CN105556678B - 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管 - Google Patents

具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管 Download PDF

Info

Publication number
CN105556678B
CN105556678B CN201380079683.8A CN201380079683A CN105556678B CN 105556678 B CN105556678 B CN 105556678B CN 201380079683 A CN201380079683 A CN 201380079683A CN 105556678 B CN105556678 B CN 105556678B
Authority
CN
China
Prior art keywords
layer
channel layer
gate trench
barrier layer
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380079683.8A
Other languages
English (en)
Other versions
CN105556678A (zh
Inventor
楚荣明
大卫·F·布朗
亚当·J·威廉姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of CN105556678A publication Critical patent/CN105556678A/zh
Application granted granted Critical
Publication of CN105556678B publication Critical patent/CN105556678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Abstract

一种III族氮化物晶体管包括III族氮化物沟道层、在沟道层上方的势垒层、在势垒层的顶部上的介电层、接触沟道层的源极、接触沟道层的漏极、延伸通过介电层和势垒层并且其底部位于沟道层内的栅极沟槽、内衬栅极沟槽并在介电层上方延伸的栅极绝缘体,和在栅极沟槽中并部分地朝向源极和漏极延伸以形成集成的栅场板的栅极,所述势垒层具有1‑10纳米的厚度,其中沟道层和势垒层的界面与栅极沟槽的底部之间的距离大于0nm且小于或等于5nm。

