 (en) 2007-09-06
US20030020092A1 (en) 2003-01-30
US9419124B2 (en) 2016-08-16
KR100920434B1 (ko) 2009-10-08
AU2002357640A1 (en) 2003-04-22
US7230284B2 (en) 2007-06-12
EP1410444A2 (en) 2004-04-21
EP2267784B1 (en) 2020-04-29
EP2267783A3 (en) 2011-03-09
KR20040018502A (ko) 2004-03-03
EP1410444B1 (en) 2012-08-22
JP2010021582A (ja) 2010-01-28
JP2005527102A (ja) 2005-09-08
TW552712B (en) 2003-09-11
US10224427B2 (en) 2019-03-05
EP2267784A3 (en) 2011-03-23
CA2454269C (en) 2015-07-07
JP2010021581A (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
CN1557024B (zh) 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)
CN1260827C (zh) 三族氮化物晶体管及其制造方法
CN100377364C (zh) 半导体器件及其制备方法
CN1950945A (zh) 具有多个场板的宽能带隙晶体管
CN1906765A (zh) 具有保护层和低损凹槽的氮化物基晶体管及其制造方法
CN101138074A (zh) Ⅲ-ⅴ族氮化物系化合物半导体装置及电极形成方法
CN113178480B (zh) 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法
CN101414634B (zh) 凹槽绝缘栅型复合源场板的异质结场效应晶体管
KR101172857B1 (ko) 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법
EP3398203A1 (en) Non-etch gas cooled epitaxial stack for group iiia-n devices
CN106449737A (zh) 低接触电阻型GaN基器件及其制作方法
CN114725214A (zh) 一种多层钝化凹槽栅mis-hemt器件及其制备方法
CN110867488A (zh) 一种氮化镓hemt器件结构及其制备方法
US20230260988A1 (en) Group iii nitride transistor structure capable of reducing leakage current and fabricating method thereof
CN101419985B (zh) 绝缘栅型源场板异质结场效应晶体管
CN106711185B (zh) 高线性度毫米波器件及其制作方法
CN116314256A (zh) 一种抗单粒子加固的P-GaN高电子迁移率晶体管及其制备方法
CN115472691A (zh) 一种晶体管及其制备方法
CN117525128A (zh) 一种p型沟道高电子迁移率晶体管及其制备方法和应用
CN114597266A (zh) 具有混合p型材料欧姆阴极的横向肖特基势垒二极管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: North Carolina

Patentee after: CREE, Inc.

Address before: North Carolina

Patentee before: CREE, Inc.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100407