US7230284B2 - Insulating gate AlGaN/GaN HEMT - Google Patents
Insulating gate AlGaN/GaN HEMT Download PDFInfo
- Publication number
- US7230284B2 US7230284B2 US10/201,345 US20134502A US7230284B2 US 7230284 B2 US7230284 B2 US 7230284B2 US 20134502 A US20134502 A US 20134502A US 7230284 B2 US7230284 B2 US 7230284B2
- Authority
- US
- United States
- Prior art keywords
- layer
- barrier
- hemt
- insulating
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910002704 AlGaN Inorganic materials 0.000 title claims abstract 7
- 230000004888 barrier function Effects 0.000 claims abstract description 86
- 239000004065 semiconductor Substances 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims description 35
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 25
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 22
- 230000015556 catabolic process Effects 0.000 claims description 14
- 150000004767 nitrides Chemical class 0.000 claims description 11
- 238000006731 degradation reaction Methods 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 9
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 7
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 24
- 238000004544 sputter deposition Methods 0.000 abstract description 17
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 196
- 229910002601 GaN Inorganic materials 0.000 description 34
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 34
- 239000000758 substrate Substances 0.000 description 28
- 239000007789 gas Substances 0.000 description 25
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 229910010271 silicon carbide Inorganic materials 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000012159 carrier gas Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910020776 SixNy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910004205 SiNX Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001272 nitrous oxide Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 238000003949 trap density measurement Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 2
- NTWRPUHOZUFEDH-UHFFFAOYSA-N C[Mg]C1C=CC=C1 Chemical compound C[Mg]C1C=CC=C1 NTWRPUHOZUFEDH-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910017947 MgOx Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- -1 MgNx Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021339 platinum silicide Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/518—Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
- H01L29/7783—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/291—Oxides or nitrides or carbides, e.g. ceramics, glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/432—Heterojunction gate for field effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- This invention relates to aluminum gallium nitride and gallium nitride based high electron mobility transistors.
- Microwave systems commonly use solid state transistors as amplifiers and oscillators which has resulted in significantly reduced system size and increased reliability.
- To accommodate the expanding number of microwave systems there is an interest in increasing their operating frequency and power. Higher frequency signals can carry more information (bandwidth), allow for smaller antennas with very high gain, and provide radar with improved resolution.
- FETs Field effect transistors
- HEMTs high electron mobility transistors
- semiconductor materials such as Silicon (Si) or Gallium Arsenide (GaAs).
- Si Silicon
- GaAs Gallium Arsenide
- One disadvantage of Si is that it has low electron mobility (approximately 1450 cm 2 /V ⁇ s), which produces a high source resistance. This resistance seriously degrades the high performance gain otherwise possible from Si based HEMTs.
- GaAs is also a common material for use in HEMTs and has become the standard for signal amplification in civil and military radar, handset cellular, and satellite communications.
- GaAs has a higher electron mobility (approximately 6000 cm 2 /V ⁇ s) and a lower source resistance than Si, which allows GaAs based devices to function at higher frequencies.
- GaAs has a relatively small bandgap (1.42 eV at room temperature) and relatively small breakdown voltage, which prevents GaAs based HEMTs from providing high power at high frequencies.
- GaN gallium nitride
- AlGaN aluminum gallium nitride
- Improvements in the manufacturing of gallium nitride (GaN) and aluminum gallium nitride (AlGaN) semiconductor materials have focused interest on the development of AlGaN/GaN based HEMTs. These devices can generate large amounts of power because of their unique combination of material characteristics including high breakdown fields, wide bandgaps (3.36 eV for GaN at room temperature), large conduction band offset, and high saturated electron drift velocity.
- the same size AlGaN/GaN amplifier can produce up to ten times the power of a GaAs amplifier operating at the same frequency.
- U.S. Pat. No. 5,192,987 to Khan et al discloses AlGaN/GaN based HEMTs grown on a buffer and a substrate, and a method for producing them.
- Other HEMTs have been described by Gaska et al., “High-Temperature Performance of AlGaN/GaN HFET's on SiC Substrates,” IEEE Electron Device Letters, Vol. 18, No 10, October 1997, Page 492; and Wu et al. “High Al-content AlGaN/GaN HEMTs With Very High Performance”, IEDM -1999 Digest pp. 925–927, Washington D.C., December 1999.
- f T gain-bandwidth product
- f T gain-bandwidth product
- Some of these devices have shown a gain-bandwidth product (f T ) as high as 100 gigahertz (Lu et al. “AlGaN/GaN HEMTs on SiC With Over 100 GHz f t and Low Microwave Noise”, IEEE Transactions on Electron Devices, Vol. 48, No. 3, March 2001, pp. 581–585) and high power densities up to 10 W/mm at X-band (Wu et al., “Bias-dependent Performance of High-Power AlGaN/GaN HEMTs”, IEDM -2001, Washington D.C., Dec. 2–6, 2001).
- AlGaN/GaN based FETs and HEMTs have been unable to produce significant amounts of total microwave power with high efficiency and high gain. They produce significant power gain with DC gate drives, but with frequency step-ups as low as a millihertz to a few kilohertz, their amplification drops off significantly.
- the traps donate electrons to the 2-dimensional electron gas (2-DEG) in HEMTs.
- Trapping levels located deep in a band gap are also slower in releasing trapped carriers than other levels located near the conduction of valence bands. This is due to the increased energy that is required to re-excite a trapped electron from a center near the middle of the band gap to the conduction band, compared to the energy required to re-excite the electron from a level closer to the conduction band.
- the traps capture channel electrons. The slow trapping and de-trapping process degrades transistor speed, which largely degrades the power performance at microwave frequencies.
- the trap density of a AlGaN/GaN based HEMTs is dependent upon the surface and volume of the AlGaN barrier layer. Reducing the thickness of the AlGaN layer reduces the total trapping volume, thereby reducing the trapping effect during high frequency operation. However, reducing the thickness of the AlGaN layer can have the undesirable effect of increasing the gate leakage. During normal operation a bias is applied across the source and drain contacts and current flows between the contacts, primarily through the 2DEG. However, in HEMTs having thinner AlGaN layers, current can instead leak into the gate creating an undesirable current flow from the source to the gate. Also, the thinner AlGaN layer can result in a reduction in the HEMT's available maximum drive current.
- the present invention seeks to provide an improved AlGaN/GaN HEMT that addresses the above problems by having a thin AlGaN layer to reduce trapping and also having additional layers to reduce gate leakage and increase the maximum drive current.
- the invention also discloses methods for manufacturing HEMTs with these characteristics.
- One HEMT according to the present invention comprises a high resistivity semiconductor layer with a barrier semiconductor layer on it.
- the barrier layer has a wider bandgap than the high resistivity layer and a two dimensional electron gas forms between the barrier and high resistivity layers.
- Source and drain contacts are included that contact the barrier layer, with part of the surface of the barrier layer uncovered by the contacts.
- An insulating layer is included on the uncovered surface of the barrier layer.
- a gate contact is deposited on the insulating layer with the insulating layer forming a barrier to gate leakage current and also increasing the HEMT's maximum current drive.
- the invention also includes methods for fabricating HEMTs according to the present invention.
- the active layers of the HEMT are formed on a substrate in a metal-organic chemical vapor deposition reactor. Source gasses are then fed into the reactor for “in-situ” formation of an insulating layer on the active HEMT's active layer. The HEMT can then be removed from the reactor for further processing.
- Another method for fabricating HEMTs according to the present invention includes forming the active layers of a HEMT on a substrate. The substrate is then placed in a sputtering chamber where the insulating layer is sputtered onto the top surface of the HEMT active layers. The HEMT can then be removed from the sputtering chamber for further processing.
- FIG. 1 is a sectional view of a AlGaN/GaN HEMT according to the present invention having an insulating layer on the AlGaN layer and a gate contact on the insulating layer;
- FIG. 2 is a sectional view of the HEMT in FIG. 1 with a dielectric layer on its surface;
- FIG. 3 is a sectional view of a AlGaN/GaN HEMT according to the present invention with the insulating layer only under the gate contact;
- FIG. 4 is a sectional view of a AlGaN/GaN HEMT according to the present invention having a double insulating layers on the AlGaN layer and a gate contact on the insulating layers;
- FIG. 5 is a sectional view of the HEMT in FIG. 4 with a dielectric layer on its surface;
- FIG. 6 is a sectional view of a AlGaN/GaN HEMT according to the present invention with the double insulating only under the gate contact;
- FIG. 7 is a simplified diagram of a metal-organic chemical vapor deposition (MOCVD) reactor used in a method according to the present invention for fabricating a HEMT; and
- MOCVD metal-organic chemical vapor deposition
- FIG. 8 is a simplified diagram of a sputtering chamber used in a method according to the present invention for fabricating a HEMT.
- FIG. 1 shows an AlGaN/GaN based HEMT 10 constructed in accordance with this invention. It comprises a substrate 11 that can be either sapphire (Al 2 O 3 ) or silicon carbide (SiC), with the preferred substrate being a 4H polytype of silicon carbide. Other silicon carbide polytypes can also be used including 3C, 6H and 15R polytypes.
- Silicon carbide has a much closer crystal lattice match to Group III nitrides than sapphire and results in Group III nitride films of higher quality. Silicon carbide also has a very high thermal conductivity so that the total output power of Group III nitride devices on silicon carbide is not limited by the thermal dissipation of the substrate (as is the case with some devices formed on sapphire). Also, the availability of semi insulating silicon carbide substrates provides the capacity for device isolation and reduced parasitic capacitance that make commercial devices possible. SiC substrates are available from Cree Research, Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in a U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.
- the HEMT 10 includes a high resistivity layer 20 on the buffer layer 12 and a barrier layer 18 on said high resistivity layer 20 such that the high resistivity layer 20 is sandwiched between the barrier layer 18 and the buffer layer 12 .
- the barrier layer 18 is typically about 0.1 to 0.3 micrometers thick and the barrier layer 18 , high resistivity layer 20 , and buffer layer 12 , are preferably formed on the substrate 11 by epitaxial growth or ion implantation.
- the HEMT also includes source and drain contacts 13 , 14 that are on the surface of the high resistivity layer 20 .
- the barrier layer 18 is disposed between the contacts 13 and 14 , with each contacting the edge of the barrier layer.
- An insulating layer 24 is included on the barrier layer 18 between the contacts 13 and 14 . In the embodiment shown, the insulating layer 24 covers the entire barrier layer 18 , but in other embodiments (one described below) all of the barrier layer 18 is not covered.
- the layer 24 can be made of many different materials including but not limited to silicon nitride (SiN), aluminum nitride (AlN), silicon dioxide (SiO 2 ) or a combination incorporating multiple layers thereof.
- the contacts 13 and 14 are usually separated by a distance in the range 1.5 to 10 micrometers for microwave devices.
- a rectifying Schottky contact (gate) 16 is located on the surface of the insulator layer 24 between the source and drain contacts 13 and 14 , and it typically has a length in the range of 0.1 to 2 micrometers.
- the total width of the HEMT depends on the total power required. It can be wider than 30 millimeters, with the typical width being in the range of 100 microns to 6 millimeters.
- the Al x Ga 1 ⁇ x N layer 18 has a wider bandgap than the GaN layer 20 and this discontinuity in energy band gaps results in a free charge transfer from the wider band gap to the lower band gap material.
- a charge accumulates at the interface between the two and creates a two dimensional electron gas (2DEG) 22 that allows current to flow between the source and drain contacts 13 and 14 .
- the 2DEG has very high electron mobility which gives the HEMT a very high transconductance at high frequencies.
- the voltage applied to the gate 16 electrostatically controls the number of electrons in the 2DEG directly under the gate, and thus controls the total electron flow.
- the source and drain contact 13 and 14 are preferably formed of alloys of titanium, aluminum, nickel and gold, and the gate 16 is preferably formed of titanium, platinum, chromium, nickel, alloys of titanium and tungsten, and platinum silicide.
- the contacts comprise an alloy of nickel, silicon, and titanium that is formed by depositing respective layers of these materials, and then annealing them. Because this alloy system eliminates aluminum, it avoids unwanted aluminum contamination over the device surface when the anneal temperature exceeds the melting point of aluminum (660 degrees C.).
- the drain contact 14 is biased at a specified potential (positive drain potential for an n-channel device) and the source is grounded. This causes current to flow through the channel and 2DEG, from the drain to the source contacts 13 , 14 .
- the flow of current is controlled by the bias and frequency potentials applied to the gate 16 , which modulate the channel current and provide gain.
- the trap density of the AlGaN layer 18 is dependent on the layer's volume and by reducing the thickness of the layer 18 the trapping density can also be reduced to decrease the trapping effect.
- reducing the thickness of the AlGaN layer increases gate leakage and reduces the devices maximum current drive.
- gate leakage of the HEMT is reduced. This has the direct impact of improving the long-term reliability of the device, since gate leakage is one of the sources of HEMT degradation.
- the turn-on voltage of the HEMT 10 is dependent upon the type of material used for the insulator layer 24 and the turn-on voltage can be as high as 3–4 volts.
- the HEMT 10 can then be operated in the accumulation mode with higher current level and higher input drive level.
- the insulator layer also serves as a natural passivant for the HEMT, which improves its reliability.
- FIG. 2 shows an AlGaN based HEMT 30 similar to the HEMT 10 in FIG. 1 .
- the HEMT 30 has similar layers including a substrate 11 , buffer layer 12 , GaN layer 20 , 2DEG 22 , Al x Ga 1 ⁇ x N barrier layer 18 and insulating layer 24 .
- the HEMT 30 also has source, gate and drain contacts 13 , 14 , 16 , similar to those on the HEMT 10 .
- the HEMT 30 includes an additional dielectic layer 32 disposed on the surface of the insulating layer 24 between the source, gate and drain contacts 13 , 16 , 14 .
- the dielectric layer protects the HEMT from undesirable passivation, impurities and damage that can occur during handling.
- the dielectric layer can be made of many different materials or combinations of materials, with a suitable material being Si x N y .
- the insulating layer 24 serves to reduce gate leakage and allow increased current drive by the section of the layer 24 that is sandwiched between the gate 16 and the barrier layer 18 .
- the sections of the layer 24 that extend beyond the gate 16 help in protecting the surface of the barrier layer between the contacts, but do not help in reducing gate leakage or increasing current drive.
- FIG. 3 shows another embodiment of a HEMT 40 according to the present invention similar to the HEMTs 10 and 30 in FIGS. 1 and 2 .
- the HEMT 40 has similar layers including a substrate 11 , buffer layer 12 , GaN layer 20 , 2DEG 22 and Al x Ga 1 ⁇ x N barrier layer 18 .