Description

具有高阈值电压和低导通电阻的常关型III族氮化物晶体管
相关申请的交叉引用
本申请涉及于2012年4月25日提交的美国专利申请号13/456,039,该申请整体地并入本文。本申请还涉及于2013年9月30日提交的美国专利申请号14/041,667并要求其优先权,该申请整体地并入本文。
技术领域
本公开涉及III族氮化物场效应晶体管(FETs)且具体地涉及常关型(normally-off)FET。
背景技术
对于高速和高功率应用来说,III族氮化物晶体管是很有希望的,所述高速和高功率应用诸如电源开关,除了其他应用以外,其可用于电机驱动器和电源。这些应用中的许多需要晶体管以常关模式操作。常关模式操作可通过许多方式来实现,但典型地要以较高的导通电阻和较低的输出电流为代价。
于2012年4月25日提交的美国专利申请号13/456,039描述了一种常关型III族氮化物场效应晶体管以及制备常关型FET的方法。
所需要的是常关型FET,其在导通电阻方面具有最小的代价。具体所期望的是高阈值电压,优选地大于1伏特,低导通电阻,对于具有大于600V击穿电压的器件来说优选地小于20ohm-mm,以及在阈值电压和导通电阻方面的优异均一性,所述均一性具有优选小于10%的标准差。本公开的实施方案回答了这些和其他的需求。
发明内容
在本文公开的第一个实施方案中,一种III族氮化物晶体管包括III族氮化物沟道层、在沟道层上方的势垒层、在势垒层的顶部上的介电层、接触沟道层的源极、接触沟道层的漏极、延伸通过介电层和势垒层并且其底部位于沟道层内的栅极沟槽、内衬栅极沟槽并在介电层上方延伸的栅极绝缘体,和在栅极沟槽中并部分地朝向源极和漏极延伸以形成集成的栅场板的栅极,所述势垒层具有1-10纳米的厚度,其中沟道层和势垒层的界面与栅极沟槽的底部之间的距离大于0nm且小于或等于5nm。
在本文公开的另一个实施方案中,一种III族氮化物晶体管,包括:III族氮化物沟道层;在所述沟道层上方的势垒层;在所述势垒层的顶部上的介电层;接触所述沟道层的源极;接触所述沟道层的漏极;延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,所述栅极绝缘体包括在所述栅极沟槽的底部处的单晶AlN层、在所述单晶AlN层上的多晶AlN层、和在所述多晶AlN层上的包含Al2O3、AlON或SiN的绝缘层;和在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
在本文公开的又一个实施方案中,一种制造III族氮化物晶体管的方法,包括:形成III族氮化物沟道层;形成在所述沟道层上方的势垒层,所述势垒层具有1-10纳米的厚度;形成在所述势垒层的顶部上的介电层;形成接触所述沟道层的源极;形成接触所述沟道层的漏极;形成延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽使得所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离为大于0纳米且小于或等于5纳米;形成内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体;和形成在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
在本文公开的再又一个实施方案中,一种制造III族氮化物晶体管的方法,包括:形成III族氮化物沟道层;形成在所述沟道层上方的势垒层;形成在所述势垒层的顶部上的介电层;形成接触所述沟道层的源极;形成接触所述沟道层的漏极;形成延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;形成内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,所述栅极绝缘体包括在所述栅极沟槽的底部处的单晶AlN层、在所述单晶AlN层上的多晶AlN层、和在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;和在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
从后面的具体实施方式和附图中,这些和其他特征以及优势将变得进一步显而易见。在附图和说明书中,数字指示各种特征,在整个附图和说明书中相同的数字指代相同的特征。
附图说明
图1显示根据本公开的III族氮化物场效应晶体管的图解;
图2显示制造根据本公开的III族氮化物场效应晶体管的工艺流程;和
图3A-3C显示根据本公开的III族氮化物场效应晶体管的典型电流-电压曲线的图。
具体实施方式
在下面的描述中,给出大量具体的细节以清楚地描述本文公开的各种具体的实施方案。然而,本领域技术人员将理解在此要求保护的发明可以在不需要下面所讨论的所有具体细节的情况下实施。在其他情况下,没有描述公知的特征以便不使本发明难以理解。
图1显示了根据本公开的FET10的器件结构的立体剖面图。FET具有在基板12上形成的缓冲层14。沟道层16在缓冲层14上形成和势垒层18在沟道层16上形成。
基板12材料可以是硅(Si)、碳化硅(SiC)、蓝宝石、氮化镓(GaN)或氮化铝(AlN)。
缓冲层14可以是通过化学气相沉积或分子束外延在基板12上生长的III族氮化物材料的堆叠。
沟道层16可以是通过化学气相沉积或分子束外延在缓冲层14上生长的III族氮化物材料,诸如GaN。
典型地,沟道层16是厚度范围为5纳米至几微米的未掺杂的GaN层。
