CN103620789B - 3d垂直nand以及通过前侧工艺和后侧工艺制造其的方法 - Google Patents

3d垂直nand以及通过前侧工艺和后侧工艺制造其的方法 Download PDF

Info

Publication number
CN103620789B
CN103620789B CN201280028751.3A CN201280028751A CN103620789B CN 103620789 B CN103620789 B CN 103620789B CN 201280028751 A CN201280028751 A CN 201280028751A CN 103620789 B CN103620789 B CN 103620789B
Authority
CN
China
Prior art keywords
layer
charge storage
segmentation
semiconductor channel
depression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280028751.3A
Other languages
English (en)
Other versions
CN103620789A (zh
Inventor
J.阿尔斯梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi International Operations Luxembourg SARL
Original Assignee
SanDisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk Corp filed Critical SanDisk Corp
Publication of CN103620789A publication Critical patent/CN103620789A/zh
Application granted granted Critical
Publication of CN103620789B publication Critical patent/CN103620789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7889Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

单片式三维NAND串及制造方法。该方法包括前侧工艺和后侧工艺两者。利用所述前侧工艺和后侧工艺的组合,NAND串可以被形成为在NAND串中的浮置栅极之间包括空气间隙。NAND串可以被形成有单个垂直沟道。备选地,NAND串可以具有U形,其具有与水平沟道连接的两个垂直沟道。

