JP3439111B2 - High mobility transistor - Google Patents

High mobility transistor

Info

Publication number
JP3439111B2
JP3439111B2 JP05706998A JP5706998A JP3439111B2 JP 3439111 B2 JP3439111 B2 JP 3439111B2 JP 05706998 A JP05706998 A JP 05706998A JP 5706998 A JP5706998 A JP 5706998A JP 3439111 B2 JP3439111 B2 JP 3439111B2
Authority
JP
Japan
Prior art keywords
type
layer
semiconductor layer
type semiconductor
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05706998A
Other languages
Japanese (ja)
Other versions
JPH11261052A (en
Inventor
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP05706998A priority Critical patent/JP3439111B2/en
Publication of JPH11261052A publication Critical patent/JPH11261052A/en
Application granted granted Critical
Publication of JP3439111B2 publication Critical patent/JP3439111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はGaN系化合物半導
体から成る高移動度トランジスタ(HEMT)に関し、
更に詳しくは、高電圧印加の下で作動できる新規な構造
のHEMTに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high mobility transistor (HEMT) made of a GaN compound semiconductor,
More specifically, it relates to a HEMT having a novel structure which can be operated under high voltage application.

【0002】[0002]

【従来の技術】HEMTは、例えば高出力マイクロ波素
子の素材として期待されていて、現在ではGaAs系化
合物半導体を用いて製造されているのが通例である。例
えば、半絶縁性基板の上にi型GaAs層とn型GaA
xAs1-x層を順次成膜し、そしてそのn型GaAlx
As1-x層の上に、ソース電極とドレイン電極が装荷さ
れ、更に例えばSiO2から成る絶縁層を介してゲート
電極が装荷された構造のものが知られている。
2. Description of the Related Art A HEMT is expected as a material for a high-power microwave device, for example, and is currently manufactured by using a GaAs compound semiconductor. For example, an i-type GaAs layer and an n-type GaA are formed on a semi-insulating substrate.
l x As 1-x layers are sequentially deposited, and the n-type GaAl x
There is known a structure in which a source electrode and a drain electrode are loaded on an As 1-x layer, and a gate electrode is loaded via an insulating layer made of, for example, SiO 2 .

【0003】この構造のHEMTの場合、x=0.25
のときのエネルギーバンド図をみると、n型GaAl
0.25As0.75層とi型GaAs層のヘテロ接合界面にお
けるヘテロ障壁(ΔEc)は約0.26eVになってい
て、熱平衡状態においては、当該接合界面に2次元電子
ガス層が形成される状態になっている。そして、ソース
電極とドレイン電極の間に所定値の逆バイアス電圧を印
加し、またソース電極とゲート電極の間に順バイアス電
圧を印加することにより、前記n型GaAlxAs1 -x
からはその下に位置するi型GaAs層へ電子が供給さ
れ、供給された電子は前記接合界面で2次元電子ガス層
を形成し、そのガス層内に閉じ込められた状態で電子は
ドレイン電極へと高速で流れてHEMT動作を実現す
る。その場合、ゲート電圧の直下における電界強度が強
いほど、2次元電子ガス層への電子の閉じ込め効果は高
まるので、高速動作は実現しやすくなる。
In the case of HEMT having this structure, x = 0.25
Looking at the energy band diagram for, n-type GaAl
The hetero barrier (ΔEc) at the heterojunction interface between the 0.25 As 0.75 layer and the i-type GaAs layer is about 0.26 eV, and in the thermal equilibrium state, a two-dimensional electron gas layer is formed at the junction interface. ing. Then, by applying a reverse bias voltage having a predetermined value between the source electrode and the drain electrode and applying a forward bias voltage between the source electrode and the gate electrode, the n-type GaAl x As 1 -x layer is separated from the n-type GaAl x As 1 -x layer. Electrons are supplied to the i-type GaAs layer located therebelow, and the supplied electrons form a two-dimensional electron gas layer at the junction interface, and the electrons are rapidly confined to the drain electrode while being confined in the gas layer. To realize HEMT operation. In that case, the higher the electric field strength immediately below the gate voltage, the higher the effect of confining electrons in the two-dimensional electron gas layer, and thus the higher-speed operation becomes easier to realize.