势垒层18可以为1-10纳米厚并且可以典型地为仅5nm厚。势垒层18可以是AlGaN,具有25%Al成分。
介电层26在势垒层18的顶部上形成,并且可以是SiN并且具有10-200纳米的厚度,并且可以典型地为100nm厚。介电层26可以通过MOCVD和LPCVD沉积。
源极20和漏极22与沟道层16接触并且通过介电层26和势垒层18延伸。源极20和漏极22在沟道层16的对侧端部上。
如在图2步骤3中所见,形成栅极沟槽32通过介电层26和势垒层18。栅极沟槽32的底部位于沟道层16内,并且在势垒层18的下方延伸并且进入到沟道层16中达垂直距离d30。此距离d 30在势垒层和沟道层界面34与栅极沟槽32的底部36之间,并且典型地为0-5纳米(nm)。对于常关操作,距离d 30需要大于0nm,并且需要尽可能小以便最小化导通电阻。
栅极绝缘体28在栅极沟槽32中和在电介质26上方形成。栅极绝缘体28可以包括下列的堆叠:在栅极沟槽32的底部处的单晶AlN层,其为至多2nm厚并且典型地为1nm厚;在单晶AlN层上的多晶AlN层,其为5nm-50nm厚并且典型地为25nm厚;和在多晶AlN层上形成的绝缘层,诸如AL2O3、AlON或SiN,其为1nm-50nm厚并且典型地为5nm厚。
单晶AlN优选地在大于600℃且小于1100℃的温度下生长。生长单晶AlN的优选温度为900℃。多晶AlN优选在大于300℃且小于900℃的温度下生长,且优选温度为600℃。
栅极绝缘体28堆叠使得FET 10成为常关型FET。在正栅偏置下,FET具有非常低的栅极漏,并且在栅极绝缘体18和沟道层16之间的界面处形成高迁移率电子通道。
栅极绝缘体堆叠28的单晶AlN层为沟道层16中的电子传输提供高质量界面,而不会导致二维电子气(2DEG)在沟道中的积累。此外,单晶AlN层提供了能障以防止电子俘获进入到多晶AlN层中。
多晶AlN层是支持栅偏置的主要层,并且氧化的AlN层充当对通过多晶AlN层的晶界的漏电路径的阻挡层。
栅极绝缘体在电介质26的上方形成并且延伸到源极20和漏极22。
栅极24在栅极沟槽32中栅极绝缘体28的上方形成,并且可以部分地朝向源极20以及部分地朝向漏极22延伸以形成集成的栅场板。
控制栅极沟槽32的深度实现了常关操作,同时使与势垒层/沟道层界面和栅极沟槽32的底部之间的垂直距离相关的电阻分量最小化。如上所讨论的,对于常关操作,距离d30需要大于0nm,并且需要尽可能小以便最小化导通电阻。
典型地为5nm的势垒层18允许以高的一致性精确地控制栅极沟槽32深度30。当蚀刻栅极沟槽通过势垒层时,结果总是有一些过蚀刻,并且一般有约10%过蚀刻。因此如果势垒层18为50nm厚,则过蚀刻将为约5nm,这将是相对大的过蚀刻。采用仅约5nm厚度的势垒层18,更好地控制了过蚀刻,且10%过蚀刻将仅为0.5nm。因此,仅约5nm的势垒层18允许更好地控制距离d 30。
图2显示了制造根据本公开的III族氮化物场效应晶体管的工艺流程。在步骤1中,为沟道层16和势垒层18生长epi层。在步骤2中,将介电层26沉积在势垒层18上。然后在步骤3中,将栅极沟槽32蚀刻通过介电层26和势垒层18,然后蚀刻入沟道层16中达距离d 30。在步骤4中,形成栅极绝缘体28堆叠。然后在步骤5中,通过蚀刻通过栅极绝缘体28、电介质26和势垒层18,然后形成用于源极20和漏极22的金属来形成源极20和漏极22。下一步在步骤6中,将栅极24金属化。
图3A-3C显示根据本公开的III族氮化物场效应晶体管的典型电流-电压曲线的图。该图指示了阈值电压为至少1V,导通电阻位20ohm-mm或更小,并且击穿电压为至少600V。
现在已经根据专利法规的要求描述了本发明,本领域技术人员将理解如何对本发明进行改变和修改以便满足其具体的要求或条件。这样的改变和修改可以在不背离如在本文公开的本发明的范围和精神的前提下做出。
提出上面对示例性和优选的实施方案的详细描述用于举例说明和根据法律要求公开的目的。其不意在是穷尽的或将本发明限于所述的准确形式,而是仅仅使得本领域其他技术人员能够理解本发明如何可以适合于特殊的用途或实施方式。对于本领域专业技术人员来说改型和变化的可能性将是显而易见的。不意在限制对可能已经包括公差、部件尺寸、具体工作条件、工程规范等并且可能在实施方式之间发生变化或对现有技术状态有所改变的示例性实施方案的描述,并且不应当由此暗示任何限制。申请人已经关于现有技术状态做出了本公开,而且考虑了许多进展并且未来的适应性改动可以考虑那些进展,主要根据当时的现有技术状态。本发明的范围意在由书面的权利要求以及可适用的等效形式限定。除非明确那样说明,否则提及单数的权利要求要素不意在表示“一个和仅一个”。而且,本公开中的任何要素、组件或方法或过程步骤不意在贡献给公众,无论在权利要求中是否明确地表述该要素、组件或步骤。本文的任何权利要求要素不应按照35U.S.C.Sec.112,第六段的规定解释,除非该要素专门地使用短语“用于……的装置”表述,并且本文的方法或过程步骤不应按照那些规定解释,除非该步骤或多个步骤专门地使用短语“包括下列的一个或多个步骤……”表述。
优选地包括本文所述的所有要素件、部件和步骤。要理解的是这些要素、部件和步骤中的任一个都可以被其他要素、部件和步骤代替或一起去掉,如对于本领域技术人员显而易见的那样。
概念
已经公开了至少下列的概念。
概念1.一种III族氮化物晶体管,包括:
III族氮化物沟道层;
在所述沟道层上方的势垒层,所述势垒层具有1-10纳米的厚度;
在所述势垒层的顶部上的介电层;
接触所述沟道层的源极;
接触所述沟道层的漏极;