- the HEMT 30 also has source, gate and drain contacts 13 , 14 and 16 , similar to those on the HEMTs 10 and 40 .
- the insulating layer 42 in HEMT 40 is only included below the gate contact 16 , such that the insulating layer is only sandwiched between the gate contact 16 and the barrier layer 18 .
- the surface of the barrier layer 18 between the contacts 13 , 14 , 16 is uncovered by the insulating layer 42 . It can remain uncovered or can include a layer of dielectic material 44 to help reduce the effects of trapping and to help reduce any undesirable passivation and damage to the HEMT's layers. It also helps to reduce the introduction of impurities into the HEMT's layers.
- the dielectric layer is preferably silicon nitride (Si x N y ), with silicon being the source of the donor electrons to reduce trapping.
- silicon being the source of the donor electrons to reduce trapping.
- the layer 32 and 44 should meet the following conditions. First, it should have a dopant that provides a high source of donor electrons. For silicon nitride, the layer should have a high percentage of Si. Although the applicant does not wish to be bound by any theory of operation, it is presently believed that electrons from the layer fill surface traps such that they become neutral and do not capture barrier layer electrons during operation.
- the energy level of the dopant should be higher than the energy level in the trap and for optimal results, the energy should be higher than the energy level of the barrier layer's conduction band edge. It is believed that this reduces the possibility of an electron from the gate metal giving to the donor states and prevents the trapping and de-trapping at that energy level.
- the layer will also work if the dopant's energy level is slightly below the energy level in the barrier layer's conduction band, but the higher its energy the better.
- the bond between the coating and the surface of the conducting channel should be stable under stress. If the bond is unstable, it is believed that the layer may fail under actual device operation when subjected to the stress created by increases in the electron field, voltage or temperature.
- Low breakdown voltage can be experienced in HEMTs that have an insulating layer that is deposited in-situ using metal-organic chemical vapor deposition (MOCVD). Although applicants do not wish to be bound by any one theory, it is believed that this low breakdown voltage is attributable to the doping/degradation of the AlGaN barrier layer during growth of the SiN layer.
- the growth conditions such as the growth temperature of the SiN layer also affected the mobility of the HEMT's sheet charge. Lowering the growth temperature of the insulating layer resulted in less degradation of the HEMT, but also resulted in a reduced growth rate of the SiN.
- FIG. 4 shows a HEMT 50 that is similar to the HEMTS 10 , 30 and 40 in FIGS. 1 , 2 and 3 .
- the HEMT 50 has a similar substrate 11 , buffer layer 12 , GaN layer 20 , 2DEG 22 , and Al x Ga 1 ⁇ x N barrier layer 18 .
- the HEMT 30 also has similar source, gate and drain contacts 13 , 14 , 16 .
- the HEMT 50 has a double layer arrangement is used instead of a single layer.
- the double layers include an AlN spacer layer 52 on the barrier layer 18 between the source and drain contacts 13 , 14 .
- a SiN insulating layer 54 is included on the AlN layer 52 with the gate contact 16 arranged on the insulating layer 54 .
- the AlN spacer layer 52 serves as a spacer or barrier between the SiN insulating layer 52 and the active AlGaN barrier layer 18 . This spacer layer 52 prevents the doping/degradation of the barrier layer 18 during growth of the SiN insulating layer 54 during normal growth conditions.
- spacer layer Other materials can be used for the spacer layer as long as the material prevents the doping and degradation of the AlGaN barrier layer 18 during deposition of the SiN insulating layer 54 at normal growth rates. Methods that allow for depositing the SiN insulating layer directly on the AlGaN layer without a spacer layer can also be used if doping and degradation can be avoided. The important aspect of these features of the invention is that the HEMTs low breakdown voltage is avoided.
- FIG. 5 shows another HEMT 60 according to the present invention that is similar to the HEMT 50 of FIG. 4 having a similar substrate 11 , buffer layer 12 , GaN layer 20 , 2DEG 22 , Al x Ga 1 ⁇ x N barrier layer 18 , AlN spacer layer 52 and SiN insulating layer 54 .
- the HEMT 60 also has similar source, gate and drain contacts 13 , 14 and 16 .
- the HEMT 60 also includes a dielectric layer 62 over the exposed surface of the SiN insulating layer 54 between the contacts 13 , 14 , 16 , similar to the dielectric layer 32 of the HEMT 30 in FIG. 2 .
- the dielectric layer 54 helps protect the HEMT 60 from undesirable passivation, impurities and damage that can occur during handling.
- the dielectric layer can be made of many different materials or combinations of materials, with a suitable material being Si x N y .
- FIG. 6 shows another HEMT 70 according to the present invention that, similar to the HEMT 40 in FIG. 3 , which has an insulating layer only below the gate contact.
- the HEMT 70 has a similar substrate 11 , buffer layer 12 , GaN layer 20 , 2DEG 22 , Al x Ga 1 ⁇ x N barrier layer 18 and source, gate and drain contacts 13 , 14 and 16 .
- the HEMT's SiN insulating layer 72 and AlN spacer layer 74 are only included below the gate 16 , such that both are sandwiched between the gate 16 and the barrier layer 18 .
- the spacer layer 74 can extend beyond the gate to cover the surface of the barrier layer between the contacts 13 , 14 and 16 .
- the HEMT 70 also includes a dielectric layer 76 that as shown covers the surface of the barrier layer 18 between the contacts 13 , 14 and 16 .
- the dielectic layer 76 helps reduce the effects of trapping and helps reduce the undesirable passivation and damage to the HEMT's layers. It also helps to reduce the introduction of impurities into the HEMT's layers.
- the dielectric layer 76 is preferably silicon nitride (Si x N y ), with silicon being the source of the donor electrons to fill any traps. To be most effective the layer 76 should meet the four conditions described above for dielectric layer 44 of FIG. 3 .
- the active layers of the HEMTs described above are made from AlGaN/GaN, but they can also be made of other Group III nitride materials.
- Group III nitrides refer to those semiconductor compounds formed between nitrogen and the elements in Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In). The term also refers to ternary and tertiary compounds such as AlGaN and AlInGaN.
- the present invention also discloses methods for fabricating the HEMTs above with single or double insulating layer.
- the insulating layers can be deposited on the AlGaN/GaN semiconductor material using MOCVD, plasma chemical vapor deposition (CVD), hot-filament CVD or sputtering.
- FIG. 7 shows a MOCVD reactor 80 used in the new method to grow the AlGaN/GaN active layers on a substrate and to deposit the insulating layers.
- the reactor 80 comprises a reaction chamber 82 having growth platform 84 supported by a rotary shaft 86 .
- a substrate 88 such as either sapphire (Al 2 O 3 ) or silicon carbide (SiC) sapphire is disposed on the growth platform 84 , although other substrates can also be used.
- the platform 84 is heated by heater elements 90 to maintain substrate 88 at a predetermined temperature.
- the temperature is typically between 400 and 1200 degrees centigrade (° C.), but can be higher or lower depending on the type of growth desired.
- the heater elements 90 can be a variety of heating devices but is usually a radio frequency (RF) or resistance coil.
- a carrier gas 92 is supplied to a gas line 94 , the carrier gas being hydrogen or nitrogen.
- the carrier gas 92 is also supplied through mass flow controllers 95 a, 95 b, 95 c, to respective bubblers 96 a, 96 b, 96 c.
- Bubbler 96 a has a growth compound, typically an alkylated compound having a methyl or ethyl group, e.g. trimethyl gallium TMG), trimethyl aluminum (TMA) or trimethyl indium (TMI).
- Bubblers 96 b and 96 c may also contain a similar metalorganic compound to be able to grow an alloy of a Group III compound.
- the bubblers 96 a, 96 b, 96 c are typically maintained at a predetermined temperature by constant temperature baths 98 a, 98 b, 98 c to ensure a constant vapor pressure of the metal organic compound before it is carried to the reaction chamber 82 by the carrier gas 92 .
- the carrier gas 92 which passes through bubblers 96 a, 96 c, 96 c is mixed with the carrier gas 92 flowing within the gas line 94 by opening the desired combination of valves 100 a, 100 b, 100 c.
- the mixed gas is then introduced into the reaction chamber 82 through a gas inlet port 102 formed at the upper end of the reaction chamber 82 .
- a nitrogen containing gas 104 such as ammonia is supplied to the gas line 94 through a mass flow controller 106 .
- the flow of nitrogen containing gas is controlled by valve 108 . If the carrier gas 92 is mixed with the nitrogen containing gas 104 , and the TMG vapor within the gas line 94 is introduced into the reaction chamber 82 , the elements are present to grow gallium nitride on the substrate 88 through thermal decomposition of the molecules in the TMG and ammonia containing gas.
- one of the bubblers 96 a, 96 b, 96 c not being used for the TMG is used for a dopant material, which is usually Magnesium (Mg) or Silicon (Si), but can be other material such as beryllium, calcium, zinc, or carbon.
- Bubbler 96 b or 96 c is used for an alloy material such as boron, aluminum, indium, phosphorous, arsenic or other materials.
- the gas within the reaction chamber 82 can be purged through a gas purge line 110 connected to a pump 112 operable under hydraulic pressure. Further, a purge valve 114 allows gas pressure to build up or be bled off from the reaction chamber 82 .
- the growth process is typically stopped by shutting off the gallium and dopant sources by closing valves 100 a and 100 b, and keeping the nitrogen containing gas and the carrier gas flowing.
- the reaction chamber 82 can be purged with a gas 116 that can be controlled through a mass flow controller 118 and valve 120 .
- the purge is aided by opening valve 114 to allow the pump 112 to evacuate the reaction chamber 82 of excess growth gasses.
- the purge gas 116 is hydrogen, but can be other gasses. Turning off power to the heater elements 90 cools the substrate 88 .
- the application of the insulating layer/layers occurs after growth of the AlGaN/GaN semiconductor material and prior to or during cooling of the reaction chamber 82 (referred to as in-situ).
- the flow of undesired growth gasses is discontinued by closing the appropriate combination of valves 100 a, 100 b, 100 c.
- a short purge of the reactor may be completed to remove the undesirable gasses as described above. Gasses are then flowed into the reactor to deposit the insulating layer(s) and in a preferred method, the gasses used for the insulating layer(s) are provided from typical MOCVD sources.
- disilane (Si 2 H 6 ) and ammonia (NH 6 ) are introduced into the reactor chamber 82 , through gas line 94 .
- the molecules are now present to deposit the Si 3 N 4 through thermal decomposition on the AlGaN/GaN material.
- the appropriate gasses are introduced into the chamber to form the AlN layer prior to forming the Si 3 N 4 layer.
- the dielectric layer can also be deposited in-situ.
- the compounds that can be used in the dielectric layer include Si, Ge, MgO x , MgN x , ZnO, SiN x , SiO x , ScO x , GdO x and alloys thereof.
- Multiple layers and repeated stacks of layers of suitable materials can be used as barrier layers as well, such as SiN x /Si, MgN x /SiN x or MgN x /MgO x .
- the different barrier layers can be formed from the following source gasses: Si from silane or disilane, Ge from germane, MgN x from cyclopentadienyl magnesium or methyl-cyclopentadienyl magnesium and ammonia, MgO from cyclopentadienyl magnesium or methyl-cyclopentadienyl magnesium and nitrous oxide, ZnO from dimethyl zinc or diethyl zinc and nitrous oxide or water, SiN x from silane or disilane and ammonia or nitrous oxide, and SiO x formed from silane or disilane and nitrous oxide.
- the semiconductor material can be cooled in the reaction chamber 82 .
- the semiconductor material can then be removed from the cooled reaction chamber 82 .
- the portion of the layers can be removed by a number of different methods including but not limited to wet chemical hydrofluoric acid (HF) etching, reactive ion etching, or plasma etching.
- HF wet chemical hydrofluoric acid
- FIG. 8 shows a simplified sputtering chamber 130 that can be used to deposit material on a substrate.
- a semiconductor device 132 is placed on an anode 134 .
- the chamber 136 is then evacuated and an inert gas 138 such as argon is fed into gas line 140 and bled through the valve 142 to maintain a background pressure.
- a cathode 144 made of the material to be deposited on the substrate/device, is positioned within the chamber 136 .
- the inert gas is ionized and the positive ions 148 excel to the cathode 144 .
- the cathode 144 On striking the cathode 144 , they collide with the cathode atoms 150 , giving them sufficient energy to be ejected.
- the sputtered cathode atoms 150 travel through space, eventually covering the anode 134 and the semiconductor device 132 with a coating 133 from the sputtered atoms 150 .
- sputtering units can be more complex and detailed, but they work on much the same basic physical mechanisms. Using the more complex sputtering systems, it is possible to sputter and deposit a range of metals and dielectric layers.
- the sputtering method can be used to deposit the insulating layers on an AlGaN/GaN HEMT.
- the HEMT is first formed on a semiconductor wafer by a process such as MOCVD.
- the wafer is then cleaned (rinsing with NH 4 OH:H 2 O (1:4) for approximately 10 to 60 seconds) and the device 132 is then loaded into a sputtering chamber 136 having a silicon source at the cathode 144 .
- the Si x N y insulating layer is deposited on the wafer by sputtering.
- the sputtering process includes the specific steps of pumping down the chamber to a low pressure of about 3 ⁇ 10 ⁇ 7 Torr.
- the plasma is then started with RF power of 200–300W for about 2 minutes. This bombards the silicon at the cathode 144 , cleaning its surface.
- the sputtering conditions are then changed such that the argon gas flow is 10–12 sccm, the nitrogen gas flow of 8–10 scam, the chamber pressure of 2.5–5 mTorr, and the RF power of 200–300W. This condition is maintained for 2 minutes to sputter the Si cathode 144 .
- the sputtered silicon reacts with the nitrogen and the resulting silicon nitride deposits on the device 132 .
- the next step 130 is to turn off the nitrogen gas and turn up the argon gas flow to 20–100 scam for 2 minutes to clean the Si surface. All gas and power are then turned off and the chamber is allowed to cool down for five minutes and vent.
- the device 132 can then be removed from the sputtering chamber. The layers of the device can then be etched. Windows can then be in the device layers for the source, gate and drain contacts, using different methods including but not limited to wet chemical hydrofluoric acid (HF) etching, reactive ion etching, or plasma etching.
- HF wet chemical hydrofluoric acid
- the contacts and gate could be deposited on the device before depositing the insulating layer in the sputtering chamber 130 .
- the dielectric layer over the contacts and gate could then be etched to allow for the connection of leads.
- the insulating layer can be used on HEMTs from different material systems and on other semiconductor devices.