【0004】しかしながら、GaAs系HEMTの場
合、ヘテロ接合界面における不連続バンドは0.26eV
程度(x=0.25のとき)であり、その絶縁破壊電界
値は3×105V/cm程度であるため、ゲート電極に高電
圧を印加してその直下に高電界を形成することにより高
速動作を実現するという点で難がある。このような問題
に対処することを目的として、最近、GaN系化合物半
導体を用いたHEMTの試作研究が行われている。
However, in the case of GaAs HEMT, the discontinuous band at the heterojunction interface is 0.26 eV.
Since the dielectric breakdown electric field value is about 3 × 10 5 V / cm, a high voltage is applied to the gate electrode to form a high electric field directly under the gate electrode. There is a difficulty in achieving high speed operation. For the purpose of addressing such a problem, trial manufacture of a HEMT using a GaN-based compound semiconductor has recently been conducted.

【0005】これは、GaAlx1-xとGaNとのヘテ
ロ接合界面におけるヘテロ障壁(ΔEc)は約0.67e
Vであり、GaAs系の場合に比べて約2.6倍と高い不
連続バンドを有し、またその絶縁破壊電界値も2×10
6V/cmであり、GaAs系の場合に比べて1桁大きいの
で2次元電子ガス層内への電子の閉じ込め効果を高める
ことができ、理論的には、GaAs系に比べて電子濃度
を10倍程度大きくすることができるからである。
This means that the heterobarrier (ΔEc) at the heterojunction interface between GaAl x N 1-x and GaN is about 0.67e.
V has a discontinuous band that is about 2.6 times higher than that of GaAs system, and its dielectric breakdown electric field value is 2 × 10.
Since it is 6 V / cm, which is an order of magnitude larger than that of the GaAs system, it is possible to enhance the effect of confining electrons in the two-dimensional electron gas layer, and theoretically, the electron concentration is 10 This is because it can be doubled.

【0006】このGaN系HEMTとしては、例えば次
のようなものがMOCVD法を用いて製造されている。
すなわちまず、半絶縁性のサファイア基板の上に、Al
Nバッファ層が成膜される。ついで、Ga源としてトリ
メチルガリウム,N源としてアンモニアを用いて前記A
lNバッファ層の上にi型GaN層が成膜され、更にト
リメチルアルミニウムをAl源として前記i型GaN層
の上にn型AlGaN層が成膜される。そして、このn
型AlGaN層に対して常法のホトリソグラフィーとエ
ッチングを行ったのち、所定の箇所にゲート電極,ソー
ス電極,およびドレイン電極が装荷される。
As the GaN HEMT, for example, the following one is manufactured by using the MOCVD method.
That is, first, on a semi-insulating sapphire substrate, Al
An N buffer layer is deposited. Then, using trimethylgallium as a Ga source and ammonia as an N source, the above A
An i-type GaN layer is formed on the 1N buffer layer, and an n-type AlGaN layer is formed on the i-type GaN layer using trimethylaluminum as an Al source. And this n
After performing conventional photolithography and etching on the type AlGaN layer, a gate electrode, a source electrode, and a drain electrode are loaded at predetermined locations.

【0007】このGaN系HEMTの場合、i型GaN
層とn型AlGaN層のヘテロ接合界面、具体的にはi
型GaN層の最上層に2次元電子ガス層が形成され、こ
こに電子が閉じ込められた状態で高速移動してHEMT
動作を実現する。このとき、電子の高移動度を実現する
ためには、このi型GaN層には不純物や結晶欠陥が極
力存在していないことが必要である。
In the case of this GaN-based HEMT, i-type GaN
Layer and n-type AlGaN layer heterojunction interface, specifically i
A two-dimensional electron gas layer is formed on the uppermost layer of the n-type GaN layer.
Realize the action. At this time, in order to realize high electron mobility, it is necessary that impurities and crystal defects are not present as much as possible in the i-type GaN layer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
たGaN系HEMTの場合、GaAs系HEMTに比べ
れば高い電圧の印加は可能であるが、更なる高速動作が
要求されている昨今の状況に対しては必ずしも充分な電
子移動度を発揮するものとはいいがたい。本発明は従来
のGaN系HEMTにおける上記した問題を解決し、高
耐圧性を備えている新規構造のGaN系HEMTの提供
を目的とする。
However, in the case of the above-mentioned GaN-based HEMT, it is possible to apply a higher voltage than that of the GaAs-based HEMT, but with respect to the recent situation where further high speed operation is required. Is not necessarily one that exhibits sufficient electron mobility. It is an object of the present invention to solve the above-mentioned problems in the conventional GaN-based HEMT and to provide a GaN-based HEMT having a novel structure having high withstand voltage.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、半絶縁性基板の上に、下部
i型半導体層,n型ドーパントの濃度が2×10 17 〜1
×10 18 cm -3 n型半導体層,および上部i型半導体層
をこの順序で積層して成る積層構造が形成され、前記各
半導体層はいずれもGaN系化合物半導体から成り、か
つ、前記上部i型半導体層の上には、絶縁層を介してゲ
ート電極が装荷され、また、前記上部i型半導体層の上
には、GaN系化合物半導体から成る導電性n型半導体
層を介してソース電極とドレイン電極がそれぞれ装荷さ
れていることを特徴とする高移動度トランジスタが提供
される。
In order to achieve the above object, in the present invention, the lower i-type semiconductor layer and the concentration of the n-type dopant are 2 × 10 17 to 1 on the semi-insulating substrate.
A laminated structure is formed by laminating an n-type semiconductor layer of × 10 18 cm −3 and an upper i-type semiconductor layer in this order, and each of the semiconductor layers is made of a GaN-based compound semiconductor, and the upper portion is formed. A gate electrode is loaded on the i-type semiconductor layer via an insulating layer, and a source electrode is placed on the upper i-type semiconductor layer via a conductive n-type semiconductor layer made of a GaN-based compound semiconductor. There is provided a high mobility transistor, characterized in that it is loaded with a drain electrode and a drain electrode, respectively.