延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;
内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体;和
在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极;
其中所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离大于0纳米且小于或等于5纳米。
概念2.概念1所述的晶体管,其中所述栅极绝缘体包括:
在所述栅极沟槽的底部处的单晶AlN层;
在所述单晶AlN层上的多晶AlN层;和
在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层。
概念3.一种III族氮化物晶体管,包括:
III族氮化物沟道层;
在所述沟道层上方的势垒层;
在所述势垒层的顶部上的介电层;
接触所述沟道层的源极;
接触所述沟道层的漏极;
延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;
内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,所述栅极绝缘体包括在所述栅极沟槽的底部处的单晶AlN层、在所述单晶AlN层上的多晶AlN层、和在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;和
在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
概念4.概念1或3所述的晶体管,其中:
所述单晶AlN层为至多2nm厚;
所述多晶AlN层为5nm-50nm厚;且
所述绝缘层为1nm-50nm厚。
概念5.概念1或3所述的晶体管,其中:
所述势垒层具有1-10纳米的厚度;和
所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离大于0纳米且小于或等于5纳米。
概念6.概念1或3所述的晶体管,其中:
所述沟道层是GaN;且
所述势垒层是AlGaN。
概念7.概念1或3所述的晶体管,其中:
所述晶体管的阈值电压为至少1V;
所述晶体管的导通电阻为20ohm-mm或更少;且
所述晶体管的击穿电压为至少600V。
概念8.概念1或3所述的晶体管,其中:
所述介电层为10-200纳米厚;且
所述沟道层为5纳米-2微米厚。
概念9.概念1或3所述的晶体管,进一步包括:
在所述势垒层和所述沟道层之间的至多1纳米厚的AlN分隔层。
概念10.一种制造III族氮化物晶体管的方法,包括:
形成III族氮化物沟道层;
形成在所述沟道层上方的势垒层,所述势垒层具有1-10纳米的厚度;
形成在所述势垒层的顶部上的介电层;
形成接触所述沟道层的源极;
形成接触所述沟道层的漏极;
形成延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽使得所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离为大于0纳米且小于或等于5纳米;
形成内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体;和
形成在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
概念11.概念10所述的方法,其中形成所述栅极绝缘体包括:
形成在所述栅极沟槽的底部处的单晶ALN层;
形成在所述单晶ALN层上的多晶ALN层;和
形成在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层。
概念12.一种制造III族氮化物晶体管的方法,包括:
形成III族氮化物沟道层;
形成在所述沟道层上方的势垒层;
形成在所述势垒层的顶部上的介电层;
形成接触所述沟道层的源极;
形成接触所述沟道层的漏极;
形成延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;
形成内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,所述栅极绝缘体包括在所述栅极沟槽的底部处的单晶AlN层、在所述单晶AlN层上的多晶AlN层、和在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;和
形成在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
概念13.概念10或12所述的方法,其中:
所述单晶AlN层为至多2nm厚;
所述多晶AlN层为5nm-50nm厚;且
所述绝缘层为1nm-50nm厚。
概念14.概念12所述的方法,其中:
所述势垒层具有1-10纳米的厚度;和
所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离大于0纳米且小于或等于5纳米。
概念15.概念10或12所述的方法,其中:
所述沟道层是GaN;且
所述势垒层是AlGaN。
概念16.概念10或12所述的方法,进一步包括:
形成在所述势垒层和所述沟道层之间的至多1纳米厚的AlN分隔层。
概念17.概念10或12所述的方法,其中:
在大于600℃且低于1100℃的温度下形成所述单晶AlN层;且
在大于300℃且低于900℃的温度下形成所述多晶AlN层。