- the insulating layer can also be applied using many different methods beyond those mentioned above, including PECVD, Electron Beam Deposition, Inductively Coupled Plasma and ICP Deposition. Therefore, the spirit and scope of the appended claims should not be limited to the preferred versions described in the specification.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
Claims (14)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/201,345 US7230284B2 (en) | 2001-07-24 | 2002-07-23 | Insulating gate AlGaN/GaN HEMT |
US11/356,791 US9419124B2 (en) | 2001-07-24 | 2006-02-17 | Insulating gate AlGaN/GaN HEMT |
US11/799,786 US20070205433A1 (en) | 2001-07-24 | 2007-05-03 | Insulating gate AlGaN/GaN HEMTs |
US12/554,803 US10224427B2 (en) | 2001-07-24 | 2009-09-04 | Insulting gate AlGaN/GaN HEMT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30754601P | 2001-07-24 | 2001-07-24 | |
US10/201,345 US7230284B2 (en) | 2001-07-24 | 2002-07-23 | Insulating gate AlGaN/GaN HEMT |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/356,791 Continuation US9419124B2 (en) | 2001-07-24 | 2006-02-17 | Insulating gate AlGaN/GaN HEMT |
US11/799,786 Division US20070205433A1 (en) | 2001-07-24 | 2007-05-03 | Insulating gate AlGaN/GaN HEMTs |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030020092A1 US20030020092A1 (en) | 2003-01-30 |
US7230284B2 true US7230284B2 (en) | 2007-06-12 |
Family
ID=23190213
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/201,345 Expired - Lifetime US7230284B2 (en) | 2001-07-24 | 2002-07-23 | Insulating gate AlGaN/GaN HEMT |
US11/356,791 Expired - Fee Related US9419124B2 (en) | 2001-07-24 | 2006-02-17 | Insulating gate AlGaN/GaN HEMT |
US11/799,786 Abandoned US20070205433A1 (en) | 2001-07-24 | 2007-05-03 | Insulating gate AlGaN/GaN HEMTs |
US12/554,803 Expired - Fee Related US10224427B2 (en) | 2001-07-24 | 2009-09-04 | Insulting gate AlGaN/GaN HEMT |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/356,791 Expired - Fee Related US9419124B2 (en) | 2001-07-24 | 2006-02-17 | Insulating gate AlGaN/GaN HEMT |
US11/799,786 Abandoned US20070205433A1 (en) | 2001-07-24 | 2007-05-03 | Insulating gate AlGaN/GaN HEMTs |
US12/554,803 Expired - Fee Related US10224427B2 (en) | 2001-07-24 | 2009-09-04 | Insulting gate AlGaN/GaN HEMT |
Country Status (9)
Country | Link |
---|---|
US (4) | US7230284B2 (en) |
EP (3) | EP2267784B1 (en) |
JP (3) | JP2005527102A (en) |
KR (1) | KR100920434B1 (en) |
CN (1) | CN1557024B (en) |
AU (1) | AU2002357640A1 (en) |
CA (1) | CA2454269C (en) |
TW (1) | TW552712B (en) |
WO (1) | WO2003032397A2 (en) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060138456A1 (en) * | 2001-07-24 | 2006-06-29 | Cree, Inc. | Insulating gate AlGaN/GaN HEMT |
US20060289901A1 (en) * | 2003-03-03 | 2006-12-28 | Cree, Inc. | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US20070114569A1 (en) * | 2005-09-07 | 2007-05-24 | Cree, Inc. | Robust transistors with fluorine treatment |
US20070210332A1 (en) * | 2005-01-14 | 2007-09-13 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
US20070235775A1 (en) * | 2006-03-29 | 2007-10-11 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US20080169474A1 (en) * | 2003-03-03 | 2008-07-17 | Cree, Inc. | Integrated Nitride and Silicon Carbide-Based Devices and Methods of Fabricating Integrated Nitride-Based Devices |
US20090057718A1 (en) * | 2007-08-29 | 2009-03-05 | Alexander Suvorov | High Temperature Ion Implantation of Nitride Based HEMTS |
US20090072269A1 (en) * | 2007-09-17 | 2009-03-19 | Chang Soo Suh | Gallium nitride diodes and integrated components |
US20090146224A1 (en) * | 2007-12-07 | 2009-06-11 | Northrop Grumman Space & Mission Systems Corp. | Composite Passivation Process for Nitride FET |
EP2071623A2 (en) | 2007-12-14 | 2009-06-17 | Cree, Inc. | Metallization structure for high power microelectronic devices |
US20090267078A1 (en) * | 2008-04-23 | 2009-10-29 | Transphorm Inc. | Enhancement Mode III-N HEMTs |
US20090302352A1 (en) * | 2008-06-10 | 2009-12-10 | The Government Of The United States Of America, As Represenied By The Secretary Of The Navy | P-N Junction for Use as an RF Mixer from GHZ to THZ Frequencies |
US20100073067A1 (en) * | 2008-09-23 | 2010-03-25 | Transphorm Inc. | Inductive Load Power Switching Circuits |
CN101853880A (en) * | 2010-03-09 | 2010-10-06 | 西安电子科技大学 | AlGaN/GaN high-electron-mobility transistor and manufacturing method thereof |
US20100289067A1 (en) * | 2009-05-14 | 2010-11-18 | Transphorm Inc. | High Voltage III-Nitride Semiconductor Devices |
US20110049526A1 (en) * | 2009-08-28 | 2011-03-03 | Transphorm Inc. | Semiconductor Devices with Field Plates |
US20110127541A1 (en) * | 2008-12-10 | 2011-06-02 | Transphorm Inc. | Semiconductor heterostructure diodes |
US20110136305A1 (en) * | 2004-01-16 | 2011-06-09 | Adam William Saxler | Group III Nitride Semiconductor Devices with Silicon Nitride Layers and Methods of Manufacturing Such Devices |
US20110140123A1 (en) * | 2004-01-16 | 2011-06-16 | Sheppard Scott T | Nitride-Based Transistors With a Protective Layer and a Low-Damage Recess |
EP2388819A2 (en) | 2010-05-20 | 2011-11-23 | Cree, Inc. | Low noise amplifier including group III nitride based high electron mobility transistors |
US20120153301A1 (en) * | 2009-06-26 | 2012-06-21 | Cornell University | Iii-v semiconductor structures including aluminum-silicon nitride passivation |
US8389977B2 (en) | 2009-12-10 | 2013-03-05 | Transphorm Inc. | Reverse side engineered III-nitride devices |
US8598937B2 (en) | 2011-10-07 | 2013-12-03 | Transphorm Inc. | High power semiconductor electronic components with increased reliability |
US8643062B2 (en) | 2011-02-02 | 2014-02-04 | Transphorm Inc. | III-N device structures and methods |
US8716141B2 (en) | 2011-03-04 | 2014-05-06 | Transphorm Inc. | Electrode configurations for semiconductor devices |
US8742460B2 (en) | 2010-12-15 | 2014-06-03 | Transphorm Inc. | Transistors with isolation regions |
US8772842B2 (en) | 2011-03-04 | 2014-07-08 | Transphorm, Inc. | Semiconductor diodes with low reverse bias currents |
US8791034B2 (en) | 2009-06-26 | 2014-07-29 | Cornell University | Chemical vapor deposition process for aluminum silicon nitride |
US8809987B2 (en) | 2010-07-06 | 2014-08-19 | The Hong Kong University Of Science And Technology | Normally-off III-nitride metal-2DEG tunnel junction field-effect transistors |
US8901604B2 (en) | 2011-09-06 | 2014-12-02 | Transphorm Inc. | Semiconductor devices with guard rings |
WO2014200820A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc | Cascode structures with gan cap layers |
WO2014200753A2 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Recessed field plate transistor structures |
WO2014200643A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Cascode structures for gan hemts |
US9087776B2 (en) | 2012-07-20 | 2015-07-21 | Samsung Electronics Co., Ltd. | Nitride-based semiconductor device and method of manufacturing nitride-based semiconductor device |
US9093366B2 (en) | 2012-04-09 | 2015-07-28 | Transphorm Inc. | N-polar III-nitride transistors |
US9147732B2 (en) | 2012-05-09 | 2015-09-29 | Nxp B.V. | Group 13 nitride semiconductor device and method of its manufacture |
US9165766B2 (en) | 2012-02-03 | 2015-10-20 | Transphorm Inc. | Buffer layer structures suited for III-nitride devices with foreign substrates |
US9171730B2 (en) | 2013-02-15 | 2015-10-27 | Transphorm Inc. | Electrodes for semiconductor devices and methods of forming the same |
US9184275B2 (en) | 2012-06-27 | 2015-11-10 | Transphorm Inc. | Semiconductor devices with integrated hole collectors |
US9245993B2 (en) | 2013-03-15 | 2016-01-26 | Transphorm Inc. | Carbon doping semiconductor devices |
US9257547B2 (en) | 2011-09-13 | 2016-02-09 | Transphorm Inc. | III-N device structures having a non-insulating substrate |
US9318593B2 (en) | 2014-07-21 | 2016-04-19 | Transphorm Inc. | Forming enhancement mode III-nitride devices |
US9407214B2 (en) | 2013-06-28 | 2016-08-02 | Cree, Inc. | MMIC power amplifier |
US9536966B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Gate structures for III-N devices |
US9536967B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Recessed ohmic contacts in a III-N device |
US9590060B2 (en) | 2013-03-13 | 2017-03-07 | Transphorm Inc. | Enhancement-mode III-nitride devices |
US9590069B2 (en) | 2012-09-28 | 2017-03-07 | Intel Corporation | Self-aligned structures and methods for asymmetric GaN transistors and enhancement mode operation |
US9698141B2 (en) * | 2015-09-04 | 2017-07-04 | Kabushiki Kaisha Toshiba | Semiconductor device |
US10170580B2 (en) | 2017-05-23 | 2019-01-01 | Industrial Technology Research Institute | Structure of GaN-based transistor and method of fabricating the same |
US10224401B2 (en) | 2016-05-31 | 2019-03-05 | Transphorm Inc. | III-nitride devices including a graded depleting layer |
US20190214493A1 (en) * | 2011-12-21 | 2019-07-11 | Power Integrations, Inc. | Shield wrap for a heterostructure field effect transistor |
US10868135B2 (en) | 2011-11-29 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | High electron mobility transistor structure |
US11322599B2 (en) | 2016-01-15 | 2022-05-03 | Transphorm Technology, Inc. | Enhancement mode III-nitride devices having an Al1-xSixO gate insulator |
US11502178B2 (en) | 2020-10-27 | 2022-11-15 | Wolfspeed, Inc. | Field effect transistor with at least partially recessed field plate |
US11527642B2 (en) * | 2019-10-08 | 2022-12-13 | Samsung Electronics Co., Ltd. | Semiconductor device, method of fabricating the same, and display device including the same |
US11621672B2 (en) | 2021-08-05 | 2023-04-04 | Wolfspeed, Inc. | Compensation of trapping in field effect transistors |
US11658234B2 (en) | 2020-10-27 | 2023-05-23 | Wolfspeed, Inc. | Field effect transistor with enhanced reliability |
US11705522B2 (en) | 2012-12-25 | 2023-07-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US11749726B2 (en) | 2020-10-27 | 2023-09-05 | Wolfspeed, Inc. | Field effect transistor with source-connected field plate |
US11869964B2 (en) | 2021-05-20 | 2024-01-09 | Wolfspeed, Inc. | Field effect transistors with modified access regions |
Families Citing this family (229)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3836697B2 (en) * | 2000-12-07 | 2006-10-25 | 日本碍子株式会社 | Semiconductor element |
US7030428B2 (en) * | 2001-12-03 | 2006-04-18 | Cree, Inc. | Strain balanced nitride heterojunction transistors |
US7320235B2 (en) * | 2001-12-05 | 2008-01-22 | Nexpak Corporation | Lockable media storage container |
JP4134575B2 (en) * | 2002-02-28 | 2008-08-20 | 松下電器産業株式会社 | Semiconductor device and manufacturing method thereof |
AU2003248649A1 (en) * | 2002-06-10 | 2003-12-22 | University Of Florida | High gain integrated antenna and devices therefrom |
US6982204B2 (en) * | 2002-07-16 | 2006-01-03 | Cree, Inc. | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses |
JP4385205B2 (en) * | 2002-12-16 | 2009-12-16 | 日本電気株式会社 | Field effect transistor |
TWI230978B (en) * | 2003-01-17 | 2005-04-11 | Sanken Electric Co Ltd | Semiconductor device and the manufacturing method thereof |
US7078743B2 (en) * | 2003-05-15 | 2006-07-18 | Matsushita Electric Industrial Co., Ltd. | Field effect transistor semiconductor device |
TWI430341B (en) * | 2003-09-09 | 2014-03-11 | Univ California | Fabrication of single or multiple gate field plates |
US7501669B2 (en) | 2003-09-09 | 2009-03-10 | Cree, Inc. | Wide bandgap transistor devices with field plates |
JP2005129696A (en) * | 2003-10-23 | 2005-05-19 | Matsushita Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
US7439555B2 (en) * | 2003-12-05 | 2008-10-21 | International Rectifier Corporation | III-nitride semiconductor device with trench structure |
TWI295085B (en) * | 2003-12-05 | 2008-03-21 | Int Rectifier Corp | Field effect transistor with enhanced insulator structure |
US7649215B2 (en) * | 2003-12-05 | 2010-01-19 | International Rectifier Corporation | III-nitride device passivation and method |
JP4741792B2 (en) * | 2003-12-18 | 2011-08-10 | 日本電気株式会社 | Manufacturing method of nitride semiconductor MIS type field effect transistor |
US8174048B2 (en) * | 2004-01-23 | 2012-05-08 | International Rectifier Corporation | III-nitride current control device and method of manufacture |
US7170111B2 (en) * | 2004-02-05 | 2007-01-30 | Cree, Inc. | Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same |
US7612390B2 (en) * | 2004-02-05 | 2009-11-03 | Cree, Inc. | Heterojunction transistors including energy barriers |
JP4041075B2 (en) | 2004-02-27 | 2008-01-30 | 株式会社東芝 | Semiconductor device |
US7550783B2 (en) | 2004-05-11 | 2009-06-23 | Cree, Inc. | Wide bandgap HEMTs with source connected field plates |
US7573078B2 (en) | 2004-05-11 | 2009-08-11 | Cree, Inc. | Wide bandgap transistors with multiple field plates |
US9773877B2 (en) | 2004-05-13 | 2017-09-26 | Cree, Inc. | Wide bandgap field effect transistors with source connected field plates |
US7432142B2 (en) * | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
US7084441B2 (en) * | 2004-05-20 | 2006-08-01 | Cree, Inc. | Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same |
US7332795B2 (en) * | 2004-05-22 | 2008-02-19 | Cree, Inc. | Dielectric passivation for semiconductor devices |
US7417266B1 (en) | 2004-06-10 | 2008-08-26 | Qspeed Semiconductor Inc. | MOSFET having a JFET embedded as a body diode |
JP5248743B2 (en) * | 2004-06-30 | 2013-07-31 | アイメック | Semiconductor device and manufacturing method of semiconductor device |
US7547928B2 (en) * | 2004-06-30 | 2009-06-16 | Interuniversitair Microelektronica Centrum (Imec) | AlGaN/GaN high electron mobility transistor devices |
EP1612866B1 (en) | 2004-06-30 | 2014-07-30 | Imec | AlGaN/GaN Hemt Devices |
US7238560B2 (en) * | 2004-07-23 | 2007-07-03 | Cree, Inc. | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
US20060017064A1 (en) * | 2004-07-26 | 2006-01-26 | Saxler Adam W | Nitride-based transistors having laterally grown active region and methods of fabricating same |
CN100418199C (en) * | 2004-07-28 | 2008-09-10 | 中国科学院半导体研究所 | Method for fabricating transistor of aluminum-gallium-nitrogen/gallium nitride with high electron mobility |
WO2006022453A1 (en) * | 2004-08-27 | 2006-03-02 | National Institute Of Information And Communications Technology, Incorporated Administrative Agency | GaN-BASED FIELD EFFECT TRANSISTOR AND PRODUCTION METHOD THEREFOR |
JP4514584B2 (en) * | 2004-11-16 | 2010-07-28 | 富士通株式会社 | Compound semiconductor device and manufacturing method thereof |
US7456443B2 (en) † | 2004-11-23 | 2008-11-25 | Cree, Inc. | Transistors having buried n-type and p-type regions beneath the source region |
US7709859B2 (en) * | 2004-11-23 | 2010-05-04 | Cree, Inc. | Cap layers including aluminum nitride for nitride-based transistors |
JP4765301B2 (en) * | 2004-11-25 | 2011-09-07 | 沖電気工業株式会社 | Manufacturing method of semiconductor device |
US7161194B2 (en) * | 2004-12-06 | 2007-01-09 | Cree, Inc. | High power density and/or linearity transistors |
US7355215B2 (en) * | 2004-12-06 | 2008-04-08 | Cree, Inc. | Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies |
JP4836111B2 (en) * | 2004-12-15 | 2011-12-14 | 日本電信電話株式会社 | Semiconductor device |
US7253454B2 (en) * | 2005-03-03 | 2007-08-07 | Cree, Inc. | High electron mobility transistor |
JP2006245317A (en) * | 2005-03-03 | 2006-09-14 | Fujitsu Ltd | Semiconductor device and its manufacturing method |
US11791385B2 (en) * | 2005-03-11 | 2023-10-17 | Wolfspeed, Inc. | Wide bandgap transistors with gate-source field plates |
US7465967B2 (en) * | 2005-03-15 | 2008-12-16 | Cree, Inc. | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US20060213437A1 (en) * | 2005-03-28 | 2006-09-28 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system |
US7626217B2 (en) * | 2005-04-11 | 2009-12-01 | Cree, Inc. | Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices |
US8575651B2 (en) * | 2005-04-11 | 2013-11-05 | Cree, Inc. | Devices having thick semi-insulating epitaxial gallium nitride layer |
JP4920298B2 (en) | 2005-04-28 | 2012-04-18 | シャープ株式会社 | Semiconductor light emitting device and method for manufacturing semiconductor device |
GB2425653A (en) * | 2005-04-28 | 2006-11-01 | Sharp Kk | Manufacture of group III-nitride semiconductor |
US7615774B2 (en) * | 2005-04-29 | 2009-11-10 | Cree.Inc. | Aluminum free group III-nitride based high electron mobility transistors |
US7544963B2 (en) | 2005-04-29 | 2009-06-09 | Cree, Inc. | Binary group III-nitride based high electron mobility transistors |
JP4792814B2 (en) * | 2005-05-26 | 2011-10-12 | 住友電気工業株式会社 | High electron mobility transistor, field effect transistor, epitaxial substrate, method for producing epitaxial substrate, and method for producing group III nitride transistor |
US7405430B2 (en) * | 2005-06-10 | 2008-07-29 | Cree, Inc. | Highly uniform group III nitride epitaxial layers on 100 millimeter diameter silicon carbide substrates |
US7525122B2 (en) * | 2005-06-29 | 2009-04-28 | Cree, Inc. | Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides |
US7855401B2 (en) * | 2005-06-29 | 2010-12-21 | Cree, Inc. | Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides |
US7598576B2 (en) * | 2005-06-29 | 2009-10-06 | Cree, Inc. | Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices |
US9331192B2 (en) * | 2005-06-29 | 2016-05-03 | Cree, Inc. | Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same |
DE112006001751B4 (en) * | 2005-07-06 | 2010-04-08 | International Rectifier Corporation, El Segundo | Power semiconductor device and method for manufacturing a semiconductor device |
US20070018199A1 (en) | 2005-07-20 | 2007-01-25 | Cree, Inc. | Nitride-based transistors and fabrication methods with an etch stop layer |
US20070018198A1 (en) * | 2005-07-20 | 2007-01-25 | Brandes George R | High electron mobility electronic device structures comprising native substrates and methods for making the same |
US7548112B2 (en) * | 2005-07-21 | 2009-06-16 | Cree, Inc. | Switch mode power amplifier using MIS-HEMT with field plate extension |
US8183595B2 (en) * | 2005-07-29 | 2012-05-22 | International Rectifier Corporation | Normally off III-nitride semiconductor device having a programmable gate |
US7544596B2 (en) | 2005-08-30 | 2009-06-09 | Micron Technology, Inc. | Atomic layer deposition of GdScO3 films as gate dielectrics |
JP5243256B2 (en) * | 2005-11-01 | 2013-07-24 | マサチューセッツ インスティテュート オブ テクノロジー | Monolithically integrated semiconductor materials and devices |
US8026568B2 (en) | 2005-11-15 | 2011-09-27 | Velox Semiconductor Corporation | Second Schottky contact metal layer to improve GaN Schottky diode performance |
US8044432B2 (en) * | 2005-11-29 | 2011-10-25 | The Hong Kong University Of Science And Technology | Low density drain HEMTs |
US7972915B2 (en) * | 2005-11-29 | 2011-07-05 | The Hong Kong University Of Science And Technology | Monolithic integration of enhancement- and depletion-mode AlGaN/GaN HFETs |
TW200733248A (en) * | 2005-11-29 | 2007-09-01 | Univ Hong Kong Science & Techn | Monolithic integration of enhancement-and depletion-mode AlGaN/GaN HFETs |
US7932539B2 (en) * | 2005-11-29 | 2011-04-26 | The Hong Kong University Of Science And Technology | Enhancement-mode III-N devices, circuits, and methods |
US7368971B2 (en) * | 2005-12-06 | 2008-05-06 | Cree, Inc. | High power, high frequency switch circuits using strings of power transistors |
US7338826B2 (en) * | 2005-12-09 | 2008-03-04 | The United States Of America As Represented By The Secretary Of The Navy | Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AlGaN/GaN HEMTs |
US7419892B2 (en) * | 2005-12-13 | 2008-09-02 | Cree, Inc. | Semiconductor devices including implanted regions and protective layers and methods of forming the same |
US7728355B2 (en) * | 2005-12-30 | 2010-06-01 | International Rectifier Corporation | Nitrogen polar III-nitride heterojunction JFET |
US7592211B2 (en) * | 2006-01-17 | 2009-09-22 | Cree, Inc. | Methods of fabricating transistors including supported gate electrodes |
US7709269B2 (en) | 2006-01-17 | 2010-05-04 | Cree, Inc. | Methods of fabricating transistors including dielectrically-supported gate electrodes |
US7566918B2 (en) | 2006-02-23 | 2009-07-28 | Cree, Inc. | Nitride based transistors for millimeter wave operation |
US8809907B2 (en) * | 2006-03-14 | 2014-08-19 | Northrop Grumman Systems Corporation | Leakage barrier for GaN based HEMT active device |
EP2677544B1 (en) * | 2006-03-16 | 2015-04-22 | Fujitsu Limited | Compound Semiconductor Device and Manufacturing Method of the Same |
US7408208B2 (en) * | 2006-03-20 | 2008-08-05 | International Rectifier Corporation | III-nitride power semiconductor device |
CN100555660C (en) * | 2006-09-01 | 2009-10-28 | 中国科学院半导体研究所 | Wideband gap gallium nitride radical heterojunction field effect transistor structure and manufacture method |
JP2008084942A (en) * | 2006-09-26 | 2008-04-10 | Oki Electric Ind Co Ltd | Gate insulating layer of mis type fet |
WO2008041277A1 (en) * | 2006-09-29 | 2008-04-10 | Fujitsu Limited | Compound semiconductor device and process for producing the same |
US7964895B2 (en) * | 2006-10-05 | 2011-06-21 | International Rectifier Corporation | III-nitride heterojunction semiconductor device and method of fabrication |
JP5186096B2 (en) * | 2006-10-12 | 2013-04-17 | パナソニック株式会社 | Nitride semiconductor transistor and manufacturing method thereof |
US8823057B2 (en) | 2006-11-06 | 2014-09-02 | Cree, Inc. | Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices |
EP1921669B1 (en) | 2006-11-13 | 2015-09-02 | Cree, Inc. | GaN based HEMTs with buried field plates |
JP5192683B2 (en) * | 2006-11-17 | 2013-05-08 | 古河電気工業株式会社 | Nitride-based semiconductor heterojunction field effect transistor |
TWI439568B (en) * | 2006-11-20 | 2014-06-01 | Univ California | Gated electrodes for electrolysis and electrosynthesis |
US8062931B2 (en) * | 2006-11-21 | 2011-11-22 | Imec | Surface treatment and passivation of AlGaN/GaN HEMT |
US7692263B2 (en) | 2006-11-21 | 2010-04-06 | Cree, Inc. | High voltage GaN transistors |
JP5114947B2 (en) * | 2006-12-28 | 2013-01-09 | 富士通株式会社 | Nitride semiconductor device and manufacturing method thereof |
US9076852B2 (en) * | 2007-01-19 | 2015-07-07 | International Rectifier Corporation | III nitride power device with reduced QGD |
JP2008198787A (en) * | 2007-02-13 | 2008-08-28 | Rohm Co Ltd | GaN-BASED SEMICONDUCTOR DEVICE |
US7939853B2 (en) * | 2007-03-20 | 2011-05-10 | Power Integrations, Inc. | Termination and contact structures for a high voltage GaN-based heterojunction transistor |
US8212290B2 (en) | 2007-03-23 | 2012-07-03 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
JP4691060B2 (en) * | 2007-03-23 | 2011-06-01 | 古河電気工業株式会社 | GaN-based semiconductor devices |
US20080258242A1 (en) * | 2007-04-19 | 2008-10-23 | Northrop Grumman Space And Mission Systems Corp. | Low contact resistance ohmic contact for a high electron mobility transistor and fabrication method thereof |
CN101312207B (en) * | 2007-05-21 | 2011-01-05 | 西安捷威半导体有限公司 | Enhancement type HEMT device structure and its manufacture method |
JP2009010107A (en) * | 2007-06-27 | 2009-01-15 | Oki Electric Ind Co Ltd | Semiconductor device and manufacturing method therefor |
US8502323B2 (en) * | 2007-08-03 | 2013-08-06 | The Hong Kong University Of Science And Technology | Reliable normally-off III-nitride active device structures, and related methods and systems |
JP4584293B2 (en) * | 2007-08-31 | 2010-11-17 | 富士通株式会社 | Nitride semiconductor device, Doherty amplifier, drain voltage control amplifier |
US7915643B2 (en) * | 2007-09-17 | 2011-03-29 | Transphorm Inc. | Enhancement mode gallium nitride power devices |
US9634191B2 (en) | 2007-11-14 | 2017-04-25 | Cree, Inc. | Wire bond free wafer level LED |
US7851825B2 (en) * | 2007-12-10 | 2010-12-14 | Transphorm Inc. | Insulated gate e-mode transistors |
US7750370B2 (en) * | 2007-12-20 | 2010-07-06 | Northrop Grumman Space & Mission Systems Corp. | High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer |
US8076699B2 (en) * | 2008-04-02 | 2011-12-13 | The Hong Kong Univ. Of Science And Technology | Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems |
DE102008020793A1 (en) * | 2008-04-22 | 2009-11-05 | Forschungsverbund Berlin E.V. | Semiconductor device, precursor and method of manufacture |
JP2010050280A (en) * | 2008-08-21 | 2010-03-04 | Toyota Motor Corp | Nitride semiconductor device |
US20100084687A1 (en) * | 2008-10-03 | 2010-04-08 | The Hong Kong University Of Science And Technology | Aluminum gallium nitride/gallium nitride high electron mobility transistors |
WO2010042479A2 (en) * | 2008-10-06 | 2010-04-15 | Massachusetts Institute Of Technology | Enhancement-mode nitride transistor |
WO2010089632A1 (en) * | 2009-02-03 | 2010-08-12 | Freescale Semiconductor, Inc. | Semiconductor structure, an integrated circuit including a semiconductor structure and a method for manufacturing a semiconductor structure |
CN102369594A (en) * | 2009-04-06 | 2012-03-07 | 住友化学株式会社 | Semiconductor substrate, method for manufacturing semiconductor substrate, method for evaluating semiconductor substrate, and electronic device |
US20110014368A1 (en) * | 2009-07-14 | 2011-01-20 | Cfd Research Corporation | Carbon nanotube growth at reduced temperature via catalytic oxidation |
US8105889B2 (en) * | 2009-07-27 | 2012-01-31 | Cree, Inc. | Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions |
EP2471762B1 (en) * | 2009-08-24 | 2016-04-13 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, and laminated glass |
JP5589329B2 (en) * | 2009-09-24 | 2014-09-17 | 豊田合成株式会社 | Semiconductor device and power conversion device made of group III nitride semiconductor |
WO2011039800A1 (en) * | 2009-09-29 | 2011-04-07 | 株式会社 東芝 | Semiconductor device |
JP2011082216A (en) * | 2009-10-02 | 2011-04-21 | Fujitsu Ltd | Compound semiconductor device and method for manufacturing the same |
DE102009051521B4 (en) | 2009-10-31 | 2012-04-26 | X-Fab Semiconductor Foundries Ag | Production of silicon semiconductor wafers with III-V layer structures for high electron mobility transistors (HEMT) and a corresponding semiconductor layer arrangement |
US20110140173A1 (en) * | 2009-12-16 | 2011-06-16 | National Semiconductor Corporation | Low OHMIC contacts containing germanium for gallium nitride or other nitride-based power devices |
US8624260B2 (en) * | 2010-01-30 | 2014-01-07 | National Semiconductor Corporation | Enhancement-mode GaN MOSFET with low leakage current and improved reliability |
US9105703B2 (en) * | 2010-03-22 | 2015-08-11 | International Rectifier Corporation | Programmable III-nitride transistor with aluminum-doped gate |
KR101679054B1 (en) | 2010-05-04 | 2016-11-25 | 삼성전자주식회사 | High Electron Mobility Transistor comprising oxygen processed region and method of manufacturing the same |
JP5665171B2 (en) * | 2010-05-14 | 2015-02-04 | 住友電気工業株式会社 | Group III nitride semiconductor electronic device, method of fabricating group III nitride semiconductor electronic device |
US8878246B2 (en) | 2010-06-14 | 2014-11-04 | Samsung Electronics Co., Ltd. | High electron mobility transistors and methods of fabricating the same |
JPWO2012026396A1 (en) | 2010-08-25 | 2013-10-28 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element, semiconductor element, method for producing epitaxial substrate for semiconductor element, and method for producing semiconductor element |
KR101680767B1 (en) | 2010-10-06 | 2016-11-30 | 삼성전자주식회사 | Method of manufacturing High Electron Mobility Transistor having high power using impurity injection |
US8076250B1 (en) * | 2010-10-06 | 2011-12-13 | Applied Materials, Inc. | PECVD oxide-nitride and oxide-silicon stacks for 3D memory application |
CN102054891B (en) * | 2010-10-13 | 2012-10-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Room-temperature terahertz wave detector |
TWI409951B (en) * | 2010-10-20 | 2013-09-21 | Nat Univ Tsing Hua | Enhancement mode gan-based mosfet |
US8853709B2 (en) * | 2011-07-29 | 2014-10-07 | Hrl Laboratories, Llc | III-nitride metal insulator semiconductor field effect transistor |
WO2012054683A2 (en) * | 2010-10-21 | 2012-04-26 | Carnegie Mellon University | Two-dimensional electron gas (2deg)-based chemical sensors |
DE112011103675T5 (en) * | 2010-11-04 | 2013-10-02 | Sumitomo Electric Industries, Ltd. | Semiconductor device and manufacturing method thereof |
KR101214742B1 (en) | 2010-12-09 | 2012-12-21 | 삼성전기주식회사 | Nitride based semiconductor device and method for manufacturing the same |
JP6035007B2 (en) * | 2010-12-10 | 2016-11-30 | 富士通株式会社 | MIS type nitride semiconductor HEMT and manufacturing method thereof |
JP5648523B2 (en) * | 2011-02-16 | 2015-01-07 | 富士通株式会社 | Semiconductor device, power supply device, amplifier, and semiconductor device manufacturing method |
US9070758B2 (en) * | 2011-06-20 | 2015-06-30 | Imec | CMOS compatible method for manufacturing a HEMT device and the HEMT device thereof |
KR20130004760A (en) * | 2011-07-04 | 2013-01-14 | 삼성전자주식회사 | Power devices and methods for manufacturing the same |
US8710511B2 (en) | 2011-07-29 | 2014-04-29 | Northrop Grumman Systems Corporation | AIN buffer N-polar GaN HEMT profile |
JP5967749B2 (en) * | 2011-09-30 | 2016-08-10 | 国立大学法人京都大学 | Edge-emitting photonic crystal laser device |
KR101890749B1 (en) * | 2011-10-27 | 2018-08-23 | 삼성전자주식회사 | Electrode structure, gallium nitride based semiconductor device including the same and methods of manufacturing the same |
US9673285B2 (en) | 2011-11-21 | 2017-06-06 | Sensor Electronic Technology, Inc. | Semiconductor device with low-conducting buried and/or surface layers |
US8994035B2 (en) * | 2011-11-21 | 2015-03-31 | Sensor Electronic Technology, Inc. | Semiconductor device with low-conducting buried and/or surface layers |
US8785944B2 (en) * | 2011-12-07 | 2014-07-22 | Samsung Electronics Co., Ltd. | High electron mobility transistor |
US8940620B2 (en) | 2011-12-15 | 2015-01-27 | Power Integrations, Inc. | Composite wafer for fabrication of semiconductor devices |
US8614447B2 (en) * | 2012-01-30 | 2013-12-24 | International Business Machines Corporation | Semiconductor substrates using bandgap material between III-V channel material and insulator layer |
US8941148B2 (en) | 2012-03-06 | 2015-01-27 | Infineon Technologies Austria Ag | Semiconductor device and method |
KR102005450B1 (en) | 2012-03-14 | 2019-07-30 | 삼성전자주식회사 | Power module comprising leakage current protecting circuit |
US9136341B2 (en) | 2012-04-18 | 2015-09-15 | Rf Micro Devices, Inc. | High voltage field effect transistor finger terminations |
US9337332B2 (en) | 2012-04-25 | 2016-05-10 | Hrl Laboratories, Llc | III-Nitride insulating-gate transistors with passivation |
US9666705B2 (en) * | 2012-05-14 | 2017-05-30 | Infineon Technologies Austria Ag | Contact structures for compound semiconductor devices |
JP2014003222A (en) * | 2012-06-20 | 2014-01-09 | Toshiba Corp | Field-effect transistor |
US9147632B2 (en) | 2012-08-24 | 2015-09-29 | Rf Micro Devices, Inc. | Semiconductor device having improved heat dissipation |
US9917080B2 (en) * | 2012-08-24 | 2018-03-13 | Qorvo US. Inc. | Semiconductor device with electrical overstress (EOS) protection |
JP2014072225A (en) * | 2012-09-27 | 2014-04-21 | Fujitsu Ltd | Compound semiconductor device and manufacturing method of the same |
US9064709B2 (en) | 2012-09-28 | 2015-06-23 | Intel Corporation | High breakdown voltage III-N depletion mode MOS capacitors |
US10134727B2 (en) | 2012-09-28 | 2018-11-20 | Intel Corporation | High breakdown voltage III-N depletion mode MOS capacitors |
US9812338B2 (en) | 2013-03-14 | 2017-11-07 | Cree, Inc. | Encapsulation of advanced devices using novel PECVD and ALD schemes |
US9991399B2 (en) | 2012-10-04 | 2018-06-05 | Cree, Inc. | Passivation structure for semiconductor devices |
US8994073B2 (en) | 2012-10-04 | 2015-03-31 | Cree, Inc. | Hydrogen mitigation schemes in the passivation of advanced devices |
KR101946009B1 (en) | 2012-10-11 | 2019-02-08 | 삼성전자주식회사 | High electron mobility transistor and method of driving the same |
US9048174B2 (en) * | 2013-01-18 | 2015-06-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Compound semiconductor device having gallium nitride gate structures |
US8928037B2 (en) | 2013-02-28 | 2015-01-06 | Power Integrations, Inc. | Heterostructure power transistor with AlSiN passivation layer |
JP6174874B2 (en) * | 2013-03-15 | 2017-08-02 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US9006791B2 (en) * | 2013-03-15 | 2015-04-14 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | III-nitride P-channel field effect transistor with hole carriers in the channel |
US9245736B2 (en) * | 2013-03-15 | 2016-01-26 | Semiconductor Components Industries, Llc | Process of forming a semiconductor wafer |
KR102065113B1 (en) | 2013-05-01 | 2020-01-10 | 삼성전자주식회사 | High electron mobility transistor and method of driving the same |
US20140335666A1 (en) * | 2013-05-13 | 2014-11-13 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Growth of High-Performance III-Nitride Transistor Passivation Layer for GaN Electronics |
KR20140146887A (en) * | 2013-06-18 | 2014-12-29 | 엘지이노텍 주식회사 | Light emitting device |
US9443938B2 (en) | 2013-07-19 | 2016-09-13 | Transphorm Inc. | III-nitride transistor including a p-type depleting layer |
TWI555209B (en) * | 2013-07-29 | 2016-10-21 | 高效電源轉換公司 | Gan device with reduced output capacitance and process for making same |
US9806158B2 (en) * | 2013-08-01 | 2017-10-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | HEMT-compatible lateral rectifier structure |
US9978844B2 (en) | 2013-08-01 | 2018-05-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | HEMT-compatible lateral rectifier structure |
CN105556678B (en) | 2013-09-30 | 2018-04-10 | Hrl实验室有限责任公司 | normally-off III-nitride transistor with high threshold voltage and low on-resistance |
CN103531626A (en) * | 2013-10-30 | 2014-01-22 | 江苏新广联科技股份有限公司 | Adjustable constant-current tube based on two-dimensional electron gas |
JP6135487B2 (en) | 2013-12-09 | 2017-05-31 | 富士通株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US10276712B2 (en) | 2014-05-29 | 2019-04-30 | Hrl Laboratories, Llc | III-nitride field-effect transistor with dual gates |
US9455327B2 (en) | 2014-06-06 | 2016-09-27 | Qorvo Us, Inc. | Schottky gated transistor with interfacial layer |
US9536803B2 (en) | 2014-09-05 | 2017-01-03 | Qorvo Us, Inc. | Integrated power module with improved isolation and thermal conductivity |
US9640620B2 (en) | 2014-11-03 | 2017-05-02 | Texas Instruments Incorporated | High power transistor with oxide gate barriers |
KR101750158B1 (en) * | 2014-12-26 | 2017-06-22 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | Hemt-compatible lateral rectifier structure |
US10615158B2 (en) | 2015-02-04 | 2020-04-07 | Qorvo Us, Inc. | Transition frequency multiplier semiconductor device |
US10062684B2 (en) | 2015-02-04 | 2018-08-28 | Qorvo Us, Inc. | Transition frequency multiplier semiconductor device |
US10121712B2 (en) | 2015-04-06 | 2018-11-06 | Drexel University | Accelerated failure test of coupled device structures under direct current bias |
TWI559538B (en) * | 2015-04-21 | 2016-11-21 | 環球晶圓股份有限公司 | Semiconductor device |
US9583607B2 (en) * | 2015-07-17 | 2017-02-28 | Mitsubishi Electric Research Laboratories, Inc. | Semiconductor device with multiple-functional barrier layer |
JP2017031480A (en) * | 2015-08-04 | 2017-02-09 | 株式会社デンソー | Thin film manufacturing apparatus and method of manufacturing thin film |
US9812532B1 (en) | 2015-08-28 | 2017-11-07 | Hrl Laboratories, Llc | III-nitride P-channel transistor |
JP6536318B2 (en) * | 2015-09-24 | 2019-07-03 | 三菱電機株式会社 | Semiconductor device and method of manufacturing the same |
CN105304689B (en) * | 2015-11-12 | 2018-09-25 | 中国科学院上海微系统与信息技术研究所 | AlGaN/GaN HEMT devices and production method based on fluorinated graphene passivation |
CN108292678B (en) | 2015-11-19 | 2021-07-06 | Hrl实验室有限责任公司 | Group III nitride field effect transistor with dual gates |
CN106783994B (en) * | 2015-11-24 | 2019-08-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of enhanced HEMT device and preparation method thereof inhibiting current collapse effect |
US10128364B2 (en) * | 2016-03-28 | 2018-11-13 | Nxp Usa, Inc. | Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor |
EP3459118A4 (en) | 2016-05-17 | 2020-01-15 | The Government Of The United States Of America As The Secretary of The Navy | DAMEGE-FREE PLASMA-ENHANCED CVD PASSIVATION OF AlGaN/GaN HIGH ELECTRON MOBILITY TRANSISTORS |
US9812562B1 (en) * | 2016-06-03 | 2017-11-07 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure, HEMT structure and method of forming the same |
JP6896063B2 (en) * | 2016-08-18 | 2021-06-30 | レイセオン カンパニー | Semiconductor material growth of high resistance nitride buffer layer using ion implantation |
US10403624B2 (en) | 2017-05-26 | 2019-09-03 | Stmicroelectronics Design And Application S.R.O. | Transistors with octagon waffle gate patterns |
US10147796B1 (en) | 2017-05-26 | 2018-12-04 | Stmicroelectronics Design And Application S.R.O. | Transistors with dissimilar square waffle gate patterns |
DE102017210165A1 (en) | 2017-06-19 | 2018-12-20 | Robert Bosch Gmbh | Multi-transistor arrangement, bridge rectifier and method for producing a multiple transistor arrangement |
JP2017208556A (en) * | 2017-06-27 | 2017-11-24 | 株式会社東芝 | Semiconductor device |
CN109659361B (en) | 2017-10-12 | 2022-03-04 | 电力集成公司 | Gate stack for heterojunction devices |
US10276704B1 (en) | 2017-10-17 | 2019-04-30 | Mitsubishi Electric Research Laboratiories, Inc. | High electron mobility transistor with negative capacitor gate |
US10418474B2 (en) | 2017-10-17 | 2019-09-17 | Mitsubishi Electric Research Laboratories, Inc. | High electron mobility transistor with varying semiconductor layer |
US10734537B2 (en) * | 2017-11-08 | 2020-08-04 | Wisconsin Alumni Research Foundation | High performance, high electron mobility transistors with graphene hole extraction contacts |
US10644142B2 (en) | 2017-12-22 | 2020-05-05 | Nxp Usa, Inc. | Semiconductor devices with doped regions functioning as enhanced resistivity regions or diffusion barriers, and methods of fabrication therefor |
CN108807500B (en) * | 2018-05-30 | 2021-08-03 | 东南大学 | Enhanced high electron mobility transistor with high threshold voltage |
US10797152B2 (en) * | 2018-06-04 | 2020-10-06 | Semiconductor Components Industries, Llc | Process of forming an electronic device including an access region |
US10680092B2 (en) | 2018-10-01 | 2020-06-09 | Semiconductor Components Industries, Llc | Electronic device including a transistor with a non-uniform 2DEG |
TWI692867B (en) | 2018-10-04 | 2020-05-01 | 新唐科技股份有限公司 | High electron mobility transistor device and manufacturing method thereof |
CN109524293B (en) * | 2018-10-30 | 2021-10-19 | 江苏晶曌半导体有限公司 | Method for growing high-quality GaN epitaxial film on SiC substrate |