【0010】[0010]

【発明の実施の形態】以下、本発明のHEMTにつき、
その基本構造を示す図1に基づいて詳細に説明する。本
発明のHEMTは、半絶縁性基板1の上に、バッファ層
2,下部i型半導体層3,n型半導体層4,上部i型半
導体層5から成る積層構造Aが形成され、上部i型半導
体層5の上には、絶縁層6を介してゲート電極Gが装荷
され、また、低抵抗n型半導体層7a,7bを介してソ
ース電極S,ドレイン電極Dがそれぞれ装荷された構造
になっている。
BEST MODE FOR CARRYING OUT THE INVENTION The HEMT of the present invention will be described below.
A detailed description will be given based on FIG. 1 showing the basic structure. In the HEMT of the present invention, a laminated structure A composed of a buffer layer 2, a lower i-type semiconductor layer 3, an n-type semiconductor layer 4, and an upper i-type semiconductor layer 5 is formed on a semi-insulating substrate 1, and an upper i-type is formed. On the semiconductor layer 5, a gate electrode G is loaded via an insulating layer 6, and a source electrode S and a drain electrode D are loaded via low resistance n-type semiconductor layers 7a and 7b, respectively. ing.

【0011】ここで、ソース電極S,ドレイン電極G
は、それぞれ、低抵抗のn型半導体層7a,7bを介し
て上部i型半導体層5に装荷されているので、電子のチ
ャネルとして機能する上部i型半導体層とソース電極
S,ドレイン電極との間ではオーミック接触を実現させ
ることができ、電子高移動度を可能にしている。本発明
のHEMT積層構造Aは、GaN系化合物半導体に対
してMOCVD法やMOMBE法など公知のエピタキシ
ャル成長法を適用することにより、半絶縁性基板1の上
に所定組成の半導体層を成膜していくことによって製造
することができる。
Here, the source electrode S and the drain electrode G
Are loaded on the upper i-type semiconductor layer 5 via the low-resistance n-type semiconductor layers 7a and 7b, respectively, so that the upper i-type semiconductor layer 5 functioning as an electron channel, the source electrode S, and the drain electrode are formed. Ohmic contact can be realized between the two, which enables high electron mobility. Layered structure A of the HEMT of the present invention, by applying the MOCVD method or MOMBE method such as a known epitaxial growth method with respect to GaN-based compound semiconductor, forming a semiconductor layer having a predetermined composition on a semi-insulating substrate 1 It can be manufactured by carrying out.

【0012】ここで、半絶縁性基板1としては、この上
に成膜していく各半導体層との間で格子整合している材
料から成ることが本来は好ましいが、GaN系に関して
はそのような材料は存在しないので従来から使用されて
いる材料、例えばサファイア,Si単結晶などの半絶縁
性材料の基板であればよい。また、バッファ層2として
はGaN層が選択される。
Here, it is originally preferable that the semi-insulating substrate 1 is made of a material that is lattice-matched with each semiconductor layer to be formed thereon, but with respect to the GaN-based substrate, this is the case. Since such a material does not exist, a substrate of a conventionally used material, for example, a semi-insulating material such as sapphire or Si single crystal may be used. A GaN layer is selected as the buffer layer 2.

【0013】下部i型半導体層3,上部i型半導体層5
を構成するGaN系化合物半導体としては、例えば、i
型GaN,i型InGaN,i型GaNAs,i型Ga
NP,i型InGaNAs,i型InGaNPなどをあ
げることができる。これらのうち、i型GaNは好適で
ある。なお、上部i型半導体層5の材料としては、下部
i型半導体層3の材料よりもバンドギャップエネルギー
が小さいものを用いることが好ましい。電流が流れやす
く、チャネルとしての機能向上が得られるからである。
Lower i-type semiconductor layer 3 and upper i-type semiconductor layer 5
Examples of the GaN-based compound semiconductor forming
Type GaN, i type In GaN, i type GaNAs, i type Ga
NP, i-type InGaNAs, i-type InGaNP, etc. can be mentioned. Of these, i-type GaN is preferable. As the material of the upper i-type semiconductor layer 5, it is preferable to use one having a smaller bandgap energy than the material of the lower i-type semiconductor layer 3. This is because a current easily flows and the function as a channel can be improved.

【0014】n型半導体層4を構成するGaN系化合物
半導体としては、例えば、n型AlGaN,n型Ga
N,nAlInGaNなどをあげることができる。これ
らのうち、n型AlGaNは好適である。なお、n型半
導体層4をn型Al x Ga 1-x で構成する場合、xが大
きい組成にするほど上部i型半導体層5とのヘテロ接合
界面におけるヘテロ障壁(ΔEc)を高くすることがで
き、2次元電子ガス層5aにおける電子の閉じ込め効果
を高めることができる。しかし、xが0.5より大きく
なると、Al x Ga 1-x は絶縁性を示し始めるので、x
値は0.5以下に規制して導電性を確保することが必要
である。
Examples of the GaN-based compound semiconductor forming the n-type semiconductor layer 4 include n-type AlGaN and n-type Ga.
N, nAlInGaN etc. can be mentioned. Of these, n-type AlGaN is preferable. When the n-type semiconductor layer 4 is composed of n-type Al x Ga 1-x N , the heterobarrier (ΔEc) at the heterojunction interface with the upper i-type semiconductor layer 5 should be increased as x becomes larger. Therefore, the effect of confining electrons in the two-dimensional electron gas layer 5a can be enhanced. However, when x becomes larger than 0.5, Al x Ga 1-x N starts to show an insulating property, so x
It is necessary to regulate the value to 0.5 or less to ensure conductivity.

【0015】このn型半導体層4の成膜時に用いるn型
ドーパントとしては、例えば金属Siやジシラン(MO
CVD法を適用して製造する場合)などをあげることが
できる。このn型半導体層4におけるn型ドーパントの
濃度は、後述する導電性n型半導体層7a,7bにおけ
る濃度よりも低めに設定され、例えばn型ドーパントが
Siであるときは、2×1017〜1×1018cm-3程度に
する。
Examples of the n-type dopant used when forming the n-type semiconductor layer 4 include metal Si and disilane (MO).
The case of manufacturing by applying the CVD method) and the like can be mentioned. The concentration of the n-type dopant in the n-type semiconductor layer 4 is set to be lower than the concentration in the conductive n-type semiconductor layers 7a and 7b described later. For example, when the n-type dopant is Si, 2 × 10 17 to Make it about 1 × 10 18 cm -3 .

【0016】絶縁層6を構成する材料としては、例え
ば、i型AlGaN,i型AInGaNなどをあげるこ
とができ、また絶縁性のダイヤモンドであってもよい。
これらのうち、i型AlGaNは好適である。導電性n
型半導体層7a,7bを構成するGaN系化合物半導体
としては、前記したn型半導体層4の場合と同じ材料で
あればよく、そのうちでもn型GaNが好適である。し
かし、上部i型半導体層5とソース電極S,ドレイン電
極Gとの間でオーミック接触を実現するために、例えば
n型ドーパントのドープ量を多くすることにより良好な
導電性が付与される。n型ドーパントが例えばSiであ
る場合には、その濃度が8×1017〜1×1019cm-3
度になるようにドーピングする。
Examples of the material forming the insulating layer 6 include i-type AlGaN and i-type AInGaN, and may be insulating diamond.
Of these, i-type AlGaN is preferable. Conductivity n
As the GaN-based compound semiconductor forming the type semiconductor layers 7a and 7b, the same material as that of the n-type semiconductor layer 4 may be used, and among them, n-type GaN is preferable. However, in order to realize ohmic contact between the upper i-type semiconductor layer 5 and the source electrode S and the drain electrode G, good conductivity is imparted by increasing the doping amount of the n-type dopant, for example. When the n-type dopant is, for example, Si, the doping is performed so that the concentration is about 8 × 10 17 to 1 × 10 19 cm −3 .