Claims (24)

1.一种III族氮化物晶体管,包括:
III族氮化物沟道层;
在所述沟道层上方的势垒层,所述势垒层具有1-10纳米的厚度;
在所述势垒层的顶部上的介电层;
接触所述沟道层的源极;
接触所述沟道层的漏极;
延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;
内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体;和
在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极;
其中,所述栅极绝缘体包括:
在所述栅极沟槽的底部处的单晶AlN层;
在所述单晶AlN层上的多晶AlN层;和
在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;并且
其中,所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离大于0纳米且小于或等于5纳米。
2.根据权利要求1所述的晶体管,其中:
所述沟道层是GaN;且
所述势垒层是AlGaN。
3.根据权利要求1所述的晶体管,其中:
所述单晶AlN层为至多2nm厚;所述多晶AlN层为5nm-50nm厚;且
所述绝缘层为1nm-50nm厚。
4.根据权利要求1所述的晶体管,其中:
所述晶体管的阈值电压为至少1V;所述晶体管的导通电阻为20ohm-mm或更少;和
所述晶体管的击穿电压为至少600V。
5.根据权利要求1所述的晶体管,其中:
所述介电层为10-200纳米厚;且
所述沟道层为5纳米-2微米厚。
6.根据权利要求1所述的晶体管,进一步包括:
在所述势垒层和所述沟道层之间的至多1纳米厚的AlN分隔层。
7.一种III族氮化物晶体管,包括:
III族氮化物沟道层;
在所述沟道层上方的势垒层;
在所述势垒层的顶部上的介电层;
接触所述沟道层的源极;
接触所述沟道层的漏极;
延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;
内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,所述栅极绝缘体包括在所述栅极沟槽的底部处的单晶AlN层、在所述单晶AlN层上的多晶AlN层、和在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;和
在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
8.根据权利要求7所述的晶体管,其中:
所述单晶AlN层为至多2nm厚;
所述多晶AlN层为5nm-50nm厚;且
所述绝缘层为1nm-50nm厚。
9.根据权利要求7所述的晶体管,其中:
所述势垒层具有1-10纳米的厚度;和
所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离大于0纳米且小于或等于5纳米。
10.根据权利要求7所述的晶体管,其中:
所述沟道层是GaN;且
所述势垒层是AlGaN。
11.根据权利要求7所述的晶体管,其中:
所述晶体管的阈值电压为至少1V;
所述晶体管的导通电阻为20ohm-mm或更少;且
所述晶体管的击穿电压为至少600V。
12.根据权利要求7所述的晶体管,其中:
所述介电层为10-200纳米厚;且
所述沟道层为5纳米-2微米厚。
13.根据权利要求7所述的晶体管,进一步包括:
在所述势垒层和所述沟道层之间的至多1纳米厚的AlN分隔层。
14.一种制造III族氮化物晶体管的方法,包括:
形成III族氮化物沟道层;
形成在所述沟道层上方的势垒层,所述势垒层具有1-10纳米的厚度;
形成在所述势垒层的顶部上的介电层;
形成接触所述沟道层的源极;
形成接触所述沟道层的漏极;
形成延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽,使得所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离为大于0纳米且小于或等于5纳米;
形成内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,其中形成所述栅极绝缘体包括:形成在所述栅极沟槽的所述底部处的单晶AlN层,形成在所述单晶ALN层上的多晶ALN层,和形成在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;和
形成在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
15.根据权利要求14所述的方法,其中:
所述沟道层是GaN;且
所述势垒层是AlGaN。
16.根据权利要求14所述的方法,其中:
所述单晶AlN层为至多2nm厚;所述多晶AlN层为5nm-50nm厚;且
所述绝缘层为1nm-50nm厚。
17.根据权利要求14所述的方法,进一步包括:
形成在所述势垒层和所述沟道层之间的至多1纳米厚的AlN分隔层。
18.根据权利要求14所述的方法,其中:
在大于600℃且低于1100℃的温度下形成所述单晶AlN层;且在大于300℃且低于900℃的温度下形成所述多晶AlN层。
19.一种制造III族氮化物晶体管的方法,包括:
形成III族氮化物沟道层;
形成在所述沟道层上方的势垒层;
形成在所述势垒层的顶部上的介电层;
形成接触所述沟道层的源极;
形成接触所述沟道层的漏极;
形成延伸通过所述介电层和势垒层并且具有位于所述沟道层内的底部的栅极沟槽;
形成内衬所述栅极沟槽并在所述介电层上方延伸的栅极绝缘体,所述栅极绝缘体包括在所述栅极沟槽的底部处的单晶AlN层、在所述单晶AlN层上的多晶AlN层、和在所述多晶AlN层上的包含AL2O3、AlON或SiN的绝缘层;和
形成在所述栅极沟槽中并部分地朝向所述源极和所述漏极延伸以形成集成的栅场板的栅极。
20.根据权利要求19所述的方法,其中:
所述单晶AlN层为至多2nm厚;所述多晶AlN层为5nm-50nm厚;且
所述绝缘层为1nm-50nm厚。
21.根据权利要求19所述的方法,其中:
所述势垒层具有1-10纳米的厚度;和
所述沟道层和所述势垒层的界面与所述栅极沟槽的底部之间的距离大于0纳米且小于或等于5纳米。
22.根据权利要求19所述的方法,其中:
所述沟道层是GaN;且
所述势垒层是AlGaN。
23.根据权利要求19所述的方法,进一步包括:
形成在所述势垒层和所述沟道层之间的至多1纳米厚的AlN分隔层。
24.根据权利要求19所述的方法,其中:
在大于600℃且低于1100℃的温度下形成所述单晶AlN层;且在大于300℃且低于900℃的温度下形成所述多晶AlN层。
CN201380079683.8A 2013-09-30 2013-09-30 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管 Active CN105556678B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/041,667 2013-09-30
PCT/US2013/062750 WO2015047421A1 (en) 2013-09-30 2013-09-30 Normally-off iii-nitride transistors with high threshold-voltage and low on-resistance
US14/041,667 US8941118B1 (en) 2011-07-29 2013-09-30 Normally-off III-nitride transistors with high threshold-voltage and low on-resistance

Publications (2)

Publication Number Publication Date
CN105556678A CN105556678A (zh) 2016-05-04
CN105556678B true CN105556678B (zh) 2018-04-10

Family

ID=52744757

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380079683.8A Active CN105556678B (zh) 2013-09-30 2013-09-30 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管
CN201580081442.6A Active CN107851612B (zh) 2013-09-30 2015-08-31 Iii族氮化物互补式晶体管

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580081442.6A Active CN107851612B (zh) 2013-09-30 2015-08-31 Iii族氮化物互补式晶体管

Country Status (4)

Country Link
US (2) US8941118B1 (zh)
EP (1) EP3345216B1 (zh)
CN (2) CN105556678B (zh)
WO (2) WO2015047421A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946724B1 (en) * 2010-06-02 2015-02-03 Hrl Laboratories, Llc Monolithically integrated self-aligned GaN-HEMTs and Schottky diodes and method of fabricating the same
US9449833B1 (en) 2010-06-02 2016-09-20 Hrl Laboratories, Llc Methods of fabricating self-aligned FETS using multiple sidewall spacers
US9337332B2 (en) 2012-04-25 2016-05-10 Hrl Laboratories, Llc III-Nitride insulating-gate transistors with passivation
CN105556678B (zh) 2013-09-30 2018-04-10 Hrl实验室有限责任公司 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管
CN103500763B (zh) * 2013-10-15 2017-03-15 苏州晶湛半导体有限公司 Ⅲ族氮化物半导体器件及其制造方法
US10276712B2 (en) 2014-05-29 2019-04-30 Hrl Laboratories, Llc III-nitride field-effect transistor with dual gates
EP3284107B1 (en) * 2015-04-14 2023-06-14 Hrl Laboratories, Llc Iii-nitride transistor with trench gate
US9812532B1 (en) 2015-08-28 2017-11-07 Hrl Laboratories, Llc III-nitride P-channel transistor
ITUB20155536A1 (it) 2015-11-12 2017-05-12 St Microelectronics Srl Transistore hemt di tipo normalmente spento includente una trincea contenente una regione di gate e formante almeno un gradino, e relativo procedimento di fabbricazione
WO2017087197A1 (en) 2015-11-19 2017-05-26 Hrl Laboratories, Llc Iii-nitride field-effect transistor with dual gates
ITUB20155862A1 (it) * 2015-11-24 2017-05-24 St Microelectronics Srl Transistore di tipo normalmente spento con ridotta resistenza in stato acceso e relativo metodo di fabbricazione
CN105845723B (zh) * 2016-05-18 2019-03-15 中国科学院微电子研究所 增强型GaN基高电子迁移率晶体管及其制备方法
US10170611B1 (en) 2016-06-24 2019-01-01 Hrl Laboratories, Llc T-gate field effect transistor with non-linear channel layer and/or gate foot face
US10283358B2 (en) * 2017-05-18 2019-05-07 Hrl Laboratories, Llc Lateral GaN PN junction diode enabled by sidewall regrowth
TWI660465B (zh) * 2017-07-28 2019-05-21 新唐科技股份有限公司 半導體元件及其製造方法
US10651306B2 (en) 2017-08-25 2020-05-12 Hrl Laboratories, Llc Digital alloy based back barrier for P-channel nitride transistors
US11233047B2 (en) 2018-01-19 2022-01-25 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices on highly doped regions of intrinsic silicon
US10950598B2 (en) * 2018-01-19 2021-03-16 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices formed on highly doped semiconductor
US11056483B2 (en) 2018-01-19 2021-07-06 Macom Technology Solutions Holdings, Inc. Heterolithic microwave integrated circuits including gallium-nitride devices on intrinsic semiconductor
US10868162B1 (en) 2018-08-31 2020-12-15 Hrl Laboratories, Llc Self-aligned gallium nitride FinFET and method of fabricating the same
CN109742072B (zh) * 2019-01-04 2019-08-16 苏州汉骅半导体有限公司 集成增强型和耗尽型的hemt及其制造方法
CN109786233B (zh) * 2019-01-17 2021-01-12 中国电子科技集团公司第十三研究所 非对称表面沟道场效应晶体管的制备方法及功率器件
CN109841677A (zh) * 2019-03-28 2019-06-04 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
CN109962100B (zh) * 2019-04-03 2022-07-05 中国科学院微电子研究所 P型沟道GaN基结构及电子器件
US20200373421A1 (en) * 2019-05-22 2020-11-26 Intel Corporation Iii-n transistor arrangements for reducing nonlinearity of off-state capacitance
US20220254912A1 (en) * 2019-05-23 2022-08-11 Power Integrations, Inc. An enhancement mode metal insulator semiconductor high electron mobility transistor
CN110634867B (zh) * 2019-09-10 2023-08-18 英诺赛科(珠海)科技有限公司 半导体装置及其制造方法
US11600614B2 (en) 2020-03-26 2023-03-07 Macom Technology Solutions Holdings, Inc. Microwave integrated circuits including gallium-nitride devices on silicon
US11522077B2 (en) 2020-05-27 2022-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Integration of p-channel and n-channel E-FET III-V devices with optimization of device performance
CN111627908B (zh) * 2020-05-29 2023-08-29 宁波铼微半导体有限公司 一种GaN基CMOS器件及其制备方法
WO2022032576A1 (zh) * 2020-08-13 2022-02-17 苏州晶湛半导体有限公司 半导体结构及其制作方法
CN112687543B (zh) * 2020-12-09 2021-09-03 上海芯导电子科技股份有限公司 一种氮化镓器件的制备方法及终端结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227501A (ja) * 2007-03-12 2008-09-25 Cree Inc 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW440908B (en) 2000-03-27 2001-06-16 Mosel Vitelic Inc Method for forming a self-aligned contact
US6538621B1 (en) 2000-03-29 2003-03-25 Hrl Laboratories, Llc Tunable impedance surface
EP1292648B1 (de) * 2000-06-02 2007-04-11 MicroGaN GmbH Heterostruktur mit rückseitiger donatordotierung
US6411261B1 (en) 2001-02-26 2002-06-25 E-Tenna Corporation Artificial magnetic conductor system and method for manufacturing
US6525695B2 (en) 2001-04-30 2003-02-25 E-Tenna Corporation Reconfigurable artificial magnetic conductor using voltage controlled capacitors with coplanar resistive biasing network
US6897831B2 (en) 2001-04-30 2005-05-24 Titan Aerospace Electronic Division Reconfigurable artificial magnetic conductor
CN1557024B (zh) 2001-07-24 2010-04-07 美商克立股份有限公司 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)
US6917343B2 (en) 2001-09-19 2005-07-12 Titan Aerospace Electronics Division Broadband antennas over electronically reconfigurable artificial magnetic conductor surfaces
US7245269B2 (en) 2003-05-12 2007-07-17 Hrl Laboratories, Llc Adaptive beam forming antenna system using a tunable impedance surface
EP1649539B1 (en) 2003-07-14 2011-01-05 Photonicsystems, Inc. Bi-directional signal interface
US6818939B1 (en) 2003-07-18 2004-11-16 Semiconductor Components Industries, L.L.C. Vertical compound semiconductor field effect transistor structure
TWI313060B (en) * 2003-07-28 2009-08-01 Japan Science & Tech Agency Feild effect transisitor and fabricating method thereof
US7382001B2 (en) 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
US8193612B2 (en) 2004-02-12 2012-06-05 International Rectifier Corporation Complimentary nitride transistors vertical and common drain
JP2006032552A (ja) 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
US7217960B2 (en) 2005-01-14 2007-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device
EP2192625B1 (en) 2005-04-04 2012-02-15 Tohoku Techno Arch Co., Ltd. Method for growth of GaN single crystal, method for preparation of GaN substrate, process for producing GaN-based element, and GaN-based element
US8324660B2 (en) * 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7972915B2 (en) * 2005-11-29 2011-07-05 The Hong Kong University Of Science And Technology Monolithic integration of enhancement- and depletion-mode AlGaN/GaN HFETs
WO2007062590A1 (en) 2005-11-29 2007-06-07 The Hong Kong University Of Science & Technology Low density drain hemts
US20070138505A1 (en) 2005-12-12 2007-06-21 Kyma Technologies, Inc. Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
WO2008061778A1 (en) 2006-11-21 2008-05-29 Interuniversitair Microelektronica Centrum Surface treatment and passivation of aigan/gan hemt
JP2008270794A (ja) 2007-03-29 2008-11-06 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2009073866A1 (en) 2007-12-07 2009-06-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Gate after diamond transistor
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
JP5597921B2 (ja) 2008-12-22 2014-10-01 サンケン電気株式会社 半導体装置
JP5678485B2 (ja) * 2009-08-03 2015-03-04 ソニー株式会社 半導体装置
DE102009041548A1 (de) 2009-09-15 2011-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterstruktur
US9093753B2 (en) 2010-01-22 2015-07-28 Industry-Academic Cooperation Foundation, Yonsei University Artificial magnetic conductor
US8212294B2 (en) * 2010-01-28 2012-07-03 Raytheon Company Structure having silicon CMOS transistors with column III-V transistors on a common substrate
US8957831B1 (en) 2010-03-30 2015-02-17 The Boeing Company Artificial magnetic conductors
US8461664B2 (en) * 2010-06-02 2013-06-11 The United States Of America, As Represented By The Secretary Of The Navy N- and p-channel field-effect transistors with single quantum well for complementary circuits
US8853709B2 (en) 2011-07-29 2014-10-07 Hrl Laboratories, Llc III-nitride metal insulator semiconductor field effect transistor
US8124505B1 (en) 2010-10-21 2012-02-28 Hrl Laboratories, Llc Two stage plasma etching method for enhancement mode GaN HFET
JP2012094774A (ja) 2010-10-28 2012-05-17 Sony Corp 半導体装置
JP5801560B2 (ja) 2011-01-21 2015-10-28 株式会社豊田中央研究所 半導体装置
EP2695241B1 (en) 2011-04-07 2021-08-18 HRL Laboratories, LLC Tunable impedance surfaces
US9024357B2 (en) 2011-04-15 2015-05-05 Stmicroelectronics S.R.L. Method for manufacturing a HEMT transistor and corresponding HEMT transistor
US8835988B2 (en) * 2011-06-06 2014-09-16 Eta Semiconductor Inc. Hybrid monolithic integration
US8653559B2 (en) 2011-06-29 2014-02-18 Hrl Laboratories, Llc AlGaN/GaN hybrid MOS-HFET
JP2013041986A (ja) * 2011-08-16 2013-02-28 Advanced Power Device Research Association GaN系半導体装置
US8575666B2 (en) * 2011-09-30 2013-11-05 Raytheon Company Method and structure having monolithic heterogeneous integration of compound semiconductors with elemental semiconductor
JP2013229493A (ja) * 2012-04-26 2013-11-07 Sharp Corp Iii族窒化物半導体積層基板およびiii族窒化物半導体電界効果トランジスタ
JP6090764B2 (ja) 2012-05-24 2017-03-08 ローム株式会社 窒化物半導体装置およびその製造方法
EP2713142B1 (de) 2012-09-28 2017-01-04 SICK STEGMANN GmbH Vorrichtung zur Messung der relativen Position zweier relativ zueinander bewegbarer Objekte
KR101736277B1 (ko) 2012-12-12 2017-05-17 한국전자통신연구원 전계 효과 트랜지스터 및 그 제조 방법
JP6253886B2 (ja) 2013-01-09 2017-12-27 トランスフォーム・ジャパン株式会社 半導体装置及び半導体装置の製造方法
US8946779B2 (en) * 2013-02-26 2015-02-03 Freescale Semiconductor, Inc. MISHFET and Schottky device integration
US9018056B2 (en) * 2013-03-15 2015-04-28 The United States Of America, As Represented By The Secretary Of The Navy Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material
US9356045B2 (en) * 2013-06-10 2016-05-31 Raytheon Company Semiconductor structure having column III-V isolation regions
US20150041820A1 (en) * 2013-08-12 2015-02-12 Philippe Renaud Complementary gallium nitride integrated circuits and methods of their fabrication
JP2015046445A (ja) 2013-08-27 2015-03-12 富士通株式会社 化合物半導体装置及びその製造方法
KR102210325B1 (ko) * 2013-09-06 2021-02-01 삼성전자주식회사 Cmos 소자 및 그 제조 방법
CN105556678B (zh) 2013-09-30 2018-04-10 Hrl实验室有限责任公司 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管
US9331076B2 (en) * 2014-05-02 2016-05-03 International Business Machines Corporation Group III nitride integration with CMOS technology
EP3221886A4 (en) * 2014-11-18 2018-07-11 Intel Corporation Cmos circuits using n-channel and p-channel gallium nitride transistors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227501A (ja) * 2007-03-12 2008-09-25 Cree Inc 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法