US11316038B2 (en) | 2018-11-20 | 2022-04-26 | Stmicroelectronics S.R.L. | HEMT transistor with adjusted gate-source distance, and manufacturing method thereof |
TWI680503B (en) * | 2018-12-26 | 2019-12-21 | 杰力科技股份有限公司 | Method of manufacturing gate structure for gallium nitride hemt |
CN109786376B (en) * | 2019-01-11 | 2021-07-20 | 西安电子科技大学 | Cascode structure GaN high electron mobility transistor based on monolithic heterogeneous integration and manufacturing method |
US11049960B2 (en) | 2019-03-06 | 2021-06-29 | Texas Instruments Incorporated | Gallium nitride (GaN) based transistor with multiple p-GaN blocks |
CN112447836A (en) * | 2019-08-30 | 2021-03-05 | 广东致能科技有限公司 | High electron mobility transistor with high voltage endurance capability |
US11075271B2 (en) | 2019-10-14 | 2021-07-27 | Cree, Inc. | Stepped field plates with proximity to conduction channel and related fabrication methods |
CN110634946B (en) * | 2019-10-28 | 2023-04-28 | 中证博芯(重庆)半导体有限公司 | Enhanced heterogeneous metal gate AlGaN/GaN MOS-HEMT device and preparation method thereof |
CN112928161B (en) | 2019-12-06 | 2024-01-02 | 联华电子股份有限公司 | High electron mobility transistor and manufacturing method thereof |
TWI716230B (en) * | 2019-12-20 | 2021-01-11 | 國家中山科學研究院 | Aluminum nitride transistor structure |
US11973136B2 (en) * | 2019-12-20 | 2024-04-30 | University Of Electronic Science And Technology Of China | Flexible microwave power transistor and preparation method thereof |
US11469333B1 (en) | 2020-02-19 | 2022-10-11 | Semiq Incorporated | Counter-doped silicon carbide Schottky barrier diode |
US11791388B2 (en) * | 2020-02-27 | 2023-10-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source leakage current suppression by source surrounding gate structure |
US20210359118A1 (en) * | 2020-05-18 | 2021-11-18 | Cree, Inc. | Group III-Nitride High-Electron Mobility Transistors Configured with Recessed Source and/or Drain Contacts for Reduced On State Resistance and Process for Implementing the Same |
EP3971991A1 (en) | 2020-09-18 | 2022-03-23 | III-V Technologies GmbH | Stacked gate mesfet/hemt transistor eliminating gate leakage current and providing normally off transistor |
US11942326B2 (en) * | 2020-12-16 | 2024-03-26 | Semiconductor Components Industries, Llc | Process of forming an electronic device including a doped gate electrode |
US12015075B2 (en) * | 2021-05-20 | 2024-06-18 | Macom Technology Solutions Holdings, Inc. | Methods of manufacturing high electron mobility transistors having a modified interface region |
US12009417B2 (en) | 2021-05-20 | 2024-06-11 | Macom Technology Solutions Holdings, Inc. | High electron mobility transistors having improved performance |
TWI798728B (en) * | 2021-06-23 | 2023-04-11 | 新唐科技股份有限公司 | Semiconductor structures and manufacturing methods thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192987A (en) | 1991-05-17 | 1993-03-09 | Apa Optics, Inc. | High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions |
US5569937A (en) * | 1995-08-28 | 1996-10-29 | Motorola | High breakdown voltage silicon carbide transistor |
US5929467A (en) * | 1996-12-04 | 1999-07-27 | Sony Corporation | Field effect transistor with nitride compound |
US6057564A (en) | 1997-07-30 | 2000-05-02 | Kabushiki Kaisha Toshiba | Semiconductor device having a GaNO region intermediate a GaN-based contact region and an electrode |
US6475857B1 (en) * | 2001-06-21 | 2002-11-05 | Samsung Electronics Co., Ltd. | Method of making a scalable two transistor memory device |
US6495409B1 (en) * | 1999-01-26 | 2002-12-17 | Agere Systems Inc. | MOS transistor having aluminum nitride gate structure and method of manufacturing same |
US6690042B2 (en) * | 2000-09-27 | 2004-02-10 | Sensor Electronic Technology, Inc. | Metal oxide semiconductor heterostructure field effect transistor |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE792908A (en) | 1971-12-20 | 1973-04-16 | Western Electric Co | PROCESS FOR MANUFACTURING SEMICONDUCTOR DEVICES |
JPS51129173A (en) | 1974-02-01 | 1976-11-10 | Chisso Corp | Semi conductor with high voltage proof schottky electrode and it's man uacturing method. |
JPS5360567A (en) | 1976-11-11 | 1978-05-31 | Mitsubishi Electric Corp | Electrode formation method of semiconductor device |
JPS5539636A (en) | 1978-09-13 | 1980-03-19 | Nec Corp | Composite semiconductor |
DE3323347A1 (en) | 1983-06-29 | 1985-01-10 | Neff Gewindespindeln GmbH, 7035 Waldenbuch | BALL REAR SCREW GEAR |
JPS62136881A (en) * | 1985-12-11 | 1987-06-19 | Fujitsu Ltd | Semiconductor device |
US4689869A (en) * | 1986-04-07 | 1987-09-01 | International Business Machines Corporation | Fabrication of insulated gate gallium arsenide FET with self-aligned source/drain and submicron channel length |
JPS63188964A (en) | 1987-01-31 | 1988-08-04 | Dainippon Printing Co Ltd | Integrated circuit package |
US4866005A (en) | 1987-10-26 | 1989-09-12 | North Carolina State University | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
DE3823347A1 (en) | 1988-07-09 | 1990-01-11 | Semikron Elektronik Gmbh | Power semiconductor element |
DE69031813T2 (en) * | 1989-04-04 | 1998-04-09 | Siemens Ag | HEMT structure |
JP2912635B2 (en) | 1989-08-04 | 1999-06-28 | 富士通株式会社 | Semiconductor device |
US5252843A (en) * | 1989-09-01 | 1993-10-12 | Fujitsu Limited | Semiconductor device having overlapping conductor layers |
US4946547A (en) | 1989-10-13 | 1990-08-07 | Cree Research, Inc. | Method of preparing silicon carbide surfaces for crystal growth |
JPH0446527A (en) | 1990-06-11 | 1992-02-17 | Fuji Electric Co Ltd | Controlling method for current of harmonic wave suppressor |
US5200022A (en) | 1990-10-03 | 1993-04-06 | Cree Research, Inc. | Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product |
JP2702338B2 (en) * | 1991-10-14 | 1998-01-21 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
JP3019885B2 (en) | 1991-11-25 | 2000-03-13 | カシオ計算機株式会社 | Method for manufacturing field effect thin film transistor |
JPH05326890A (en) | 1992-05-07 | 1993-12-10 | Nec Corp | Output buffer circuit |
EP0569745A1 (en) * | 1992-05-14 | 1993-11-18 | Siemens Aktiengesellschaft | Method of manufacturing a field effect transistor with asymmetrical gate structure |
JPH06124965A (en) | 1992-10-09 | 1994-05-06 | Sumitomo Electric Ind Ltd | Field effect transistor |
JPH07283140A (en) | 1994-04-05 | 1995-10-27 | Nippon Telegr & Teleph Corp <Ntt> | Active atom feeding control method |
JPH07326737A (en) | 1994-05-31 | 1995-12-12 | Nippon Steel Corp | Impedance line, filter element, delay element and semiconductor device |
US5492868A (en) * | 1994-10-24 | 1996-02-20 | Taiwan Semiconductor Manufacturing Corp. Ltd. | Capped reflow process to avoid contact autodoping and supress tungsten silicide peeling |
GB2296373B (en) | 1994-12-14 | 1997-09-10 | Toshiba Cambridge Res Center | Semiconductor device |
JPH08264760A (en) | 1995-03-23 | 1996-10-11 | Mitsubishi Electric Corp | Hetero junction field-effect transistor and its manufacture |
US5828084A (en) * | 1995-03-27 | 1998-10-27 | Sony Corporation | High performance poly-SiGe thin film transistor |
US5670798A (en) * | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
US5737041A (en) * | 1995-07-31 | 1998-04-07 | Image Quest Technologies, Inc. | TFT, method of making and matrix displays incorporating the TFT |
JPH09246527A (en) | 1996-03-08 | 1997-09-19 | Toshiba Corp | Semiconductor device |
JP3449116B2 (en) * | 1996-05-16 | 2003-09-22 | ソニー株式会社 | Semiconductor device |
JP3376211B2 (en) * | 1996-05-29 | 2003-02-10 | 株式会社東芝 | Semiconductor device, method of manufacturing semiconductor substrate, and method of manufacturing semiconductor device |
US5920105A (en) * | 1996-09-19 | 1999-07-06 | Fujitsu Limited | Compound semiconductor field effect transistor having an amorphous gas gate insulation layer |
US5930656A (en) * | 1996-10-21 | 1999-07-27 | Kabushiki Kaisha Toshiba | Method of fabricating a compound semiconductor device |
JPH10223901A (en) * | 1996-12-04 | 1998-08-21 | Sony Corp | Field effect transistor and manufacture of the same |
JPH10173036A (en) | 1996-12-11 | 1998-06-26 | Nec Corp | Semiconductor device and method of realizing high-resistance semiconductor |
JPH10189565A (en) | 1996-12-26 | 1998-07-21 | Tokyo Electron Ltd | Wafer board |
US6004881A (en) * | 1997-04-24 | 1999-12-21 | The United States Of America As Represented By The Secretary Of The Air Force | Digital wet etching of semiconductor materials |
JP3147036B2 (en) | 1997-05-02 | 2001-03-19 | 日本電気株式会社 | Compound semiconductor device and method of manufacturing the same |
JPH10335637A (en) * | 1997-05-30 | 1998-12-18 | Sony Corp | Hetero-junction field effect transistor |
US6316820B1 (en) * | 1997-07-25 | 2001-11-13 | Hughes Electronics Corporation | Passivation layer and process for semiconductor devices |
JPH11224881A (en) * | 1998-02-06 | 1999-08-17 | Fujitsu Ltd | Compound semiconductor device and its manufacture |
JP3161516B2 (en) | 1997-10-03 | 2001-04-25 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US5966597A (en) | 1998-01-06 | 1999-10-12 | Altera Corporation | Method of forming low resistance gate electrodes |
JP3372470B2 (en) * | 1998-01-20 | 2003-02-04 | シャープ株式会社 | Nitride III-V compound semiconductor device |
JP3439111B2 (en) | 1998-03-09 | 2003-08-25 | 古河電気工業株式会社 | High mobility transistor |
JPH11261051A (en) | 1998-03-09 | 1999-09-24 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device |
US6316793B1 (en) | 1998-06-12 | 2001-11-13 | Cree, Inc. | Nitride based transistors on semi-insulating silicon carbide substrates |
JP2000068498A (en) | 1998-08-21 | 2000-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Insulating nitride film and semiconductor device using the same |
JP4182376B2 (en) | 1998-12-02 | 2008-11-19 | 富士通株式会社 | Semiconductor device |
JP3209270B2 (en) | 1999-01-29 | 2001-09-17 | 日本電気株式会社 | Heterojunction field effect transistor |
JP4224737B2 (en) * | 1999-03-04 | 2009-02-18 | ソニー株式会社 | Semiconductor element |
JP2000266117A (en) | 1999-03-15 | 2000-09-26 | Kosuke Nagaya | Rotary magnetic damper |
JP4577460B2 (en) * | 1999-04-01 | 2010-11-10 | ソニー株式会社 | Semiconductor device and manufacturing method thereof |
JP2001007325A (en) * | 1999-06-18 | 2001-01-12 | Sanyo Electric Co Ltd | Field-effect transistor |
JP3710339B2 (en) | 1999-08-31 | 2005-10-26 | シャープ株式会社 | GaN compound semiconductor light emitting device manufacturing method |
JP2001085670A (en) | 1999-09-14 | 2001-03-30 | Nec Corp | Field effect type transistor and its manufacturing method |
JP3414678B2 (en) | 1999-09-29 | 2003-06-09 | 三容真空工業株式会社 | Sputtering method and apparatus |
JP2001251869A (en) | 2000-03-01 | 2001-09-14 | Osaka Gas Co Ltd | Dc/ac conversion circuit, power converter and power generating system |
US6686616B1 (en) | 2000-05-10 | 2004-02-03 | Cree, Inc. | Silicon carbide metal-semiconductor field effect transistors |
JP2002077353A (en) | 2000-08-25 | 2002-03-15 | Moriguchi:Kk | Structure for attachment of light-emitting device for communications equipment to communications equipment |
JP3708810B2 (en) | 2000-09-01 | 2005-10-19 | シャープ株式会社 | Nitride III-V compound semiconductor device |
US20030107865A1 (en) * | 2000-12-11 | 2003-06-12 | Shinsuke Masuda | Wafer handling apparatus and method of manufacturing the same |
US20020173062A1 (en) * | 2001-05-17 | 2002-11-21 | Lung-Chien Chen | Method for manufacturing GaN-based LED |
US6794719B2 (en) * | 2001-06-28 | 2004-09-21 | Koninklijke Philips Electronics N.V. | HV-SOI LDMOS device with integrated diode to improve reliability and avalanche ruggedness |
EP2267784B1 (en) * | 2001-07-24 | 2020-04-29 | Cree, Inc. | INSULATING GATE AlGaN/GaN HEMT |
KR100600681B1 (en) * | 2001-08-10 | 2006-07-13 | 가부시끼가이샤 도시바 | Semiconductor memory device and manufacturing method thereof |
JP2003100778A (en) | 2001-09-26 | 2003-04-04 | Toshiba Corp | Semiconductor device |
US6833564B2 (en) | 2001-11-02 | 2004-12-21 | Lumileds Lighting U.S., Llc | Indium gallium nitride separate confinement heterostructure light emitting devices |
JP2003209124A (en) * | 2001-11-06 | 2003-07-25 | Sony Corp | Method of manufacturing field-effect semiconductor device, and field-effect semiconductor device |
JP3705431B2 (en) | 2002-03-28 | 2005-10-12 | ユーディナデバイス株式会社 | Semiconductor device and manufacturing method thereof |
JP3952383B2 (en) | 2002-05-21 | 2007-08-01 | 富士通株式会社 | Compound field effect semiconductor device |
JP4221697B2 (en) | 2002-06-17 | 2009-02-12 | 日本電気株式会社 | Semiconductor device |
KR100573720B1 (en) | 2003-01-29 | 2006-04-26 | 가부시끼가이샤 도시바 | Power semiconductor device |
US6933544B2 (en) * | 2003-01-29 | 2005-08-23 | Kabushiki Kaisha Toshiba | Power semiconductor device |
US7078743B2 (en) * | 2003-05-15 | 2006-07-18 | Matsushita Electric Industrial Co., Ltd. | Field effect transistor semiconductor device |
US7501669B2 (en) | 2003-09-09 | 2009-03-10 | Cree, Inc. | Wide bandgap transistor devices with field plates |
JP2005086171A (en) * | 2003-09-11 | 2005-03-31 | Fujitsu Ltd | Semiconductor device and method of fabricating same |
JP4417677B2 (en) * | 2003-09-19 | 2010-02-17 | 株式会社東芝 | Power semiconductor device |
US7071498B2 (en) * | 2003-12-17 | 2006-07-04 | Nitronex Corporation | Gallium nitride material devices including an electrode-defining layer and methods of forming the same |
US7170111B2 (en) | 2004-02-05 | 2007-01-30 | Cree, Inc. | Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same |
US7465997B2 (en) | 2004-02-12 | 2008-12-16 | International Rectifier Corporation | III-nitride bidirectional switch |
GB2412009B (en) | 2004-03-11 | 2006-01-25 | Toshiba Research Europ Limited | A semiconductor device and method of its manufacture |
US7573078B2 (en) * | 2004-05-11 | 2009-08-11 | Cree, Inc. | Wide bandgap transistors with multiple field plates |
US7550783B2 (en) | 2004-05-11 | 2009-06-23 | Cree, Inc. | Wide bandgap HEMTs with source connected field plates |
US7432142B2 (en) | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
JP4682541B2 (en) | 2004-06-15 | 2011-05-11 | 豊田合成株式会社 | Semiconductor crystal growth method |
JP4810072B2 (en) | 2004-06-15 | 2011-11-09 | 株式会社東芝 | Nitrogen compound-containing semiconductor devices |
JP4379305B2 (en) | 2004-11-09 | 2009-12-09 | サンケン電気株式会社 | Semiconductor device |
JP4866007B2 (en) | 2005-01-14 | 2012-02-01 | 富士通株式会社 | Compound semiconductor device |
US11791385B2 (en) * | 2005-03-11 | 2023-10-17 | Wolfspeed, Inc. | Wide bandgap transistors with gate-source field plates |
US7365374B2 (en) | 2005-05-03 | 2008-04-29 | Nitronex Corporation | Gallium nitride material structures including substrates and methods associated with the same |
WO2006132418A1 (en) | 2005-06-10 | 2006-12-14 | Nec Corporation | Field effect transistor |
CN101238560B (en) | 2005-06-10 | 2011-08-31 | 日本电气株式会社 | Field effect transistor |
US7640609B2 (en) * | 2005-06-14 | 2010-01-05 | Earthlite Massage Tables, Inc. | Headrest assembly for a massage device |
EP2312635B1 (en) * | 2005-09-07 | 2020-04-01 | Cree, Inc. | Transistors with fluorine treatment |
JP5231719B2 (en) | 2006-03-30 | 2013-07-10 | 富士通株式会社 | Method for manufacturing field effect transistor |
US7703945B2 (en) | 2006-06-27 | 2010-04-27 | Cree, Inc. | Efficient emitting LED package and method for efficiently emitting light |
US7692263B2 (en) * | 2006-11-21 | 2010-04-06 | Cree, Inc. | High voltage GaN transistors |
US7585329B2 (en) * | 2006-11-28 | 2009-09-08 | Depuy Products, Inc. | Modular proximal body trial |
US8163196B2 (en) * | 2008-10-28 | 2012-04-24 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
-
2002
- 2002-07-23 EP EP10187943.5A patent/EP2267784B1/en not_active Expired - Lifetime
- 2002-07-23 AU AU2002357640A patent/AU2002357640A1/en not_active Abandoned
- 2002-07-23 KR KR1020047001027A patent/KR100920434B1/en active IP Right Grant
- 2002-07-23 US US10/201,345 patent/US7230284B2/en not_active Expired - Lifetime
- 2002-07-23 EP EP10187940.1A patent/EP2267783B1/en not_active Expired - Lifetime
- 2002-07-23 JP JP2003535260A patent/JP2005527102A/en active Pending
- 2002-07-23 WO PCT/US2002/023056 patent/WO2003032397A2/en active Application Filing
- 2002-07-23 CN CN028185021A patent/CN1557024B/en not_active Expired - Lifetime
- 2002-07-23 EP EP02792174A patent/EP1410444B1/en not_active Expired - Lifetime
- 2002-07-23 CA CA2454269A patent/CA2454269C/en not_active Expired - Lifetime
- 2002-07-24 TW TW091116474A patent/TW552712B/en not_active IP Right Cessation
-
2006
- 2006-02-17 US US11/356,791 patent/US9419124B2/en not_active Expired - Fee Related
-
2007
- 2007-05-03 US US11/799,786 patent/US20070205433A1/en not_active Abandoned
-
2009
- 2009-09-04 US US12/554,803 patent/US10224427B2/en not_active Expired - Fee Related
- 2009-10-22 JP JP2009243336A patent/JP2010021581A/en active Pending
- 2009-10-22 JP JP2009243337A patent/JP2010021582A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192987A (en) | 1991-05-17 | 1993-03-09 | Apa Optics, Inc. | High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions |
US5569937A (en) * | 1995-08-28 | 1996-10-29 | Motorola | High breakdown voltage silicon carbide transistor |
US5929467A (en) * | 1996-12-04 | 1999-07-27 | Sony Corporation | Field effect transistor with nitride compound |
US6140169A (en) | 1996-12-04 | 2000-10-31 | Sony Corporation | Method for manufacturing field effect transistor |
US6057564A (en) | 1997-07-30 | 2000-05-02 | Kabushiki Kaisha Toshiba | Semiconductor device having a GaNO region intermediate a GaN-based contact region and an electrode |
US6495409B1 (en) * | 1999-01-26 | 2002-12-17 | Agere Systems Inc. | MOS transistor having aluminum nitride gate structure and method of manufacturing same |
US6690042B2 (en) * | 2000-09-27 | 2004-02-10 | Sensor Electronic Technology, Inc. | Metal oxide semiconductor heterostructure field effect transistor |
US6475857B1 (en) * | 2001-06-21 | 2002-11-05 | Samsung Electronics Co., Ltd. | Method of making a scalable two transistor memory device |
Non-Patent Citations (10)
Title |
---|
Applied Physics Letters, vol. 77, No. 9, Aug. 2000, AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors on SiC Substrates, Kahn et al.pp. 1339-1340. |
IEEE Electron Device Letters, vol. 18, No. 10, (Oct. 1997), p. 492. |
IEEE Transactions on Electron Devices, vol. 48, No. 3/Mar. 2001, p. 581-585. |
Kahn M A et al., "AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors on SiC Substrates", Applied Physics Letters, American Institute of Physics. New York, US, vol. 77, No. 9, Aug. 2000, p. 1339-1341 XP000951319 ISSN: 0003-6951. |
Khan et al., AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor, IEEE Electron Device Letters, V.21, N2, Feb. 2000. * |
Lu W et al. "P-Type SiGe Transistors With Low Gate Leakage Using SiN Gate Dielectric", IEEE Electron Device Letters, IEEE, Inc., New York, US, vol. 20, No. 10, Oct. 1999, pp. 514-516, XP000890470, ISSN: 0741-3106. |
The Electrical Engineering Handbook, 2d Edition, DORF, p. 994, (1997) CRC Press. |
Tilak, V. et al., "Effect of Passivation on AlGaN/GaN HEMT Device Performance", 2000 IEEE International Symposium on Compound Semiconductors. Proceedings of the IEEE 27<SUP>th </SUP>International Symposium on Compound Semiconductors (Cat. No. 00<SUP>TH</SUP>8498), 2000 IEEE International Symposium on Compound Semiconductors Proceedings of TH, p. 357-363, XP002239700, 2000, Piscataway, NJ, USA, IEEE, USA ISBN: 0-7803-6258-6. |
Wu et al., "High A1 Content AlGaN/GaN HEMTs With Very High Performance", IEDM-1999 Digest pp. 925-927, Washington, D.C. Dec. 1999. |
Zhang N-Q et al., "High Breakdown GaN HEMT With Overlapping Gate Structure", IEEE Electron Device Letters, IEEE, Inc. New York, US, vol. 9, Sep. 2000, pp. 373-375, XP000954354, ISSN: 0741-3106. |
Cited By (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060138456A1 (en) * | 2001-07-24 | 2006-06-29 | Cree, Inc. | Insulating gate AlGaN/GaN HEMT |
US9419124B2 (en) * | 2001-07-24 | 2016-08-16 | Cree, Inc. | Insulating gate AlGaN/GaN HEMT |
US20080169474A1 (en) * | 2003-03-03 | 2008-07-17 | Cree, Inc. | Integrated Nitride and Silicon Carbide-Based Devices and Methods of Fabricating Integrated Nitride-Based Devices |
US8502235B2 (en) | 2003-03-03 | 2013-08-06 | Cree, Inc. | Integrated nitride and silicon carbide-based devices |
US7898047B2 (en) * | 2003-03-03 | 2011-03-01 | Samsung Electronics Co., Ltd. | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US20060289901A1 (en) * | 2003-03-03 | 2006-12-28 | Cree, Inc. | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US8035111B2 (en) | 2003-03-03 | 2011-10-11 | Cree, Inc. | Integrated nitride and silicon carbide-based devices |
US7875910B2 (en) * | 2003-03-03 | 2011-01-25 | Cree, Inc. | Integrated nitride and silicon carbide-based devices |
US20110147762A1 (en) * | 2003-03-03 | 2011-06-23 | Sheppard Scott T | Integrated Nitride and Silicon Carbide-Based Devices |
US11316028B2 (en) | 2004-01-16 | 2022-04-26 | Wolfspeed, Inc. | Nitride-based transistors with a protective layer and a low-damage recess |
US8481376B2 (en) * | 2004-01-16 | 2013-07-09 | Cree, Inc. | Group III nitride semiconductor devices with silicon nitride layers and methods of manufacturing such devices |
US20110140123A1 (en) * | 2004-01-16 | 2011-06-16 | Sheppard Scott T | Nitride-Based Transistors With a Protective Layer and a Low-Damage Recess |
US20110136305A1 (en) * | 2004-01-16 | 2011-06-09 | Adam William Saxler | Group III Nitride Semiconductor Devices with Silicon Nitride Layers and Methods of Manufacturing Such Devices |
US20070210332A1 (en) * | 2005-01-14 | 2007-09-13 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
US7528423B2 (en) * | 2005-01-14 | 2009-05-05 | Panasonic Corporation | Semiconductor device |
US20100041188A1 (en) * | 2005-09-07 | 2010-02-18 | Cree, Inc. | Robust transistors with fluorine treatment |
US8669589B2 (en) | 2005-09-07 | 2014-03-11 | Cree, Inc. | Robust transistors with fluorine treatment |
US20070114569A1 (en) * | 2005-09-07 | 2007-05-24 | Cree, Inc. | Robust transistors with fluorine treatment |
US7638818B2 (en) * | 2005-09-07 | 2009-12-29 | Cree, Inc. | Robust transistors with fluorine treatment |
US7955918B2 (en) | 2005-09-07 | 2011-06-07 | Cree, Inc. | Robust transistors with fluorine treatment |
US20110220966A1 (en) * | 2005-09-07 | 2011-09-15 | Cree, Inc. | Robust transistors with fluorine treatment |
US20070235775A1 (en) * | 2006-03-29 | 2007-10-11 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US7388236B2 (en) | 2006-03-29 | 2008-06-17 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US7875537B2 (en) | 2007-08-29 | 2011-01-25 | Cree, Inc. | High temperature ion implantation of nitride based HEMTs |
EP2261959A2 (en) | 2007-08-29 | 2010-12-15 | Cree, Inc. | High temperature ion implantation of nitride based HEMTS |
EP2690653A2 (en) | 2007-08-29 | 2014-01-29 | Cree, Inc. | High temperature ion implantation of nitride based HEMTS |
EP2261959A3 (en) * | 2007-08-29 | 2011-04-27 | Cree, Inc. | High temperature ion implantation of nitride based HEMTS |
US20110101377A1 (en) * | 2007-08-29 | 2011-05-05 | Cree, Inc. | High temperature ion implantation of nitride based hemts |
US20090057718A1 (en) * | 2007-08-29 | 2009-03-05 | Alexander Suvorov | High Temperature Ion Implantation of Nitride Based HEMTS |
US20090072269A1 (en) * | 2007-09-17 | 2009-03-19 | Chang Soo Suh | Gallium nitride diodes and integrated components |
US20090146224A1 (en) * | 2007-12-07 | 2009-06-11 | Northrop Grumman Space & Mission Systems Corp. | Composite Passivation Process for Nitride FET |
US8431962B2 (en) * | 2007-12-07 | 2013-04-30 | Northrop Grumman Systems Corporation | Composite passivation process for nitride FET |
EP2071623A2 (en) | 2007-12-14 | 2009-06-17 | Cree, Inc. | Metallization structure for high power microelectronic devices |
EP2071623A3 (en) * | 2007-12-14 | 2009-11-11 | Cree, Inc. | Metallization structure for high power microelectronic devices |
US9024327B2 (en) | 2007-12-14 | 2015-05-05 | Cree, Inc. | Metallization structure for high power microelectronic devices |
KR20110002033A (en) * | 2008-03-19 | 2011-01-06 | 크리, 인코포레이티드 | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US9941399B2 (en) * | 2008-04-23 | 2018-04-10 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US8841702B2 (en) | 2008-04-23 | 2014-09-23 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US9196716B2 (en) | 2008-04-23 | 2015-11-24 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US8519438B2 (en) | 2008-04-23 | 2013-08-27 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US9437708B2 (en) | 2008-04-23 | 2016-09-06 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US20090267078A1 (en) * | 2008-04-23 | 2009-10-29 | Transphorm Inc. | Enhancement Mode III-N HEMTs |
US20160359030A1 (en) * | 2008-04-23 | 2016-12-08 | Transphorm Inc. | Enhancement Mode III-N HEMTs |
US8076700B2 (en) | 2008-06-10 | 2011-12-13 | The United States Of America As Represented By The Secretary Of The Navy | P-N junction for use as an RF mixer from GHZ to THZ frequencies |
US20090302352A1 (en) * | 2008-06-10 | 2009-12-10 | The Government Of The United States Of America, As Represenied By The Secretary Of The Navy | P-N Junction for Use as an RF Mixer from GHZ to THZ Frequencies |
US8493129B2 (en) | 2008-09-23 | 2013-07-23 | Transphorm Inc. | Inductive load power switching circuits |
US8289065B2 (en) | 2008-09-23 | 2012-10-16 | Transphorm Inc. | Inductive load power switching circuits |
US8531232B2 (en) | 2008-09-23 | 2013-09-10 | Transphorm Inc. | Inductive load power switching circuits |
US20100073067A1 (en) * | 2008-09-23 | 2010-03-25 | Transphorm Inc. | Inductive Load Power Switching Circuits |
US9690314B2 (en) | 2008-09-23 | 2017-06-27 | Transphorm Inc. | Inductive load power switching circuits |
US8816751B2 (en) | 2008-09-23 | 2014-08-26 | Transphorm Inc. | Inductive load power switching circuits |