Description

3D垂直NAND以及通过前侧工艺和后侧工艺制造其的方法
相关申请
本申请要求于2011年4月11日提交的美国申请序列号13/083,775的优先权的权益,其整体通过引用合并在此。
技术领域
本发明涉及半导体器件领域,具体地涉及三维垂直NAND串和其他三维器件以及其制造方法。
背景技术
三维垂直NAND串被公开在T.Endoh等人的题为“NovelUltraHighDensityMemoryWithAStacked-SurroundingGateTransistor(S-SGT)StructuredCell(具有叠层-环栅极晶体管的新型超高密度存储器)”,IEDMProc.(2001)33-36的文章中。然而,该NAND串每单元仅提供一位。此外,NAND串的有源区(activeregion)通过相对困难并耗时的工艺形成,包括重复形成侧壁间隔体和蚀刻基板的一部分,这导致大致圆锥形的有源区形状。
发明内容
一种实施方式涉及单片式三维NAND串的制造方法。该方法包括在基板上方形成第一材料和第二材料的交替层的叠层,其中第一材料包括导电控制栅极材料或者半导体控制栅极材料,第二材料包括第一牺牲材料。该方法还包括蚀刻该叠层以在该叠层中形成后侧开口、在后侧开口中沉积第二牺牲材料、蚀刻该叠层以在该叠层中形成前侧开口以及通过该前侧开口选择性地去除第二材料以形成第一凹陷。该方法还包括:在第一凹陷中形成第一阻挡电介质以部分地填充第一凹陷;在第一阻挡电介质上方形成多个间隔开的虚设层分段(segments),该虚设层分段在第一凹陷的剩余未填充部分中彼此分离;在前侧开口中,在第一阻挡电介质上方形成电荷储存材料层;以及在前侧开口中,在电荷储存材料层上方形成隧道电介质层。该方法还包括:在前侧开口中的隧道电介质层上方形成半导体沟道层;从后侧开口选择性地去除第二牺牲层;通过后侧开口选择性地去除多个虚设层分段以在后侧开口中暴露第一凹陷;通过后侧开口和第一凹陷选择性地去除电荷储存材料层的多个部分以形成多个间隔开的电荷储存分段;以及通过后侧开口在第一凹陷中和在间隔开的电荷储存分段之间形成第二阻挡电介质。
另一实施方式涉及单片式三维NAND串。NAND串包括半导体沟道,该半导体沟道的至少一个端部基本上垂直于基板的主表面延伸。该NAND串还包括多个控制栅极电极,该控制栅极电极具有基本上平行于基板的主表面延伸的条形。多个控制栅极电极至少包括位于第一器件级中的第一控制栅极电极和位于第二器件级中的第二控制栅极电极,该第二器件级位于基板的主表面上方并在第一器件级下方。该NAND串还包括阻挡电介质,该阻挡电介质包括多个第一阻挡电介质分段。多个第一阻挡电介质分段的每个被置于接触多个控制栅极电极中的相应一个控制栅极电极。NAND串还包括多个间隔开的电荷储存分段。多个间隔开的电荷储存分段至少包括位于第一器件级中的第一间隔电荷储存分段和位于第二器件级中的第二间隔电荷储存分段。此外,第一间隔电荷储存分段与第二间隔电荷储存分段通过空气间隙分离。NAND串还包括位于多个间隔开的电荷储存分段的每一个与半导体沟道之间的隧道电介质。
附图说明
图1是具有实心棒形沟道的NAND串的一实施方式的侧视截面图。
图2是具有空心圆筒形沟道的NAND串的一实施方式的侧视截面图。
图3是具有U形实心沟道的NAND串的一实施方式的侧视截面图。
图4是具有U形空心圆筒沟道的NAND串的一实施方式的侧视截面图。
图5-12是示出一半NAND串(直至虚线)的侧视截面图,其示出根据本发明的第一实施方式制造NAND串的方法的步骤。
图13是图12的器件的俯视图。
图14A-14C和15-16示出制造具有U形沟道的NAND串的方法的步骤。图14A是侧视截面图。图14B是沿图14A所示的侧视截面图中的线X-X'的俯视截面图,图14C是沿图14A所示的侧视截面图中的线Z-Z'的俯视截面图,而图14A是沿图14B和14C所示的俯视截面图中的线Y-Y'的侧视截面图。
具体实施方式
实施方式包括单片式三维NAND串和制造三维NAND串的方法。该方法包括前侧工艺和后侧工艺两者,这将在下面说明。利用前侧工艺和后侧工艺的组合,NAND串可以被形成为在NAND串中的浮置栅极之间包括空气间隙。在一实施方式中,NAND串可以被形成有单个垂直沟道。一方面,垂直沟道具有实心的棒形(rodshape),如图1所示。在这点上,整个沟道包括半导体材料。另一方面,垂直沟道具有空心圆筒形状,如图2所示。在这点上,垂直沟道包括由半导体沟道壳围绕的非半导体核心。该核心可以是未填充的,或被填充有诸如硅氧化物或硅氮化物的绝缘材料。备选地,NAND串可以具有U形(亦称“管(pipe)”形),其中两个垂直沟道翼部与连接该两个翼部的水平沟道相连接。在一个方面中,U形或管形的沟道可以是实心的,如同图3所示的实心棒形垂直沟道NAND一样。在另一方面中,U形或管形的沟道可以是空心圆筒形,如同图4所示的空心圆筒管形垂直沟道NAND一样。U形管沟道可以是填充的或未填充的。用于制造单个垂直沟道和U形沟道NAND串两者的单独的前侧工艺和后侧工艺在共同未决的美国专利申请序列号No.12/827,947中教导,其整体通过引用合并在此用于教导单独的前侧工艺和后侧工艺。
在一些实施方式中,单片式三维NAND串180包括具有基本上垂直于基板100的主表面100a延伸的至少一个端部的半导体沟道1,如图1-4所示。例如,半导体沟道1可以具有柱形,整个柱形半导体沟道基本上垂直于基板100的主表面延伸,如图1和2所示。在这些实施方式中,器件的源极/漏极电极可以包括在半导体沟道1之下提供的下电极(lowerelectrode)102和在半导体沟道1上方形成的上电极(upperelectrode)202,如图1A和2A所示。备选地,半导体沟道1可以具有U形,如图3和4所示。U形半导体沟道的两个翼部la和lb可以基本上垂直于基板100的主表面100a延伸,U形半导体沟道1的连接部lc连接两个翼部la,lb基本上垂直于基板100的主表面100a延伸。在这些实施方式中,源极电极或漏极电极之一2021从上方接触半导体沟道l的第一翼部,源极电极或漏极电极的另一个2022从上方接触半导体沟道1的第二翼部。可选的体接触电极(未示出)可以被设置在基板100中以将体接触从下方提供到半导体沟道1的连接部。NAND串的选择晶体管或存取晶体管(accesstransistor)16在图3和4中示出。这些晶体管和它们的操作在美国专利申请序列号No.12/827,947中描述,其通过引用而合并,用于教导选择晶体管。
在一些实施方式中,半导体沟道1可以是实心的半导体棒,诸如圆柱或棒,如图1和3所示。在一些其他实施方式中,半导体沟道1可以是中空的,例如填充有绝缘填充材料2的中空半导体圆筒,如图2和4所示。
基板100可以是现有技术中已知的任何半导体基板、诸如单晶硅、诸如硅锗或硅锗碳的IV-IV族化合物、III-V族化合物、II-VI族化合物、在这种基板上方的外延层、或任何其他半导电或非半导电材料,诸如硅氧化物(siliconoxide)、玻璃、塑料、金属或陶瓷基板。基板100可以包括制造在其上的集成电路,诸如用于存储器器件的驱动电路。
任何适当的半导体材料可以用于半导体沟道1,例如硅、锗、硅锗、锑化铟或其他化合物半导体材料,诸如III-V或II-VI半导体材料。半导体材料可以是非晶、多晶或单晶。半导体沟道材料可以通过任何适当的沉积方法形成。例如,在一个实施方式中,半导体沟道材料通过低压化学气相沉积(LPCVD)来沉积。在一些其他的实施方式中,半导体沟道材料可以是通过使最初沉积的非晶半导体材料再结晶而形成的再结晶多晶半导体材料。
绝缘填充材料2可以包括任何电绝缘材料,诸如硅氧化物、硅氮化物、硅氮氧化物、或其他高k绝缘材料。
单片式三维NAND串还包括多个控制栅极电极3,如图1-4所示。控制栅极电极3可以包括具有基本上平行于基板100的主表面100a延伸的条形的部分。多个控制栅极电极3至少包括位于第一器件级(例如,器件级A)的第一控制栅极电极3a和位于第二器件级(例如器件级B)的第二控制栅极电极3b,第二器件级位于基板100的主表面100a上方并在器件级A之下。控制栅极材料可以包括现有技术中已知的任何一种或多种适当的导电控制栅极材料或半导体控制栅极材料,诸如掺杂多晶硅、钨、铜、铝、钽、钛、钴、钛氮化物或其合金。例如,在一些实施方式中,优选多晶硅以允许容易的工艺。
阻挡电介质7位于邻近控制栅极3并可以被(多个)控制栅极3围绕。阻挡电介质7可以包括位于为与多个控制栅极电极3中的相应一个控制栅极电极接触的多个阻挡电介质分段,例如,位于器件级A的第一电介质分段7a和位于器件级B的第二电介质分段7b分别接触控制电极3a和3b,如图1-4所示。在一些实施方式中,多个阻挡电介质分段7的每个的至少一部分具有夹钳(clam)形状。
在此使用的“夹钳”形状是类似于英语字母“C”的侧视截面形状。夹钳形状具有基本上平行于彼此和平行于基板100的主表面100a延伸的两个分段。两个分段通过第三分段彼此连接,该第三分段基本上垂直于前面两个分段和表面100a延伸。三个分段的每个可以具有直的形状(例如,矩形侧视截面图)或稍微弯曲的形状(例如,通过下垫面地形(underlyingtopography)的曲率上升和下降)。术语“基本上平行”包括精确地平行分段以及从该精确平行配置偏离20度或更小的分段。术语“基本上垂直”包括精确地垂直分段以及从该精确垂直配置偏离20度或更小的分段。夹钳形状优地选包含由该三个分段界定且具有开放的第四侧的开口。开口可以被另一材料或层填充。
单片式三维NAND串还包括位于沟道1与阻挡电介质7之间的多个分离的电荷储存分段9。类似地,多个分离的电荷储存分段9至少包括位于器件级A的第一分离电荷储存分段9a和位于器件级B的第二分离电荷储存分段9b。
单片式三维NAND串的隧道电介质11位于多个分离的电荷储存分段9的每个与半导体沟道1之间。在下面更具体地描述的实施方式中,隧道电介质11具有均匀厚度和/或直的侧壁。
阻挡电介质7和隧道电介质11可以从任何一个或多个相同或不同的电绝缘材料、诸如硅氧化物、硅氮化物、硅氮氧化物或其他高k绝缘材料中独立地选择。
分离的电荷储存分段9可以包括导电(例如,诸如钛、铂、钌、钛氮化物、铪氮化物、钽氮化物、锆氮化物的金属或金属合金,或者诸如钛硅化物、镍硅化物、钴硅化物的金属硅化物,或其组合)浮置栅极或半导体(例如多晶硅)浮置栅极、导电纳米颗粒、或分离的电荷储存电介质(例如,硅氮化物或另一电介质)部件(feature)。例如,在一些实施方式中,分离的电荷储存分段9是分离的电荷储存电介质部件,其每个包括氮化物部件9,其中硅氧化物阻挡电介质分段7、氮化物部件9和硅氧化物隧道电介质11形成NAND串的氧化物-氮化物-氧化物分离电荷储存结构。在后面的一些描述中,多晶硅浮置栅极被用作非限制示例。然而,应该理解,可以代替地使用电介质电荷储存部件或其他浮置栅极材料。
单个垂直沟道NAND串实施方式
图5-13示出根据本发明的第一实施方式的制造NAND串的方法。
参考图5,交替层121(121a、121b等)和132(132a、132b等)的叠层120被形成在基板100的主表面上方。层121、132可以通过任何适当的沉积方法、诸如溅射、CVD、MBE等沉积在基板上方。层121、132可以是6至100nm厚。叠层120可以被覆盖有诸如硅氮化物的绝缘材料200的顶层。
在此实施方式中,第一层121包括第一导电(例如金属或金属合金)控制栅极材料或半导体(例如重掺杂(heavilydoped)的n+或p+多晶硅)控制栅极材料,第二层132包括第一牺牲材料。术语“重掺杂”包括掺杂n型或p型至大于1018cm-3浓度的半导体材料。可以使用与材料121相比能够被选择性地蚀刻的任何牺牲材料132,诸如导电的或绝缘的或半导电材料。例如,当材料121是p+多晶硅时,牺牲材料132可以是硅锗或本征多晶硅。
在沉积层121、132之后蚀刻叠层120以在叠层120中形成至少一个后侧开口84和至少一个前侧开口81。开口81、84可以通过由光刻法形成掩模(例如光致抗蚀剂掩膜)之后蚀刻无掩膜区域而形成。开口84可以是横穿超过一个NAND串的切口形状,如图13所示。前侧开口81的阵列可以被形成在随后将形成NAND串的垂直沟道的位置,一个或多个后侧开口84可以被形成在前侧开口81附近以允许对位于前侧开口81中的垂直NAND串的后侧访问。第二牺牲层134沉积在后侧开口或切口84中。在一实施方式中,开口或(多个)切口84首先被形成在叠层120中并被填充了牺牲材料134。然后,前侧开口81被形成在叠层中。然而,步骤的次序可以相反。可以使用与材料121相比能够被选择性地蚀刻的任何牺牲材料134,诸如导电的或绝缘的或半导电材料。例如,当材料121是p+多晶硅时,牺牲材料134可以是硅氧化物。
然后,如图6所示,第一牺牲材料132与第一材料121和第二牺牲层134相比被选择性地蚀刻以形成第一凹陷62。第一凹陷62可以通过选择性的各向同性湿法或干法蚀刻形成,其与第一导电材料121相比通过前侧开口81选择性地蚀刻第一牺牲材料132。凹陷62延伸到第二牺牲层134。优选地,在第一导电材料121的各层之间的第一牺牲材料132的整个层被去除直到第二牺牲层134。
可以执行可选的第二选择性蚀刻以将第一凹陷62延伸到第二牺牲层134。备选地,如果蚀刻剂能相对于第一导电材料121选择性地蚀刻第一牺牲材料132和第二牺牲材料134,则延续第一选择性蚀刻工艺而不是执行第二选择性蚀刻。在这种情况下,在蚀刻期间第二牺牲层134的顶部由掩模覆盖。
然后阻挡电介质7(亦称内聚电介质IPD)被形成在开口81中使得阻挡电介质包覆第一凹陷62的侧面,产生如图7所示的结构。在一实施方式中,阻挡电介质7完全填充凹陷62的在第二牺牲层134中的部分并部分地填充位于叠层120中的第一导电材料121之间的凹陷62。阻挡电介质7可以包括通过共形的原子层沉积(ALD)或化学气相沉积(CVD)而沉积的硅氧化物层。代替硅氧化物,可以使用其他高k介电材料诸如铪氧化物,或除硅氧化物之外,还使用其他高k介电材料诸如铪氧化物。电介质7可以具有6至20nm的厚度。阻挡电介质7包括在位于第一导电材料121的突出(overhanging)部分之间的第一凹陷62中的多个夹钳形阻挡电介质分段(例如,阻挡电介质分段7a和7b)。
然后,如图8所示,第三牺牲层136被沉积在凹陷62中。第三牺牲层136在凹陷62的剩余未填充部分中形成彼此分离的虚设层分段。第三牺牲层136可以但不局限于是导电材料,诸如钛氮化物或另一金属或金属合金、或导电类型与控制栅极材料136(例如,p+或多晶硅)不同的掺杂多晶硅(例如n+或本征)。控制栅极材料136可以是与阻挡电介质7和共形的绝缘层138(下文描述)相比能被选择性地蚀刻的任何材料。在一实施方式中,第三牺牲层136完全填充凹陷62的剩余部分。
在下一步骤中,如图9所示,开口81随后被顺序地填充有一系列层。首先,可选的绝缘材料的共形层138被沉积在开口81中。共形的绝缘层138可以通过ALD或CVD沉积。用于共形的绝缘层的适当的材料包括氮化物(诸如硅氮化物)、氧化物(诸如硅氧化物)及其他高k介电材料。共形的绝缘层138可以具有1-5nm的厚度。然后,电荷储存材料9的层(例如n+多晶硅)可以被共形地沉积在开口81中的共形绝缘层138的顶部。在电荷储存材料9之后是适合于形成隧道电介质11的介电材料的层11。隧道电介质可以包括硅氧化物或其他适当的材料的相对薄的绝缘层(例如,4至10nm厚),适当的材料诸如氮氧化合物、氧化物和氮化物多层叠层,或者高k电介质(例如铪氧化物)。隧道电介质可以通过任何适当的方法沉积,诸如ALD、CVD等。
然后半导体沟道材料1被形成在前侧开口81中。沟道可以包括任何适当的半导体材料,诸如硅、锗、硅锗,锑化铟或者任何其他化合物半导体材料。在一些实施方式中,半导体沟道材料1用半导体沟道材料完全填充开口81,如图9所示。备选地,在开口中形成半导体沟道1的步骤在开口81的(多个)侧壁上而不是在开口81的中心部分形成半导体沟道材料1,使得半导体沟道材料1不完全填充开口81。在这些替代实施方式中,绝缘填充材料2被形成在至少一个开口81的中心部分中以完全填充至少一个开口81,如图2所示。优选地,沟道1材料包括轻掺杂(即,掺杂1017cm-3以下)p型或者n型硅材料。n沟道器件是优选的,因为它容易与n+结连接。然而,也可以使用p沟道器件。
半导体沟道1可以通过任何期望的方法形成。例如,半导体沟道材料1可以通过在开口81中和叠层120上方沉积半导体(例如多晶硅)材料、之后利用叠层120的顶表面作为抛光停止层或者蚀刻停止层通过化学机械抛光(CMP)或者回蚀刻来去除沉积的半导体层的上部分的步骤而形成。
在一些实施方式中,单晶硅或者多晶硅垂直沟道1可以通过金属诱导结晶(MIC,也被称为金属诱导横向结晶)形成而没有单独的掩模步骤。MIC方法由于在开口81中的沟道材料的侧向限制而提供完全的沟道结晶。
在MIC方法中,非晶的或者小晶粒多晶硅半导体(例如硅)层可以首先被形成在至少一个开口81中和叠层120上方,之后在半导体层上方形成成核促进剂层(nucleationpromoterlayer)。成核促进剂层可以是连续层或者多个不连续的区域。成核促进剂层可以包括任何期望的多晶硅成核促进剂材料,例如但不限于诸如Ge、Ni、Pd、Al或其组合的成核促进剂材料。
然后通过将非晶的或小晶粒多晶半导体再结晶,非晶的或小晶粒的半导体层能够转变为大晶粒的多晶或单晶半导体层。该再结晶可以通过低温(例如300至600C)退火而进行。
然后可以利用叠层120的顶表面作为停止层通过CMP或回蚀刻来去除多晶半导体层的上部分和成核促进剂层,产生如图9所示的结构。该去除可以利用叠层120的顶部作为停止层通过选择性地湿蚀刻剩余的成核促进剂层和在层的顶部形成的任何硅化物之后进行硅层顶部的CMP而进行。
然后从暴露凹陷62中的第三牺牲层136的后侧开口84去除第二牺牲层134。此外,通过后侧开口84从凹陷62去除第三牺牲层136。所得结构在图10中示出。第二牺牲层134和第三牺牲层136的去除可以在单个牺牲蚀刻步骤中完成或采用两个单独的蚀刻步骤完成。在此步骤中,共形的绝缘层138用作蚀刻停止层,防止开口81中的材料分解。
在下一步骤中,如图11所示,共形的绝缘层138的一部分和电荷储存层9的一部分通过后侧开口84和凹陷62而去除,其中第三牺牲层136被去除以形成凹陷63。这样,在每个器件级产生单独的、分离的电荷储存元件9a-9d。去除共形的绝缘层138的一部分可以通过例如在一个或多个步骤中的选择性湿蚀刻而完成。例如,第一蚀刻剂可以用于选择性地蚀刻共形的绝缘层138,第二蚀刻剂用于选择性地蚀刻电荷储存层9。如果需要,可以在图11所示的结构上实施可选的沟道晶粒边界钝化退火,以钝化沟道晶粒边界。退火可以在600至1000℃的温度下在含氢、氧和/或氮环境中进行(例如,形成气体环境)。该环境通过后侧开口84和敞开的凹陷62和63到达沟道1。如果沟道1包括图2和4所示的空心圆筒,则该退火可以在绝缘填充材料2被提供到中空沟道的中间之前的任何时候进行。
图12示出在分离的电荷储存元件9a-9d之间形成密封的空气间隙300。在此步骤中,电介质材料302被沉积在凹陷63和凹陷62中。沉积优选地通过后侧开口84以共形沉积工艺诸如ALD或CVD执行。均匀的材料层被沉积在凹陷63的壁上和凹陷62中。当凹陷62被材料填充时,沉积工艺由于后侧开口84与凹陷63之间的连接被填充而停止。因为凹陷63大于凹陷62,所以空气间隙保留在凹陷63中。因此,分离的电荷储存元件9a-9d通过一复合结构彼此分离,该复合结构包括电介质材料302和空气间隙300。与单独的绝缘材料相比,空气间隙300有利地提供区域9之间的更好的隔离。电介质材料300可以是与阻挡电介质7相同的材料,例如SiO2。备选地,电介质材料可以包括与阻挡电介质7不同的材料,例如硅氮化物。
因此,除绝缘层302和空气间隙300之外的所有NAND层通过前侧开口81由前侧(即,沟道侧)工艺形成,而绝缘层302(因此,空气间隙300)通过后侧开口84经由后侧工艺形成。
上电极202可以被形成在半导体沟道1上方,产生图1或2所示的结构。在这些实施方式中,下电极102可以在于基板100上方形成叠层120的步骤之前被提供在半导体沟道1下面。下电极102和上电极可以用作NAND串的源极/漏极电极。
U形沟道NAND串实施方式
在U形沟道实施方式中,NAND串的源极/漏极电极两者可以被形成在半导体沟道1上方,沟道1具有U形,例如如图3和4所示。在这些实施方式中,可选的体接触电极(这将在下文描述)可以被设置在基板100上或其中,以从下方提供体接触到半导体沟道1的连接部。
在此使用的“U形”是类似于英语字母“U”的侧截面形状。该形状具有基本上彼此平行延伸且基本上垂直于基板100的主表面100a的两个分段(在此被称为“翼部”)。两个翼部通过连接分段或连接部彼此连接,该连接分段或连接部基本上垂直于前面的两个部分且基本上平行于表面100a延伸。三个分段的每个可以具有直的形状(例如,矩形侧视截面形状)或稍微弯曲的形状(例如,用下垫面地形(underlyingtopography)的曲率上升或下降)。术语“基本上平行”包括精确地平行分段以及从该精确平行配置偏离20度或更小的部分。术语“基本上垂直”包括精确地垂直分段以及从该精确垂直配置偏离20度或更小的部分。
图14所示的基板100可以包括可选地包含嵌入式导体和/或各种半导体器件的半导体基板。备选地,基板100可以包括可选的包含嵌入式导体的绝缘层或半导体层。
首先,在于至少一个牺牲部件89上方形成第一材料和第二材料的交替层的叠层120的步骤之前,牺牲部件89可以被形成在基板100中和/或在基板100上方。牺牲部件89可以由任何合适的牺牲材料形成,该牺牲材料与叠层120中和NAND串中的其它材料相比可以被选择性地蚀刻,诸如是有机材料、硅氮化物、钨等。部件89可以具有类似于U形的连接分段的期望形状的任何合适的形状,这将在下文描述。
绝缘保护层108可以被形成在牺牲部件89与叠层120之间。例如,如果部件89包括硅氮化物,则层108可以包括硅氧化物。此外,随后至少两个前侧开口81和82被形成在叠层120中,产生图14A所示的结构。图14B示出沿图14A的线X-X'的俯视截面图。图14C示出沿图14C的线Z-Z'的俯视截面图。图14A是沿图14B和14C的线Y-Y'的侧视截面图。开口81和82被形成在牺牲部件89上面,如图14A-14C所示。在一些实施方式中,当从上面观看时,半导体沟道具有两个圆的横截面。优选地,保护层108用作蚀刻开口81、82的停止层,使得层108的顶部形成开口81、82的底表面。
然后如上所述在单个垂直沟道实施方式中并在图5-13中示出的相同的或类似的方法可以被用于形成图15所示的中间结构。在此结构中,已经执行了图5-8所示的前侧工艺。
转到图16,至少一个牺牲部件89随后被去除以形成中空区域83,部件89位于该中空区域83曾在的地方。中空区域83基本上平行于基板100的主表面100a延伸,并连接至少两个开口81和82,形成中空U形空间80。中空区域83可以通过进一步蚀刻开口81、82而形成(例如,通过各向异性刻蚀),使得这些开口延伸穿过保护层108以暴露牺牲部件89。然后利用选择湿蚀刻或干蚀刻选择性地蚀刻牺牲部件89材料,该选择湿蚀刻或干蚀刻选择性地去除牺牲部件材料而基本上不蚀刻材料122、阻挡电介质7和电荷储存分段9。
在形成U形空间80之后,NAND串180可以被如下制造。电荷储存材料层9被形成在第一前侧开口81和第二前侧开口82中以及中空区域83中的第一阻挡电介质7上方。然后隧道电介质层11被沉积在第一前侧开口81和第二前侧开口82中以及中空区域83中的电荷储存材料层9上方。然后半导体沟道层1被形成在隧道电介质层11上方,类似于图9所示的步骤。
然后从后侧开口84选择性地去除第二牺牲层134,之后通过后侧开口84选择性地去除第三牺牲层136的虚设层分段以经由第二后侧开口84暴露凹陷62,类似于图10所示的步骤。然后,电荷储存材料层9的多个部分通过后侧开口84和凹陷62被选择性地去除以形成由凹陷63分离的多个间隔开的电荷储存分段9,类似于图11所示的步骤。然后阻挡电介质通过后侧开口84沉积在凹陷62中和在凹陷63中的间隔开的电荷储存分段9之间,类似于图12。为了完成NAND串180,源极电极2021被形成为接触位于开口81中的半导体沟道翼la,漏极电极2022被形成为接触位于开口82中的半导体沟道翼lb,如图3和4所示。可选地,体接触电极18可以被形成在叠层之下,如图3所示。体接触电极优选地接触半导体沟道层的位于中空区域83中的一部分。
在一实施方式中,当从上面观看时,半导体沟道层1具有在两个圆的中空空间上面的横截面,如图13和14b所示。
在一实施方式中,半导体沟道材料1完全填充开口81和82,如图3所示。备选地,在开口81、82中形成半导体沟道1的步骤在开口81、82的(多个)侧壁上而不是在开口的中心部分中形成半导体沟道材料1,使得半导体沟道材料1不完全填充开口。在这些替代实施方式中,绝缘填充材料2被形成在开口81、82的中心部分中以完全填充开口81,如图4所示。
虽然以上涉及特定优选实施方式,但将理解,本发明不如此限制。本领域普通技术人员可以对公开的实施方式进行各种修改,这样的修改旨在位于本发明的范围内。在此引用的所有出版物、专利申请和专利通过引用整体合并在此。

Claims (20)

1.一种制造单片式三维NAND串的方法,包括:
在基板上方形成第一材料和第二材料的交替层的叠层,其中所述第一材料包括导电的控制栅极材料或半导体控制栅极材料,其中第二材料包括第一牺牲材料;
蚀刻所述叠层以在所述叠层中形成后侧开口;
在所述后侧开口中沉积第二牺牲材料;
蚀刻所述叠层以在所述叠层中形成前侧开口;
通过所述前侧开口选择性地去除所述第二材料以形成第一凹陷;
在所述第一凹陷中形成第一阻挡电介质以部分地填充所述第一凹陷;
在所述第一凹陷的位于所述第一阻挡电介质上方的剩余未填充部分中形成彼此分离的多个间隔开的虚设层分段;
在所述前侧开口中的所述第一阻挡电介质上方形成电荷储存材料层;
在所述前侧开口中的所述电荷储存材料层上方形成隧道电介质层;
在所述前侧开口中的所述隧道电介质层上方形成半导体沟道层;
从所述后侧开口选择性地去除所述第二牺牲层;
通过所述后侧开口选择性地去除所述多个虚设层分段以暴露在所述后侧开口中的所述第一凹陷;
通过所述后侧开口和所述第一凹陷选择性地去除所述电荷储存材料层的多个部分以形成多个间隔开的电荷储存分段;和
通过所述后侧开口在所述第一凹陷中和所述间隔开的电荷储存分段之间形成第二阻挡电介质。
2.如权利要求1所述的方法,其中在所述间隔开的电荷储存分段之间形成所述第二阻挡电介质的步骤部分地填充所述间隔开的电荷储存分段之间的空间,以在相邻的电荷储存分段之间留下空气间隙。
3.如权利要求1所述的方法,还包括:
在选择性地去除所述第二材料的步骤之后,通过所述第一凹陷蚀刻在所述第二牺牲材料中的第二凹陷;
在所述第一凹陷中形成第一阻挡电介质的步骤期间,在所述第二凹陷中形成第一阻挡电介质;
在从所述后侧开口选择性地去除所述第二牺牲层的步骤之后以及在选择性地去除所述多个虚设层分段的步骤之前,通过所述后侧开口从所述第二凹陷选择性地去除所述第一阻挡电介质;以及
在选择性地去除所述电荷储存材料的多个部分的步骤之后,在含氢、氧或氮的至少一个的环境中执行沟道晶粒边界钝化退火,使得所述环境通过所述后侧开口以及通过所述第一凹陷到达所述沟道。
4.如权利要求1所述的方法,还包括:
在形成所述电荷储存材料层的步骤之前,在所述前侧开口中的所述第一阻挡电介质以及所述多个虚设层分段上方形成蚀刻停止层,使得形成所述电荷储存材料层的步骤在所述前侧开口中的蚀刻停止层上形成所述电荷储存材料层;以及
在选择性地去除所述多个虚设层分段的步骤之后以及在选择性地去除所述电荷储存材料层的多个部分的步骤之前,通过所述后侧开口选择性地去除所述蚀刻停止层的多个部分。
5.如权利要求1所述的方法,其中:
所述半导体沟道的至少一个端部在与所述基板的主表面垂直的方向垂直地延伸;以及
所述多个间隔开的电荷储存分段包括多个垂直地间隔开的浮置栅极或多个垂直地间隔开的电介质电荷储存分段。
6.如权利要求1所述的方法,其中在所述前侧开口中形成所述半导体沟道层的步骤用所述半导体沟道层来完全填充所述前侧开口。
7.如权利要求1所述的方法,其中在所述前侧开口中形成所述半导体沟道层的步骤在所述前侧开口的侧壁上而不是在所述前侧开口的中心部分中形成所述半导体沟道层,使得所述半导体沟道层不完全填充所述前侧开口。
8.如权利要求7所述的方法,还包括在所述前侧开口的所述中心部分中形成绝缘填充材料以完全填充所述前侧开口。
9.如权利要求1所述的方法,还包括在所述半导体沟道上方形成上电极。
10.如权利要求9所述的方法,还包括在形成所述叠层之前在所述半导体沟道层下面提供下电极。
11.如权利要求1所述的方法,其中:
所述导电控制栅极材料或半导体控制栅极材料包括第一导电类型的掺杂多晶硅;
所述第一牺牲材料包括硅锗或本征多晶硅;
所述半导体沟道层包括轻掺杂多晶硅或本征多晶硅;
所述第二牺牲材料包括硅氧化物或硅氮化物;
所述多个间隔开的虚设层分段包括第二导电类型的钛氮化物或掺杂多晶硅;以及
所述电荷储存材料层包括第二导电类型的掺杂多晶硅。
12.如权利要求1所述的方法,还包括:
在形成所述叠层的步骤之前,在所述基板上方形成牺牲部件,使得所述叠层被形成在所述牺牲部件上方;
蚀刻所述叠层以在所述叠层中形成第二后侧开口;
在沉积所述第二牺牲材料的步骤期间,在所述第二后侧开口中沉积所述第二牺牲材料;
蚀刻所述叠层以在所述叠层中形成第二前侧开口;
通过所述第二前侧开口选择性地去除所述第二材料以形成第三凹陷;
在所述第三凹陷中形成所述第一阻挡电介质以部分地填充所述第三凹陷;
在所述第一阻挡电介质上方,在所述第三凹陷的剩余未填充部分中形成彼此分离的多个第二间隔开的虚设层分段;
选择性地去除所述牺牲部件以形成平行于所述基板的主表面延伸的中空区域,所述中空区域将所述前侧开口连接到所述第二前侧开口以形成中空U形管空间,所述U形管空间包括通过所述中空区域连接的、垂直于所述基板的主表面延伸的所述前侧开口和所述第二前侧开口;
在所述第二前侧开口中和所述中空区域中的第一阻挡电介质上方形成所述电荷储存材料层;
在所述中空区域中的所述第二前侧开口中的所述电荷储存材料层上方形成所述隧道电介质层;
在所述中空区域中的所述第二前侧开口中的所述隧道电介质层上方形成所述半导体沟道层;
从所述第二后侧开口选择性地去除所述第二牺牲层;
通过所述第二后侧开口选择性地去除所述多个第二虚设层分段以在所述第二后侧开口中暴露所述第三凹陷;
通过所述第二后侧开口和所述第三凹陷选择性地去除所述电荷储存材料层的多个部分以形成第二多个间隔开的电荷储存分段;和
通过所述第二后侧开口在所述第三凹陷中和所述第二间隔开的电荷储存分段之间形成第二阻挡电介质。
13.如权利要求12所述的方法,其中当从上方观看时,所述半导体沟道层具有在两个圆的所述中空空间上方的横截面。
14.如权利要求13所述的方法,还包括:
形成接触位于所述前侧开口中的所述半导体沟道层的源极电极;
形成接触位于所述第二前侧开口中的所述半导体沟道层的漏极电极;以及
在所述叠层下面形成体接触电极,其中所述体接触电极接触所述半导体沟道层的位于所述中空区域中的一部分。
15.一种单片式三维NAND串,包括:
半导体沟道,所述半导体沟道的至少一个端部垂直于基板的主表面延伸;
具有平行于所述基板的主表面延伸的条形的多个控制栅极电极,其中所述多个控制栅极电极至少包括位于第一器件级的第一控制栅极电极和位于第二器件级的第二控制栅极电极,所述第二器件级位于所述基板的主表面上方且在所述第一器件级下方;
阻挡电介质,包括多个第一阻挡电介质分段,其中所述多个第一阻挡电介质分段的每个定位为与所述多个控制栅极电极中的相应一个控制栅极电极接触;
多个间隔开的电荷储存分段,其中所述多个间隔开的电荷储存分段至少包括位于第一器件级的第一间隔开的电荷储存分段和位于第二器件级的第二间隔开的电荷储存分段,且其中所述第一间隔开的电荷储存分段通过空气间隙与所述第二间隔开的电荷储存分段分离;以及
隧道电介质,位于所述多个间隔开的电荷储存分段的每一个与所述半导体沟道之间,
其中所述多个间隔开的电荷储存分段包括多个垂直地间隔开的浮置栅极或多个垂直地间隔开的电介质电荷储存分段,
其中所述阻挡电介质还包括位于第一浮置栅极与第二浮置栅极之间的第二阻挡电介质分段,其中所述空气间隙位于所述第二阻挡电介质分段内。
16.如权利要求15所述的单片式三维NAND串,其中:
所述半导体沟道具有柱形;以及
整个柱形半导体沟道垂直于所述基板的所述主表面延伸。
17.如权利要求16所述的单片式三维NAND串,还包括从上方接触所述柱形半导体沟道的源极电极或漏极电极之一以及从下方接触所述柱形半导体沟道的源极电极或漏极电极的另一个。
18.如权利要求15所述的单片式三维NAND串,其中:
所述半导体沟道具有U形侧视截面;
所述U形半导体沟道的垂直于所述基板的主表面延伸的两个翼部通过连接部连接,所述连接部平行于所述基板的主表面延伸;以及
绝缘填充物位于所述连接部上方并分离所述U形半导体沟道的两个翼部。
19.如权利要求18所述的单片式三维NAND串,还包括从上方接触所述半导体沟道的第一翼部的源极电极或漏极电极之一、从上方接触所述半导体沟道的第二翼部的源极电极或漏极电极的另一个、以及从下方接触所述半导体沟道的所述连接部的体接触电极。
20.如权利要求15所述的单片式三维NAND串,其中所述多个第一阻挡电介质分段的每个的至少一部分具有围绕相应的控制栅极电极的夹钳形状。
CN201280028751.3A 2011-04-11 2012-04-10 3d垂直nand以及通过前侧工艺和后侧工艺制造其的方法 Active CN103620789B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/083,775 2011-04-11
US13/083,775 US8445347B2 (en) 2011-04-11 2011-04-11 3D vertical NAND and method of making thereof by front and back side processing
PCT/US2012/032870 WO2012142020A1 (en) 2011-04-11 2012-04-10 3d vertical nand and method of making thereof by front and back side processing

Publications (2)

Publication Number Publication Date
CN103620789A CN103620789A (zh) 2014-03-05
CN103620789B true CN103620789B (zh) 2016-06-15

Family

ID=46965425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280028751.3A Active CN103620789B (zh) 2011-04-11 2012-04-10 3d垂直nand以及通过前侧工艺和后侧工艺制造其的方法

Country Status (5)

Country Link
US (2) US8445347B2 (zh)
KR (1) KR101921355B1 (zh)
CN (1) CN103620789B (zh)
TW (1) TW201244007A (zh)
WO (1) WO2012142020A1 (zh)

Families Citing this family (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539699B1 (ko) * 2009-03-19 2015-07-27 삼성전자주식회사 3차원 구조의 비휘발성 메모리 소자 및 그 제조방법
US9159739B2 (en) 2010-06-30 2015-10-13 Sandisk Technologies Inc. Floating gate ultrahigh density vertical NAND flash memory
US10128261B2 (en) 2010-06-30 2018-11-13 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
US8928061B2 (en) 2010-06-30 2015-01-06 SanDisk Technologies, Inc. Three dimensional NAND device with silicide containing floating gates
KR101559345B1 (ko) * 2010-08-26 2015-10-15 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
KR20120069034A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 수직형 메모리 장치 및 그 제조 방법
KR20130015428A (ko) * 2011-08-03 2013-02-14 삼성전자주식회사 반도체 소자
US9136128B2 (en) * 2011-08-31 2015-09-15 Micron Technology, Inc. Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials
KR20130066950A (ko) * 2011-12-13 2013-06-21 에스케이하이닉스 주식회사 3차원 불휘발성 메모리 소자와, 이를 포함하는 메모리 시스템과, 그 제조방법
US8878278B2 (en) 2012-03-21 2014-11-04 Sandisk Technologies Inc. Compact three dimensional vertical NAND and method of making thereof
US8847302B2 (en) 2012-04-10 2014-09-30 Sandisk Technologies Inc. Vertical NAND device with low capacitance and silicided word lines
KR101952119B1 (ko) * 2012-05-24 2019-02-28 삼성전자 주식회사 메탈 실리사이드를 포함하는 반도체 장치 및 이의 제조 방법
US8614126B1 (en) 2012-08-15 2013-12-24 Sandisk Technologies Inc. Method of making a three-dimensional memory array with etch stop
US8896052B2 (en) * 2012-09-05 2014-11-25 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
KR101933116B1 (ko) * 2012-09-13 2018-12-27 삼성전자주식회사 수직형 메모리 장치 및 그 제조 방법
CN103872055A (zh) * 2012-12-13 2014-06-18 中国科学院微电子研究所 一种垂直沟道型三维半导体存储器件及其制备方法
US9384839B2 (en) 2013-03-07 2016-07-05 Sandisk Technologies Llc Write sequence providing write abort protection
US9698153B2 (en) 2013-03-12 2017-07-04 Sandisk Technologies Llc Vertical NAND and method of making thereof using sequential stack etching and self-aligned landing pad
US9515080B2 (en) 2013-03-12 2016-12-06 Sandisk Technologies Llc Vertical NAND and method of making thereof using sequential stack etching and landing pad
US8946023B2 (en) * 2013-03-12 2015-02-03 Sandisk Technologies Inc. Method of making a vertical NAND device using sequential etching of multilayer stacks
US9230987B2 (en) 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
US9449982B2 (en) 2013-03-12 2016-09-20 Sandisk Technologies Llc Method of making a vertical NAND device using a sacrificial layer with air gap and sequential etching of multilayer stacks
JP2014179465A (ja) * 2013-03-14 2014-09-25 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
US9184175B2 (en) * 2013-03-15 2015-11-10 Micron Technology, Inc. Floating gate memory cells in vertical memory
US9276011B2 (en) 2013-03-15 2016-03-01 Micron Technology, Inc. Cell pillar structures and integrated flows
US9093480B2 (en) 2013-04-01 2015-07-28 Sandisk Technologies Inc. Spacer passivation for high aspect ratio etching of multilayer stacks for three dimensional NAND device
US9099496B2 (en) 2013-04-01 2015-08-04 Sandisk Technologies Inc. Method of forming an active area with floating gate negative offset profile in FG NAND memory
US9214235B2 (en) * 2013-04-16 2015-12-15 Conversant Intellectual Property Management Inc. U-shaped common-body type cell string
US20150006784A1 (en) 2013-06-27 2015-01-01 Sandisk Technologies Inc. Efficient Post Write Read in Three Dimensional Nonvolatile Memory
US9063671B2 (en) 2013-07-02 2015-06-23 Sandisk Technologies Inc. Write operations with full sequence programming for defect management in nonvolatile memory
US9437606B2 (en) 2013-07-02 2016-09-06 Sandisk Technologies Llc Method of making a three-dimensional memory array with etch stop
US9218242B2 (en) 2013-07-02 2015-12-22 Sandisk Technologies Inc. Write operations for defect management in nonvolatile memory
US9252151B2 (en) * 2013-07-08 2016-02-02 Sandisk Technologies Inc. Three dimensional NAND device with birds beak containing floating gates and method of making thereof
US9230980B2 (en) 2013-09-15 2016-01-05 Sandisk Technologies Inc. Single-semiconductor-layer channel in a memory opening for a three-dimensional non-volatile memory device
US9496274B2 (en) 2013-09-17 2016-11-15 Sandisk Technologies Llc Three-dimensional non-volatile memory device
US9023719B2 (en) 2013-09-17 2015-05-05 Sandisk Technologies Inc. High aspect ratio memory hole channel contact formation
KR102101841B1 (ko) * 2013-10-28 2020-04-17 삼성전자 주식회사 수직형 비휘발성 메모리 소자
KR20150049146A (ko) * 2013-10-29 2015-05-08 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US9437604B2 (en) * 2013-11-01 2016-09-06 Micron Technology, Inc. Methods and apparatuses having strings of memory cells including a metal source
US9431410B2 (en) 2013-11-01 2016-08-30 Micron Technology, Inc. Methods and apparatuses having memory cells including a monolithic semiconductor channel
US9425200B2 (en) * 2013-11-07 2016-08-23 SK Hynix Inc. Semiconductor device including air gaps and method for fabricating the same
US9043537B1 (en) 2013-11-21 2015-05-26 Sandisk Technologies Inc. Update block programming order
US9058881B1 (en) 2013-12-05 2015-06-16 Sandisk Technologies Inc. Systems and methods for partial page programming of multi level cells
US9244631B2 (en) 2013-12-06 2016-01-26 Sandisk Technologies Inc. Lower page only host burst writes
US9236342B2 (en) * 2013-12-18 2016-01-12 Intel Corporation Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects
US9449924B2 (en) 2013-12-20 2016-09-20 Sandisk Technologies Llc Multilevel contact to a 3D memory array and method of making thereof
KR102128465B1 (ko) 2014-01-03 2020-07-09 삼성전자주식회사 수직 구조의 비휘발성 메모리 소자
KR101487746B1 (ko) 2014-02-07 2015-02-04 한국과학기술원 3차원 구조의 비휘발성 메모리 소자를 초고층으로 확장하는 방법
US9331094B2 (en) 2014-04-30 2016-05-03 Sandisk Technologies Inc. Method of selective filling of memory openings
US8902652B1 (en) 2014-05-13 2014-12-02 Sandisk Technologies Inc. Systems and methods for lower page writes
US8886877B1 (en) 2014-05-15 2014-11-11 Sandisk Technologies Inc. In-situ block folding for nonvolatile memory
CN104392963B (zh) * 2014-05-16 2017-07-11 中国科学院微电子研究所 三维半导体器件制造方法
US9673209B2 (en) 2014-05-16 2017-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method for fabricating the same
US9548313B2 (en) * 2014-05-30 2017-01-17 Sandisk Technologies Llc Method of making a monolithic three dimensional NAND string using a select gate etch stop layer
KR102134607B1 (ko) * 2014-06-05 2020-07-17 매크로닉스 인터내셔널 컴퍼니 리미티드 3차원 수직 채널 낸드 내의 스트링 선택 라인/접지 선택 라인 게이트 산화물
KR20150146073A (ko) * 2014-06-20 2015-12-31 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
WO2015198088A1 (zh) 2014-06-23 2015-12-30 三星电子株式会社 制造半导体装置的方法
US9379124B2 (en) * 2014-06-25 2016-06-28 Sandisk Technologies Inc. Vertical floating gate NAND with selectively deposited ALD metal films
KR102248205B1 (ko) 2014-06-25 2021-05-04 삼성전자주식회사 수직 채널 및 에어 갭을 갖는 반도체 소자
US9768270B2 (en) 2014-06-25 2017-09-19 Sandisk Technologies Llc Method of selectively depositing floating gate material in a memory device
US9455263B2 (en) * 2014-06-27 2016-09-27 Sandisk Technologies Llc Three dimensional NAND device with channel contacting conductive source line and method of making thereof
US9305932B2 (en) * 2014-06-30 2016-04-05 Sandisk Technologies Inc. Methods of making three dimensional NAND devices
US9397107B2 (en) * 2014-06-30 2016-07-19 Sandisk Technologies Llc Methods of making three dimensional NAND devices
KR102234273B1 (ko) 2014-07-02 2021-04-02 삼성전자주식회사 반도체 메모리 장치
US9570460B2 (en) 2014-07-29 2017-02-14 Sandisk Technologies Llc Spacer passivation for high-aspect ratio opening film removal and cleaning
EP2983196A1 (en) * 2014-08-07 2016-02-10 IMEC vzw A method for manufacturing a floating gate memory element
US9136130B1 (en) 2014-08-11 2015-09-15 Sandisk Technologies Inc. Three dimensional NAND string with discrete charge trap segments
US9356031B2 (en) * 2014-08-11 2016-05-31 Sandisk Technologies Inc. Three dimensional NAND string memory devices with voids enclosed between control gate electrodes
US9230983B1 (en) 2014-08-20 2016-01-05 Sandisk Technologies Inc. Metal word lines for three dimensional memory devices
US9576975B2 (en) 2014-08-26 2017-02-21 Sandisk Technologies Llc Monolithic three-dimensional NAND strings and methods of fabrication thereof
US9230974B1 (en) 2014-08-26 2016-01-05 Sandisk Technologies Inc. Methods of selective removal of blocking dielectric in NAND memory strings
US9691884B2 (en) 2014-08-26 2017-06-27 Sandisk Technologies Llc Monolithic three dimensional NAND strings and methods of fabrication thereof
TWI565032B (zh) * 2014-08-29 2017-01-01 旺宏電子股份有限公司 記憶元件及其製造方法
US9917096B2 (en) * 2014-09-10 2018-03-13 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US9466667B2 (en) * 2014-09-10 2016-10-11 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing same
CN104241294B (zh) * 2014-09-16 2017-04-26 华中科技大学 一种非易失性三维半导体存储器及其制备方法
US9419006B2 (en) * 2014-09-24 2016-08-16 Sandisk Technologies Llc Process for 3D NAND memory with socketed floating gate cells
US9666590B2 (en) 2014-09-24 2017-05-30 Sandisk Technologies Llc High stack 3D memory and method of making
US9230979B1 (en) 2014-10-31 2016-01-05 Sandisk Technologies Inc. High dielectric constant etch stop layer for a memory structure
US9236396B1 (en) 2014-11-12 2016-01-12 Sandisk Technologies Inc. Three dimensional NAND device and method of making thereof
US9305849B1 (en) 2014-11-12 2016-04-05 Sandisk Technologies Inc. Method of making a three dimensional NAND device
US9698152B2 (en) 2014-11-13 2017-07-04 Sandisk Technologies Llc Three-dimensional memory structure with multi-component contact via structure and method of making thereof
US9698223B2 (en) 2014-11-25 2017-07-04 Sandisk Technologies Llc Memory device containing stress-tunable control gate electrodes
US9570455B2 (en) 2014-11-25 2017-02-14 Sandisk Technologies Llc Metal word lines for three dimensional memory devices
US9496419B2 (en) 2014-11-25 2016-11-15 Sandisk Technologies Llc Ruthenium nucleation layer for control gate electrodes in a memory structure
US9754956B2 (en) 2014-12-04 2017-09-05 Sandisk Technologies Llc Uniform thickness blocking dielectric portions in a three-dimensional memory structure
US9553100B2 (en) 2014-12-04 2017-01-24 Sandisk Techologies Llc Selective floating gate semiconductor material deposition in a three-dimensional memory structure
US9793288B2 (en) 2014-12-04 2017-10-17 Sandisk Technologies Llc Methods of fabricating memory device with spaced-apart semiconductor charge storage regions
US9443865B2 (en) 2014-12-18 2016-09-13 Sandisk Technologies Llc Fabricating 3D NAND memory having monolithic crystalline silicon vertical NAND channel
KR102321739B1 (ko) 2015-02-02 2021-11-05 삼성전자주식회사 반도체 장치 및 그 제조 방법
US10741572B2 (en) 2015-02-04 2020-08-11 Sandisk Technologies Llc Three-dimensional memory device having multilayer word lines containing selectively grown cobalt or ruthenium and method of making the same
US9984963B2 (en) 2015-02-04 2018-05-29 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
US9780182B2 (en) 2015-02-04 2017-10-03 Sandisk Technologies Llc Molybdenum-containing conductive layers for control gate electrodes in a memory structure
CN105990246B (zh) * 2015-02-06 2018-10-23 旺宏电子股份有限公司 存储器元件的制作方法
CN107534046B (zh) * 2015-03-02 2020-09-08 东芝存储器株式会社 半导体存储装置及其制造方法
US9524982B2 (en) 2015-03-09 2016-12-20 Kabushiki Kaisha Toshiba Semiconductor device
US9530788B2 (en) 2015-03-17 2016-12-27 Sandisk Technologies Llc Metallic etch stop layer in a three-dimensional memory structure
US9761604B2 (en) 2015-03-24 2017-09-12 Sandisk Technologies Llc 3D vertical NAND with III-V channel
US9685454B2 (en) 2015-03-24 2017-06-20 Sandisk Technologies Llc Method of forming 3D vertical NAND with III-V channel
US9799671B2 (en) 2015-04-07 2017-10-24 Sandisk Technologies Llc Three-dimensional integration schemes for reducing fluorine-induced electrical shorts
US9601508B2 (en) 2015-04-27 2017-03-21 Sandisk Technologies Llc Blocking oxide in memory opening integration scheme for three-dimensional memory structure
US9397046B1 (en) 2015-04-29 2016-07-19 Sandisk Technologies Llc Fluorine-free word lines for three-dimensional memory devices
US9627403B2 (en) 2015-04-30 2017-04-18 Sandisk Technologies Llc Multilevel memory stack structure employing support pillar structures
US9419012B1 (en) 2015-06-19 2016-08-16 Sandisk Technologies Llc Three-dimensional memory structure employing air gap isolation
US9613977B2 (en) 2015-06-24 2017-04-04 Sandisk Technologies Llc Differential etch of metal oxide blocking dielectric layer for three-dimensional memory devices
US10622368B2 (en) 2015-06-24 2020-04-14 Sandisk Technologies Llc Three-dimensional memory device with semicircular metal-semiconductor alloy floating gate electrodes and methods of making thereof
US9530785B1 (en) 2015-07-21 2016-12-27 Sandisk Technologies Llc Three-dimensional memory devices having a single layer channel and methods of making thereof
US9627399B2 (en) * 2015-07-24 2017-04-18 Sandisk Technologies Llc Three-dimensional memory device with metal and silicide control gates
KR102409748B1 (ko) * 2015-07-28 2022-06-17 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9853043B2 (en) 2015-08-25 2017-12-26 Sandisk Technologies Llc Method of making a multilevel memory stack structure using a cavity containing a sacrificial fill material
US9502471B1 (en) 2015-08-25 2016-11-22 Sandisk Technologies Llc Multi tier three-dimensional memory devices including vertically shared bit lines
KR102509915B1 (ko) 2015-08-31 2023-03-15 삼성전자주식회사 반도체 메모리 소자
KR102413766B1 (ko) 2015-09-08 2022-06-27 삼성전자주식회사 비휘발성 메모리 장치 및 그의 제조 방법
US9576966B1 (en) 2015-09-21 2017-02-21 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
US9806089B2 (en) 2015-09-21 2017-10-31 Sandisk Technologies Llc Method of making self-assembling floating gate electrodes for a three-dimensional memory device
US9646975B2 (en) 2015-09-21 2017-05-09 Sandisk Technologies Llc Lateral stack of cobalt and a cobalt-semiconductor alloy for control gate electrodes in a memory structure
US9711531B2 (en) 2015-10-08 2017-07-18 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9858009B2 (en) 2015-10-26 2018-01-02 Sandisk Technologies Llc Data folding in 3D nonvolatile memory
US9659955B1 (en) 2015-10-28 2017-05-23 Sandisk Technologies Llc Crystalinity-dependent aluminum oxide etching for self-aligned blocking dielectric in a memory structure
US9793139B2 (en) 2015-10-29 2017-10-17 Sandisk Technologies Llc Robust nucleation layers for enhanced fluorine protection and stress reduction in 3D NAND word lines
KR102483985B1 (ko) 2015-11-02 2023-01-04 삼성전자주식회사 반도체 소자 및 그 제조 방법
KR102624498B1 (ko) * 2016-01-28 2024-01-12 삼성전자주식회사 수직형 메모리 장치 및 그 제조 방법
US9589839B1 (en) 2016-02-01 2017-03-07 Sandisk Technologies Llc Method of reducing control gate electrode curvature in three-dimensional memory devices
US9893080B2 (en) * 2016-03-04 2018-02-13 Toshiba Memory Corporation Semiconductor device having a diverse shaped columnar portion
US9711530B1 (en) 2016-03-25 2017-07-18 Sandisk Technologies Llc Locally-trap-characteristic-enhanced charge trap layer for three-dimensional memory structures
US9812463B2 (en) 2016-03-25 2017-11-07 Sandisk Technologies Llc Three-dimensional memory device containing vertically isolated charge storage regions and method of making thereof
KR102294932B1 (ko) 2016-04-25 2021-09-17 어플라이드 머티어리얼스, 인코포레이티드 수평 게이트 올어라운드 디바이스 나노와이어 에어 갭 스페이서 형성
US9831118B1 (en) 2016-05-24 2017-11-28 Sandisk Technologies Llc Reducing neighboring word line in interference using low-k oxide
US9672917B1 (en) 2016-05-26 2017-06-06 Sandisk Technologies Llc Stacked vertical memory array architectures, systems and methods
US10121794B2 (en) 2016-06-20 2018-11-06 Sandisk Technologies Llc Three-dimensional memory device having epitaxial germanium-containing vertical channel and method of making thereof
US10361213B2 (en) 2016-06-28 2019-07-23 Sandisk Technologies Llc Three dimensional memory device containing multilayer wordline barrier films and method of making thereof
US10355139B2 (en) 2016-06-28 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device with amorphous barrier layer and method of making thereof
US9978768B2 (en) 2016-06-29 2018-05-22 Sandisk Technologies Llc Method of making three-dimensional semiconductor memory device having laterally undulating memory films
US9659866B1 (en) 2016-07-08 2017-05-23 Sandisk Technologies Llc Three-dimensional memory structures with low source line resistance
TWI613761B (zh) 2016-07-12 2018-02-01 旺宏電子股份有限公司 三維非揮發性記憶體及其製造方法
US10529620B2 (en) 2016-07-13 2020-01-07 Sandisk Technologies Llc Three-dimensional memory device containing word lines formed by selective tungsten growth on nucleation controlling surfaces and methods of manufacturing the same
US10381372B2 (en) 2016-07-13 2019-08-13 Sandisk Technologies Llc Selective tungsten growth for word lines of a three-dimensional memory device
KR102696801B1 (ko) 2016-07-27 2024-08-20 삼성전자주식회사 수직형 메모리 소자 및 이의 제조방법
US9905573B1 (en) 2016-08-30 2018-02-27 Sandisk Technologies Llc Three-dimensional memory device with angled word lines and method of making thereof
KR102629466B1 (ko) * 2016-09-21 2024-01-26 에스케이하이닉스 주식회사 반도체 장치의 제조 방법
US9941293B1 (en) * 2016-10-12 2018-04-10 Sandisk Technologies Llc Select transistors with tight threshold voltage in 3D memory
KR102650994B1 (ko) * 2016-10-14 2024-03-26 삼성전자주식회사 메모리 장치
US9881929B1 (en) 2016-10-27 2018-01-30 Sandisk Technologies Llc Multi-tier memory stack structure containing non-overlapping support pillar structures and method of making thereof
US9991277B1 (en) 2016-11-28 2018-06-05 Sandisk Technologies Llc Three-dimensional memory device with discrete self-aligned charge storage elements and method of making thereof
US10056399B2 (en) 2016-12-22 2018-08-21 Sandisk Technologies Llc Three-dimensional memory devices containing inter-tier dummy memory cells and methods of making the same
KR20180076298A (ko) * 2016-12-27 2018-07-05 아이엠이씨 브이제트더블유 대체 게이트를 갖는 수직 채널형 3차원 비휘발성 반도체 메모리 디바이스의 제조방법
US10707121B2 (en) * 2016-12-31 2020-07-07 Intel Corporatino Solid state memory device, and manufacturing method thereof
CN106684090B (zh) * 2017-01-26 2018-10-02 合肥兆芯电子有限公司 三维非易失性存储器结构及其制造方法
US10115735B2 (en) 2017-02-24 2018-10-30 Sandisk Technologies Llc Semiconductor device containing multilayer titanium nitride diffusion barrier and method of making thereof
US10192877B2 (en) 2017-03-07 2019-01-29 Sandisk Technologies Llc Three-dimensional memory device with level-shifted staircase structures and method of making thereof
JP2018160612A (ja) 2017-03-23 2018-10-11 東芝メモリ株式会社 半導体装置及びその製造方法
US9960180B1 (en) 2017-03-27 2018-05-01 Sandisk Technologies Llc Three-dimensional memory device with partially discrete charge storage regions and method of making thereof
US20180331117A1 (en) 2017-05-12 2018-11-15 Sandisk Technologies Llc Multilevel memory stack structure with tapered inter-tier joint region and methods of making thereof
US10438964B2 (en) 2017-06-26 2019-10-08 Sandisk Technologies Llc Three-dimensional memory device having direct source contact and metal oxide blocking dielectric and method of making thereof
US10680006B2 (en) 2017-08-11 2020-06-09 Micron Technology, Inc. Charge trap structure with barrier to blocking region
US10446572B2 (en) 2017-08-11 2019-10-15 Micron Technology, Inc. Void formation for charge trap structures
US10453855B2 (en) 2017-08-11 2019-10-22 Micron Technology, Inc. Void formation in charge trap structures
US10164009B1 (en) 2017-08-11 2018-12-25 Micron Technology, Inc. Memory device including voids between control gates
CN107482017A (zh) * 2017-08-22 2017-12-15 长江存储科技有限责任公司 一种3d nand闪存沟道孔的制备工艺
CN107731824B (zh) * 2017-08-24 2019-01-29 长江存储科技有限责任公司 一种3d nand闪存的制作方法
WO2019046106A1 (en) * 2017-08-29 2019-03-07 Micron Technology, Inc. DEVICES AND SYSTEMS WITH CHAIN DRIVERS COMPRISING HIGH BANNED MATERIAL AND METHODS OF FORMATION
CN107507831B (zh) * 2017-08-31 2019-01-25 长江存储科技有限责任公司 一种3d nand存储器的存储单元结构及其形成方法
US10361216B2 (en) 2017-09-20 2019-07-23 Micron Technology, Inc. Methods used in forming an array of elevationally-extending transistors
US10700087B2 (en) * 2017-10-12 2020-06-30 Applied Materials, Inc. Multi-layer stacks for 3D NAND extendibility
US10629606B2 (en) 2017-11-07 2020-04-21 Sandisk Technologies Llc Three-dimensional memory device having level-shifted staircases and method of making thereof
US10211215B1 (en) 2017-11-30 2019-02-19 Sandisk Technologies Llc Three-dimensional memory device containing word lines having vertical protrusion regions and methods of making the same
US10181442B1 (en) 2017-11-30 2019-01-15 Sandisk Technologies Llc Three-dimensional memory device having L-shaped word lines and methods of making the same
US10217746B1 (en) 2017-11-30 2019-02-26 Sandisk Technologies Llc Three-dimensional memory device having L-shaped word lines and a support structure and methods of making the same
US10229931B1 (en) 2017-12-05 2019-03-12 Sandisk Technologies Llc Three-dimensional memory device containing fluorine-free tungsten—word lines and methods of manufacturing the same
US10510738B2 (en) 2018-01-17 2019-12-17 Sandisk Technologies Llc Three-dimensional memory device having support-die-assisted source power distribution and method of making thereof
US10283493B1 (en) 2018-01-17 2019-05-07 Sandisk Technologies Llc Three-dimensional memory device containing bonded memory die and peripheral logic die and method of making thereof
US10546870B2 (en) 2018-01-18 2020-01-28 Sandisk Technologies Llc Three-dimensional memory device containing offset column stairs and method of making the same
US10256247B1 (en) 2018-02-08 2019-04-09 Sandisk Technologies Llc Three-dimensional memory device with silicided word lines, air gap layers and discrete charge storage elements, and method of making thereof
KR102550588B1 (ko) * 2018-02-12 2023-07-04 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US11217532B2 (en) 2018-03-14 2022-01-04 Sandisk Technologies Llc Three-dimensional memory device containing compositionally graded word line diffusion barrier layer for and methods of forming the same
US10804284B2 (en) 2018-04-11 2020-10-13 Sandisk Technologies Llc Three-dimensional memory device containing bidirectional taper staircases and methods of making the same
US10756186B2 (en) 2018-04-12 2020-08-25 Sandisk Technologies Llc Three-dimensional memory device including germanium-containing vertical channels and method of making the same
US10381322B1 (en) 2018-04-23 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device containing self-aligned interlocking bonded structure and method of making the same
US10971490B2 (en) 2018-05-15 2021-04-06 International Business Machines Corporation Three-dimensional field effect device
US10490667B1 (en) 2018-05-15 2019-11-26 International Business Machines Corporation Three-dimensional field effect device
US11211390B2 (en) 2018-10-11 2021-12-28 International Business Machines Corporation Staircase patterning for 3D NAND devices
US10784282B2 (en) 2018-12-22 2020-09-22 Xcelsis Corporation 3D NAND—high aspect ratio strings and channels
US10879260B2 (en) 2019-02-28 2020-12-29 Sandisk Technologies Llc Bonded assembly of a support die and plural memory dies containing laterally shifted vertical interconnections and methods for making the same
CN110062958B (zh) * 2019-03-04 2020-05-26 长江存储科技有限责任公司 用于形成三维存储器件的方法
CN110121778B (zh) 2019-03-04 2020-08-25 长江存储科技有限责任公司 三维存储器件
US10964793B2 (en) 2019-04-15 2021-03-30 Micron Technology, Inc. Assemblies which include ruthenium-containing conductive gates
KR20200132136A (ko) 2019-05-15 2020-11-25 삼성전자주식회사 3차원 반도체 메모리 장치
JP2021136270A (ja) * 2020-02-25 2021-09-13 キオクシア株式会社 半導体記憶装置およびその製造方法
US20210343736A1 (en) * 2020-04-29 2021-11-04 Micron Technology, Inc. Electronic structures comprising multiple, adjoining high-k dielectric materials and related electronic devices, systems, and methods
US11672118B2 (en) * 2020-09-04 2023-06-06 Micron Technology, Inc. Electronic devices comprising adjoining oxide materials and related systems
CN112420716B (zh) * 2020-11-17 2021-10-26 长江存储科技有限责任公司 一种半导体器件及其制备方法
EP4152394A1 (de) * 2021-09-20 2023-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum erzeugen von vertikalen kanalstrukturen in dreidimensional integrierten halbleiterspeichern
EP4152395A1 (de) * 2021-09-20 2023-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum herstellen eines dreidimensional-integrierten halbleiterspeichers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681884A (zh) * 2007-03-27 2010-03-24 桑迪士克3D公司 三维nand存储器及其制造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005350B2 (en) 2002-12-31 2006-02-28 Matrix Semiconductor, Inc. Method for fabricating programmable memory array structures incorporating series-connected transistor strings
US7233522B2 (en) 2002-12-31 2007-06-19 Sandisk 3D Llc NAND memory array incorporating capacitance boosting of channel regions in unselected memory cells and method for operation of same
US7221588B2 (en) 2003-12-05 2007-05-22 Sandisk 3D Llc Memory array incorporating memory cells arranged in NAND strings
US7023739B2 (en) 2003-12-05 2006-04-04 Matrix Semiconductor, Inc. NAND memory array incorporating multiple write pulse programming of individual memory cells and method for operation of same
US7177191B2 (en) 2004-12-30 2007-02-13 Sandisk 3D Llc Integrated circuit including memory array incorporating multiple types of NAND string structures
JP5016832B2 (ja) 2006-03-27 2012-09-05 株式会社東芝 不揮発性半導体記憶装置及びその製造方法
JP4772656B2 (ja) * 2006-12-21 2011-09-14 株式会社東芝 不揮発性半導体メモリ
US7514321B2 (en) 2007-03-27 2009-04-07 Sandisk 3D Llc Method of making three dimensional NAND memory
US7575973B2 (en) 2007-03-27 2009-08-18 Sandisk 3D Llc Method of making three dimensional NAND memory
US7808038B2 (en) 2007-03-27 2010-10-05 Sandisk 3D Llc Method of making three dimensional NAND memory
US7851851B2 (en) 2007-03-27 2010-12-14 Sandisk 3D Llc Three dimensional NAND memory
US7745265B2 (en) 2007-03-27 2010-06-29 Sandisk 3D, Llc Method of making three dimensional NAND memory
US7848145B2 (en) 2007-03-27 2010-12-07 Sandisk 3D Llc Three dimensional NAND memory
KR101226685B1 (ko) * 2007-11-08 2013-01-25 삼성전자주식회사 수직형 반도체 소자 및 그 제조 방법.
US7746680B2 (en) 2007-12-27 2010-06-29 Sandisk 3D, Llc Three dimensional hexagonal matrix memory array
KR101559868B1 (ko) * 2008-02-29 2015-10-14 삼성전자주식회사 수직형 반도체 소자 및 이의 제조 방법.
JP2009277770A (ja) * 2008-05-13 2009-11-26 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP5230274B2 (ja) * 2008-06-02 2013-07-10 株式会社東芝 不揮発性半導体記憶装置
KR101478678B1 (ko) * 2008-08-21 2015-01-02 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
KR101498676B1 (ko) * 2008-09-30 2015-03-09 삼성전자주식회사 3차원 반도체 장치
US7994011B2 (en) * 2008-11-12 2011-08-09 Samsung Electronics Co., Ltd. Method of manufacturing nonvolatile memory device and nonvolatile memory device manufactured by the method
KR101527192B1 (ko) * 2008-12-10 2015-06-10 삼성전자주식회사 불휘발성 메모리 소자 및 그의 제조방법
JP5317664B2 (ja) 2008-12-17 2013-10-16 株式会社東芝 不揮発性半導体記憶装置の製造方法
KR101495806B1 (ko) * 2008-12-24 2015-02-26 삼성전자주식회사 비휘발성 기억 소자
KR101587601B1 (ko) * 2009-01-14 2016-01-25 삼성전자주식회사 비휘발성 메모리 장치의 제조 방법
KR101481104B1 (ko) * 2009-01-19 2015-01-13 삼성전자주식회사 비휘발성 메모리 장치 및 그 제조 방법
KR101573697B1 (ko) * 2009-02-11 2015-12-02 삼성전자주식회사 수직 폴딩 구조의 비휘발성 메모리 소자 및 그 제조 방법
KR101495799B1 (ko) * 2009-02-16 2015-03-03 삼성전자주식회사 비휘발성 메모리 장치 및 그 제조 방법
JP5364394B2 (ja) 2009-02-16 2013-12-11 株式会社東芝 不揮発性半導体記憶装置
KR101532366B1 (ko) * 2009-02-25 2015-07-01 삼성전자주식회사 반도체 기억 소자
KR101616089B1 (ko) * 2009-06-22 2016-04-28 삼성전자주식회사 3차원 반도체 메모리 소자
JP2011035228A (ja) * 2009-08-04 2011-02-17 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
KR101584113B1 (ko) * 2009-09-29 2016-01-13 삼성전자주식회사 3차원 반도체 메모리 장치 및 그 제조 방법
JP2011170956A (ja) * 2010-02-18 2011-09-01 Samsung Electronics Co Ltd 不揮発性メモリ装置およびそのプログラム方法と、それを含むメモリシステム
KR101660432B1 (ko) * 2010-06-07 2016-09-27 삼성전자 주식회사 수직 구조의 반도체 메모리 소자
US8193054B2 (en) * 2010-06-30 2012-06-05 SanDisk Technologies, Inc. Ultrahigh density vertical NAND memory device and method of making thereof
US8187936B2 (en) * 2010-06-30 2012-05-29 SanDisk Technologies, Inc. Ultrahigh density vertical NAND memory device and method of making thereof
US8349681B2 (en) * 2010-06-30 2013-01-08 Sandisk Technologies Inc. Ultrahigh density monolithic, three dimensional vertical NAND memory device
JP2012028537A (ja) * 2010-07-22 2012-02-09 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
US8681555B2 (en) * 2011-01-14 2014-03-25 Micron Technology, Inc. Strings of memory cells having string select gates, memory devices incorporating such strings, and methods of accessing and forming the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681884A (zh) * 2007-03-27 2010-03-24 桑迪士克3D公司 三维nand存储器及其制造方法

Also Published As

Publication number Publication date
CN103620789A (zh) 2014-03-05
TW201244007A (en) 2012-11-01
US20120256247A1 (en) 2012-10-11
KR20140027960A (ko) 2014-03-07
WO2012142020A1 (en) 2012-10-18
US8445347B2 (en) 2013-05-21
USRE45554E1 (en) 2015-06-09
KR101921355B1 (ko) 2019-02-13

Similar Documents

Publication Publication Date Title
CN103620789B (zh) 3d垂直nand以及通过前侧工艺和后侧工艺制造其的方法
EP3707749B1 (en) Three-dimensional memory device with annular blocking dielectrics and method of making thereof
EP3218931B1 (en) Three dimensional nand device having reduced wafer bowing and method of making thereof
US10403632B2 (en) 3D NAND device with five-folded memory stack structure configuration
US10840259B2 (en) Three-dimensional memory device including liner free molybdenum word lines and methods of making the same
US9530788B2 (en) Metallic etch stop layer in a three-dimensional memory structure
US9972641B1 (en) Three-dimensional memory device having a multilevel drain select gate electrode and method of making thereof
EP3286783B1 (en) Three-dimensional memory devices containing memory block bridges
US10128261B2 (en) Cobalt-containing conductive layers for control gate electrodes in a memory structure
CN106972024B (zh) 三维半导体器件
US9478558B2 (en) Semiconductor structure with concave blocking dielectric sidewall and method of making thereof by isotropically etching the blocking dielectric layer
US9230979B1 (en) High dielectric constant etch stop layer for a memory structure
US9576966B1 (en) Cobalt-containing conductive layers for control gate electrodes in a memory structure
CN110326110A (zh) 使用金属栅第一方法来构建三维非易失性存储器器件
EP3420595A1 (en) Within-array through-memory-level via structures and method of making thereof
WO2017091274A1 (en) Within array replacement openings for a three-dimensional memory device
WO2016085572A1 (en) Memory device containing stress-tunable control gate electrodes
KR20130124289A (ko) 초고밀도 수직 nand 메모리 장치 및 이를 제조하는 방법
WO2020040835A1 (en) Three-dimensional flat memory device including a dual dipole blocking dielectric layer and methods of making the same
US11469241B2 (en) Three-dimensional memory device including discrete charge storage elements and methods of forming the same
CN104541370A (zh) 三维nand 装置和电荷捕获层分开以及在nand 装置中浮动栅极形成的方法
US20150318300A1 (en) Method of making damascene select gate in memory device
WO2021236168A1 (en) Three-dimensional memory device including wrap around word lines and methods of forming the same
US11387244B2 (en) Three-dimensional memory device including discrete charge storage elements and methods of forming the same
US10991718B2 (en) Three-dimensional memory device containing a vertical semiconductor channel containing a connection strap and method of making the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: texas

Patentee after: DELPHI INT OPERATIONS LUX SRL

Address before: texas

Patentee before: Sandisk Corp.