【0017】なお、導電性n型半導体層としては、導電
性のn型GaNよりもバンドギャップエネルギーが小さ
ければ、例えばn型GaNAs,n型GaNP,n型G
aInNAs,n型InGaNPなどを用いることもで
きる。最後に、ゲート電極Gを構成する材料としては例
えばAu/Ptなどをあげることができ、またゲート電
極Gを構成する材料としては例えばTi/Alなどをあ
げることができる。
As the conductive n-type semiconductor layer, if the band gap energy is smaller than that of the conductive n-type GaN, for example, n-type GaNAs, n-type GaNP, n-type G.
It is also possible to use aInNAs, n-type InGaNP, or the like. Finally, the material forming the gate electrode G can be, for example, Au / Pt, and the material forming the gate electrode G can be, for example, Ti / Al.

【0018】この構造のHEMTは、ゲート電極Gと上
部i型半導体層5の間に絶縁層6を介装しているので高
電圧で作動させることができる。そのため、例えばゲー
ト電極Gに電圧VGを印加したとすると、ゲート電極G
の下では、図2のエネルギーバンド図で示したように、
上部i型半導体層5の中には、n型半導体層4とのヘテ
ロ接合界面に形成された2次元電子ガス層5a内への電
子の閉じ込め効果は高まり、電子の高速移動が実現す
る。
Since the HEMT having this structure has the insulating layer 6 interposed between the gate electrode G and the upper i-type semiconductor layer 5, it can be operated at a high voltage. Therefore, if a voltage VG is applied to the gate electrode G, for example, the gate electrode G
Below, as shown in the energy band diagram of Fig. 2,
In the upper i-type semiconductor layer 5, the effect of confining electrons in the two-dimensional electron gas layer 5a formed at the heterojunction interface with the n-type semiconductor layer 4 is enhanced, and high-speed movement of electrons is realized.

【0019】[0019]

【実施例】図1で示した積層構造のHEMTをMOMB
E法により次のようにして製造した。まず、半絶縁性の
Si単結晶基板1の上に、Ga源として金属Ga(5×
10 -7Torr),N源としてジメチルヒドラジン(5×1
-5Torr)を用い、成長温度640℃でエピタキシャル
成長を行い、厚み50ÅのGaNバッファ層2を成膜し
た。
EXAMPLE A MOMB of the HEMT having the laminated structure shown in FIG.
It was produced by the method E as follows. First, the semi-insulating
On the Si single crystal substrate 1, metal Ga (5 ×
10 -7Torr), dimethylhydrazine (5 × 1) as N source
0-FiveEpitaxial growth at a growth temperature of 640 ° C using Torr)
Growth is performed and a GaN buffer layer 2 having a thickness of 50Å is formed.
It was

【0020】ついで、N源をアンモニア(5×10-5To
rr)に切り換え、成長温度を850℃に上昇してエピタ
キシャル成長を行い、厚み5000Åのi型GaN層3
を成膜した。なお、このときのキャリア濃度は5×10
16cm-3以下となるように成膜条件を設定した。ついで、
金属Al(2×10-7Torr)を供給し、またn型ドーパ
ントとして金属Si(2×10-9Torr)を供給し、成長
温度850℃でエピタキシャル成長を継続して、厚みが
500Åのn型AlGaN層4を成膜した。このとき、
キャリア濃度は1×1018cm-3となるように成膜条件を
設定した。
Then, the N source was changed to ammonia (5 × 10 -5 To
rr), the growth temperature is raised to 850 ° C. to perform epitaxial growth, and the i-type GaN layer 3 having a thickness of 5000 Å is formed.
Was deposited. The carrier concentration at this time is 5 × 10.
The film forming conditions were set so as to be 16 cm −3 or less. Then,
Metal Al (2 × 10 -7 Torr) is supplied, and metal Si (2 × 10 -9 Torr) is supplied as an n-type dopant, and epitaxial growth is continued at a growth temperature of 850 ° C. to obtain an n-type with a thickness of 500 Å. The AlGaN layer 4 was formed. At this time,
The film forming conditions were set so that the carrier concentration was 1 × 10 18 cm −3 .

【0021】金属Alと金属Siの供給を絶ち、金属G
a(5×10-7Torr),アンモニア(5×10-5Torr)
を用い、成長温度850℃でエピタキシャル成長を行
い、厚み2500Åのi型GaN層5を成膜して積層構
造Aを形成した。このとき、キャリア濃度は5×1016
cm-3以下となるように成膜条件を設定した。そして次
に、金属Ga(5×10-7Torr),アンモニア(5×1
-5Torr),n型ドーパントとして金属Si(2×10
-9Torr)を用い、成長温度850℃でエピタキシャル成
長を行い、上記した積層構造Aの上に厚み500Åのn
型GaN層を成膜した。このとき、キャリア濃度は3×
1018cm-3となるように成膜条件を設定した。なお、こ
の層は、図1における導電性n型半導体層7a,7bと
して機能する。
The supply of metal Al and metal Si was cut off, and metal G
a (5 × 10 -7 Torr), ammonia (5 × 10 -5 Torr)
Was used for epitaxial growth at a growth temperature of 850 ° C., and an i-type GaN layer 5 having a thickness of 2500 Å was formed to form a laminated structure A. At this time, the carrier concentration is 5 × 10 16.
The film forming conditions were set so as to be cm −3 or less. And next, metal Ga (5 × 10 −7 Torr), ammonia (5 × 1
0 -5 Torr), a metal Si (2 × 10 as n-type dopant
-9 Torr) is used to perform epitaxial growth at a growth temperature of 850 ° C., and an n-thickness of 500 Å is formed on the above laminated structure A.
A type GaN layer was formed. At this time, the carrier concentration is 3 ×
The film forming conditions were set so as to be 10 18 cm −3 . Note that this layer functions as the conductive n-type semiconductor layers 7a and 7b in FIG.

【0022】ついで、プラズマCVD法で上記n型Ga
N層の全面にSiO2膜を成膜し、ホトレジストでパタ
ーニングしたのち、水素とアルゴンとメタンの混合ガス
をプラズマ化したものをエッチャントにしてドライエッ
チングを行い、ソース電極とドレイン電極を装荷すべき
箇所を残して他の部分のSiO2膜を除去し、i型Ga
N層5の表面を露出させた。
Then, the above n-type Ga is formed by plasma CVD.
After forming a SiO 2 film on the entire surface of the N layer and patterning it with a photoresist, dry etching is performed by using a mixed gas of hydrogen, argon and methane as plasma as an etchant to load the source electrode and the drain electrode. The SiO 2 film on the other part is removed leaving the part and i-type Ga
The surface of the N layer 5 was exposed.

【0023】その後、全体の表面を被覆してSiO2
をプラズマCVD法で成膜し、ホトレジストでパターニ
ングしたのちゲート電極を装荷すべき箇所を含む部分を
エッチング除去し、そこに表出したi型GaN層5の上
に、金属Ga(5×10-7Torr),アンモニア(5×1
-5Torr),金属Al(2×10-7Torr)を用いて成長
温度850℃で選択成長を行い、厚み500Åのi型A
lGaN層を成膜した。なお、この層が図1における絶
縁層6として機能する。
After that, a SiO 2 film is formed on the entire surface by plasma CVD, patterned with a photoresist, and then a portion including a portion where a gate electrode is to be loaded is removed by etching. Ga (5 × 10 −7 Torr), ammonia (5 × 1
0 -5 Torr) and metallic Al (2 x 10 -7 Torr) were selectively grown at a growth temperature of 850 ° C to obtain i-type A with a thickness of 500 Å.
An lGaN layer was formed. Note that this layer functions as the insulating layer 6 in FIG.

【0024】ついで、フッ酸でSiO2膜をエッチング
除去したのち、再びプラズマCVD法で全面にSiO2
膜を成膜し、ゲート電極を装荷すべき箇所はマスキング
し、ソース電極とドレイン電極を装荷すべき箇所は開口
し、その開口部にTi/Alを蒸着してリフトオフする
ことによりn型GaN層7a,7bの上にソース電極S
とドレイン電極Gを装荷する。
Then, the SiO 2 film is removed by etching with hydrofluoric acid, and the entire surface of the SiO 2 film is again etched by the plasma CVD method.
An n-type GaN layer is formed by forming a film, masking the portions where the gate electrode should be loaded, opening the portions where the source electrode and the drain electrode should be loaded, and depositing Ti / Al in the openings and lifting off. Source electrode S on 7a, 7b
And the drain electrode G.

【0025】最後、前記マスキングをエッチング除去
し、その下のSiO2膜を開口し、ソース電極Sとドレ
イン電極Gの箇所をSiO2膜でマスキングしたのち、
上記開口部にAu/Ptを蒸着してリフトオフする。そ
の結果、i型AlGaN層6の上にはゲート電極Gが装
荷される。このHEMTでは、ソース電極S,ドレイン
電極Dとi型GaN層5との間の接触抵抗は1×10-6
Ω/cm2であり、充分に小さい値を示した。
Finally, the masking is removed by etching, the underlying SiO 2 film is opened, and the portions of the source electrode S and the drain electrode G are masked with the SiO 2 film.
Au / Pt is vapor-deposited on the opening and lifted off. As a result, the gate electrode G is loaded on the i-type AlGaN layer 6. In this HEMT, the contact resistance between the source electrode S, the drain electrode D and the i-type GaN layer 5 is 1 × 10 −6.
Ω / cm 2 , which was a sufficiently small value.

【0026】このHEMTの移動度は、77Kで、70
00cm2/V・secと高い値を示し、ショットキーのゲート
耐圧は500Vを超え良好な特性を示した。またソース
ドレイン電流(Ids)50mAでドレイン電圧2Vで飽和
するトランジスタ特性が得られた。
The mobility of this HEMT is 77K and 70
The value was as high as 00 cm 2 / V · sec, and the Schottky gate withstand voltage exceeded 500 V and showed good characteristics. Further, a transistor characteristic was obtained in which the source / drain current (Ids) was 50 mA and the drain voltage was saturated at 2V.

【0027】[0027]

【発明の効果】以上の説明で明らかなように、本発明の
GaN系HEMTは、ゲート電圧を500Vにまで高め
ても故障を起こすことがなく、従来のGaN系HEMT
に比べて高速動作をすることができる。これは、ゲート
電極とチャネル層との間を絶縁構造とし、かつゲート電
極の下の層構造をini構造することにより、上部i型
半導体層とn型半導体層との接合界面に電子の閉じ込め
効果が優れている2次元電子ガス層が形成されるように
したことがもたらす効果である。
As is apparent from the above description, the GaN-based HEMT of the present invention does not cause a failure even if the gate voltage is increased to 500 V, and the conventional GaN-based HEMT is not used.
It can operate at higher speed than This is because the insulating structure is provided between the gate electrode and the channel layer, and the layer structure below the gate electrode is made into an ini structure, so that an electron confinement effect is obtained at the junction interface between the upper i-type semiconductor layer and the n-type semiconductor layer. This is an effect brought about by the fact that the two-dimensional electron gas layer excellent in is formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のHEMTの層構造を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a layer structure of a HEMT of the present invention.

【図2】本発明の層構造において、上部i型半導体層付
近のエネルギーバンド図である。
FIG. 2 is an energy band diagram in the vicinity of an upper i-type semiconductor layer in the layer structure of the present invention.

【符号の説明】[Explanation of symbols]

1 半絶縁性基板 2 バッファ層(GaN層) 3 下部i型半導体層(i型GaN層) 4 n型半導体層(Siドープn型AlGaN
層) 5 上部i型半導体層(i型GaN層) 5a 2次元電子ガス層 6 絶縁層(i型AlGaN層) 7a,7b 導電性n型半導体層(Siドープn型Ga
N層)
1 semi-insulating substrate 2 buffer layer (GaN layer) 3 lower i-type semiconductor layer (i-type GaN layer) 4 n-type semiconductor layer (Si-doped n-type AlGaN)
Layer) 5 upper i-type semiconductor layer (i-type GaN layer) 5a two-dimensional electron gas layer 6 insulating layer (i-type AlGaN layer) 7a, 7b conductive n-type semiconductor layer (Si-doped n-type Ga)
(N layer)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半絶縁性基板の上に、下部i型半導体
層,n型ドーパントの濃度が2×10 17 〜1×10 18 cm
-3 n型半導体層,および上部i型半導体層をこの順序
で積層して成る積層構造が形成され、前記各半導体層は
いずれもGaN系化合物半導体から成り、かつ、前記上
部i型半導体層の上には、絶縁層を介してゲート電極が
装荷され、また、前記上部i型半導体層の上には、Ga
N系化合物半導体から成る導電性n型半導体層を介して
ソース電極とドレイン電極がそれぞれ装荷されているこ
とを特徴とする高移動度トランジスタ。
1. A semi-insulating substrate having a lower i-type semiconductor layer and an n-type dopant concentration of 2 × 10 17 to 1 × 10 18 cm 2.
N-type semiconductor layer of -3, and a top i-type semiconductor layer laminated structure formed by laminating in this order is formed, the both semiconductor layers are made of GaN-based compound semiconductor, and the upper i-type semiconductor layer A gate electrode is loaded on the upper part of the gate electrode via an insulating layer, and Ga is formed on the upper i-type semiconductor layer.
A high-mobility transistor characterized in that a source electrode and a drain electrode are respectively loaded through a conductive n-type semiconductor layer made of an N-based compound semiconductor.
【請求項2】 前記下部i型半導体層と上部i型半導体
層がi型GaNから成り、前記n型半導体層がn型Al
GaNから成り、前記絶縁層がi型AlGaNから成
り、前記導電性n型半導体層がn型GaNから成る請求
項1の高移動度トランジスタ。
2. The lower i-type semiconductor layer and the upper i-type semiconductor layer are made of i-type GaN, and the n-type semiconductor layer is n-type Al.
The high mobility transistor according to claim 1, wherein the high mobility transistor is made of GaN, the insulating layer is made of i-type AlGaN, and the conductive n-type semiconductor layer is made of n-type GaN.
JP05706998A 1998-03-09 1998-03-09 High mobility transistor Expired - Lifetime JP3439111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05706998A JP3439111B2 (en) 1998-03-09 1998-03-09 High mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05706998A JP3439111B2 (en) 1998-03-09 1998-03-09 High mobility transistor

Publications (2)

Publication Number Publication Date
JPH11261052A JPH11261052A (en) 1999-09-24
JP3439111B2 true JP3439111B2 (en) 2003-08-25

Family

ID=13045171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05706998A Expired - Lifetime JP3439111B2 (en) 1998-03-09 1998-03-09 High mobility transistor

Country Status (1)

Country Link
JP (1) JP3439111B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577460B2 (en) * 1999-04-01 2010-11-10 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP4592938B2 (en) * 1999-12-08 2010-12-08 パナソニック株式会社 Semiconductor device
JP4022708B2 (en) 2000-06-29 2007-12-19 日本電気株式会社 Semiconductor device
JP3428962B2 (en) * 2000-12-19 2003-07-22 古河電気工業株式会社 GaN based high mobility transistor
EP2267784B1 (en) * 2001-07-24 2020-04-29 Cree, Inc. INSULATING GATE AlGaN/GaN HEMT
KR100466543B1 (en) * 2002-11-27 2005-01-15 한국전자통신연구원 Method of manufacturing a semiconductor device
EP2312635B1 (en) 2005-09-07 2020-04-01 Cree, Inc. Transistors with fluorine treatment
WO2007136401A2 (en) * 2005-09-16 2007-11-29 The Regents Of The University Of California N-polar aluminum gallium nitride/gallium nitride enhancement-mode field effect transistor
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US8878245B2 (en) 2006-11-30 2014-11-04 Cree, Inc. Transistors and method for making ohmic contact to transistors
US8021904B2 (en) 2007-02-01 2011-09-20 Cree, Inc. Ohmic contacts to nitrogen polarity GaN
US8212290B2 (en) 2007-03-23 2012-07-03 Cree, Inc. High temperature performance capable gallium nitride transistor
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
JPWO2009081584A1 (en) 2007-12-26 2011-05-06 日本電気株式会社 Semiconductor device
US8674407B2 (en) 2008-03-12 2014-03-18 Renesas Electronics Corporation Semiconductor device using a group III nitride-based semiconductor
JP2010118556A (en) 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The Semiconductor device and its manufacturing method
TWI476933B (en) * 2012-03-27 2015-03-11 Hon Hai Prec Ind Co Ltd Thin film transistor
JP5673725B2 (en) * 2013-04-22 2015-02-18 富士通株式会社 Compound semiconductor multilayer structure
JP6896063B2 (en) * 2016-08-18 2021-06-30 レイセオン カンパニー Semiconductor material growth of high resistance nitride buffer layer using ion implantation

Also Published As

Publication number Publication date
JPH11261052A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP3439111B2 (en) High mobility transistor
JP3428962B2 (en) GaN based high mobility transistor
KR100571071B1 (en) Field effect transistor and method for manufacturing the same
JPH11261053A (en) High electron mobility transistor
JP3716906B2 (en) Field effect transistor
JP3398044B2 (en) Field effect transistor
JPH10335637A (en) Hetero-junction field effect transistor
JPH10223901A (en) Field effect transistor and manufacture of the same
JP2007220895A (en) Nitride semiconductor device and its manufacturing method
JP2007165431A (en) Field effect transistor, and method of fabrication same
JP2604349B2 (en) Semiconductor device
JP4134575B2 (en) Semiconductor device and manufacturing method thereof
JP4474292B2 (en) Semiconductor device
CN104037081A (en) Heterojunction transistor and method of fabricating the same
KR20040047667A (en) Heterojunction field effect type semiconductor device having high gate turn-on voltage and low on-resistance and its manufacturing method
JP3449116B2 (en) Semiconductor device
JP2003151996A (en) Electronic device using two-dimensional electronic gas
JP2003100778A (en) Semiconductor device
JP2000208760A (en) Field effect transistor
JP2007207820A (en) Field effect transistor and its manufacturing method
JP4169553B2 (en) Resonant tunnel device and semiconductor integrated circuit using the same
WO2022208868A1 (en) Semiconductor device and production method thereof
US5661318A (en) Junction type field-effect transistor
JP2000174261A (en) Compound semiconductor device
JP4043600B2 (en) Schottky barrier forming electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term