US20110127541A1 (en) * | 2008-12-10 | 2011-06-02 | Transphorm Inc. | Semiconductor heterostructure diodes |
US8541818B2 (en) | 2008-12-10 | 2013-09-24 | Transphorm Inc. | Semiconductor heterostructure diodes |
US9041065B2 (en) | 2008-12-10 | 2015-05-26 | Transphorm Inc. | Semiconductor heterostructure diodes |
US8237198B2 (en) | 2008-12-10 | 2012-08-07 | Transphorm Inc. | Semiconductor heterostructure diodes |
US8742459B2 (en) | 2009-05-14 | 2014-06-03 | Transphorm Inc. | High voltage III-nitride semiconductor devices |
US9293561B2 (en) | 2009-05-14 | 2016-03-22 | Transphorm Inc. | High voltage III-nitride semiconductor devices |
US20100289067A1 (en) * | 2009-05-14 | 2010-11-18 | Transphorm Inc. | High Voltage III-Nitride Semiconductor Devices |
US9306050B2 (en) * | 2009-06-26 | 2016-04-05 | Cornell University | III-V semiconductor structures including aluminum-silicon nitride passivation |
US8791034B2 (en) | 2009-06-26 | 2014-07-29 | Cornell University | Chemical vapor deposition process for aluminum silicon nitride |
US9991360B2 (en) | 2009-06-26 | 2018-06-05 | Cornell University | Method for forming III-V semiconductor structures including aluminum-silicon nitride passivation |
US20120153301A1 (en) * | 2009-06-26 | 2012-06-21 | Cornell University | Iii-v semiconductor structures including aluminum-silicon nitride passivation |
US8692294B2 (en) | 2009-08-28 | 2014-04-08 | Transphorm Inc. | Semiconductor devices with field plates |
US9831315B2 (en) | 2009-08-28 | 2017-11-28 | Transphorm Inc. | Semiconductor devices with field plates |
US9373699B2 (en) | 2009-08-28 | 2016-06-21 | Transphorm Inc. | Semiconductor devices with field plates |
US8390000B2 (en) | 2009-08-28 | 2013-03-05 | Transphorm Inc. | Semiconductor devices with field plates |
US9111961B2 (en) | 2009-08-28 | 2015-08-18 | Transphorm Inc. | Semiconductor devices with field plates |
US20110049526A1 (en) * | 2009-08-28 | 2011-03-03 | Transphorm Inc. | Semiconductor Devices with Field Plates |
US9496137B2 (en) | 2009-12-10 | 2016-11-15 | Transphorm Inc. | Methods of forming reverse side engineered III-nitride devices |
US8389977B2 (en) | 2009-12-10 | 2013-03-05 | Transphorm Inc. | Reverse side engineered III-nitride devices |
US10199217B2 (en) | 2009-12-10 | 2019-02-05 | Transphorm Inc. | Methods of forming reverse side engineered III-nitride devices |
CN101853880A (en) * | 2010-03-09 | 2010-10-06 | 西安电子科技大学 | AlGaN/GaN high-electron-mobility transistor and manufacturing method thereof |
US8829999B2 (en) | 2010-05-20 | 2014-09-09 | Cree, Inc. | Low noise amplifiers including group III nitride based high electron mobility transistors |
EP2388819A2 (en) | 2010-05-20 | 2011-11-23 | Cree, Inc. | Low noise amplifier including group III nitride based high electron mobility transistors |
US8809987B2 (en) | 2010-07-06 | 2014-08-19 | The Hong Kong University Of Science And Technology | Normally-off III-nitride metal-2DEG tunnel junction field-effect transistors |
US9437707B2 (en) | 2010-12-15 | 2016-09-06 | Transphorm Inc. | Transistors with isolation regions |
US9147760B2 (en) | 2010-12-15 | 2015-09-29 | Transphorm Inc. | Transistors with isolation regions |
US8742460B2 (en) | 2010-12-15 | 2014-06-03 | Transphorm Inc. | Transistors with isolation regions |
US8895421B2 (en) | 2011-02-02 | 2014-11-25 | Transphorm Inc. | III-N device structures and methods |
US8643062B2 (en) | 2011-02-02 | 2014-02-04 | Transphorm Inc. | III-N device structures and methods |
US9224671B2 (en) | 2011-02-02 | 2015-12-29 | Transphorm Inc. | III-N device structures and methods |
US9142659B2 (en) | 2011-03-04 | 2015-09-22 | Transphorm Inc. | Electrode configurations for semiconductor devices |
US8772842B2 (en) | 2011-03-04 | 2014-07-08 | Transphorm, Inc. | Semiconductor diodes with low reverse bias currents |
US8895423B2 (en) | 2011-03-04 | 2014-11-25 | Transphorm Inc. | Method for making semiconductor diodes with low reverse bias currents |
US8716141B2 (en) | 2011-03-04 | 2014-05-06 | Transphorm Inc. | Electrode configurations for semiconductor devices |
US9224805B2 (en) | 2011-09-06 | 2015-12-29 | Transphorm Inc. | Semiconductor devices with guard rings |
US8901604B2 (en) | 2011-09-06 | 2014-12-02 | Transphorm Inc. | Semiconductor devices with guard rings |
US9257547B2 (en) | 2011-09-13 | 2016-02-09 | Transphorm Inc. | III-N device structures having a non-insulating substrate |
US8860495B2 (en) | 2011-10-07 | 2014-10-14 | Transphorm Inc. | Method of forming electronic components with increased reliability |
US8598937B2 (en) | 2011-10-07 | 2013-12-03 | Transphorm Inc. | High power semiconductor electronic components with increased reliability |
US9171836B2 (en) | 2011-10-07 | 2015-10-27 | Transphorm Inc. | Method of forming electronic components with increased reliability |
US10868135B2 (en) | 2011-11-29 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | High electron mobility transistor structure |
US20190214493A1 (en) * | 2011-12-21 | 2019-07-11 | Power Integrations, Inc. | Shield wrap for a heterostructure field effect transistor |
US9685323B2 (en) | 2012-02-03 | 2017-06-20 | Transphorm Inc. | Buffer layer structures suited for III-nitride devices with foreign substrates |
US9165766B2 (en) | 2012-02-03 | 2015-10-20 | Transphorm Inc. | Buffer layer structures suited for III-nitride devices with foreign substrates |
US9490324B2 (en) | 2012-04-09 | 2016-11-08 | Transphorm Inc. | N-polar III-nitride transistors |
US9093366B2 (en) | 2012-04-09 | 2015-07-28 | Transphorm Inc. | N-polar III-nitride transistors |
US9147732B2 (en) | 2012-05-09 | 2015-09-29 | Nxp B.V. | Group 13 nitride semiconductor device and method of its manufacture |
US9184275B2 (en) | 2012-06-27 | 2015-11-10 | Transphorm Inc. | Semiconductor devices with integrated hole collectors |
US9634100B2 (en) | 2012-06-27 | 2017-04-25 | Transphorm Inc. | Semiconductor devices with integrated hole collectors |
US9087776B2 (en) | 2012-07-20 | 2015-07-21 | Samsung Electronics Co., Ltd. | Nitride-based semiconductor device and method of manufacturing nitride-based semiconductor device |
US9590069B2 (en) | 2012-09-28 | 2017-03-07 | Intel Corporation | Self-aligned structures and methods for asymmetric GaN transistors and enhancement mode operation |
US11705522B2 (en) | 2012-12-25 | 2023-07-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9520491B2 (en) | 2013-02-15 | 2016-12-13 | Transphorm Inc. | Electrodes for semiconductor devices and methods of forming the same |
US9171730B2 (en) | 2013-02-15 | 2015-10-27 | Transphorm Inc. | Electrodes for semiconductor devices and methods of forming the same |
US9590060B2 (en) | 2013-03-13 | 2017-03-07 | Transphorm Inc. | Enhancement-mode III-nitride devices |
US10535763B2 (en) | 2013-03-13 | 2020-01-14 | Transphorm Inc. | Enhancement-mode III-nitride devices |
US10043898B2 (en) | 2013-03-13 | 2018-08-07 | Transphorm Inc. | Enhancement-mode III-nitride devices |
US9865719B2 (en) | 2013-03-15 | 2018-01-09 | Transphorm Inc. | Carbon doping semiconductor devices |
US9245993B2 (en) | 2013-03-15 | 2016-01-26 | Transphorm Inc. | Carbon doping semiconductor devices |
US9245992B2 (en) | 2013-03-15 | 2016-01-26 | Transphorm Inc. | Carbon doping semiconductor devices |
US9755059B2 (en) | 2013-06-09 | 2017-09-05 | Cree, Inc. | Cascode structures with GaN cap layers |
WO2014200643A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Cascode structures for gan hemts |
US9847411B2 (en) | 2013-06-09 | 2017-12-19 | Cree, Inc. | Recessed field plate transistor structures |
US9679981B2 (en) | 2013-06-09 | 2017-06-13 | Cree, Inc. | Cascode structures for GaN HEMTs |
WO2014200753A2 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Recessed field plate transistor structures |
WO2014200820A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc | Cascode structures with gan cap layers |
EP3522231A1 (en) | 2013-06-09 | 2019-08-07 | Cree, Inc. | Multi-gate transistor |
US9407214B2 (en) | 2013-06-28 | 2016-08-02 | Cree, Inc. | MMIC power amplifier |
US9935190B2 (en) | 2014-07-21 | 2018-04-03 | Transphorm Inc. | Forming enhancement mode III-nitride devices |
US9318593B2 (en) | 2014-07-21 | 2016-04-19 | Transphorm Inc. | Forming enhancement mode III-nitride devices |
US9536967B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Recessed ohmic contacts in a III-N device |
US9536966B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Gate structures for III-N devices |
US9698141B2 (en) * | 2015-09-04 | 2017-07-04 | Kabushiki Kaisha Toshiba | Semiconductor device |
US11322599B2 (en) | 2016-01-15 | 2022-05-03 | Transphorm Technology, Inc. | Enhancement mode III-nitride devices having an Al1-xSixO gate insulator |
US11121216B2 (en) | 2016-05-31 | 2021-09-14 | Transphorm Technology, Inc. | III-nitride devices including a graded depleting layer |
US10629681B2 (en) | 2016-05-31 | 2020-04-21 | Transphorm Technology, Inc. | III-nitride devices including a graded depleting layer |
US10224401B2 (en) | 2016-05-31 | 2019-03-05 | Transphorm Inc. | III-nitride devices including a graded depleting layer |
US10170580B2 (en) | 2017-05-23 | 2019-01-01 | Industrial Technology Research Institute | Structure of GaN-based transistor and method of fabricating the same |
US11527642B2 (en) * | 2019-10-08 | 2022-12-13 | Samsung Electronics Co., Ltd. | Semiconductor device, method of fabricating the same, and display device including the same |
US12087853B2 (en) * | 2019-10-08 | 2024-09-10 | Samsung Electronics Co., Ltd. | Semiconductor device, method of fabricating the same, and display device including the same |
US11658234B2 (en) | 2020-10-27 | 2023-05-23 | Wolfspeed, Inc. | Field effect transistor with enhanced reliability |
US11502178B2 (en) | 2020-10-27 | 2022-11-15 | Wolfspeed, Inc. | Field effect transistor with at least partially recessed field plate |
US11749726B2 (en) | 2020-10-27 | 2023-09-05 | Wolfspeed, Inc. | Field effect transistor with source-connected field plate |
EP4428926A2 (en) | 2020-10-27 | 2024-09-11 | Wolfspeed, Inc. | Field effect transistor with at least partially recessed field plate |
US11869964B2 (en) | 2021-05-20 | 2024-01-09 | Wolfspeed, Inc. | Field effect transistors with modified access regions |
US11621672B2 (en) | 2021-08-05 | 2023-04-04 | Wolfspeed, Inc. | Compensation of trapping in field effect transistors |
Also Published As
Publication number | Publication date |
---|---|
JP2005527102A (en) | 2005-09-08 |
KR100920434B1 (en) | 2009-10-08 |
CN1557024B (en) | 2010-04-07 |
US20060138456A1 (en) | 2006-06-29 |
US9419124B2 (en) | 2016-08-16 |
US20090315078A1 (en) | 2009-12-24 |
EP2267784A3 (en) | 2011-03-23 |
AU2002357640A1 (en) | 2003-04-22 |
CN1557024A (en) | 2004-12-22 |
US20070205433A1 (en) | 2007-09-06 |
EP2267783A2 (en) | 2010-12-29 |
TW552712B (en) | 2003-09-11 |
WO2003032397A3 (en) | 2003-08-14 |
WO2003032397A2 (en) | 2003-04-17 |
US20030020092A1 (en) | 2003-01-30 |
EP1410444A2 (en) | 2004-04-21 |
EP1410444B1 (en) | 2012-08-22 |
EP2267784B1 (en) | 2020-04-29 |
JP2010021581A (en) | 2010-01-28 |
EP2267784A2 (en) | 2010-12-29 |
CA2454269A1 (en) | 2003-04-17 |
KR20040018502A (en) | 2004-03-03 |
EP2267783A3 (en) | 2011-03-09 |
CA2454269C (en) | 2015-07-07 |
US10224427B2 (en) | 2019-03-05 |
JP2010021582A (en) | 2010-01-28 |
EP2267783B1 (en) | 2017-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7230284B2 (en) | Insulating gate AlGaN/GaN HEMT | |
US6586781B2 (en) | Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same | |
EP2031648B1 (en) | Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides | |
US20240105829A1 (en) | Group iii-nitride high-electron mobility transistors with buried p-type layers and process for making the same | |
US20090321787A1 (en) | High voltage GaN-based heterojunction transistor structure and method of forming same | |
JP2023511860A (en) | Group III HEMTs and Capacitors Sharing Structural Features | |
WO2022245886A1 (en) | Methods of manufacturing high electron mobility transistors having improved performance | |
CN110890423A (en) | High-voltage gallium nitride power device structure and preparation method thereof | |
US20220367697A1 (en) | Group iii-nitride transistors with back barrier structures and buried p-type layers and methods thereof | |
Higashiwaki et al. | Millimeter-wave GaN HFET technology | |
TW523927B (en) | Group III nitride based fets and hemts with reduced trapping and method for producing the same | |
CN116314256A (en) | Single particle reinforced P-GaN high electron mobility transistor and preparation method thereof | |
CN110854193A (en) | Gallium nitride power device structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CREE LIGHTING COMPANY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARIKH, PRIMIT;MISHRA, UMESH;WU, YIFENG;REEL/FRAME:013395/0315;SIGNING DATES FROM 20020724 TO 20020725 |
|
AS | Assignment |
Owner name: CREE, INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:CREE LIGHTING COMPANY;REEL/FRAME:014277/0191 Effective date: 20030629 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |