WO2022158860A2 - 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차 - Google Patents

배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2022158860A2
WO2022158860A2 PCT/KR2022/001008 KR2022001008W WO2022158860A2 WO 2022158860 A2 WO2022158860 A2 WO 2022158860A2 KR 2022001008 W KR2022001008 W KR 2022001008W WO 2022158860 A2 WO2022158860 A2 WO 2022158860A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
beading
current collector
contact
welding
Prior art date
Application number
PCT/KR2022/001008
Other languages
English (en)
French (fr)
Other versions
WO2022158860A3 (ko
Inventor
임재원
김학균
이제준
정지민
황보광수
김도균
민건우
임혜진
조민기
최수지
김재웅
박종식
최유성
이병구
류덕현
이관희
이재은
강보현
공진학
이순오
최규현
박필규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210137856A external-priority patent/KR20220105112A/ko
Priority claimed from KR1020210194593A external-priority patent/KR20220105118A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CA3204067A priority Critical patent/CA3204067A1/en
Priority to JP2023528469A priority patent/JP2023551128A/ja
Publication of WO2022158860A2 publication Critical patent/WO2022158860A2/ko
Publication of WO2022158860A3 publication Critical patent/WO2022158860A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery and a current collector applied thereto, and a battery pack and a vehicle including the battery.
  • Korean Patent Application No. 10-2021-0142196 filed on October 22, 2021, Korean Patent Application No. 10-2021-0153472, filed on November 9, 2021, November 2021 Korean Patent Application No. 10-2021-0160823 filed on March 19, Korean Patent Application No. 10-2021-0163809 filed on November 24, 2021 Korean Patent filed on November 26, 2021 Application No. 10-2021-0165866, Korean Patent Application No. 10-2021-0172446, filed on December 3, 2021, Korean Patent Application No. 10-2021-0177091, filed on December 10, 2021 No., Korean Patent Application No. 10-2021-0194593, filed on December 31, 2021, Korean Patent Application No. 10-2021-0194610, filed on December 31, 2021, December 31, 2021 Korean Patent Application No. 10-2021-0194572, filed on December 31, 2021, Korean Patent Application No.
  • the electrode assembly in order to reduce the self-resistance of the electrode assembly, it is necessary to develop a new electrode assembly structure and a current collector structure suitable for the structure of the electrode assembly.
  • the application of the electrode assembly and the current collector of such a novel structure is more necessary for a device requiring a battery pack having high output/high capacity, such as, for example, an electric vehicle.
  • the form factor of batteries is increasing. That is, the diameter and height of the battery are increasing compared to the conventional batteries having a form factor such as 1865 or 2170.
  • An increase in the form factor leads to an increase in energy density, increased safety against thermal runaway, and improved cooling efficiency.
  • the energy density of a battery can be further increased when the unnecessary space inside the battery housing is minimized with an increase in the form factor. Therefore, it is necessary to design the entire structure of the battery as a low resistance structure so that the current collector can minimize the amount of heat generated during rapid charging while increasing the capacity of the battery.
  • the present invention was devised in consideration of the above-described problems, and an object of the present invention is to provide a current collector having a structure suitable for an electrode assembly having a low resistance structure, and a battery including the same.
  • an object of the present invention is to provide a current collector having a structure capable of improving the bonding strength between the current collector and a coupling portion of the battery housing, and a battery including the same.
  • an object of the present invention is to provide a current collector having a structure capable of improving the energy density of the battery and a battery including the same.
  • the present invention provides a current collector having a structure capable of increasing the convenience of a welding process for electrical connection between a battery housing and a current collector, thereby improving productivity, and a battery including the same in manufacturing a battery The purpose.
  • a battery according to an embodiment of the present invention for solving the above problems is an electrode assembly defining a core and an outer circumferential surface by winding a first electrode and a second electrode and a separator interposed therebetween around a winding axis, an electrode assembly in which the first electrode includes an active material portion coated with an active material layer along a winding direction and a first uncoated portion not coated with an active material layer, wherein at least a portion of the first uncoated portion is itself used as an electrode tab;
  • a battery housing accommodating the electrode assembly through an opening formed on one side;
  • a current collector including a tab coupling part coupled to the first uncoated part and a housing coupling part extending from the tab coupling part and electrically coupled to an inner surface of the battery housing;
  • a cap covering the opening includes
  • the battery housing may include a beading portion formed at an end adjacent to the opening portion and press-fitted toward the inside.
  • the battery housing may include a crimping portion formed on a side facing the opening portion rather than the beading portion and extending and bent toward the opening portion.
  • the housing coupling part may be press-fixed by the crimping part.
  • connection part may have a structure convex upward based on an imaginary straight line connecting one end of the contact part and one end of the tab coupling part.
  • connection part may have a structure raised upward than the beading part after the sizing process.
  • connection part may include at least one bent part.
  • the bent portion may be located above a virtual plane parallel to the bottom surface of the battery housing passing through the center of an imaginary straight line connecting one end of the contact portion and one end of the tab coupling portion.
  • the at least one bent portion may be bent at an obtuse angle so as not to overlap each other when viewed along the longitudinal axis of the battery housing.
  • a boundary point between the contact portion and the connection portion may be bent at an obtuse angle.
  • the connecting portion as the connecting portion toward the beading portion, the inclination may be reduced stepwise or gradually.
  • an angle between the tab coupling part and the connection part may be between 0 and 90 degrees.
  • connection part may support the cap.
  • the tab coupling portion and the contact portion may be positioned at the same height.
  • the contact portion may have a flat surface coupled to an upper surface of the beading portion facing the opening portion.
  • the at least one tab coupling part of the current collector may be located further below the lower surface of the beading part.
  • At least one of the upper surface of the beading part and the lower surface of the beading part may be inclined at a predetermined angle with the lower surface of the battery housing.
  • the contact part may be seated on the inclined upper surface of the beading part.
  • At least one of the upper surface of the beading part and the lower surface of the beading part may be parallel to the lower surface of the battery housing in at least some regions.
  • the upper surface of the beading part and the lower surface of the beading part may be asymmetric with respect to a virtual reference plane passing through the innermost point of the beading part in parallel with the bottom surface of the battery housing.
  • the contact part may be seated on a flat upper surface of the beading part.
  • the indentation depth of the beading part is called PD
  • the minimum value of the radius of curvature of the beading part is R 1,min
  • the minimum value of the weld bead width is W bead,min
  • the beading part is R 2,min .
  • the press-fitting depth of the beading portion may be 0.2 to 10 mm.
  • the indentation depth of the beading portion is referred to as PD
  • the maximum value of the indentation depth is referred to as PDmax
  • the shortest distance from the end of the contact portion to the vertical line passing the innermost point of the beading portion Overlap Let the length be OV, let the minimum value of the radius of curvature of the beading part be R 1,min , and let the minimum value of the weld bead width be W bead,min , in the boundary region between the beading part and the inner side of the battery housing.
  • the minimum value of the radius of curvature is R 2,min , the following relational expression may be satisfied.
  • the contact portion may be welded on the beading portion.
  • the contact portion may be welded on a flat upper surface of the beading portion.
  • a welding area between the contact part and the beading part may be formed to be narrower than a flat upper surface of the beading part.
  • the indentation depth of the beading portion is referred to as PD
  • the maximum value of the indentation depth is referred to as PDmax
  • the distance to the point be W
  • the overlap length which is the shortest distance from the end of the contact part to the vertical line passing the innermost point of the beading part
  • the minimum value of OV is OV min
  • the maximum value of OV is OV max
  • the weld bead formed between the beading part and the contact part may form a linear welding pattern extending in a circumferential direction.
  • At least one welding bead formed between the beading portion and the contacting portion, and the at least one welding bead may form an arc-shaped welding pattern extending in a circumferential direction.
  • a welding bead formed between the beading portion and the contact portion may form a welding pattern, and the welding pattern may have a line shape in which point welding is connected.
  • a plurality of welding beads formed between the beading part and the contacting part may be formed in the same contacting part.
  • the width of the weld bead formed between the beading portion and the contact portion may be 0.1 mm or more.
  • the first uncoated portion and the tab coupling portion may be welded to each other in a radial direction of the electrode assembly.
  • the tab coupling part may be welded to the first uncoated part in a state parallel to the lower surface of the battery housing.
  • the plurality of welding beads formed between the first uncoated portion and the tab coupling portion may form a linear welding pattern extending along a radial direction of the electrode assembly.
  • a welding bead formed between the first uncoated region and the tab coupling portion may form a welding pattern, and the welding pattern may have a line shape in which point welding is connected.
  • the width of the weld bead formed between the first uncoated portion and the tab coupling portion may be 0.1 mm or more.
  • At least a portion of the first uncoated region may include a plurality of segment segments divided along a winding direction of the electrode assembly.
  • the plurality of segment pieces may be bent along a radial direction of the electrode assembly to form a curved surface.
  • the plurality of segment pieces may be overlapped in multiple layers along a radial direction of the electrode assembly to form a curved surface.
  • the bent surface has a layered number increasing section in which the number of overlapping layers of the segment sequentially increases to a maximum value from the outer periphery side to the core side of the singi electrode assembly, and the innermost segment from the radius point at which the number of overlapping layers becomes the maximum value. It may include a section with a uniform number of stacks up to the radius point.
  • the tab coupling part may be coupled to the bent surface so as to overlap the uniform number of stacking sections.
  • the number of overlapping layers in the uniform number of stacking sections may be 10 or more.
  • the tab coupling part may be welded to the bent surface, and a welding area of the tab coupling part may overlap the uniform number of stacking sections in a radial direction of the electrode assembly by at least 50% or more.
  • the current collector may include a circular current collector hole in the center of the current collector.
  • the diameter of the current collector hole may be greater than or equal to the diameter of the winding center hole provided in the core of the electrode assembly.
  • the battery may include a sealing gasket provided between the battery housing and the cap.
  • the contact portion may be interposed between the sealing gasket and the beading portion.
  • the thickness of the sealing gasket may vary along the circumferential direction.
  • the thickness of the sealing gasket may alternately repeat an increase and a decrease in the circumferential direction.
  • the sealing gasket may have the same compressibility in a region in contact with the contact portion and in a region not in contact with the contact portion.
  • the sealing gasket may have a smaller compressibility in a region not in contact with the contact portion than in a region in contact with the contact portion.
  • the sealing gasket may have a greater thickness in a region not in contact with the contact portion than in a region in contact with the contact portion.
  • the current collector may have a leg structure extending in a radial direction while the tab coupling part and the housing coupling part are connected to each other.
  • the leg structure may be provided in plurality.
  • the leg structure may be disposed in a radial shape, a cross shape, or a combination thereof based on the central portion of the current collector.
  • a plurality of the housing coupling parts may be provided, and the plurality of the housing coupling parts may be interconnected and integrally formed.
  • connection part may include at least one bending part whose extension direction is switched at least once.
  • the protruding outermost point of the bending part may be spaced apart from the innermost point of the beading part by a predetermined distance.
  • the angle between the contact portion and the connection portion may be an acute angle by the bending portion.
  • connection part may be elastically biased upward by the bending part.
  • a circumferential length of the contact portion may be the same as a circumferential length of the tab coupling portion.
  • a circumferential length of the contact portion may be the same as a circumferential length of the connecting portion.
  • a circumferential length of the contact portion may be relatively longer than a circumferential length of the tab coupling portion.
  • a circumferential length of the contact portion may be relatively longer than a circumferential length of the connecting portion.
  • the contact portion may have an arc shape extending in a circumferential direction along the beading portion of the battery housing.
  • the contact portion may have an arc shape extending in opposite directions along a circumferential direction from an intersection point of the connection portion and the contact portion.
  • the sum of the lengths of the contact portions extending in the circumferential direction may correspond to the length of the inner periphery of the battery housing.
  • the connecting portion may have an arc shape extending in a circumferential direction along the contact portion.
  • a boundary region between the tab coupling part and the housing coupling part may be bent such that an end of the housing coupling part faces the beading part.
  • connection portion between the contact portion and the connection portion may be bent.
  • connection portion between the contact portion and the connection portion may have a complementary shape corresponding to the inner surface of the beading portion.
  • connection portion between the contact portion and the connection portion may be seamlessly coupled to the beading portion while having a shape matching the inner surface of the beading portion.
  • the boundary region of the tab coupling portion and the housing coupling portion may be located more inside than the innermost point of the beading portion formed in the battery housing.
  • the tab coupling portion when viewed along a longitudinal axis of the battery housing, may not overlap by the beading portion.
  • the second electrode in the battery, includes a second uncoated region exposed to the outside of the separator without an active material layer being coated on the long side end, and at least a portion of the second uncoated region itself a terminal used as an electrode tab as an electrode tab, provided on the opposite side of the open part, and electrically connected to the second uncoated part.
  • the battery includes: a tab coupling part formed between the second uncoated part and the terminal and coupled to the second uncoated part; and a second current collector having a; and a terminal coupling unit coupled to the terminal.
  • the terminal coupling part may cover a winding center hole of the electrode assembly.
  • the longest radius from the center of the terminal coupling part of the second current collector to the end of the tab coupling part may be greater than the longest radius from the center of the current collector to the end of the tab coupling part.
  • the tab coupling portion of the second current collector may be coupled to the bent end of the second uncoated portion.
  • a welding area for coupling the tab coupling portion of the second current collector and the bent end of the second uncoated portion is further formed, and a distance from the center of the terminal coupling portion of the second current collector to the welding area is , may be the same as the distance from the center of the current collector to the welding area on the tab coupling portion, or may have a distance deviation of 5% or less.
  • the welding region of the second current collector may have a longer length than the welding region on the tab coupling portion of the current collector.
  • one or more holes for injecting an electrolyte may be formed on the tab coupling part.
  • the ratio of the form factor divided by the diameter of the battery by the height may be greater than 0.4.
  • the measured resistance between the anode and the cathode may be 4 milliohms or less.
  • a battery pack according to an embodiment of the present invention includes a plurality of batteries according to an embodiment of the present invention as described above.
  • the plurality of batteries may be arranged in a predetermined number of rows, and the terminals of each battery and the outer surface of the bottom of the battery housing may be arranged to face upward.
  • the battery pack includes a plurality of bus bars for connecting a plurality of batteries in series and in parallel, each bus bar is disposed between terminals of adjacent batteries, and each bus bar is a body portion extending between the terminals; a plurality of first bus bar terminals extending to one side of the body portion and electrically coupled to the electrode terminals of the battery located at the one side; and a plurality of second bus bar terminals extending to the other side of the body part and electrically coupled to the outer surface of the bottom of the battery housing of the battery located on the other side.
  • a vehicle according to an embodiment of the present invention includes the battery pack according to an embodiment of the present invention as described above.
  • the current collector according to an embodiment of the present invention, at least one tab coupling portion coupled to the first uncoated portion of the electrode assembly; and at least one housing coupling part extending from the tab coupling part and electrically coupled to the beading part of the battery housing.
  • the battery according to another embodiment of the present invention is an electrode assembly having a structure in which first and second electrodes having a sheet shape and a separator interposed therebetween are wound in one direction, wherein the first electrode has a long side.
  • an electrode assembly including a first uncoated region on which an active material layer is not coated and exposed to the outside of the separator, wherein at least a portion of the first uncoated region is itself used as an electrode tab; a battery housing accommodating the electrode assembly through an opening formed on one side; a current collector electrically coupled to the first uncoated region and an inner surface of the battery housing; and a sealing gasket interposed between the opening of the battery housing and the current collector, wherein a portion of the current collector in contact with an inner surface of the battery housing is interposed between the inner surface of the battery housing and the sealing gasket.
  • the battery housing may include a beading portion formed at an end adjacent to the opening portion and press-fitted toward the inside.
  • an extension direction of a welding pattern formed between the first uncoated portion and the tab coupling portion and an extension direction of a welding pattern formed between the beading portion and the contact portion may be perpendicular to each other.
  • the innermost point of the beading portion, than the distal point of the crimping portion may be located more inward in the radial direction.
  • the sealing gasket surrounds the cap, and the radial length of a portion of the sealing gasket that covers the lower surface of the cap is a portion of the sealing gasket that covers the upper surface of the cap. may be smaller than the radial length of
  • the minimum value of the distance from the innermost point of the beading part to the center point of the weld bead positioned at the outermost radial direction is W1
  • the maximum value of the beading part when the overlap length is OV.
  • the beading portion may have a flat section parallel to the lower surface of the battery housing in at least a partial region, and the length of the flat section of the beading section in contact with the current collector may be OV - R1 .
  • the radial width length of the welding pattern formed between the beading part and the contact part may be W bead,min or more and OV - R1 or less.
  • the ratio of the length of the radial width of the welding pattern to the length of the flat section may satisfy a range of 10 to 40%.
  • a ratio of an area in which the current collector does not contact the upper surface of the electrode assembly to an area of a circle having an outer diameter of the electrode assembly as a diameter may be 30% or more and less than 100%.
  • a ratio of an area in which the current collector does not contact the electrode assembly to an area of a circle having an outer diameter of the electrode assembly as a diameter may be 60% or more and less than 100%.
  • a diameter of the current collector hole may be smaller than a diameter of a winding center hole provided in the core of the electrode assembly.
  • the diameter of the current collector hole may be 0.5*R3 or more and less than R3.
  • the diameter of the current collector hole may be 0.7*R3 or more and less than R3.
  • the connecting portion may extend in a radial direction and a winding axial direction.
  • the tab coupling portion, the connecting portion, and the contact portion may have the same width along the extension direction.
  • the contact portion may have a greater width than the connection portion.
  • the connecting portion may have a smaller width than the tab coupling portion.
  • connection part may have a greater width than the tab coupling part.
  • resistance can be greatly reduced in electrically connecting the electrode assembly and the battery housing.
  • FIG. 1A is a diagram illustrating a part of a longitudinal cross-sectional view of a battery according to an embodiment of the present invention.
  • 1B is a view showing a part of a longitudinal cross-sectional view of a battery according to another embodiment of the present invention.
  • FIG. 1C is an enlarged view of an upper portion of the electrode assembly of FIG. 1B .
  • FIG. 1D is an enlarged view of an upper portion of the first uncoated region of FIG. 1C .
  • FIG. 2 is a view showing a part of a longitudinal cross-sectional view of a battery according to another embodiment of the present invention.
  • FIG. 3 is a view showing a part of a longitudinal cross-sectional view of a battery according to another embodiment of the present invention.
  • FIG. 4A is a view for explaining a current collector included in the battery of FIG. 3 .
  • FIG. 4B is a view for explaining an embodiment in which a bending part is omitted from the current collector of FIG. 4A .
  • FIG. 5 is a view for explaining a current collector according to another embodiment of the present invention.
  • FIG. 6 is a view for explaining a current collector according to another embodiment of the present invention.
  • FIG. 7 is a view for explaining the relationship between the current collector hole and the winding hole.
  • FIG. 8A is a view for explaining a welding area between the current collector and the first uncoated portion and a welding area between the current collector and the beading portion of FIG. 4A .
  • FIG. 8B is a view for explaining a welding area between the current collector and the first uncoated portion and a welding area between the current collector and the beading portion of FIG. 4B .
  • FIG. 9 is a view for explaining a welding area between the current collector and the first uncoated portion and a welding area between the current collector and the beading portion of FIG. 5 .
  • FIG. 10 is a view for explaining a welding area between the current collector and the first uncoated portion and a welding area between the current collector and the beading portion of FIG. 6 .
  • 11 is a view for explaining the position, length and width of the weld bead formed in the welding area between the contact part and the beading part.
  • FIG. 12 is a view for explaining the relationship between the diameter of the inner surface of the battery housing and the total diameter of the current collector.
  • 13A is a view for explaining a welding process of the current collector.
  • 13B is a view for explaining a beading process of the battery housing.
  • 13C is a view for explaining a crimping process of the battery housing.
  • 13D is a view for explaining a sizing process of the battery housing.
  • 13E is a view for explaining a change in the current collector after the sizing process according to the shape of the current collector before the sizing process.
  • 13F is a view for explaining a shape of a current collector in which a welding area can be maintained even after a sizing process.
  • 13G is a view for explaining a shape of a current collector in which a welding area can be maintained even after a sizing process.
  • FIG. 14 is a plan view illustrating an electrode plate structure according to a preferred embodiment of the present invention.
  • 15 is a cross-sectional view taken along the longitudinal direction (Y) of an electrode assembly in which an uncoated segmental structure of an electrode plate according to an embodiment of the present invention is applied to a first electrode plate and a second electrode plate.
  • 16A is a cross-sectional view taken along the longitudinal direction (Y) of the electrode assembly in which the uncoated region is bent according to an embodiment of the present invention.
  • 16B is a perspective view of an electrode assembly in which an uncoated region is bent according to an embodiment of the present invention.
  • 17 is a top plan view illustrating a state in which a plurality of batteries are connected in series and in parallel using a bus bar according to an embodiment of the present invention.
  • 18A is a view for explaining a second current collector according to an embodiment of the present invention.
  • 18B is a view for explaining a second current collector according to another embodiment of the present invention.
  • 19 is a view for explaining a battery pack including a battery according to an embodiment of the present invention.
  • FIG. 20 is a view for explaining a vehicle including the battery pack of FIG. 19 .
  • substantially identical may include deviations considered low in the art, for example, deviations within 5%.
  • uniformity of a certain parameter in a predetermined region may mean uniformity in terms of an average.
  • first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from other components, and unless otherwise stated, the first component may be the second component, of course.
  • top (or bottom) of a component or “top (or below)” of a component means that any component is disposed in contact with the top (or bottom) surface of the component, as well as , may mean that other components may be interposed between the component and any component disposed on (or under) the component.
  • each component when it is described that a component is “connected”, “coupled” or “connected” to another component, the components may be directly connected or connected to each other, but other components are “interposed” between each component. It is to be understood that “or, each component may be “connected”, “coupled” or “connected” through another component.
  • a direction along the longitudinal direction of the winding axis of the electrode assembly wound in a wound shape is referred to as an axial direction (Y).
  • the direction surrounding the winding shaft is referred to as a circumferential direction or a circumferential direction (X).
  • a direction close to or away from the take-up shaft is referred to as a radial direction.
  • a direction closer to the take-up shaft is referred to as a centripetal direction
  • a direction away from the take-up shaft is referred to as a centrifugal direction.
  • a battery 1 includes an electrode assembly 10 , a battery housing 20 , a current collector (a first current collector) 30 , and a cap 40 .
  • the battery 1 is, in addition, a terminal 50 and/or a sealing gasket G1 and/or an insulating gasket G2 and/or a current collector (second current collector) P and/or an insulator S) may further include.
  • the terminal 50 may be provided on the opposite side of the open part and may be electrically connected to the second uncoated part 12 .
  • the electrode assembly 10 includes a first uncoated area 11 and a second uncoated area 12 . More specifically, the electrode assembly 10 may be manufactured by winding a laminate formed by sequentially stacking a first electrode, a separator, a second electrode, and a separator at least once. That is, the electrode assembly 10 applied to the present invention may be a wound type electrode assembly. In this case, an additional separator may be provided on the outer circumferential surface of the electrode assembly 10 to insulate it from the battery housing 20 .
  • the electrode assembly 10 may have a winding structure well known in the related art without limitation.
  • the electrode assembly 10 may be an electrode assembly 10 in which a core and an outer circumferential surface are defined by first and second electrodes and a separator interposed therebetween being wound around a winding axis.
  • the first electrode may include an active material portion coated with an active material layer and a first uncoated portion 11 on which an active material layer is not coated along a winding direction.
  • the electrode assembly 10 may be a winding type electrode assembly having a structure in which the first and second electrodes having a sheet shape and a separator interposed therebetween are wound in one direction.
  • the first electrode may include a first uncoated portion 11 that is not coated with an active material layer on a long side end and is exposed to the outside of the separator.
  • the second electrode may include a second uncoated region 12 that is not coated with an active material layer on the long side end and is exposed to the outside of the separator. At least a portion of the first uncoated region 11 may be used as an electrode tab by itself. At least a portion of the second uncoated region 12 may be used as an electrode tab by itself.
  • the first electrode includes a first electrode current collector and a first electrode active material coated on one or both surfaces of the first electrode current collector.
  • An uncoated region to which the first electrode active material is not applied is present at one end of the first electrode current collector in the width direction (in a direction parallel to the height direction of the battery 1 shown in FIG. 1A ).
  • the uncoated region functions as a first electrode tab.
  • the first uncoated region 11 is provided above the electrode assembly 10 accommodated in the battery housing 20 in the height direction (in a direction parallel to the height direction of the battery 1 shown in FIG. 1A ).
  • the first uncoated region 11 may be, for example, a negative electrode tab.
  • the second electrode includes a second electrode current collector and a second electrode active material coated on one or both surfaces of the second electrode current collector.
  • An uncoated region to which the second electrode active material is not applied is present at the other end of the second electrode current collector in the width direction (in a direction parallel to the height direction of the battery 1 shown in FIG. 1A ).
  • the uncoated region functions as a second electrode tab.
  • the second uncoated region 12 is provided at a lower portion in the height direction of the electrode assembly 10 accommodated in the battery housing 20 .
  • the second uncoated region 12 may be, for example, a positive electrode tab.
  • the positive active material coated on the positive electrode plate and the negative electrode active material coated on the negative electrode plate may be used without limitation as long as the active material is known in the art.
  • the positive active material has the general formula A[A x M y ]O 2+z (A includes at least one element of Li, Na, and K; M is Ni, Co, Mn, Ca, Mg, Al, at least one element selected from Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, and Cr; x ⁇ 0, 1 ⁇ x+y ⁇ 2, - 0.1 ⁇ z ⁇ 2; stoichiometric coefficients x, y and z are selected such that the compound remains electrically neutral).
  • the positive active material includes an alkali metal compound xLiM 1 O 2 (1x)Li 2 M 2 O 3 (M 1 comprising at least one element having an average oxidation state 3; M; 2 includes at least one element having an average oxidation state 4; 0 ⁇ x ⁇ 1).
  • the positive active material may have the general formula Li a M 1 x Fe 1x M 2 y P 1y M 3 z O 4z (M 1 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, At least one element selected from Nd, Al, Mg and Al M 2 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si , Ge, contains at least one element selected from V and S; M 3 contains a halogen element optionally including F; 0 ⁇ a ⁇ 2, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1; stoichiometric coefficients a, x, y and z are chosen such that the compound remains electrically neutral), or Li 3 M 2 (PO 4 ) 3 [M is Ti, Si, Mn, Fe, Co, V, Cr , Mo, Ni, Al, including at least one element selected from Mg
  • the positive electrode active material may include primary particles and/or secondary particles in which the primary particles are aggregated.
  • the negative active material may be a carbon material, lithium metal or a lithium metal compound, silicon or a silicon compound, tin or a tin compound.
  • a metal oxide having a potential of less than 2V, such as TiO 2 and SnO 2 may also be used as the negative electrode active material.
  • As the carbon material both low-crystalline carbon, high-crystalline carbon, and the like may be used.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, or an ethylene/methacrylate copolymer. Or they can be used by laminating them.
  • the separator may be a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like.
  • At least one surface of the separator may include a coating layer of inorganic particles. It is also possible that the separation membrane itself is made of a coating layer of inorganic particles. Particles constituting the coating layer may have a structure combined with a binder so that an interstitial volume exists between adjacent particles.
  • the inorganic particles may be formed of an inorganic material having a dielectric constant of 5 or more.
  • the inorganic particles are Pb(Zr,Ti)O 3 (PZT), Pb 1x La x Zr 1y Ti y O 3 (PLZT), PB(Mg 3 Nb 2/3 )O 3 PbTiO 3 ( PMNPT), BaTiO 3 , hafnia(HfO 2 ), SrTiO 3 , TiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO and Y 2 O 3 At least one selected from the group consisting of material may be included.
  • the electrolyte may be a salt having a structure such as A + B -- .
  • a + includes an ion composed of an alkali metal cation such as Li + , Na + , K + or a combination thereof.
  • B -- is F -- , Cl -- , Br -- , I -- , NO 3 -- , N(CN) 2 -- , BF 4 -- , ClO 4 -- , AlO 4 -- , AlCl 4 -- , PF 6 -- , SbF 6 -- , AsF 6 -- , BF 2 C 2 O 4 -- , BC 4 O 8 -- , (CF 3 ) 2 PF 4 -- , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 -- , (CF 3 ) 5 PF -- , (CF 3 ) 6 P -- , CF 3 SO 3 -- , C 4 F 9 SO 3 -- , CF 3 CF 2 SO 3 -- , (CF 3 SO 2 ) 2 N -- , (F
  • the electrolyte can also be used by dissolving it in an organic solvent.
  • organic solvent propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (N-methyl- 2-pyrrolidone, NMP), ethyl methyl carbonate (EMC), gamma butyrolactone ( ⁇ -butyrolactone), or a mixture thereof may be used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofur
  • the battery housing 20 is a substantially cylindrical container having an opening formed on one side, and is made of a metal material having conductivity.
  • a side surface of the battery housing 20 and a lower surface (a lower surface with reference to FIG. 1A ) positioned opposite to the opening part are generally formed integrally. That is, the battery housing 20 generally has an open upper end in the height direction, and a lower end has a closed region except for the central portion.
  • a lower surface of the battery housing 20 may have an approximately flat shape.
  • the battery housing 20 accommodates the electrode assembly 10 through an opening formed on one side thereof in the height direction.
  • the battery housing 20 may also accommodate the electrolyte through the opening.
  • the battery housing 20 may include a beading portion 21 formed at an end adjacent to the open portion and press-fitted inwardly.
  • the battery housing 20 may include a crimping portion 22 that is formed on a side facing the open portion rather than the beading portion 21 and is extended and bent toward the open portion.
  • the battery housing 20 may include a beading portion 21 formed at an upper end thereof.
  • the battery housing 20 may further include a crimping portion 22 formed higher than the beading portion 21 .
  • the beading part 21 has a shape in which the outer peripheral surface of the battery housing 20 is press-fitted to a predetermined depth.
  • the beading part 21 is formed on the electrode assembly 10 .
  • the inner diameter of the battery housing 20 in the region where the beading portion 21 is formed is smaller than the diameter of the electrode assembly 10 .
  • the beading part 21 provides a support surface on which the cap 40 can be seated.
  • the beading part 21 may provide a support surface on which at least a portion of the periphery of the current collector 30 to be described later can be seated and coupled. That is, on the upper surface of the beading portion 21, at least a portion of the periphery of the current collector 30 of the present invention and/or the periphery of the periphery of the cap 40 of the present invention may be seated.
  • the upper surface of the beading part 21 is at least A portion may extend along a direction substantially parallel to the lower surface of the battery housing 20 , that is, along a direction substantially perpendicular to the sidewall of the battery housing 20 .
  • the beading unit 21 the upper surface of the beading unit 21, which is press-fitted and located above the innermost point; and a lower surface of the beading part 21 located below the innermost point of the press-fitted innermost point.
  • the press-fitting depth PD of the beading part 21 may be about 0.2 to 10 mm.
  • the minimum value of the indentation depth PD of the beading part 21 is the radius of curvature R1 of the beading part 21, the welding bead width W bead , and the inner side of the beading part 21 and the battery housing 20.
  • the radius of curvature (R2) in the boundary region of For example, referring to FIG. 11 , in order to enable welding, the radius of curvature R1 of the beading portion 21 and the radius of curvature in the boundary region between the beading portion 21 and the inner side of the battery housing 20 ( In addition to R2), additional space is required.
  • the indentation depth PD is R1+R2
  • an additionally required space must be greater than or equal to the minimum width W bead,min of the weld bead BD. Therefore, the minimum value of the indentation depth PD satisfies the following relational expression.
  • the minimum values of R 1,min and R 2,min may each be approximately 0.05 mm, and W bead,min may be approximately 0.1 mm.
  • the minimum value of the indentation depth PD may be about 0.2 mm or more.
  • the maximum value of the press-fitting depth PD of the beading portion 21 may vary depending on the material and thickness of the battery housing 20 .
  • the maximum value of the press-fitting depth PD of the beading part 21 may be about 10 mm. have. Accordingly, in one example, the press-fitting depth PD of the beading portion 21 may have a value of approximately 0.2 to 10 mm.
  • At least one of the upper surface of the beading part 21 and the lower surface of the beading part 21 forms an inclined shape with the lower surface of the battery housing 20 at a predetermined angle.
  • at least one of the upper surface of the beading part 21 and the lower surface of the beading part 21 may include a section parallel to the lower surface of the battery housing 20 in at least some areas.
  • the upper surface of the beading part 21 and the lower surface of the beading part 21 may include at least a part of a flat section (F of FIG. 3 ).
  • the crimping part 22 is formed on the beading part 21 .
  • the crimping part 22 has a shape extending and bending to surround the edge of the cap 40 disposed on the beading part 21 .
  • the cap 40 is fixed on the beading portion 21 .
  • the innermost point of the beading part 21 may be located more inward in the radial direction than the distal point of the crimping part 22 .
  • the distal point of the crimping part 22 may be located further outward in the radial direction. According to this structure, it is possible to maintain the flat beading portion 21 even after the sizing process. If, for example, the innermost point of the beading part 21 is located further outward in the radial direction than the distal point of the crimping part 22, the radial length of the upper surface of the crimping part 22 is beaded.
  • the area of the upper surface of the crimping part 22, which is an area subjected to pressure in the sizing process, is widened, and accordingly, the beading part 21 may not be flat after the sizing process. Therefore, in the present invention, it is preferable that the innermost point of the beading portion 21 is located further in the radial direction than the end of the crimping portion 22 .
  • the current collector 30 according to an embodiment of the present invention is accommodated in the battery housing 20 , is electrically connected to the electrode assembly 10 , and also the battery housing 20 . is electrically connected to That is, the current collector 30 electrically connects the electrode assembly 10 and the battery housing 20 .
  • the current collector 30 may be electrically coupled to the first uncoated portion 11 and the beading portion 21 of the battery housing 20 .
  • At least one tab coupling portion 32 of the current collector 30 may be located further below the lower surface of the beading portion 21 .
  • the current collector 30 includes a tab coupling part 32 coupled to the first uncoated part 11 and a beading part 21 on the inner surface of the battery housing 20 extending from the tab coupling part 32 . and a housing coupling part 33 electrically coupled thereto.
  • a boundary region between the tab coupling part 32 and the housing coupling part 33 may be bent such that an end of the housing coupling part 33 faces the beading part 21 . That is, referring to FIG. 2 and the like, the boundary area between the tab coupling part 32 and the housing coupling part 33 may have a shape bent upward. Meanwhile, the housing coupling part 33 may be press-fixed by the crimping part 22 .
  • the current collector 30 may further include a central portion 31 in a core region of the current collector 30 .
  • the central portion 31 may have a substantially circular shape.
  • the central portion 31 may be a loop-shaped portion forming a loop shape surrounding the winding axis of the electrode assembly 10 .
  • the loop-shaped portion may have one or two or more cut-out portions along the circumferential direction.
  • the central portion 31 may be selectively coupled to the first uncoated region 11 .
  • the current collector 30 may further include a cover portion extending from the loop-shaped portion and disposed to surround a partial region of the first uncoated portion 11 .
  • a contact area between the first uncoated region 11 and the current collector 30 may increase by the cover portion. Accordingly, the internal resistance of the battery may be further reduced.
  • the current collector 30 may have at least one leg structure extending in a radial direction in a state in which the tab coupling part 32 and the housing coupling part 33 are interconnected.
  • the leg structure may be provided in plurality.
  • the current collector 30 may have a four-leg structure.
  • a plurality of housing coupling parts 33 may also be provided.
  • the plurality of housing coupling portions 33 may be interconnected and integrally formed.
  • the leg structure may be disposed in a radial shape, a cross shape, or a combination thereof based on the central portion 31 of the current collector 30 .
  • the central part 31 and the at least one tab coupling part 32 are disposed on the electrode assembly 10 , and when the beading part 21 is formed in the battery housing 20 , It may be located at the bottom.
  • One or more holes for injecting an electrolyte may be formed on the tab coupling part 32 .
  • the total length of the tab coupling part 32 in the radial direction is T
  • the outer diameter of the electrode assembly 10 is JR
  • the height of the segment 11a disposed at the outermost side of the electrode assembly is F.
  • the total length T in the radial direction of the tab coupling portion 32 is greater than the length obtained by subtracting the height of the outermost segment 11a from the outer diameter JR of the electrode assembly 10 twice. or may be the same
  • the tab coupling portion 32 covers the end of the segment 11a disposed at the outermost portion. That is, the current collector 30 may have an outer diameter that covers the end of the segment 11a bent at the last winding turn of the first electrode. In this case, welding is possible in a state in which the fragments 11a forming the bent surface 102 coupled to the tab coupling part 32 are uniformly pressed by the current collector 30, and even after welding, the fragments 11a A tight lamination state can be well maintained.
  • the tight lamination state means a state in which there is substantially no gap between the fragments as shown in FIG. 1C .
  • the tight stacking state contributes to lowering the resistance of the battery 1 to a level suitable for rapid charging (eg, 0.5miliohm or more and 4miliohm or less, preferably 1.0miliohm or more and 4miliohm or less) or less.
  • the total length T in the radial direction of the tab coupling part 32 may be smaller than the outer diameter JR of the electrode assembly 10 . If the total length T in the radial direction of the tab coupling part 32 is greater than the outer diameter JR of the electrode assembly 10 , the dead space inside the battery housing 20 increases and the battery 1 energy density may be adversely affected. Accordingly, the total length T in the radial direction is preferably smaller than the outer diameter JR of the electrode assembly 10 .
  • the central portion 31 includes a circular current collector hole H2 formed at a position corresponding to the winding center hole H1 formed in the central portion of the electrode assembly 10 .
  • the winding center hole H1 and the current collector hole H2 that communicate with each other are welded between the terminal 50 and the current collector (second current collector) P, which will be described later, or the terminal 50 and the lead tab (not shown). It can function as a passage for insertion of a welding rod for welding of the liver or irradiation of a laser welding beam.
  • FIG. 7 is a view for explaining the relationship between the current collector hole and the winding hole.
  • the diameter of the current collector hole H2 may be greater than or equal to the diameter of the winding center hole H1 provided in the core of the electrode assembly 10 .
  • the reason for setting the diameter of the current collector hole H2 to be larger than the diameter of the winding center hole H1 provided in the core of the electrode assembly 10 is that the terminal 50 and the current collector (second This is because, when inserting a welding rod for welding between the current collector) P or for welding between the terminal 50 and the lead tab (not shown), or when irradiating a laser welding beam, it is necessary to secure a space according to the insertion of the welding guide. If the diameter of the current collector hole H2 is excessively smaller than the diameter of the winding center hole H1, the winding center hole H1 may be covered and act as an interference factor during continuous resistance welding (CRW) welding.
  • CCW continuous resistance welding
  • the diameter of the current collector hole H2 may be smaller than the diameter of the winding center hole H1 provided in the core of the electrode assembly 10 .
  • the diameter of the current collector hole H2 may be 0.5*R3 or more and less than R3, and preferably, 0.7*R3 or more and less than R3. .
  • the separator or uncoated portion at the winding center side may come out from the upper surface of the electrode assembly 10 by strong pressure while gas is discharged from the winding center portion when the vent is formed.
  • the separator or the uncoated portion at the winding center side is the upper surface of the electrode assembly 10 . It has the effect of preventing it from escaping.
  • the diameter of the current collector hole H2 is preferably 0.5*R3 or more, and more preferably 0.7*R3 or more.
  • the central portion 31 may have a substantially circular plate shape.
  • the central portion 31 may have a ring-shaped plate shape in which a current collector hole H2 is provided.
  • the at least one tab coupling part 32 may have a shape extending from the central part 31 of the current collector 30 toward the sidewall of the battery housing 20 approximately radially.
  • the tab coupling part 32 may be provided, for example, in plurality.
  • each of the plurality of tab coupling portions 32 may be positioned to be spaced apart from each other along the circumference of the central portion 31 .
  • the coupling area with the first uncoated part 11 may be increased. Accordingly, the coupling force between the first uncoated portion 11 and the tab coupling portion 32 may be secured and electrical resistance may be reduced.
  • the tab coupling part 32 may be welded to the first uncoated part 11 .
  • the welding method for example, laser welding, resistance welding, ultrasonic welding, etc. are possible, but the welding method is not limited thereto.
  • the tab coupling part 32 may be welded to the first uncoated part 11 in a state parallel to the lower surface of the battery housing 20 .
  • the first uncoated portion 11 and the tab coupling portion 32 may be welded to each other in a radial direction of the electrode assembly 10 .
  • FIG. 1B is a view showing a part of a longitudinal cross-sectional view of a battery according to another embodiment of the present invention.
  • FIG. 1C is an enlarged view of an upper portion of the electrode assembly 10 of FIG. 1B
  • FIG. 1D is an enlarged view of an upper portion of the first uncoated region 11 of FIG. 1C .
  • the first uncoated region 11 may include a plurality of segment pieces 11a along the winding direction of the electrode assembly 10 .
  • the plurality of segment pieces 11a may be bent along a radial direction of the electrode assembly 10 to form a curved surface 102 .
  • the radial direction of the electrode assembly means a direction toward the core side or the outer circumference side. For example, as shown in FIG.
  • the first uncoated region 11 may include a plurality of segment pieces 11a divided along a winding direction of the electrode assembly 10 .
  • the plurality of segment pieces 11a may be bent toward the core side of the electrode assembly 10 .
  • the plurality of segment pieces 11a may overlap in multiple layers along the radial direction of the electrode assembly 10 .
  • the curved surface 102 has a section where the number of overlapping layers of the segment 11a sequentially increases to a maximum value from the outer periphery side of the singi electrode assembly 10 to the core side, and a radius point at which the number of overlapping layers becomes the maximum. It may include a section with a uniform number of layers up to a radius point where the innermost segment exists.
  • the tab coupling part 32 may be coupled to an area in which the plurality of segment pieces 11a overlap in multiple layers.
  • the tab coupling part 32 may be coupled to the curved surface so as to overlap the uniform number of layers.
  • the tab coupling part 32 and the first uncoated part 11 may be coupled to each other.
  • ) may be performed in an area where the number of overlapping layers of the first uncoated area 11 is 10 or more on the curved surface 102 of the first uncoated area 11 .
  • the radial ratio of the section in which the number of overlapping layers is 10 or more may be designed to be 25% or more based on the radius of the electrode assembly excluding the core by adjusting the length of the first uncoated region 11 .
  • the current collector 30 When the current collector 30 is welded to the curved surface 102 of the first uncoated region 11 , it is preferable to increase the laser output in order to sufficiently secure welding strength.
  • the laser penetrates through the area where the first uncoated region 11 overlaps and penetrates to the inside of the electrode assembly 10 to damage the separator, the active material layer, and the like. Therefore, in order to prevent laser penetration, it is preferable to increase the number of overlapping layers of the first uncoated area 11 to a certain level or more.
  • the height of the fragment 11a In order to increase the number of overlapping layers of the first uncoated area 11 , the height of the fragment 11a needs to be increased. However, when the height of the segment 11a is increased, a swell may occur in the first uncoated region 11 during the manufacturing process of the first electrode current collector. Therefore, the height of the segment 11a is preferably adjusted to an appropriate level.
  • the radial length ratio of the number of overlapping layers of the fragments of the uncoated region is 25% or more based on the radius of the electrode assembly, and the current collector 30 and the region where the fragments of the uncoated region overlap 10 or more.
  • the overlapping portion of the uncoated region sufficiently masks the laser to prevent damage to the separator, the active material layer, and the like by the laser.
  • the output of the laser may be appropriately adjusted in the range of about 250W to 320W or in the range of about 40% to 90% of the maximum laser power specification, but the present invention is not limited thereto.
  • the welding strength can be sufficiently increased.
  • the weld strength may be increased to 2 kgf/cm 2 or more, more preferably 4 kgf/cm 2 or more.
  • the welding strength may be preferably set to 8 kgf/cm 2 or less, more preferably 6 kgf/cm 2 or less.
  • Weld strength is defined as the tensile force per unit area of the current collector 30 (kgf/cm 2 ) when the current collector plate begins to separate from the bent surface area.
  • a tensile force is applied to the current collecting plate, but the size thereof is gradually increased.
  • the tensile force increases, the uncoated area begins to separate from the weld interface.
  • a value obtained by dividing the tensile force applied to the current collector by the area of the current collecting plate is the weld strength.
  • 1D shows the outer periphery of the first uncoated portion 11 of the first electrode current collector divided into a plurality of segments in an electrode assembly having a radius of 22 mm and a core radius of 4 mm included in a battery having a form factor of 4680. It is a partial cross-sectional view showing a state in which the bent surface area overlapped by more than 10 sheets appears while being bent from the side to the core side.
  • the electrode assembly region without the segment and the core region are not separately illustrated.
  • the height of the fragments starts from 3 mm and increases by 1 mm for every 1 mm increase in the radius of the electrode assembly. And, after reaching the length of 6mm, 7mm, or 8mm as shown in the drawing, the height of the fragment is maintained substantially the same.
  • the number of overlapping layers of the first uncoated area 11 gradually increases from the outer periphery to the core, and the maximum value of the number of overlapping layers increases as the length of the first uncoated area 11 increases.
  • the number of overlapping layers of the first uncoated area 11 divided into a plurality of segments increases to 18 from the outer peripheral surface of the electrode assembly to a 7 mm section, , in the 8 mm section toward the core, the number of overlapping layers of the first uncoated region 11 is maintained at the maximum level of 18, and then decreases by 1-2 in the radial section adjacent to the core.
  • the height of the fragment increases stepwise from 3 mm to 8 mm in a radius of 7 mm to 12 mm.
  • the uniform number of layers is defined as a radius section from the point where the number of overlapping layers reaches the maximum to the point where the innermost segment is located, as shown in FIG. 1D . Accordingly, the ratio of the uniform number of stacked sections in which 10 or more segments 11a of the first uncoated region 11 are overlapped is 44.4% (8/18) of the radius of the electrode assembly excluding the core (4 mm).
  • the number of overlapping layers of the first uncoated region 11 divided into a plurality of segments increases to 15 from the outer peripheral surface of the electrode assembly to a section 6 mm, and , in the 9 mm section toward the core, the number of overlapping layers of the first uncoated region 11 is kept constant at the maximum level of 15, and then decreases by 1-2 in the radial section adjacent to the core.
  • the height of the fragment increases in stages from 3 mm to 7 mm in the radius of 7 mm to 11 mm. Therefore, the ratio of the uniform number of layers in which 10 or more fragments 11a of the first uncoated region 11 are overlapped is the core (4 mm). It is 50% (9/18) of the radius of the electrode assembly excluding it.
  • the number of overlapping layers of the first uncoated area 11 divided into a plurality of segments increases to 12 from the outer peripheral surface of the electrode assembly to a section 5 mm.
  • the number of overlapping layers of the first uncoated region 11 is kept constant at the maximum level of 12, and then decreases by 1-2 in the radial section adjacent to the core.
  • the height of the fragment increases from 3 mm to 6 mm in a radius of 7 mm to 10 mm. Accordingly, the ratio of the uniform number of stacked sections in which 10 or more segments 11a of the first uncoated region 11 are overlapped is 55.6% (10/18) of the radius of the electrode assembly excluding the core (4 mm).
  • the length of the section in which the number of overlapping layers is sequentially increased increases from 5 mm to 7 mm as the length of the first uncoated region 11 is longer, and in particular, the ratio of the section with the number of stacked layers equal to or greater than 10 is the core. It can be seen that the condition of 25% or more is satisfied based on the radius of the electrode assembly except for the electrode assembly.
  • the uniform number of layers may be increased or decreased by the radius of the core, the minimum and maximum values of the fragment height in the segment height variable interval, and the increase width of the fragment height in the radial direction of the electrode assembly. Therefore, it is very obvious to those skilled in the art to design the ratio to be 25% or more by adjusting factors affecting the ratio of the uniform number of layers. In one example, if the minimum and maximum values of the fragment height are increased together in the section height variable section, the number of stacked layers increases while the ratio of the section with the number of stacked sections uniform can be reduced to a level of 25%.
  • the section where the number of stacks is uniform is an area in which the current collector can be welded. Therefore, if the ratio of the uniform number of laminated sections is adjusted to 25% or more, the welding strength of the current collector can be secured in a desirable range, and it is advantageous in terms of resistance of the welding interface.
  • the space occupied by the first uncoated area 11 may be reduced, thereby improving energy density.
  • the bonding force may be improved and the resistance reduced.
  • 8A to 10 are views for explaining a welding area between the current collector 30 and the first uncoated region 11 .
  • a weld bead BD may be formed in a welding region between the first uncoated portion 11 and the tab coupling portion 32 .
  • the weld bead BD refers to an approximately circular welded portion formed when spot welding is performed at a specific point. For example, in FIG. 11, the substantially circular weld bead BD formed as a result of spot welding is shown.
  • a specific welding pattern may be formed. For example, referring to FIG. 8A , a plurality of welding beads BD may be gathered to form a substantially linear welding pattern.
  • the plurality of welding beads BD formed between the first uncoated portion 11 and the tab coupling portion 32 includes a welding pattern extending in a radial direction of the electrode assembly 10 .
  • the welding bead BD formed between the first uncoated portion 11 and the tab coupling portion 32 forms a linear welding pattern extending along the radial direction of the electrode assembly 10 . can do.
  • a welding pattern formed between the first uncoated portion 11 and the tab coupling portion 32 may have a line shape in which point welding is connected.
  • a width of the weld bead BD formed between the first uncoated part 11 and the tab coupling part 32 may be about 0.1 mm or more. This is because the minimum width of the weld bead BD is about 0.1 mm or more in consideration of the laser technology.
  • the longitudinal end of the tab coupling part 32 may be located more inside than the innermost point of the beading part 21 formed in the battery housing 20 . More specifically, the boundary area between the tab coupling part 32 and the housing coupling part 33 is directed toward the winding center hole H1 rather than the innermost point of the beading part 21 formed in the battery housing 20 . may be located further inside. According to such a structure, it is possible to prevent damage to the coupling portion between parts that may occur as the current collector 30 is excessively bent to position the end of the housing coupling part 33 on the beading part 21 . have. In other words, when viewed along the longitudinal axis of the battery housing 20 , the at least one tab coupling part 32 may have a shape that is not overlapped by the beading part 21 .
  • first uncoated portion 11 in order to secure a bonding force and reduce electrical resistance through an increase in the bonding area between the current collector 30 and the electrode assembly 10 , not only the tab coupling portion 32 but also the central portion 31 is a first uncoated portion 11 .
  • An end of the first uncoated portion 11 may be folded in a bent form to be parallel to the tab coupling portion 32 .
  • the coupling area is increased to obtain an effect of improving coupling force and reducing electrical resistance
  • the energy density improvement effect can be obtained by minimizing the total height of the electrode assembly 10 .
  • the at least one housing coupling part 33 may extend from an end of the tab coupling part 32 to be coupled to the beading part 21 on the inner surface of the battery housing 20 .
  • the at least one housing coupling part 33 may extend from an end of the tab coupling part 32 toward the sidewall of the battery housing 20 .
  • the housing coupling part 33 may be provided in plurality, for example.
  • each of the plurality of housing coupling portions 33 may be positioned to be spaced apart from each other along the circumference of the central portion 31 .
  • the plurality of housing coupling parts 33 may be coupled to the beading part 21 of the inner surface of the battery housing 20 . As shown in FIGS.
  • the upper surface of the beading part 21 extends in a direction approximately parallel to the lower surface of the battery housing 20 , that is, in a direction approximately perpendicular to the sidewall of the battery housing 20 , and the housing Since the coupling part 33 also has a shape extending in the same direction, the housing coupling part 33 can be stably contacted on the beading part 21 . In addition, as the housing coupling part 33 is stably in contact with the beading part 21, welding between the two parts can be made smoothly, thereby improving the coupling force between the two parts and minimizing the increase in resistance at the coupling part.
  • the current collector 30 is coupled on the beading part 21 of the battery housing 20 rather than the inner surface of the cylindrical part of the battery housing 20 as described above, the current collector 30 and the beading part ( 21) can be reduced. Accordingly, the dead space inside the battery housing 20 is minimized, so that the energy density of the battery 1 can be improved.
  • the housing coupling part 33 includes a contact part 33a coupled to the beading part 21 on the inner surface of the battery housing 20 and a tab coupling part 32 and a contact part 33a. It includes a connecting portion (33b) for connecting between them.
  • the contact portion 33a is coupled to the inner surface of the battery housing 20 .
  • the contact part 33a may be coupled to the beading part 21 as described above.
  • both the beading portion 21 and the contacting portion 33a are in a direction approximately parallel to the lower surface of the battery housing 20 , that is, approximately perpendicular to the sidewall of the battery housing 20 for stable contact and coupling. It may have a shape extending along the direction.
  • the contact portion 33a may have a flat surface coupled to an upper surface of the beading portion 21 facing the open portion. That is, the contact portion 33a includes at least a portion of the flat portion substantially parallel to the lower surface of the battery housing 20 .
  • the connecting portion 33b may extend in a radial direction and a winding axial direction.
  • the connection part 33b may have an upwardly convex structure.
  • the connection part 33b may have a curved shape convex upward.
  • the connection part 33b may include at least one bent part C.
  • the at least one bent portion C may be bent at an obtuse angle so as not to overlap each other when viewed along the longitudinal axis of the battery housing. More preferably, a boundary point between the contact portion 33a and the connection portion 33b may be bent at an obtuse angle. That is, as shown in FIG. 13F , the inclination of the connecting portion 33b may be gradually or gradually decreased as the connecting portion 33b moves toward the beading portion.
  • the connection part 33b includes at least one bending part B whose extension direction is switched between the central part 31 and the contact part 33a at least once. can do. That is, the connection part 33b may have a structure that can be contracted and extended within a certain range, for example, a spring-like structure or a bellows-like structure.
  • the connecting portion (33b) may be elastically biased upward by the bending portion (B).
  • the structure of the connection part 33b is a contact part in the process of accommodating the electrode assembly 10 to which the current collector 30 is coupled in the battery housing 20 even if there is a height distribution of the electrode assembly 10 within a certain range. (33a) to be in close contact on the beading portion (21).
  • the shape may be more stably implemented during the sizing process.
  • connection portion between the contact portion 33a and the connection portion 33b may be bent.
  • the connection portion between the contact portion 33a and the connection portion 33b may have a complementary shape corresponding to the inner surface of the beading portion 21 .
  • the connecting portion between the contact portion 33a and the connecting portion 33b may be seamlessly coupled to the beading portion 21 while having a shape matching the inner surface of the beading portion 21 .
  • the beading part 21 can effectively support the current collector 30 .
  • unnecessary interference between the beading part 21 and the connecting part 33b can be prevented. Therefore, a stable coupling between the contact portion 33a and the beading portion 21 can be effectively maintained.
  • the protruding outermost point of the bending part B may be spaced apart from the innermost point of the beading part 21 by a predetermined distance.
  • the bending part B may not contact the beading part 21 . According to such a structure, unnecessary interference between the beading part 21 and the connecting part 33b can be prevented. Therefore, a stable coupling between the contact portion 33a and the beading portion 21 can be effectively maintained.
  • the angle between the contact portion 33a and the connection portion 33b may be an acute angle by the bending portion B.
  • the connecting part 33b does not include a bending part. Accordingly, the angle between the contact portion 33a and the connection portion 33b may be an obtuse angle.
  • the connection part 33b includes a bending part. Accordingly, the angle between the contact portion 33a and the connection portion 33b may be an acute angle. According to this structure, since the angle between the contact portion 33a and the connection portion 33b is formed at an acute angle, interference between the beading portion 21 and the connection portion 33b can be prevented.
  • the vertical distance between the contact portion 33a and the central portion 31 in a state in which there is no deformation because no external force is applied to the current collector 30 is an electrode assembly in a state in which the current collector 30 is coupled. (10) is preferably equal to the vertical distance between the upper surface of the beading portion 21 and the central portion 31 when seated in the battery housing 20 or smaller within the extendable range of the connecting portion 33b do.
  • the connection part 33b is configured to satisfy such a condition, when the electrode assembly 10 to which the current collector 30 is coupled is seated in the battery housing 20 , the contact part 33a is on the beading part 21 . can be naturally attached to
  • connection part 33b can be contracted and stretched is within a certain range even if the electrode assembly 10 moves up and down due to vibration and/or impact occurring during the use of the battery 1 , the electrode assembly 10 . Make sure that the shock caused by the movement is alleviated.
  • the connecting portion 33b may have an upwardly convex curved shape.
  • the connection part 33b may protrude in a direction toward a winding center of the electrode assembly 10 .
  • the shape of the connection part 33b is a combination of the current collector (first current collector) 30 and the electrode assembly 10 and/or the current collector (first current collector) 30 during the sizing process. ) and the battery housing 20 to prevent damage from occurring.
  • 13A to 13D are views for explaining a process of manufacturing the battery 1 of the present invention.
  • FIG. 13A is a view for explaining a welding process of the current collector 30 .
  • the first uncoated region 11 protruding upward of the electrode assembly 10 and the current collector 30 are welded. indicates the process.
  • the tab coupling portion 32 of the current collector 30 is welded on the bent surface on which the plurality of segment pieces 11a provided in the first uncoated area 11 are bent.
  • FIG. 13B is a view for explaining a beading process of the battery housing 20 .
  • the beading knife may advance toward the inside of the battery housing 20 .
  • a beading portion 21 in which a part of the battery housing 20 is press-fitted toward the inside of the battery housing 20 is provided on the side surface of the battery housing 20 . Since the beading portion 21 is located below the contact portion 33a of the current collector 30 , the contact portion 33a and the inner side of the beading portion 21 may be welded to each other later.
  • FIG. 13C is a view for explaining a crimping process of the battery housing 20 .
  • the contact portion 33a of the current collector 30 may be placed on the upper surface of the beading portion 21 .
  • a cap 40 whose end is wrapped by a sealing gasket G1 may be placed on the upper surface of the contact portion 33a.
  • the battery housing 20 is bent to surround the edge of the cap 40 to fix the cap 40 and the current collector 30 .
  • the cap 40 and the current collector 30 are fixed on the beading part 21 by the shape of the folded crimping part 22 .
  • FIG. 13D is a view for explaining a sizing process of the battery housing 20 .
  • the sizing process is a compression process for reducing the height occupied by the beading portion 21 area of the battery housing 20 in order to reduce the total height of the battery 1 in manufacturing the battery 1 .
  • the electrode assembly 10 may be partially compressed by being pressed by the beading portion 21 .
  • the current collector 30 may be bent under pressure in the vertical direction.
  • the connecting portion 33b has an upwardly convex shape as shown in FIG. 13f
  • the upward lifting phenomenon of the tab coupling portion 32 may be maximally suppressed as shown in FIG. 13d . That is, when the battery housing 20 of FIG. 13C is compressed in the vertical direction, the current collector 30 of the present invention is subjected to stress in the vertical direction.
  • the connecting portion 33b of the current collector 30 of the present invention has an upwardly convex shape, the stress applied to the tab coupling portion 32 may be minimized. Accordingly, the tab coupling portion 32 may not be bent upward, and a welded connection with the first uncoated portion 11 may be satisfactorily maintained.
  • connection part 33b before the sizing process is upward based on an imaginary straight line connecting one end of the contact part 33a and one end of the tab coupling part 32 .
  • at least one bent portion C forming an obtuse angle may be provided on the connection portion 33b.
  • the bent portion C passes through the center of an imaginary straight line connecting one end of the contact portion 33a and one end of the tab coupling portion 32 and is parallel to the bottom surface of the battery housing 20 . It may be located above the plane.
  • the length of the connecting portion 33b close to the tab coupling portion 32 with respect to the bent portion C is greater than the length of the connecting portion 33b close to the contact portion 33a with respect to the bent portion C. , can be formed longer.
  • the contact part 33a goes down as shown in the arrow direction, and the connection part 33b protrudes upward as shown in the arrow direction (refer to the dotted line). More specifically, the connecting portion (33b) is raised upward than the beading portion (21). That is, the profile of the housing coupling part 33 changes before and after the sizing process as shown in FIG. 13F. The level of elevation varies depending on a change in the height of the battery housing 20 during the sizing process. Contrary to what is shown. The position of the bent portion C may be raised only up to the height level of the contact portion 33a.
  • connection portion 33b As a result of the upward elevation of the connection portion 33b as described above, most of the stress can be absorbed from the connection portion 33b , and thus the stress applied to the welding region between the tab coupling portion 32 and the first uncoated portion 11 . This is relatively small. Therefore, according to the present invention, the lifting phenomenon in which the tab coupling portion 32 is lifted upward does not occur.
  • the length of the connecting portion 33b close to the tab coupling portion 32 with respect to the bent portion C is the length of the connecting portion 33b close to the contact portion 33a with respect to the bent portion C. 33b), since it is longer than the length, insertion of the current collector 30 into the battery housing 20 is facilitated, and stress distribution can be made effectively.
  • the profile of the current collector 30 after the sizing process may be deformed differently from FIG. 13F .
  • the connection part 33b after the sizing process, the connection part 33b may be deformed into a raised structure in an upwardly convex curve shape, whereas in FIG. 13g , the connection part 33b after the sizing process is bent from the bent part C It can be transformed into a straight line. More specifically, in FIG. 13g, after the sizing process, the connection part 33b close to the tab coupling part 32 based on the bent part C and the connection part close to the contact part 33a based on the bent part C. (33b) may be deformed so that the connecting portion (33b) convexly protrudes upward while maintaining a straight shape, respectively.
  • 13E is a view for comparing the degree of damage to the welding area of the current collector 30 after the sizing process according to the difference in the shape of the current collector 30 before the sizing process.
  • Experimental Example 1 is an experimental example in which the connection part 33b before sizing is a linear shape
  • Experimental Example 2 is an experimental example in which the connection part 33b before sizing is convex downward
  • Experimental Example 3 is a connection part before sizing ( 33b) is an upwardly convex experimental example.
  • the welding area with the tab coupling part 32 was lifted by about 0.72 mm.
  • Experimental Example 2 in which the connection part 33b was convex downward, a phenomenon in which the welding area with the tab coupling part was lifted by about 0.99 mm occurred.
  • connection part 33b is a linear shape
  • Experimental Example 2 in which the connection part 33b has a downward convex shape
  • the stress applied to the welded portion of the current collector 30 and the electrode assembly 10 in the sizing process Since these values were very large as approximately 4.5 MPa and 3.7 MPa, respectively, it was confirmed that the floating phenomenon of the current collector 30 was deepened.
  • Experimental Example 3 in which the connection part 33b has an upwardly convex shape, the stress applied to the welded portion of the current collector 30 and the electrode assembly 10 in the sizing process was approximately 2.0 MPa in Experimental Examples 1 and 2 Since it is relatively low compared to that, it can be seen that the current collector 30 has a relatively small lifting phenomenon.
  • the slope of the connecting portion 33b is not constant and the slope of the upper portion may be smaller than the slope of the lower portion based on a predetermined point (eg, the bent portion C).
  • the predetermined point may be located above the middle point of the connection part 33b.
  • the connecting portion 33b may have an upwardly convex shape based on an imaginary straight line connecting the tab coupling portion 32 and the contact portion 33a.
  • the convex shape may be a shape in which a straight line and a straight line are connected, a curved shape, or a combination thereof.
  • the connection part 33b may include at least one bent part C based on the predetermined point.
  • the at least one bent portion C may be bent at an obtuse angle so as not to overlap each other when viewed along the longitudinal axis of the battery housing 20 .
  • the inclination of the connecting portion 33b may be gradually or gradually reduced as the connecting portion 33b goes toward the beading portion 21 .
  • the angle ⁇ between the tab coupling part 32 and the connection part 33b may be, for example, between 0 and 90 degrees.
  • the tab coupling portion 32 and the contact portion 33a may be positioned at the same height. . That is, in this case, the angle ⁇ between the tab coupling part 32 and the connection part 33b is 0 degrees. Even when the sizing process is performed, it is not preferable that the contact portion 33a is positioned lower than the tab coupling portion 32 .
  • the angle ⁇ between the tab coupling portion 32 and the connection portion 33b is preferably 0 degrees or more.
  • the angle ⁇ between the tab coupling portion 32 and the connection portion 33b may increase to 90 degrees according to a shape in which the length, thickness, or inclination of the connection portion 33b is changed stepwise or gradually.
  • connection part 33b may support the cap 40 .
  • the connection part 33b may be curved upward by a sizing process. At this time, the upwardly curved connection part 33b may come into contact with the cap 40 .
  • the connection part 33b may serve to support the cap 40 upward. Accordingly, the current collector 30 may be securely fixed in the vertical direction by the sizing process. Accordingly, even if vibration and/or impact occurs in the course of using the battery 1 , since the current collector 30 fixes the electrode assembly 10 in the vertical direction, the electrode assembly 10 is formed in the battery housing 20 . Unnecessary movement up and down inside can be prevented.
  • the upper surface of the beading part 21 and the lower surface of the beading part 21 are virtual reference planes passing through the innermost point of the beading part 21 in parallel with the bottom surface of the battery housing. may be asymmetric based on .
  • the beading unit 21 since the battery housing 20 is compressed in the vertical direction by the sizing process, the beading unit 21 is also compressed in the vertical direction. Accordingly, the upper surface of the beading part 21 and the lower surface of the beading part 21 may have an asymmetrical shape based on a virtual reference plane passing through the innermost point of the beading part 21 .
  • the press-fitting depth of the beading portion 21 may be defined as PD.
  • a vertical distance from the inner surface of the battery housing 20 to the innermost point of the beading part 21 may be defined as the press-in depth PD.
  • the shortest distance from the end of the contact portion 33a to the vertical line passing the innermost point of the beading portion 21 may be defined as the overlap length OV. That is, referring to FIG. 11 , the overlap length OV refers to a radial length of an area where the orthographic projection and the current collector 30 overlap when the beading part 21 is vertically projected.
  • the battery 1 of the present invention may satisfy the following relational expression.
  • the ratio is preferably (R 1,min +W bead,min )/ PDmax or more.
  • a region overlapping more than the radius of curvature R1 of the beading portion 21 is required. .
  • the contact portion 33a overlaps only by the radius of curvature R1 of the beading portion 21, the contact portion 33a is in contact with the beading portion 21 only at one contact point because the flat section F does not exist.
  • the contact portion 33a cannot be stably placed on the beading portion 21 . Therefore, the contact portion 33a requires an additional overlapping area in addition to the radius of curvature R1 of the beading portion 21. At this time, the length of the additional overlapping area is at least the weld bead width (W bead ). . That is, the contact portion 33a substantially overlaps the beading portion 21 in the additional overlapping region, and welding may be performed in this region. Therefore, the length of the additional overlapping area must be at least the minimum welding bead width (W bead ) to enable stable welding without departing from the overlapping area. That is, the minimum overlap length for the contact portion 33a to be weldably mounted on the beading portion 21 is R 1,min +W bead,min .
  • the ratio is preferably (PD max -R 2,min )/PD max or less.
  • a radius of curvature R2 exists in a boundary region between the beading portion 21 and the inner side surface of the battery housing 20 . Accordingly, when the contact portion 33a of the current collector 30 enters the boundary region between the beading portion 21 having the radius of curvature R2 and the inner side of the battery housing 20, the radius of curvature R2 is As a result, the contact portion 33a is lifted without being in close contact with the beading portion 21 . Accordingly, the maximum overlap length for the contact portion 33a to be placed in close contact with the beading portion 21 is PD max -R 2,min .
  • the maximum value PD max of the indentation depth PD of the beading portion 21 may be approximately 10 mm, and the minimum values of R 1,min and R 2,min may each be approximately 0.05 mm, W bead,min may be about 0.1mm.
  • the ratio of the overlap length OV to the indentation depth PD of the beading portion 21 may satisfy a range of about 1.5 to 99.5%.
  • the ratio is preferably about 1.5% or more.
  • the lower limit of the OV/PD ratio is the maximum value (PD max ) of the indentation depth of the beading portion 21, the minimum value (R 1,min ) of the radius of curvature (R1), and the beading portion 21 for welding of the contact portion 33a. It can be determined from the length of the minimum width (W bead,min ) of the minimum width of the contact portion (33a) to be in contact with the upper surface of the weld bead (BD) (W bead,min ).
  • the maximum value PD max of the indentation depth is 10 mm
  • the minimum contact width of the contact portion 33a required for welding of the contact portion 33a that is, the minimum width of the weld bead BD (W bead, min ) may have a length of 0.1 mm
  • a minimum value (R 1,min ) of the radius of curvature R1 may be 0.05 mm.
  • a point at which the contact portion 33a of the current collector 30 can contact the maximum width on the flat portion of the upper surface of the beading portion 21 is spaced apart from the inner surface of the battery housing by the radius of curvature R2. is the point that has been Accordingly, the overlap length OV becomes the maximum when the end of the contact portion 33a is located at the corresponding point.
  • a welding position where the beading portion 21 and the contact portion 33a are welded may be defined as W. More specifically, the welding position W may mean a distance from the innermost point of the beading part 21 to the central point of the welding bead BD located at the outermost radial direction. At this time, the welding position (W) and the indentation depth (PD) may satisfy the following relational expression.
  • the welding position W of the beading part 21 and the contacting part 33a may be determined from the overlap length of the contacting part 33a and the beading part 21 and the minimum width W bead,min of the welding bead BD.
  • the weld position W is the center point of the weld bead BD.
  • a welding position when the contact portion 33a is minimally spanned on the beading portion 21 may be defined as W1.
  • the overlap length at this time becomes OV min as described above.
  • the welding position (W1) should be a point spaced toward the inside of the beading portion 21 by at least 0.5*W bead,min from OV min . Therefore, W1 may satisfy the following relation.
  • the PD value in order for the value of W1/PD to be the minimum, the PD value must be the maximum, so the minimum value of W/PD becomes (OV min -0.5*W bead,min )/PD max .
  • a welding position when the contact portion 33a maximally enters the beading portion 21 may be defined as W2.
  • the overlap length at this time becomes OV max as described above.
  • the welding position (W2) should be a point spaced apart from the OV max toward the inside of the beading portion 21 by at least 0.5*W bead,min . Therefore, W2 may satisfy the following relation.
  • the minimum width required to weld the contact portion 33a to the beading portion 21 may be 0.1 mm. That is, the width of 0.1 mm corresponds to the minimum width of the weld bead BD that can be formed by laser welding. Accordingly, the welding position W1 when the contact portion 33a contacts the upper surface of the beading portion 21 with a minimum width is (R 1,min +0.5*0.1mm) from the innermost point of the beading portion 21 by (R 1,min +0.5*0.1mm). It corresponds to an isolated point.
  • R 1,min is the minimum value of the radius of curvature R1, for example, 0.05 mm.
  • a welding bead BD having a width of 0.1 mm is formed on the contact surface of the contact portion 33a and the beading portion 21 .
  • the width of the weld bead BD also corresponds to the minimum contact width of the contact portion 33a.
  • the welding position W1 based on the press-fitting depth PD of the beading part 21 is a point spaced apart by 0.1 mm from the innermost point of the beading part 21 .
  • the end of the contact portion 33a is spaced apart from the inner surface of the battery housing by the radius of curvature (R 2,min ).
  • R 2,min is the minimum value of the radius of curvature R2, for example, 0.05 mm.
  • the welding position W2 that can be closest to the end of the contact portion 33a is a point spaced apart by 0.05 mm from the end of the contact portion 33a.
  • the welding position W2 when the contact portion 33a is in contact with the upper surface of the beading portion 21 to the maximum width is spaced apart by (PD-R 2,min -0.05mm) based on the innermost point of the beading portion 21 .
  • PD-R 2,min -0.05mm is the point that has been In one example, when R 2,min is 0.05 mm, the maximum value of the welding position W2 is a point spaced apart by PD-0.1 mm with respect to the innermost point of the beading portion 21 .
  • the welding position region based on the indentation depth PD may be a region of 1% or more and 99% or less based on the indentation depth PD.
  • the battery 1 of the present invention may satisfy the following relational expression.
  • the beading part 21 has a flat section F parallel to the lower surface of the battery housing 20 in at least a partial region, and the beading part 21 is in contact with the current collector 30 .
  • the length of the flat section F may be OV - R1. That is, referring to FIG. 11 , the flat section F corresponds to a length obtained by subtracting the radius of curvature R1 of the beading portion 21 from the overlap length OV.
  • the radial width length of the welding pattern which is a set of weld beads BD formed between the beading portion 21 and the contacting portion 33a, is W bead ,min or more and OV - R1 or less.
  • the minimum width of the weld bead BD is W bead,min
  • the minimum value of the radial width length of the weld pattern formed between the beading part 21 and the contact part 33a is at least It should be W bead,min .
  • a plurality of the welding beads BD may be formed over the entire area of the flat section F of the beading portion 21 .
  • the plurality of welding beads BD may form a constant welding pattern.
  • the maximum value of the radial width and length of the welding pattern formed between the beading part 21 and the contact part 33a may satisfy the following relational expression.
  • the ratio of the length of the radial width of the welding pattern to the length of the flat section F may satisfy a range of about 10 to 40%. Preferably, the ratio may satisfy about 20 to 30%. When the ratio satisfies the above range, welding strength may be increased as the welding area increases. Accordingly, the battery 1 according to the present invention can secure high impact resistance.
  • the ratio of the area in which the current collector 30 does not contact the upper surface of the electrode assembly 10 to the area of a circle having the outer diameter of the electrode assembly 10 as the diameter of the current collector ( 30) can be defined as the aperture ratio.
  • the aperture ratio can be calculated by the following equation.
  • the aperture ratio of the current collector 30 may be, for example, about 30% or more and less than 100%, and preferably, about 60% or more and less than 100%.
  • a region where the current collector 30 contacts the electrode assembly 10 is the central portion 31 .
  • the tab coupling portion 32 a region where the current collector 30 contacts the electrode assembly 10 is the central portion 31 .
  • the ratio of the area in which the current collector 30 contacts the electrode assembly 10 to the area of a circle having the outer diameter of the electrode assembly 10 as the diameter may be about 70% or less, preferably may be about 40% or less.
  • the electrolyte may smoothly penetrate into the electrode assembly 10 through the opening region of the current collector 30 including the current collector hole H2 when the electrolyte is injected. That is, when the aperture ratio of the current collector 30 is within the above range, the electrolyte permeates into the electrode assembly 10 through the opening area of the winding center hole H1 mass collector 30 provided in the electrode assembly 10 , , in particular, since there is a fine gap between the overlapping surfaces of the segment pieces 11a and between the adjacent segment pieces 11a, the electrolyte can smoothly permeate into the electrode assembly 10 by capillary action through the gap.
  • the current collector 30 according to another embodiment of the present invention has only a difference in the shape of the contact portion 33a compared to the current collector 30 of FIG. 4A described above, and otherwise the current collector ( 30) may be applied substantially the same.
  • the contact portion 33a may have a greater width than the connection portion 33b.
  • at least a portion of the contact portion 33a may extend along the inner circumferential surface of the battery housing 20 .
  • the contact portion 33a may have an arc shape extending along the beading portion of the battery housing 20 .
  • the current collector 30 includes the battery housing 20 as the sum of the extended lengths of the contact portions 33a of the at least one housing coupling portion 33 . ) may be configured to be approximately equal to the inner periphery of the . In such an embodiment, it is possible to have the effect of improving the bonding force and reducing the electrical resistance due to the maximization of the bonding area.
  • a current collector 30 according to another embodiment of the present invention is shown.
  • the current collector 30 according to another embodiment of the present invention is different from the current collector 30 of FIG. 5 only in the form of the contact part 33a and the connection part 33b, and the others are described above.
  • the structure of the current collector 30 may be applied substantially the same. That is, the connecting portion 33b may have a greater width than the tab coupling portion 32 . Alternatively, as another embodiment, the connecting portion 33b may have a smaller width than the tab coupling portion 32 .
  • connection part 33b may extend along the inner circumferential surface of the battery housing 20 .
  • the contact portion 33a may have an arc shape extending along the beading portion of the battery housing 20
  • the connection portion 33b may have an arc shape extending along the contact portion 33a. have.
  • the current collector 30 may not include the bending part B, unlike the current collector 30 illustrated in FIG. 4A or FIG. 5 .
  • the bending part B is not provided, raw materials required for manufacturing the current collector 30 can be reduced. Accordingly, the manufacturing cost of the current collector 30 can be reduced.
  • the cap 40 covers the opening formed on one side of the battery housing 20 .
  • the cap 40 may be fixed by a crimping part 22 formed on the top of the battery housing 20 .
  • the sealing gasket G1 may be interposed between the battery housing 20 and the cap 40 in order to improve the fixing force and the sealing property of the battery housing 20 .
  • the cap 40 is not a component that should function as a passage of current. Therefore, if the battery housing 20 and the cap 40 can be firmly fixed through the application of another structure well known in the related art and the airtightness of the opening of the battery housing 20 can be secured, the sealing gasket G1 Application is not essential.
  • the sealing gasket G1 is a sealing gasket interposed between the opening part of the battery housing 20 and the current collector 30 ( As G1), a portion in contact with the beading portion 21 of the current collector 30 may be configured to be positioned between the beading portion 21 and the sealing gasket G1.
  • the sealing gasket G1 may have a substantially ring shape surrounding the cap 40 .
  • the sealing gasket G1 may simultaneously cover the upper surface, the lower surface, and the side surface of the cap 40 .
  • the radial length of a portion of the sealing gasket G1 that covers the lower surface of the cap 40 is smaller than the radial length of a portion of the sealing gasket G1 that covers the upper surface of the cap 40, or can be the same If the radial length of the portion covering the lower surface of the cap 40 among the portions of the sealing gasket G1 is too long, in the process of compressing the battery housing 20 up and down during the sizing process, the sealing gasket G1 is the current collector ( 30), there is a possibility that the current collector 30 may be damaged or the battery housing 20 may be damaged.
  • the sealing gasket G1 is connected to the connection part.
  • the shape of the connecting portion 33b may be deformed or a part of the connecting portion 33b may be damaged by excessively pressing the 33b. Therefore, it is necessary to keep the radial length of the portion covering the lower surface of the cap 40 among the portions of the sealing gasket G1 to be small at a certain level.
  • a portion of the sealing gasket G1 that covers the upper surface of the cap 40 is not likely to interfere with the current collector 30 due to its structural and positional characteristics.
  • the battery housing 20 and the cap 40 do not necessarily need to be insulated from each other. That is, the portion covering the upper surface of the cap 40 among the portions of the sealing gasket G1 suffices if only the sealing function is satisfied, and does not need to satisfy the insulation and other separate functions, so that the limitation on the length thereof is relatively small.
  • the radial length of the portion covering the lower surface of the cap 40 among the portions of the sealing gasket G1 is determined to cover the upper surface of the cap 40 among the portions of the sealing gasket G1. may be equal to the radial length of the region.
  • the radial length of the portion covering the lower surface of the cap 40 among the portions of the sealing gasket G1 covers the upper surface of the cap 40 among the portions of the sealing gasket G1. It may be formed to be smaller than the radial length of the part.
  • the contact part 33a may be interposed between the beading part 21 of the battery housing 20 and the sealing gasket G1 to be fixed. That is, in a state in which the contact portion 33a is interposed between the beading portion 21 of the battery housing 20 and the sealing gasket G1, due to the crimping force of the crimping portion 22, the contact portion 33a can be fixed.
  • the thickness of the sealing gasket G1 may be varied along the circumferential direction.
  • the thickness of the sealing gasket G1 may alternately repeat an increase and a decrease in the circumferential direction.
  • the sealing gasket G1 may have the same compressibility in a region in contact with the contact portion 33a and in a region not in contact with the contact portion 33a. That is, in an uncompressed state, the thickness of the sealing gasket G1 may be configured to vary along the circumferential direction.
  • the sealing gasket G1 may have a smaller compressibility in a region not in contact with the contact portion 33a than in a region in contact with the contact portion 33a. That is, in an uncompressed state, the sealing gasket G1 may be configured to have a constant thickness along the circumferential direction, and may be configured to have a different thickness only in a certain area as it is compressed by a later crimping force.
  • the sealing gasket G1 may have a greater thickness in a region not in contact with the contact portion 33a than in a region in contact with the contact portion 33a. That is, although not shown in the drawings, the sealing gasket G1 may have a relatively high compressibility in a region in contact with the contact portion 33a.
  • a welding portion may be formed between the beading portion 21 of the battery housing 20 and the contact portion 33a of the current collector.
  • the fixing of the contact portion 33a may not be reliably achieved using only the crimping force.
  • the sealing gasket G1 is contracted by heat or the crimping part 22 is deformed due to an external shock, there is a possibility that the bonding force between the current collector and the battery housing 20 may be reduced. Accordingly, the current collector 30 may be fixed to the battery housing 20 by welding while the contact portion 33a is placed on the beading portion 21 of the battery housing 20 .
  • the manufacturing process of the battery 1 may be completed by placing the cap 40 wrapped by the sealing gasket G1 on the top of the contact part 33a and forming the crimping part 22 .
  • the welding method for example, laser welding, resistance welding, ultrasonic welding, etc. are possible, but the welding method is not limited thereto.
  • the bonding force of the welding portion is increased, and even in the battery behavior for a long time. Surface adhesion can be ensured. Accordingly, it is possible to minimize safety problems such as cycle fading.
  • 8A to 10 are views for explaining a welding area between the contact portion 33a and the beading portion 21 .
  • a weld bead BD may be formed in a welding region between the contact portion 33a and the bead portion 21 .
  • the contact part 33a may be seated on the inclined upper surface of the beading part 21 .
  • a flat section F in which the upper surface of the beading part 21 and the lower surface of the beading part 21 are parallel to the lower surface of the battery housing 20 in at least some regions, respectively.
  • the contact portion 33a may be seated on a flat upper surface of the beading portion 21 . And after that, the contact portion 33a may be welded onto the beading portion 21 .
  • 11 is a view for explaining the position, length, and width of the weld bead BD formed in the weld region between the contact portion 33a and the beading portion 21 .
  • the contact portion 33a may be welded to the flat upper surface of the beading portion 21 .
  • a predetermined welding pattern may be formed.
  • a plurality of welding beads BD may be gathered to form a substantially linear welding pattern.
  • the welding pattern formed between the beading part 21 and the contact part 33a may have a line shape in which point welding is connected.
  • a width of the weld bead BD formed between the beading part 21 and the contacting part 33a may be about 0.1 mm or more. This is because the minimum width of the weld bead BD is about 0.1 mm or more in consideration of the laser technology.
  • At least one weld bead BD formed between the beading part 21 and the contacting part 33a may be formed.
  • a plurality of welding beads BD formed between the beading portion 21 and the contacting portion 33a may be formed in a circumferential direction.
  • a plurality of weld beads BD formed between the beading part 21 and the contacting part 33a may be formed in the same contacting part 33a.
  • the plurality of weld beads BD formed in the same contact portion 33a may be symmetrically formed in the same contact portion 33a.
  • the plurality of welding beads BD formed in the same contact portion 33a may be formed at a predetermined angle, for example, 30 degrees apart from each other.
  • the plurality of welding beads BD formed in the same contact portion 33a are located within the circumferential angle range of 30 degrees or less based on the center of the circle formed by the beading portion 21 in the same contact portion 33a.
  • the welding bead BD formed between the beading portion 21 and the contacting portion 33a may form a linear welding pattern extending in a circumferential direction.
  • the welding bead BD formed between the beading portion 21 and the contacting portion 33a may form an arc-shaped welding pattern extending in a circumferential direction.
  • the circumferential length of the contact portion 33a may be the same as the circumferential length of the tab coupling portion 32 .
  • the circumferential length of the contact portion 33a may be the same as the circumferential length of the connecting portion 33b. For example, as shown in FIG.
  • the tab coupling part 32 , the connection part 33b and the contact part 33a may extend to have the same width.
  • the tab coupling part 32 , the connection part 33b and the contact part 33a may have the same width along the extension direction.
  • the extending direction of the welding pattern formed between the first uncoated portion 11 and the tab coupling portion 32 and the welding pattern formed between the beading portion 21 and the contact portion 33a may be different from each other.
  • an extension direction of a welding pattern formed between the first uncoated portion 11 and the tab coupling portion 32 and an extension of a welding pattern formed between the beading portion 21 and the contact portion 33a The directions may be approximately perpendicular to each other.
  • a welding pattern formed between the first uncoated portion 11 and the tab coupling portion 32 may be formed along a radial direction.
  • a welding pattern formed between the beading portion 21 and the contact portion 33a may be formed along a circumferential direction of the battery housing 20 . That is, an extension direction of a welding pattern formed between the first uncoated portion 11 and the tab coupling portion 32 and an extension direction of a welding pattern formed between the beading portion 21 and the contact portion 33a may be approximately perpendicular to each other. According to such a structure, the bonding strength between the current collector 30 and the electrode assembly 10 may be increased. That is, according to this structure, since the current collector 30 is fixed by welding performed in various directions, even if the current collector 30 receives vibration or shock in a specific direction, it can maintain a firmly fixed state.
  • the circumferential length of the contact portion 33a may be relatively longer than the circumferential length of the tab coupling portion 32 .
  • the circumferential length of the contact portion 33a may be relatively longer than the circumferential length of the connecting portion 33b.
  • FIGS. 5 and 6 it can be seen that the circumferential length of the contact portion 33a is relatively longer than the circumferential length of the tab coupling portion 32 .
  • FIG. 5 it can be seen that the circumferential length of the contact portion 33a is relatively longer than the circumferential length of the connecting portion 33b .
  • the bonding force of the current collector 30 with the beading portion 21 may be improved. Furthermore, the internal resistance of the battery can be reduced by making the contact portion 33a and/or the connecting portion 33b longer in the circumferential direction.
  • the contact part 33a may have an arc shape extending in the circumferential direction along the beading part 21 of the battery housing. More specifically, the contact portion 33a may have an arc shape extending in opposite directions along the circumferential direction from the intersection of the connection portion 33b and the contact portion 33a.
  • connection part 33b may also have an arc shape extending in the circumferential direction along the contact part 33a.
  • the contact portion 33a has an arc shape extending in the circumferential direction along the beading portion 21 of the battery housing, the coupling force between the beading portion 21 and the current collector may be improved.
  • the sum of the lengths of the contact portions 33a extending in the circumferential direction may be configured to correspond to the length of the inner circumference of the battery housing. That is, although not shown in the drawings, the current collector 30 may have a ring shape in which the contact portions 33a are connected to each other. According to such a shape, the coupling force between the beading part 21 and the current collector 30 can be further improved.
  • FIG. 12 is a view for explaining the relationship between the diameter of the inner surface of the battery housing and the total diameter of the current collector.
  • the cap 40 may include a venting part 41 formed to prevent an increase in internal pressure due to a gas generated inside the battery housing 20 .
  • the venting part 41 is formed in a part of the cap 40 and corresponds to an area structurally weaker than the surrounding area so as to be easily broken when internal pressure is applied.
  • the venting part 41 may be, for example, a region having a smaller thickness than the peripheral region.
  • the terminal 50 is electrically connected to the second uncoated region 12 of the electrode assembly 10 through the battery housing 20 from the opposite side of the open portion of the battery housing 20 .
  • the terminal 50 may penetrate through a substantially central portion of the lower surface of the battery housing 20 .
  • the terminal 50 is, for example, coupled to a current collector (second current collector) P coupled to the second uncoated area 12 or a lead tab (not shown) coupled to the second uncoated area 12 . ) and may be electrically connected to the electrode assembly 10 by being combined. Accordingly, the terminal 50 may have the same polarity as the second electrode of the electrode assembly 10 and may function as the second electrode terminal T2 . When the second uncoated region 12 is a positive electrode tab, the terminal 50 may function as a positive electrode terminal.
  • the terminal 50 has a riveted structure.
  • the battery to which the riveting structure of the terminal 50 is applied may perform electrical wiring in one direction.
  • the terminal 50 having a riveting structure has a large cross-sectional area and low resistance, it is very suitable for rapid charging.
  • 18A and 18B are views for explaining a second current collector P according to an embodiment of the present invention.
  • the second current collector P may be interposed between the second uncoated region 12 and the terminal 50 .
  • the second current collector P may include a tab coupling part P1 coupled to the second uncoated part 12 ; and a terminal coupling part (P2) coupled to the terminal (50).
  • the second current collector P may further include a connecting portion P3 and/or an edge portion P4.
  • the tab coupling portion P1 may be provided in plurality.
  • the plurality of tab coupling portions P1 may be disposed at the same distance from each other.
  • Each of the plurality of tab coupling portions P1 may have the same length as each other.
  • the terminal coupling portion P2 may be disposed to be surrounded by a plurality of the tab coupling portions P1 .
  • the terminal coupling part P2 may be disposed at a position corresponding to the winding center hole H1 formed in the winding center of the electrode assembly 10 . More preferably, the terminal coupling part P2 may cover the winding center hole H1 of the electrode assembly 10 . According to such a structure, the terminal 50 and the terminal coupling portion P2 positioned above the winding center hole H1 of the electrode assembly 10 may be welded to each other.
  • the tab coupling part P1 and the terminal coupling part P2 may not be directly connected and may be disposed to be spaced apart from each other.
  • the tab coupling part P1 and the terminal coupling part P2 may be indirectly connected by the edge part P4 .
  • the second current collector P according to an embodiment of the present invention has a structure in which the tab coupling portion P1 and the terminal coupling portion P2 are not directly connected to each other, but connected through the edge portion P4.
  • the second current collector (P) of the present invention has a structure in which stress can be concentrated on the connection portion of the edge portion (P4) and the terminal coupling portion (P2) when an external impact is applied, such a connection portion between the parts Since the welding part for bonding is not formed, it is possible to prevent the occurrence of product defects due to damage to the welding part due to external impact.
  • the second current collector P may further include a connection portion P3 connected to the terminal coupling portion P2. At least a portion of the connection portion P3 may be formed to have a smaller width than that of the tab coupling portion P1 . In this case, when the electric resistance increases in the connection part P3 and a current flows through the connection part P3, a greater resistance is generated compared to other parts, and as a result, when an overcurrent occurs, a part of the connection part P3 is It is broken so that the overcurrent can be cut off.
  • the width of the connection part P3 may be adjusted to an appropriate level in consideration of the overcurrent blocking function.
  • the second current collector P may further include a rim portion P4 having a substantially rim shape with an empty space formed therein.
  • the tab coupling portion P1 may extend inwardly from the edge portion P4 and be coupled to the second uncoated portion 12 .
  • the rim portion P4 may have a substantially rectangular rim shape or other shape unlike the one illustrated.
  • the connection part P3 may include a notched part N formed to partially reduce the width of the connection part P3 .
  • the position of the notched part N may be included in the uniform number of stacking sections (FIG. 1D). More preferably, the position of the notched portion N may be included in a section in which the number of stacks is maintained at a maximum among the uniform number of stacked sections. Accordingly, it is possible to reliably prevent byproducts generated when the notch N is broken from penetrating into the electrode assembly.
  • the tab coupling part P1 is The longest radius reaching the end may be greater than the longest radius extending from the center of the current collector 30 to the end of the tab coupling part 32 .
  • the radius of the rim portion P4 having a substantially rim shape may be greater than the longest radius from the center of the current collector 30 to the end of the tab coupling portion 32 . This is a result of limiting a welding area between the tab coupling portion 32 of the current collector 30 and the first uncoated portion 11 as the beading portion 21 is press-fitted into the battery housing 20 .
  • the tab coupling portion P1 of the second current collector P may be coupled to the bent end of the second uncoated portion 12 . That is, the tab coupling portion P1 of the second current collector P may be welded to a curved surface in which a plurality of segment pieces provided in the second uncoated portion 12 are bent.
  • the welding area may overlap the uniform number of lamination sections (FIG. 1D) along the radial direction by at least 50% or more, and the larger the overlap ratio is, the more preferable. More preferably, the welding area may overlap a section having the maximum number of overlapping layers in a section with a uniform number of stacks along the radial direction by at least 50% or more, and it is more preferable that the overlap ratio is larger.
  • a welding region for coupling the tab coupling portion P1 of the second current collector P and the bent end of the second uncoated portion 12 is further formed, and the first 2
  • the distance from the center of the terminal coupling portion P2 of the current collector P to the welding area is the same as the distance from the center of the current collector 30 to the welding area on the tab coupling portion 32, or approximately 5 It can have a distance deviation of % or less.
  • the welding region of the second current collector P may have a longer length than the welding region on the tab coupling portion 32 of the current collector 30 .
  • the diameter of the arc welding pattern is 2 mm or more, preferably 4 mm or more.
  • the tensile strength of the weld is increased to 2kgf or more to secure sufficient welding strength.
  • the diameter of the circular welding pattern is preferably 2 mm or more. If the diameter of the circular welding pattern satisfies the relevant conditions, it is possible to secure sufficient welding strength by increasing the weld tensile strength to 2kgf or more.
  • the diameter of the flat portion of the terminal 50 corresponding to the weldable region may be adjusted in the range of 3 mm to 14 mm. If the radius of the flat portion of the terminal 50 is smaller than 3 mm, it is difficult to form a welding pattern having a diameter of 2 mm or more using a laser welding tool, an ultrasonic welding tool, or the like. In addition, when the radius of the flat portion of the terminal 50 exceeds 14 mm, the size of the terminal 50 becomes excessively large, so that the area occupied by the outer surface of the bottom of the battery housing 20 is reduced, so that the electrical connection part (bus bar) through the outer surface It is difficult to connect
  • the area ratio of the weld pattern to the area of the weldable area is 2.04 (100* ⁇ 1 2 / ⁇ 7 2 )% to 44.4 (100* ⁇ 1 2 / ⁇ 1.5 2 )%.
  • the terminal 50 In consideration of the polarity and function of the terminal 50 , the terminal 50 must be insulated from the battery housing 20 having the opposite polarity. To this end, an insulating gasket G2 may be applied between the terminal 50 and the battery housing 20 . Alternatively, insulation may be realized by coating a portion of the surface of the terminal 50 with an insulating material.
  • the second uncoated region 12 and/or the current collector (second current collector) P must maintain an insulating state from the battery housing 20 .
  • the insulator S may be interposed between the second uncoated region 12 and the battery housing 20 and/or between the current collector (second current collector) P and the battery housing 20 .
  • the terminal 50 may pass through the insulator S for electrical connection with the second uncoated region 12 .
  • the inner surface of the bottom of the insulator S and the battery housing 20 may be in close contact with each other.
  • 'close' means that there is no space (gap) that can be visually confirmed.
  • the distance from the inner surface of the bottom of the battery housing 20 to the flat portion of the terminal 50 may have a value equal to or slightly smaller than the thickness of the insulator S.
  • the entire surface of the battery housing 20 may function as the first electrode terminal T1.
  • the first electrode terminal T1 may be a negative terminal.
  • the battery 1 according to the present invention has a structure in which most of the lower surface located on the opposite side of the open part of the battery housing 20 can be used as an electrode terminal, a sufficient area for welding parts for electrical connection has the advantage that it is possible to secure
  • the electrode constituting the electrode assembly 10 may have a segmented structure for ease of bending the uncoated region 11 .
  • the electrode plate has a sheet-shaped first electrode collector made of a foil of a conductive material, an active material layer formed on at least one surface of the first electrode collector, and an active material is not coated on the long side end of the first electrode
  • the first uncoated region 11 is included.
  • the first uncoated region 11 may include a plurality of notched fragments 11a.
  • the plurality of segment pieces 11a form a plurality of groups, and the segment pieces 11a belonging to each group may have the same height (length in the Y direction) and/or width (length in the X direction) and/or the spacing pitch.
  • the number of segments 11a belonging to each group may be increased or decreased than illustrated.
  • the segment 11a has a geometric shape in which at least one straight line and/or at least one curved line are combined.
  • the segment 11a may have a trapezoidal shape, and may be freely deformed into a quadrangle, a flat quadrilateral, a semi-circle, or a semi-ellipse.
  • the height of the segment 11a may be increased stepwise along one direction parallel to the winding direction of the electrode assembly, for example, from the core side to the outer circumferential side.
  • the core-side uncoated region 11 ′ adjacent to the core may not include the segment 11a , and the height of the core-side uncoated region 11 ′ may be smaller than that of other uncoated regions.
  • the outer periphery uncoated region 11 ′′ adjacent to the outer periphery may not include the segment 11a, and the height of the outer periphery uncoated region 11 ′′ may be smaller than that of other uncoated regions.
  • the electrode plate may include an insulating coating layer 11b covering a boundary between the active material layer and the first uncoated region 11 .
  • the insulating coating layer 11b includes an insulating polymer resin, and may optionally further include an inorganic filler.
  • the insulating coating layer 11b prevents the end of the active material layer from coming into contact with the opposite polarity active material layer through the separator, and serves to structurally support the bending of the segment 11a.
  • 15 is a cross-sectional view taken along the longitudinal direction (Y) of the electrode assembly 10 in which the uncoated segmental structure of the electrode plate according to the embodiment of the present invention is applied to the first electrode current collector and the second electrode current collector.
  • the electrode assembly 10 may be manufactured by a winding method.
  • the second uncoated region 12 protruding downwardly extends from the second electrode current collector, and the first uncoated region 11 protruding upwardly extends from the first electrode current collector.
  • a pattern in which the heights of the uncoated regions 11 and 12 change is schematically illustrated. That is, the heights of the uncoated areas 11 and 12 may vary irregularly depending on the position at which the cross-section is cut. For example, when the side portion of the trapezoidal segment 11a is cut, the height of the uncoated region in the cross section is lower than the height of the segment 11a. Accordingly, it should be understood that the heights of the uncoated areas 11 and 12 shown in the drawing showing the cross-section of the electrode assembly 10 correspond to the average of the heights of the uncoated areas included in each winding turn.
  • the uncoated regions 11 and 12 may be bent from the outer peripheral side to the core side along the radial direction of the electrode assembly 10 .
  • the bent portion 101 is indicated by a dotted line box.
  • the curved surfaces 102 are formed on the upper and lower portions of the electrode assembly 10 as the segment pieces 11a adjacent in a radial direction overlap each other in multiple layers.
  • the core-side uncoated region (11' in FIG. 14) has a low height and is not bent, and the height (h) of the innermost curved segment 11a is the core-side uncoated region without the segment 11a structure.
  • the winding center hole H1 in the core of the electrode assembly 10 is not closed by the bent segment pieces 11a. If the winding center hole H1 is not closed, there is no difficulty in the electrolyte injection process, and the electrolyte injection efficiency is improved. In addition, by inserting a welding tool through the winding center hole (H1), it is possible to easily perform welding of the terminal 50 and the second current collector (P).
  • 17 is a diagram illustrating a state in which the batteries 1 are electrically connected using a bus bar 150 according to an embodiment of the present invention.
  • the plurality of batteries 1 may be connected in series and in parallel at the top using a bus bar 150 .
  • the number of batteries 1 may be increased or decreased in consideration of the capacity of the battery pack 3 .
  • the terminal 50 may have a positive polarity, and the outer surface of the bottom of the battery housing 20 may have a negative polarity, and vice versa.
  • the plurality of batteries 1 may be arranged in a plurality of columns and rows. Columns are up and down with respect to the ground, and rows are left and right with respect to the ground.
  • the batteries 1 may be arranged in a closest packing structure. The densest packing structure is formed when an equilateral triangle is formed when the centers of the terminals 50 are connected to each other.
  • the bus bar 150 may be disposed above the adjacent batteries 1 , preferably between the terminals 50 .
  • the bus bars 150 may be disposed between adjacent rows.
  • the bus bars 150 may be disposed between adjacent rows.
  • the bus bar 150 connects the batteries disposed in the same row in parallel to each other, and connects the batteries disposed in two adjacent rows in series with each other.
  • the bus bar 150 may include a body portion 151 , a plurality of first bus bar terminals 152 , and a plurality of second bus bar terminals 153 for serial and parallel connection.
  • the body part 151 may extend along the rows of the batteries 1 .
  • the body portion 151 may extend along the row of the batteries 1 and may be regularly bent like a zigzag shape.
  • the plurality of first bus bar terminals 152 may protrude from one side of the body portion 151 toward the terminal 50 of each battery 1 and may be electrically coupled to the terminal 50 . Electrical coupling with the terminal 50 may be achieved through laser welding, ultrasonic welding, or the like.
  • the plurality of second bus bar terminals 153 protrude from the other side of the body part 151 toward the outer surface of the bottom of the battery housing 20 of each battery 1, and may be electrically coupled to the outer surface. have. Electrical coupling with the outer surface may be achieved by laser welding or ultrasonic welding.
  • the body portion 151, the plurality of first bus bar terminals 152 and the plurality of second bus bar terminals 153 may be formed of one conductive metal plate.
  • the metal plate may be an aluminum plate or a copper plate, but the present invention is not limited thereto.
  • the body portion 151 , the plurality of first bus bar terminals 152 , and the plurality of second bus bar terminals 153 may be manufactured as separate pieces and then coupled to each other through welding or the like.
  • the battery 1 using the bus bar 150 is used. ) can be easily implemented for electrical connection.
  • the coupling area of the bus bar 150 can be sufficiently secured to sufficiently lower the resistance of the battery pack including the battery 1 .
  • the battery 1 of the present invention has a structure in which resistance is minimized through expansion of contact areas between components, multiplexing of current paths, and minimization of current path lengths.
  • the AC resistance of the battery 1 measured through a resistance meter between the positive and negative poles, that is, between the top surface of the terminal 50 and the outer surface of the closure of the battery housing 20, is 0.5 millimeters suitable for rapid charging.
  • Ohm (miliohm) to 4 milliohm (miliohm) preferably 1 milliohm (miliohm) to 4 milliohm (miliohm) may be.
  • the battery may be, for example, a battery having a form factor ratio (defined as the diameter of the battery divided by the height, that is, the ratio of the height (H) to the diameter ( ⁇ )) greater than about 0.4.
  • the form factor means a value indicating the diameter and height of the battery.
  • the diameter of the cylindrical battery may be 40mm to 50mm, and the height may be 60mm to 130mm.
  • the cylindrical battery according to an embodiment may be, for example, a 46110 battery, a 4875 battery, a 48110 battery, a 4880 battery, or a 4680 battery.
  • the first two numbers represent the diameter of the battery, and the next two numbers represent the height of the battery.
  • the form factor of the battery is increasing compared to the conventional 1865, 2170, and the like.
  • An increase in the form factor leads to an increase in energy density, increased safety against thermal runaway, and improved cooling efficiency.
  • the energy density of a battery can be further increased when the unnecessary space inside the battery housing is minimized with an increase in the form factor.
  • the battery according to the present invention has an optimal structure capable of lowering resistance while increasing the capacity of the battery while improving the coupling force between the current collector and the coupling portion of the battery housing.
  • the battery according to an embodiment of the present invention may be a battery having a substantially cylindrical shape, having a diameter of about 46 mm, a height of about 110 mm, and a form factor ratio of about 0.418.
  • a battery according to another embodiment may be a battery having a substantially cylindrical shape, a diameter of about 48 mm, a height of about 75 mm, and a form factor ratio of about 0.640.
  • a battery according to another embodiment may be a battery having a substantially cylindrical shape, having a diameter of about 48 mm, a height of about 110 mm, and a form factor ratio of about 0.436.
  • a battery according to another embodiment may be a battery having a substantially cylindrical shape, having a diameter of about 48 mm, a height of about 80 mm, and a form factor ratio of about 0.600.
  • a battery according to another embodiment may be a battery having a substantially cylindrical shape, having a diameter of about 46 mm, a height of about 80 mm, and a form factor ratio of about 0.575.
  • batteries having a form factor ratio of about 0.4 or less have been used. That is, conventionally, for example, an 1865 battery, a 2170 battery, or the like has been used. For an 1865 battery, its diameter is approximately 18 mm, its height is approximately 65 mm, and the form factor ratio is approximately 0.277. For a 2170 battery, its diameter is approximately 21 mm, its height is approximately 70 mm, and the form factor ratio is approximately 0.300.
  • a battery according to an embodiment of the present invention may be included in a battery pack, and the battery pack may be mounted in a vehicle.
  • a battery pack 3 according to an embodiment of the present invention includes a secondary battery assembly to which a plurality of batteries 1 according to an embodiment of the present invention are electrically connected as described above, and accommodating the same. pack housing (2).
  • components such as a bus bar, a cooling unit, and a power terminal for electrical connection are omitted for convenience of illustration.
  • a vehicle 5 may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle, and includes a battery pack 3 according to an embodiment of the present invention.
  • the vehicle 5 operates by receiving power from the battery pack 3 according to an embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Passenger Equipment (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Separators (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리는, 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 권취 축을 중심으로 권취됨으로써 코어와 외주면을 정의한 전극 조립체로서, 제1 전극은 권취 방향을 따라 활물질층이 코팅되어 있는 활물질부와, 활물질층이 코팅되지 않은 제1 무지부를 포함하고, 제1 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되는 전극 조립체, 일 측에 형성된 개방부를 통해 전극 조립체를 수용하는 배터리 하우징, 제1 무지부와 결합되는 탭 결합부 및 탭 결합부로부터 연장되어 배터리 하우징의 내면 상에 전기적으로 결합되는 하우징 결합부를 포함하는 집전체 및 개방부를 커버하는 캡를 포함한다.

Description

배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차
본 발명은, 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차에 관한 것이다.
본 출원은, 2021년1월19일자로 출원된 한국 특허출원 번호 제10-2021-0007278호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022897호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022894호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022891호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022881호, 2021년2월23일자로 출원된 한국 특허출원 번호 제10-2021-0024424호, 2021년3월8일자로 출원된 한국 특허출원 번호 제10-2021-0030300호, 2021년3월8일자로 출원된 한국 특허출원 번호 제10-2021-0030291호, 2021년4월9일자로 출원된 한국 특허출원 번호 제10-2021-0046798호, 2021년5월4일자로 출원된 한국 특허출원 번호 제10-2021-0058183호, 2021년6월14일자로 출원된 한국 특허출원 번호 제10-2021-0077046호, 2021년6월28일자로 출원된 한국 특허출원 번호 제10-2021-0084326호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131225호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131215호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131205호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131208호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131207호, 2021년10월14일자로 출원된 한국 특허출원 번호 제10-2021-0137001호, 2021년10월15일자로 출원된 한국 특허출원 번호 제10-2021-0137856호, 2021년10월22일자로 출원된 한국 특허출원 번호 제10-2021-0142196호, 2021년11월9일자로 출원된 한국 특허출원 번호 제10-2021-0153472호, 2021년11월19일자로 출원된 한국 특허출원 번호 제10-2021-0160823호, 2021년11월24일자로 출원된 한국 특허출원 번호 제10-2021-0163809호, 2021년11월26일자로 출원된 한국 특허출원 번호 제10-2021-0165866호, 2021년12월3일자로 출원된 한국 특허출원 번호 제10-2021-0172446호, 2021년12월10일자로 출원된 한국 특허출원 번호 제10-2021-0177091호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194593호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194610호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194572호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194612호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194611호, 2022년1월5일자로 출원된 한국 특허출원 번호 제10-2022-0001802호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
종래의 배터리는, 젤리롤 타입 전극 조립체와 외부 단자를 이어주는 탭을 전극 조립체의 포일에 용접하여 연결하는 구조를 갖는 것이 일반적이었다. 이러한 구조의 배터리는, 전류의 경로(path)가 한정적이고 전극 조립체의 자체 저항이 매우 높을 수 밖에 없었다.
이에 따라, 전극 조립체와 외부 단자를 이어주는 탭의 개수를 늘려 저항을 낮추는 방식이 시도되었으나, 이처럼 탭의 개수를 늘리는 것만으로는 원하는 수준으로 저항을 낮추고 전류의 경로(path)를 충분히 확보하는 데에 한계가 있었다.
이에 따라, 전극 조립체의 자체 저항 감소를 위해 새로운 전극 조립체 구조의 개발 및 이러한 전극 조립체의 구조에 적합한 집전체 구조의 개발이 필요하다. 특히, 이러한 새로운 구조의 전극 조립체 및 집전체의 적용은, 예를 들어 전기 자동차와 같이 고출력/고용량을 갖는 배터리 팩을 요구하는 디바이스에 그 필요성이 더욱 크다.
또한, 집전체와 배터리 하우징 사이의 결합력이 향상된 상태로 유지되는 구조를 갖는 배터리 및 이러한 배터리에 적용되는 집전체 구조의 개발에 대한 필요성이 있다.
아울러, 집전체와 배터리 하우징이 결합될 경우, 배터리 하우징 내부의 데드 스페이스를 최소화함으로써, 배터리의 에너지 밀도를 향상시킨 배터리의 개발에 대한 필요성이 대두되었다.
최근 배터리가 전기 자동차에 적용됨에 따라 배터리의 폼 팩터가 증가하고 있다. 즉, 배터리의 직경과 높이가 종래의 1865, 2170 등의 폼 팩터를 가진 배터리에 비해 증가하고 있다. 폼 팩터의 증가는 에너지 밀도의 증가, 열 폭주에 대한 안전성 증대, 그리고 냉각 효율의 향상을 가져온다.
배터리의 에너지 밀도는 폼 팩터의 증가와 함께 배터리 하우징 내부의 불필요한 공간이 최소화될 때 더욱 증가될 수 있다. 따라서, 집전체도 배터리의 용량을 증대시키면서도 급속 충전시의 발열량을 최소화 수 있도록 배터리의 전체 구조를 저저항 구조로 설계할 필요가 있다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 저저항 구조를 갖는 전극 조립체에 적합한 구조를 갖는 집전체 및 이를 포함하는 배터리를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 집전체와 배터리 하우징과의 결합 부위의 결합력을 향상시킬 수 있는 구조를 갖는 집전체 및 이를 포함하는 배터리를 제공하는 것을 목적으로 한다.
아울러, 본 발명은, 배터리의 에너지 밀도를 향상시킬 수 있는 구조를 갖는 집전체 및 이를 포함하는 배터리를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 배터리를 제조함에 있어서, 배터리 하우징과 집전체의 전기적 연결을 위한 용접 공정의 편의성을 높이고, 이로써 생산성을 향상시킬 수 있는 구조를 갖는 집전체 및 이를 포함하는 배터리를 제공하는 것을 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 배터리는, 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 권취 축을 중심으로 권취됨으로써 코어와 외주면을 정의한 전극 조립체로서, 상기 제1 전극은 권취 방향을 따라 활물질층이 코팅되어 있는 활물질부와, 활물질층이 코팅되지 않은 제1 무지부를 포함하고, 상기 제1 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되는 전극 조립체;
일 측에 형성된 개방부를 통해 상기 전극 조립체를 수용하는 배터리 하우징;
상기 제1 무지부와 결합되는 탭 결합부 및 상기 탭 결합부로부터 연장되어 상기 배터리 하우징의 내면 상에 전기적으로 결합되는 하우징 결합부를 포함하는 집전체; 및
상기 개방부를 커버하는 캡; 을 포함한다.
바람직하게, 상기 배터리 하우징은, 상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 구비할 수 있다.
바람직하게, 상기 배터리 하우징은, 상기 비딩부보다 상기 개방부를 향하는 측에 형성되며 상기 개방부를 향해 연장 및 절곡된 크림핑부를 구비할 수 있다.
특히, 상기 하우징 결합부는, 상기 크림핑부에 의해 압착 고정될 수 있다.
본 발명의 일 측면에서, 상기 하우징 결합부는, 상기 배터리 하우징의 비딩부 상에 결합되는 접촉부; 및 상기 탭 결합부와 상기 접촉부 사이를 연결하는 연결부;를 포함할 수 있다.
바람직하게, 상기 연결부는, 상기 접촉부의 일 단부와 상기 탭 결합부의 일 단부를 연결한 가상의 직선을 기준으로 상방으로 볼록한 구조를 가질 수 있다.
본 발명의 다른 측면에서, 상기 연결부는, 사이징 공정을 거친 뒤, 상기 비딩부보다 상방으로 융기된 구조를 가질 수 있다.
바람직하게, 상기 연결부는, 적어도 하나의 절곡부를 구비할 수 있다.
바람직하게, 상기 절곡부는, 상기 접촉부의 일 단부와 상기 탭 결합부의 일 단부를 연결한 가상의 직선의 중심을 지나며 배터리 하우징의 바닥면과 평행한 가상의 평면보다 상방에 위치할 수 있다.
본 발명의 다른 측면에서, 상기 적어도 하나의 절곡부는, 상기 배터리 하우징의 길이 방향 축을 따라 보았을 때, 서로 겹치지 않도록, 둔각으로 절곡되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부와 상기 연결부의 경계 지점은, 둔각으로 절곡되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는, 상기 연결부가 상기 비딩부를 향해 갈수록, 그 경사가 단계적 또는 점진적으로 감소할 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부와 상기 연결부 사이의 각도는, 0 ~ 90 도 사이일 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는, 상기 캡를 지지할 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부와 상기 접촉부는, 동일 높이에 위치할 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부는, 상기 개방부 측을 향하는 상기 비딩부의 상면과 결합되는 평탄면을 구비할 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부는, 압입되어 내입된 최 내측 지점을 중심으로 상방에 위치한 비딩부 상면; 및 압입되어 내입된 최 내측 지점을 중심으로 하방에 위치한 비딩부 하면;을 포함할 수 있다.
바람직하게, 상기 집전체의 적어도 하나의 탭 결합부는, 상기 비딩부 하면보다 더 하측에 위치할 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부 상면 및 상기 비딩부 하면 중 적어도 어느 하나는, 상기 배터리 하우징의 하면과 소정 각도를 이루며 경사질 수 있다.
이 때, 상기 접촉부는, 상기 비딩부의 경사진 상면 상에 안착될 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부 상면 및 상기 비딩부 하면 중 적어도 어느 하나는, 적어도 일부 영역에서 상기 배터리 하우징의 하면과 평행할 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부 상면 및 상기 비딩부 하면은, 상기 비딩부의 최 내측 지점을 배터리 하우징의 바닥면과 평행하게 통과하는 가상의 기준 평면을 기준으로 비대칭일 수 있다.
바람직하게, 상기 접촉부는, 상기 비딩부의 평탄한 상면 상에 안착될 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부의 압입 깊이를 PD라고 하고, 상기 비딩부의 곡률 반경의 최소값을 R1,min 이라고 하고, 용접 비드 폭의 최소값을 Wbead,min 이라고 하고, 상기 비딩부와 상기 배터리 하우징의 내 측면 사이의 경계 영역에서의 곡률 반경의 최소값을 R2,min 라고 했을 때, 다음 관계식을 만족할 수 있다.
PD ≥ R1,min+R2,min+Wbead,min
바람직하게, 상기 비딩부의 압입 깊이는, 0.2 ~ 10 mm 일 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부의 압입 깊이를 PD라고 하고, 상기 압입 깊이의 최대 값을 PDmax라고 하고, 상기 접촉부의 단부로부터 상기 비딩부의 최 내측 지점을 지나는 수직선 까지의 최단 거리인 오버랩 길이를 OV라고 하고, 상기 비딩부의 곡률 반경의 최소값을 R1,min 이라고 하고, 용접 비드 폭의 최소값을 Wbead,min 이라고 하고, 상기 비딩부와 상기 배터리 하우징의 내 측면 사이의 경계 영역에서의 곡률 반경의 최소값을 R2,min 라고 했을 때, 다음 관계식을 만족할 수 있다.
(R1,min+Wbead,min)/PDmax ≤ OV/PD ≤ (PDmax-R2,min)/PDmax
본 발명의 또 다른 측면에서, 상기 접촉부는, 상기 비딩부 상에 용접 결합될 수 있다.
바람직하게, 상기 접촉부는, 상기 비딩부의 평탄한 상면 상에 용접 결합될 수 있다.
보다 바람직하게, 상기 접촉부와 상기 비딩부 사이의 용접 영역은, 상기 비딩부의 평탄한 상면보다 좁게 형성되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부의 압입 깊이를 PD라고 하고, 상기 압입 깊이의 최대 값을 PDmax라고 하고, 상기 비딩부의 최 내측 지점으로부터, 반경 방향으로 최외곽에 위치하는 용접 비드의 중앙 지점까지의 거리를 W라고 하고, 상기 접촉부의 단부로부터 상기 비딩부의 최 내측 지점을 지나는 수직선 까지의 최단 거리인 오버랩 길이를 OV라고 하고, OV의 최소값을 OVmin 이라고 하고 OV의 최대값을 OVmax 라고 하고, 용접 비드 폭의 최소값을 Wbead,min 이라고 했을 때, 다음 관계식을 만족할 수 있다.
(OVmin-0.5*Wbead,min)/PDmax ≤ W/PD ≤ (OVmax-0.5*Wbead,min)/PDmax
본 발명의 또 다른 측면에서, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는 적어도 하나 이상일 수 있다.
바람직하게, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는 원주 방향을 따라 연장되는 직선 형상의 용접 패턴을 형성할 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는 적어도 하나 이상이고, 상기 적어도 하나의 용접 비드는 원주 방향을 따라 연장되는 호 형상의 용접 패턴을 형성할 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는, 용접 패턴을 형성하고, 상기 용접 패턴은, 점 용접이 연결된 선 형태를 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는, 동일 접촉부 내에 복수 개 형성될 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드의 폭은, 0.1 mm 이상일 수 있다.
본 발명의 또 다른 측면에서, 상기 제1 무지부와 상기 탭 결합부는 상기 전극 조립체의 반경 방향을 따라 용접 결합될 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부는, 상기 배터리 하우징의 하면과 평행한 상태로 상기 제1 무지부에 용접 결합될 수 있다.
본 발명의 또 다른 측면에서, 상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 복수의 용접 비드는, 상기 전극 조립체의 반경 방향을 따라 연장되는 직선 형상의 용접 패턴을 형성할 수 있다.
본 발명의 또 다른 측면에서, 상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 용접 비드는, 용접 패턴을 형성하고, 상기 용접 패턴은, 점 용접이 연결된 선 형태를 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 용접 비드의 폭은, 0.1 mm 이상일 수 있다.
본 발명의 또 다른 측면에서, 상기 제1 무지부의 적어도 일부는, 상기 전극 조립체의 권취 방향을 따라 분할된 복수의 분절편을 포함할 수 있다.
바람직하게, 상기 복수의 분절편은, 상기 전극 조립체의 반경 방향을 따라 절곡되어 절곡면을 형성할 수 있다.
바람직하게, 상기 복수의 분절편은, 상기 전극 조립체의 반경 방향을 따라 여러 겹으로 중첩되면서 절곡면을 형성할 수 있다.
보다 바람직하게, 상기 절곡면은, 싱기 전극 조립체의 외주측으로부터 코어측으로 가면서 분절편의 중첩 레이어 수가 최대치까지 순차적으로 증가하는 적층수 증가구간과 중첩 레이어 수가 최대치가 된 반경 지점부터 최내측 분절편이 존재하는 반경 지점까지의 적층수 균일 구간을 포함할 수 있다.
바람직하게, 상기 탭 결합부는, 상기 적층수 균일구간과 중첩되도록 상기 절곡면에 결합될 수 있다.
보다 바람직하게, 상기 적층수 균일구간의 중첩 레이어 수는 10 이상일 수 있다.
보다 바람직하게, 상기 탭 결합부는, 상기 절곡면에 용접되고, 상기 탭 결합부의 용접 영역은 상기 전극 조립체의 반경 방향을 따라 상기 적층수 균일구간과 적어도 50%이상 중첩될 수 있다.
본 발명의 또 다른 측면에서, 상기 집전체는, 상기 집전체의 중심부에 원형의 집전체 홀을 구비할 수 있다.
바람직하게, 상기 집전체 홀의 직경은, 상기 전극 조립체의 코어에 구비된 권취 중심 홀의 직경보다 크거나 같을 수 있다.
본 발명의 또 다른 측면에서, 상기 배터리는, 상기 배터리 하우징과 상기 캡 사이에 구비된 실링 가스켓을 포함할 수 있다.
바람직하게, 상기 접촉부는, 상기 실링 가스켓과 상기 비딩부 사이에 개재될 수 있다.
보다 바람직하게, 상기 실링 가스켓의 두께는, 원주 방향을 따라 가변할 수 있다.
바람직하게, 상기 실링 가스켓의 두께는, 원주 방향을 따라 증가와 감소를 교차로 반복할 수 있다.
본 발명의 일 측면에서, 상기 실링 가스켓은, 상기 접촉부와 접촉하는 영역과, 상기 접촉부와 접촉하지 않는 영역에서 압축률이 동일할 수 있다.
본 발명의 다른 측면에서, 상기 실링 가스켓은, 상기 접촉부와 접촉하는 영역보다, 상기 접촉부와 접촉하지 않는 영역에서 더 작은 압축률을 가질 수 있다.
바람직하게, 상기 실링 가스켓은, 상기 접촉부와 접촉하는 영역보다, 상기 접촉부와 접촉하지 않는 영역에서 더 큰 두께를 가질 수 있다.
본 발명의 또 다른 측면에서, 집전체는, 상기 탭 결합부와 상기 하우징 결합부가 상호 연결된 상태로 반경 방향을 따라 연장된 레그 구조를 가질 수 있다.
바람직하게, 상기 레그 구조는 복수 개 구비될 수 있다.
바람직하게, 상기 레그 구조는, 상기 집전체의 중심부를 기준으로 방사형, 십자형 또는 이들이 조합된 형태로 배치될 수 있다.
본 발명의 또 다른 측면에서, 상기 하우징 결합부가 복수 개 구비되고, 복수의 상기 하우징 결합부는, 상호 연결되어 일체로 형성될 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는, 연장 방향이 적어도 1회 전환되는 밴딩부를 적어도 하나 구비할 수 있다.
바람직하게, 상기 밴딩부의 돌출된 최 외측 지점은, 상기 비딩부의 최 내측 지점과 소정 간격 이격되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 밴딩부에 의해, 상기 접촉부와 상기 연결부 사이의 각도가 예각이 될 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는, 상기 밴딩부에 의해 상방으로 탄성 바이어스 되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부의 원주 방향 길이는, 상기 탭 결합부의 원주 방향 길이와 동일할 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부의 원주 방향 길이는, 상기 연결부의 원주 방향 길이와 동일할 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부의 원주 방향 길이는, 상기 탭 결합부의 원주 방향 길이에 비해 상대적으로 길 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부의 원주 방향 길이는, 상기 연결부의 원주 방향 길이에 비해 상대적으로 길 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부는, 상기 배터리 하우징의 비딩부를 따라 원주 방향으로 연장되는 호 형태를 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부는, 상기 연결부와 상기 접촉부의 교차 지점으로부터, 원주 방향을 따라 서로 반대 방향으로 연장되는 호 형태를 가질 수 있다.
본 발명의 또 다른 측면에서, 원주 방향으로 연장된 상기 접촉부의 길이의 합은, 상기 배터리 하우징의 내주의 길이와 대응될 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는, 상기 접촉부를 따라 원주 방향으로 연장된 호 형태를 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부와 상기 하우징 결합부의 경계 영역은, 상기 하우징 결합부의 단부가 상기 비딩부를 향하도록 절곡되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부와 상기 연결부 사이의 연결 부위는, 절곡되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부와 상기 연결부 사이의 연결 부위는, 상기 비딩부의 내측 표면과 대응되는 상보적 형상을 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 접촉부와 상기 연결부 사이의 연결 부위는, 상기 비딩부의 내측 표면과 정합되는 형상을 가진 채로 상기 비딩부와 빈틈 없이 결합될 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부와 상기 하우징 결합부의 경계 영역은, 상기 배터리 하우징에 형성된 비딩부의 최 내측 지점보다 더 내측에 위치할 수 있다.
바람직하게, 상기 배터리 하우징의 길이 방향 축을 따라 보았을 때, 상기 탭 결합부는 상기 비딩부에 의해 중첩되지 않을 수 있다.
본 발명의 또 다른 측면에서, 상기 배터리는, 상기 제2 전극은 장변 단부에 활물질층이 코팅되지 않으며 상기 분리막의 외부로 노출된 제2 무지부를 포함하며, 상기 제2 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되고, 상기 개방부의 반대 편에 구비되며 상기 제2 무지부와 전기적으로 연결되는 단자;를 포함할 수 있다.
바람직하게, 상기 배터리는, 상기 제2 무지부와, 상기 단자 사이에 형성되어 있고, 상기 제2 무지부와 결합되는 탭 결합부; 및 상기 단자와 결합되는 단자 결합부;를 구비한 제2 집전체를 더 포함할 수 있다.
바람직하게, 상기 단자 결합부는, 상기 전극 조립체의 권취 중심 홀을 커버할 수 있다.
바람직하게, 상기 제2 집전체의 상기 단자 결합부의 중심으로부터 상기 탭 결합부의 끝단에 이르는 최장 반경은, 상기 집전체의 중심부로부터 상기 탭 결합부의 끝단에 이르는 최장 반경보다 클 수 있다.
본 발명의 또 다른 측면에서, 상기 제2 집전체의 탭 결합부는, 상기 제2 무지부의 절곡된 단부에 결합되어 있을 수 있다.
바람직하게, 상기 제2 집전체의 탭 결합부와, 상기 제2 무지부의 절곡된 단부를 결합하는 용접 영역이 더 형성되어 있고, 상기 제2 집전체의 단자 결합부의 중심으로부터 상기 용접 영역에 이르는 거리는, 상기 집전체의 중심부로부터 탭 결합부 상의 용접 영역에 이르는 거리와 동일하거나, 5% 이하의 거리 편차를 가질 수 있다.
바람직하게, 상기 제2 집전체의 용접 영역은, 상기 집전체의 탭 결합부 상의 용접 영역보다 긴 길이를 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부 상에는 전해액 주입을 위한 하나 이상의 홀이 형성되어 있을 수 있다.
본 발명의 또 다른 측면에서, 상기 배터리의 직경을 높이로 나눈 폼 팩터의 비가 0.4 보다 클 수 있다.
본 발명의 또 다른 측면에서, 양극과 음극 사이에서 측정된 저항이 4miliohm 이하일 수 있다.
한편, 본 발명의 일 실시예에 따른 배터리 팩은, 상술한 바와 같은 본 발명의 일 실시예에 따른 배터리를 복수개 포함한다.
바람직하게, 복수의 배터리는 소정 수의 열로 배열되고, 각 배터리의 단자와 배터리 하우징 바닥의 외부면은 상부를 향하도록 배치될 수 있다.
본 발명의 일 측면에서, 상기 배터리 팩은, 복수의 배터리를 직렬 및 병렬로 연결하는 복수의 버스바를 포함하고, 각 버스바는 인접하는 배터리의 단자 사이에 배치되고, 각 버스바는, 인접하는 단자 사이에서 연장되는 바디부; 상기 바디부의 일측으로 연장되어 상기 일측에 위치한 배터리의 전극 단자에 전기적으로 결합하는 복수의 제1버스바 단자; 및상기 바디부의 타측으로 연장되어 상기 타측에 위치한 배터리의 배터리 하우징 바닥의 외부면에 전기적으로 결합하는 복수의 제2버스바 단자를 포함할 수 있다.
본 발명의 일 실시예에 따른 자동차는, 상술한 바와 같은 본 발명의 일 실시예에 따른 배터리 팩을 포함한다.
한편, 본 발명의 일 실시예에 따른 집전체는, 전극 조립체의 제1 무지부와 결합되는 적어도 하나의 탭 결합부; 및 상기 탭 결합부로부터 연장되어 배터리 하우징의 비딩부 상에 전기적으로 결합되는 적어도 하나의 하우징 결합부를 포함한다.
한편, 본 발명의 다른 실시예에 따른 배터리는, 쉬트 형상을 가진 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가진 전극 조립체로서, 상기 제1 전극은 장변 단부에 활물질층이 코팅되지 않으며 상기 분리막의 외부로 노출된 제1 무지부를 포함하고, 상기 제1 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되는 전극 조립체; 일 측에 형성된 개방부를 통해 상기 전극 조립체를 수용하는 배터리 하우징; 상기 제1 무지부 및 상기 배터리 하우징의 내면과 전기적으로 결합되는 집전체; 및 상기 배터리 하우징의 개방부와 상기 집전체 사이에 개재된 실링 가스켓;을 포함하고, 상기 집전체가 상기 배터리 하우징의 내면에 접하는 부분이, 상기 배터리 하우징의 내면과 상기 실링 가스켓 사이에 개재된다.
바람직하게, 상기 배터리 하우징은, 상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 구비할 수 있다.
본 발명의 다른 측면에서, 상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 용접 패턴의 연장 방향과, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 패턴의 연장 방향은, 서로 수직일 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부의 최 내측 지점은, 상기 크림핑부의 말단 지점보다, 반경 방향으로 더 내측에 위치할 수 있다.
본 발명의 또 다른 측면에서, 상기 실링 가스켓은 상기 캡를 감싸며, 상기 실링 가스켓의 부위 중에서 상기 캡의 하면을 커버하는 부위의 반경 방향 길이는, 상기 실링 가스켓의 부위 중에서 상기 캡의 상면을 커버하는 부위의 반경 방향 길이보다 작을 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부의 반경 방향 총 길이를 T라고 하고, 상기 전극 조립체의 외경을 JR이라고 하고, 상기 전극 조립체의 최외곽에 배치된 분절편의 높이를 F라고 했을 때, 다음 관계식을 만족할 수 있다.
JR - 2*F ≤ T < JR
본 발명의 또 다른 측면에서, 상기 비딩부의 최 내측 지점으로부터 반경 방향으로 최외곽에 위치하는 용접 비드의 중앙 지점까지의 거리의 최소 값을 W1라고 하고, 오버랩 길이가 OV일 때의 상기 비딩부의 최 내측 지점으로부터 반경 방향으로 최외곽에 위치하는 용접 비드의 중앙 지점까지의 거리를 W라고 했을 때, 다음 관계식을 만족할 수 있다.
W1 = R1 + 0.5 * Wbead,min
W = OV - 0.5 * Wbead,min
본 발명의 또 다른 측면에서, 상기 비딩부는 적어도 일부 영역에서 상기 배터리 하우징의 하면과 평행한 평탄 구간을 갖고, 상기 집전체와 접촉하는 상기 비딩부의 상기 평탄 구간의 길이는, OV - R1 일 수 있다.
바람직하게, 오버랩 길이가 OV일 때, 상기 비딩부와 상기 접촉부 사이에 형성되는 용접 패턴의 반경 방향 폭 길이는, Wbead,min 이상 OV - R1 이하일 수 있다.
본 발명의 또 다른 측면에서, 상기 평탄 구간 길이 대비 상기 용접 패턴의 반경 방향 폭 길이의 비율은, 10 ~ 40 % 의 범위를 만족할 수 있다.
본 발명의 또 다른 측면에서, 상기 전극 조립체의 외경을 지름으로 하는 원의 면적 대비 상기 집전체가 상기 전극 조립체의 상면과 접촉하지 않는 면적의 비율은, 30% 이상 100 % 미만일 수 있다.
보다 바람직하게, 상기 전극 조립체의 외경을 지름으로 하는 원의 면적 대비 상기 집전체가 상기 전극 조립체와 접촉하지 않는 면적의 비율은, 60% 이상 100 % 미만일 수 있다.
본 발명의 또 다른 측면에서, 상기 집전체 홀의 직경은, 상기 전극 조립체의 코어에 구비된 권취 중심 홀의 직경보다 작을 수 있다.
바람직하게, 상기 권취 중심 홀의 직경을 R3 이라고 할 때, 상기 집전체 홀의 직경은 0.5*R3 이상 R3 미만일 수 있다.
보다 바람직하게, 상기 권취 중심 홀의 직경을 R3이라고 할 때, 상기 집전체 홀의 직경은 0.7*R3 이상 R3 미만일 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는 반경 방향 및 권취 축방향으로 연장될 수 있다.
본 발명의 또 다른 측면에서, 상기 탭 결합부, 연결부 및 접촉부는 연장 방향을 따라 동일한 폭을 가질 수 있다.
또는, 상기 접촉부는 상기 연결부보다 큰 폭을 가질 수 있다.
본 발명의 또 다른 측면에서, 상기 연결부는 상기 탭 결합부보다 작은 폭을 가질 수 있다.
또는, 상기 연결부는 상기 탭 결합부보다 큰 폭을 가질 수 있다.
본 발명에 따르면, 전극 조립체와 배터리 하우징 사이를 전기적으로 연결함에 있어서 저항을 크게 낮출 수 있다.
또한, 본 발명에 따르면, 집전체와 배터리 하우징과의 결합 부위의 결합력을 향상시킬 수 있다.
아울러, 본 발명에 따르면, 배터리의 에너지 밀도를 향상시킬 수 있다.
또한, 본 발명에 따르면, 배터리를 제조함에 있어서, 배터리 하우징과 집전체의 전기적 연결을 위한 용접 공정의 편의성을 높이고, 이로써 생산성을 향상시킬 수 있게 된다.
다만, 본 발명을 통해 얻을 수 있는 효과는 상술한 효과들에 제한되지 않으며, 언급되지 않은 또 다른 기술적인 효과들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1a은 본 발명의 일 실시예를 따르는 배터리의 종단면도의 일부를 나타내는 도면이다.
도 1b는 본 발명의 다른 실시예를 따르는 배터리의 종단면도의 일부를 나타내는 도면이다.
도 1c는 도 1b의 전극 조립체의 상부를 확대한 도면이다.
도 1d는 도 1c의 제1 무지부의 상부를 확대한 도면이다.
도 2는 본 발명의 또 다른 실시예를 따르는 배터리의 종단면도의 일부를 나타내는 도면이다.
도 3은 본 발명의 또 다른 실시예를 따르는 배터리의 종단면도의 일부를 나타내는 도면이다.
도 4a는 도 3의 배터리에 포함된 집전체를 설명하기 위한 도면이다.
도 4b는 도 4a의 집전체에서 밴딩부가 생략된 실시예를 설명하기 위한 도면이다.
도 5는 본 발명의 다른 실시예를 따르는 집전체를 설명하기 위한 도면이다.
도 6은 본 발명의 또 다른 실시예를 따르는 집전체를 설명하기 위한 도면이다.
도 7은 집전체 홀과 권취 홀의 관계를 설명하기 위한 도면이다.
도 8a는 도 4a의 집전체와 제1 무지부의 용접 영역 및 집전체와 비딩부의 용접 영역을 설명하기 위한 도면이다.
도 8b는 도 4b의 집전체와 제1 무지부의 용접 영역 및 집전체와 비딩부의 용접 영역을 설명하기 위한 도면이다.
도 9는 도 5의 집전체와 제1 무지부의 용접 영역 및 집전체와 비딩부의 용접 영역을 설명하기 위한 도면이다.
도 10은 도 6의 집전체와 제1 무지부의 용접 영역 및 집전체와 비딩부의 용접 영역을 설명하기 위한 도면이다.
도 11은 접촉부와 비딩부 사이의 용접 영역에 형성되는 용접 비드위 위치, 길이 및 폭 등을 설명하기 위한 도면이다.
도 12는 배터리 하우징의 내면의 직경과 집전체의 총 직경 사이의 관계를 설명하기 위한 도면이다.
도 13a는 집전체의 용접 공정을 설명하기 위한 도면이다.
도 13b는 배터리 하우징의 비딩 공정을 설명하기 위한 도면이다.
도 13c는 배터리 하우징의 크림핑 공정을 설명하기 위한 도면이다.
도 13d는 배터리 하우징의 사이징 공정을 설명하기 위한 도면이다.
도 13e는 사이징 공정 전 집전체 형상에 따라 사이징 공정 후의 집전체 변화를 설명하기 위한 도면이다.
도 13f는 사이징 공정 후에도 용접 영역이 유지될 수 있는 집전체의 형상을 설명하기 위한 도면이다.
도 13g는 사이징 공정 후에도 용접 영역이 유지될 수 있는 집전체의 형상을 설명하기 위한 도면이다.
도 14는 본 발명의 바람직한 실시예에 따른 전극판 구조를 예시적으로 나타낸 평면도이다.
도 15는 본 발명의 실시예에 따른 전극판의 무지부 분절구조를 제1전극판 및 제2전극판에 적용한 전극 조립체를 길이 방향(Y)을 따라 자른 단면도이다.
도 16a는 본 발명의 실시예에 따라 무지부가 절곡된 전극 조립체를 길이 방향(Y)을 따라 자른 단면도이다.
도 16b는 본 발명의 실시예에 따라 무지부가 절곡된 전극 조립체의 사시도이다.
도 17은 본 발명의 실시예에 따른 복수의 배터리를 버스바를 이용하여 직렬 및 병렬로 연결한 모습을 나타낸 상부 평면도이다.
도 18a는 본 발명의 일 실시예를 따르는 제2 집전체를 설명하기 위한 도면이다.
도 18b는 본 발명의 다른 실시예를 따르는 제2 집전체를 설명하기 위한 도면이다
도 19는 본 발명의 일 실시예를 따르는 배터리를 포함하는 배터리 팩을 설명하기 위한 도면이다.
도 20은 도 19의 배터리 팩을 포함하는 자동차를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 발명의 이해를 돕기 위하여, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다. 또한, 서로 다른 실시예에서 동일한 구성요소에 대해서는 동일한 참조번호가 부여될 수 있다.
2 개의 비교 대상이 '동일'하다는 언급은 '실질적으로 동일'한 것을 의미한다. 따라서 실질적 동일은 당업계에서 낮은 수준으로 간주되는 편차, 예를 들어 5% 이내의 편차를 가지는 경우를 포함할 수 있다. 또한, 소정 영역에서 어떠한 파라미터가 균일하다는 것은 평균적 관점에서 균일하다는 것을 의미할 수 있다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것으로, 특별히 반대되는 기재가 없는 한, 제1 구성요소는 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에서, 특별히 반대되는 기재가 없는 한, 각 구성요소는 단수일 수도 있고 복수일 수도 있다.
구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.
또한 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다.
명세서 전체에서, "A 및/또는 B" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, A, B 또는 A 및 B를 의미하며, "C 내지 D" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, C 이상이고 D 이하인 것을 의미한다.
설명의 편의상 본 명세서에서 권취 형태로 감기는 전극 조립체의 권취축의 길이방향을 따르는 방향을 축방향(Y)이라 지칭한다. 그리고 상기 권취축을 둘러싸는 방향을 원주방향 또는 둘레방향(X)이라 지칭한다. 그리고 상기 권취축에 가까워지거나 권취축으로부터 멀어지는 방향을 반경방향이라 지칭한다. 이들 중 특히 권취축에 가까워지는 방향을 구심방향, 권취축으로부터 멀어지는 방향을 원심방향이라 지칭한다.
도 1a을 참조하면, 본 발명의 일 실시예에 따른 배터리(1)는 전극 조립체(10), 배터리 하우징(20), 집전체(제1 집전체)(30) 및 캡(40)을 포함한다. 상기 배터리(1)는, 그 밖에도 단자(50) 및/또는 실링 가스켓(G1) 및/또는 절연 가스켓(G2) 및/또는 집전체(제2 집전체)(P) 및/또는 인슐레이터(S)를 더 포함할 수도 있다. 상기 단자(50)는 상기 개방부의 반대 편에 구비되며 상기 제2 무지부(12)와 전기적으로 연결될 수 있다.
상기 전극 조립체(10)는, 제1 무지부(11) 및 제2 무지부(12)를 구비한다. 좀 더 구체적으로는, 상기 전극 조립체(10)는 제1 전극, 분리막, 제2 전극, 분리막을 순차적으로 적어도 1회 적층하여 형성된 적층체를 권취시킴으로써 제조될 수 있다. 즉, 본 발명에 적용되는 전극 조립체(10)는, 권취 타입의 전극 조립체일 수 있다. 이 경우, 상기 전극 조립체(10)의 외주면 상에는 배터리 하우징(20)과의 절연을 위해 추가적인 분리막이 구비될 수도 있다. 상기 전극 조립체(10)는 관련 기술 분야에서 잘 알려진 권취 구조를 제한 없이 가질 수 있다.
상기 전극 조립체(10)는 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 권취 축을 중심으로 권취됨으로써 코어와 외주면을 정의한 전극 조립체(10)일 수 있다. 여기서, 상기 제1 전극은 권취 방향을 따라 활물질층이 코팅되어 있는 활물질부와, 활물질층이 코팅되지 않은 제1 무지부(11)를 포함할 수 있다.
보다 구체적으로, 상기 전극 조립체(10)는, 쉬트 형상을 가진 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가진 권취 타입의 전극 조립체일 수 있다. 상기 제1 전극은 장변 단부에 활물질층이 코팅되지 않으며 상기 분리막의 외부로 노출된 제1 무지부(11)를 포함할 수 있다. 상기 제2 전극은 장변 단부에 활물질층이 코팅되지 않으며 상기 분리막의 외부로 노출된 제2 무지부(12)를 포함할 수 있다. 상기 제1 무지부(11)의 적어도 일부는 그 자체로서 전극 탭으로서 사용될 수 있다. 상기 제2 무지부(12)의 적어도 일부는 그 자체로서 전극 탭으로서 사용될 수 있다.
구체적으로, 상기 제1 전극은, 제1 전극 집전체 및 제1 전극 집전체의 일 면 또는 양 면 상에 도포된 제1 전극 활물질을 포함한다. 상기 제1 전극 집전체의 폭 방향(도 1a에 도시된 배터리(1)의 높이 방향과 나란한 방향) 일 측 단부에는 제1 전극 활물질이 도포되지 않은 무지부가 존재한다. 상기 무지부는, 제1 전극 탭으로서 기능한다. 상기 제1 무지부(11)는, 배터리 하우징(20) 내에 수용된 전극 조립체(10)의 높이 방향(도 1a에 도시된 배터리(1)의 높이 방향과 나란한 방향) 상부에 구비된다. 상기 제1 무지부(11)는, 예를 들어 음극 탭일 수 있다.
상기 제2 전극은, 제2 전극 집전체 및 제2 전극 집전체의 일 면 또는 양 면 상에 도포된 제2 전극 활물질을 포함한다. 상기 제2 전극 집전체의 폭 방향(도 1a에 도시된 배터리(1)의 높이 방향과 나란한 방향) 타 측 단부에는 제2 전극 활물질이 도포되지 않은 무지부가 존재한다. 상기 무지부는, 제2 전극 탭으로서 기능한다. 상기 제2 무지부(12)는, 배터리 하우징(20) 내에 수용된 전극 조립체(10)의 높이 방향 하부에 구비된다. 상기 제2 무지부(12)는은, 예를 들어 양극 탭일 수 있다.
본 발명에 있어서, 양극판에 코팅되는 양극 활물질과 음극판에 코팅되는 음극 활물질은 당업계에 공지된 활물질이라면 제한없이 사용될 수 있다.
일 예에서, 양극 활물질은 일반 화학식 A[AxMy]O2+z(A는 Li, Na 및 K 중 적어도 하나 이상의 원소를 포함; M은 Ni, Co, Mn, Ca, Mg, Al, Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, 및 Cr에서 선택된 적어도 하나 이상의 원소를 포함; x ≥ 0, 1 ≤ x+y ≤2, -0.1 ≤ z ≤ 2; 화학량론 계수 x, y 및 z는 화합물이 전기적 중성을 유지하도록 선택됨)로 표시되는 알칼리 금속 화합물을 포함할 수 있다.
다른 예에서, 양극 활물질은 US6,677,082, US6,680,143 등에 개시된 알칼리 금속 화합물 xLiM1O2­(1­x)Li2M2O3(M1은 평균 산화 상태 3을 갖는 적어도 하나 이상의 원소를 포함; M2는 평균 산화 상태 4를 갖는 적어도 하나 이상의 원소를 포함; 0≤x≤1)일 수 있다.
또 다른 예에서, 양극 활물질은, 일반 화학식 LiaM1 xFe1­xM2 yP1­yM3 zO4­z(M1은 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg 및 Al에서 선택된 적어도 하나 이상의 원소를 포함; M2는 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si, Ge, V 및 S에서 선택된 적어도 하나 이상의 원소를 포함; M3는 F를 선택적으로 포함하는 할로겐족 원소를 포함; 0 < a ≤ 2, 0 ≤ x ≤ 1, 0 ≤ y < 1, 0 ≤ z < 1; 화학량론 계수 a, x, y 및 z는 화합물이 전기적 중성을 유지하도록 선택됨), 또는 Li3M2(PO4)3[M은 Ti, Si, Mn, Fe, Co, V, Cr, Mo, Ni, Al, Mg 및 Al에서 선택된 적어도 하나의 원소를 포함]로 표시되는 리튬 금속 포스페이트일 수 있다.
바람직하게, 양극 활물질은 1차 입자 및/또는 1차 입자가 응집된 2차 입자를 포함할 수 있다.
일 예에서, 음극 활물질은 탄소재, 리튬금속 또는 리튬금속화합물, 규소 또는 규소화합물, 주석 또는 주석 화합물 등을 사용할 수 있다. 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 음극 활물질로 사용 가능하다. 탄소재로는 저결정 탄소, 고결정성 탄소 등이 모두 사용될 수 있다.
분리막은 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있다. 다른 예시로서, 분리막은 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있다.
분리막의 적어도 한 쪽 표면에는 무기물 입자의 코팅층을 포함할 수 있다. 또한 분리막 자체가 무기물 입자의 코팅층으로 이루어지는 것도 가능하다. 코팅층을 구성하는 입자들은 인접하는 입자 사이 사이에 인터스티셜 볼륨(interstitial volume)이 존재하도록 바인더와 결합된 구조를 가질 수 있다.
무기물 입자는 유전율이 5이상인 무기물로 이루어질 수 있다. 비제한적인 예시로서, 상기 무기물 입자는 Pb(Zr,Ti)O3(PZT), Pb1­xLaxZr1­yTiyO3(PLZT), PB(Mg3Nb2/3)O3­PbTiO3(PMN­PT), BaTiO3, hafnia(HfO2), SrTiO3, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO 및 Y2O3로 이루어진 군에서 선택된 적어도 하나 이상의 물질을 포함할 수 있다.
전해질은 A+B--와 같은 구조를 갖는 염일 수 있다. 여기서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함한다. 그리고 B--는 F--, Cl--, Br--, I--, NO3 --, N(CN)2 --, BF4 --, ClO4 --, AlO4 --, AlCl4 --, PF6 --, SbF6 --, AsF6 --, BF2C2O4 --, BC4O8 --, (CF3)2PF4 --, (CF3)3PF3 -, (CF3)4PF2 --, (CF3)5PF--, (CF3)6P--, CF3SO3 --, C4F9SO3 --, CF3CF2SO3 --, (CF3SO2)2N--, (FSO2)2N-- , CF3CF2(CF3)2CO--, (CF3SO2)2CH--, (SF5)3C--, (CF3SO2)3C--, CF3(CF2)7SO3 --, CF3CO2 --, CH3CO2 -,SCN-- 및 (CF3CF2SO2)2N--로 이루어진 군에서 선택된 어느 하나 이상의 음이온을 포함한다.
전해질은 또한 유기 용매에 용해시켜 사용할 수 있다. 유기 용매로는, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylenecarbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드 (dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄 (dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 또는 이들의 혼합물이 사용될 수 있다.
상기 배터리 하우징(20)은, 일 측에 개방부가 형성된 대략 원통형의 수용체로서, 도전성을 갖는 금속 재질이다. 상기 배터리 하우징(20)의 측면, 그리고 상기 개방부의 반대 편에 위치하는 하면(도 1a을 기준으로 아래쪽 면)은 일체로 형성되는 것이 일반적이다. 즉, 상기 배터리 하우징(20)은, 그 높이 방향 상단은 개방되어 있고, 하단은 중앙부를 제외한 나머지 영역이 폐쇄된 형태를 갖는 것이 일반적이다. 상기 배터리 하우징(20)의 하면은 대략 플랫한 형태를 가질 수 있다. 상기 배터리 하우징(20)은, 그 높이 방향 일 측에 형성된 개방부를 통해 전극 조립체(10)를 수용한다. 상기 배터리 하우징(20)은, 상기 개방부를 통해 전해질도 함께 수용할 수 있다.
상기 배터리 하우징(20)은, 상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부(21)를 포함할 수 있다. 상기 배터리 하우징(20)은 상기 비딩부(21)보다 상기 개방부를 향하는 측에 형성되며 상기 개방부를 향해 연장 및 절곡된 크림핑부(22)를 구비할 수 있다.
구체적으로, 상기 배터리 하우징(20)은, 그 상단부에 형성되는 비딩부(21)를 구비할 수 있다. 상기 배터리 하우징(20)은, 비딩부(21)보다 더 상부에 형성되는 크림핑부(22)를 더 구비할 수도 있다. 상기 비딩부(21)는, 배터리 하우징(20)의 외주면 둘레가 소정의 깊이로 압입된 형태를 갖는다. 상기 비딩부(21)는, 전극 조립체(10)의 상부에 형성된다. 상기 비딩부(21)가 형성된 영역에서의 배터리 하우징(20)의 내경은, 전극 조립체(10)의 직경보다 더 작게 형성된다.
상기 비딩부(21)는, 캡(40)이 안착될 수 있는 지지 면을 제공한다. 또한, 상기 비딩부(21)는, 후술할 집전체(30)의 가장자리 둘레 중 적어도 일부가 안착 및 결합될 수 있는 지지 면을 제공할 수 있다. 즉, 상기 비딩부(21)의 상면에는, 본 발명의 집전체(30)의 가장자리 둘레 중 적어도 일부 및/또는 본 발명의 캡(40)의 가장자리 둘레가 안착될 수 있다. 도 2 및 도 3과 같이, 상기 집전체(30)의 가장자리 둘레 중 적어도 일부 및/또는 캡(40)의 가장자리 둘레를 안정적을 지지할 수 있도록 하기 위해, 상기 비딩부(21)의 상면은 적어도 일부가 배터리 하우징(20)의 하면에 대략 나란한 방향을 따라, 즉 배터리 하우징(20)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 가질 수도 있다.
한편, 상기 비딩부(21)는, 압입되어 내입된 최 내측 지점을 중심으로 상방에 위치한 비딩부(21) 상면; 및 압입되어 내입된 최 내측 지점을 중심으로 하방에 위치한 비딩부(21) 하면;을 포함할 수 있다.
예를 들면, 상기 비딩부(21)의 압입 깊이(PD)는, 대략 0.2 ~ 10 mm 일 수 있다. 상기 비딩부(21)의 압입 깊이(PD)의 최소값은 비딩부(21)의 곡률 반경(R1), 용접 비드 폭(Wbead) 및 비딩부(21)와 배터리 하우징(20)의 내 측면 사이의 경계 영역에서의 곡률 반경(R2)이 모두 고려되어야 한다. 예를 들어, 도 11을 참조하면, 용접이 가능하기 위해서는 비딩부(21)의 곡률 반경(R1) 및 비딩부(21)와 배터리 하우징(20)의 내 측면 사이의 경계 영역에서의 곡률 반경(R2)에 더하여 추가적인 공간이 필요하다. 만약 압입 깊이(PD)가 R1+R2라면, 비딩부 상에는 평탄 구간(F)이 존재하지 않기 때문이다. 나아가, 용접이 가능하기 위해서는, 추가적으로 필요한 공간이 상기 용접 비드(BD)의 최소 폭(Wbead,min) 이상이어야 한다. 따라서, 압입 깊이(PD)의 최소값은 다음 관계식을 만족한다.
PD ≥ R1,min+R2,min+Wbead,min
예를 들어, R1,min 및 R2,min의 최소값이 각각 대략 0.05mm 일 수 있고, Wbead,min이 대략 0.1mm 일 수 있다. 이 경우, 압입 깊이(PD)의 최소값은 대략 0.2mm 이상일 수 있다.
다른 측면에서, 비딩부(21)의 압입 깊이(PD)의 최대값은, 배터리 하우징(20)의 재질 및 두께에 따라 달라질 수 있다. 일 예에서, 배터리 하우징(20)의 재질이 스틸 재질이고, 배터리 하우징(20)의 최대 두께가 대략 1mm 일 때, 비딩부(21)의 압입 깊이(PD)의 최대 값은 대략 10 mm 일 수 있다. 따라서, 일 예에서 비딩부(21)의 압입 깊이(PD)는 대략 0.2 ~ 10 mm 사이의 값을 가질 수 있다.
본 발명의 다른 측면에서, 도 1a과 같이, 상기 비딩부(21) 상면 및 상기 비딩부(21) 하면 중 적어도 어느 하나는, 상기 배터리 하우징(20)의 하면과 소정 각도를 이루며 경사진 형태를 가질 수 있다. 또는, 도 2 및 도 3과 같이, 상기 비딩부(21) 상면 및 상기 비딩부(21) 하면 중 적어도 어느 하나는, 적어도 일부 영역에서 상기 배터리 하우징(20)의 하면과 평행한 구간을 포함할 수 있다. 즉, 상기 비딩부(21) 상면과 상기 비딩부(21) 하면은 적어도 일부의 평탄 구간(도 3의 F)을 포함할 수 있다.
상기 크림핑부(22)는, 비딩부(21)의 상부에 형성된다. 상기 크림핑부(22)는, 비딩부(21)의 상부에 배치되는 캡(40)의 가장자리 둘레를 감싸도록 연장 및 밴딩(bending)된 형태를 갖는다. 이러한 접혀진 크림핑부(22)의 형상에 의해 캡(40)은 비딩부(21) 상에 고정된다.
다른 측면에서, 상기 비딩부(21)의 최 내측 지점은, 상기 크림핑부(22)의 말단 지점보다, 반경 방향으로 더 내측에 위치할 수 있다. 예를 들어, 도 2를 참조하면, 상기 비딩부(21)의 최 내측 지점에 비해, 상기 크림핑부(22)의 말단 지점이, 반경 방향으로 더 외측에 위치할 수 있다. 이러한 구조에 의하면, 사이징 공정 후에도 평탄한 비딩부(21)를 유지할 수 있다. 만약, 예를 들어, 상기 비딩부(21)의 최 내측 지점이 상기 크림핑부(22)의 말단 지점보다 반경 방향으로 더 외측에 위치하게 되면, 크림핑부(22)의 상면의 반경 방향 길이가 비딩부(21)의 반경 방향 길이보다 길어지게 된다. 그렇게 되면, 사이징 공정에서 압력을 받는 면적인 크림핑부(22)의 상면의 면적이 넓어지게 되고, 이에 따라 사이징 공정 후에 비딩부(21)가 평탄해지지 않게 될 수 있다. 따라서 본 발명에서는 상기 비딩부(21)의 최 내측 지점이, 상기 크림핑부(22)의 말단보다, 반경 방향으로 더 내측에 위치하는 것이 바람직하다.
물론, 이러한 크림핑부(22)가 생략되고 다른 고정 구조를 통해 캡(40)이 배터리 하우징(20)의 개방부를 커버하면서 고정되록 하는 것도 가능 하다. 예를 들어, 본 출원인의 공개 특허 KR 10-2019-0030016 A 에서는 비딩부가 생략된 원통형 전지를 개시하고 있으며, 이와 같은 구조가 본 발명에 채용될 수도 있다.
다음은, 도 3 및 도 4a를 참조하여, 본 발명의 일 실시예에 따른 집전체(제1 집전체)(30)를 상세히 설명하기로 한다.
먼저, 도 3을 참조하면, 본 발명의 일 실시예에 따른 집전체(30)는, 배터리 하우징(20) 내부에 수용되며, 전극 조립체(10)와 전기적으로 연결되고, 또한 배터리 하우징(20)과 전기적으로 연결된다. 즉, 상기 집전체(30)는, 전극 조립체(10)와 배터리 하우징(20) 사이를 전기적으로 연결한다. 바람직하게, 상기 집전체(30)는 상기 제1 무지부(11) 및 상기 배터리 하우징(20)의 상기 비딩부(21)와 전기적으로 결합될 수 있다. 상기 집전체(30)의 적어도 하나의 탭 결합부(32)는, 상기 비딩부(21) 하면보다 더 하측에 위치할 수 있다.
상기 집전체(30)는, 제1 무지부(11)와 결합되는 탭 결합부(32) 및 상기 탭 결합부(32)로부터 연장되어 배터리 하우징(20)의 내측 면 상의 비딩부(21)에 전기적으로 결합되는 하우징 결합부(33)를 포함한다. 상기 탭 결합부(32)와 상기 하우징 결합부(33)의 경계 영역은, 상기 하우징 결합부(33)의 단부가 상기 비딩부(21)를 향하도록 절곡될 수 있다. 즉, 도 2 등을 참조하여 설명하면, 상기 탭 결합부(32)와 상기 하우징 결합부(33)의 경계 영역은 상방으로 절곡된 형상을 가질 수 있다. 한편 한편, 상기 하우징 결합부(33)는 상기 크림핑부(22)에 의해 압착 고정될 수 있다.
선택적으로, 상기 집전체(30)는, 상기 집전체(30)의 코어 영역에, 중심부(31)를 더 포함할 수 있다. 상기 중심부(31)는 대략 원형의 형상을 가질 수 있다. 예를 들어, 상기 중심부(31)는 상기 전극 조립체(10)의 권취 축의 둘레를 에워싸는 루프 형상을 이루는 루프 형상부일 수 있다. 바람직하게, 상기 루프 형상부는 원주 방향을 따라 1개소 또는 2이상의 개소의 절개 부위를 구비할 수도 있다. 한편 상기 중심부(31)는 선택적으로 제1 무지부(11)와 결합될 수 있다.
선택적으로, 상기 집전체(30)는, 상기 루프 형상부로부터 연장되며, 상기 제1 무지부(11)의 일부 영역을 둘러싸도록 배치된 커버부를 더 포함할 수도 있다. 이와 같은 커버부에 의해 제1 무지부(11)와 집전체(30) 사이의 접촉 면적이 증가할 수 있다. 이에 따라 전지 내부 저항이 보다 감소될 수 있다.
본 발명의 다른 측면에서, 상기 집전체(30)는, 상기 탭 결합부(32)와 상기 하우징 결합부(33)가 상호 연결된 상태로 반경 방향을 따라 연장된 레그 구조를 적어도 하나 가질 수 있다. 바람직하게, 상기 레그 구조는 복수 개 구비될 수 있다. 예를 들어, 도 4a 내지 도 6을 참조하면, 상기 집전체(30)는 4개의 레그 구조를 가질 수 있다. 이와 같이 레그 구조가 복수 개 구비될 경우, 하우징 결합부(33)도 복수로 구비될 수 있다. 이 때, 도면에 도시되지는 않았으나, 복수의 상기 하우징 결합부(33)는, 상호 연결되어 일체로 형성될 수도 있다. 상기 레그 구조는, 상기 집전체(30)의 중심부(31)를 기준으로 방사형, 십자형 또는 이들이 조합된 형태로 배치될 수도 있다.
상기 중심부(31) 및 적어도 하나의 탭 결합부(32)는 전극 조립체(10)의 상부에 배치되며, 배터리 하우징(20)에 비딩부(21)가 형성되는 경우에 있어서 비딩부(21)보다 하부에 위치할 수 있다. 상기 탭 결합부(32) 상에는 전해액 주입을 위한 하나 이상의 홀이 형성되어 있을 수 있다.
한편, 상기 탭 결합부(32)의 반경 방향 총 길이를 T라고 하고, 상기 전극 조립체(10)의 외경을 JR이라고 하고, 상기 전극 조립체의 최외곽에 배치된 분절편(11a)의 높이를 F라고 했을 때, 다음 관계식을 만족할 수 있다.
JR - 2*F ≤ T < JR
바람직하게, 탭 결합부(32)의 반경 방향 총 길이(T)는, 상기 전극 조립체(10)의 외경(JR)으로부터 최외곽에 배치된 분절편(11a)의 높이를 2회 뺀 길이보다 크거나 같을 수 있다. 상기 관계식이 충족되면, 탭 결합부(32)가 최외곽에 배치된 분절편(11a)의 단부를 덮게 된다. 즉, 집전체(30)는, 제1 전극의 마지막 권회턴에서 절곡된 분절편(11a)의 단부를 덮는 외경을 가질 수 있다. 이 경우, 탭 결합부(32)와 결합되는 절곡면(102)을 형성하는 분절편(11a)들이 집전체(30)에 의해 균일하게 눌려진 상태에서 용접이 가능하고 용접 이후에도 분절편(11a)의 긴밀한 적층 상태가 잘 유지될 수 있다. 긴밀한 적층 상태는 도 1c에 도시된 것처럼 분절편들 사이에 틈이 실질적으로 없는 상태를 의미한다. 긴밀한 적층 상태는 배터리(1)의 저항을 급속 충전에 적합한 수준(예컨대 0.5miliohm 이상 4miliohm 이하, 바람직하게는, 1.0miliohm 이상 4miliohm 이하) 이하로 낮추는데 기여한다.
다른 측면에서, 상기 탭 결합부(32)의 반경 방향 총 길이(T)는, 상기 전극 조립체(10)의 외경(JR)보다 작을 수 있다. 만약 탭 결합부(32)의 반경 방향 총 길이(T)가 상기 전극 조립체(10)의 외경(JR)보다 크면, 배터리 하우징(20) 내부의 데드 스페이스(Dead space)가 늘어나 배터리(1)의 에너지 밀도에 악영향을 끼칠 수 있다. 따라서, 반경 방향 총 길이(T)는, 상기 전극 조립체(10)의 외경(JR)보다 작은 것이 바람직하다.
상기 중심부(31)는, 전극 조립체(10)의 중심부에 형성되는 권취 중심 홀(H1)과 대응되는 위치에 형성되는 원형의 집전체 홀(H2)을 구비한다. 서로 연통되는 권취 중심 홀(H1) 및 집전체 홀(H2)은, 후술할 단자(50)와 집전체(제2 집전체)(P) 간의 용접 또는 단자(50)와 리드 탭(미도시) 간의 용접을 위한 용접봉의 삽입 또는 레이저 용접 빔의 조사를 위한 통로로서 기능할 수 있다.
도 7은 집전체 홀과 권취 홀의 관계를 설명하기 위한 도면이다.
도 7을 참조하면, 상기 집전체 홀(H2)의 직경은, 상기 전극 조립체(10)의 코어에 구비된 권취 중심 홀(H1)의 직경보다 크거나 같을 수 있다. 예를 들어, 집전체 홀(H2)의 직경을, 상기 전극 조립체(10)의 코어에 구비된 권취 중심 홀(H1)의 직경보다 크게 설정하는 이유는, 단자(50)와 집전체(제2 집전체)(P) 간의 용접 또는 단자(50)와 리드 탭(미도시) 간의 용접을 위한 용접봉의 삽입 또는 레이저 용접 빔의 조사 시, 용접 가이드의 삽입에 따른 공간 확보가 필요하기 때문이다. 만약 상기 집전체 홀(H2)의 직경이 권취 중심 홀(H1)의 직경보다 과도하게 작다면, 권취 중심 홀(H1)이 가려져서 CRW(continuous resistance welding) 용접 시 간섭 요소로 작용할 수 있다.
상기 실시 형태와는 다르게, 본 발명의 다른 실시 형태에 의하면, 상기 집전체 홀(H2)의 직경은, 상기 전극 조립체(10)의 코어에 구비된 권취 중심 홀(H1)의 직경보다 작을 수도 있다. 예를 들어, 상기 권취 중심 홀(H1)의 직경을 R3이라고 할 때, 상기 집전체 홀(H2)의 직경은 0.5*R3 이상 R3 미만일 수 있고, 바람직하게는, 0.7*R3 이상 R3 미만일 수 있다.
일반적으로, 벤트가 될 때 권취 중심 부분에서 가스가 배출되면서 강한 압력에 의해, 권취 중심 쪽에 있는 분리막이나 무지부가 전극 조립체(10)의 상면으로부터 빠져 나올 수 있다. 이 때, 집전체 홀(H2)의 직경이 상기 전극 조립체(10)의 코어에 구비된 권취 중심 홀(H1)의 직경보다 작으면, 권취 중심 쪽에 있는 분리막이나 무지부가 전극 조립체(10)의 상면으로부터 이탈되는 것을 방지할 수 있는 효과가 있다. 다만, 집전체 홀(H2)의 직경이 과도하게 작아질 경우, 전해액 주액성이 저하될 수 있으며, 제2 집전체(P)와 단자(50) 사이의 용접을 가능하게 하는 공간의 확보가 필요하므로, 상기 집전체 홀(H2)의 직경은 0.5*R3 이상인 것이 바람직하고, 0.7*R3 이상인 것이 보다 바람직하다.
다른 측면에서, 상기 중심부(31)는 대략 원형의 판 형상을 가질 수 있다. 예를 들어, 도 4a를 참조하면, 상기 중심부(31)는 그 중심에 집전체 홀(H2)이 구비되어 있는 링 형태의 판 형상을 가질 수 있다.
상기 적어도 하나의 탭 결합부(32)는 집전체(30)의 중심부(31)로부터 대략 방사상으로 배터리 하우징(20)의 측벽을 향해 연장된 형태를 가질 수 있다. 상기 탭 결합부(32)는, 예를 들어 복수 개 구비될 수도 있다. 예를 들어, 도 4a를 참조하면, 복수의 탭 결합부(32)들 각각은 중심부(31)의 둘레를 따라 상호 이격되어 위치할 수 있다. 이와 같이 본 발명의 배터리(1)가 복수의 탭 결합부(32)를 구비함으로써, 상기 제1 무지부(11)와의 결합 면적이 증대될 수 있다. 이에 따라, 제1 무지부(11)와 탭 결합부(32) 사이의 결합력이 확보되고 전기 저항이 감소될 수 있다.
상기 탭 결합부(32)는 상기 제1 무지부(11)와 용접 결합될 수 있다. 용접 방법으로는 예를 들면 레이저 용접, 저항 용접, 초음파 용접 등이 가능하나, 용접 방법이 이에 한정되는 것은 아니다. 상기 탭 결합부(32)는, 상기 배터리 하우징(20)의 하면과 평행한 상태로 상기 제1 무지부(11)에 용접 결합될 수 있다. 상기 제1 무지부(11)와 상기 탭 결합부(32)는 상기 전극 조립체(10)의 반경 방향을 따라 용접 결합될 수 있다.
도 1b는 본 발명의 다른 실시예를 따르는 배터리의 종단면도의 일부를 나타내는 도면이다. 도 1c는 도 1b의 전극 조립체(10)의 상부를 확대한 도면이고, 도 1d는 도 1c의 제1 무지부(11)의 상부를 확대한 도면이다.
도 1b를 참조하면, 상기 탭 결합부(32)가 상기 제1 무지부(11)의 단부 상에 안착된 상태에서, 일정 영역에 대한 용접이 실시될 수 있다. 또는, 제1 무지부(11)의 적어도 일부는, 상기 전극 조립체(10)의 권취 방향을 따라 복수의 분절편(11a)을 포함할 수 있다. 상기 복수의 분절편(11a)은, 상기 전극 조립체(10)의 반경 방향을 따라 절곡되어 절곡면(102)을 형성할 수 있다. 전극 조립체의 반경 방향이란 코어 측 또는 외주 측을 향하는 방향을 의미한다. 예를 들면, 도 1b에서와 같이, 상기 제1 무지부(11)의 적어도 일부는 상기 전극 조립체(10)의 권취 방향을 따라 분할된 복수의 분절편(11a)을 포함할 수 있다. 그리고 상기 복수의 분절편(11a)은, 전극 조립체(10)의 코어 측을 향해 절곡될 수 있다. 도 1c 및 도 1d를 참조하면, 상기 복수의 분절편(11a)은, 상기 전극 조립체(10)의 반경 방향을 따라 여러 겹으로 중첩될 수 있다. 상기 절곡면(102)은, 싱기 전극 조립체(10)의 외주측으로부터 코어측으로 가면서 분절편(11a)의 중첩 레이어 수가 최대치까지 순차적으로 증가하는 적층수 증가구간과 중첩 레이어 수가 최대치가 된 반경 지점부터 최내측 분절편이 존재하는 반경 지점까지의 적층수 균일구간을 포함할 수 있다.
이 경우, 상기 탭 결합부(32)가 상기 제1 무지부(11)의 절곡면(102) 상에 안착된 상태에서, 일정 영역에 대한 용접이 실시될 수 있다. 즉, 상기 탭 결합부(32)는, 복수의 분절편(11a)이 여러 겹으로 중첩되어 있는 영역에 결합될 수 있다. 예를 들어, 상기 탭 결합부(32)는, 적층수 균일구간과 중첩되도록 상기 절곡면에 결합될 수 있다.도 1d를 참조하면, 상기 탭 결합부(32)와 상기 제1 무지부(11)의 용접은, 제1 무지부(11)의 절곡면(102)에 있어서 제1 무지부(11)의 중첩 레이어 수가 10장 이상인 영역에서 이루어질 수 있다. 중첩 레이어 수가 10장 이상인 구간의 반경 방향 비율은 제1 무지부(11)의 길이를 조절함으로써 코어를 제외한 전극 조립체의 반경을 기준으로 25% 이상으로 설계될 수 있다.
제1 무지부(11)의 절곡면(102)에 집전체(30)를 용접시킬 때, 용접 강도를 충분히 확보하기 위해 레이저의 출력을 증가시키는 것이 바람직하다. 레이저의 출력이 증가하면, 레이저가 제1 무지부(11)가 중첩된 영역을 관통하여 전극 조립체(10)의 내부까지 침투하여 분리막, 활물질층 등을 손상시킬 수 있다. 따라서, 레이저의 관통을 방지하기 위해서는 제1 무지부(11)의 중첩 레이어 수를 일정한 수준 이상으로 증가시키는 것이 바람직하다. 제1 무지부(11)의 중첩 레이어 수를 증가시키기 위해서는 분절편(11a)의 높이를 증가시켜야 한다. 하지만, 분절편(11a)의 높이를 증가시키면 제1 전극 집전체의 제조 과정에서 제1 무지부(11)에 너울이 발생할 수 있다. 따라서, 분절편(11a)의 높이는 적절한 수준으로 조절하는 것이 바람직하다.
상술한 바와 같이, 무지부의 분절편의 중첩 레이어 수가 10 이상인 반경 방향 길이 비율을 전극 조립체의 반경을 기준으로 25% 이상으로 설계하고, 무지부의 분절편이 10장 이상 중첩된 영역과 집전체(30)를 레이저 용접하면 레이저의 출력을 증대시키더라도 무지부의 중첩부위가 레이저를 충분히 마스킹하여 레이저에 의해 분리막, 활물질층 등이 손상되는 현상을 방지할 수 있다.
바람직하게, 레이저의 출력은 대략 250W 내지 320W의 범위에서 또는 레이저 최대 출력 사양의 대략 40% ~ 90% 범위에서 적절하게 조절될 수 있는데, 본 발명이 이에 한정되는 것은 아니다. 레이저의 출력이 상기 수치범위를 충족하면, 용접 강도를 충분히 증가시킬 수 있다. 일 예에서, 용접 강도는 2kgf/cm2 이상, 보다 바람직하게는 4kgf/cm2 이상으로 증가시킬 수 있다. 용접 강도는 바람직하게 8kgf/cm2 이하, 더욱 바람직하게 6kgf/cm2 이하로 설정될 수 있다. 용접 강도는 집전 플레이트가 절곡 표면 영역으로부터 분리되기 시작할 때의 집전체(30) 단위 면적당 인장력(kgf/cm2)으로서 정의된다. 구체적으로, 집전 플레이트의 용접을 완료한 후 집전 플레이트에 인장력을 가하되 그 크기를 점차 증가시킨다. 인장력이 커지면 용접 계면으로부터 무지부가 분리되기 시작한다. 이 때, 집전체에 가해진 인장력을 집전 플레이트의 면적으로 나눈 값이 용접 강도이다.
도 1d는 4680의 폼 팩터를 가진 배터리에 포함되는 반경이 22mm이고 코어의 반경이 4mm인 전극 조립체에 있어서 복수의 분절편으로 분할되어 있는 제1 전극 집전체의 제1 무지부(11)가 외주측으로부터 코어측으로 절곡되면서 10장 이상으로 중첩된 절곡 표면영역이 나타난 모습을 도시한 부분 단면도이다. 도면에서, 분절편이 없는 전극 조립체 영역과 코어 영역은 별도로 도시되지 않았다. 분절편들의 높이는 3mm부터 시작하여 전극 조립체의 반경이 1mm씩 증가할 때마다 1mm씩 증가한다. 그리고, 도면에 나타낸 길이인 6mm, 7mm 또는 8mm에 도달되면 이후에는 분절편의 높이가 실질적으로 동일하게 유지된다.
도 1d를 참조하면, 외주측으로부터 코어측으로 가면서 제1 무지부(11)의 중첩 레이어 수는 서서히 증가하며, 제1 무지부(11)의 길이가 길수록 중첩 레이어 수의 최대값이 증가하는 것을 알 수 있다.
일 예로, 제1 무지부(11)의 길이가 8mm일 때, 복수의 분절편으로 분할된 제1 무지부(11)의 중첩 레이어 수는 전극 조립체의 외주 표면으로부터 7mm 구간까지 18장까지 증가하고, 코어측으로 8mm 구간에서는 제1 무지부(11)의 중첩 레이어 수가 최대치 18장 수준으로 유지되다가 코어에 인접한 반경 구간에서 1-2장 감소한다. 분절편의 높이는 반경 7mm 내지 12mm 구간에서 3mm부터 8mm까지 단계적으로 증가한다. 본 발명에서, 적층수 균일 구간은 도 1d에 나타낸 것처럼 중첩 레이어 수가 최대치에 도달된 반경 지점부터 최내측 분절편이 위치한 지점까지의 반경 구간으로 정의한다. 따라서, 제1 무지부(11)의 분절편(11a)이 10장 이상 중첩된 적층수 균일 구간의 비율은 코어(4mm)를 제외한 전극 조립체의 반경 대비 44.4%(8/18)이다.
다른 예로, 제1 무지부(11)의 길이가 7mm일 때, 복수의 분절편으로 분할된 제1 무지부(11)의 중첩 레이어 수는 전극 조립체의 외주 표면으로부터 6mm 구간까지 15장까지 증가하고, 코어측으로 9mm 구간에서는 제1 무지부(11)의 중첩 레이어 수가 최대치 15장 수준으로 일정하게 유지되다가 코어에 인접한 반경 구간에서 1-2장 감소한다. 분절편의 높이는 반경 7mm 내지 11mm 구간에서 3mm부터 7mm까지 단계적으로 증가한다 따라서, 제1 무지부(11)의 분절편(11a)이 10장 이상 중첩된 적층수 균일구간의 비율은 코어(4mm)를 제외한 전극 조립체의 반경 대비 50%(9/18)이다.
또 다른 예로, 제1 무지부(11)의 길이가 6mm일 때, 복수의 분절편으로 분할된 제1 무지부(11)의 중첩 레이어 수는 전극 조립체의 외주 표면으로부터 5mm 구간까지 12장까지 증가하고, 코어측으로 10mm 구간에서는 제1 무지부(11)의 중첩 레이어 수가 최대치 12장 수준으로 일정하게 유지되다가 코어에 인접한 반경 구간에서 1-2장 감소한다. 분절편의 높이는 반경 7mm 내지 10mm 구간에서 3mm부터 6mm까지 증가한다. 따라서, 제1 무지부(11)의 분절편(11a)이 10장 이상 중첩된 적층수 균일구간의 비율은 코어(4mm)를 제외한 전극 조립체의 반경 대비 55.6%(10/18)이다.
실시예에 따르면, 중첩 레이어 수가 순차적으로 증가하는 구간의 길이는 제1 무지부(11)의 길이가 길수록 5mm부터 7mm까지 증가하고, 특히 적층 레이어 수가 10장 이상인 적층수 균일 구간의 비율이 코어를 제외한 전극 조립체의 반경을 기준으로 25% 이상인 조건이 충족된다는 것을 알 수 있다.
본 발명에 있어서, 적층수 균일 구간은 코어의 반경, 분절편의 높이 가변 구간에서 분절편 높이의 최소값과 최대값, 그리고 전극 조립체의 반경 방향에서 분절편의 높이 증가 폭에 의해 증감될 수 있다. 따라서, 당업자는 적층수 균일 구간의 비율에 영향을 미치는 팩터들을 조절하여 해당 비율을 25% 이상으로 디자인하는 것은 극히 자명하다. 일 예에서, 분절편의 높이 가변 구간에서 분절편 높이의 최소값과 최대값을 함께 증가시키면 적층 레이어 수는 늘어나면서 적층수 균일 구간의 비율은 25% 수준으로 감소시킬 수 있다.
적층수 균일 구간은 집전체가 용접될 수 있는 영역이다. 따라서, 적층수 균일 구간의 비율을 25% 이상으로 조절하면, 집전체의 용접 강도를 바람직한 범위에서 확보할 수 있고, 용접 계면의 저항 측면에서도 유리하다.
본 발명의 다른 측면에서, 상기 제1 무지부(11)가 이처럼 절곡된 형태를 갖는 경우, 제1 무지부(11)가 차지하는 공간이 축소되어 에너지 밀도의 향상을 가져올 수 있다. 또한, 상기 제1 무지부(11)와 집전체(30) 간의 결합 면적의 증가로 인해 결합력 향상 및 저항 감소 효과를 가져올 수 있다.
도 8a 내지 도 10은 집전체(30)와 제1 무지부(11)의 용접 영역을 설명하기 위한 도면이다.
도 8a 내지 도 10을 참조하면, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이의 용접 영역에는, 용접 비드(BD)가 형성될 수 있다. 용접 비드(BD)란, 특정 지점에 점 용접을 실시하였을 때 형성되는 대략 원형의 용접부를 의미한다. 예컨대 도 11에서는, 점 용접의 결과 형성된 대략 원형의 용접 비드(BD)를 나타내고 있다. 상기 용접 비드(BD)가 복수 개 연결되면, 특정한 용접 패턴을 형성할 수 있다. 예를 들어, 도 8a를 참조하면, 복수의 용접 비드(BD)가 모여 대략 직선 형상의 용접 패턴을 형성할 수 있다. 일 실시 형태에서, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 복수의 용접 비드(BD)는, 상기 전극 조립체(10)의 반경 방향을 따라 연장된 용접 패턴을 형성할 수 있다. 바람직하게, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 비드(BD)는, 상기 전극 조립체(10)의 반경 방향을 따라 연장된 직선 형상의 용접 패턴을 형성할 수 있다. 예를 들어, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 패턴은, 점 용접이 연결된 선 형태를 가질 수 있다. 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 비드(BD)의 폭은, 대략 0.1 mm 이상일 수 있다. 이는 레이저 기술 고려 시 상기 용접 비드(BD)의 최소 폭이 대략 0.1 mm 이상이기 때문이다.
상기 탭 결합부(32)의 길이 방향 단부는, 배터리 하우징(20)에 형성되는 비딩부(21)의 최 내측 지점보다 더 내측에 위치할 수 있다. 좀 더 구체적으로, 상기 탭 결합부(32)와 하우징 결합부(33)의 경계 영역은, 배터리 하우징(20)에 형성된 비딩부(21)의 최 내측 지점보다 귄취 중심 홀(H1)을 향하는 방향으로 더 내측에 위치할 수 있다. 이와 같은 구조에 의하면, 하우징 결합부(33)의 단부를 비딩부(21) 상에 위치시키기 위해 집전체(30)를 과도하게 절곡시킴에 따라 발생될 수 있는 부품 간의 결합부위 손상을 방지할 수 있다. 달리 말하면, 상기 배터리 하우징(20)의 길이 방향 축을 따라 보았을 때, 상기 적어도 하나의 탭 결합부(32)는 상기 비딩부(21)에 의해 중첩되지 않는 형태를 가질 수 있다.
한편, 상기 집전체(30)와 전극 조립체(10) 간의 결합 면적 증대를 통한 결합력 확보 및 전기저항 감소를 위해, 상기 탭 결합부(32) 뿐만 아니라 중심부(31) 역시 제1 무지부(11)와 결합할 수도 있다. 상기 제1 무지부(11)의 단부는 탭 결합부(32)와 나란하도록 밴딩된 형태로 접혀질 수 있다. 이처럼 제1 무지부(11)의 단부가 접혀져 탭 결합부(32)와 나란한 상태로 탭 결합부(32)와 결합되는 경우, 결합 면적을 증대시켜 결합력 향상 및 전기 저항 감소 효과를 얻을 수 있으며, 또한 전극 조립체(10)의 총고를 최소화 하여 에너지 밀도 향상 효과를 얻을 수 있다.
상기 적어도 하나의 하우징 결합부(33)는 상기 탭 결합부(32)의 단부로부터 연장되어 상기 배터리 하우징(20)의 내측 면 상의 비딩부(21)에 결합될 수 있다. 예를 들어, 상기 적어도 하나의 하우징 결합부(33)는 상기 탭 결합부(32)의 단부로부터 배터리 하우징(20)의 측벽을 향해 연장된 형태를 가질 수 있다. 상기 하우징 결합부(33)는, 예를 들어 복수 개 구비될 수 있다. 예를 들어, 도 4a를 참조하면, 복수의 하우징 결합부(33)들 각각은 중심부(31)의 둘레를 따라 상호 이격되어 위치할 수 있다. 도 1a을 참조하면, 상기 복수의 하우징 결합부(33)들은, 배터리 하우징(20)의 내측 면 중, 비딩부(21)에 결합될 수 있다. 도 2 및 도 3와 같이, 비딩부(21)의 상면이 배터리 하우징(20)의 하면에 대략 나란한 방향, 즉 배터리 하우징(20)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 갖도록 하고 하우징 결합부(33) 역시 동일한 방향을 따라 연장된 형태를 갖도록 함으로써 하우징 결합부(33)가 비딩부(21) 상에 안정적으로 접촉하도록 할 수 있다. 또한, 이처럼 상기 하우징 결합부(33)가 비딩부(21) 상에 안정적으로 접촉됨에 따라 두 부품 간의 용접이 원활하게 이루어질 수 있고, 이로써 두 부품 간의 결합력 향상 및 결합 부위에서의 저항 증가 최소화 효과를 얻을 수 있다. 또한, 이와 같이 집전체(30)가 배터리 하우징(20)의 원통부 내측 면이 아닌 배터리 하우징(20)의 비딩부(21) 상에 결합되는 구조에 의해, 집전체(30)와 비딩부(21) 사이의 거리가 감소될 수 있다. 따라서, 배터리 하우징(20) 내부의 데드 스페이스가 최소화되어 배터리(1)의 에너지 밀도가 향상될 수 있다.
도 3 및 도 4a를 참조하면, 상기 하우징 결합부(33)는 배터리 하우징(20)의 내측 면 상의 비딩부(21)에 결합되는 접촉부(33a) 및 탭 결합부(32)와 접촉부(33a) 사이를 연결하는 연결부(33b)를 포함한다.
상기 접촉부(33a)는, 배터리 하우징(20)의 내측 면 상에 결합된다. 상기 배터리 하우징(20)에 비딩부(21)가 형성되는 경우에 있어서, 상기 접촉부(33a)는 상술한 바와 같이 비딩부(21) 상에 결합될 수 있다. 이 경우, 상술한 바와 같이, 안정적인 접촉 및 결합을 위해 비딩부(21) 및 접촉부(33a)는 모두 배터리 하우징(20)의 하면에 대략 나란한 방향, 즉 배터리 하우징(20)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 가질 수 있다. 상기 접촉부(33a)는, 상기 개방부 측을 향하는 상기 비딩부(21)의 상면과 결합되는 평탄면을 구비할 수 있다. 즉, 상기 접촉부(33a)는 배터리 하우징(20)의 하면에 대략 나란한 평탄부를 적어도 일부 포함한다.
본 발명의 일 실시 형태로서, 상기 연결부(33b)는 반경 방향 및 권취 축방향으로 연장될 수 있다. 한편, 도 13f를 참조하면, 상기 연결부(33b)는 상방으로 볼록한 구조를 가질 수 있다. 예를 들어 상기 연결부(33b)는 상방으로 볼록한 곡선 형태를 가질 수 있다. 또는, 도 13f와 같이, 상기 연결부(33b)는, 적어도 하나의 절곡부(C)를 구비할 수도 있다. 바람직하게, 상기 적어도 하나의 절곡부(C)는, 상기 배터리 하우징의 길이 방향 축을 따라 보았을 때, 서로 겹치지 않도록, 둔각으로 절곡되어 있을 수 있다. 보다 바람직하게, 상기 접촉부(33a)와 상기 연결부(33b)의 경계 지점은, 둔각으로 절곡되어 있을 수 있다. 즉, 도 13f에서와 같이 상기 연결부(33b)는, 상기 연결부(33b)가 상기 비딩부를 향해 갈수록, 그 경사가 단계적 또는 점진적으로 감소할 수 있다.
본 발명의 다른 실시 형태로서, 도 4a를 참조하면, 상기 연결부(33b)는, 중심부(31)와 접촉부(33a) 사이에서 그 연장 방향이 적어도 1회 전환되는 밴딩부(B)를 적어도 하나 구비할 수 있다. 즉, 상기 연결부(33b)는, 일정 범위 내에서 수축 및 신장이 가능한, 예를 들어 스프링 유사 구조 또는 자바라 유사 구조를 가질 수 있다. 한편, 상기 연결부(33b)는, 상기 밴딩부(B)에 의해 상방으로 탄성 바이어스 되어 있을 수 있다. 이러한 연결부(33b)의 구조는, 일정 범위 내에서 전극 조립체(10)의 높이 산포가 존재하더라도, 집전체(30)가 결합된 전극 조립체(10)를 배터리 하우징(20) 내에 수용시키는 과정에서 접촉부(33a)가 비딩부(21) 상에 밀착될 수 있도록 한다. 또한, 이러한 연결부(33b)의 구조에 의하면, 사이징(sizing) 공정 시 형상이 더 안정적으로 구현될 수 있다.
본 발명의 다른 실시 형태로서, 도 2 및 도 3에서와 같이, 상기 접촉부(33a)와 상기 연결부(33b) 사이의 연결 부위는, 절곡되어 있을 수 있다. 또는, 도 1a과 같이 상기 접촉부(33a)와 상기 연결부(33b) 사이의 연결 부위는, 상기 비딩부(21)의 내측 표면과 대응되는 상보적 형상을 가질 수도 있다. 특히, 상기 접촉부(33a)와 상기 연결부(33b) 사이의 연결 부위는, 상기 비딩부(21)의 내측 표면과 정합되는 형상을 가진 채로 상기 비딩부(21)와 빈틈 없이 결합될 수 있다. 이와 같은 구조에 의하면, 상기 비딩부(21)가 상기 집전체(30)를 효과적으로 지지할 수 있다. 또한, 이와 같은 구조에 의하면, 비딩부(21)와 연결부(33b) 사이의 불필요한 간섭이 방지될 수 있다. 따라서 접촉부(33a)와 비딩부(21) 사이의 안정적인 결합이 효과적으로 유지될 수 있다.
본 발명의 다른 측면에 의하면, 상기 밴딩부(B)의 돌출된 최 외측 지점은, 상기 비딩부(21)의 최 내측 지점과 소정 간격 이격되어 있을 수 있다. 예를 들어 도 3을 참조하면, 상기 밴딩부(B)는 상기 비딩부(21)와 접촉하지 않을 수 있다. 이와 같은 구조에 의하면, 비딩부(21)와 연결부(33b) 사이의 불필요한 간섭이 방지될 수 있다. 따라서 접촉부(33a)와 비딩부(21) 사이의 안정적인 결합이 효과적으로 유지될 수 있다.
본 발명의 다른 측면에 의하면, 상기 밴딩부(B)에 의해, 상기 접촉부(33a)와 상기 연결부(33b) 사이의 각도가 예각이 될 수 있다. 예를 들어 도 2, 도 4b, 도 8b를 참조하면 상기 연결부(33b)는 밴딩부를 포함하지 않는다. 따라서 상기 접촉부(33a)와 상기 연결부(33b) 사이의 각도는 둔각이 될 수 있다. 반면, 도 3 및 도 4a를 참조하면, 상기 연결부(33b)는 밴딩부를 포함한다. 따라서, 상기 접촉부(33a)와 상기 연결부(33b) 사이의 각도는 예각이 될 수 있다. 이와 같은 구조에 의하면, 접촉부(33a)와 연결부(33b) 사이의 각도가 예각으로 형성되기 때문에, 비딩부(21)와 연결부(33b) 사이의 간섭이 방지될 수 있다. 따라서 접촉부(33a)와 비딩부(21) 사이의 안정적인 결합이 유지될 수 있다. 본 발명의 도면에서는 상기 밴딩부(B)가 하나 구비된 경우만을 도시하고 있으나, 본 발명이 이에 한정되는 것은 아니며, 복수개 구비될 수 있음은 물론이다.
바람직하게, 상기 집전체(30)에 외부 힘이 가해지지 않아 변형이 없는 상태에서의 상기 접촉부(33a)와 중심부(31) 사이의 연직 방향 거리는, 집전체(30)가 결합된 상태의 전극 조립체(10)가 배터리 하우징(20) 내에 안착되었을 때의 비딩부(21)의 상면과 중심부(31) 사이의 연직 방향 거리와 동일하거나 연결부(33b)의 신장 가능 범위 내에서 더 작게 형성되는 것이 바람직하다. 상기 연결부(33b)가 이와 같은 조건을 충족하도록 구성되는 경우, 배터리 하우징(20) 내에 집전체(30)가 결합된 전극 조립체(10)를 안착시켰을 때 접촉부(33a)는 비딩부(21) 상에 자연스럽게 밀착될 수 있다.
뿐만 아니라, 이러한 연결부(33b)의 수축 및 신장 가능한 구조는 배터리(1)의 사용 과정에서 진동 및/또는 충격이 발생하여 전극 조립체(10)가 상하로 움직이더라도 일정 범위 내에서는 전극 조립체(10)의 움직임에 따른 충격이 완화 되도록 한다.
본 발명의 또 다른 측면에서, 상기 연결부(33b)는 상방으로 볼록한 곡선 형태를 가질 수 있다. 예를 들어 상기 연결부(33b)는 전극 조립체(10)의 권취 중심을 향하는 방향으로 돌출될 수도 있다. 이러한 연결부(33b)의 형태는, 사이징(sizing) 공정 진행 시에 집전체(제1 집전체)(30)와 전극 조립체(10)의 결합 부위 및/또는 집전체(제1 집전체)(30)와 배터리 하우징(20)의 결합 부위에 손상이 발생되는 것을 방지하기 위함이다.
도 13a 내지 도 13d는 본 발명의 배터리(1)를 제조하는 공정을 설명하기 위한 도면이다.
도 13a는 집전체(30)의 용접 공정을 설명하기 위한 도면이다. 배터리 하우징(20) 내부에 수용된 전극 조립체(10) 상에 집전체(30)를 올린 후, 전극 조립체(10)의 상방으로 돌출된 제1 무지부(11)와 집전체(30)를 용접하는 과정을 나타낸다. 이 경우 제1 무지부(11)에 구비된 복수의 분절편(11a)이 절곡된 절곡면 상에 상기 집전체(30)의 탭 결합부(32)가 용접된다.
다음으로, 도 13b는 배터리 하우징(20)의 비딩 공정을 설명하기 위한 도면이다. 집전체(30)가 전극 조립체(10) 상에 용접된 상태에서 비딩 나이프가 상기 배터리 하우징(20)의 내부를 향해 전진할 수 있다. 이에 따라, 상기 배터리 하우징(20)의 측면에는 배터리 하우징(20)의 일부가 배터리 하우징(20)의 내측을 향해 압입된 비딩부(21)가 구비된다. 상기 비딩부(21)는 상기 집전체(30)의 접촉부(33a)보다 하부에 위치하게 되므로, 추후 상기 접촉부(33a)와 상기 비딩부(21)의 내 측면은 서로 용접이 가능한 위치가 된다.
다음으로, 도 13c는 배터리 하우징(20)의 크림핑 공정을 설명하기 위한 도면이다. 비딩부(21)의 상면에 집전체(30)의 접촉부(33a)가 얹혀질 수 있다. 상기 접촉부(33a)의 상면에는 실링 가스켓(G1)에 의해 단부가 감싸진 캡(40)이 얹혀질 수 있다. 그 후, 상기 캡(40)의 가장자리 둘레를 감싸도록, 상기 배터리 하우징(20)을 절곡하여 상기 캡(40) 및 집전체(30)를 고정한다. 이러한 접혀진 크림핑부(22)의 형상에 의해 캡(40) 및 집전체(30)는 비딩부(21) 상에 고정된다.
다음으로, 도 13d는 배터리 하우징(20)의 사이징 공정을 설명하기 위한 도면이다. 사이징(sizing) 공정이란, 배터리(1)를 제조함에 있어서, 배터리(1)의 총고를 감소시키기 위해 배터리 하우징(20)의 비딩부(21) 영역이 차지하는 높이를 축소시키기 위한 압축 공정이다. 사이징 공정에 의하면, 배터리 하우징(20)을 길이 방향으로 압축하게 되기 때문에, 전극 조립체(10)가 비딩부(21)에 눌려 일부가 압축된 형태를 가질 수 있다. 다른 측면에서, 사이징 공정에 의하면, 배터리 하우징(20)을 길이 방향(상하 방향)으로 압축하게 되기 때문에, 집전체(30)가 상하 방향의 압력을 받아 휘어질 수 있다. 즉, 탭 결합부(32)가 상방으로 휘어지게 되어, 탭 결합부(32)와 제1 무지부(11) 사이의 용접이 손상될 가능성이 높아질 수 있다. 따라서, 사이징 공정을 거친 후라도 탭 결합부(32)와 제1 무지부(11) 사이의 용접 영역이 손상되지 않는 집전체(30) 형상의 모색이 요청된다.
예를 들어, 도 13f와 같이 연결부(33b)가 상방으로 볼록한 형태를 갖는 경우, 도 13d에서와 같이 탭 결합부(32)의 상방 들뜸 현상이 최대한으로 억제될 수 있다. 즉, 도 13c의 배터리 하우징(20)을 상하 방향으로 압축하게 되면, 본 발명의 집전체(30)는 상하 방향으로 응력을 받게 된다. 그러나, 본 발명의 집전체(30)의 연결부(33b)가 상방으로 볼록한 형태를 갖기 때문에, 탭 결합부(32)에 가해지는 응력이 최소화될 수 있다. 따라서 탭 결합부(32)는 상방으로 휘어지지 않고 제1 무지부(11)와의 용접 결합을 양호하게 유지할 수 있다.
보다 구체적으로, 도 13f 및 도 13g를 참조하면, 사이징 공정 전의 연결부(33b)는 상기 접촉부(33a)의 일 단부와 상기 탭 결합부(32)의 일 단부를 연결한 가상의 직선을 기준으로 상방으로 볼록한 형태를 가질 수 있다. 예를 들어 상기 연결부(33b) 상에는, 둔각을 이루는 절곡부(C)가 적어도 하나 구비될 수 있다. 한편 상기 절곡부(C)는 상기 접촉부(33a)의 일 단부와 상기 탭 결합부(32)의 일 단부를 연결한 가상의 직선의 중심을 지나며 배터리 하우징(20)의 바닥면과 평행한 가상의 평면보다 상방에 위치할 수 있다. 바람직하게, 상기 절곡부(C)를 기준으로 탭 결합부(32)에 근접한 연결부(33b)의 길이는, 상기 절곡부(C)를 기준으로 접촉부(33a)에 근접한 연결부(33b)의 길이보다, 더 길게 형성될 수 있다.
이와 같은 구조에 의하면, 상하 방향의 압력을 받는 사이징 공정 시 접촉부(33a)는 화살표 방향과 같이 하방으로 내려가고, 연결부(33b)는 화살표 방향과 같이 상방으로 융기된다(점선 참조). 보다 구체적으로, 연결부(33b)는 비딩부(21)보다 상방으로 융기된다. 즉, 사이징 공정 전후로 하우징 결합부(33)의 프로파일이 도 13f와 같이 변화하게 된다. 융기되는 정도는 사이징 공정 시 배터리 하우징(20)의 높이 변화에 의존하여 달라진다. 도시된 것과 달리. 절곡부(C)의 위치는 접촉부(33a)의 높이 수준까지만 융기될 수 있다. 이와 같이 연결부(33b)가 상방으로 융기되는 현상에 의해, 연결부(33b)에서 응력을 대부분 흡수할 수 있게 되므로, 탭 결합부(32)와 제1 무지부(11)의 용접 영역에 가해지는 응력이 상대적으로 작아진다. 따라서 본 발명에 의하면, 탭 결합부(32)가 상방으로 들뜨는 들뜸 현상이 발생하지 않게 된다. 또한, 상기와 같은 구조에 의하면, 절곡부(C)를 기준으로 탭 결합부(32)에 근접한 연결부(33b)의 길이가, 상기 절곡부(C)를 기준으로 접촉부(33a)에 근접한 연결부(33b)의 길이보다, 더 길기 때문에, 집전체(30)의 배터리 하우징(20) 내부로의 삽입이 용이해지고, 응력 분산이 효과적으로 이루어질 수 있다.
본 발명의 다른 실시 형태로서 도 13g를 참조하면, 사이징 공정 후의 집전체(30)의 프로파일이 도 13f와는 다르게 변형될 수 있다. 예를 들어 도 13f에서는 사이징 공정 후 연결부(33b)가 상방으로 볼록한 곡선 형태로 융기된 구조로 변형될 수 있는 반면, 도 13g에서는 사이징 공정 후 연결부(33b)가 절곡부(C)를 기점으로 절곡된 직선 형태로 변형될 수 있다. 보다 구체적으로 설명하면, 도 13g에서는 사이징 공정 후 상기 절곡부(C)를 기준으로 탭 결합부(32)에 근접한 연결부(33b) 및 상기 절곡부(C)를 기준으로 접촉부(33a)에 근접한 연결부(33b) 각각이 직선 형태를 유지하면서 연결부(33b)가 상방으로 볼록하게 융기되도록 변형될 수 있다.
본 발명자는, 집전체(30)의 뒤틀림 및/또는 들뜸 현상을 방지할 수 있는 집전체(30) 형태에 대해 예의 검토한 결과, 연결부(33b)가 상방으로 볼록한 구조를 갖는 경우, 탭 결합부(32)와 제1 무지부(11)와의 용접이 손상이 현격하게 감소한다는 사실을 확인했다.
도 13e는 사이징 공정 전 집전체(30)의 형상의 차이에 따른 사이징 공정 후 집전체(30)의 용접 영역 손상 정도를 비교하기 위한 도면이다.
도 13e를 참조하면, 실험예 1은 사이징 전 연결부(33b)가 직선 형상인 실험예이며, 실험예 2는 사이징 전 연결부(33b)가 하방으로 볼록한 실험예이고, 실험예 3은 사이징 전 연결부(33b)가 상방으로 볼록한 실험예이다. 상기 실험예 1 내지 3에 대해 1 mm 사이징 공정을 실시한 결과, 연결부(33b)가 직선 형상이었던 실험예 1은 탭 결합부(32)와의 용접 영역이 대략 0.72 mm 들뜨는 현상이 발생하였다. 연결부(33b)가 하방으로 볼록한 형상이었던 실험예 2에서는 탭 결합부와의 용접 영역이 대략 0.99 mm 들뜨는 현상이 발생하였다. 즉, 연결부(33b)가 하방으로 볼록한 경우, 연결부(33b)가 직선인 형상에 비해 들뜸 현상이 심화되었음을 확인할 수 있었다. 한편, 연결부(33b)가 상방으로 볼록한 형상이었던 실험예 3에서는 탭 결합부(32)와의 용접 영역이 대략 0.02 mm 들뜨는 현상이 발생하였다. 이는 실험예 1 및 2에 비해서 현저하게 들뜸 현상이 완화되었음을 의미한다. 즉, 연결부(33b)가 상방으로 볼록한 형상인 실험예 3의 경우 탭 결합부와 제1 무지부 사이의 용접 영역의 손상이 최소화되었음을 확인 할 수 있었다. 이는, 집전체(30)의 들뜸 정도가 집전체(30)가 전극 조립체(10)에 가하는 응력의 영향을 받기 때문이다. 즉, 연결부(33b)가 직선 형상인 실험예 1 및 연결부(33b)가 하방으로 볼록한 형상인 실험예 2에서는 사이징 공정에서 집전체(30)와 전극 조립체(10)가 용접된 부분에 가해지는 응력이 각각 대략 4.5 MPa, 3.7 MPa 으로서 매우 크기 때문에, 집전체(30)의 들뜸 현상이 심화되었음을 확인할 수 있었다. 반면, 연결부(33b)가 상방으로 볼록한 형상인 실험예 3에서는 사이징 공정에서 집전체(30)와 전극 조립체(10)가 용접된 부분에 가해지는 응력이 대략 2.0 MPa 수준으로 실험예 1 및 2에 비해 상대적으로 낮기 때문에, 집전체(30) 들뜸 현상이 상대적으로 적게 나타났음을 알 수 있다.
따라서, 바람직하게, 도 13f와 같이, 상기 연결부(33b)의 기울기는 일정하지 않고 소정 지점(예를 들면, 절곡부(C))을 기준으로 상부의 기울기가 하부의 기울기보다 작을 수 있다. 소정 지점은 연결부(33b)의 중간 지점보다 윗쪽에 위치할 수 있다. 대안적으로, 상기 연결부(33b)는 탭 결합부(32)와 접촉부(33a)를 연결한 가상의 직선을 기준으로 상부로 볼록한 형태를 가질 수 있다. 볼록한 형태는 직선과 직선이 연결된 형태, 곡선 형태, 또는 이들이 결합된 형태일 수 있다. 일 예에서, 도 13f와 같이, 상기 연결부(33b)는, 상기 소정 지점을 기준으로 적어도 하나의 절곡부(C)를 구비할 수 있다. 바람직하게, 상기 적어도 하나의 절곡부(C)는, 상기 배터리 하우징(20)의 길이 방향 축을 따라 보았을 때, 서로 겹치지 않도록, 둔각으로 절곡되어 있을 수 있다. 또 다른 변형예에서, 상기 연결부(33b)는, 상기 연결부(33b)가 상기 비딩부(21)를 향해 갈수록, 그 경사가 단계적 또는 점진적으로 감소할 수 있다.
본 발명의 또 다른 측면에서, 도 13d를 참조하면, 상기 탭 결합부(32)와 상기 연결부(33b) 사이의 각도(θ)는, 예를 들어 0 ~ 90 도 사이일 수 있다. 예를 들어, 사이징 공정에서 전극 조립체(10)의 상단 높이가 비딩부(21)의 높이에 대응할 정도로 상승하면 상기 탭 결합부(32)와 상기 접촉부(33a)는, 동일 높이에 위치할 수 있다. 즉, 이 경우는 탭 결합부(32)와 상기 연결부(33b) 사이의 각도(θ)가 0도인 경우에 해당한다. 사이징 공정을 실시하더라도, 상기 접촉부(33a)가 상기 탭 결합부(32)보다 하부에 위치하는 것은 바람직하지 않다. 이 경우 비딩부(21)에 의해 제1 무지부(11)가 과도하게 눌려 손상될 수 있기 때문이다. 따라서, 탭 결합부(32)와 연결부(33b) 사이의 각도(θ)는 0도 이상인 것이 바람직하다. 다른 측면에서, 탭 결합부(32)와 연결부(33b) 사이의 각도(θ)는 연결부(33b)의 길이, 두께 또는 기울기가 단계적 또는 점진적으로 변화하는 형상에 따라서 90도까지 증가할 수 있다. 그러나, 캡(40)과의 접촉을 피하기 위해, 상기 각도(θ)가 90도를 초과하는 것은 바람직하지 않다.
본 발명의 또 다른 측면에서, 상기 연결부(33b)는, 상기 캡(40)을 지지할 수도 있다. 예를 들어 , 상기 연결부(33b)는, 사이징 공정에 의해 상방으로 휘어진 형태가 될 수 있다. 이 때, 상방으로 휘어진 연결부(33b)는 상기 캡(40)과 접촉하게 될 수 있다. 이 경우, 상기 연결부(33b)는 상기 캡(40)을 상방으로 지지하는 역할을 할 수 있다. 따라서 집전체(30)는 사이징 공정에 의해 상하 방향으로 확실하게 고정될 수 있다. 이에 따라, 배터리(1)의 사용 과정에서 진동 및/또는 충격이 발생하더라도, 집전체(30)가 상하 방향으로 전극 조립체(10)를 고정시키기 때문에, 전극 조립체(10)가 배터리 하우징(20) 내부에서 상하로 불필요하게 움직이는 것을 방지할 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부(21) 상면 및 상기 비딩부(21) 하면은, 상기 비딩부(21)의 최 내측 지점을 배터리 하우징의 바닥면과 평행하게 통과하는 가상의 기준 평면을 기준으로 비대칭일 수 있다. 예를 들어 도 13d를 참조하면, 사이징 공정에 의해 배터리 하우징(20)이 상하 방향으로 압축되기 때문에, 비딩부(21) 또한 상하 방향으로 압축된다. 따라서, 상기 비딩부(21) 상면 및 상기 비딩부(21) 하면은, 상기 비딩부(21)의 최내측 지점을 통과하는 가상의 기준 평면을 기준으로 비대칭인 형상이 될 수 있다.
본 발명의 또 다른 측면에서, 상기 비딩부(21)의 압입 깊이를 PD라고 정의할 수 있다. 예를 들어 도 11을 참조하면, 배터리 하우징(20)의 내측 면에서부터 상기 비딩부(21)의 최 내측 지점까지의 수직 거리를 압입 깊이(PD)로 정의할 수 있다. 다른 한편으로, 상기 접촉부(33a)의 단부로부터 상기 비딩부(21)의 최 내측 지점을 지나는 수직선 까지의 최단 거리를 오버랩 길이(OV)라고 정의할 수 있다. 즉, 도 11을 참조하면, 오버랩 길이(OV)는, 상기 비딩부(21)를 상하 방향으로 정사영 내렸을 때, 정사영과 상기 집전체(30)가 중복되는 영역의 반경 방향 길이를 의미한다. 이 때, 본 발명의 배터리(1)는 다음 관계식을 만족할 수 있다.
(R1,min+Wbead,min)/PDmax ≤ OV/PD ≤ (PDmax-R2,min)/PDmax
상기 집전체(30)의 접촉부(33a)가 상기 비딩부(21) 상에 용접 가능하게 얹혀지기 위해서는 상기 비율이 (R1,min+Wbead,min)/PDmax이상인 것이 바람직하다. 도 11을 참조하면, 집전체(30)의 접촉부(33a)가 상기 비딩부(21) 상에 용접 가능하게 얹혀지기 위해서는 비딩부(21)의 곡률 반경(R1)보다 더 오버랩 되는 영역이 필요하다. 예를 들어, 접촉부(33a)가 비딩부(21)의 곡률 반경(R1)만큼만 오버랩 되면, 평탄 구간(F)이 존재하지 않기 때문에 접촉부(33a)는 비딩부(21)와 하나의 접점에서만 접할 수 있다. 즉, 접촉부(33a)가 비딩부(21) 상에 안정적으로 얹혀질 수 없다. 따라서 접촉부(33a)는 비딩부(21)의 곡률 반경(R1)에 더하여 추가로 오버랩되는 영역이 필요한데, 이 때, 추가로 오버랩 되는 영역의 길이는 최소한 용접 비드 폭(Wbead) 이상인 것이 바람직하다. 즉, 추가로 오버랩 되는 영역에서 실질적으로 접촉부(33a)가 비딩부(21)와 중첩되며, 이 영역에서 용접이 이루어질 수 있다. 따라서 추가로 오버랩 되는 영역의 길이가 최소 최소한 용접 비드 폭(Wbead) 이상이어야 중첩 영역을 벗어나지 않은 상태로 안정적인 용접이 가능해진다. 즉, 접촉부(33a)가 상기 비딩부(21) 상에 용접 가능하게 얹혀지기 위한 최소한의 오버랩 길이는 R1,min+Wbead,min가 된다.
다른 측면에서, 집전체(30)의 접촉부(33a)가 상기 비딩부(21) 상에 용접 가능하게 얹혀지기 위해서는 상기 비율이 (PDmax-R2,min)/PDmax이하인 것이 바람직하다. 도 11을 참조하면, 비딩부(21)와 배터리 하우징(20)의 내 측면 사이의 경계 영역에는 곡률 반경(R2)이 존재한다. 따라서, 집전체(30)의 접촉부(33a)가, 곡률 반경(R2)이 형성된 비딩부(21)와 배터리 하우징(20)의 내 측면 사이의 경계 영역까지 진입하게 되면, 곡률 반경(R2)에 의해 상기 접촉부(33a)가 상기 비딩부(21)에 밀착되지 못하고 들뜨게 된다. 따라서, 접촉부(33a)가 상기 비딩부(21) 상에 밀착되게 얹혀지기 위한 최대한의 오버랩 길이는 PDmax-R2,min가 된다.
일 예에서, 비딩부(21)의 압입 깊이(PD)의 최대값(PDmax)은 대략 10mm 일 수 있고, R1,min 및 R2,min의 최소값이 각각 대략 0.05mm 일 수 있고, Wbead,min이 대략 0.1mm 일 수 있다. 이 때, 비딩부(21)의 압입 깊이(PD) 대비 오버랩 길이(OV)의 비율은 대략 1.5 ~ 99.5 % 범위를 만족할 수 있다. 상기 집전체(30)의 접촉부(33a)가 상기 비딩부(21) 상에 용접 가능하게 얹혀지기 위해서는 상기 비율이 대략 1.5% 이상인 것이 바람직하다. OV/PD 비율의 하한값은 비딩부(21)의 압입 깊이의 최대값(PDmax), 곡률 반경(R1)의 최소값(R1,min) 및 접촉부(33a)의 용접을 위해 비딩부(21)의 상면과 접촉해야 하는 접촉부(33a)의 최소폭, 즉 용접 비드(BD)의 최소 폭(Wbead,min)의 길이로부터 결정할 수 있다. 구체적으로, 일 예에서 압입 깊이의 최대값(PDmax)은 10mm이고, 접촉부(33a)의 용접을 위해 필요한 접촉부(33a)의 최소 접촉폭, 즉 용접 비드(BD)의 최소 폭(Wbead,min)의 길이는 0.1mm이고, 곡률 반경(R1)의 최소값(R1,min)은 0.05mm일 수 있다. 이 조건에서, 오버랩 길이(OV)의 최소 값은 0.15mm(= 0.1mm + 0.05mm)이고 PDmax는 10mm이므로, OV/PD 비율의 하한값은 1.5%가 된다. 다른 한편으로, 상기 집전체(30)의 접촉부(33a)가 상기 비딩부(21) 상면의 평탄부 상에 최대 폭으로 접촉될 수 있는 지점은 배터리 하우징의 내측면으로부터 곡률 반경(R2)만큼 이격된 지점이다. 따라서, 접촉부(33a)의 단부가 해당 지점에 위치할 때 오버랩 길이(OV)가 최대가 된다. OV/PD 비율의 상한값은 압입 깊이의 최대값과 곡률 반경(R2)의 최소값(R2,min)으로부터 결정할 수 있다. 구체적으로, 압입 깊이의 최대값은 10mm이고, 곡률 반경(R2)의 최소값은 0.05mm일 수 있다. 이 조건에서, 오버랩 길이(OV)의 최대 값은 9.95mm(= 10mm - 0.05mm)이고 PDmax는 10mm이므로, OV/PD 비율의 상한값은 99.5%가 된다.
본 발명의 또 다른 측면에서, 비딩부(21)와 접촉부(33a)가 용접되는 용접 위치를 W로 정의할 수 있다. 보다 구체적으로, 용접 위치(W)는 비딩부(21)의 최 내측 지점으로부터, 반경 방향으로 최외곽에 위치하는 용접 비드(BD)의 중앙 지점까지의 거리를 의미할 수 있다. 이 때, 용접 위치(W)와 압입 깊이(PD)는 다음 관계식을 만족할 수 있다.
(OVmin-0.5*Wbead,min)/PDmax ≤ W/PD ≤ (OVmax-0.5*Wbead,min)/PDmax
비딩부(21)와 접촉부(33a)의 용접 위치(W)는 접촉부(33a)와 비딩부(21)의 오버랩 길이와 용접 비드(BD)의 최소 폭(Wbead,min)으로부터 결정될 수 있다. 용접 위치(W)는 용접 비드(BD)의 중앙 지점이다.
도 11을 참조하여 설명하면, 접촉부(33a)가 비딩부(21)에 최소한으로 걸쳤을 때의 용접 위치를 W1라고 정의할 수 있다. 이 때의 오버랩 길이는 상술한 바와 같이 OVmin가 된다. 한편, 오버랩 되는 영역 내에서 용접 비드(BD)가 형성되어야 안정적으로 용접이 이루어질 수 있기 때문에, 오버랩 되는 영역 내에 용접 비드(BD)가 완전히 포함되어야 한다. 따라서, 용접 위치(W1)는 OVmin로부터 최소한 0.5*Wbead,min만큼 비딩부(21)의 내 측을 향해 이격된 지점이어야 한다. 따라서 W1은 다음 관계식을 만족할 수 있다.
W1 = OVmin-0.5*Wbead,min
= R1,min+Wbead,min-0.5*Wbead,min
= R1,min+0.5*Wbead,min
한편, W1/PD의 값이 최소가 되기 위해서는, PD값이 최대가 되어야 하므로, W/PD의 최소값은 (OVmin-0.5*Wbead,min)/PDmax이 된다.
다른 측면에서, 도 11을 참조하여 설명하면, 접촉부(33a)가 비딩부(21)에 최대한으로 진입했을 때의 용접 위치를 W2라고 정의할 수 있다. 이 때의 오버랩 길이는 상술한 바와 같이 OVmax가 된다. 한편, 오버랩 되는 영역 내에서 용접 비드(BD)가 형성되어야 안정적으로 용접이 이루어질 수 있기 때문에, 오버랩 되는 영역 내에 용접 비드(BD)가 완전히 포함되어야 한다. 따라서, 용접 위치(W2)는 OVmax로부터 최소한 0.5*Wbead,min만큼 비딩부(21)의 내 측을 향해 이격된 지점이어야 한다. 따라서 W2는 다음 관계식을 만족할 수 있다.
W2 = OVmax-0.5*Wbead,min
= PDmax-R2,min -0.5*Wbead,min
한편, W2/PD의 값이 최대가 되기 위해서는, (PDmax-R2,min -0.5*Wbead,min)를 PD로 나눈 값인 {1-(R2,min +0.5*Wbead,min)/PD}이 최대가 되어야 한다. 즉, PD 값이 최대일 때 W2/PD 값도 최대가 된다. 따라서, W/PD의 최대값은 (OVmin-0.5*Wbead,min)/PDmax이 된다.
일 예에서, 비딩부(21)에 접촉부(33a)를 용접하기 위해 필요한 최소폭은 0.1mm일 수 있다. 즉, 0.1mm의 폭은 레이저 용접으로 형성할 수 있는 용접 비드(BD)의 최소폭에 해당한다. 따라서, 접촉부(33a)가 비딩부(21)의 상면에 최소 폭으로 접촉할 때의 용접 위치(W1)는 비딩부(21)의 최내측 지점으로부터 (R1,min+0.5*0.1mm)만큼 이격된 지점에 해당한다. 여기서, R1,min은 곡률 반경(R1)의 최소값으로서, 예컨대 0.05mm이다. 해당 지점에 레이저를 조사하면, 접촉부(33a)와 비딩부(21)의 접촉면에 0.1mm의 폭을 가진 용접 비드(BD)가 형성된다. 용접 비드(BD)의 폭은 접촉부(33a)의 최소 접촉폭과도 대응한다. 비딩부(21)의 압입 깊이(PD)를 기준으로 용접 위치(W1)는 비딩부(21)의 최내측 지점을 기준으로 0.1mm 이격된 지점이다.
한편, 접촉부(33a)가 비딩부(21)의 상면과 최대폭으로 접촉하는 경우는 접촉부(33a)의 단부가 배터리 하우징의 내측면으로부터 곡률 반경(R2,min)만큼 이격된 지점에 위치하는 경우이다. 여기서, R2,min은 곡률 반경(R2)의 최소값으로서, 예컨대 0.05mm이다. 이 경우, 접촉부(33a)의 끝단과 가장 근접시킬 수 있는 용접 위치(W2)는 접촉부(33a)의 끝단으로부터 0.05mm 이격된 지점이다. 해당 지점에 레이저를 조사하면 0.1mm의 최소폭을 가진 용접 비즈를 접촉부(33a)의 끝단과 맞닿게 형성할 수 있다. 접촉부(33a)가 비딩부(21)의 상면과 최대폭으로 접촉하는 경우의 용접 위치(W2)는 비딩부(21)의 최내측 지점을 기준으로 (PD-R2,min-0.05mm) 만큼 이격된 지점이다. 일 예에서, R2,min이 0.05mm일 때, 용접 위치(W2)의 최대값은 비딩부(21)의 최내측 지점을 기준으로 PD-0.1mm 만큼 이격된 지점이다 .
상술한 바에 따르면, R1,min 및 R2,min이 0.05mm일 때, 압입 깊이(PD)를 기준으로 접촉부(33a)의 용접 위치(W)는 비딩부(21)의 최내측 지점을 기준으로 (0.1mm) 내지 (PD-0.1mm)의 범위에 설정될 수 있다. 압입 깊이(PD)를 기준으로 한 용접 위치(W1)의 비율은 압입 깊이(PD)가 최대값일 때이므로 W1/PD의 최소값(%)은 1%(=100*0.1mm/10mm)이다. 또한, 압입 깊이(PD)를 기준으로 한 용접 위치(W2)의 비율 W1/PD의 최대값은 PD가 최대값일 때이므로 W2/PD의 최대값(%)은 99%(=100*(10mm-0.1mm)/10mm)이다. 요컨대, 압입 깊이(PD)를 기준으로 한 용접 위치 영역은 압입 깊이(PD)를 기준으로 1% 이상 99% 이하인 영역일 수 있다.
한편, 도 11을 참조하여 설명하면, 오버랩 길이가 OV일 때의 상기 비딩부(21)의 최 내측 지점으로부터 반경 방향으로 최외곽에 위치하는 용접 비드(BD)의 중앙 지점까지의 거리를 W 라고 정의 할 수 있다. 이 때, 본 발명의 배터리(1)는 다음 관계식을 만족할 수 있다.
W = OV - 0.5 * Wbead,min
다른 측면에서, 상기 비딩부(21)는 적어도 일부 영역에서 상기 배터리 하우징(20)의 하면과 평행한 평탄 구간(F)을 갖고, 상기 집전체(30)와 접촉하는 상기 비딩부(21)의 상기 평탄 구간(F)의 길이는, OV - R1 일 수 있다. 즉, 도 11을 참조하여 설명하면, 평탄 구간(F)은 오버랩 길이(OV)로부터 비딩부(21)의 곡률 반경(R1)만큼 뺀 길이에 해당한다.
본 발명의 또 다른 측면에서, 오버랩 길이가 OV일 때, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)의 집합인 용접 패턴의 반경 방향 폭 길이는, Wbead,min 이상 OV - R1 이하일 수 있다.
도 11을 참조하여 설명하면, 용접 비드(BD)의 최소 폭이 Wbead,min 이므로, 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴의 반경 방향 폭 길이의 최소 값은 최소한 Wbead,min 이 되어야 한다. 한편, 상기 용접 비드(BD)는 상기 비딩부(21)의 평탄 구간(F) 전체 영역에 걸쳐 복수 개 형성될 수도 있다. 이 때, 복수의 용접 비드(BD)는 일정한 용접 패턴을 형성할 수 있다. 도 11을 참조하면, 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴의 반경 방향 폭 길이의 최대 값은 다음 관계식을 만족할 수 있다.
비딩부(21)와 접촉부(33a) 사이에 형성되는 용접 패턴의 반경 방향 폭 길이의 최대 값
= W - W1 + 용접 비드(BD)의 최소 폭
= [(OV - 0.5*Wbead,min) - (R1 + 0.5*Wbead,min)] + Wbead,min
= OV - R1
본 발명의 또 다른 측면에서, 상기 평탄 구간(F) 길이 대비 상기 용접 패턴의 반경 방향 폭 길이의 비율은 대략 10 ~ 40 % 의 범위를 만족할 수 있다. 바람직하게, 상기 비율은 대략 20 ~ 30 %를 만족할 수 있다. 상기 비율이 상기 범위를 만족할 때, 용접 면적 증가에 따라 용접 강도가 증가될 수 있다. 이에 따라 본 발명에 따른 배터리(1)는 높은 내충격 특성을 확보할 수 있다.
본 발명의 또 다른 측면에서, 상기 전극 조립체(10)의 외경을 지름으로 하는 원의 면적 대비 상기 집전체(30)가 상기 전극 조립체(10)의 상면과 접촉하지 않는 면적의 비율을 집전체(30)의 개구율로 정의할 수 있다. 상기 개구율은 다음 식으로 계산될 수 있다.
개구율(%)
= 1 - (집전체가 전극 조립체 상면과 접촉하는 면적)/(전극 조립체 외경을 지름으로 하는 원의 면적)
= (집전체가 전극 조립체 상면과 접촉하지 않는 면적)/(전극 조립체 외경을 지름으로 하는 원의 면적)
집전체(30)의 개구율은, 예를 들어 대략 30 % 이상 100 % 미만일 수 있고, 바람직하게는 대략 60 % 이상 100 % 미만일 수 있다. 도 8a에 도시된 집전체(30)가 전극 조립체(10) 상에 얹혀져 결합되는 경우를 예로 들어 설명하면, 상기 집전체(30)가 상기 전극 조립체(10)와 접촉하는 영역은, 중심부(31) 및 탭 결합부(32)일 수 있다. 즉, 달리 말하면, 상기 전극 조립체(10)의 외경을 지름으로 하는 원의 면적 대비 상기 집전체(30)가 상기 전극 조립체(10)와 접촉하는 면적의 비율은 대략 70 % 이하일 수 있고, 바람직하게는 대략 40 % 이하일 수 있다. 집전체(30)의 개구율이 상기 범위일 때, 전해액 주액 시 집전체 홀(H2)을 비롯한 집전체(30)의 개구영역을 통해 전해액이 원활하게 전극 조립체(10) 내부로 침투할 수 있다. 즉, 집전체(30)의 개구율이 상기 범위일 때, 전해액이 전극 조립체(10)에 구비된 권취 중심 홀(H1)괴 집전체(30)의 개구 영역을 통해 전극 조립체(10)에 스며들게 되며, 특히 분절편(11a)들의 중첩면들 사이, 그리고 인접하는 분절편(11a)들 사이에 미세한 틈이 있기 때문에, 해당 틈을 통한 모세관 현상에 의해 전해액이 전극 조립체(10)로 원활하게 스며들 수 있다.
다음으로, 도 5를 참조하면, 본 발명의 다른 실시예에 따른 집전체(30)가 나타나 있다. 본 발명의 다른 실시예에 따른 집전체(30)는, 앞서 설명된 도 4a의 집전체(30) 과 비교하여 접촉부(33a)의 형태에 있어서 차이가 있을 뿐, 그 외에는 앞서 설명된 집전체(30)의 구조가 실질적으로 동일하게 적용될 수 있다.
도 5를 참조하면, 일 실시예로서, 상기 접촉부(33a)는 상기 연결부(33b)보다 큰 폭을 가질 수 있다. 예를 들어, 접촉부(33a)는 적어도 일부가 배터리 하우징(20)의 내주면을 따라 연장된 형태를 가질 수 있다. 바람직하게, 상기 접촉부(33a)는, 상기 배터리 하우징(20)의 비딩부를 따라 연장된 호 형태를 가질 수 있다. 또한, 도면에 도시되지는 않았으나, 접촉 면적의 극대화를 위해, 상기 집전체(30)는, 적어도 하나의 하우징 결합부(33) 각각의 접촉부(33a)의 연장된 길이의 합이 배터리 하우징(20)의 내주와 대략 동일하도록 구성될 수도 있다. 이와 같은 실시예에서는, 결합 면적의 극대화로 인한 결합력 향상 및 전기 저항 감소 효과를 가질 수 있다.
다음으로, 도 6을 참조하면, 본 발명의 또 다른 실시예에 따른 집전체(30)가 나타나 있다. 본 발명의 또 다른 실시예에 따른 집전체(30)는, 도 5의 집전체(30) 과 비교하여, 접촉부(33a) 및 연결부(33b)의 형태에 있어서 차이가 있을 뿐, 그 외에는 앞서 설명된 집전체(30)의 구조가 실질적으로 동일하게 적용될 수 있다. 즉, 상기 연결부(33b)는 상기 탭 결합부(32)보다 큰 폭을 가질 수 있다. 또는, 다른 실시 형태로서, 상기 연결부(33b)는 상기 탭 결합부(32)보다 작은 폭을 가질 수도 있다.
도 6을 참조하면, 연결부(33b)는 적어도 일부가 배터리 하우징(20)의 내주면을 따라 연장된 형태를 가질 수 있다. 구체적으로, 상기 접촉부(33a)는, 상기 배터리 하우징(20)의 비딩부를 따라 연장된 호 형태를 가질 수 있고, 상기 연결부(33b)는, 상기 접촉부(33a)를 따라 연장된 호 형태를 가질 수 있다. 이와 같은 구조에 의하면, 도 5에 도시된 집전체(30)에 비해 집전체(30)의 면적이 추가적으로 증가되므로, 전기 저항 감소 효과가 극대화될 수 있다.
한편, 도 6을 참조하면, 상기 집전체(30)는, 도 4a 또는 도 5에 도시된 집전체(30)와는 다르게, 밴딩부(B)를 구비하지 않을 수 있다. 이와 같이 밴딩부(B)를 구비하지 않을 경우, 집전체(30) 제작에 필요한 원재료를 절감할 수 있다. 이에 따라 집전체(30) 제작 비용을 절약할 수 있다.
도 1a을 참조하면, 상기 캡(40)은, 배터리 하우징(20)의 일 측에 형성된 상기 개방부를 커버한다. 상기 캡(40)은, 배터리 하우징(20) 상단에 형성되는 크림핑부(22)에 의해 고정될 수 있다. 이 경우, 고정력의 향상 및 배터리 하우징(20)의 밀폐성 향상을 위해 배터리 하우징(20)과 캡(40) 사이에는 실링 가스켓(G1)이 개재될 수도 있다. 다만, 본 발명에 있어서 캡(40)은 전류의 통로로 기능해야 하는 부품이 아니다. 따라서, 관련 기술 분야에서 잘 알려진 다른 구조의 적용을 통해 배터리 하우징(20)과 캡(40)을 견고히 고정시키고 배터리 하우징(20)의 개방부의 밀폐성을 확보할 수만 있다면, 이러한 실링 가스켓(G1)의 적용이 필수적인 것은 아니다.
한편, 상기 실링 가스켓(G1)이 적용되는 경우를 예시로 들어 설명하면, 상기 실링 가스켓(G1)은, 상기 배터리 하우징(20)의 개방부와 상기 집전체(30) 사이에 개재된 실링 가스켓(G1)으로서, 상기 집전체(30)의 비딩부(21)에 접하는 부분이, 상기 비딩부(21)와 상기 실링 가스켓(G1) 사이에 위치하도록 구성될 수 있다. 상기 실링 가스켓(G1)은, 상기 캡(40)을 감싸는 대략 링 형상을 가질 수 있다. 상기 실링 가스켓(G1)은, 캡(40)의 상면, 하면 및 측면을 동시에 커버할 수 있다. 실링 가스켓(G1)의 부위 중에서 캡(40)의 하면을 커버하는 부위의 반경 방향 길이는, 실링 가스켓(G1)의 부위 중에서 상기 캡(40)의 상면을 커버하는 부위의 반경 방향 길이보다 작거나 같을 수 있다. 실링 가스켓(G1)의 부위 중에서 캡(40)의 하면을 커버하는 부위의 반경 방향 길이가 지나치게 길면, 사이징 공정 중 배터리 하우징(20)을 상하로 압축하는 과정에서 실링 가스켓(G1)이 집전체(30)를 가압하여, 집전체(30)가 손상되거나 배터리 하우징(20)이 손상될 가능성이 있다. 특히, 실링 가스켓(G1)의 부위 중에서 캡(40)의 하면을 커버하는 부위의 반경 방향 길이가 지나치게 길면, 사이징 공정 중 배터리 하우징(20)을 상하로 압축하는 과정에서 실링 가스켓(G1)이 연결부(33b)를 과도하게 가압하여 연결부(33b)의 형태를 변형시키거나 연결부(33b)의 일부를 손상시킬 가능성이 있다. 따라서, 실링 가스켓(G1)의 부위 중에서 캡(40)의 하면을 커버하는 부위의 반경 방향 길이를 일정 수준으로 작게 유지할 필요가 있다.
반면, 실링 가스켓(G1)의 부위 중에서 캡(40)의 상면을 커버하는 부위는, 그 구조적 및 위치적 특성 상 집전체(30)와의 간섭을 일으킬 염려가 없다. 다른 측면에서, 상기 배터리 하우징(20)과 상기 캡(40)은 서로 반드시 절연되어야 할 필요성도 없다. 즉, 실링 가스켓(G1)의 부위 중에서 캡(40)의 상면을 커버하는 부위는, 실링 기능만 만족하면 족하고, 절연 기타의 별도 기능까지 만족하지 않아도 되므로, 그 길이에 대한 제한이 상대적으로 적다.
예를 들면, 도 1a과 같이 실링 가스켓(G1)의 부위 중에서 캡(40)의 하면을 커버하는 부위의 반경 방향 길이가, 실링 가스켓(G1)의 부위 중에서 상기 캡(40)의 상면을 커버하는 부위의 반경 방향 길이와 동일할 수 있다. 또는, 도 2 및 도 3과 같이 실링 가스켓(G1)의 부위 중에서 캡(40)의 하면을 커버하는 부위의 반경 방향 길이는, 실링 가스켓(G1)의 부위 중에서 상기 캡(40)의 상면을 커버하는 부위의 반경 방향 길이보다 작게 형성될 수 있다.
한편, 상기 접촉부(33a)는, 상기 배터리 하우징(20)의 비딩부(21)와 상기 실링 가스켓(G1) 사이에 개재되어 고정될 수 있다. 즉, 상기 접촉부(33a)가 상기 배터리 하우징(20)의 비딩부(21)와 상기 실링 가스켓(G1) 사이에 개재된 상태에서 상기 크림핑부(22)의 크림핑 힘으로 인해 상기 접촉부(33a)가 고정될 수 있다.
이 때, 상기 실링 가스켓(G1)의 두께는, 원주 방향을 따라 가변될 수 있다. 예를 들어, 상기 실링 가스켓(G1)의 두께는, 원주 방향을 따라 증가와 감소를 교차로 반복할 수 있다.
일 예에서, 상기 실링 가스켓(G1)은, 상기 접촉부(33a)와 접촉하는 영역과, 상기 접촉부(33a)와 접촉하지 않는 영역에서 압축률이 동일할 수 있다. 즉, 압축되지 않은 상태에서 이미 실링 가스켓(G1)의 두께가 원주 방향을 따라 가변하도록 구성되어 있을 수 있다.
다른 예로, 상기 실링 가스켓(G1)은, 상기 접촉부(33a)와 접촉하는 영역보다, 상기 접촉부(33a)와 접촉하지 않는 영역에서 더 작은 압축률을 가질 수도 있다. 즉, 압축되지 않은 상태에서 실링 가스켓(G1)은 원주 방향을 따라 일정한 두께를 갖도록 구성되어 있을 수 있고, 추후 크림핑 힘에 의해 압축됨에 따라, 일정 영역에서만 두께가 달라지도록 구성될 수 있다.
또 다른 예로, 상기 실링 가스켓(G1)은, 상기 접촉부(33a)와 접촉하는 영역보다, 상기 접촉부(33a)와 접촉하지 않는 영역에서 더 큰 두께를 가질 수 있다. 즉, 도면에 도시되어 있지는 않지만, 실링 가스켓(G1)은, 상기 접촉부(33a)와 접촉하는 영역에서 압축률이 상대적으로 클 수 있다.
다른 측면에서상기 배터리 하우징(20)의 비딩부(21)와 상기 집전체의 접촉부(33a) 사이에 용접부가 형성될 수도 있다. 예를 들어, 크림핑 힘만으로는 접촉부(33a)의 고정이 확실하게 이루어지지 않을 수 있다. 게다가, 실링 가스켓(G1)이 열에 의해 수축되거나, 크림핑부(22)가 외부로부터 충격을 받아 변형될 경우, 집전체와 배터리 하우징(20) 사이의 결합력이 저하될 가능성이 있다. 따라서, 접촉부(33a)가 상기 배터리 하우징(20)의 비딩부(21) 상에 얹혀진 상태에서 용접을 통해 상기 집전체(30)를 배터리 하우징(20)에 고정할 수 있다. 그 후 접촉부(33a) 상단에 실링 가스켓(G1)에 의해 감싸진 캡(40)을 얹고 크림핑부(22)를 형성함으로써 배터리(1)의 제조 공정을 완성할 수 있다. 이 때, 용접 방법으로는 예를 들면 레이저 용접, 저항 용접, 초음파 용접 등이 가능하나, 용접 방법이 이에 한정되는 것은 아니다. 이와 같이 접촉부(33a)가 비딩부(21)와 실링 가스켓(G1) 사이에 개재됨과 동시에 용접을 통해 비딩부(21)에 결합되는 구조에 의하면, 용접부의 결합력이 증대되며, 장시간의 배터리 거동에도 표면 밀착성을 담보할 수 있다. 따라서 사이클 페이딩(cycle fading) 등의 안전성 문제를 최소화시킬 수 있다.
도 8a 내지 도 10은 접촉부(33a)와 비딩부(21)의 용접 영역을 설명하기 위한 도면이다.
도 8a 내지 도 10을 참조하면, 접촉부(33a)와 비딩부(21) 사이의 용접 영역에는, 용접 비드(BD)가 형성될 수 있다. 예를 들어 도 1a과 같이 상기 비딩부(21) 상면 및 상기 비딩부(21) 하면이 각각 상기 배터리 하우징(20)의 하면과 소정 각도를 이루며 경사진 형태를 가지는 경우에는, 상기 접촉부(33a)가, 상기 비딩부(21)의 경사진 상면 상에 안착될 수 있다. 또는, 예를 들어, 도 2 및 도 3과 같이, 상기 비딩부(21) 상면 및 상기 비딩부(21) 하면이 각각 적어도 일부 영역에서 상기 배터리 하우징(20)의 하면과 평행한 평탄 구간(F)을 포함하는 경우에는, 상기 접촉부(33a)가, 상기 비딩부(21)의 평탄한 상면 상에 안착될 수 있다. 그리고 그 후에, 상기 접촉부(33a)가, 상기 비딩부(21) 상에 용접 결합될 수 있다.
도 11은 접촉부(33a)와 비딩부(21) 사이의 용접 영역에 형성되는 용접 비드(BD)위 위치, 길이 및 폭 등을 설명하기 위한 도면이다.
도 11을 참조하면, 상기 접촉부(33a)는, 상기 비딩부(21)의 평탄한 상면 상에 용접 결합될 수 있다.
도 8a 내지 도 10을 참조하면, 상기 용접 비드(BD)가 복수 개 모이면, 일정한 용접 패턴을 형성할 수 있다. 예를 들어, 도 8a를 참조하면, 복수의 용접 비드(BD)가 모여 대략 직선 형상의 용접 패턴을 형성할 수 있다. 예컨대, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴은, 점 용접이 연결된 선 형태를 가질 수 있다. 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)의 폭은, 대략 0.1 mm 이상일 수 있다. 이는 레이저 기술 고려 시 상기 용접 비드(BD)의 최소 폭이 대략 0.1 mm 이상이기 때문이다.
상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)는, 적어도 하나 이상 형성될 수 있다. 예를 들어, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)는, 원주 방향을 따라 복수 개 형성될 수 있다. 특히, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)는, 동일 접촉부(33a) 내에 복수 개 형성될 수 있다. 예를 들어, 동일 접촉부(33a) 내에 형성된 복수의 용접 비드(BD)는, 동일 접촉부(33a) 내에서 대칭으로 형성될 수 있다. 그리고 동일 접촉부(33a) 내에 형성된 복수의 용접 비드(BD)는, 서로 소정의 각도, 예를 들어 30도 간격을 두고 형성될 수 있다. 구체적으로, 동일 접촉부(33a) 내에 형성된 복수의 용접 비드(BD)는, 동일 접촉부(33a) 내에서 상기 비딩부(21)가 형성하는 원의 중심을 기준으로 30도 이하의 원주각 범위 내에 위치할 수 있다.
상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)는, 원주 방향을 따라 연장되는 직선 형상의 용접 패턴을 형성할 수 있다. 또는, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 비드(BD)는, 원주 방향을 따라 연장되는 호 형상의 용접 패턴을 형성할 수도 있다. 본 발명의 일 실시 형태에 의하면, 상기 접촉부(33a)의 원주 방향 길이는, 상기 탭 결합부(32)의 원주 방향 길이와 동일할 수 있다. 또한, 상기 접촉부(33a)의 원주 방향 길이는, 상기 연결부(33b)의 원주 방향 길이와 동일할 수 있다. 예를 들어, 도 4a에 도시된 것처럼, 탭 결합부(32), 연결부(33b) 및 접촉부(33a)가 동일 폭으로 연장될 수 있다. 바람직하게, 상기 탭 결합부(32), 연결부(33b) 및 접촉부(33a)는 연장 방향을 따라 동일한 폭을 가질 수 있다.
다른 측면에서, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 패턴의 연장 방향과, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴의 연장 방향은, 서로 상이할 수 있다. 바람직하게, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 패턴의 연장 방향과, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴의 연장 방향은, 서로 대략 수직일 수 있다. 도 8a 및 도 8b를 참조하면, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 패턴은 반경 방향을 따라 형성될 수 있다. 한편, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴은 상기 배터리 하우징(20)의 원주 방향을 따라 형성될 수 있다. 즉, 상기 제1 무지부(11)와 상기 탭 결합부(32) 사이에 형성되는 용접 패턴의 연장 방향과, 상기 비딩부(21)와 상기 접촉부(33a) 사이에 형성되는 용접 패턴의 연장 방향은, 서로 대략 수직이 될 수 있다. 이와 같은 구조에 의하면, 상기 집전체(30)와 상기 전극 조립체(10) 사이의 결합 강도가 증가할 수 있다. 즉, 이와 같은 구조에 의하면 집전체(30)가 다양한 방향으로 수행된 용접에 의해 고정되어 있기 때문에 상기 집전체(30)가 특정 방향의 진동 또는 충격을 받더라도 견고하게 고정된 상태를 유지할 수 있다.
본 발명의 다른 실시 형태에 의하면, 상기 접촉부(33a)의 원주 방향 길이는, 상기 탭 결합부(32)의 원주 방향 길이에 비해 상대적으로 길게 형성될 수 있다. 또한, 바람직하게, 상기 접촉부(33a)의 원주 방향 길이는, 상기 연결부(33b)의 원주 방향 길이에 비해 상대적으로 길게 형성될 수 있다. 예를 들어 도 5 및 도 6을 참조하면, 접촉부(33a)의 원주 방향 길이가 탭 결합부(32)의 원주 방향 길이보다 상대적으로 길게 형성되어 있는 것을 확인할 수 있다. 또한, 도 5를 참조하면, 접촉부(33a)의 원주 방향 길이가 연결부(33b)의 원주 방향 길이보다 상대적으로 길게 형성되어 있는 것을 확인할 수 있다. 이와 같이 접촉부(33a)의 원주 방향 길이를 길게 형성함으로써, 집전체(30)의 비딩부(21)와의 결합력을 향상시킬 수 있다. 나아가 접촉부(33a) 및/또는 연결부(33b)의 원주 방향 길이를 길게 형성함으로써 전지의 내부 저항을 감소시킬 수 있다.
한편, 도 5 및 도 6을 참조하면, 상기 접촉부(33a)는, 상기 배터리 하우징의 비딩부(21)를 따라 원주 방향으로 연장되는 호 형태를 가질 수 있다. 보다 구체적으로, 상기 접촉부(33a)는, 상기 연결부(33b)와 상기 접촉부(33a)의 교차 지점으로부터, 원주 방향을 따라 서로 반대 방향으로 연장되는 호 형태를 가질 수 있다.
한편, 도 6을 참조하면, 상기 연결부(33b)도, 상기 접촉부(33a)를 따라 원주 방향으로 연장된 호 형태를 가질 수 있다. 이와 같이 접촉부(33a)가 배터리 하우징의 비딩부(21)를 따라 원주 방향으로 연장되는 호 형태를 가짐으로써, 비딩부(21)와 집전체 사이의 결합력을 향상시킬 수 있다. 보다 바람직하게는, 원주 방향으로 연장된 상기 접촉부(33a)의 길이의 합이, 상기 배터리 하우징의 내주의 길이와 대응되도록 구성될 수 있다. 즉, 도면에 도시되어 있지는 않지만, 상기 집전체(30)는 접촉부(33a)끼리 서로 연결된 링 형상을 가질 수도 있다. 이와 같은 형상에 의하면 비딩부(21)와 집전체(30) 사이의 결합력을 더욱 더 향상시킬 수 있다.
도 12는 배터리 하우징의 내면의 직경과 집전체의 총 직경 사이의 관계를 설명하기 위한 도면이다.
도 12를 참조하여 설명하면, 상기 배터리 하우징의 외면의 직경을 De 라고 하고, 상기 배터리 하우징(20)의 내면의 직경을 Di 라고 하고, 상기 집전체(30)의 총 직경을 d 라고 할 때, De>Di>d의 관계를 만족할 수 있다.
한편, 상기 캡(40)은, 배터리 하우징(20) 내부에 발생된 가스로 인한 내압 증가를 방지하기 위해 형성되는 벤팅부(41)를 구비할 수 있다. 상기 벤팅부(41)는, 캡(40)의 일부에 형성되며 내부 압력이 가해졌을 때 용이하게 파단될 수 있도록 주변 영역보다 구조적으로 취약한 영역에 해당한다. 상기 벤팅부(41)는, 예를 들어 주변 영역과 더 얇은 두께를 갖는 영역일 수 있다.
상기 단자(50)는, 배터리 하우징(20)의 개방부의 반대 편에서 배터리 하우징(20)을 관통하여 전극 조립체(10)의 제2 무지부(12)와 전기적으로 연결된다. 상기 단자(50)는, 배터리 하우징(20)의 하면의 대략 중심부를 관통할 수 있다. 상기 단자(50)는, 예를 들어 제2 무지부(12)에 결합되는 집전체(제2 집전체)(P)와 결합되거나 또는 제2 무지부(12)에 결합되는 리드 탭(미도시)과 결합됨으로써 전극 조립체(10)와 전기적으로 연결될 수 있다. 따라서, 상기 단자(50)는 전극 조립체(10)의 제2 전극과 동일한 극성을 가지며, 제2 전극 단자(T2)로서 기능할 수 있다. 상기 제2 무지부(12)가 양극 탭인 경우, 단자(50)는 양극 단자로서 기능할 수 있다. 바람직하게, 단자(50)는 리벳팅된 구조를 가진다. 단자(50)의 리벳팅 구조가 적용된 배터리는 한 쪽 방향에서 전기적 배선을 수행할 수 있다. 또한, 리벳팅 구조를 가진 단자(50)는 단면적이 커서 저항이 낮으므로 급속 충전에 매우 적합하다.
도 18a 및 도 18b는 본 발명의 일 실시예를 따르는 제2 집전체(P)를 설명하기 위한 도면이다.
본 발명의 다른 측면에서, 도 2 및 도 3을 참조하면, 상기 제2 집전체(P)는, 상기 제2 무지부(12)와 상기 단자(50) 사이에 개재될 수 있다. 한편, 도 18a 및 도 18b를 참조하면, 상기 제2 집전체(P)는, 상기 제2 무지부(12)와 결합되는 탭 결합부(P1); 및 상기 단자(50)와 결합되는 단자 결합부(P2);를 구비한다. 상기 제2 집전체(P)는, 연결부(P3) 및/또는 테두리부(P4)를 더 포함할 수 있다.
본 발명의 일 측면에서, 상기 탭 결합부(P1)는, 복수개가 구비될 수 있다. 바람직하게, 복수의 상기 탭 결합부(P1)는, 서로 동일 간격으로 배치될 수 있다. 복수의 상기 탭 결합부(P1) 각각의 연장 길이는 서로 동일할 수 있다. 상기 단자 결합부(P2)는, 복수의 상기 탭 결합부(P1)에 의해 둘러 싸이도록 배치될 수 있다.
바람직하게, 상기 단자 결합부(P2)는, 전극 조립체(10)의 권취 중심에 형성된 권취 중심 홀(H1)과 대응되는 위치에 배치될 수 있다. 보다 바람직하게, 상기 단자 결합부(P2)는, 상기 전극 조립체(10)의 권취 중심 홀(H1)을 커버할 수 있다. 이와 같은 구조에 의하면, 상기 전극 조립체(10)의 권취 중심 홀(H1)의 상부에 위치하는 단자(50)와 단자 결합부(P2)를 용접 결합시킬 수 있다.
상기 탭 결합부(P1) 및 단자 결합부(P2)는 직접적으로 연결되지 않고 서로 이격되도록 배치될 수 있다. 예를 들어, 탭 결합부(P1) 및 단자 결합부(P2)는 테두리부(P4)에 의해 간접적으로 연결될 수 있다. 이처럼, 본 발명의 일 실시예에 따른 제2 집전체(P)는, 탭 결합부(P1)와 단자 결합부(P2)가 서로 직접 연결되어 있지 않고, 테두리부(P4)를 통해서 연결된 구조를 가짐으로써 배터리(1)에 충격 및/또는 진동이 발생되는 경우 탭 결합부(P1)와 제2 무지부(12) 간의 결합 부위와 단자 결합부(P2)와 단자(50) 간의 결합 부위에 가해지는 충격을 분산시킬 수 있다. 따라서, 본 발명의 제2 집전체(P)는, 외부 충격으로 인한 용접 부위의 파손을 최소화 또는 방지할 수 있다. 본 발명의 제2 집전체(P)는, 외부 충격이 가해졌을 때 테두리부(P4)와 단자 결합부(P2)의 연결 부위에 응력이 집중될 수 있는 구조를 갖는데, 이러한 연결 부위는 부품 간의 결합을 위한 용접부가 형성된 부위가 아니기 때문에 외부 충격으로 인한 용접부 파손에 따른 제품 불량 발생을 방지할 수 있다.
상기 제2 집전체(P)는, 단자 결합부(P2)와 연결되는 연결부(P3)를 더 포함할 수 있다. 상기 연결부(P3)는, 적어도 그 일부가 탭 결합부(P1)와 비교하여 그 폭이 더 작게 형성될 수 있다. 이 경우, 상기 연결부(P3)에서 전기 저항이 증가하여 연결부(P3)를 통해 전류가 흐를 때 다른 부위와 비교하여 더 큰 저항이 발생하게 되며, 이로 인해 과전류 발생 시에 연결부(P3)의 일부가 파단되어 과전류를 차단할 수 있게 된다. 상기 연결부(P3)는 이러한 과전류 차단 기능을 고려하여 그 폭이 적절한 수준으로 조절될 수 있다.
상기 제2 집전체(P)는, 내측에 빈 공간이 형성된 대략 림(rim) 형태를 갖는 테두리부(P4)를 더 포함할 수 있다. 이 경우, 상기 탭 결합부(P1)는, 테두리부(P4)로부터 내측으로 연장되며 제2 무지부(12)와 결합될 수 있다. 본 발명의 도면에서는 상기 테두리부(P4)가 대략 원형의 림 형태를 갖는 경우만으로 도시하고 있으나, 이로써 본 발명이 한정되는 것은 아니다. 상기 테두리부(P4)는, 도시된 것과는 달리 대략 사각의 림 형태 또는 그 밖의 다른 형태를 가질 수도 있는 것이다.
본 발명의 다른 측면에서, 도 18b를 참조하면, 상기 연결부(P3)는, 연결부(P3)의 폭을 부분적으로 감소시키도록 형성되는 노칭부(N)를 구비할 수 있다. 상기 노칭부(N)가 구비되는 경우, 노칭부(N)가 형성된 영역에서의 전기 저항이 증가하게 되고, 이로써 과전류 발생 시에 신속한 전류 차단이 가능하게 된다. 바람직하게, 노칭부(N)의 위치는 적층수 균일구간(도 1d)에 포함될 수 있다. 보다 바람직하게, 노칭부(N)의 위치는 적층수 균일구간 중에서 적층수가 최대로 유지되는 구간에 포함될 수 있다. 이로써, 노칭부(N)가 파단될 때 생기는 부산물이 전극 조립체 내부로 침투하는 것을 확실히 방지할 수 있다.
도 18a 및 도 18b과 함께 도 2 및 도 3을 참조하면, 본 발명의 일 측면에서, 상기 제2 집전체(P)의 상기 단자 결합부(P2)의 중심으로부터 상기 탭 결합부(P1)의 끝단에 이르는 최장 반경은, 상기 집전체(30)의 중심부로부터 상기 탭 결합부(32)의 끝단에 이르는 최장 반경보다 클 수 있다. 예를 들어, 대략 림(rim) 형태를 갖는 테두리부(P4)의 반경은, 상기 집전체(30)의 중심부로부터 상기 탭 결합부(32)의 끝단에 이르는 최장 반경보다 클 수 있다. 이는 비딩부(21)가 배터리 하우징(20)의 내측으로 압입됨에 따라, 상기 집전체(30)의 탭 결합부(32)와 제1 무지부(11)와의 용접 면적이 제한됨에 따른 결과이다.
본 발명의 다른 측면에서, 상기 제2 집전체(P)의 탭 결합부(P1)는, 상기 제2 무지부(12)의 절곡된 단부에 결합되어 있을 수 있다. 즉, 제2 집전체(P)의 탭 결합부(P1)는 상기 제2 무지부(12)에 구비된 복수의 분절편이 절곡된 절곡면 상에 용접 결합될 수 있다. 바람직하게, 용접 영역은 반경 방향을 따라 적층수 균일구간(도 1d)과 적어도 50% 이상 중첩될 수 있으며, 중첩 비율은 클수록 바람직하다. 보다 바람직하게, 용접 영역은 반경 방향을 따라 적층수 균일구간 중 중첩 레이어 수가 최대인 구간과 적어도 50% 이상 중첩될 수 있으며, 중첩 비율이 클수록 보다 바람직하다. 이러한 용접 조건은 집전체(30)에 대해서도 실질적으로 동일하게 적용될 수 있다.
본 발명의 또 다른 측면에서, 상기 제2 집전체(P)의 탭 결합부(P1)와, 상기 제2 무지부(12)의 절곡된 단부를 결합하는 용접 영역이 더 형성되어 있고, 상기 제2 집전체(P)의 단자 결합부(P2)의 중심으로부터 상기 용접 영역에 이르는 거리는, 상기 집전체(30)의 중심부로부터 탭 결합부(32) 상의 용접 영역에 이르는 거리와 동일하거나, 대략 5% 이하의 거리 편차를 가질 수 있다. 본 발명의 또 다른 측면에서, 상기 제2 집전체(P)의 용접 영역은, 상기 집전체(30)의 탭 결합부(32) 상의 용접 영역보다 긴 길이를 가질 수 있다.
일 예에서, 단자(50)의 평탄부(도 1a 참조)와 제2 집전체(P)가 레이저로 용접되고 원호 패턴의 형태로 연속적 또는 불연속적인 라인으로 용접될 경우 원호 용접 패턴의 직경은 2mm 이상, 바람직하게는 4mm 이상인 것이 바람직하다. 원호 용접 패턴의 직경이 해당 조건을 충족할 경우 용접부 인장 2kgf 이상으로 증가시켜 충분한 용접 강도의 확보가 가능하다.
다른 예에서, 단자(50)의 평탄부와 제2 집전체(P)가 초음파로 용접되고 원형 패턴으로 용접될 경우 원형 용접 패턴의 직경은 2mm 이상인 것이 바람직하다. 원형 용접 패턴의 직경이 해당 조건을 충족할 경우 용접부 인장 2kgf 이상으로 증가시켜 충분한 용접 강도의 확보가 가능하다.
용접 가능 영역에 해당하는 단자(50)의 평탄부의 직경은 3mm 내지 14mm의 범위에서 조절될 수 있다. 단자(50)의 평탄부의 반경이 3mm 보다 작으면, 레이저 용접 도구, 초음파 용접 도구 등을 이용하여 2mm 이상의 직경을 가진 용접 패턴을 형성하는데 어려움이 있다. 또한, 단자(50)의 평탄부의 반경이 14mm를 초과하면 단자(50)의 사이즈가 지나치게 커져서 배터리 하우징(20) 바닥의 외부면이 차지하는 면적이 감소하여 외부면을 통해 전기적 연결 부품(버스바)을 연결하는데 어려움이 있다.
바람직하게, 용접부 인장 2kgf 이상으로 확보하기 위한 용접 패턴의 직경이 2mm 이상이고 용접 가능 영역의 직경은 3mm 내지 14mm이므로, 용접 가능 영역의 면적 대비 용접 패턴의 면적 비율은 2.04(100*π12/π72)% 내지 44.4(100*π12/π1.52)%일 수 있다.
단자(50)의 극성 및 기능을 고려할 때, 단자(50)는 이와 반대 극성을 갖는 배터리 하우징(20)과는 절연 상태를 유지해야 한다. 이를 위해, 단자(50)와 배터리 하우징(20) 사이에는 절연 가스켓(G2)이 적용될 수 있다. 이와는 달리, 단자(50)의 표면 중 일부에 절연성 물질로 코팅을 함으로써 절연을 실현할 수도 있다.
마찬가지 이유에서, 제2 무지부(12) 및/또는 집전체(제2 집전체)(P)는 배터리 하우징(20)과 절연 상태를 유지해야 한다. 이를 위해, 상기 제2 무지부(12)와 배터리 하우징(20) 사이 및/또는 집전체(제2 집전체)(P)와 배터리 하우징(20) 사이에는 인슐레이터(S)가 개재될 수 있다. 상기 인슐레이터(S)가 적용되는 경우, 제2 무지부(12)와의 전기적 연결을 위해 단자(50)는 인슐레이터(S)를 관통할 수 있다.
바람직하게, 인슐레이터(S)와 배터리 하우징(20) 바닥의 내부면은 서로 밀착될 수 있다. 여기서, '밀착'은 육안 상으로 확인되는 공간(갭)이 없음을 의미한다. 공간(갭)을 없애기 위해, 배터리 하우징(20) 바닥의 내부면으로부터 단자(50)의 평탄부까지 이르는 거리는 인슐레이터(S)의 두께와 같거나 이보다 약간(slightly) 작은 값을 가질 수 있다.
한편, 본 발명에 있어서, 배터리 하우징(20)의 표면 전체는 제1 전극 단자(T1)로 기능할 수 있다. 예를 들어, 상기 제1 무지부(11)가 음극 탭인 경우, 제1 전극 단자(T1)는 음극 단자일 수 있다. 본 발명에 따른 배터리(1)는, 이처럼 배터리 하우징(20)의 개방부 반대 편에 위치하는 하면 상에 노출되는 단자(50) 및 배터리 하우징(20)의 하면 중 단자(50)가 차지하는 영역을 제외한 나머지 영역을 각각 제2 전극 단자(T2) 및 제1 전극 단자(T1)으로 이용할 수 있는 구조를 갖는다. 따라서, 본 발명에 따른 배터리(1)는, 복수의 배터리(1)를 전기적으로 연결함에 있어서 일 방향에서 양극/음극을 모두 연결할 수 있어 전기적 연결 구조를 간소화 할 수 있다. 또한, 본 발명에 따른 배터리(1)는, 배터리 하우징(20)의 개방부 반대 편에 위치한 하면의 대부분을 전극 단자로 이용 가능한 구조를 가지므로, 전기적 연결을 위한 부품을 용접할 수 있는 충분한 면적의 확보가 가능한 장점을 갖는다.
또 다른 측면에서, 전극 조립체(10)를 구성하는 전극은 무지부(11) 절곡의 용이성을 위해 분절 구조를 가질 수 있다.
도 14를 참조하면, 전극판은 도전성 재질의 포일로 이루어진 쉬트 형상의 제1 전극 집전체와, 제1 전극 집전체의 적어도 일면에 형성된 활물질층과, 제1 전극의 장변 단부에 활물질이 코팅되지 않은 제1 무지부(11)를 포함한다.
바람직하게, 제1 무지부(11)는 노칭 가공된 복수의 분절편(11a)을 포함할 수 있다. 복수의 분절편(11a)은 복수의 그룹을 이루며, 각 그룹에 속한 분절편(11a)들은 높이(Y방향 길이) 및/또는 폭(X 방향 길이) 및/또는 이격 피치가 동일할 수 있다. 각 그룹에 속한 분절편(11a)들의 수는 도시된 것보다 증가 또는 감소될 수 있다. 분절편(11a)은 적어도 하나의 직선 및/또는 적어도 하나의 곡선이 조합된 기하학적 도형의 형상을 가진다. 바람직하게, 분절편(11a)은 사다리꼴 모양일 수 있는데, 사각형, 평형사변형, 반원형 또는 반타원형 등으로 얼마든지 변형될 수 있다.
바람직하게, 분절편(11a)의 높이는 전극 조립체의 권취 방향과 평행한 일 방향을 따라, 예를 들어 코어측으로부터 외주측으로 가면서 단계적으로 증가할 수 있다. 또한, 코어측과 인접한 코어측 무지부(11')는 분절편(11a)을 포함하지 않을 수 있고, 코어측 무지부(11')의 높이는 다른 무지부 영역보다 작을 수 있다. 또한, 외주측과 인접한 외주측 무지부(11'')는 분절편(11a)을 포함하지 않을 수 있고, 외주측 무지부(11'')의 높이는 다른 무지부 영역보다 작을 수 있다.
선택적으로, 전극판은 활물질층과 제1 무지부(11) 사이의 경계를 덮는 절연 코팅층(11b)을 포함할 수 있다. 절연 코팅층(11b)은 절연성이 있는 고분자 수지를 포함하며, 무기물 필러를 선택적으로 더 포함할 수 있다. 절연 코팅층(11b)은 활물질층의 단부가 분리막을 통해 대향하고 있는 반대 극성의 활물질층과 접촉되는 것을 방지하고, 분절편(11a)의 절곡을 구조적으로 지지하는 역할을 한다. 이를 위해, 전극판이 전극 조립체(10)로 권취되었을 때, 절연 코팅층(11b)은 적어도 일부가 분리막으로부터 외부로 노출되는 것이 바람직하다.
도 15는 본 발명의 실시예에 따른 전극판의 무지부 분절구조를 제1 전극 집전체 및 제2 전극 집전체에 적용한 전극 조립체(10)를 길이 방향(Y)을 따라 자른 단면도이다.
도 15를 참조하면, 전극 조립체(10)는 권취 공법으로 제조할 수 있다. 하부로 돌출된 제2 무지부(12)는 제2 전극 집전체로부터 연장된 것이고, 상부로 돌출된 제1 무지부(11)는 제1 전극 집전체로부터 연장된 것이다.
무지부(11, 12)의 높이가 변화하는 패턴은 개략적으로 도시하였다. 즉, 단면이 잘리는 위치에 따라서 무지부(11, 12)의 높이는 불규칙하게 변화할 수 있다. 일 예로, 사다리꼴 분절편(11a)의 사이드 부분이 잘리면 단면에서의 무지부 높이는 분절편(11a)의 높이보다 낮아진다. 따라서, 전극 조립체(10)의 단면을 나타낸 도면에 도시된 무지부(11, 12)의 높이는 각 권취 턴에 포함된 무지부 높이의 평균에 대응한다고 이해하여야 한다.
무지부(11, 12)는 도 16a 및 도 16b에 도시된 것과 같이 전극 조립체(10)의 반경 방향을 따라, 예를 들어 외주측으로부터 코어측으로 절곡될 수 있다. 도 15에서, 절곡되는 부분(101)은 점선 박스로 표시하였다. 무지부(11, 12)가 절곡될 때, 반경 반향으로 인접하고 있는 분절편(11a)들이 여러 겹으로 서로 중첩되면서 전극 조립체(10)의 상부와 하부에 절곡면(102)이 형성된다. 이 때, 코어측 무지부(도 14의 11')는 높이가 낮아서 절곡되지 않으며, 가장 안쪽에서 절곡되는 분절편(11a)의 높이(h)는 분절편(11a) 구조가 없는 코어측 무지부(11')에 의해 형성된 권취 영역의 반경 방향 길이(r) 보다 같거나 작다. 따라서, 전극 조립체(10)의 코어에 있는 권취 중심 홀(H1)이 절곡된 분절편(11a)들에 의해 폐쇄되지 않는다. 권취 중심 홀(H1)이 폐쇄되지 않으면, 전해질 주액 공정에 어려움이 없고, 전해액 주액 효율이 향상된다. 또한, 권취 중심 홀(H1)을 통해 용접 도구를 삽입하여 단자(50)와 제2 집전체(P)의 용접을 용이하게 수행할 수 있다.
도 17은 본 발명의 실시예에 따른 배터리(1)들을 버스바(150)를 이용하여 전기적으로 연결한 상태를 나타낸 도면이다.
도 17을 참조하면, 복수의 배터리(1)들은 버스바(150)를 이용하여 상부에서 직렬 및 병렬로 연결될 수 있다. 배터리(1)들의 수는 배터리 팩(3)의 용량을 고려하여 증감될 수 있다.
각 배터리(1)에 있어서, 단자(50)는 양의 극성을 가지고, 배터리 하우징(20) 바닥의 외부면은 음의 극성을 가질 수 있고, 그 반대의 경우도 가능하다.
바람직하게, 복수의 배터리(1)들은 복수의 열과 행으로 배치될 수 있다. 열은 지면을 기준으로 상하 방향이고 행은 지면을 기준으로 좌우 방향이다. 또한, 공간 효율성을 최대화하기 위해, 배터리(1)들은 최밀 팩킹 구조(closest packing structure)로 배치될 수 있다. 최밀 팩킹 구조는 단자(50)들의 중심을 서로 연결했을 때 정삼각형이 만들어질 때 형성된다.
바람직하게, 버스바(150)는 인접하는 배터리(1)들의 상부, 바람직하게는 단자(50) 사이에 배치될 수 있다. 일 예에서, 버스바(150)는 인접하는 열 사이에 배치될 수 있다. 대안적으로, 버스바(150)는 인접하는 행 사이에 배치될 수 있다.
바람직하게, 버스바(150)는 동일 열에 배치된 배터리들을 서로 병렬로 연결시키고, 인접하는 2개의 열에 배치된 배터리들을 서로 직렬로 연결시킨다.
바람직하게, 버스바(150)는 직렬 및 병렬 연결을 위해 바디부(151), 복수의 제1버스바 단자(152) 및 복수의 제2버스바 단자(153)를 포함할 수 있다.
바디부(151)는 배터리(1)들의 열을 따라 연장될 수 있다. 대안적으로, 바디부(151)는 배터리(1)들의 열을 따라 연장되되, 지그재그 형상과 같이 규칙적으로 절곡될 수 있다.
복수의 제1버스바 단자(152)는 바디부(151)의 일측으로부터 각 배터리(1)의 단자(50)를 향해 돌출 연장되고 단자(50)에 전기적으로 결합될 수 있다. 단자(50)와의 전기적 결합은 레이저 용접, 초음파 용접 등을 통해 이루어질 수 있다. 또한, 복수의 제2버스바 단자(153)는 바디부(151)의 타측으로부터 각 배터리(1)의 배터리 하우징(20) 바닥의 외부면을 향해 돌출 연장되고, 외부면에 전기적으로 결합될 수 있다. 외부면과의 전기적 결합은 레이저 용접, 초음파 용접으로 이루어질 수 있다.
바람직하게, 바디부(151), 복수의 제1버스바 단자(152) 및 복수의 제2버스바 단자(153)는 하나의 도전성 금속판으로 이루어질 수 있다. 금속판은 알루미늄판 또는 구리판일 수 있는데, 본 발명이 이에 한정되는 것은 아니다. 변형 예에서, 바디부(151), 복수의 제1버스바 단자(152) 및 복수의 제2버스바 단자(153)는 별개의 피스 단위로 제작한 후 서로 용접 등을 통해 결합될 수 있다.
본 발명에 따른 배터리(1)는 양의 극성을 가진 단자(50)와 음의 극성을 가진 배터리 하우징(20) 바닥의 외부면이 동일한 방향에 위치하고 있으므로 버스바(150)를 이용하여 배터리(1)들의 전기적 연결을 용이하게 구현할 수 있다.
또한, 배터리(1)의 단자(50)와 외부면은 면적이 넓으므로 버스바(150)의 결합 면적을 충분히 확보하여 배터리(1)를 포함하는 배터리 팩의 저항을 충분히 낮출 수 있다.
한편, 본 발명의 배터리(1)는, 상술한 바와 같이, 부품 간의 접촉 면적 확대, 전류 패스(path)의 다중화, 전류 패스 길이의 최소화 등을 통해 저항이 최소화된 구조를 갖는다. 제품의 완성 후 양극과 음극 사이, 즉 단자(50)의 상면과 배터리 하우징(20)의 폐쇄부의 외부면 사이에서의 저항 측정기를 통해 측정되는 배터리(1)의 AC 저항은 급속 충전에 적합한 0.5 밀리오옴(miliohm) 내지 4 밀리오옴(miliohm), 바람직하게는 1 밀리오옴(miliohm) 내지 4 밀리오옴(miliohm)일 수 있다.
본 발명에서, 배터리는, 예를 들어 폼 팩터의 비(배터리의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Φ)의 비로 정의됨)가 대략 0.4 보다 큰 배터리일 수 있다. 여기서, 폼 팩터란, 배터리의 직경 및 높이를 나타내는 값을 의미한다.
바람직하게, 원통형 배터리의 직경은 40mm 내지 50mm일 수 있고, 높이는 60mm 내지 130mm일 수 있다. 일 실시예에 따른 원통형 배터리는, 예를 들어 46110 배터리, 4875 배터리, 48110 배터리, 4880 배터리, 4680 배터리일 수 있다. 폼 팩터를 나타내는 수치에서, 앞의 숫자 2개는 배터리의 직경을 나타내고, 그 다음 숫자 2개는 배터리의 높이를 나타낸다.
최근 배터리가 전기 자동차에 적용됨에 따라 배터리의 폼 팩터가 종래의 1865, 2170 등보다 증가하고 있다. 폼 팩터의 증가는 에너지 밀도의 증가, 열 폭주에 대한 안전성 증대, 그리고 냉각 효율의 향상을 가져온다.
배터리의 에너지 밀도는 폼 팩터의 증가와 함께 배터리 하우징 내부의 불필요한 공간이 최소화될 때 더욱 증가될 수 있다. 본 발명에 따른 배터리는, 집전체와 배터리 하우징과의 결합 부위의 결합력을 향상시키면서도 배터리의 용량을 증대시킬 수 있으면서도 저항을 낮출 수 있는 최적 구조를 가진다.
본 발명의 일 실시예에 따른 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 46mm이고, 그 높이는 대략 110mm이고, 폼 팩터의 비는 대략 0.418인 배터리일 수 있다.
다른 실시예에 따른 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 48mm이고, 그 높이는 대략 75mm이고, 폼 팩터의 비는 대략 0.640인 배터리일 수 있다.
또 다른 실시예에 따른 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 48mm이고, 그 높이는 대략 110mm이고, 폼 팩터의 비는 대략 0.436인 배터리일 수 있다.
또 다른 실시예에 따른 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 48mm이고, 그 높이는 대략 80mm이고, 폼 팩터의 비는 대략 0.600인 배터리일 수 있다.
또 다른 실시예에 따른 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 46mm이고, 그 높이는 대략 80mm이고, 폼 팩터의 비는 대략 0.575인 배터리일 수 있다.
종래에는, 폼 팩터의 비가 대략 0.4 이하인 배터리들이 이용되었다. 즉, 종래에는, 예를 들어 1865 배터리, 2170 배터리 등이 이용되었다. 1865 배터리의 경우, 그 직경이 대략 18mm이고, 그 높이는 대략 65mm이고, 폼 팩터의 비는 대략 0.277이다. 2170 배터리의 경우, 그 직경이 대략 21mm이고, 그 높이는 대략 70mm이고, 폼 팩터의 비는 대략 0.300이다.
본 발명의 실시에에 따른 배터리는 배터리 팩에 포함될 수 있고, 배터리 팩은 자동차에 탑재될 수 있다. 도 19를 참조하면, 본 발명의 일 실시예에 따른 배터리 팩(3)은, 상술한 바와 같은 본 발명의 일 실시예에 따른 복수의 배터리(1)가 전기적으로 연결된 이차전지 집합체 및 이를 수용하는 팩 하우징(2)을 포함한다. 본 발명의 도면에서는, 도면 도시의 편의상 전기적 연결을 위한 버스바, 냉각 유닛, 전력 단자 등의 부품은 생략되었다.
도 20을 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는, 예를 들어 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있으며, 본 발명의 일 실시예에 따른 배터리 팩(3)을 포함한다. 상기 자동차(5)는, 본 발명의 일 실시예에 따른 배터리 팩(3)으로부터 전력을 공급 받아 동작한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
5: 자동차
3: 배터리 팩
2: 팩 하우징
1: 배터리
10: 전극 조립체
11: 제1 무지부
11a : 분절편
12: 제2 무지부
101 : 절곡되는 부분
102 : 절곡면
H1: 권취 중심 홀
20: 배터리 하우징
21: 비딩부
22: 크림핑부
30: 집전체(제1 집전체)
H2: 집전체 홀
31: 중심부
32: 탭 결합부
33: 하우징 결합부
33a: 접촉부
33b: 연결부
40: 캡
41: 벤팅부
G1: 실링 가스켓
50: 단자
G2: 절연 가스켓
T1: 제1 전극 단자
T2: 제2 전극 단자
P: 집전체(제2 집전체)
P1: 탭 결합부
P2: 단자 결합부
P3: 연결부
P4: 테두리부
S: 인슐레이터
F: 평탄 구간
BD: 용접 비드
PD: 압입 깊이
OV: 오버랩 길이

Claims (111)

  1. 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 권취 축을 중심으로 권취됨으로써 코어와 외주면을 정의한 전극 조립체로서, 상기 제1 전극은, 권취 방향을 따라 활물질층이 코팅되어 있는 활물질부와, 활물질층이 코팅되지 않은 제1 무지부를 포함하고, 상기 제1 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되는 전극 조립체;
    일 측에 형성된 개방부를 통해 상기 전극 조립체를 수용하는 배터리 하우징;
    상기 제1 무지부와 결합되는 탭 결합부 및 상기 탭 결합부로부터 연장되어 상기 배터리 하우징의 내면 상에 전기적으로 결합되는 하우징 결합부를 포함하는 집전체; 및
    상기 개방부를 커버하는 캡;
    를 포함하는 배터리.
  2. 제1항에 있어서,
    상기 배터리 하우징은,
    상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 구비하는 것을 특징으로 하는 배터리.
  3. 제2항에 있어서,
    상기 배터리 하우징은,
    상기 비딩부보다 상기 개방부를 향하는 측에 형성되며 상기 개방부를 향해 연장 및 절곡된 크림핑부를 구비하는 것을 특징으로 하는 배터리.
  4. 제3항에 있어서,
    상기 하우징 결합부는,
    상기 크림핑부에 의해 압착 고정되는 것을 특징으로 하는 배터리.
  5. 제2항에 있어서,
    상기 하우징 결합부는,
    상기 배터리 하우징의 비딩부 상에 결합되는 접촉부; 및
    상기 탭 결합부와 상기 접촉부 사이를 연결하는 연결부;
    를 포함하는 것을 특징으로 하는 배터리.
  6. 제5항에 있어서,
    상기 연결부는,
    상기 접촉부의 일 단부와 상기 탭 결합부의 일 단부를 연결한 가상의 직선을 기준으로 상방으로 볼록한 구조를 갖는 것을 특징으로 하는 배터리.
  7. 제5항에 있어서,
    상기 연결부는,
    상기 비딩부보다 상방으로 융기된 구조를 갖는 것을 특징으로 하는 배터리.
  8. 제6항에 있어서,
    상기 연결부는,
    적어도 하나의 절곡부를 구비하는 것을 특징으로 하는 배터리.
  9. 제8항에 있어서,
    상기 절곡부는,
    상기 접촉부의 일 단부와 상기 탭 결합부의 일 단부를 연결한 가상의 직선의 중심을 지나며 배터리 하우징의 바닥면과 평행한 가상의 평면보다 상방에 위치하는 것을 특징으로 하는 배터리.
  10. 제8항에 있어서,
    상기 적어도 하나의 절곡부는,
    상기 배터리 하우징의 길이 방향 축을 따라 보았을 때, 서로 겹치지 않도록,
    둔각으로 절곡되어 있는 것을 특징으로 하는 배터리.
  11. 제8항에 있어서,
    상기 접촉부와 상기 연결부의 경계 지점은,
    둔각으로 절곡되어 있는 것을 특징으로 하는 배터리.
  12. 제10항에 있어서,
    상기 연결부는,
    상기 연결부가 상기 비딩부를 향해 갈수록, 그 경사가 단계적 또는 점진적으로 감소하는 것을 특징으로 하는 배터리.
  13. 제5항에 있어서,
    상기 탭 결합부와 상기 연결부 사이의 각도는,
    0 ~ 90 도 사이인 것을 특징으로 하는 배터리.
  14. 제5항에 있어서,
    상기 연결부는, 상기 캡를 지지하는 것을 특징으로 하는 배터리.
  15. 제5항에 있어서,
    상기 탭 결합부와 상기 접촉부는,
    동일 높이에 위치하는 것을 특징으로 하는 배터리.
  16. 제5항에 있어서,
    상기 접촉부는,
    상기 개방부 측을 향하는 상기 비딩부의 상면과 결합되는 평탄면을 구비하는 것을 특징으로 하는 배터리.
  17. 제5항에 있어서,
    상기 비딩부는,
    압입되어 내입된 최 내측 지점을 중심으로 상방에 위치한 비딩부 상면; 및
    압입되어 내입된 최 내측 지점을 중심으로 하방에 위치한 비딩부 하면;
    을 포함하는 것을 특징으로 하는 배터리.
  18. 제17항에 있어서,
    상기 집전체의 적어도 하나의 탭 결합부는,
    상기 비딩부 하면보다 더 하측에 위치하는 것을 특징으로 하는 배터리.
  19. 제17항에 있어서,
    상기 비딩부 상면 및 상기 비딩부 하면 중 적어도 어느 하나는,
    상기 배터리 하우징의 하면과 소정 각도를 이루며 경사진 것을 특징으로 하는 배터리.
  20. 제19항에 있어서,
    상기 접촉부는,
    상기 비딩부의 경사진 상면 상에 안착되는 것을 특징으로 하는 배터리.
  21. 제17항에 있어서,
    상기 비딩부 상면 및 상기 비딩부 하면 중 적어도 어느 하나는,
    적어도 일부 영역에서 상기 배터리 하우징의 하면과 평행한 것을 특징으로 하는 배터리.
  22. 제17항에 있어서,
    상기 비딩부 상면 및 상기 비딩부 하면은,
    상기 비딩부의 최 내측 지점을 배터리 하우징의 바닥면과 평행하게 통과하는 가상의 기준 평면을 기준으로 비대칭인 것을 특징으로 하는 배터리.
  23. 제21항에 있어서,
    상기 접촉부는,
    상기 비딩부의 평탄한 상면 상에 안착되는 것을 특징으로 하는 배터리.
  24. 제2항에 있어서,
    상기 비딩부의 압입 깊이를 PD라고 하고,
    상기 비딩부의 곡률 반경의 최소값을 R1,min 이라고 하고,
    용접 비드 폭의 최소값을 Wbead,min 이라고 하고,
    상기 비딩부와 상기 배터리 하우징의 내 측면 사이의 경계 영역에서의 곡률 반경의 최소값을 R2,min 라고 했을 때,
    PD ≥ R1,min+R2,min+Wbead,min
    를 만족하는 것을 특징으로 하는 배터리.
  25. 제2항에 있어서,
    상기 비딩부의 압입 깊이는,
    0.2 ~ 10 mm 인 것을 특징으로 하는 배터리.
  26. 제5항에 있어서,
    상기 비딩부의 압입 깊이를 PD라고 하고, 상기 압입 깊이의 최대 값을 PDmax라고 하고,
    상기 접촉부의 단부로부터 상기 비딩부의 최 내측 지점을 지나는 수직선 까지의 최단 거리인 오버랩 길이를 OV라고 하고,
    상기 비딩부의 곡률 반경의 최소값을 R1,min 이라고 하고,
    용접 비드 폭의 최소값을 Wbead,min 이라고 하고,
    상기 비딩부와 상기 배터리 하우징의 내 측면 사이의 경계 영역에서의 곡률 반경의 최소값을 R2,min 라고 했을 때,
    (R1,min+Wbead,min)/PDmax ≤ OV/PD ≤ (PDmax-R2,min)/PDmax
    를 만족하는 것을 특징으로 하는 배터리.
  27. 제5항에 있어서,
    상기 접촉부는,
    상기 비딩부 상에 용접 결합되는 것을 특징으로 하는 배터리.
  28. 제21항에 있어서,
    상기 접촉부는,
    상기 비딩부의 평탄한 상면 상에 용접 결합되는 것을 특징으로 하는 배터리.
  29. 제28항에 있어서,
    상기 접촉부와 상기 비딩부 사이의 용접 영역은,
    상기 비딩부의 평탄한 상면보다 좁게 형성되어 있는 것을 특징으로 하는 배터리.
  30. 제5항에 있어서,
    상기 비딩부의 압입 깊이를 PD라고 하고, 상기 압입 깊이의 최대 값을 PDmax라고 하고,
    상기 비딩부의 최 내측 지점으로부터, 반경 방향으로 최외곽에 위치하는 용접 비드의 중앙 지점까지의 거리를 W라고 하고,
    상기 접촉부의 단부로부터 상기 비딩부의 최 내측 지점을 지나는 수직선 까지의 최단 거리인 오버랩 길이를 OV라고 하고, OV의 최소값을 OVmin 이라고 하고 OV의 최대값을 OVmax 라고 하고,
    용접 비드 폭의 최소값을 Wbead,min 이라고 했을 때,
    (OVmin-0.5*Wbead,min)/PDmax ≤ W/PD ≤ (OVmax-0.5*Wbead,min)/PDmax
    를 만족하는 것을 특징으로 하는 배터리.
  31. 제28항에 있어서,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는 적어도 하나 이상이고,
    상기 적어도 하나의 용접 비드는, 원주 방향을 따라 연장되는 직선 형상의 용접 패턴을 형성하는 것을 특징으로 하는 배터리.
  32. 제28항에 있어서,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는 적어도 하나 이상이고,
    상기 적어도 하나의 용접 비드는, 원주 방향을 따라 연장되는 호 형상의 용접 패턴을 형성하는 것을 특징으로 하는 배터리.
  33. 제28항에 있어서,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는, 용접 패턴을 형성하고,
    상기 용접 패턴은 점 용접이 연결된 선 형태를 갖는 것을 특징으로 하는 배터리.
  34. 제28항에 있어서,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드는,
    동일 접촉부 내에 복수 개 형성되는 것을 특징으로 하는 배터리.
  35. 제28항에 있어서,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 비드의 폭은,
    0.1 mm 이상인 것을 특징으로 하는 배터리.
  36. 제31항에 있어서,
    상기 제1 무지부와 상기 탭 결합부는 상기 전극 조립체의 반경 방향을 따라
    용접 결합되는 것을 특징으로 하는 배터리.
  37. 제1항에 있어서,
    상기 탭 결합부는,
    상기 배터리 하우징의 하면과 평행한 상태로 상기 제1 무지부에 용접 결합되는 것을 특징으로 하는 배터리.
  38. 제36항에 있어서,
    상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 복수의 용접 비드는,
    상기 전극 조립체의 반경 방향을 따라 연장된 직선 형상의 용접 패턴을 형성하는 것을 특징으로 하는 배터리.
  39. 제 36항에 있어서,
    상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 용접 비드는, 용접 패턴을 형성하고,
    상기 용접 패턴은, 점 용접이 연결된 선 형태를 갖는 것을 특징으로 하는 배터리.
  40. 제36항에 있어서,
    상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 용접 비드의 폭은,
    0.1 mm 이상인 것을 특징으로 하는 배터리.
  41. 제1항에 있어서,
    상기 제1 무지부의 적어도 일부는, 상기 전극 조립체의 권취 방향을 따라 분할된 복수의 분절편을 포함하고,
    상기 복수의 분절편은, 상기 전극 조립체의 반경 방향을 따라 절곡되어 절곡면을 형성하는 것을 특징으로 하는 배터리.
  42. 제41항에 있어서,
    상기 복수의 분절편은,
    상기 전극 조립체의 반경 방향을 따라 여러 겹으로 중첩되면서 절곡면을 형성하고,
    상기 절곡면은, 싱기 전극 조립체의 외주측으로부터 코어측으로 가면서 분절편의 중첩 레이어 수가 최대치까지 순차적으로 증가하는 적층수 증가구간과 중첩 레이어 수가 최대치가 된 반경 지점부터 최내측 분절편이 존재하는 반경 지점까지의 적층수 균일구간을 포함하는 것을 특징으로 하는 배터리.
  43. 제42항에 있어서,
    상기 탭 결합부는,
    상기 적층수 균일구간과 중첩되도록 상기 절곡면에 결합되는 것을 특징으로 하는 배터리.
  44. 제43항에 있어서,
    상기 적층수 균일구간의 중첩 레이어 수는 10 이상인 것을 특징으로 하는 배터리.
  45. 제44항에 있어서,
    상기 탭 결합부는,
    상기 절곡면에 용접되고, 상기 탭 결합부의 용접 영역은 상기 전극 조립체의 반경 방향을 따라 상기 적층수 균일구간과 적어도 50%이상 중첩되는 것을 특징으로 하는 배터리.
  46. 제1항에 있어서,
    상기 집전체는,
    상기 집전체의 중심부에 원형의 집전체 홀을 구비하는 것을 특징으로 하는 배터리.
  47. 제46항에 있어서,
    상기 집전체 홀의 직경은,
    상기 전극 조립체의 코어에 구비된 권취 중심 홀의 직경보다 크거나 같은 것을 특징으로 하는 배터리.
  48. 제5항에 있어서,
    상기 배터리는,
    상기 배터리 하우징과 상기 캡 사이에 구비된 실링 가스켓을 포함하는 것을 특징으로 하는 배터리.
  49. 제48항에 있어서,
    상기 접촉부는,
    상기 실링 가스켓과 상기 비딩부 사이에 개재되는 것을 특징으로 하는 배터리.
  50. 제48항에 있어서,
    상기 실링 가스켓의 두께는,
    원주 방향을 따라 가변하는 것을 특징으로 하는 배터리.
  51. 제48항에 있어서,
    상기 실링 가스켓의 두께는,
    원주 방향을 따라 증가와 감소를 교차로 반복하는 것을 특징으로 하는 배터리.
  52. 제50항에 있어서,
    상기 실링 가스켓은,
    상기 접촉부와 접촉하는 영역과, 상기 접촉부와 접촉하지 않는 영역에서 압축률이 동일한 것을 특징으로 하는 배터리.
  53. 제50항에 있어서,
    상기 실링 가스켓은,
    상기 접촉부와 접촉하는 영역보다, 상기 접촉부와 접촉하지 않는 영역에서 더 작은 압축률을 갖는 것을 특징으로 하는 배터리.
  54. 제48항에 있어서,
    상기 실링 가스켓은,
    상기 접촉부와 접촉하는 영역보다, 상기 접촉부와 접촉하지 않는 영역에서 더 큰 두께를 갖는 것을 특징으로 하는 배터리.
  55. 제1항에 있어서,
    집전체는,
    상기 탭 결합부와 상기 하우징 결합부가 상호 연결된 상태로 반경 방향을 따라 연장된 레그 구조를 갖는 것을 특징으로 하는 배터리.
  56. 제55항에 있어서,
    상기 레그 구조는 복수 개 구비되는 것을 특징으로 하는 배터리.
  57. 제55항에 있어서,
    상기 레그 구조는,
    상기 집전체의 중심부를 기준으로 방사형, 십자형 또는 이들이 조합된 형태로 배치되는 것을 특징으로 하는 배터리.
  58. 제56항에 있어서,
    상기 하우징 결합부가 복수 개 구비되고,
    복수의 상기 하우징 결합부는, 상호 연결되어 일체로 형성된 것을 특징으로 하는 배터리.
  59. 제5항에 있어서,
    상기 연결부는,
    연장 방향이 적어도 1회 전환되는 밴딩부를 적어도 하나 구비하는 것을 특징으로 하는 배터리.
  60. 제59항에 있어서,
    상기 밴딩부의 돌출된 최 외측 지점은,
    상기 비딩부의 최 내측 지점과 소정 간격 이격되어 있는 것을 특징으로 하는 배터리.
  61. 제59항에 있어서,
    상기 밴딩부에 의해,
    상기 접촉부와 상기 연결부 사이의 각도가 예각이 되는 것을 특징으로 하는 배터리.
  62. 제59항에 있어서,
    상기 연결부는,
    상기 밴딩부에 의해 상방으로 탄성 바이어스 되어 있는 것을 특징으로 하는 배터리.
  63. 제5항에 있어서,
    상기 접촉부의 원주 방향 길이는,
    상기 탭 결합부의 원주 방향 길이와 동일한 것을 특징으로 하는 배터리.
  64. 제5항에 있어서,
    상기 접촉부의 원주 방향 길이는,
    상기 연결부의 원주 방향 길이와 동일한 것을 특징으로 하는 배터리.
  65. 제5항에 있어서,
    상기 접촉부의 원주 방향 길이는,
    상기 탭 결합부의 원주 방향 길이에 비해 상대적으로 긴 것을 특징으로 하는 배터리.
  66. 제5항에 있어서,
    상기 접촉부의 원주 방향 길이는,
    상기 연결부의 원주 방향 길이에 비해 상대적으로 긴 것을 특징으로 하는 배터리.
  67. 제5항에 있어서,
    상기 접촉부는,
    상기 배터리 하우징의 비딩부를 따라 원주 방향으로 연장되는 호 형태를 갖는 것을 특징으로 하는 배터리.
  68. 제5항에 있어서,
    상기 접촉부는,
    상기 연결부와 상기 접촉부의 교차 지점으로부터, 원주 방향을 따라 서로 반대 방향으로 연장되는 호 형태를 갖는 것을 특징으로 하는 배터리.
  69. 제67항에 있어서,
    원주 방향으로 연장된 상기 접촉부의 길이의 합은,
    상기 배터리 하우징의 내주의 길이와 대응되는 것을 특징으로 하는 배터리.
  70. 제67항에 있어서,
    상기 연결부는,
    상기 접촉부를 따라 원주 방향으로 연장된 호 형태를 갖는 것을 특징으로 하는 배터리.
  71. 제2항에 있어서,
    상기 탭 결합부와 상기 하우징 결합부의 경계 영역은,
    상기 하우징 결합부의 단부가 상기 비딩부를 향하도록 절곡되어 있는 것을 특징으로 하는 배터리.
  72. 제5항에 있어서,
    상기 접촉부와 상기 연결부 사이의 연결 부위는,
    절곡되어 있는 것을 특징으로 하는 배터리.
  73. 제5항에 있어서,
    상기 접촉부와 상기 연결부 사이의 연결 부위는,
    상기 비딩부의 내측 표면과 대응되는 상보적 형상을 갖는 것을 특징으로 하는 배터리.
  74. 제5항에 있어서,
    상기 접촉부와 상기 연결부 사이의 연결 부위는,
    상기 비딩부의 내측 표면과 정합되는 형상을 가진 채로 상기 비딩부와 결합되는 것을 특징으로 하는 배터리.
  75. 제1항에 있어서,
    상기 탭 결합부와 상기 하우징 결합부의 경계 영역은,
    상기 배터리 하우징에 형성된 비딩부의 최 내측 지점보다 더 내측에 위치하는 것을 특징으로 하는 배터리.
  76. 제2항에 있어서,
    상기 배터리 하우징의 길이 방향 축을 따라 보았을 때,
    상기 탭 결합부는 상기 비딩부에 의해 중첩되지 않는 것을 특징으로 하는 배터리.
  77. 제1항에 있어서,
    상기 배터리는,
    상기 제2 전극은 장변 단부에 활물질층이 코팅되지 않으며 상기 분리막의 외부로 노출된 제2 무지부를 포함하며, 상기 제2 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되고,
    상기 개방부의 반대 편에 구비되며 상기 제2 무지부와 전기적으로 연결되는 단자;를 포함하는 것을 특징으로 하는 배터리.
  78. 제77항에 있어서,
    상기 제2 무지부와, 상기 단자 사이에 형성되어 있고,
    상기 제2 무지부와 결합되는 탭 결합부;
    및 상기 단자와 결합되는 단자 결합부;
    를 구비한 제2 집전체를 더 포함하는 것을 특징으로 하는 배터리.
  79. 제78항에 있어서,
    상기 단자 결합부는,
    상기 전극 조립체의 권취 중심 홀을 커버하는 것을 특징으로 하는 배터리.
  80. 제79항에 있어서,
    상기 제2 집전체의 상기 단자 결합부의 중심으로부터 상기 탭 결합부의 끝단에 이르는 최장 반경은,
    상기 집전체의 중심부로부터 상기 탭 결합부의 끝단에 이르는 최장 반경보다 큰 것을 특징으로 하는 배터리.
  81. 제78항에 있어서,
    상기 제2 집전체의 탭 결합부는,
    상기 제2 무지부의 절곡된 단부에 결합되어 있는 것을 특징으로 하는 배터리.
  82. 제81항에 있어서,
    상기 제2 집전체의 탭 결합부와, 상기 제2 무지부의 절곡된 단부를 결합하는 용접 영역이 더 형성되어 있고,
    상기 제2 집전체의 단자 결합부의 중심으로부터 상기 용접 영역에 이르는 거리는, 상기 집전체의 중심부로부터 탭 결합부 상의 용접 영역에 이르는 거리와 동일하거나, 5% 이하의 거리 편차를 갖는 것을 특징으로 하는 배터리.
  83. 제82항에 있어서,
    상기 제2 집전체의 용접 영역은,
    상기 집전체의 탭 결합부 상의 용접 영역보다 긴 길이를 갖는 것을 특징으로 하는 배터리.
  84. 제1항에 있어서,
    상기 탭 결합부 상에는 전해액 주입을 위한 하나 이상의 홀이 형성되어 있는 것을 특징으로 하는 배터리.
  85. 제1항에 있어서,
    상기 배터리의 직경을 높이로 나눈 폼 팩터의 비가 0.4 보다 큰 것을 특징으로 하는 배터리.
  86. 제1항에 있어서,
    양극과 음극 사이에서 측정된 저항이 4miliohm 이하인 것을 특징으로 하는 배터리.
  87. 제1항 내지 제86항 중 어느 한 항에 따른 배터리를 포함하는 배터리 팩.
  88. 제87항에 있어서,
    복수의 배터리는 소정 수의 열로 배열되고,
    각 배터리의 단자와 배터리 하우징 바닥의 외부면은 상부를 향하도록 배치되는 것을 특징으로 하는 배터리 팩.
  89. 제88항에 있어서,
    복수의 배터리를 직렬 및 병렬로 연결하는 복수의 버스바를 포함하고,
    각 버스바는 인접하는 배터리의 상부에 배치되고,
    각 버스바는,
    인접하는 단자 사이에서 연장되는 바디부;
    상기 바디부의 일측으로 연장되어 상기 일측에 위치한 배터리의 전극 단자에 전기적으로 결합하는 복수의 제1버스바 단자; 및
    상기 바디부의 타측으로 연장되어 상기 타측에 위치한 배터리의 배터리 하우징 바닥의 외부면에 전기적으로 결합하는 복수의 제2버스바 단자를 포함하는 것을 특징으로 하는 배터리 팩.
  90. 제87항에 따른 배터리 팩을 포함하는 자동차.
  91. 전극 조립체의 제1 무지부와 결합되는 적어도 하나의 탭 결합부; 및
    상기 탭 결합부로부터 연장되어 배터리 하우징의 비딩부 상에 전기적으로 결합되는 적어도 하나의 하우징 결합부를 포함하는 것을 특징으로 하는 집전체.
  92. 쉬트 형상을 가진 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가진 전극 조립체로서, 상기 제1 전극은 장변 단부에 활물질층이 코팅되지 않으며 상기 분리막의 외부로 노출된 제1 무지부를 포함하고, 상기 제1 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용되는 전극 조립체;
    일 측에 형성된 개방부를 통해 상기 전극 조립체를 수용하는 배터리 하우징;
    상기 제1 무지부 및 상기 배터리 하우징의 내면과 전기적으로 결합되는 집전체; 및
    상기 배터리 하우징의 개방부와 상기 집전체 사이에 개재된 실링 가스켓;
    을 포함하고,
    상기 집전체가 상기 배터리 하우징의 내면에 접하는 부분이, 상기 배터리 하우징의 내면과 상기 실링 가스켓 사이에 개재된 것을 특징으로 하는 배터리.
  93. 제92항에 있어서,
    상기 배터리 하우징은,
    상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 구비하는 것을 특징으로 하는 배터리.
  94. 제38항에 있어서,
    상기 제1 무지부와 상기 탭 결합부 사이에 형성되는 용접 패턴의 연장 방향과,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 패턴의 연장 방향은,
    서로 수직인 것을 특징으로 하는 배터리.
  95. 제3항에 있어서,
    상기 비딩부의 최 내측 지점은,
    상기 크림핑부의 말단 지점보다,
    반경 방향으로 더 내측에 위치하는 것을 특징으로 하는 배터리.
  96. 제48항에 있어서,
    상기 실링 가스켓은 상기 캡를 감싸며,
    상기 실링 가스켓의 부위 중에서 상기 캡의 하면을 커버하는 부위의 반경 방향 길이는, 상기 실링 가스켓의 부위 중에서 상기 캡의 상면을 커버하는 부위의 반경 방향 길이보다 작은 것을 특징으로 하는 배터리.
  97. 제41항에 있어서,
    상기 탭 결합부의 반경 방향 총 길이를 T라고 하고,
    상기 전극 조립체의 외경을 JR이라고 하고,
    상기 전극 조립체의 최외곽에 배치된 분절편의 높이를 F라고 했을 때,
    JR - 2*F ≤ T < JR
    를 만족하는 것을 특징으로 하는 배터리.
  98. 제30항에 있어서,
    상기 비딩부의 최 내측 지점으로부터 반경 방향으로 최외곽에 위치하는 용접 비드의 중앙 지점까지의 거리의 최소 값을 W1라고 하고,
    오버랩 길이가 OV일 때의 상기 비딩부의 최 내측 지점으로부터 반경 방향으로 최외곽에 위치하는 용접 비드의 중앙 지점까지의 거리를 W라고 했을 때,
    W1 = R1 + 0.5 * Wbead,min
    W = OV - 0.5 * Wbead,min
    를 만족하는 것을 특징으로 하는 배터리.
  99. 제30항에 있어서,
    상기 비딩부는 적어도 일부 영역에서 상기 배터리 하우징의 하면과 평행한 평탄 구간을 갖고,
    상기 집전체와 접촉하는 상기 비딩부의 상기 평탄 구간의 길이는,
    오버랩 길이가 OV이고,
    상기 비딩부의 곡률 반경이 R1일 때,
    OV - R1 인 것을 특징으로 하는 배터리.
  100. 제99항에 있어서,
    상기 비딩부와 상기 접촉부 사이에 형성되는 용접 패턴의 반경 방향 폭 길이는,
    Wbead,min 이상 OV - R1 이하인 것을 특징으로 하는 배터리.
  101. 제100항에 있어서,
    상기 평탄 구간 길이 대비 상기 용접 패턴의 반경 방향 폭 길이의 비율은,
    10 ~ 40 % 의 범위를 만족하는 것을 특징으로 하는 배터리.
  102. 제1항에 있어서,
    상기 전극 조립체의 외경을 지름으로 하는 원의 면적 대비 상기 집전체가 상기 전극 조립체의 상면과 접촉하지 않는 면적의 비율은,
    30% 이상 100 % 미만인 것을 특징으로 하는 배터리.
  103. 제1항에 있어서,
    상기 전극 조립체의 외경을 지름으로 하는 원의 면적 대비 상기 집전체가 상기 전극 조립체와 접촉하지 않는 면적의 비율은,
    60% 이상 100 % 미만인 것을 특징으로 하는 배터리.
  104. 제46항에 있어서,
    상기 집전체 홀의 직경은,
    상기 전극 조립체의 코어에 구비된 권취 중심 홀의 직경보다 작은 것을 특징으로 하는 배터리.
  105. 제104항에 있어서,
    상기 권취 중심 홀의 직경을 R3 이라고 할 때,
    상기 집전체 홀의 직경은 0.5*R3 이상 R3 미만인 것을 특징으로 하는 배터리.
  106. 제104항에 있어서,
    상기 권취 중심 홀의 직경을 R3이라고 할 때,
    상기 집전체 홀의 직경은 0.7*R3 이상 R3 미만인 것을 특징으로 하는 배터리.
  107. 제5항에 있어서,
    상기 연결부는 반경 방향 및 권취 축방향으로 연장되는 것을 특징으로 하는 배터리.
  108. 제5항에 있어서,
    상기 탭 결합부, 연결부 및 접촉부는 연장 방향을 따라 동일한 폭을 갖는 것을 특징으로 하는 배터리.
  109. 제5항에 있어서,
    상기 접촉부는 상기 연결부보다 큰 폭을 갖는 것을 특징으로 하는 배터리.
  110. 제5항에 있어서,
    상기 연결부는 상기 탭 결합부보다 작은 폭을 갖는 것을 특징으로 하는 배터리.
  111. 제5항에 있어서,
    상기 연결부는 상기 탭 결합부보다 큰 폭을 갖는 것을 특징으로 하는 배터리.
PCT/KR2022/001008 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차 WO2022158860A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3204067A CA3204067A1 (en) 2021-01-19 2022-01-19 Battery and current collector applied thereto, and battery pack and vehicle including the battery
JP2023528469A JP2023551128A (ja) 2021-01-19 2022-01-19 バッテリー及びそれに適用される集電体、並びにそのバッテリーを含むバッテリーパック及び自動車

Applications Claiming Priority (64)

Application Number Priority Date Filing Date Title
KR10-2021-0007278 2021-01-19
KR20210007278 2021-01-19
KR20210022891 2021-02-19
KR20210022894 2021-02-19
KR10-2021-0022897 2021-02-19
KR10-2021-0022894 2021-02-19
KR10-2021-0022881 2021-02-19
KR20210022881 2021-02-19
KR20210022897 2021-02-19
KR10-2021-0022891 2021-02-19
KR10-2021-0024424 2021-02-23
KR20210024424 2021-02-23
KR20210030291 2021-03-08
KR10-2021-0030300 2021-03-08
KR20210030300 2021-03-08
KR10-2021-0030291 2021-03-08
KR20210046798 2021-04-09
KR10-2021-0046798 2021-04-09
KR10-2021-0058183 2021-05-04
KR20210058183 2021-05-04
KR10-2021-0077046 2021-06-14
KR20210077046 2021-06-14
KR10-2021-0084326 2021-06-28
KR20210084326 2021-06-28
KR20210131225 2021-10-01
KR10-2021-0131207 2021-10-01
KR20210131205 2021-10-01
KR20210131208 2021-10-01
KR20210131215 2021-10-01
KR10-2021-0131205 2021-10-01
KR20210131207 2021-10-01
KR10-2021-0131208 2021-10-01
KR10-2021-0131225 2021-10-01
KR10-2021-0131215 2021-10-01
KR10-2021-0137001 2021-10-14
KR20210137001 2021-10-14
KR10-2021-0137856 2021-10-15
KR1020210137856A KR20220105112A (ko) 2021-01-19 2021-10-15 원통형 이차전지, 그리고 이를 포함하는 배터리 팩 및 자동차
KR20210142196 2021-10-22
KR10-2021-0142196 2021-10-22
KR20210153472 2021-11-09
KR10-2021-0153472 2021-11-09
KR10-2021-0160823 2021-11-19
KR20210160823 2021-11-19
KR10-2021-0163809 2021-11-24
KR20210163809 2021-11-24
KR10-2021-0165866 2021-11-26
KR20210165866 2021-11-26
KR20210172446 2021-12-03
KR10-2021-0172446 2021-12-03
KR20210177091 2021-12-10
KR10-2021-0177091 2021-12-10
KR10-2021-0194612 2021-12-31
KR10-2021-0194572 2021-12-31
KR10-2021-0194610 2021-12-31
KR20210194612 2021-12-31
KR1020210194593A KR20220105118A (ko) 2021-01-19 2021-12-31 원통형 배터리 셀, 그리고 이를 포함하는 배터리 팩 및 자동차
KR10-2021-0194611 2021-12-31
KR20210194611 2021-12-31
KR10-2021-0194593 2021-12-31
KR20210194572 2021-12-31
KR20210194610 2021-12-31
KR10-2022-0001802 2022-01-05
KR20220001802 2022-01-05

Publications (2)

Publication Number Publication Date
WO2022158860A2 true WO2022158860A2 (ko) 2022-07-28
WO2022158860A3 WO2022158860A3 (ko) 2022-09-15

Family

ID=79730080

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/KR2022/001010 WO2022158862A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001012 WO2022158864A2 (ko) 2021-01-19 2022-01-19 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차
PCT/KR2022/001011 WO2022158863A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001007 WO2022158859A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001008 WO2022158860A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001006 WO2022158858A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001009 WO2022158861A2 (ko) 2021-01-19 2022-01-19 전지 및 이에 적용되는 집전체, 그리고 이러한 전지를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001005 WO2022158857A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/KR2022/001010 WO2022158862A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001012 WO2022158864A2 (ko) 2021-01-19 2022-01-19 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차
PCT/KR2022/001011 WO2022158863A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001007 WO2022158859A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이를 포함하는 배터리 팩 및 자동차

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/KR2022/001006 WO2022158858A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001009 WO2022158861A2 (ko) 2021-01-19 2022-01-19 전지 및 이에 적용되는 집전체, 그리고 이러한 전지를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001005 WO2022158857A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차

Country Status (11)

Country Link
US (8) US20240136674A1 (ko)
EP (16) EP4047725B1 (ko)
JP (8) JP2023551128A (ko)
KR (17) KR102446797B1 (ko)
CN (16) CN217239510U (ko)
CA (8) CA3204066A1 (ko)
DE (8) DE202022002772U1 (ko)
ES (3) ES2978042T3 (ko)
HU (4) HUE065665T2 (ko)
PL (4) PL4044358T3 (ko)
WO (8) WO2022158862A2 (ko)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047725B1 (en) 2021-01-19 2024-01-10 LG Energy Solution, Ltd. Battery, and battery pack and vehicle including the same
SE544360C2 (en) 2021-04-22 2022-04-19 Northvolt Ab Cylindrical secondary cell
SE2150506A1 (en) * 2021-04-22 2022-10-23 Northvolt Ab A cylindrical secondary cell
CN219040512U (zh) * 2021-07-06 2023-05-16 江苏时代新能源科技有限公司 电池单体、电池、用电设备及电池单体的制造设备
WO2023068494A1 (ko) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
US20240258664A1 (en) * 2021-10-29 2024-08-01 Lg Energy Solution, Ltd. Cylindrical battery cell, battery pack, vehicle and current collector plate
KR102577169B1 (ko) * 2021-12-02 2023-09-11 삼성에스디아이 주식회사 원통형 이차 전지
KR20230111855A (ko) * 2022-01-19 2023-07-26 삼성에스디아이 주식회사 이차 전지
IT202200003536A1 (it) * 2022-02-25 2023-08-25 Gd Spa Metodo di assemblaggio di una batteria elettrica
IT202200003533A1 (it) * 2022-02-25 2023-08-25 Gd Spa Batteria elettrica
DE102022115671A1 (de) 2022-06-23 2023-12-28 Bayerische Motoren Werke Aktiengesellschaft Speicherzelle für einen elektrischen Energiespeicher, insbesondere eines Kraftfahrzeugs, elektrischer Energiespeicher sowie Verfahren zum Herstellen einer Speicherzelle
KR20240024034A (ko) * 2022-08-16 2024-02-23 주식회사 엘지에너지솔루션 초음파 용접 장치 및 초음파 용접 시스템
WO2024043767A1 (ko) * 2022-08-26 2024-02-29 주식회사 엘지에너지솔루션 압력 센서를 포함하는 원통형 배터리, 스웰링 압력 모니터링 장치 및 이를 포함하는 배터리 관리 시스템
WO2024045058A1 (zh) * 2022-08-31 2024-03-07 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
EP4336632A1 (de) * 2022-09-07 2024-03-13 VARTA Microbattery GmbH Energiespeicherelement und verfahren zum herstellen eines solchen energiespeicherelements
WO2024057631A1 (ja) * 2022-09-14 2024-03-21 パナソニックエナジー株式会社 電池
KR102586883B1 (ko) * 2022-09-15 2023-10-10 삼성에스디아이 주식회사 원통형 이차전지
SE2251078A1 (en) * 2022-09-16 2024-03-17 Northvolt Ab A secondary cell
KR102559655B1 (ko) * 2022-09-21 2023-07-24 삼성에스디아이 주식회사 이차전지
CN115275529B (zh) * 2022-09-27 2022-12-09 楚能新能源股份有限公司 圆柱型锂离子电池及其制备工艺
KR102670692B1 (ko) * 2022-10-04 2024-05-30 삼성에스디아이 주식회사 원통형 이차 전지
KR102619896B1 (ko) * 2022-10-04 2024-01-02 삼성에스디아이 주식회사 원통형 이차 전지
KR20240047319A (ko) * 2022-10-04 2024-04-12 주식회사 엘지에너지솔루션 원통형 이차전지, 그리고 이를 포함하는 배터리 팩 및 자동차
KR102559656B1 (ko) * 2022-10-06 2023-07-24 삼성에스디아이 주식회사 이차전지
CN115295860B (zh) * 2022-10-09 2022-12-20 深圳海润新能源科技有限公司 二次电池的制备方法、二次电池及电池模组
CN115621629A (zh) * 2022-10-13 2023-01-17 中创新航科技股份有限公司 圆柱电池
CN115472970A (zh) * 2022-10-13 2022-12-13 中创新航科技股份有限公司 圆柱电池
CN115395146A (zh) * 2022-10-13 2022-11-25 中创新航科技股份有限公司 圆柱电池
CN115483488A (zh) * 2022-10-13 2022-12-16 中创新航科技股份有限公司 圆柱电池
KR102586886B1 (ko) * 2022-10-26 2023-10-10 삼성에스디아이 주식회사 원통형 이차 전지
KR102570308B1 (ko) * 2022-10-27 2023-08-24 삼성에스디아이 주식회사 원통형 이차 전지
WO2024091065A1 (ko) * 2022-10-27 2024-05-02 주식회사 엘지에너지솔루션 전지 캔과 캡의 용접 구조 및 이를 적용한 배터리 셀
KR20240061226A (ko) 2022-10-31 2024-05-08 주식회사 엘지에너지솔루션 이차 전지
WO2024101903A1 (ko) * 2022-11-08 2024-05-16 주식회사 엘지에너지솔루션 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024101898A1 (ko) * 2022-11-11 2024-05-16 주식회사 엘지에너지솔루션 배터리 셀, 배터리 팩 및 이를 포함하는 자동차
KR20240072732A (ko) * 2022-11-17 2024-05-24 주식회사 엘지에너지솔루션 젤리롤, 이차 전지, 배터리 팩 및 자동차
WO2024112110A1 (ko) * 2022-11-22 2024-05-30 주식회사 엘지에너지솔루션 배터리 셀, 배터리 팩 및 이를 포함하는 자동차
KR102614640B1 (ko) * 2022-12-06 2023-12-15 삼성에스디아이 주식회사 원통형 이차 전지
CN115566373B (zh) * 2022-12-07 2023-03-03 楚能新能源股份有限公司 一种错位型的全极耳极片、卷绕电芯和圆柱电池
CN218827495U (zh) * 2022-12-14 2023-04-07 中创新航科技股份有限公司 电池包
WO2024136465A1 (ko) * 2022-12-20 2024-06-27 주식회사 엘지에너지솔루션 양극 및 이를 포함하는 리튬 이차 전지
KR20240100285A (ko) 2022-12-22 2024-07-01 주식회사 엘지에너지솔루션 원통형 리튬 이차전지
WO2024133482A1 (en) * 2022-12-23 2024-06-27 Northvolt Ab Cylindrical battery cell comprising a lid closure
WO2024133544A1 (en) * 2022-12-23 2024-06-27 Northvolt Ab Secondary cell
KR20240101501A (ko) * 2022-12-23 2024-07-02 주식회사 엘지에너지솔루션 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩
KR20240101490A (ko) * 2022-12-23 2024-07-02 주식회사 엘지에너지솔루션 전해액 주입 오링 및 이를 이용한 원통형 배터리 제조 방법
WO2024136118A1 (ko) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 배터리 셀, 배터리 팩 및 이를 포함하는 자동차
WO2024133557A1 (en) * 2022-12-23 2024-06-27 Northvolt Ab Secondary cell
SE2251580A1 (en) * 2022-12-23 2023-09-18 Northvolt Ab Secondary cell
KR20240102905A (ko) * 2022-12-26 2024-07-03 주식회사 엘지에너지솔루션 전극조립체, 및 이를 포함하는 이차 전지, 배터리 팩 및 운송 수단
KR20240103101A (ko) * 2022-12-26 2024-07-04 주식회사 엘지에너지솔루션 젤리-롤형 전극조립체, 이차전지, 배터리 팩 및 자동차
WO2024143874A1 (ko) * 2022-12-28 2024-07-04 주식회사 엘지에너지솔루션 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
CN115799653A (zh) * 2022-12-29 2023-03-14 蜂巢能源科技股份有限公司 电芯、模组及电池包
KR102637571B1 (ko) * 2023-01-02 2024-02-16 삼성에스디아이 주식회사 이차전지
WO2024162118A1 (ja) * 2023-01-31 2024-08-08 パナソニックIpマネジメント株式会社 蓄電装置
DE102023105811A1 (de) 2023-03-09 2024-09-12 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Speicherzelle, Fortbewegungsmittel und Verfahren zur Herstellung einer Komponente einer elektrochemischen Speicherzelle
DE102023105812A1 (de) 2023-03-09 2024-09-12 Bayerische Motoren Werke Aktiengesellschaft Fortbewegungsmittel, elektrochemische Zelle und Verfahren zur Herstellung der elektrochemischen Zelle
WO2024197452A1 (zh) * 2023-03-24 2024-10-03 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
JP2024138228A (ja) * 2023-03-26 2024-10-08 三星エスディアイ株式会社 バッテリ
EP4439809A1 (en) * 2023-03-29 2024-10-02 Bayerische Motoren Werke Aktiengesellschaft Electrode for a cylindrical electrochemical energy storage cell
WO2024205269A1 (ko) * 2023-03-30 2024-10-03 에스케이온 주식회사 배터리 셀 및 배터리 장치
WO2024210242A1 (ko) * 2023-04-07 2024-10-10 주식회사 엘지에너지솔루션 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
KR102604971B1 (ko) * 2023-08-04 2023-11-23 (주)금양 애노드 집전체
KR102597478B1 (ko) * 2023-08-08 2023-11-02 (주)금양 캐소드 집전체
CN116722321A (zh) * 2023-08-10 2023-09-08 宁德时代新能源科技股份有限公司 电极组件、电池单体及其装配方法、电池包、用电装置
CN116864909B (zh) * 2023-09-01 2024-01-26 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2094491A5 (ko) 1970-06-23 1972-02-04 Accumulateurs Fixes
US4794773A (en) 1987-07-29 1989-01-03 Monarch Machine Tool Company Method of measuring camber
US5576113A (en) * 1993-06-04 1996-11-19 Katayama Special Industries, Ltd. Battery can, sheet for forming battery can, and method for manufacturing sheet
JP2897104B2 (ja) * 1994-06-03 1999-05-31 古河電池株式会社 密閉型アルカリ蓄電池の製造方法
JPH10106532A (ja) * 1996-09-30 1998-04-24 Sanyo Electric Co Ltd 密閉型蓄電池
JP3260675B2 (ja) * 1997-10-14 2002-02-25 日本碍子株式会社 リチウム二次電池
JP4479013B2 (ja) * 1998-02-13 2010-06-09 株式会社ジーエス・ユアサコーポレーション 円筒形電池
JP3588264B2 (ja) 1999-02-22 2004-11-10 三洋電機株式会社 二次電池
JP2001028274A (ja) * 1999-02-24 2001-01-30 Sanyo Electric Co Ltd 電気エネルギー蓄積素子
DE10027001C2 (de) 1999-06-01 2002-10-24 Nec Corp Sekundärbatterie mit einem nichtwässrigen Elektrolyten und Verfahren zur Herstellung dieser
JP3252846B2 (ja) * 1999-06-01 2002-02-04 日本電気株式会社 非水電解液二次電池およびその製造方法
FR2796205B1 (fr) 1999-07-08 2001-10-05 Cit Alcatel Accumulateur electrochimique etanche comportant un dispositif de reprise de courant en aluminium
KR100325861B1 (ko) * 1999-10-27 2002-03-07 김순택 밀폐전지
JP2001148238A (ja) 1999-11-19 2001-05-29 Sony Corp 2次電池
KR100349908B1 (ko) * 1999-12-15 2002-08-22 삼성에스디아이 주식회사 각형 밀폐전지
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2002289170A (ja) 2001-03-27 2002-10-04 Toshiba Battery Co Ltd アルカリ二次電池
DE10144281A1 (de) 2001-09-08 2003-03-27 Nbt Gmbh Galvanisches Element mit Wickelektrodensatz
CN1320682C (zh) 2002-03-08 2007-06-06 居永明 可反复充放电的锂离子动力电池及其制造方法
JP4401634B2 (ja) * 2002-09-04 2010-01-20 パナソニック株式会社 蓄電池およびその製造方法
JP4654575B2 (ja) 2003-10-27 2011-03-23 パナソニック株式会社 円筒形電池とそれを用いた電池間接続構造
JP5030379B2 (ja) 2003-12-24 2012-09-19 パナソニック株式会社 電極群からなる捲回形電気化学素子および電池
CN1309105C (zh) 2003-12-24 2007-04-04 松下电器产业株式会社 卷式电化学元件用极板组和电池
CN2681364Y (zh) 2004-02-27 2005-02-23 何策衡 具有极组负极封装的充电电池
KR100536253B1 (ko) * 2004-03-24 2005-12-12 삼성에스디아이 주식회사 이차 전지
KR100599793B1 (ko) * 2004-05-19 2006-07-13 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR100599792B1 (ko) 2004-05-19 2006-07-13 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체 및 집전판
KR100599749B1 (ko) * 2004-06-23 2006-07-12 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR20050121914A (ko) * 2004-06-23 2005-12-28 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
CN101010818B (zh) 2004-07-28 2011-06-08 株式会社杰士汤浅 密封电池及其制造方法以及由多个密封电池构成的电池组及其制造方法
KR20060022128A (ko) 2004-09-06 2006-03-09 삼성에스디아이 주식회사 원통형 리튬 이온 이차 전지 및 이에 사용되는 권취형전극 조립체
KR100612236B1 (ko) * 2004-09-07 2006-08-11 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
JP4563264B2 (ja) * 2004-09-22 2010-10-13 日本碍子株式会社 リチウム二次電池
JP2006252890A (ja) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd 筒型二次電池及びその製造方法
JP5051410B2 (ja) 2005-05-30 2012-10-17 株式会社Gsユアサ 密閉形電池用リード、そのリードを用いた密閉形電池及びその電池の製造方法
KR100719740B1 (ko) * 2005-09-22 2007-05-17 삼성에스디아이 주식회사 이차전지 및 그 제조방법
CN100468827C (zh) 2005-12-20 2009-03-11 深圳华粤宝电池有限公司 电池圆柱外壳及圆柱防爆电池及其加工方法和设备
CN100573978C (zh) 2005-12-30 2009-12-23 比亚迪股份有限公司 二次电池
JP5019557B2 (ja) * 2006-02-03 2012-09-05 日立マクセルエナジー株式会社 筒形非水電解液一次電池
CN101083317A (zh) 2006-05-31 2007-12-05 比亚迪股份有限公司 一种二次电池
JP2008041527A (ja) 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 電池缶及びそれを用いた電池
US8568915B2 (en) * 2006-08-11 2013-10-29 Johnson Controls—SAFT Power Solutions LLC Battery with integrally formed terminal
JP5172138B2 (ja) 2006-12-19 2013-03-27 パナソニック株式会社 アルカリ蓄電池
JP2008243811A (ja) 2007-02-28 2008-10-09 Matsushita Electric Ind Co Ltd 電池
JP2008262825A (ja) 2007-04-12 2008-10-30 Hitachi Maxell Ltd コイン形非水電解液二次電池
JP2008288079A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 無水銀アルカリ乾電池
CN201066701Y (zh) 2007-07-13 2008-05-28 深圳市比克电池有限公司 锂离子电池
KR100922352B1 (ko) 2007-10-02 2009-10-21 삼성에스디아이 주식회사 이차 전지
CN201117731Y (zh) 2007-10-24 2008-09-17 中国电子科技集团公司第十八研究所 一种高倍率充放电二次电池结构
JP2009110751A (ja) * 2007-10-29 2009-05-21 Panasonic Corp 二次電池
JP2009110885A (ja) 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 密閉電池及びその製造方法
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
JP2010033940A (ja) * 2008-07-30 2010-02-12 Toshiba Corp 電池
WO2010059957A2 (en) * 2008-11-21 2010-05-27 Johnson Controls - Saft Advanced Power Solutions Llc Current collector for an electrochemical cell
KR101574082B1 (ko) 2008-12-12 2015-12-04 삼성에스디아이 주식회사 이차 전지
CN201466087U (zh) 2009-06-11 2010-05-12 天津力神电池股份有限公司 一种锂离子电池负极柱铆接密封结构
DE102009060800A1 (de) * 2009-06-18 2011-06-09 Varta Microbattery Gmbh Knopfzelle mit Wickelelektrode und Verfahren zu ihrer Herstellung
KR101839158B1 (ko) * 2009-10-13 2018-03-15 파워지닉스 시스템즈, 인코포레이티드 양성 캔을 포함하는 원통형 니켈-아연 전지
KR101093957B1 (ko) * 2010-01-11 2011-12-15 삼성에스디아이 주식회사 이차전지
CN201781028U (zh) 2010-07-30 2011-03-30 比亚迪股份有限公司 一种二次电池
KR101240717B1 (ko) 2010-10-13 2013-03-11 삼성에스디아이 주식회사 이차 전지
JP5527176B2 (ja) 2010-11-25 2014-06-18 ソニー株式会社 非水電解質電池
JP2014053071A (ja) * 2010-12-29 2014-03-20 Sanyo Electric Co Ltd 円筒形電池及びその製造方法
US20120171535A1 (en) * 2010-12-31 2012-07-05 Fuyuan Ma Nickel-zinc battery and manufacturing method thereof
JPWO2012111712A1 (ja) * 2011-02-16 2014-07-07 新神戸電機株式会社 リチウムイオン電池
JP6070552B2 (ja) * 2011-06-28 2017-02-01 日本ケミコン株式会社 蓄電デバイスの製造方法
JP5767407B2 (ja) * 2011-07-13 2015-08-19 エルジー・ケム・リミテッド 円筒型二次電池
JP6175758B2 (ja) * 2011-11-29 2017-08-09 株式会社Gsユアサ 蓄電素子
CN202423400U (zh) 2011-12-16 2012-09-05 日本碍子株式会社 阳极容器、钠硫电池及模块电池
US9324976B2 (en) * 2012-02-21 2016-04-26 Johnson Controls Technology Company Electrochemical cell having a fixed cell element
US9768422B2 (en) * 2012-04-17 2017-09-19 Kabushiki Kaisha Toyota Jidoshokki Electricity storage device
JP5868265B2 (ja) 2012-05-25 2016-02-24 日立オートモティブシステムズ株式会社 単電池および組電池
JP5668729B2 (ja) * 2012-06-25 2015-02-12 トヨタ自動車株式会社 電池
US20160043373A1 (en) * 2013-04-01 2016-02-11 Hitachi Automotive Systems, Ltd. Lithium-ion secondary cell and method for manufacturing same
WO2014168885A1 (en) * 2013-04-10 2014-10-16 Maxwell Technologies, Inc Collector plate for energy storage device and methods of manufacturing
FR3011128B1 (fr) * 2013-09-25 2015-10-30 Commissariat Energie Atomique Procede de realisation d'un faisceau electrochimique d'un accumulateur au lithium
EP2876338B1 (en) * 2013-11-21 2016-03-30 Western Global Holdings Limited Check valve with back pressure relief
CN203553261U (zh) 2013-11-27 2014-04-16 杭州山合江新能源技术有限公司 一种用于极盖和集流体间的平面式连接结构
JP6364757B2 (ja) 2013-11-29 2018-08-01 日本ケミコン株式会社 蓄電デバイスおよびその製造方法
KR20150070928A (ko) 2013-12-17 2015-06-25 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2015222685A (ja) 2014-05-23 2015-12-10 トヨタ自動車株式会社 二次電池用の電極
CN110429320B (zh) * 2014-06-26 2022-09-23 松下知识产权经营株式会社 卷绕型电池
KR101679413B1 (ko) * 2015-04-03 2016-11-25 (주)오렌지파워 중공형 이차전지
KR101743136B1 (ko) * 2014-07-16 2017-06-02 주식회사 엘지화학 내부 저항이 감소된 이차전지 및 그의 제조방법
KR20160043725A (ko) * 2014-10-14 2016-04-22 주식회사 엘지화학 노치를 포함하는 원형 이차전지
JP6398655B2 (ja) * 2014-11-26 2018-10-03 トヨタ自動車株式会社 電池及びその製造方法
US10079370B2 (en) * 2014-11-28 2018-09-18 Sanyo Electric Co., Ltd. Secondary battery
JP6147441B2 (ja) 2015-03-26 2017-06-14 日本特殊陶業株式会社 電気化学反応単位および燃料電池スタック
JP6550863B2 (ja) 2015-03-31 2019-07-31 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
CN105449291B (zh) 2015-04-16 2017-12-01 东莞市创明电池技术有限公司 一种圆柱型电池无极耳焊接的制备方法
CN106159350B (zh) * 2015-04-27 2019-04-26 深圳金山电池有限公司 一种纽扣型锂离子二次电池及其制备方法
CN204596910U (zh) * 2015-04-27 2015-08-26 深圳金山电池有限公司 一种纽扣型锂离子二次电池
JP2016225014A (ja) * 2015-05-27 2016-12-28 日立オートモティブシステムズ株式会社 円筒形二次電池
US9793530B2 (en) 2015-07-17 2017-10-17 Atieva, Inc. Battery assembly with linear bus bar configuration
KR102397218B1 (ko) * 2015-08-27 2022-05-12 삼성에스디아이 주식회사 배터리 팩
CN107851769B (zh) 2015-08-31 2021-06-18 松下知识产权经营株式会社 非水电解质二次电池
KR20170033543A (ko) * 2015-09-17 2017-03-27 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR102470495B1 (ko) * 2015-11-24 2022-11-24 삼성에스디아이 주식회사 이차전지 및 그 제조방법
JP2017120765A (ja) * 2015-12-25 2017-07-06 パナソニック株式会社 非水電解質二次電池
CN108369999B (zh) * 2015-12-28 2021-05-28 株式会社杰士汤浅国际 蓄电元件及蓄电元件的制造方法
US10193123B2 (en) * 2016-03-01 2019-01-29 Atieva, Inc. Battery pack bus bar assembly with enlarged interconnect mounting platforms
EP3514876B1 (en) 2016-11-02 2024-05-08 LG Energy Solution, Ltd. Electrode assembly and method for manufacturing same
JP6601684B2 (ja) * 2016-11-09 2019-11-06 トヨタ自動車株式会社 密閉型電池および密閉型電池の製造方法
JP2018092776A (ja) * 2016-12-01 2018-06-14 株式会社豊田自動織機 電池製造方法及び電池
CN206471426U (zh) * 2016-12-30 2017-09-05 江西佳沃新能源有限公司 一种锂电池结构
JP6868400B2 (ja) * 2017-01-17 2021-05-12 Fdk株式会社 筒型電池の封口体、筒型電池
CN206461019U (zh) 2017-02-13 2017-09-01 山东巨维新能源股份有限公司 端面引流结构的铝壳圆柱电池
CN206461044U (zh) 2017-02-13 2017-09-01 山东巨维新能源股份有限公司 端面引流结构的钢壳圆柱电池
JP2020071898A (ja) * 2017-03-03 2020-05-07 株式会社Gsユアサ 蓄電素子
CN206619636U (zh) 2017-03-30 2017-11-07 陕西沃特玛新能源有限公司 一种电池
CN108428847B (zh) * 2017-04-07 2023-08-29 宁德时代新能源科技股份有限公司 二次电池
US11652232B2 (en) 2017-04-14 2023-05-16 Lg Energy Solution, Ltd. Secondary battery and method for manufacturing the same
US10431853B2 (en) * 2017-05-02 2019-10-01 Apple Inc. Rechargeable battery features and components
KR102316488B1 (ko) * 2017-05-25 2021-10-22 주식회사 엘지화학 원통형 셀 연결 분리형 버스바와 이를 이용한 배터리 모듈 및 제조 방법
GB2564670B (en) 2017-07-18 2020-08-19 Dyson Technology Ltd Electrochemical energy storage device
CN107482156B (zh) 2017-08-29 2020-11-06 江苏英能新能源科技有限公司 一种大单体锂离子电池
CN111033807B (zh) 2017-08-31 2023-07-11 松下知识产权经营株式会社 电池块以及具备该电池块的电池模块
KR102263435B1 (ko) 2017-09-13 2021-06-11 주식회사 엘지에너지솔루션 비딩부가 생략된 원통형 전지셀
CN207217654U (zh) 2017-09-14 2018-04-10 合肥国轩高科动力能源有限公司 一种绝缘连接片及使用此连接片的全极耳锂离子电池
CN207381468U (zh) 2017-11-13 2018-05-18 济南圣泉集团股份有限公司 电极引出结构及储能器件
KR102288405B1 (ko) * 2017-12-26 2021-08-09 주식회사 엘지에너지솔루션 공간 활용성과 안전성이 향상된 원통형 전지셀 조립체 및 이를 포함하는 배터리 모듈
JP6996308B2 (ja) * 2018-01-17 2022-01-17 三洋電機株式会社 二次電池及びその製造方法
US20190296283A1 (en) * 2018-03-23 2019-09-26 Sf Motors, Inc. Integrated battery cell modules with plug-in battery cells for electric vehicles
US11495833B2 (en) 2018-04-06 2022-11-08 Sanyo Electric Co., Ltd. Cylindrical battery
CN208400966U (zh) 2018-05-29 2019-01-18 江西中汽瑞华新能源科技有限公司 一种大容量圆柱形二次锂电池
JP7128666B2 (ja) 2018-06-11 2022-08-31 Fdk株式会社 二次電池
KR102665556B1 (ko) * 2018-07-13 2024-05-10 주식회사 엘지에너지솔루션 절연 가스켓 및 이를 포함하는 이차전지
TWI679311B (zh) 2018-08-10 2019-12-11 南韓商Kcf科技有限公司 最小化隆起、皺紋或撕裂的銅箔、包含其的電極、包含其的二次電池、及製造其的方法
KR102622370B1 (ko) * 2018-08-16 2024-01-09 주식회사 엘지에너지솔루션 이차전지
KR102480958B1 (ko) * 2018-10-05 2022-12-23 주식회사 엘지에너지솔루션 이차전지
KR102712362B1 (ko) * 2018-10-12 2024-10-04 삼성에스디아이 주식회사 이차전지
EP3640519A1 (en) 2018-10-15 2020-04-22 E.ON Sverige AB Method for filling a trench comprising a pair of conduits and such a filled trench
US11699834B2 (en) 2019-01-18 2023-07-11 Sanyo Electric Co., Ltd. Sealed battery
CN209487560U (zh) 2019-01-23 2019-10-11 深圳新恒业电池科技有限公司 电池
TWI834823B (zh) 2019-03-12 2024-03-11 日商索尼股份有限公司 無線通訊裝置及方法
US11554956B2 (en) 2019-04-16 2023-01-17 Honeywell International Inc. Integrated process and catalysts for manufacturing hydrogen iodide from hydrogen and iodine
CN209912959U (zh) * 2019-06-24 2020-01-07 福建卫东新能源股份有限公司 一种碱性蓄电池电极结构
KR102358157B1 (ko) 2019-06-27 2022-02-04 코리아크레딧뷰로 (주) 보이스 피싱 예방 방법
KR20210007278A (ko) 2019-07-10 2021-01-20 주식회사 이음파트너스 골목길 위급 상황 신고 장치
CN114175301B (zh) 2019-07-30 2024-09-06 株式会社村田制作所 二次电池、电池包、电子设备、电动工具、电动航空器以及电动车辆
WO2021020237A1 (ja) 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
KR102226072B1 (ko) 2019-08-21 2021-03-11 에이엠티 주식회사 챔버 내 모듈 ic 그립핑장치
KR102325814B1 (ko) 2019-08-21 2021-11-11 씨에스케이(주) 스크러버용 버너
KR102246418B1 (ko) 2019-08-21 2021-04-29 한양대학교 산학협력단 차선 유지 제어 방법 및 그 장치
KR102227640B1 (ko) 2019-08-21 2021-03-16 한국항공우주산업 주식회사 회전익 항공기 자동착륙 시스템
EP3787368B1 (en) 2019-08-23 2022-04-13 ASUSTek Computer Inc. Method and apparatus for header compression configuration for sidelink radio bearer in a wireless communication system
CN110459705A (zh) * 2019-09-05 2019-11-15 重庆市紫建电子有限公司 一种提升径向空间利用率的纽扣电池
KR102368265B1 (ko) 2019-11-13 2022-03-02 건국대학교 산학협력단 E형 간염바이러스에 대한 나노겔 백신용 조성물
CN211208547U (zh) 2019-12-06 2020-08-07 苏州市齐凡电子科技有限公司 一种公母连接片组件
KR20210077046A (ko) 2019-12-16 2021-06-25 현대자동차주식회사 자율주행 차량의 운행 제어 시스템 및 방법
KR102304141B1 (ko) 2019-12-27 2021-09-24 (주)글루가 네일 아트의 제조 방법
US20210326244A1 (en) 2020-04-21 2021-10-21 UiPath, Inc. Test automation for robotic process automation
CN111524166B (zh) 2020-04-22 2023-06-30 北京百度网讯科技有限公司 视频帧的处理方法和装置
KR102149949B1 (ko) 2020-04-23 2020-08-31 최재연 고성능 선루프
KR102161824B1 (ko) 2020-04-23 2020-10-05 안병로 위생 마스크
CN211879534U (zh) 2020-04-30 2020-11-06 宁德时代新能源科技股份有限公司 电极组件、二次电池、电池组及装置
KR20210137856A (ko) 2020-05-11 2021-11-18 삼성전자주식회사 디스플레이 및 카메라를 포함하는 전자 장치
KR102371072B1 (ko) 2020-06-10 2022-03-10 주식회사 이엠피이모션캡쳐 모션 및 얼굴 캡쳐를 이용한 실시간 방송플랫폼 제공 방법, 장치 및 그 시스템
KR20220001802A (ko) 2020-06-30 2022-01-06 주식회사 쓰리스타 흡배기 체크밸브가 부착된 필터교체형 마스크
CN111952525B (zh) * 2020-08-20 2023-06-20 华霆(合肥)动力技术有限公司 同侧集流装置、电池模组和电动车
CN118738778A (zh) 2020-09-30 2024-10-01 宁德时代新能源科技股份有限公司 圆柱型电池单体、电池、用电装置、制造方法及制造系统
KR20210030300A (ko) 2020-10-23 2021-03-17 (주)쓰리엠탑 협업 멀티 로봇청소기
EP4047725B1 (en) 2021-01-19 2024-01-10 LG Energy Solution, Ltd. Battery, and battery pack and vehicle including the same
CN215342666U (zh) * 2021-06-01 2021-12-28 宁波久鼎新能源科技有限公司 一种防焊穿锂电池端部封口结构
WO2023065186A1 (zh) * 2021-10-20 2023-04-27 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备、电池单体的制备方法及装置
CN114446386B (zh) * 2022-01-17 2024-02-02 中国人民解放军国防科技大学 一种血液ctDNA的检测方法

Also Published As

Publication number Publication date
EP4325652A2 (en) 2024-02-21
KR102437061B1 (ko) 2022-08-26
KR20220108011A (ko) 2022-08-02
CA3202172A1 (en) 2022-07-28
KR20220107131A (ko) 2022-08-02
CN217655927U (zh) 2022-10-25
KR102446351B1 (ko) 2022-09-22
WO2022158859A2 (ko) 2022-07-28
WO2022158862A3 (ko) 2022-09-15
WO2022158864A2 (ko) 2022-07-28
KR102446797B1 (ko) 2022-09-26
JP2024500131A (ja) 2024-01-04
KR102448988B1 (ko) 2022-09-29
CN114865053A (zh) 2022-08-05
WO2022158858A2 (ko) 2022-07-28
DE202022002770U1 (de) 2023-05-16
CN114865054A (zh) 2022-08-05
KR20220123354A (ko) 2022-09-06
ES2978042T3 (es) 2024-09-04
EP4250469A2 (en) 2023-09-27
KR102448987B1 (ko) 2022-09-29
HUE066138T2 (hu) 2024-07-28
WO2022158861A3 (ko) 2022-09-15
WO2022158864A3 (ko) 2022-09-15
EP4376211A1 (en) 2024-05-29
JP2024501458A (ja) 2024-01-12
WO2022158857A2 (ko) 2022-07-28
EP4044358A2 (en) 2022-08-17
KR20240096443A (ko) 2024-06-26
EP4044358B1 (en) 2024-03-06
EP4047725A3 (en) 2022-08-31
CA3204064A1 (en) 2022-07-28
WO2022158863A2 (ko) 2022-07-28
CA3203640A1 (en) 2022-07-28
EP4044336A3 (en) 2022-08-31
EP4044334A3 (en) 2022-08-31
JP2023551123A (ja) 2023-12-07
WO2022158859A3 (ko) 2022-09-15
CN217239587U (zh) 2022-08-19
KR20220105146A (ko) 2022-07-26
DE202022002771U1 (de) 2023-05-12
EP4044334A2 (en) 2022-08-17
JP2023550338A (ja) 2023-12-01
EP4311013A3 (en) 2024-02-21
US20220231345A1 (en) 2022-07-21
JP2023551128A (ja) 2023-12-07
KR102438158B1 (ko) 2022-08-30
EP4047725A2 (en) 2022-08-24
EP4228082A2 (en) 2023-08-16
EP4318699A2 (en) 2024-02-07
CN218182246U (zh) 2022-12-30
JP2023549378A (ja) 2023-11-24
WO2022158863A3 (ko) 2022-09-15
EP4311013A2 (en) 2024-01-24
KR20220105147A (ko) 2022-07-26
US20240136674A1 (en) 2024-04-25
EP4047703A3 (en) 2022-09-07
JP2023549148A (ja) 2023-11-22
CN217655909U (zh) 2022-10-25
EP4325652A3 (en) 2024-02-28
PL4047725T3 (pl) 2024-05-20
ES2973526T3 (es) 2024-06-20
CN114864956A (zh) 2022-08-05
US20240266611A1 (en) 2024-08-08
KR20220105142A (ko) 2022-07-26
HUE065419T2 (hu) 2024-05-28
EP4047702A1 (en) 2022-08-24
DE202022002791U1 (de) 2023-06-28
CN217740748U (zh) 2022-11-04
EP4312301A3 (en) 2024-02-28
EP4047703B1 (en) 2024-01-03
PL4044336T3 (pl) 2024-06-24
EP4047703A2 (en) 2022-08-24
DE202022002775U1 (de) 2023-05-16
KR20220107132A (ko) 2022-08-02
PL4047703T3 (pl) 2024-04-29
ES2974169T3 (es) 2024-06-26
PL4044358T3 (pl) 2024-06-24
KR20220113329A (ko) 2022-08-12
KR102448822B1 (ko) 2022-09-29
CA3203047A1 (en) 2022-07-28
CN115000339A (zh) 2022-09-02
CA3202317A1 (en) 2022-07-28
CN114865174A (zh) 2022-08-05
KR20220107133A (ko) 2022-08-02
CN114824413A (zh) 2022-07-29
CN217239536U (zh) 2022-08-19
KR20220113654A (ko) 2022-08-16
KR20220105148A (ko) 2022-07-26
EP4047725B1 (en) 2024-01-10
WO2022158861A2 (ko) 2022-07-28
WO2022158860A3 (ko) 2022-09-15
US20240304870A1 (en) 2024-09-12
US20240322399A1 (en) 2024-09-26
EP4243195A2 (en) 2023-09-13
EP4044332A3 (en) 2022-09-07
CN217239510U (zh) 2022-08-19
HUE066661T2 (hu) 2024-09-28
EP4044336B1 (en) 2024-03-06
KR102444337B1 (ko) 2022-09-16
JP2023549770A (ja) 2023-11-29
EP4044336A2 (en) 2022-08-17
US20230246244A1 (en) 2023-08-03
CA3205236A1 (en) 2022-07-28
KR20220108012A (ko) 2022-08-02
DE202022002774U1 (de) 2023-05-22
CA3204067A1 (en) 2022-07-28
KR20220105144A (ko) 2022-07-26
EP4318699A3 (en) 2024-02-28
WO2022158857A3 (ko) 2022-09-15
DE202022002769U1 (de) 2023-05-25
CN114865242A (zh) 2022-08-05
WO2022158858A3 (ko) 2022-09-15
KR20220105141A (ko) 2022-07-26
EP4044358A3 (en) 2022-08-31
EP4312301A2 (en) 2024-01-31
DE202022002773U1 (de) 2023-05-19
CN217239523U (zh) 2022-08-19
EP4044332A2 (en) 2022-08-17
DE202022002772U1 (de) 2023-05-11
CN114864857A (zh) 2022-08-05
WO2022158862A2 (ko) 2022-07-28
KR20220105143A (ko) 2022-07-26
EP4047702B1 (en) 2024-06-05
KR20220105145A (ko) 2022-07-26
US20240128517A1 (en) 2024-04-18
HUE065665T2 (hu) 2024-06-28
CA3204066A1 (en) 2022-07-28
EP4239784A2 (en) 2023-09-06
US20240021958A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2022158860A2 (ko) 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차
WO2023090576A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2022177378A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023090575A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023085893A1 (ko) 분리막, 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023096062A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차
WO2023068891A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068897A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068886A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023075523A1 (ko) 원통형 배터리 셀, 이를 포함하는 배터리 및 자동차 및 집전판
WO2023068885A1 (ko) 전극 조립체, 원통형 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2022216092A1 (ko) 전극 조립체, 배터리 셀, 배터리 팩 및 자동차
WO2024019552A1 (ko) 원통형 배터리, 배터리 팩 및 자동차
WO2024019568A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2024019549A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023090577A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023090573A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2024210242A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023068889A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068494A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023068893A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068898A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068895A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068888A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023055088A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742836

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2023528469

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3204067

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202317052175

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742836

Country of ref document: EP

Kind code of ref document: A2