Also Published As

Publication number Publication date
CN107851612B (zh) 2022-03-29
CN107851612A (zh) 2018-03-27
EP3345216A4 (en) 2019-04-03
WO2017039635A1 (en) 2017-03-09
US8941118B1 (en) 2015-01-27
WO2015047421A1 (en) 2015-04-02
US9559012B1 (en) 2017-01-31
CN105556678A (zh) 2016-05-04
EP3345216B1 (en) 2021-10-13
EP3345216A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
CN105556678B (zh) 具有高阈值电压和低导通电阻的常关型iii族氮化物晶体管
US10084077B2 (en) Semiconductor device and method of manufacturing semiconductor device
EP3055885B1 (en) Normally-off iii-nitride transistors with high threshold-voltage and low on-resistance
US9337332B2 (en) III-Nitride insulating-gate transistors with passivation
US9349829B2 (en) Method of manufacturing a multi-channel HEMT
US10043896B2 (en) III-Nitride transistor including a III-N depleting layer
US9318593B2 (en) Forming enhancement mode III-nitride devices
US10192986B1 (en) HEMT GaN device with a non-uniform lateral two dimensional electron gas profile and method of manufacturing the same
CN107731902B (zh) 第iii族氮化物常关晶体管的层结构
US10700201B2 (en) HEMT GaN device with a non-uniform lateral two dimensional electron gas profile and method of manufacturing the same
CN101002332A (zh) 半导体器件
CN105229207A (zh) 在异质基底上的第III族氮化物缓冲层结构的p型掺杂
US20130307026A1 (en) High electron mobility transistors and methods of manufacturing the same
CN109817698A (zh) 形成用于氮化镓沟道器件的半导体结构的方法
US11594625B2 (en) III-N transistor structures with stepped cap layers
US20220399460A1 (en) Gan vertical trench mosfets and methods of manufacturing the same
CN103003930B (zh) 场效应晶体管
TW201611268A (zh) 半導體裝置
US20110057198A1 (en) TECHNIQUE FOR DEVELOPMENT OF HIGH CURRENT DENSITY HETEROJUNCTION FIELD EFFECT TRANSISTORS BASED ON (10-10)-PLANE GaN BY DELTA-DOPING
CN105580140B (zh) 场效应晶体管和方法
KR101364026B1 (ko) 질화물 반도체 소자 및 그 제조 방법
KR102080744B1 (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant