WO2022158862A2 - 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차 - Google Patents

전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2022158862A2
WO2022158862A2 PCT/KR2022/001010 KR2022001010W WO2022158862A2 WO 2022158862 A2 WO2022158862 A2 WO 2022158862A2 KR 2022001010 W KR2022001010 W KR 2022001010W WO 2022158862 A2 WO2022158862 A2 WO 2022158862A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
uncoated
electrode assembly
winding
section
Prior art date
Application number
PCT/KR2022/001010
Other languages
English (en)
French (fr)
Other versions
WO2022158862A3 (ko
Inventor
임혜진
공진학
이순오
최규현
김도균
최수지
황보광수
민건우
조민기
임재원
김학균
이제준
정지민
김재웅
박종식
최유성
이병구
류덕현
이관희
이재은
강보현
박필규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210137856A external-priority patent/KR20220105112A/ko
Priority claimed from KR1020210194593A external-priority patent/KR20220105118A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22742838.0A priority Critical patent/EP4243195A2/en
Priority to JP2023528505A priority patent/JP2023550338A/ja
Priority to CN202280010641.8A priority patent/CN116783771A/zh
Priority to CA3204064A priority patent/CA3204064A1/en
Priority to US18/273,010 priority patent/US20240128517A1/en
Publication of WO2022158862A2 publication Critical patent/WO2022158862A2/ko
Publication of WO2022158862A3 publication Critical patent/WO2022158862A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly, a battery, and a battery pack and a vehicle comprising the same.
  • Korean Patent Application No. 10-2021-0142196 filed on October 22, 2021, Korean Patent Application No. 10-2021-0153472, filed on November 9, 2021, November 2021 Korean Patent Application No. 10-2021-0160823 filed on March 19, Korean Patent Application No. 10-2021-0163809 filed on November 24, 2021 Korean Patent filed on November 26, 2021 Application No. 10-2021-0165866, Korean Patent Application No. 10-2021-0172446, filed on December 3, 2021, Korean Patent Application No. 10-2021-0177091, filed on December 10, 2021 No., Korean Patent Application No. 10-2021-0194593, filed on December 31, 2021, Korean Patent Application No. 10-2021-0194610, filed on December 31, 2021, December 31, 2021 Korean Patent Application No. 10-2021-0194572, filed on December 31, 2021, Korean Patent Application No.
  • Secondary batteries that are easy to apply according to product groups and have electrical characteristics such as high energy density are not only portable devices, but also electric vehicles (EVs) or hybrid vehicles (HEVs) driven by an electric drive source, etc. It is universally applied.
  • EVs electric vehicles
  • HEVs hybrid vehicles
  • the types of secondary batteries currently widely used include a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, and the like.
  • the unit secondary battery that is, the operating voltage of the unit battery is about 2.5V ⁇ 4.5V. Accordingly, when a higher output voltage is required, a plurality of batteries may be connected in series to form a battery pack. In addition, a plurality of batteries may be connected in parallel to form a battery pack according to the charge/discharge capacity required for the battery pack. Accordingly, the number and electrical connection types of the batteries included in the battery pack may be variously set according to a required output voltage and/or charge/discharge capacity.
  • cylindrical, prismatic, and pouch-type batteries are known as types of unit secondary batteries.
  • a separator which is an insulator, is interposed between the positive electrode and the negative electrode and wound to form an electrode assembly in the form of a jelly roll, which is inserted into the battery housing to configure the battery.
  • a strip-shaped electrode tab may be connected to each of the uncoated regions of the positive electrode and the negative electrode, and the electrode tab electrically connects the electrode assembly and the externally exposed electrode terminal.
  • the positive electrode terminal is a cap of a sealing body sealing the opening of the battery housing
  • the negative electrode terminal is the battery housing.
  • a small cylindrical battery with a form factor of 1865 (diameter: 18 mm, height: 65 mm) or 2170 (diameter: 21 mm, height: 70 mm) is not a big issue with resistance and heat generation.
  • a problem that the cylindrical battery ignites may occur as a lot of heat is generated around the electrode tab during the rapid charging process.
  • FIG. 1 to 3 are views showing a manufacturing process of a tab-less cylindrical battery.
  • 1 shows the structure of the electrode
  • FIG. 2 shows the winding process of the electrode
  • FIG. 3 shows the process in which the current collector is welded to the bent surface area of the uncoated part.
  • the positive electrode 10 and the negative electrode 11 have a structure in which an active material 21 is coated on a sheet-shaped current collector 20, and on one long side along the winding direction (X). It includes an uncoated region 22 .
  • the electrode assembly (A) is manufactured by sequentially stacking the positive electrode 10 and the negative electrode 11 together with two separators 12 as shown in FIG. 2 , and then winding them in one direction (X). In this case, the uncoated regions of the positive electrode 10 and the negative electrode 11 are disposed in opposite directions. The positions of the anode 10 and the cathode 11 may be changed opposite to those shown.
  • the uncoated area 10a of the positive electrode 10 and the uncoated area 11a of the negative electrode 11 are bent toward the core to form a bent surface area. (30, 31) are joined by welding, respectively.
  • a separate electrode tab is not coupled to the positive uncoated region 10a and the negative uncoated region 11a, the current collectors 30 and 31 are connected to external electrode terminals, and a current path is used to wind the electrode assembly A. Since it is formed with a large cross-sectional area along the axial direction (refer to the arrow), there is an advantage in that the resistance of the battery can be lowered. This is because resistance is inversely proportional to the cross-sectional area of the path through which the current flows.
  • the uncoated region 32 adjacent to the core of the electrode assembly A is bent, thereby occluding all or a substantial portion of the cavity 33 in the core of the electrode assembly A.
  • the electrolyte injector is inserted into the cavity 33 , it may interfere with the uncoated area 32 bent near the core, resulting in tearing of the uncoated area 32 .
  • bent portions of the uncoated regions 10a and 11a to which the current collectors 30 and 31 are welded should be overlapped in multiple layers and there should be no empty space (gap). Only then, sufficient welding strength can be obtained, and even when the latest technology such as laser welding is used, the problem that the laser penetrates into the electrode assembly A and melts the separator or the active material can be prevented.
  • the uncoated areas 10a and 11a In order for the uncoated areas 10a and 11a to overlap with the same number of layers, the uncoated areas 10a and 11a at the corresponding positions based on the position of each winding turn are bent toward the core and cover the top surface of the uncoated area bent in the inner winding turn. do.
  • the bending length e when the interval between winding turns is d, and the bending length of the uncoated regions 10a and 11a of each winding turn is e, the bending length e must have a length of d*n (n is a natural number greater than or equal to 2). . Only then is an area in which the uncoated areas 10a and 11a overlap in multiple layers with the same amount.
  • the uncoated regions 10a and 11a must be sufficiently long.
  • the electrode assembly included in the small cylindrical battery has a small radius, it is difficult to conceive of a motivation for deriving a concept of designing a sufficiently long bending length of the uncoated regions 10a and 11a.
  • An object of the present invention is to provide an electrode assembly having a non-coated part bent structure capable of preventing damage to a separator or an active material layer.
  • Another technical object of the present invention is to provide an electrode assembly in which the electrolyte injection passage is not blocked even when the uncoated region is bent.
  • Another technical object of the present invention is to provide an electrode assembly having improved energy density and reduced resistance.
  • Another technical object of the present invention is to provide a battery including an electrode assembly having an improved structure, a battery pack including the same, and a vehicle including the battery pack.
  • a first electrode and a second electrode and a separator interposed therebetween are wound around an axis to define a core and an outer circumferential surface
  • the first electrode includes an uncoated portion exposed to the outside of the separator along a winding axis direction of the electrode assembly at a long side end, and a portion of the uncoated portion is bent in a radial direction of the electrode assembly to include overlapping layers of the uncoated portion
  • a surface area may be formed, and the number of stacked portions of the uncoated portion may be 10 or more in a partial area of the bent surface area in a direction of a winding axis of the electrode assembly.
  • the total number of winding turns of the first electrode is defined as n 1 , and a value obtained by dividing the winding turn index k (a natural number of 1 to n 1 ) at the kth winding turn position by the total number of winding turns n 1 is wound. If it is defined as the relative radial position R 1,k with respect to the turn index k, the length ratio of the radial section of R 1,k satisfying the condition that the number of stacks of the uncoated part is 10 or more is at least 30% compared to the relative radial position section where the uncoated part is bent may be more than
  • the ratio of the length of the radial section of R 1,k satisfying the condition that the number of stacked parts of the uncoated part is 10 or more may be 30% to 85% of the relative radial position section in which the uncoated part is bent.
  • the second electrode includes an uncoated portion exposed to the outside of the separator along a winding axis direction of the electrode assembly at a long side end, and a portion of the uncoated portion is bent in a radial direction of the electrode assembly to form an uncoated portion of the uncoated portion.
  • a bent surface area including overlapping layers may be formed, and in some areas of the bent surface area, the number of stacks of the uncoated portion in a direction of a winding axis of the electrode assembly may be 10 or more.
  • the total number of winding turns of the second electrode is defined as n 2 , and the calculated value obtained by dividing the winding turn index k (a natural number of 1 to n 2 ) at the kth winding turn position by the total number of winding turns n 2 If it is defined as the relative radial position R 2,k with respect to the winding turn index k, the length ratio of the radial section of R 2,k satisfying the condition that the number of stacks of the uncoated section is 10 or more is at least compared to the relative radial position section in which the uncoated section is bent It may be more than 30%.
  • a length ratio of a radial section of R 2,k that satisfies the condition that the number of stacked parts of the uncoated part is 10 or more may be 30% to 85% compared to a relative radial position section in which the uncoated part is bent.
  • the height of the uncoated area in the section from the relative radial position R 1,1 to the preset first relative radial position R 1,k* is the relative radius of the number of winding turns k*+1. It may be less than the height of the uncoated area of the section from the position R 1,k*+1 to the relative radial position 1 .
  • the section from the relative radial position R 1,1 of the first winding turn to the first relative radial position R 1,k* of the k*th winding turn is set in advance.
  • the height of the portion may be lower than the bent surface area formed by overlapping the bent uncoated portions.
  • the section from the relative radial position R 1,1 in the first winding turn to the first relative radial position R 1,k* in the k*th winding turn is an electrode assembly may not be bent towards the core of
  • the height of the uncoated area in the section from the relative radial position R 2,1 of the first winding turn to the first relative radial position R 2,k* of the k*th winding turn preset may be smaller than the height of the uncoated part of the section from the relative radial position R 2,k*+1 to the relative radial position 1 of the k*+1th winding turn.
  • the uncoated region in the section from the relative radial position R 2,1 of the first winding turn to the first relative radial position R 2,k* of the k*th winding turn, is the uncoated region whose height is bent. It may be lower than the bent surface area formed by overlapping.
  • the uncoated portion of the section from the relative radial position R 2,1 of the first winding turn to the first relative radial position R 2,k* of the k*th winding turn is not bent toward the core of the electrode assembly.
  • the uncoated portion of the first electrode or the second electrode may be divided into a plurality of segments that can be bent independently of each other.
  • each of the plurality of segments has a shape of a geometric figure in which the upper region of the bent line has the bent line as the base, and the geometric figure may be one or more straight lines, one or more curves, or a combination thereof.
  • the geometric figure may decrease in width stepwise or continuously from the base to the top.
  • the lower interior angle between the base of the geometric figure and the side that intersects it may be between 60 degrees and 85 degrees.
  • the plurality of segments may increase stepwise or continuously along a direction in which the lower inner angle is parallel to a winding direction of the electrode assembly.
  • each of the plurality of segments has a trapezoidal shape in which the upper region of the bending line has the bent line as the base, and the radius of the winding turn in which the segment is disposed based on the core center of the electrode assembly is r,
  • the length of the arc of the winding turn corresponding to the lower part of the segment is L arc
  • the inner angle of the lower segment of the segment when the assumption that the side sides of the pair of segments arranged adjacent to the winding turn with radius r are parallel to each other is applied
  • ⁇ assumption is
  • the actual lower interior angle ⁇ real of the pair of adjacent fragments may satisfy the following equation.
  • ⁇ 1 90°- 360°*(L arc /2 ⁇ r)*0.5
  • the circumferential angle corresponding to the arc length L arc of the winding turn corresponding to the lower portion of the segment with respect to the center of the core of the electrode assembly may be 45 or less.
  • the overlap ratio of adjacent fragments disposed in a winding turn having a radius of r with respect to the center of the core of the electrode assembly is defined by the formula ( ⁇ real / ⁇ assumptoin -1)
  • the overlap ratio of the fragments may be greater than 0 and less than or equal to 0.05.
  • the overlap ratio of the fragments may be greater than 0 and less than or equal to 0.05.
  • the uncoated portion of the section from the relative radial position R 1,1 of the first winding turn to the first relative radial position R 1,k* of the k*th winding turn is the height may be smaller than the height of the uncoated region of the section from the relative radial position R 1,k*+1 to the relative radial position 1 and may not be bent toward the core.
  • the length of the first electrode corresponding to the relative radial positions R 1,1 to R 1,k* is the length of the first electrode corresponding to the relative radial positions R 1,k*+1 to 1. It may be 1% to 30% of the length.
  • the uncoated area bending length fd 1,k*+1 of the relative radial position R 1,k*+1 of the k*+1th winding turn is the first winding turn may be shorter than the radial length from the relative radial position R 1,1 to the k*th relative radial position R 1,k* .
  • a section 0.9r c from the center of the core is the relative radial position R of the k*+1th winding turn It may not be shielded by the bent part of the uncoated part located in the range of 1,k*+1 to 1.
  • the uncoated part bending length fd 1,k*+1 of the relative radial position R 1,k*+1 of the k*+1th winding turn, the radius r c of the core, and the relative radial position R 1,k The distance d 1,k*+1 where *+1 is spaced apart from the center of the electrode assembly may satisfy the following equation.
  • the uncoated portion of the section from the relative radial position R 2,1 of the first winding turn to the first relative radial position R 2,k* of the k*th winding turn is the height may be smaller than the uncoated area height of the section from the relative radial position R 2,k*+1 to the relative radial position 1 of the k*+1th winding turn and may not be bent toward the core.
  • the length of the second electrode corresponding to the relative radial positions R 2,1 to R 2,k* is the length of the second electrode corresponding to the relative radial positions R 2,k*+1 to 1 It may be 1% to 30% of the length.
  • the bending length fd 2,k*+1 of the uncoated region located at the relative radial position R 2,k*+1 of the k*+1-th winding turn is the first It may be shorter than the radial length from the relative radial position R 2,1 of the winding turn to the first relative radial position R 2,k* of the k*th winding turn.
  • a section 0.90r c from the center of the core is the relative radial position R of the k*+1th winding turn It may not be shielded by the bent portion of the uncoated portion of the second electrode located in the range from 2,k*+1 to the relative radial position 1 .
  • the uncoated area bending length fd 2,k*+1 of the relative radial position R 2,k*+1 of the k*+1th winding turn, the radius r c of the core, and the relative radial position R 2,k The distance d 2,k*+1 where *+1 is spaced apart from the center of the electrode assembly may satisfy the following equation.
  • the relative radial position R 1,k*+1 of the k*+1 -th winding turn to the second relative radial position R 1,k of the preset k@-th winding turn R 1,k The uncoated part of the section up to @ is divided into a plurality of segment pieces, and the height thereof may be increased step by step along one direction parallel to the winding direction.
  • the radial length of the section from the relative radial positions R 1,k*+1 to R 1,k@ may be 1% to 56% of the radius of the wound structure of the first electrode excluding the core.
  • the uncoated portion of the first electrode from the relative radial position R 1,k@+1 of the preset k@+1-th winding turn to the relative radial position 1 is a plurality of segment segments.
  • the heights of the plurality of segments may be substantially equal from the relative radial position R 1,k@+1 to the relative radial position 1 .
  • the relative radial position R 2,k*+1 of the k*+ 1th winding turn to the second relative radial position R 2,k of the preset k@th winding turn R 2,k The uncoated portion of the section up to @ is divided into a plurality of segment pieces, and the height thereof may be increased stepwise or gradually along one direction parallel to the winding direction.
  • the radial length of the section from the relative radial positions R 2,k*+1 to R 2,k@ may be 1% to 56% of the radius of the wound structure of the second electrode excluding the core.
  • the uncoated portion of the second electrode from the second relative radial position R 2,k@+1 to the relative radial position 1 of the k@+1-th winding turn is a plurality of segment segments.
  • the height of the plurality of segment segments may be substantially the same from the relative radial position R 2,k@+1 of the k@+1th winding turn to the relative radial position 1 .
  • the uncoated portion bent in the radial direction of the electrode assembly is divided into a plurality of independently bendable segment pieces, and the height and winding direction of the plurality of segment segments in the winding axial direction At least one of the widths may be increased step by step along one direction parallel to the winding direction individually or in groups.
  • the uncoated portion bent in the radial direction of the electrode assembly is divided into a plurality of independently bendable segment pieces, and the height and winding direction of the plurality of segment segments in the winding axial direction At least one of the widths may be increased step by step along one direction parallel to the winding direction individually or in groups.
  • each of the plurality of fragments a width condition of 1 to 11 mm in the winding direction; height condition of 2 to 10 mm in the winding axis direction; And it may satisfy at least one condition from among the spacing conditions of 0.05 to 1 mm in the winding direction.
  • a cutting groove may be interposed between the plurality of segment pieces, and a predetermined gap may be provided between a lower end of the cutting groove and the active material layer.
  • the length of the gap may be 0.2 to 4 mm.
  • the plurality of fragments form a plurality of fragment groups along the winding direction of the electrode assembly, and the fragments belonging to the same fragment group have a width in a winding direction, a height in a winding axial direction, and a winding direction. At least one or more of the spacing pitches may be substantially equal to each other.
  • At least one of a width in a winding direction, a height in a winding axial direction, and a separation pitch in the winding direction increases step by step while going in a direction parallel to the winding direction of the electrode assembly. can do.
  • At least some of the plurality of segment groups may be disposed in the same winding turn of the electrode assembly.
  • the bent surface area formed by the uncoated portion of the first electrode includes a section for increasing the number of stacks and a section for increasing the number of stacks from the outer periphery to the core of the electrode assembly, and the section for increasing the number of stacks is uncoated.
  • the uniform layering number section is defined as a section from a radial position where the maximum number of layers of the uncoated part is reached to a radial position where bending of the uncoated part starts,
  • the radial length of the uniform number section may be 30% or more of the radial length from the winding turn at which the bending of the uncoated area starts to the winding turn at which the bending of the uncoated area ends.
  • the bent surface area formed by the uncoated portion of the second electrode includes a section for increasing the number of stacks and a section for increasing the number of stacks from the outer periphery to the core of the electrode assembly, and the section for increasing the number of stacks is uncoated.
  • the uniform layering number section is defined as a section from a radial position where the maximum number of layers of the uncoated part is reached to a radial position where bending of the uncoated part starts,
  • the radial length of the uniform number section may be 30% or more of the radial length from the winding turn at which the bending of the uncoated area starts to the winding turn at which the bending of the uncoated area ends.
  • the thickness of the first electrode and the second electrode may be 80 ⁇ m to 250 ⁇ m, and the interval between the uncoated regions positioned at the winding turns adjacent in the radial direction of the electrode assembly may be 200 ⁇ m to 500 ⁇ m.
  • the thickness of the uncoated region of the first electrode may be 10 ⁇ m to 25 ⁇ m.
  • the thickness of the uncoated region of the second electrode may be 5 ⁇ m to 20 ⁇ m.
  • a total stacking thickness of the overlapping layers of the uncoated region may be 100 ⁇ m to 975 ⁇ m.
  • the uncoated portion of the first electrode is divided into a plurality of segment pieces that are independent of each other, and the first electrode includes a height variable section in which the height of the segment is variable and a height uniform section in which the height of the segment is uniform, ,
  • the ratio of the thickness of the uncoated part of the bent surface area to the height of the fragment is 1.0% to 16.3% in the area formed by bending the fragment included in the height uniformity section among the bent surface area along the radial direction of the assembly have.
  • the total stacking thickness of the overlapping layers of the uncoated region may be 50 ⁇ m to 780 ⁇ m.
  • the uncoated portion of the second electrode is divided into a plurality of segment pieces that are independent of each other, and the second electrode includes a height variable section in which the height of the segment is variable and a height uniform section in which the height of the segment is uniform, ,
  • the ratio of the thickness of the uncoated part of the bent surface area to the height of the fragment is 0.5% to 13.0% have.
  • a first electrode and a second electrode and a separator interposed therebetween are wound around an axis to define a core and an outer circumferential surface
  • the first electrode includes a first uncoated portion at a long side end of the separator along a winding axis direction of the electrode assembly, and a portion of the first uncoated portion is bent in a radial direction of the electrode assembly to form a first bent surface area and a thickness of the first uncoated portion may be 100 ⁇ m to 975 ⁇ m in a partial region of the first bent surface area.
  • the first uncoated portion of the first electrode is divided into a plurality of segment pieces that are independent of each other, and the first electrode includes a height variable section in which the height of the segment is variable and a height uniform section in which the height of the segment is uniform.
  • the ratio of the thickness of the uncoated part of the bent surface area to the height of the fragments is 1.0% to 16.3%.
  • the second electrode includes a second uncoated portion exposed to the outside of the separator along a winding axis direction of the electrode assembly at a long side end, and a portion of the second uncoated portion is bent in a radial direction of the electrode assembly to form a second bent surface area, and in some areas of the second bent surface area, a stacking thickness of the second uncoated part may be 50 ⁇ m to 780 ⁇ m.
  • the second uncoated portion of the second electrode is divided into a plurality of segment pieces that are independent of each other, and the second electrode has a height variable section in which the height of the segment is variable and a section in which the height of the segment is uniform in height.
  • the ratio of the thickness of the uncoated part of the bent surface area to the height of the fragment is 0.5% to 13.0% can be
  • a battery according to another aspect of the present invention for achieving the above technical problem is an electrode assembly in which a first electrode and a second electrode and a separator interposed therebetween are wound around an axis to define a core and an outer circumferential surface, wherein the first At least one of the electrode and the second electrode includes an uncoated portion exposed to the outside of the separator along a winding axis direction of the electrode assembly at a long side end, and at least a portion of the uncoated portion is bent and bent in a radial direction of the electrode assembly an electrode assembly forming a surface area, wherein the number of stacked portions of the uncoated area is 10 or more in a portion of the bent surface area; a battery housing housing the electrode assembly and electrically connected to one of the first electrode and the second electrode to have a first polarity; a sealing body sealing the open end of the battery housing; a terminal electrically connected to the other of the first electrode and the second electrode, the terminal having a second polarity exposed to the outside; and a current
  • the first electrode includes a first uncoated part exposed to the outside of the separator along a winding axis direction of the electrode assembly at a long side end, and the total number of turns of the first electrode is defined as n 1 , If the value obtained by dividing the winding turn index k (a natural number of 1 to n 1 ) by the total number of winding turns n 1 at the k-th winding turn position is defined as the relative radial position R 1,k with respect to the winding turn index k, the first A length ratio of a radial section of R 1,k that satisfies the condition that the number of layers of uncoated parts is 10 or more may be at least 30% or more compared to a section at a relative radial position in which the first uncoated part is bent.
  • the second electrode includes a second uncoated portion exposed to the outside of the separator along the winding axis direction of the electrode assembly at the long side end, and the total number of turns of the second electrode is defined as n 2 , If the value obtained by dividing the winding turn index k (a natural number of 1 to n 2 ) by the total number of winding turns n 2 at the k-th winding turn position is defined as the relative radial position R 2,k with respect to the winding turn index k, the second The length ratio of the radial section of R 2,k satisfying the condition that the number of stacked parts of the uncoated part is 10 or more may be at least 30% or more of the relative radial position section in which the second uncoated part is bent.
  • the welded area of the current collector may overlap the bent surface area in which the number of stacks of the uncoated area is 10 or more by 50% or more.
  • the welding area of the current collector may have a welding strength of 2 kgf/cm 2 or more.
  • the welding area may be spaced apart by a distance of 4 mm or more and 50% or less of the radius of the electrode assembly in a radial direction with respect to the center of the core of the electrode assembly.
  • a battery according to another aspect of the present invention for achieving the above technical problem is an electrode assembly in which a first electrode and a second electrode and a separator interposed therebetween are wound around an axis to define a core and an outer circumferential surface, wherein the first The electrode includes a first uncoated portion at a long side end of the separator along a winding axis direction of the electrode assembly, and a portion of the first uncoated portion is bent in a radial direction of the electrode assembly to form a first bent surface area, , an electrode assembly in which a portion of the first bent surface region has a stacking thickness of the first uncoated portion of 100 ⁇ m to 975 ⁇ m; a battery housing housing the electrode assembly and electrically connected to one of the first electrode and the second electrode to have a first polarity; a sealing body sealing the open end of the battery housing; a terminal electrically connected to the other of the first electrode and the second electrode, the terminal having a second polarity exposed to the outside; and a first current
  • the first uncoated portion of the first electrode is divided into a plurality of segment pieces that are independent of each other, and the first electrode has a height variable section in which the height of the segment is variable and a section in which the height of the segment is uniform in height.
  • the area formed by bending the fragments included in the height uniformity section along the radial direction of the assembly has a ratio of the thickness of the uncoated part of the first bent surface area to the height of the fragments of 1.0 % to 16.3%.
  • the welding region of the first current collector may have a welding strength of 2 kgf/cm 2 or more.
  • the welding area of the first current collector may have a welding strength of 2 kgf/cm 2 or more.
  • the second electrode includes a second uncoated portion exposed to the outside of the separator along a winding axis direction of the electrode assembly at a long side end, and a portion of the second uncoated portion is in a radial direction of the electrode assembly. is bent to form a second bent surface area, and a partial area of the second bent surface area has a stacking thickness of the second uncoated part of 50 ⁇ m to 780 ⁇ m, and is welded to the second bent surface area, the battery housing or the and a second current collector electrically connected to the other of the terminals, wherein the welding area of the second current collector overlaps with a partial area of the second bent surface area where the thickness of the second uncoated part is 50 ⁇ m to 780 ⁇ m.
  • the second uncoated portion of the second electrode is divided into a plurality of segment pieces that are independent of each other, and the second electrode has a height variable section in which the height of the segment is variable and a section in which the height of the segment is uniform in height.
  • the area formed by bending the segment included in the height uniformity section along the radial direction of the assembly has a ratio of the thickness of the uncoated part of the second bent surface area to the height of the segment of 0.5 % to 13%.
  • the welding region of the second current collector may have a welding strength of 2 kgf/cm 2 or more.
  • the welding region of the first current collector may overlap a partial region of the first bent surface region in which the thickness of the first uncoated portion is 100 ⁇ m to 975 ⁇ m by 50% or more.
  • the welding area of the second current collector may overlap a partial area of the second bent surface area where the thickness of the second uncoated part is 50 ⁇ m to 780 ⁇ m by 50% or more.
  • the welding region of the first current collector and the welding region of the second current collector plate extend in the radial direction of the electrode assembly from a position spaced apart by the same distance based on the core center of the electrode assembly.
  • an extended length of the welding region of the first current collector may be longer than an extended length of the welding region of the second current collector.
  • the technical problem may be achieved by a battery pack including the above-described battery and a vehicle including the same.
  • a region where 10 or more uncoated areas overlap in the radial direction of the electrode assembly is sufficiently secured to increase welding output, but damage to the separator or active material layer is increased.
  • the electrolyte injection process and welding of the battery housing and the current collector can be carried out easily.
  • An electrode assembly having improved energy density and reduced resistance may be provided by directly welding the bent surface region of the uncoated region to the current collector instead of the strip-shaped electrode tab.
  • a battery having a structure having a low internal resistance and improved welding strength between a current collector and an uncoated region, a battery pack including the same, and a vehicle.
  • the present invention may have various other effects, which will be described in each embodiment, or the corresponding description will be omitted for effects that can be easily inferred by those skilled in the art.
  • 1 is a plan view showing the structure of an electrode plate used for manufacturing a conventional tab-less cylindrical battery.
  • FIG. 2 is a view showing the electrode plate winding process of the conventional tab-less cylindrical battery.
  • FIG 3 shows a process in which a current collector is welded to a bent surface region of an uncoated region in a conventional tab-less cylindrical battery.
  • FIG. 4 is a plan view showing the structure of an electrode plate according to an embodiment of the present invention.
  • 5 is a view showing the definition of the width, height, and spacing pitch of the segment according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the overlapping condition of the fragments according to an embodiment of the present invention.
  • FIG. 7A and 7B are views illustrating an upper cross-sectional structure and a lower cross-sectional structure of an electrode assembly before the bent structure of the uncoated region is formed, respectively, according to an embodiment of the present invention.
  • 8A and 8B are a cross-sectional view and a perspective view of an electrode assembly in which a bent surface area is formed while an uncoated region is bent, respectively, according to an embodiment of the present invention.
  • FIG. 9A shows that, in an electrode assembly having a radius of 22 mm included in a cylindrical battery having a form factor of 4680, when the fragments of the first electrode do not overlap in the circumferential direction and are bent from the outer periphery to the core, the fragments overlap in the radial direction. It is a cross-sectional view showing the bent surface area formed while
  • FIG. 9b shows the fragments in the radial and circumferential directions when the fragments of the first electrode overlap in the circumferential direction and are bent from the outer periphery to the core in an electrode assembly having a radius of 22 mm included in a cylindrical battery having a form factor of 4680; It is a cross-sectional view showing the bent surface area formed by overlapping.
  • FIG. 10 is a cross-sectional view taken along the Y-axis direction of the cylindrical battery according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along the Y-axis direction of a cylindrical battery according to another embodiment of the present invention.
  • FIG. 12 is a plan view illustrating a structure of a first current collector according to an embodiment of the present invention.
  • FIG. 13 is a perspective view illustrating a structure of a second current collector according to an embodiment of the present invention.
  • FIG. 14 is a plan view illustrating a state in which a plurality of cylindrical batteries are electrically connected according to an embodiment of the present invention.
  • FIG. 15 is a partially enlarged plan view illustrating in detail electrical connection of a plurality of cylindrical batteries in FIG. 14 .
  • 16 is a view showing a battery pack including a cylindrical battery according to an embodiment of the present invention.
  • 17 is a view showing a vehicle including a battery pack according to an embodiment of the present invention.
  • substantially identical may include deviations considered to be low in the art, for example, deviations within 5%. Also, uniformity of a certain parameter in a predetermined region may mean uniformity in terms of an average.
  • first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from another, and unless otherwise stated, the first component may be the second component, of course.
  • top (or bottom) of a component or “top (or below)” of a component means that any component is disposed in contact with the top (or bottom) surface of the component, as well as , may mean that other components may be interposed between the component and any component disposed on (or under) the component.
  • each component when it is described that a component is “connected”, “coupled” or “connected” to another component, the components may be directly connected or connected to each other, but other components are “interposed” between each component. It is to be understood that “or, each component may be “connected”, “coupled” or “connected” through another component.
  • a direction along the longitudinal direction of the winding axis of the electrode assembly wound in a jelly roll shape is referred to as an axial direction (Y).
  • the direction surrounding the winding shaft is referred to as a circumferential direction or a circumferential direction (X).
  • a direction close to or away from the take-up shaft is referred to as a radial direction.
  • a direction closer to the take-up shaft is referred to as a centripetal direction
  • a direction away from the take-up shaft is referred to as a centrifugal direction.
  • the electrode assembly is a jelly roll type electrode assembly having a structure in which first and second electrodes having a sheet shape and a separator interposed therebetween are wound around one axis.
  • the electrode assembly may include any winding structure well known in the art.
  • At least one of the first electrode and the second electrode includes an uncoated region on which the active material is not coated at the long side end in the winding direction. At least a portion of the uncoated region is used as an electrode tab by itself.
  • FIG. 4 is a plan view showing the structure of the electrode 40 according to the embodiment of the present invention.
  • the electrode 40 includes a current collector 41 made of a metal foil and an active material layer 42 .
  • the metal foil may be aluminum or copper, and is appropriately selected according to the polarity of the electrode 40 .
  • the active material layer 42 is formed on at least one surface of the current collector 41 , and includes the uncoated portion 43 at the long side end of the current collector 41 .
  • the uncoated area 43 is an area where the active material is not coated.
  • An insulating coating layer 44 may be formed at a boundary between the active material layer 42 and the uncoated region 43 . At least a portion of the insulating coating layer 44 is formed to overlap the boundary between the active material layer 42 and the uncoated region 43 .
  • the insulating coating layer 44 may include a polymer resin, and may include an inorganic filter such as Al 2 O 3 .
  • the area of the uncoated area 43 on which the insulating coating layer 44 is formed also corresponds to the uncoated area 43 because there is no active material layer 42 .
  • the bent portion of the uncoated portion 43 of the electrode 40 may include a plurality of segment pieces 61 .
  • the height of the plurality of segment pieces 61 may be increased step by step from the core side to the outer circumference side.
  • the section in which the height is gradually increased is an area remaining except for the uncoated area (Core-side uncoated area A) adjacent to the core side of the electrode assembly.
  • the core-side uncoated portion A has a relatively lower height than the other portions.
  • the fragment 61 may be notched with a laser.
  • the segment 61 may be formed by a known metal foil cutting process such as ultrasonic cutting or punching.
  • each segment 61 When the electrode 40 is wound, each segment 61 may be bent at the point of the bending line 62 in the radial direction of the electrode assembly, for example, toward the core.
  • the core refers to the cavity at the center of the winding of the electrode assembly.
  • Each segment 61 has the shape of a geometric figure with the bending line 62 as the base.
  • the width of the lower part may be greater than the width of the upper part.
  • the width of the lower part may increase gradually or stepwise (not shown) toward the upper part.
  • the geometric figure may have a trapezoidal shape.
  • the geometric figure may have a form in which at least one straight line, at least one curve, or a combination thereof is connected.
  • the geometric figure may be a polygon, such as a triangle, a quadrilateral, or a balanced quadrilateral.
  • the geometric figure may have an arc shape, such as a semicircle, a semiellipse, or the like.
  • the lower end of the cut groove between the fragments 61 (the portion indicated by D4 in FIG. 5) and It is preferable to leave a predetermined gap between the active material layers 42 . This is because stress is concentrated near the lower end of the cutting groove when the uncoated region 43 is bent.
  • the gap is preferably 0.2 to 4 mm.
  • the plurality of segment pieces 61 may form a plurality of segment segments while going from the core side to the outer circumference side.
  • the width, height, and spacing pitch of segments belonging to the same segment group may be substantially the same.
  • FIG. 5 is a view showing the definition of the width, height, and spacing pitch of the segment 61 according to an embodiment of the present invention.
  • a cutting groove 63 is formed between the segment pieces 61 .
  • the lower edge of the cutting groove 63 has a round shape. That is, the cut groove 63 includes a substantially straight bottom portion 63a and a round portion 63c.
  • the round portion 63c connects the bottom portion 63a and the lateral side 63b of the segment 61 .
  • the bottom portion 63a of the cut groove 63 may be replaced with an arc shape. In this case, the side edges 63b of the segment 61 may be smoothly connected by the arc shape of the bottom portion 63a.
  • the radius of curvature of the round portion 63c may be greater than 0 and less than or equal to 0.5 mm, more preferably greater than or equal to 0 and less than or equal to 0.1 mm. More preferably, the round portion 63c may have a radius of curvature of 0.01 mm to 0.05 m. When the radius of curvature of the round portion 63c satisfies the above numerical range, it is possible to prevent cracks from occurring in the lower portion of the cutting groove 63 while the electrode 40 is driven in a winding process or the like.
  • the width (D1), height (D2), and spacing pitch (D3) of the segmental piece 61 prevent tearing of the uncoated area (43) during bending of the uncoated area (43) and improve the welding strength of the uncoated area (D3).
  • 43) is designed to sufficiently increase the number of layers and prevent abnormal deformation of the uncoated area 43 as much as possible. Abnormal deformation means that the uncoated area below the bending point does not maintain a straight state and is deformed irregularly without hesitation.
  • the bending point may be a point spaced apart from the lower end of the cutting groove 63 indicated by D4 by 2 mm or less, preferably by 1 mm or less.
  • the width D1 of the segment 61 is a length between two points where two straight lines extending from both side sides 63b of the segment 61 and a straight line extending from the bottom 63a of the cut groove 63 meet. is defined as The height of the segment 61 is defined as the shortest distance between the uppermost side of the segment 61 and a straight line extending from the bottom 63a of the cut groove 63 .
  • the spacing pitch D3 of the segment 61 is between two points where a straight line extending from the bottom 63a of the cutting groove 63 and a straight line extending from two sidewalls 63b connected to the bottom 63a meet. defined by length.
  • the width D1 of the segment 61 may be adjusted in the range of 1 mm to 11 mm. If D1 is less than 1 mm, a region or an empty space (gap) that does not overlap enough to sufficiently secure welding strength when the fragment 61 is bent toward the core is generated. On the other hand, when D1 exceeds 11 mm, when the segment 61 is bent, there is a possibility that the uncoated area 43 near the bending point D4 is torn by stress. The bending point D4 may be spaced apart from the bottom 63a of the cutting groove 63 . The separation distance may be 2 mm or less, preferably 1 mm or less. In addition, the height of the segment 61 may be adjusted in the range of 2 mm to 10 mm.
  • D2 When D2 is less than 2 mm, a region or an empty space (gap) that does not overlap enough to sufficiently secure welding strength when the fragment 61 is bent toward the core is generated.
  • D2 exceeds 10 mm, it is difficult to manufacture an electrode plate while uniformly maintaining the flatness of the uncoated area in the winding direction (X). In other words, the height of the uncoated area increases and a swell occurs.
  • the spaced pitch D3 of the segment 61 may be adjusted in the range of 0.05 mm to 1 mm. If D3 is less than 0.05 mm, cracks may occur in the uncoated region 43 near the lower end of the cut groove 63 due to stress when the electrode 40 is driven in a winding process or the like. On the other hand, when D3 exceeds 1 mm, a region or an empty space (gap) in which the fragments 61 do not overlap each other or an empty space (gap) may occur to sufficiently secure welding strength when the fragments 61 are bent.
  • the spacing pitch D3 is more preferably set to 0.5mm or more.
  • D3 is 0.5 mm or more, even if the electrode 40 travels at a speed of 100 mm/sec or more under a tension of 300 gf or more in a winding process, etc., it is possible to prevent cracks from occurring in the lower part of the cutting groove 63 .
  • the width d A of the uncoated region A on the core side is designed by applying the condition that the core of the electrode assembly is not covered by 90% or more when the segment pieces 61 are bent toward the core side.
  • the width d A of the uncoated region A on the core side may increase in proportion to the bending length of the segment 61 of the group 1 .
  • the bending length corresponds to the height of the segment 61 with respect to the bending point (62 in FIG. 4 ).
  • the width d A of the uncoated region A on the core side is 180 mm to 350 mm depending on the diameter of the electrode assembly core. can be set to
  • the ratio d A /L e of the width d A of the core-side uncoated region A to the long side length L e of the electrode 40 may be 1% to 30%.
  • the electrode 40 has a fairly long length of 3000 mm to 5000 mm, so that the core-side uncoated region A can be designed to be sufficiently long.
  • Cylindrical batteries with a form factor of 1865 or 2170 have an electrode plate length of 600 mm to 1200 mm. In a typical cylindrical battery, it is difficult to design the ratio d A /L e within the above numerical range.
  • the width of each segment group may be designed to constitute the same winding turn of the electrode assembly.
  • each segment group may be designed to constitute a plurality of winding turns of the electrode assembly.
  • the width and/or height and/or spacing pitch of the segments 61 belonging to the same segment group may increase or decrease gradually and/or stepwise and/or irregularly within or between groups.
  • Groups 1 to 7 are only an example of a segment group.
  • the number of groups and the number of segment pieces 61 included in each group can disperse stress as much as possible in the bending process of the uncoated area 43 and ensure sufficient welding strength, and between the side edges 63b of the segment piece 61 .
  • the gap is minimized and the fragments 61 do not interfere with each other and may be adjusted to overlap in multiple layers along the radial direction of the electrode assembly.
  • some groups of segments may be removed.
  • the height of the uncoated region of the portion from which the fragment is removed may be the same as the height of the uncoated region A on the core side.
  • the electrode 40 may be divided into a height variable section in which the height of the segment 61 changes along the long side and a uniform height section in which the height of the segment 61 is uniform.
  • variable height section is a section corresponding to groups 1 to 7
  • uniform height section is a section located on the outer periphery of the group 7 .
  • the width d A of the core-side uncoated region A may be 180 to 350 mm.
  • the width of the group 1 may be 35 to 55% of the width of the uncoated region A on the core side.
  • the width of the group 2 may be 120 to 150% of the width of the group 1.
  • the width of the group 3 may be 110 to 135% of the width of the group 2 .
  • the width of the group 4 may be 75 to 90% of the width of the group 3.
  • the width of the group 5 may be 120 to 150% of the width of the group 4.
  • the width of group 6 may be 100 to 120% of the width of group 5.
  • the width of the group 7 may be 90 to 120% of the width of the group 6.
  • the reason that the width of groups 1 to 7 does not show a constant increase or decrease pattern is that the width of the fragments gradually increases from group 1 to group 7, but the number of fragments included in the group is limited to an integer number and the thickness of the electrode 40 This is because it has a deviation along the winding direction (X). Accordingly, the number of segments may be reduced in a particular segment group. Therefore, the width of the group may exhibit an irregular change pattern as in the above example from the core side to the outer peripheral side.
  • Group 4 to Group 6 correspond to this.
  • the width ratio of group 5 to group 4 is 120-150%, and the width ratio of group 6 to group 5 is 100-120%, and the value is less than 120-150%.
  • the lower inner angle ⁇ of the plurality of segment pieces 61 may increase from the core side to the outer circumferential side.
  • the lower inner angle ⁇ corresponds to an angle between a straight line passing through the bending line 62 in FIG. 4 and a straight line (or tangent line) extending from the side side 63b of the segment 61 .
  • the left internal angle and the right internal angle may be different from each other.
  • the radius of curvature increases.
  • stress generated in the radial and circumferential directions when the segment 61 is bent may be relieved.
  • the lower inner angle ⁇ increases, when the segment 61 is bent, the area overlapping with the inner segment 61 and the number of layers of the segment 61 are also increased, thereby welding in the radial and circumferential directions. It is possible to ensure uniform strength and form a flat bent surface area.
  • the fragments 61 overlap not only in the radial direction of the electrode assembly but also in the circumferential direction.
  • a pair of segment pieces 61 adjacent to a winding turn having a radius r with respect to the core center O of the electrode assembly is disposed.
  • the width and height of the adjacent segment pieces 61 are substantially the same.
  • the lower internal angle ⁇ assumption is an angle when it is assumed that the lateral sides of the segment 61 are substantially parallel.
  • the lower interior angle ⁇ assumption is an angle that can be uniquely determined by the arc length L arc corresponding to the lower portion of the segment 61 .
  • ⁇ real is an actual lower interior angle when the lateral sides of the adjacent segment pieces 61 intersect each other.
  • the segment pieces 61 disposed in the winding turn located at a radius r based on the core center O may overlap each other in the circumferential direction.
  • r is the radius of the winding turn in which the segment 61 is disposed with respect to the center of the core of the electrode assembly.
  • L arc is the length of an arc (solid line) corresponding to the lower portion (dotted line) of the segment in a circle having r as the radius, and is uniquely determined from the width D1 of the segment 61 .
  • the circumferential angle ⁇ of L arc at any winding turn radius r may be 45° or less.
  • L arc is greater than 1 mm, which is the lower limit of D1, and has a length less than or equal to (45/360)*(2 ⁇ r).
  • the circumferential angle ⁇ may vary depending on the radius of the winding turn in which the segment 61 is located.
  • the circumferential angle ⁇ of the segment 61 may increase gradually or stepwise along the radial direction of the electrode assembly while satisfying the numerical range condition, or vice versa.
  • the circumferential angle ⁇ of the segment 61 may increase gradually or stepwise along the radial direction of the electrode assembly while satisfying the above numerical range condition and then decrease gradually or stepwise, or vice versa.
  • the circumferential angle ⁇ of the segment 61 may be maintained substantially the same along the radial direction of the electrode assembly while satisfying the numerical range condition.
  • the circumferential angle ⁇ of the segment 61 is 45 degrees or less, and the width D1 in the winding direction of the segment 61 is 1 m to 11 mm.
  • L arc is 10.5 mm, and the ⁇ assumption is about 75 degrees.
  • L arc is 10.9 mm, and the ⁇ assumption is about 77.5 degrees.
  • ⁇ real / ⁇ assumption ⁇ 1 can be defined as the overlap ratio of the segmental pieces 61 in the circumferential direction.
  • the overlapping ratio of the fragments 61 is preferably greater than 0 and less than or equal to 0.05.
  • the ⁇ assumption is the angle uniquely determined by the arc L arc at the turn radius r.
  • the degree of overlap of the fragments 61 increases in proportion to the overlap ratio.
  • the number of stacks of the segment pieces 61 may be further increased. Examples for this will be described later.
  • the radius of the core is 4 mm
  • the height of the segment closest to the core is 3 mm
  • the radius of the electrode assembly is from 7 mm
  • the lower inner angle of the segment 61 may be increased step by step in the range of 60 degrees to 85 degrees.
  • the radius range and the lower inner angle range may be determined from design specifications of the form factor and the diameter of the core, the height of the segment closest to the core, the width D1 of the segment 61, and the overlap ratio.
  • the condition for overlapping the fragments may be changed as follows. That is, when an imaginary circle passing through a pair of adjacent segments 61 with respect to the core center O of the electrode assembly 40 is drawn as shown in (b) of FIG. 6 , a circular arc e 1 passing through each segment When -e 2 and e 3 - e 4 - overlap each other, the pair of adjacent segments 61 may overlap each other.
  • the overlap rate of the segment 61 is the maximum value among the ratios of the overlapping arcs e 2 - e 3 to the length of the arcs e 1 - e 2 (or e 3 - e 4 ) when a plurality of virtual circles with different radii are drawn. can be defined.
  • the overlap ratio of the fragments 61 may be greater than 0 and less than or equal to 0.05.
  • the section where the stress is concentrated applies a round shape (eg, semicircle, semi-ellipse, etc.) advantageous for stress distribution, and the section where the stress is relatively low is a polygonal shape (eg, a square, trapezoid, equilibrium) with a wide area as much as possible. quadrilateral, etc.) can be applied.
  • a round shape eg, semicircle, semi-ellipse, etc.
  • the section where the stress is relatively low is a polygonal shape (eg, a square, trapezoid, equilibrium) with a wide area as much as possible. quadrilateral, etc.) can be applied.
  • the uncoated region segment structure can also be applied to the core-side uncoated region (A).
  • the segmental structure is applied to the core-side uncoated area (A)
  • the end of the core-side uncoated area (A) is bent toward the outer periphery. Reverse forming may occur. have. Accordingly, there is no segmental structure in the uncoated region A on the core side, or the width and/or height and/or spacing pitch of the segment 61 in consideration of the radius of curvature of the core even if the segmental structure is applied at a level at which reverse forming does not occur It is preferable to adjust to
  • the electrode plate structure of the above-described embodiments (modified examples) may be applied to the first electrode and/or the second electrode having different polarities included in the jelly roll type electrode assembly.
  • a conventional electrode plate structure may be applied to the other one.
  • the electrode plate structures applied to the first electrode and the second electrode are not identical to each other and may be different.
  • any one of the embodiments (modified examples) is applied to the first electrode and a conventional electrode structure (refer to FIG. 1 ) is applied to the second electrode can be applied.
  • any one of the embodiments (modified examples) is selectively applied to the first electrode and the embodiments (modified examples) are applied to the second electrode Any one of them may be selectively applied.
  • the positive active material coated on the positive electrode and the negative active material coated on the negative electrode may be used without limitation as long as the active material is known in the art.
  • the positive active material has the general formula A[A x M y ]O 2+z (A includes at least one element of Li, Na, and K; M is Ni, Co, Mn, Ca, Mg, Al, at least one element selected from Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, and Cr; x ⁇ 0, 1 ⁇ x+y ⁇ 2, 0.1 ⁇ z ⁇ 2; stoichiometric coefficients x, y and z are selected such that the compound remains electrically neutral).
  • the positive active material includes an alkali metal compound xLiM 1 O 2 (1x)Li 2 M 2 O 3 (M 1 comprising at least one element having an average oxidation state 3; M; 2 includes at least one element having an average oxidation state 4; 0 ⁇ x ⁇ 1).
  • the positive active material may have the general formula Li a M 1 x Fe 1x M 2 y P 1y M 3 z O 4z (M 1 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, At least one element selected from Nd, Al, Mg and Al M 2 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si , Ge, contains at least one element selected from V and S; M 3 contains a halogen element optionally including F; 0 ⁇ a ⁇ 2, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1; stoichiometric coefficients a, x, y and z are chosen such that the compound remains electrically neutral), or Li 3 M 2 (PO 4 ) 3 [M is Ti, Si, Mn, Fe, Co, V, Cr , Mo, Ni, Al, including at least one element selected from Mg
  • the positive electrode active material may include primary particles and/or secondary particles in which the primary particles are aggregated.
  • the negative active material may be a carbon material, lithium metal or a lithium metal compound, silicon or a silicon compound, tin or a tin compound.
  • a metal oxide having a potential of less than 2V, such as TiO 2 and SnO 2 may also be used as the negative electrode active material.
  • As the carbon material both low-crystalline carbon, high-crystalline carbon, and the like may be used.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, or an ethylene/methacrylate copolymer. Or they can be used by laminating them.
  • the separator may be a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like.
  • At least one surface of the separator may include a coating layer of inorganic particles. It is also possible that the separation membrane itself is made of a coating layer of inorganic particles. Particles constituting the coating layer may have a structure combined with a binder so that an interstitial volume exists between adjacent particles.
  • the inorganic particles may be formed of an inorganic material having a dielectric constant of 5 or more.
  • the inorganic particles are Pb(Zr,Ti)O 3 (PZT), Pb 1x La x Zr 1y Ti y O 3 (PLZT), PB(Mg 3 Nb 2/3 )O 3 PbTiO 3 ( PMNPT), BaTiO 3 , hafnia(HfO 2 ), SrTiO 3 , TiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO and Y 2 O 3 At least one selected from the group consisting of material may be included.
  • the electrode assembly according to the embodiment is a jelly roll type electrode assembly 80 in which the electrode 40 of the embodiment is applied to a first electrode (anode) and a second electrode (cathode).
  • the present invention is not limited by the specific type of the electrode assembly.
  • FIGS. 7A and 7B are views illustrating an upper cross-sectional structure and a lower cross-sectional structure of the electrode assembly 80 before the bent structure of the uncoated regions 43a and 43a' is formed, respectively, according to an embodiment of the present invention.
  • FIGS. 8A and 8B are cross-sectional and perspective views of the electrode assembly 80 in which the uncoated regions 43a and 43a' are bent and the bent surface area F is formed, respectively, according to an embodiment of the present invention.
  • the electrode assembly 80 may be manufactured by the winding method described with reference to FIG. 2 .
  • the protrusion structure of the uncoated regions 43a and 43a' extending out of the separation membrane is illustrated in detail, and the detailed illustration of the winding structure of the separation membrane is omitted.
  • the uncoated region 43a protruding upward of the electrode assembly 80 extends from the first electrode 40 .
  • the uncoated region 43a ′ protruding downward of the electrode assembly 80 extends from the second electrode 40 ′.
  • the end position of the separator is indicated by a dotted line.
  • a pattern in which the height of the uncoated regions 43a and 43a' changes is schematically illustrated. That is, the height of the uncoated regions 43a and 43a' may vary irregularly depending on the position where the cross-section is cut. For example, when the sides of the fragment 61 having a trapezoidal shape are cut, the height of the uncoated region in the cross section is lower than the height of the fragment 61 (D2 in FIG. 4 ). In addition, the uncoated regions 43a and 43a' are not shown at the point where the cut groove (63 in FIG. 5) is cut.
  • the uncoated region 43a ′ of the second electrode 40 ′ may have substantially the same characteristics as the uncoated region 43a of the first electrode 40 .
  • the uncoated regions 43a and 43a' of the first electrode 40 and the second electrode 40' are bent in a radial direction to form a bent surface area (F). to form
  • the number of winding turns index k (a natural number of 1 to n 1 ) of the k-th winding turn is the total number of winding turns.
  • the radial length of the relative radial position R 1,k section in which the number of stacks of the uncoated area 43a is 10 or more in the radial direction is It is more than 30% of the radial length of the included winding turns.
  • the relative radial position of the first winding turn is 1/n 1 because the number of winding turns index is 1.
  • the relative radial position of the k-th winding turn is k/n 1 .
  • the relative radial position of the last n 1st winding turn is 1. That is, the relative radial position increases from 1/n 1 to 1 from the core side to the outer periphery of the electrode assembly 80 .
  • the number of winding turns index k (a natural number of 1 to n 2 ) at the position of the k-th number of winding turns is the total number of turns.
  • the value calculated by dividing by the number of winding turns n 2 is defined as the relative radial position R 2,k of the k-th winding turn
  • the radial length of the relative radial position R 2,k section in which the number of stacked parts of the uncoated area is 10 or more in the segmental direction It is 30% or more of the radial length of the winding turn in which they are arranged.
  • the relative radial position of the first winding turn is 1/n 2 because the number of winding turns index is 1.
  • the relative radial position of the k-th winding turn is k/n 2 .
  • the relative radial position of the last n 2nd winding turn is 1. That is, the relative radial position increases from 1/n 2 to 1 from the core side to the outer periphery of the electrode assembly 80 .
  • bent surface areas F are formed on the upper and lower portions of the electrode assembly 80 as shown in FIGS. 8A and 8B .
  • the plurality of segment pieces 61 overlap in multiple layers along the radial direction while being bent toward the core C of the electrode assembly 80 .
  • the number of stacked segments 61 may be defined as the number of segment segments 61 that intersect the imaginary line when an imaginary line is drawn in the winding axis direction Y at any radial point on the bending surface area F. .
  • the number of stacked fragments 61 includes the fragments 61 in order to sufficiently increase the welding strength between the bent surface area F and the current collector and to prevent damage to the separator and the active material layer during the welding process.
  • the radial length (R 1 ) of the wound turns there may be 10 or more in a radius of at least 30% or more.
  • the current collector may be welded to the bent surface area F of the uncoated areas 43a and 43'a with a laser.
  • a laser Alternatively, other known welding techniques such as resistance welding may be used.
  • the laser penetrates through the overlapping regions of the uncoated regions 43a and 43a ′ and penetrates to the inside of the electrode assembly 80 to damage the separator and the active material layer. Therefore, in order to prevent laser penetration, it is preferable to increase the number of layers of the uncoated areas 43a and 43a' in the welding area to a certain level or more.
  • the height of the segment 61 In order to increase the number of layers of the uncoated regions 43a and 43a', the height of the segment 61 must be increased. However, when the height of the segment 61 is increased, swell may occur in the uncoated regions 43a and 43a' during the manufacturing process of the electrode 40 . Accordingly, the height of the segment 61 is preferably adjusted to an appropriate level, preferably from 2 mm to 10 mm.
  • a radius section in which the number of layers of the fragments 61 is 10 or more is designed to be 30% or more compared to R 1 , and the area in which the fragments 61 are overlapped by 10 or more and the current collector are laser welded. Even if the output of the coating is increased, the overlapping portion of the uncoated region sufficiently masks the laser to prevent damage to the separator and the active material layer by the laser. In addition, since the number of layers of the segment 61 is large in the area to which the laser is irradiated, the welding beads are formed with sufficient volume and thickness. Therefore, the welding strength can be sufficiently secured and the resistance of the welding interface can also be lowered.
  • the output of the laser may be determined by a desired welding strength between the bending surface area F and the current collector.
  • Weld strength increases in proportion to the number of layers of uncoated areas 43a and 43a'. This is because the volume of the welding beads formed by the laser increases as the number of stacks of the uncoated regions 43a and 43a' increases.
  • the welding strength may be 2 kgf/cm 2 or more, more preferably 4 kgf/cm 2 or more.
  • the welding strength meets the above numerical range, even if severe vibration is applied to the electrode assembly 80 along the winding axial direction and/or the radial direction, the physical properties of the welding interface are not deteriorated, and the volume of the welding beads is sufficient so that the welding interface resistance can also be reduced.
  • the output of the laser for implementing the welding strength condition is different depending on the laser equipment, and may be appropriately adjusted in the range of 250W to 320W or 40% to 100% of the maximum laser output specification.
  • Weld strength may be defined as the tensile force per unit area of the current collector (kgf/cm 2 ) when the current collector starts to separate from the bending surface area F (kgf/cm 2 ). Specifically, after welding of the current collector is completed, a tensile force is applied to the current collector, but the size thereof is gradually increased. When the tensile force increases, the uncoated regions 43a and 43a' begin to separate from the welding interface. At this time, a value obtained by dividing the tensile force applied to the current collector by the area of the current collector is the weld strength.
  • the first electrode 40 includes a current collector plate (foil) 41 and an active material coating layer 42 formed on at least one surface thereof, and the electrode current collector 41 has a thickness of 10 ⁇ m to 25 ⁇ m, and an electrode assembly. (80) The interval between the adjacent winding turns in the radial direction may be 200um to 500um.
  • the current collector plate 41 may be made of aluminum.
  • the second electrode 40 ′ includes a current collector plate (foil) and an active material coating layer formed on at least one surface thereof, the thickness of the current collector plate is 5 to 20 ⁇ m, and between adjacent winding turns in the radial direction of the electrode assembly 80 .
  • the interval may be 200 to 500um.
  • the current collector plate may be copper.
  • the first relative radial position R 1,k* preset from the relative radial position R 1,1 of the first electrode 40 The height of the uncoated part of the section to may be smaller than the height of the uncoated part of the section from the relative radial position R 1,k*+1 of the number of turns k*+1 to the relative radial position 1 .
  • the height of the uncoated area in the section from the relative radial position R 1,1 to the preset first relative radial position R 1,k* corresponds to the uncoated area height of the uncoated area A on the core side (see FIG. 4 ).
  • the relative radial position 1 is the relative radial position of the outermost wound turn including the segment 61 .
  • the uncoated region in the section from the relative radial position R 1,1 to the first relative radial position R 1,k* is formed by overlapping uncoated regions whose heights are bent. It may be lower than the bending surface area (F).
  • the uncoated region is not bent toward the core of the electrode assembly 80 . it may not be
  • the uncoated region height of the section from the relative radial position R 2,1 to the preset first relative radial position R 2,k* is the winding structure. It may be smaller than the height of the uncoated part of the section from the relative radius position R 2,k*+1 to the relative radius position 1 of the turn k*+1.
  • the relative radius position 1 is the relative radius of the outermost wound turn including the segment 61 . It can correspond to location.
  • the uncoated area may have a height lower than the bent surface area F formed by overlapping the bent uncoated areas.
  • the uncoated portion of the section from the relative radial position R 2,1 to the first relative radial position R 2,k* may not be bent toward the core of the electrode assembly.
  • the height of the uncoated portion in the section from the relative radial position R 2,1 to the first relative radial position R 2,k* is the relative radial position R 2,k*+ It may be smaller than the uncoated part height of the section from 1 to the relative radial position 1 and may not be bent toward the core side.
  • the uncoated region bending length fd 1,k*+1 of the relative radial position R 1,k*+1 is the relative radial position R 1,1 to the relative radial position R 1,k * can be shorter than the radial echo length up to . Accordingly, the core C of the electrode assembly 80 may not be shielded by the bent portion of the uncoated region 43a positioned in the range from the relative radial position R 1,k*+1 to the relative radial position 1 .
  • the core C of the electrode assembly 80 has a non-woven fabric positioned in the range of the relative radial position R 1,k*+1 to the relative radial position 1 by 90% or more based on its radius r c . It may not be shielded by the bent portion of the portion 43a. That is, in the core C, a radius section corresponding to at least 0 to 0.9r c may not be shielded by the bent portion of the uncoated portion 43a.
  • the bending length fd 1,k* +1 of the uncoated region 43a located at the relative radial position R 1,k*+ 1, the radius of the core (r c ), and the relative radial position R 1,k*+1 are The distance (d 1,k*+1 ) spaced apart from the center of the core (C) may satisfy Equation 2 below.
  • the uncoated portion of the section from the relative radial position R 2,1 to the first relative radial position R 2,k* has a height of the relative radial position R 2,k*+ It may be smaller than the uncoated part height of the section 1 to the relative radius position 1 and may not be bent toward the core side.
  • the bending length fd 2,k*+1 of the uncoated portion positioned at the relative radial position R 2 ,k*+1 is the relative radial position R 2,1 to the first relative radius. It may be shorter than the length to position R 2,k* . Accordingly, the core C of the electrode assembly 80 may not be shielded by the bent portion of the uncoated region positioned in the range from the relative radial position R 2,k*+1 to the relative radial position 1 .
  • the core C of the electrode assembly 80 has a bending of the uncoated region 43a ′ located at a relative radial position R 2,k*+1 of 90% or more based on its radius r c . may not be shielded by wealth.
  • the bending length fd 2,k* +1 of the uncoated region 43a' located at the relative radial position R 2,k* +1 , the radius of the core r c , and the relative radial position R 2,k*+1 may satisfy Equation 3 below.
  • the first electrode 40 is uncoated from the second relative radial position R 1,k@+1 of the preset k@+1th winding turn to the relative radial position 1
  • the segment is divided into a plurality of segment segments 61 , and the height of the plurality of segment segments 61 may be substantially equal from the relative radial position R 1,k@+1 to the relative radial position 1 .
  • the uncoated portion 43a in the section from the relative radial position R 1,k*+1 to the second relative radial position R 1,k@ of the preset k@th winding turn. is divided into a plurality of segment pieces 61 and the height thereof may be increased step by step or gradually toward the outer periphery. Accordingly, the section from the relative radial position R 1,k*+1 to R 1,k@ corresponds to the variable height section.
  • the radial length of the variable height section of the segment is defined as H 1
  • the wound structure of the first electrode 40 excluding the core C is defined as H 1
  • the height variable section ratio H 1 /(Rr c )
  • R may be 22 mm
  • the core radius r c may be 5 mm
  • Rr c may be 17 mm.
  • the height of the fragment 61 may be changed in 8 steps from 2 mm to 10 mm in a radius of 7 mm to 15 mm. After the radius of 15 mm, the height of the segment 61 is maintained at 10 mm. H 1 is 8mm, so the height variable section ratio may be 47% (8mm/17mm).
  • Example 2 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed in 7 steps from 2 mm to 9 mm in a radius of 7 mm to 14 mm. After the radius of 14 mm, the height of the segment 61 is maintained at 9 mm. H 1 is 7mm, so the height variable section ratio may be 41% (7mm/17mm).
  • Example 3 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed stepwise in 6 steps from 2 mm to 8 mm in a radius of 7 mm to 13 mm. After the radius of 13 mm, the height of the segment 61 is maintained at 8 mm. H 1 is 6mm, so the height variable section ratio may be 35% (6mm/17mm).
  • Example 4 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed stepwise in 5 steps from 2 mm to 7 mm in a radius of 7 mm to 12 mm. After the radius of 12 mm, the height of the segment 61 is maintained at 7 mm. Since H 1 is 5 mm, the height variable section ratio may be 29% (5 mm/17 mm).
  • Example 5 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed stepwise in 4 steps from 2 mm to 6 mm in a radius of 7 mm to 11 mm. After the radius of 11 mm, the height of the segment 61 is maintained at 6 mm. H 1 is 4mm, so the height variable section ratio may be 24% (4mm/17mm).
  • Example 6 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed stepwise in three steps from 2 mm to 5 mm in a radius of 7 mm to 10 mm. After the radius of 10 mm, the height of the segment 61 is maintained at 5 mm. H 1 is 3mm, so the height variable section ratio may be 18% (3mm/17mm).
  • Example 7 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed in two steps from 2 mm to 4 mm in a radius of 7 mm to 9 mm. After the radius of 9 mm, the height of the segment 61 is maintained at 4 mm. H 1 is 2mm, so the height variable section ratio may be 12% (2mm/17mm).
  • Example 8 R and r c are the same as in Example 1.
  • the height of the fragment 61 may be changed in stages from 2 mm to 3 mm in a radius of 7 mm to 8 mm in one step. After the radius of 8 mm, the height of the segment 61 is maintained at 3 mm. Since H 1 is 1 mm, the ratio of the height variable section may be 6% (1 mm/17 mm).
  • the numerical range of the height variable section ratio may vary according to the size of the radius (r c ) of the core (C). Since the calculation method is similar to the above, only the results are disclosed.
  • the height of the fragment in a radius of 6mm to 14mm is in the range of 2mm to 10mm
  • the interval ratio may be 6% to 44%.
  • the height variable section ratio may be 5% to 40%.
  • the height variable section ratio is 5% to 47%.
  • the radius of the electrode assembly 80 is constant, the lower and upper limits of the ratio of the height variable section decrease accordingly as the radius r c of the core C decreases.
  • the upper and lower limits of the ratio of the height variable section may be changed by the height change width of the segment 61 and the number of height changes per 1 mm increase in radius.
  • the lower and upper limits of the ratio height variable section ratio are 1% and 9%, respectively.
  • the lower and upper limits of the height variable section ratio are 6% and 56%, respectively.
  • the ratio of the height variable section is 1% to 56%.
  • the radial length ratio of the relative radial position in which the number of stacks of the uncoated region 40 is 10 or more is the radius of the wound turns including the segment 61 .
  • the direction length (R 1 ) may be at least 30% or more. As will be described later, such a configuration provides useful effects in terms of welding strength and resistance of the current collector.
  • the relative radial position R 2,k*+1 to the second relative radial position R 2,k of the preset k@th winding turn R 2,k is divided into a plurality of segment pieces 61, and the height thereof may be increased step by step or gradually toward the outer periphery. Accordingly, the section from the relative radial position R 2,k*+1 to R 2,k@ corresponds to the variable height section.
  • the radial length of the variable height section is defined as H 2 , and H compared to the radius Rr c of the wound structure of the second electrode 40 ′ except for the core C.
  • the ratio of 2 is defined as the ratio of the variable height section (H 2 /(Rr c ))
  • it is preferable that the ratio of the variable height section is 1% to 56% like the first electrode.
  • the ratio of the relative radial position of the uncoated region 40 with 10 or more layers includes the segment 61 .
  • the radial length (R 2 ) of the winding turns may be at least 30% or more.
  • the uncoated portion of the second electrode 40' includes a plurality of segment segments. 61 , and the height of the plurality of segment segments 61 may be substantially equal from the relative radial position R 2,k@+1 to the relative radial position 1 .
  • the uncoated region 43a bent toward the core is divided into a plurality of segment pieces 61 , and the height of the plurality of segment segments 61 in the winding axial direction and At least one of the widths in the winding direction may be increased gradually or stepwise from the core side to the outer circumferential side individually or in groups.
  • the uncoated region 43a ′ bent toward the core is divided into a plurality of segment pieces 61 , and the plurality of segment segments 61 are wound in the direction of the winding axis. At least one of the height and the width in the winding direction may be increased gradually or stepwise from the core side to the outer circumferential side individually or in groups.
  • each of the plurality of segment segments 61 has a width of 1 to 11 mm in the winding direction (D1 in FIG. 5).
  • D1 in FIG. 5 A height of 2 to 10 mm in the direction of the winding axis (D2 in FIG. 5) condition;
  • D3 A height of 2 to 10 mm in the direction of the winding axis
  • a predetermined gap may be provided between the bottom of the cut groove of the segment 61 (the portion indicated by D4 in FIG. 5 ) and the active material layer 42 .
  • the gap may be 0.2 to 4 mm.
  • the plurality of fragments 61 form a plurality of fragment groups as they go from the core side to the outer periphery side. and at least one of a width in a winding direction, a height in a winding axial direction, and a spacing pitch in the winding direction of the fragments belonging to the same fragment group may be the same.
  • the segment segments included in each group may constitute at least one winding turn in the winding structure of the electrode assembly 80 .
  • the segment pieces included in each group may constitute at least two or more winding turns in the winding structure of the electrode assembly 80 .
  • FIG. 9A shows that in the electrode assembly having a radius of 22 mm included in a cylindrical battery having a form factor of 4680, the uncoated portion 43a of the first electrode 40 divided into a plurality of segment pieces 61 is shown from the outer periphery of the core.
  • the bent surface area F is formed while bending to the side, and 10 or more uncoated areas 43a are overlapped in a portion of the bent surface area F along the radial direction, and stacked along the radial direction of the electrode assembly 80 .
  • the number of stacked uncoated regions 43a in the bent surface area F sequentially increases from the outer periphery of the electrode assembly 80 toward the core and reaches a maximum value, and the maximum value is in a predetermined radius section. It is maintained and decreases by 1 or 2 near the core.
  • a radius section near the core may be referred to as a layer reduction section.
  • a radial section in which the number of stacks of the uncoated area 43a sequentially increases from the outer periphery of the electrode assembly 80 to a maximum value is defined as a stacking number increase section, and the number of stacks of the uncoated area 43a becomes the maximum value.
  • the section maintained and the remaining section near the core are defined as a section with a uniform number of layers. Since the section with a uniform number of stacks includes a section in which the number of stacks of the uncoated region 43a is maintained at the maximum value, the bent surface area F is flatter than the other portions and corresponds to the optimum welding area.
  • the uncoated area 43a is divided into trapezoid-shaped segments as shown in FIG. 5, and the uncoated area 43a shows only the upper part of the cut groove 63 based on the bottom 63a. will be.
  • the uncoated portion 43a is not shown in the portion corresponding to the cross-section of the cutting groove 63 .
  • Points at which the segment pieces 61 are actually bent are not exactly the same, and are spaced apart from the lower end of the cutting groove 63 by a predetermined distance. As the number of overlapping portions of the uncoated region 43a increases toward the core, resistance to overlap occurs. Therefore, it is preferable to perform bending at a point spaced apart from the lower end of the cutting groove 63 by a predetermined distance.
  • the separation distance is 2 mm or less, preferably 1 mm or less. If there is a separation distance, the overlap of the segment pieces 61 in the radial direction is better achieved.
  • the bent surface area F is formed by overlapping the segment pieces positioned at different winding turns in the radial direction of the electrode assembly 80 .
  • the segment pieces 61 do not overlap in the circumferential direction. That is, a gap exists between the lateral sides of the segment 61 as shown in FIG. 6A .
  • the condition for the existence of the gap may be satisfied by adjusting the width, height, separation pitch, lower interior angle, and the like of the segment.
  • the bent surface area F when the fragments overlap in the circumferential direction will be described later with reference to FIG. 9B .
  • the radius r c of the core of the electrode assembly 80 is 4 mm. Also, the height of the fragments starts from 3 mm. No fragments are present in the uncoated region 43a from 4 mm to 7 mm based on the radius of the electrode assembly. That is, the segment is present in a section with a radius of 7 mm to 22 mm among the total radius of 22 mm of the electrode assembly, and the width of the radius section in which the segment 61 is present is 15 mm. If a maximum of 10% of the radius r c of the core is covered by the fragment, the point at which the fragment is placed may be moved toward the core.
  • a segment having a height of 3 mm from the winding turn at a point of approximately 7 mm in radius is disposed.
  • the height of the segment increases by 1 mm for every 1 mm increase in radius from the core side to the outer periphery from the radius of 7 mm of the wound structure.
  • the period of increasing the height of the fragment can be changed in the range of 0.2 mm to 1.2 mm per unit radius (1 mm).
  • 9A (a) is a case in which the maximum height of the fragment is 8 mm.
  • the fragment is disposed from a point where the radius of the electrode assembly becomes 7 mm from the center of the core. Only then, when a fragment with a height of 3 mm is bent toward the core, it does not cover the core with a radius of 4 mm.
  • the height of the segment increases in 5 steps from 3 mm to 8 mm as the radius increases from 7 mm to 12 mm.
  • the height of the fragments is maintained at 8 mm with a radius of 12 mm to 22 mm.
  • the variable height section of the segment has a radius of 7 mm to 12 mm, and the height variable section ratio is 28% (5/18, rounded off, hereinafter the same).
  • 9A (b) is a case in which the maximum height of the fragment is 7 mm. Also in this case, the fragment is disposed from the point where the radius of the electrode assembly becomes 7 mm from the center of the core. Only then, when a fragment with a height of 3 mm is bent toward the core, it does not cover the core with a radius of 4 mm. The height of the segment increases in 4 steps from 3 mm to 7 mm as the radius increases from 7 mm to 11 mm. In addition, the height of the fragment is maintained at 7 mm with a radius of 11 mm to 22 mm. In this embodiment, the variable height section of the segment has a radius of 7 mm to 11 mm, and the height variable section ratio is 22% (4/18).
  • 9A (c) is a case in which the maximum height of the fragment is 6 mm. Also in this case, the fragment is disposed from the point where the radius of the electrode assembly becomes 7 mm from the center of the core. Only then, when a fragment with a height of 3 mm is bent toward the core, it does not cover the core with a radius of 4 mm.
  • the height of the segment increases in three steps from 3 mm to 6 mm as the radius increases from 7 mm to 10 mm.
  • the height of the fragment is maintained at 6 mm with a radius of 10 mm to 22 mm.
  • the variable height section of the segment has a radius of 7 mm to 10 mm, and the height variable section ratio is 17% (3/18).
  • the height variable section of the segment starts from a radius of 7 mm.
  • the ratio of the height variable section is 17% to 28%. This ratio range is included in the above-mentioned preferred range of 1% to 56%.
  • the number of layers of the uncoated region 43a sequentially increases from the outer periphery to the core side, and the number of layers increases as the maximum length of the fragment increases to 6 mm, 7 mm, and 8 mm even though the minimum length of the fragment is the same as 3 mm. It can be seen that the maximum value of is increased to 12, 15 and 18. In addition, the thickness of the bent surface area F increases proportionally according to the number of layers.
  • the number of stacks of the uncoated region 43a increases from the outer peripheral surface of the electrode assembly 80 toward the core to 18 sheets in a 7 mm radius section, and the radius point at which the increase in the number of stacks stops.
  • the number of layers of the uncoated area 43a is uniformly maintained at the level of 18 sheets.
  • the number of layers is at least 16 and the radial width is 8 mm.
  • the width of the uniform number of stacked sections is 53% (8/15, rounded to one decimal place, hereinafter the same) compared to the radial length (15 mm) of the winding turns including the segment.
  • the number of stacks of the uncoated region 43a increases from the outer peripheral surface of the electrode assembly 80 toward the core to 15 sheets in a 6 mm radius section, and the radius point at which the increase in the number of stacks stops.
  • the number of layers of the uncoated area 43a is uniformly maintained at the level of 15 sheets.
  • the radial width of the section with a uniform number of stacks is 9 mm, and the section with a uniform number of stacks has at least 13 or more layers.
  • the width of the uniform number of layers is 60% (9/15) compared to the radial length (15 mm) of the wound turns including the segment.
  • the number of stacks of the uncoated region 43a increases from the outer peripheral surface of the electrode assembly 80 toward the core to 12 sheets in a section with a radius of 5 mm, and the radius at which the increase in the number of stacks stops In a section with a radius of 10 mm from the point to the core, the number of layers of the uncoated area 43a is uniformly maintained at the level of 12 sheets. Therefore, the radial width of the section with a uniform number of layers is 10 mm, and the section with the number of layers with a uniform number of layers has at least 11 layers. The width of the uniform number of stacked sections is 67% (10/15) compared to the radial length (15 mm) of the wound turns including the segment.
  • the length of the increasing number of lamination sections in which the number of laminations increases gradually increases to 5 mm, 6 mm and 7 mm, respectively, and the uncoated region ( 43a), it can be seen that the ratio of the section with the number of stacks equal to or greater than 10 is 53% to 67%.
  • the thickness of the bent surface area F increases in proportion to the number of layers of the uncoated area 43a.
  • the number of layers of the uncoated area 43a may be reduced to 10, and thus the number of layers of the uncoated area 43a is 10 to 18.
  • the thickness of the bent surface area F may be 100 ⁇ m to 450 ⁇ m.
  • the thickness of the bent surface area F may be 50 ⁇ m to 360 ⁇ m.
  • the thickness of the bending surface area F satisfies the conditions in the above numerical range, when the current collector is welded to the bending surface area F using a laser, the bending surface area F sufficiently absorbs the energy of the laser. . As a result, welding beads are formed in a sufficient volume in the bent surface area F, thereby increasing welding strength. In addition, it is possible to prevent damage to the separator or the like located below the bent surface area F while the welding site is perforated by the laser.
  • the current collector may be welded to the bent surface area (F). At least a part of the welding area of the current collector may overlap with the uniform number of stacked sections with respect to the radial direction.
  • 50% to 100% of the welding area of the current collector in the radial direction of the electrode assembly may overlap the uniform number of layers.
  • the overlap ratio of the weld area increases, it is preferable in terms of improving weld strength and increasing the weld bead volume.
  • the remaining regions that do not overlap the uniform number of stacked sections may overlap with the increased number of stacked sections.
  • the lower inner angle of the fragments included in each group of fragments is expressed in Equation 1 If the condition is satisfied, the side edges of the adjacent segment pieces 61 positioned in the same winding turn may cross each other and overlap each other in the circumferential direction. In this case, the number of stacked uncoated regions 43a in the radial direction of the electrode assembly may be further increased.
  • 9B is a cross-sectional view of the bent surface area F exemplarily illustrating a section for increasing the number of layers and a section for uniform number of layers when the segments are overlapped in the circumferential direction.
  • the number of overlapping uncoated regions 43a sequentially increases from the outer periphery to the core.
  • the height variable section of the segment is from a radius of 7 mm, as in the embodiment of FIG. 9A .
  • the height of the segment starts at 3 mm and increases by 1 mm for every 1 mm increase in radius.
  • the maximum value of the fragment height increases to 6 mm, 7 mm, 8 mm, 9 mm, and 10 mm
  • the number of laminates at the radial positions where the number of laminates uniformity section starts increases to 18, 22, 26, 30, and 34.
  • the maximum values of the fragment height are 6 mm, 7 mm, and 8 mm
  • the number of laminates is 6 to 8 more than in the example of FIG. 9A . This is because the fragments overlapped in the circumferential direction.
  • the number of stacks of the uncoated region 43a increases from the outer peripheral surface of the electrode assembly 80 toward the core in a section with a radius of 9 mm (increasing the number of stacks) to 34 sheets, In a section with a radius of 6 mm toward the core from the radius at which the increase in the number of stacks stops, the number of stacks of the uncoated area 43a is maintained at 34, and then the number of stacks increases to 39 near the core.
  • the increase in the number of layers near the core is because overlapping of the fragments in the circumferential direction becomes more severe toward the core.
  • a radius section near the core in which the number of stacks is further increased may be defined as a section where the number of stacks is further increased.
  • the number of stacks is at least 34 and the radial width is 6 mm.
  • the uniform number of layers starts from a radius of 7mm and is 40% (6/15, rounded to one decimal place, the same below) compared to the radial length (15mm) of the winding turns including the segment.
  • the number of stacks of the uncoated region 43a increases to 30 in a section with a radius of 8 mm from the outer peripheral surface of the electrode assembly 80 toward the core, and the increase in the number of stacks stops.
  • the number of stacks of the uncoated area 43a is maintained at 30 and further increases to 36 sheets near the core.
  • the radial width of the section with a uniform number of layers is 7 mm, and the section with the number of layers with a uniform number of layers has at least 30 or more layers.
  • the section with a uniform number of stacks starts from a radius of 7 mm and is 47% (7/15) of the radial length (15 mm) of the winding turns including the segment.
  • the number of stacks of the uncoated region 43a increases from the outer peripheral surface of the electrode assembly 80 toward the core to 26 sheets in a section with a radius of 7 mm, and the increase in the number of layers increases
  • the radial width of the section with a uniform number of layers is 8 mm
  • the section with the number of layers with a uniform number of layers has at least 26 layers.
  • the section with a uniform number of stacks starts from a radius of 7 mm and is 53% (8/15) of the radial length (15 mm) of the winding turns including the segment.
  • the number of overlapping uncoated regions 43a increases from the outer peripheral surface of the electrode assembly 80 toward the core to 22 sheets in a section with a radius of 6 mm, and the increase in the number of layers increases.
  • the number of stacked uncoated areas 43a is maintained at 22, and then further increases to 23 near the core. Therefore, the radial width of the section with a uniform number of layers is 9 mm, and the section with the number of layers with a uniform number of layers has at least 22 sheets or more.
  • the section with a uniform number of stacks starts from a radius of 7mm and is a section corresponding to 60% (9/15) of the radial length (15mm) of the winding turns including the segment.
  • the number of overlapping uncoated regions 43a increases to 18 sheets from the outer peripheral surface of the electrode assembly 80 toward the core side with a radius of 5 mm, and the increase in the number of layers increases
  • the radial width of the section with a uniform number of layers is 10 mm
  • the section with the number of layers with a uniform number of layers has at least 18 layers.
  • the section with a uniform number of stacks starts from a radius of 7mm and corresponds to 67% (10/15) of the radial length (15mm) of the winding turns including the segment.
  • the length of the increase in the number of laminates in which the number of laminates is gradually increased is 5 mm, Increases to 6mm, 7mm, 8mm and 9mm.
  • the ratio of the uniform number of layers of 10 or more layers is 40% to 67%.
  • the thickness of the bent surface area F increases in proportion to the number of layers of the uncoated area 43a.
  • the number of layers of the uncoated region 43a is 18 to 39.
  • the thickness of the bent surface area F may be 180 ⁇ m to 975 ⁇ m.
  • the thickness of the bent surface area F may be 90 ⁇ m to 780 ⁇ m.
  • the thickness of the bending surface area F satisfies the conditions in the above numerical range, when the current collector is welded to the bending surface area F using a laser, the bending surface area F sufficiently absorbs the energy of the laser. . As a result, welding beads are formed in a sufficient volume in the bent surface area F, thereby increasing welding strength. In addition, it is possible to prevent damage to the separator or the like located below the bent surface area F while the welding site is perforated by the laser.
  • the welding area of the current collector may overlap with the uniform number of stacked sections in the radial direction.
  • 50% to 100% of the welding area of the current collector in the radial direction of the electrode current collector 80 may overlap the uniform number of stacked sections.
  • the overlap ratio of the weld area increases, it is preferable in terms of weld strength.
  • a region that does not overlap with the uniform number of stacks section may overlap with the section where the number of stacks increases.
  • the radius R of the electrode assembly in the section where the number of layers of the uncoated region 43a is uniform, the radius r c of the core, and the minimum value of the height of the fragment in the section in which the height of the fragment is variable. It will be apparent to those skilled in the art that it can be increased or decreased by the maximum value, and the height increase width of the segment in the radial direction of the electrode assembly.
  • the ratio of the uniform number of layers is inversely proportional to the radius of the core (r c ).
  • the ratio of the uniform number of stacked sections increases as the width of the variable height section decreases when the minimum heights of the segments are the same.
  • the ratio of the section with a uniform number of layers increases as the width of the variable height section is smaller when the maximum height of the segment is the same.
  • the diameter (R) of the electrode assembly is 22 mm
  • the radius (r c ) of the core is 2 mm
  • the height of the fragment is varied from 9 mm to 12 mm, from 7 mm to 10 mm in the segment height variable section. The percentage can be reduced to the level of 30%.
  • the diameter (R) of the electrode assembly is 22 mm
  • the radius (r c ) of the core is 2 mm
  • the height of the fragment is varied from 5 mm to 6 mm, from 3 mm to 4 mm in the segment height variable section. The percentage can be increased up to the 85% level.
  • the radial length of the uniform number of stacked sections may be 30% or more, preferably 30% to 85%, compared to the radial length of the wound turns including the segment.
  • the number of layers in the uniform height section of the fragment is 6 mm to 10 mm
  • the number of layers is uniform by changing the minimum height of the fragment and the amount of increase in the height of the fragment in the radial direction.
  • the number of layers of the uncoated area 43a in the section may be adjusted in the range of 10 to 39.
  • the section with a uniform number of layers of the bent surface area F includes a section formed by bending the fragments included in the section with a uniform height.
  • the thickness of the bent surface area F depends on the thickness of the material constituting the uncoated area 43a.
  • the thickness of the uncoated region of the bent surface area F is 100 ⁇ m (0.1 mm) to 975 ⁇ m (0.975 mm).
  • the ratio of the thickness of the uncoated part of the bent surface area (F) to the height of the fragment is 1.0% ( 0.1 mm/10 mm) to 16.3% (0.975 mm/6 mm).
  • the lamination thickness of the uncoated region of the bent surface area F is 50 ⁇ m (0.05 mm) to 780 ⁇ m (0.780 mm).
  • the ratio of the thickness of the uncoated part of the bent surface area (F) to the height of the fragment is 0.5% ( 0.05 mm/10 mm) to 13.0% (0.780 mm/6 mm).
  • Various electrode assembly structures according to an embodiment (modified example) of the present invention may be applied to a jelly roll type cylindrical battery or any battery known in the art.
  • the cylindrical battery may be, for example, a cylindrical battery in which the ratio of the form factor (defined as the diameter of the cylindrical battery divided by the height, i.e. the ratio of the height H to the diameter ⁇ ) is greater than approximately 0.4. .
  • the form factor means a value indicating the diameter and height of the cylindrical battery.
  • the form factor of the cylindrical battery according to an embodiment of the present invention may be, for example, 46110, 4875, 48110, 4880, 4680, or the like.
  • the first two numbers represent the diameter of the battery, and the remaining numbers represent the height of the battery.
  • the battery according to an embodiment of the present invention may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 46 mm, a height of about 110 mm, and a form factor ratio of 0.418.
  • the battery according to another embodiment may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 48 mm, a height of about 75 mm, and a form factor ratio of 0.640.
  • a battery according to another embodiment may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 48 mm, a height of about 110 mm, and a form factor ratio of 0.436.
  • the battery according to another embodiment may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 48 mm, a height of about 80 mm, and a form factor ratio of 0.600.
  • the battery according to another embodiment may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 46 mm, a height of about 80 mm, and a form factor ratio of 0.575.
  • batteries having a form factor ratio of about 0.4 or less have been used. That is, conventionally, for example, an 1865 battery, a 2170 battery, or the like has been used. For an 1865 battery, its diameter is approximately 18 mm, its height is approximately 65 mm, and the form factor ratio is 0.277. For a 21700 battery, its diameter is approximately 21 mm, its height is approximately 70 mm, and the form factor ratio is 0.300.
  • FIG. 10 is a cross-sectional view taken along the Y-axis direction of the cylindrical battery 190 according to an embodiment of the present invention.
  • a cylindrical battery 190 includes an electrode assembly 110 including a first electrode, a separator, and a second electrode, and a battery housing 142 accommodating the electrode assembly 110 . ) and a sealing body 143 for sealing the open end of the battery housing 142 .
  • the battery housing 142 is a cylindrical container in which an opening is formed at the upper side.
  • the battery housing 142 is made of a metal material having conductivity, such as aluminum or steel.
  • the battery housing 142 accommodates the electrode assembly 110 in the inner space through the upper opening and also accommodates the electrolyte.
  • the electrolyte may be a salt having a structure such as A + B -- .
  • a + includes an ion composed of an alkali metal cation such as Li + , Na + , K + or a combination thereof.
  • B - is F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , BF 2 C 2 O 4 - , BC 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3
  • the electrolyte can also be used by dissolving it in an organic solvent.
  • organic solvent propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (N-methyl- 2-pyrrolidone, NMP), ethyl methyl carbonate (EMC), gamma butyrolactone ( ⁇ -butyrolactone), or a mixture thereof may be used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofur
  • the electrode assembly 110 may have a jelly roll shape or any shape known in the art. As shown in FIG. 2 , the electrode assembly 110 is wound around a winding center (C) of a laminate formed by sequentially stacking a lower separator, a first electrode, an upper separator, and a second electrode at least once. It can be manufactured by
  • the first electrode and the second electrode have different polarities. That is, if one has positive polarity, the other has negative polarity.
  • At least one of the first electrode and the second electrode may have an electrode structure according to the above-described embodiments (modified examples).
  • the other one of the first electrode and the second electrode may have a conventional electrode structure or an electrode structure according to embodiments (modified examples).
  • An uncoated area 146a of the first electrode and an uncoated area 146b of the second electrode protrude from the upper and lower portions of the electrode assembly 110 , respectively.
  • the sealing body 143 provides airtightness between the cap 143a, the cap 143a, and the battery housing 142 and is electrically and mechanically coupled to the first gasket 143b and the cap 143a having insulation. It may include a connection plate (143c).
  • the cap 143a is a component made of a conductive metal material and covers the upper opening of the battery housing 142 .
  • the cap 143a is electrically connected to the uncoated portion 146a of the first electrode, and is electrically insulated from the battery housing 142 through a first gasket 143b. Accordingly, the cap 143a may function as the first electrode terminal of the cylindrical battery 140 .
  • the cap 143a is seated on the beading portion 147 formed in the battery housing 142 , and is fixed by the crimping portion 148 .
  • a first gasket 143b may be interposed between the cap 143a and the crimping part 148 to secure airtightness of the battery housing 142 and to electrically insulate the battery housing 142 and the cap 143a.
  • the cap 143a may include a protrusion 143d protruding upward from the center thereof.
  • the battery housing 142 is electrically connected to the uncoated region 146b of the second electrode. Accordingly, the battery housing 142 has the same polarity as the second electrode. If the second electrode has a negative polarity, the battery housing 142 also has a negative polarity.
  • the battery housing 142 has a beading part 147 and a crimping part 148 at the top.
  • the beading portion 147 is formed by press-fitting the outer peripheral surface of the battery housing 142 .
  • the beading part 147 prevents the electrode assembly 110 accommodated in the battery housing 142 from escaping through the upper opening of the battery housing 142, and may function as a support part on which the sealing body 143 is seated. .
  • the crimping portion 148 is formed on the beading portion 147 .
  • the crimping part 148 has an extended and bent shape so as to surround a portion of the outer peripheral surface of the cap 143a disposed on the beading part 147 and the upper surface of the cap 143a.
  • the cylindrical battery 140 may further include a first current collector 144 and/or a second current collector 145 and/or an insulator 146 .
  • the first current collector 144 has a plate shape and is coupled to the upper portion of the electrode assembly 110 .
  • the first current collector 144 is made of a conductive metal material such as aluminum, copper, nickel, or the like, and is electrically connected to the bent surface area F 1 formed by bending the uncoated portion 146a of the first electrode.
  • a lead 149 may be connected to the first current collector 144 .
  • the lead 149 may extend upwardly of the electrode assembly 110 and may be coupled to the connection plate 143c or may be directly coupled to the lower surface of the cap 143a.
  • the lead 149 and other components may be coupled through welding.
  • the first current collector 144 may be integrally formed with the lead 149 .
  • the lead 149 may have an elongated plate shape extending outward from the center of the first current collector 144 .
  • the coupling between the bent surface area F 1 of the uncoated region 146a and the first current collector 144 may be performed, for example, by laser welding.
  • Laser welding may be performed by partially melting the current collector base material.
  • Laser welding can be replaced by resistance welding, ultrasonic welding, or the like.
  • the uncoated region 146a is divided into a plurality of fragments, and the bent surface area F 1 is formed while the plurality of fragments are bent toward the core C.
  • the radial length of the uncoated region 146a in the number of stacks of 10 or more is 30% or more, more preferably 30% to 85%, compared to the radial length of the wound turns including the segment piece. have.
  • the welding area between the bent surface area F 1 of the uncoated area 146a and the first current collector 144 may overlap the bent surface area F 1 with the uniform number of stacked sections W 1 of at least 50% or more. And, the higher the overlap ratio, the more preferable.
  • the welding strength is preferably 2 kgf/cm 2 or more, more preferably 4 kgf/cm 2 may be more than
  • the upper limit of the welding strength may be determined by the specifications of the laser welding equipment.
  • the weld strength may be 8 kgf/cm 2 or less, or 6 kgf/cm 2 or less.
  • the laser power for realization of welding strength depends on the laser equipment. As an example, the laser power may be 250W to 320W. As another example, the laser power may be appropriately adjusted in the range of 40% to 100% of the maximum output specification of the laser welding equipment.
  • the welding strength satisfies the above numerical range, even if severe vibration is applied to the electrode assembly 110 along the winding axial direction and/or the radial direction, the physical properties of the welding interface are not deteriorated, and the volume of the welding beads is sufficient to ensure the welding interface. resistance can also be reduced.
  • a second current collector 145 having a plate shape may be coupled to a lower surface of the electrode assembly 110 .
  • One surface of the second current collector 145 is welded to the bent surface area F 2 formed while the uncoated region 146b of the second electrode is bent, and the opposite surface is the inner bottom surface of the battery housing 142 . may be joined by welding.
  • the uncoated region 146b is divided into a plurality of fragments, and the bent surface area F 2 is formed while the plurality of fragments are bent toward the core C.
  • the radial length of the uncoated region 146b is 10 or more, 30% or more, more preferably 30% to 85%, compared to the radial length of the wound turns including the segment piece. have.
  • a coupling structure between the second current collector 145 and the uncoated area 146b of the second electrode may be substantially the same as a coupling structure between the first current collector 144 and the uncoated area 146a of the first electrode.
  • the welding area between the bent surface area F 2 of the uncoated area 146b and the second current collector 145 may overlap the uniform number of stacks W 2 by at least 50% or more, and the higher the overlap ratio, the more desirable.
  • the welding strength is preferably 2 kgf/cm 2 or more, more preferably 4 kgf/cm 2 may be more than
  • the upper limit of the welding strength may be determined by the specifications of the laser welding equipment.
  • the weld strength may be 8 kgf/cm 2 or less, or 6 kgf/cm 2 or less.
  • the laser power for realization of welding strength depends on the laser equipment. As an example, the laser power may be 250W to 320W. As another example, the laser power may be appropriately adjusted in the range of 40% to 100% of the maximum output specification of the laser welding equipment.
  • the welding strength satisfies the above numerical range, even if severe vibration is applied to the electrode assembly 110 along the winding axial direction and/or the radial direction, the physical properties of the welding interface are not deteriorated, and the volume of the welding beads is sufficient to ensure the welding interface. resistance can also be reduced.
  • the insulator 146 may cover the first current collector 144 .
  • the insulator 146 may cover the first current collector 144 from the upper surface of the first current collector 144 , thereby preventing direct contact between the first current collector 144 and the inner circumferential surface of the battery housing 142 . .
  • the insulator 146 includes a lead hole 151 so that a lead 149 extending upwardly from the first current collector 144 can be withdrawn.
  • the lead 149 is drawn upward through the lead hole 151 and is coupled to the lower surface of the connection plate 143c or the lower surface of the cap 143a.
  • the peripheral region of the insulator 146 may be interposed between the first current collector 144 and the beading portion 147 to fix the electrode assembly 110 and the combination of the first current collector 144 . Accordingly, in the assembly of the electrode assembly 110 and the first current collector 144 , the movement of the battery 140 in the height direction is restricted, so that the assembly stability of the battery 140 may be improved.
  • the insulator 146 may be made of an insulating polymer resin.
  • the insulator 146 may be made of polyethylene, polypropylene, polyimide, or polybutylene terephthalate.
  • the battery housing 142 may further include a venting part 152 formed on a lower surface thereof.
  • the venting part 152 corresponds to a region having a thinner thickness compared to a peripheral region of the lower surface of the battery housing 142 .
  • the venting part 152 is structurally weak compared to the surrounding area. Accordingly, when an abnormality occurs in the cylindrical battery 190 and the internal pressure increases to a certain level or more, the venting part 152 may rupture and the gas generated inside the battery housing 142 may be discharged to the outside.
  • the venting part 152 may be formed continuously or discontinuously while drawing a circle on the lower surface of the battery housing 142 .
  • the venting part 152 may be formed in a straight pattern or other pattern.
  • FIG 11 is a cross-sectional view taken along the Y-axis of the cylindrical battery 200 according to another embodiment of the present invention.
  • the cylindrical battery 200 has substantially the same structure as the cylindrical battery 190 illustrated in FIG. 10 , and is different in that the structure except for the electrode assembly is changed.
  • the cylindrical battery 200 includes a battery housing 171 through which the terminal 172 is installed.
  • the terminal 172 is installed on the closed surface (upper surface in the drawing) of the battery housing 171 .
  • the terminal 172 is riveted to the through hole of the battery housing 171 with the second insulating gasket 173 interposed therebetween.
  • the terminal 172 is exposed to the outside in a direction opposite to the direction of gravity.
  • the terminal 172 includes a terminal exposed portion 172a and a terminal insertion portion 172b.
  • the terminal exposed portion 172a is exposed to the outside of the closed surface of the battery housing 171 .
  • the terminal exposed portion 172a may be located approximately at the center of the closed surface of the battery housing 171 .
  • the maximum diameter of the terminal exposed portion 172a may be larger than the maximum diameter of the through hole formed in the battery housing 171 .
  • the terminal insertion portion 172b may pass through an approximately central portion of the closed surface of the battery housing 171 to be electrically connected to the uncoated portion 146a of the first electrode.
  • the terminal insertion part 172b may be riveted to the inner surface of the battery housing 171 .
  • the lower edge of the terminal insertion part 172b may be curved toward the inner surface of the battery housing 171 .
  • the maximum diameter of the end of the terminal insertion part 172b may be greater than the maximum diameter of the through hole of the battery housing 171 .
  • the bottom surface of the terminal insertion part 172b is substantially flat and may be welded to the central part of the first current collector 144 connected to the uncoated part 146a of the first electrode.
  • An insulator 174 made of an insulating material may be interposed between the first current collector 144 and the inner surface of the battery housing 171 .
  • the insulator 174 covers an upper portion of the first current collector 144 and an upper edge portion of the electrode assembly 110 . Accordingly, it is possible to prevent the uncoated region 146a exposed on the outer periphery of the electrode assembly 110 from contacting the inner surface of the battery housing 171 having a different polarity to cause a short circuit.
  • the insulator 174 is in contact with the inner surface of the closing part of the battery housing 171 and is in contact with the upper surface of the first current collector 144 . To this end, the insulator 174 has a thickness corresponding to the separation distance between the inner surface of the closing part of the battery housing 171 and the upper surface of the first current collector 144 or a thickness slightly larger than the separation distance.
  • the first current collector 144 may be laser welded to the bent surface area F 1 of the uncoated region 146a.
  • the welding is performed in a region including a section where the number of layers of the uncoated region 146a is equal to or greater than 10 in the bent surface region F 1 of the uncoated region 146a.
  • the radial length of the uniform number of stacked sections of the uncoated region 146a may be 30% or more, more preferably 30% to 85%, compared to the radial length of the wound turns including the segmental pieces.
  • the welding area between the bent surface area F 1 of the uncoated area 146a and the first current collector 144 may overlap the uniform number of stacks W 1 by at least 50% or more, and the higher the overlap ratio, the more desirable.
  • the welding strength is preferably 2 kgf/cm 2 or more, more preferably 4 kgf/cm 2 may be more than
  • the upper limit of the welding strength may be determined by the specifications of the laser welding equipment.
  • the weld strength may be 8 kgf/cm 2 or less, or 6 kgf/cm 2 or less.
  • the laser power for realization of welding strength depends on the laser equipment. As an example, the laser power may be 250W to 320W. As another example, the laser power may be appropriately adjusted in the range of 40% to 100% of the maximum output specification of the laser welding equipment.
  • the welding strength satisfies the above numerical range, even if severe vibration is applied to the electrode assembly 110 along the winding axial direction and/or the radial direction, the physical properties of the welding interface are not deteriorated, and the volume of the welding beads is sufficient to ensure the welding interface. resistance can also be reduced.
  • the second gasket 173 is interposed between the battery housing 171 and the terminal 172 to prevent the battery housing 171 and the terminal 172 having opposite polarities from electrically contacting each other. Accordingly, the upper surface of the battery housing 171 having a substantially flat shape may function as the second electrode terminal of the cylindrical battery 200 .
  • the second gasket 173 includes a gasket exposed portion 173a and a gasket insertion portion 173b.
  • the gasket exposed portion 173a is interposed between the terminal exposed portion 172a of the terminal 172 and the battery housing 171 .
  • the gasket insertion part 173b is interposed between the terminal insertion part 172b of the terminal 172 and the battery housing 171 .
  • the gasket insertion part 173b may be deformed together during riveting of the terminal insertion part 172b to be in close contact with the inner surface of the battery housing 171 .
  • the second gasket 173 may be made of, for example, an insulating polymer resin.
  • the gasket exposed portion 173a of the second gasket 173 may extend to cover the outer peripheral surface of the terminal exposed portion 172a of the terminal 172 .
  • a short circuit is prevented from occurring in the process of coupling an electrical connection component such as a bus bar to the upper surface and/or the terminal 172 of the battery housing 171 . can do.
  • the gasket exposed portion 173a may have an extended shape to cover a portion of the upper surface as well as the outer peripheral surface of the terminal exposed portion 172a.
  • the second gasket 173 When the second gasket 173 is made of a polymer resin, the second gasket 173 may be coupled to the battery housing 171 and the terminal 172 by thermal fusion. In this case, airtightness at the bonding interface between the second gasket 173 and the terminal 172 and at the bonding interface between the second gasket 173 and the battery housing 171 may be enhanced.
  • the gasket exposed portion 173a of the second gasket 173 has a shape extending to the upper surface of the terminal exposed portion 172a
  • the terminal 172 is formed between the second gasket 173 and the second gasket 173 by insert injection. may be integrally coupled.
  • the remaining area 175 of the upper surface of the battery housing 171 excluding the area occupied by the terminal 172 and the second gasket 173 corresponds to the second electrode terminal having a polarity opposite to that of the terminal 172 .
  • the second current collector 176 is coupled to the lower portion of the electrode assembly 110 .
  • the second current collector 176 is made of a conductive metal material such as aluminum, steel, copper, or nickel, and is electrically connected to the uncoated portion 146b of the second electrode.
  • the second current collector 176 is electrically connected to the battery housing 171 .
  • at least a portion of the edge of the second current collector 176 may be fixedly interposed between the inner surface of the battery housing 171 and the first gasket 178b.
  • At least a portion of the edge portion of the second current collector 176 is fixed to the beading unit 17 by welding while supported on the lower end surface of the beading unit 180 formed at the lower end of the battery housing 171 .
  • at least a portion of an edge portion of the second current collector 176 may be directly welded to the inner wall surface of the battery housing 171 .
  • the second current collector 176 and the bent surface area F 2 of the uncoated region 146b may be joined by welding, for example, laser welding. At this time, the welding is performed in a region including a section where the number of layers of the uncoated region 146b is equal to or greater than 10 in the bent surface region F 2 of the uncoated region 146b.
  • the radial length of the uncoated region 146b may be 30% or more, more preferably 30% to 85%, of the radial length of the wound turns including the segmental pieces.
  • the welding area between the bent surface area F 2 of the uncoated region 146b and the second current collector 176 may overlap the uniform number of stacked sections W 2 by at least 50% or more, and the higher the overlap ratio, the more desirable.
  • the welding strength is preferably 2 kgf/cm 2 or more, more preferably 4 kgf/cm 2 may be more than
  • the welding strength satisfies the above numerical range, even if severe vibration is applied to the electrode assembly 110 along the winding axial direction and/or the radial direction, the physical properties of the welding interface are not deteriorated, and the volume of the welding beads is sufficient to ensure the welding interface. resistance can also be reduced.
  • the sealing body 178 sealing the lower open end of the battery housing 171 includes a cap 178a and a first gasket 178b.
  • the first gasket 178b electrically separates the cap 178a and the battery housing 171 from each other.
  • the crimping part 181 fixes the edge of the cap 178a and the first gasket 178b together.
  • the cap 178a is provided with a vent portion 179 .
  • the configuration of the vent part 179 is substantially the same as that of the above-described embodiment (modified example).
  • the cap 178a is made of a conductive metal material.
  • the first gasket 178b is interposed between the cap 178a and the battery housing 171 , the cap 178a does not have an electrical polarity.
  • the sealing body 178 seals the open end of the lower part of the battery housing 171 and functions to discharge gas when the internal pressure of the battery 200 increases by more than a threshold value.
  • the terminal 172 electrically connected to the uncoated portion 146a of the first electrode is used as the first electrode terminal.
  • a portion 175 excluding the terminal 172 has the same polarity as the first electrode terminal.
  • This other second electrode terminal is used.
  • the cylindrical battery 200 may lower the resistance at the joint portion of the electrical connection component to a desirable level.
  • the core C of the electrode assembly 110 may be opened upward without being blocked.
  • the height of the uncoated region of the first and second electrodes is designed to be low, and the segment 61 is adjacent to the uncoated region A on the core side.
  • the height of the segment 61 closest to the core-side uncoated area A even if the uncoated area near the core of the electrode assembly 110 is bent, the core C of the electrode assembly 110 ) is not obstructed.
  • the core (C) is not blocked, there is no difficulty in the electrolyte injection process, and the electrolyte injection efficiency is improved. Also, by inserting a welding jig into the core C, a welding process between the current collector 145 and the bottom of the battery housing 142 or a welding process between the current collector 144 and the terminal 172 can be easily performed.
  • the fragments are bent at welding strength. It overlaps in several layers enough to secure the
  • the welding regions of the first current collector 144 and the second current collector 176 are spaced apart from each other by 4 mm or more in the radial direction with respect to the center of the core C of the electrode assembly 110, and the electrode assembly (110) may be spaced apart by a distance of 50% or less of the radius.
  • the separation distance of 4 mm is determined in consideration of the minimum radius (2 mm) of the core (C) and the minimum height (2 mm) of the fragment 61 (2 mm).
  • a distance of 50% or less of the radius of the electrode assembly 110 is set in consideration of securing a sufficient welding area.
  • the welding area of the first current collector 144 and the welding area of the second collector plate 176 are spaced apart from a position substantially the same distance from the center of the core C of the electrode assembly 110 . It may extend in a radial direction of the electrode assembly. In this case, it is preferable that an extended length of the welding region of the first current collector is longer than an extended length of the welding region of the second current collector.
  • first current collector 144 and the second current collector 176 may have a new structure as shown in FIGS. 12 and 13 .
  • FIG. 12 is a top plan view showing the structure of the first current collector 144 according to an embodiment of the present invention.
  • the first current collector 144 may include an edge portion 144a, a first uncoated portion coupling portion 144b, and a terminal coupling portion 144c.
  • the edge portion 144a is disposed on the electrode assembly 110 .
  • the edge portion 144a may have a substantially rim shape in which an empty space S is formed. In the drawings of the present invention, only the case where the rim portion 144a has a substantially circular rim shape is illustrated, but the present invention is not limited thereto.
  • the rim portion 144a may have a substantially rectangular rim shape, a hexagonal rim shape, an octagonal rim shape, or other rim shape, unlike shown.
  • the terminal coupling portion 144c has a diameter equal to or greater than the diameter of the flat portion formed on the bottom surface of the terminal 172 in order to secure a welding area for coupling with the flat portion formed on the bottom surface of the terminal 172 .
  • the first uncoated portion coupling portion 144b extends inward from the edge portion 144a and is coupled to the uncoated portion 146a.
  • the terminal coupling part 144c is spaced apart from the first uncoated part coupling part 144b and is located inside the edge part 144a.
  • the terminal coupling portion 144c may be coupled to the terminal 172 by welding.
  • the terminal coupling portion 144c may be located, for example, approximately at the center of the inner space surrounded by the edge portion 144a.
  • the terminal coupling part 144c may be provided at a position corresponding to the hole formed in the core C of the electrode assembly 110 .
  • the terminal coupling part 144c covers the hole formed in the core C of the electrode assembly 110 so that the hole formed in the core C of the electrode assembly 110 is not exposed to the outside of the terminal coupling part 144c.
  • the terminal coupling portion 144c may have a larger diameter or width than the hole formed in the core C of the electrode assembly 110 .
  • the first uncoated portion coupling portion 144b and the terminal coupling portion 144c may not be directly connected but may be disposed to be spaced apart from each other and may be indirectly connected by the edge portion 144a.
  • the first current collector 144 has a structure in which the first uncoated portion coupling portion 144b and the terminal coupling portion 144c are not directly connected to each other, but connected through the edge portion 144a, thereby forming a cylindrical battery.
  • the number of the first uncoated portion coupling portions 144b is four is illustrated, but the present invention is not limited thereto.
  • the number of the first uncoated portion coupling portions 144b may be variously determined in consideration of manufacturing difficulty according to the complexity of the shape, electrical resistance, and the space inside the rim portion 144a in consideration of electrolyte impregnation.
  • the first current collector 144 may further include a bridge portion 144d extending inward from the edge portion 144a and connected to the terminal coupling portion 144c. At least a portion of the bridge portion 144d may have a smaller cross-sectional area compared to the first uncoated portion coupling portion 144b and the edge portion 144a. For example, at least a portion of the bridge portion 144d may be formed to have a smaller width and/or thickness than that of the first uncoated portion coupling portion 144b. In this case, the electrical resistance increases in the bridge portion 144d, and thus, when a current flows through the bridge portion 144d, a relatively large resistance is melted due to overcurrent heating in a part of the bridge portion 144d. , which irreversibly cuts off the overcurrent.
  • the cross-sectional area of the bridge part 144d may be adjusted to an appropriate level in consideration of the overcurrent blocking function.
  • the bridge portion 144d may include a tapered portion 144e whose width is gradually narrowed in a direction from the inner surface of the edge portion 144a toward the terminal coupling portion 144c.
  • the rigidity of the component may be improved at the connection portion between the bridge portion 144d and the edge portion 144a.
  • the tapered portion 144e is provided, in the manufacturing process of the cylindrical battery 200, for example, the first current collector 144 and/or the transfer equipment and/or the operator grip the tapered portion 144e. The combination of the first current collector 144 and the electrode assembly 110 can be easily and safely transported.
  • a plurality of first uncoated portion coupling portions 144b may be provided.
  • the plurality of first uncoated portion coupling portions 144b may be disposed at the same distance from each other along the extending direction of the edge portion 144a.
  • An extension length of each of the plurality of first uncoated portion coupling portions 144b may be approximately equal to each other.
  • the first uncoated region coupling portion 144b may be coupled to the bent surface area F 1 of the uncoated region 146a by welding.
  • the welding pattern 144f formed by welding between the first uncoated region coupling portion 144b and the bent surface region W 1 may have a structure to extend along the radial direction of the electrode assembly 110 .
  • the welding pattern 144f may be an arrangement of a line pattern or a dot pattern.
  • the terminal coupling part 144c may be disposed to be surrounded by a plurality of the first uncoated part coupling parts 144b.
  • the terminal coupling portion 144c may be coupled to the terminal 172 by welding.
  • the bridge part 144d may be positioned between a pair of first uncoated part coupling parts 144b adjacent to each other. In this case, the distance from the bridge part 144d to any one of the pair of first uncoated part coupling parts 144b in the extending direction of the edge part 144a is from the bridge part 144d to the edge part 144a. ) may be approximately the same as the distance to the other one of the pair of first uncoated portion coupling portions 144b along the extension direction.
  • Each of the plurality of first uncoated portion coupling portions 144b may have substantially the same cross-sectional area.
  • Each of the plurality of first uncoated portion coupling portions 144b may have substantially the same width and thickness.
  • a plurality of bridge parts 144d may be provided. Each of the plurality of bridge portions 144d may be disposed between a pair of first uncoated portion coupling portions 144b adjacent to each other. The plurality of bridge parts 144d may be disposed at substantially equal intervals from each other along the extending direction of the edge part 144a. The distance from each of the plurality of bridge parts 144d to any one of the pair of first uncoated part coupling parts 144b adjacent to each other along the extending direction of the edge part 144a is the other first uncoated part coupling part. may be approximately equal to the distance to (144b).
  • a distance between the first uncoated area coupling parts 144b and/or bridge parts 144d is provided.
  • a current from the first uncoated part coupling part 144b to the bridge part 144d or the bridge part ( The flow of current from 144d) toward the first uncoated region coupling portion 144b may be smoothly and uniformly formed.
  • the coupling between the first current collector 144 and the bent surface area F 1 of the uncoated region 146a may be performed by welding.
  • welding laser welding, ultrasonic welding, spot welding, etc. may be applied, for example.
  • the welding area may overlap the uniform number of stacked sections W 1 of the bent surface area F 1 by at least 50% or more.
  • the bridge portion 144d may include a notch portion N that is formed to partially reduce a cross-sectional area of the bridge portion 144d. Adjustment of the cross-sectional area of the notched portion N may be realized, for example, by partially reducing the width and/or thickness of the bridge portion 144d.
  • the notched portion N is preferably provided in a region corresponding to the uniform number of stacked sections of the electrode assembly 110 in order to prevent foreign substances generated during breakage from flowing into the electrode assembly 110 . This is because, in this region, the number of stacked fragments of the uncoated region 146a is maintained to the maximum, and thus the overlapping fragments can function as a mask.
  • the notched portion N may be provided in a region in which the number of stacks of the uncoated areas 146a is maximum among the uniform number of stacked sections.
  • FIG. 13 is a top plan view showing the structure of the second current collector 176 according to an embodiment of the present invention.
  • the second current collector 176 is disposed under the electrode assembly 110 .
  • the second current collector 176 may be configured to electrically connect the uncoated region 146b of the electrode assembly 110 and the battery housing 171 .
  • the second current collector 176 is made of a conductive metal material and is connected to the uncoated region 146b.
  • the second current collector 176 is electrically connected to the battery housing 171 .
  • the second current collector 176 may be interposed between the inner surface of the battery housing 171 and the first gasket 178b to be fixed.
  • the second current collector 176 may be interposed between the lower surface of the beading portion 180 of the battery housing 171 and the first gasket 178b.
  • the present invention is not limited thereto.
  • the second current collector 176 may be welded to the inner wall surface of the battery housing 171 in a region where the beading portion 180 is not formed.
  • the second current collector 176 includes a support portion 176a disposed under the electrode assembly 110 , and extends from the support portion 176a in a radial direction of the electrode assembly 110 to form the uncoated portion 146b.
  • the second uncoated part coupling part 176b coupled to the bent surface area F 2 and the support part 176a extend approximately along the radial direction of the electrode assembly 110 and are coupled on the inner surface of the battery housing 171 . It may include a housing coupling portion (176c) that is.
  • the second uncoated part coupling part 176b and the housing coupling part 176c are indirectly connected through the support part 176a and are not directly connected to each other.
  • the coupling portion between the second current collector 176 and the electrode assembly 110 and the second current collector 176 and the battery housing 171 are coupled The possibility of damage to the area can be minimized.
  • the second current collector 176 of the present invention is not limited to the case in which the second uncoated portion coupling portion 176b and the housing coupling portion 176c are only indirectly connected as described above.
  • the second current collector 176 has a structure and/or a non-coated portion ( 146b) and the housing coupling portion 176c may have a structure in which they are directly connected to each other.
  • the support part 176a and the second uncoated part coupling part 176b are disposed under the electrode assembly 110 .
  • the second uncoated region coupling portion 176b is coupled to the bent surface area F 2 of the uncoated region 146b.
  • the support portion 176a may also be coupled to the uncoated portion 146b.
  • the second uncoated region coupling portion 176b and the uncoated region 146b may be coupled by welding.
  • the support part 176a and the second uncoated part coupling part 176b are positioned above the beading part 180 when the beading part 180 is formed in the battery housing 171 .
  • the support part 176a includes a current collector plate hole 176d formed at a position corresponding to the hole formed in the core C of the electrode assembly 110 .
  • the core C and the collector plate hole 176d of the electrode assembly 110 which are in communication with each other, are inserted into the welding rod for welding between the terminal 172 and the terminal coupling portion 144c of the first current collector 144, or It can function as a path for irradiation of a laser beam.
  • the collector plate hole 176d may have a diameter that is approximately the same as or greater than that of the hole formed in the core C of the electrode assembly 110 .
  • the plurality of second uncoated area coupling parts 176b are approximately radial from the support part 176a of the second current collector 176 to the battery housing 171 . It may have a shape extending toward the side wall of the. Each of the plurality of second uncoated portion coupling portions 176b may be positioned to be spaced apart from each other along the circumference of the support portion 176a.
  • a plurality of the housing coupling portions 176c may be provided.
  • the plurality of housing coupling portions 176c may have a shape extending from the center of the second current collector 176 approximately radially toward the sidewall of the battery housing 171 .
  • the electrical connection between the second current collector 176 and the battery housing 171 may be made at a plurality of points.
  • the coupling for electrical connection is made at a plurality of points, thereby maximizing the coupling area to minimize electrical resistance.
  • Each of the plurality of housing coupling parts 176c may be positioned to be spaced apart from each other along the circumference of the support part 176a. At least one housing coupling part 176c may be positioned between the adjacent second uncoated part coupling parts 176b.
  • the plurality of housing coupling parts 176c may be coupled to, for example, the beading part 180 of the inner surface of the battery housing 171 .
  • the housing coupling parts 176c may be coupled to the lower surface of the beading part 180 through welding. Welding, for example, laser welding, ultrasonic welding or spot welding may be applied. By welding the housing coupling part 176c on the beading part 180 as described above, the resistance level of the cylindrical battery 200 may be limited to about 4 milliohms or less.
  • the lower surface of the beading part 180 extends in a direction substantially parallel to the upper surface of the battery housing 171 , that is, in a direction substantially perpendicular to the sidewall of the battery housing 171 , and the housing coupling part 176c is also By having a shape extending in the same direction, that is, in a radial direction and a circumferential direction, the housing coupling part 176c can be stably in contact with the beading part 180 .
  • welding between the two parts can be made smoothly, thereby improving the coupling force between the two parts and increasing the resistance at the coupling part. minimization effect can be obtained.
  • the housing coupling portion 176c may include a contact portion 176e coupled to the inner surface of the battery housing 171 and a connection portion 176f connecting the support portion 176a and the contact portion 176e.
  • the contact portion 176e is coupled to the inner surface of the battery housing 171 .
  • the contact part 176e may be coupled to the beading part 180 as described above. More specifically, the contact portion 176e may be electrically coupled to a flat portion formed on the lower surface of the beading portion 180 formed in the battery housing 171 , and the lower surface of the beading portion 180 and the first gasket ( 178b) may be interposed. In this case, for stable contact and coupling, the contact portion 176e may have a shape extending from the beading portion 180 to a predetermined length along the circumferential direction of the battery housing 171 .
  • the maximum distance from the center of the second current collector 176 to the end of the second uncoated portion coupling portion 176b in the radial direction of the electrode assembly 110 is the battery in the region where the beading portion 180 is formed.
  • the inner diameter of the housing 171, that is, the minimum inner diameter of the battery housing 171 is preferably formed equal to or smaller than this. In this case, during the sizing process of compressing the battery housing 171 along the height direction, interference between the second current collectors 176 occurs due to the beading unit 180 , and accordingly, the electrode is formed by the second current collector 176 . This is to prevent the assembly 110 from being pressed.
  • the second uncoated part coupling part 176b includes a hole 176g.
  • the hole 176g may be used as a passage through which the electrolyte may move.
  • the welding pattern 176h formed by welding between the second uncoated region coupling portion 176b and the bent surface area W 2 may have a structure to extend along the radial direction of the electrode assembly 110 .
  • the welding pattern 176h may be an arrangement of a line pattern or a dot pattern.
  • Cylindrical battery 200 according to an embodiment of the present invention has the advantage of being able to perform electrical connection at the top.
  • FIG. 14 is a top plan view illustrating a state in which a plurality of cylindrical batteries 200 are electrically connected
  • FIG. 15 is a partially enlarged view of FIG. 14 .
  • a plurality of cylindrical batteries 200 may be connected in series and in parallel at the top of the cylindrical battery 200 using a bus bar 210 .
  • the number of cylindrical batteries 200 may be increased or decreased in consideration of the capacity of the battery pack.
  • the terminal 172 may have a positive polarity and the flat surface 171a around the terminal 172 of the battery housing 171 may have a negative polarity.
  • the reverse is also possible.
  • the plurality of cylindrical batteries 200 may be arranged in a plurality of columns and rows. Columns are up and down in the drawing, and rows are left and right in the drawing.
  • the cylindrical batteries 200 may be arranged in a closest packing structure. The tightest packing structure is formed when an equilateral triangle is formed when the centers of the terminals 172 exposed to the outside of the battery housing 171 are connected to each other.
  • the bus bar 210 connects the cylindrical batteries 200 arranged in the same row in parallel to each other, and the cylindrical batteries 200 arranged in two adjacent rows are connected in series with each other.
  • the bus bar 210 may include a body portion 211 , a plurality of first bus bar terminals 212 , and a plurality of second bus bar terminals 213 for serial and parallel connection.
  • the body portion 211 may extend along rows of cylindrical batteries 200 between adjacent terminals 172 .
  • the body portion 211 may extend along a row of cylindrical batteries 200 and may be regularly bent like a zigzag shape.
  • the plurality of first bus bar terminals 212 may extend from one side of the body 211 and may be electrically coupled to the terminals 172 of the cylindrical battery 200 positioned in the extending direction. Electrical coupling between the first bus bar terminal 212 and the terminal 172 may be performed by laser welding, ultrasonic welding, or the like.
  • the plurality of second bus bar terminals 213 may extend from the other side of the body portion 211 and may be electrically coupled to the flat surface 171a around the terminals 172 located in the extension direction. Electrical coupling between the second bus bar terminal 213 and the flat surface 171a may be performed by laser welding, ultrasonic welding, or the like.
  • the body portion 211, the plurality of first bus bar terminals 212 and the plurality of second bus bar terminals 213 may be formed of one conductive metal plate.
  • the metal plate may be, for example, an aluminum plate or a copper plate, but the present invention is not limited thereto.
  • the body portion 211 , the plurality of first bus bar terminals 212 , and the second bus bar terminals 213 may be manufactured as separate pieces and then coupled to each other through welding or the like.
  • the above-described cylindrical battery 200 of the present invention, the welding area expansion through the bent surface area (F 1 , F- 2 ), the multiplexing of the current path using the second current collector 176, the length of the current path It has a structure in which resistance is minimized through minimization or the like.
  • the AC resistance of the cylindrical battery 200 measured through a resistance meter between the positive and negative poles, that is, between the terminal 172 and the flat surface 171a around it, is 0.5 milliohm to 4 milliohms suitable for fast charging.
  • Ohm (miliohm) preferably 1 milliohm (miliohm) to 4 milliohm (miliohm) may be.
  • Cylindrical battery 200 since the terminal 172 having a positive polarity and the flat surface 171a having a negative polarity are located in the same direction, the cylindrical battery 200 using the bus bar 210 It is possible to easily implement their electrical connection.
  • the coupling area of the bus bar 210 is sufficiently secured to resist resistance of the battery pack including the cylindrical battery 200 . can be sufficiently lowered.
  • the cylindrical battery according to the above-described embodiments (variations) may be used to manufacture a battery pack.
  • 16 is a diagram schematically illustrating a configuration of a battery pack according to an embodiment of the present invention.
  • a battery pack 300 includes an assembly to which a cylindrical battery 301 is electrically connected and a pack housing 302 accommodating the assembly.
  • the cylindrical battery 301 may be any one of the batteries according to the above-described embodiments (modified examples).
  • parts such as a bus bar, a cooling unit, and an external terminal for electrical connection of the cylindrical batteries 301 are omitted for convenience of illustration.
  • the battery pack 300 may be mounted in a vehicle.
  • the vehicle may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle.
  • the automobile includes a four-wheeled vehicle or a two-wheeled vehicle.
  • 17 is a view for explaining a vehicle including the battery pack 300 of FIG. 16 .
  • a vehicle V according to an embodiment of the present invention includes a battery pack 300 according to an embodiment of the present invention.
  • the vehicle V operates by receiving power from the battery pack 300 according to an embodiment of the present invention.
  • a region where 10 or more uncoated areas overlap in the radial direction of the electrode assembly is sufficiently secured to prevent damage to the separator or the active material layer during welding of the current collector.
  • the electrolyte injection process and welding of the battery housing and the current collector can be carried out easily.
  • a cylindrical battery having a low internal resistance and improved welding strength between a current collector and an uncoated region, a battery pack including the same, and a vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Passenger Equipment (AREA)
  • Primary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 전극 조립체, 배터리, 및 이를 포함하는 배터리 팩 및 자동차를 개시한다. 전극 조립체는, 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 하나의 축을 중심으로 권취되어 코어와 외주면을 정의하는 전극 조립체로서, 상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고, 상기 무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 전극 조립체의 권취 축 방향으로 상기 무지부의 적층수가 10 이상일 수 있다.

Description

전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
본 발명은 전극 조립체, 배터리, 및 이를 포함하는 배터리 팩 및 자동차에 관한 것이다.
본 출원은, 2021년1월19일자로 출원된 한국 특허출원 번호 제10-2021-0007278호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022897호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022894호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022891호, 2021년2월19일자로 출원된 한국 특허출원 번호 제10-2021-0022881호, 2021년2월23일자로 출원된 한국 특허출원 번호 제10-2021-0024424호, 2021년3월8일자로 출원된 한국 특허출원 번호 제10-2021-0030300호, 2021년3월8일자로 출원된 한국 특허출원 번호 제10-2021-0030291호, 2021년4월9일자로 출원된 한국 특허출원 번호 제10-2021-0046798호, 2021년5월4일자로 출원된 한국 특허출원 번호 제10-2021-0058183호, 2021년6월14일자로 출원된 한국 특허출원 번호 제10-2021-0077046호, 2021년6월28일자로 출원된 한국 특허출원 번호 제10-2021-0084326호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131225호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131215호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131205호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131208호, 2021년10월1일자로 출원된 한국 특허출원 번호 제10-2021-0131207호, 2021년10월14일자로 출원된 한국 특허출원 번호 제10-2021-0137001호, 2021년10월15일자로 출원된 한국 특허출원 번호 제10-2021-0137856호, 2021년10월22일자로 출원된 한국 특허출원 번호 제10-2021-0142196호, 2021년11월9일자로 출원된 한국 특허출원 번호 제10-2021-0153472호, 2021년11월19일자로 출원된 한국 특허출원 번호 제10-2021-0160823호, 2021년11월24일자로 출원된 한국 특허출원 번호 제10-2021-0163809호, 2021년11월26일자로 출원된 한국 특허출원 번호 제10-2021-0165866호, 2021년12월3일자로 출원된 한국 특허출원 번호 제10-2021-0172446호, 2021년12월10일자로 출원된 한국 특허출원 번호 제10-2021-0177091호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194593호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194610호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194572호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194612호, 2021년12월31일자로 출원된 한국 특허출원 번호 제10-2021-0194611호, 2022년1월5일자로 출원된 한국 특허출원 번호 제10-2022-0001802호에 대한 우선권 주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기 자동차(EV, Electric Vehicle) 또는 하이브리드 자동차(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다.
이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 장점 또한 갖기 때문에 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
현재 널리 사용되는 이차 전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지, 즉, 단위 배터리의 작동 전압은 약 2.5V ~ 4.5V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리를 직렬로 연결하여 배터리 팩을 구성하기도 한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 배터리를 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 상기 배터리 팩에 포함되는 배터리의 개수 및 전기적 연결 형태는 요구되는 출력 전압 및/또는 충방전 용량에 따라 다양하게 설정될 수 있다.
한편, 단위 이차 전지의 종류로서, 원통형, 각형 및 파우치형 배터리가 알려져 있다. 원통형 배터리의 경우, 양극과 음극 사이에 절연체인 분리막을 개재하고 이를 권취하여 젤리롤 형태의 전극 조립체를 형성하고, 이를 전지 하우징 내부에 삽입하여 전지를 구성한다. 그리고 상기 양극 및 음극 각각의 무지부에는 스트립 형태의 전극 탭이 연결될 수 있으며, 전극 탭은 전극 조립체와 외부로 노출되는 전극 단자 사이를 전기적으로 연결시킨다. 참고로, 양극 전극 단자는 전지 하우징의 개방구를 밀봉하는 밀봉체의 캡이고, 음극 전극 단자는 전지 하우징이다. 그런데, 이와 같은 구조를 갖는 종래의 원통형 배터리에 의하면, 양극 무지부 및/또는 음극 무지부와 결합되는 스트립 형태의 전극 탭에 전류가 집중되기 때문에 저항이 크고 열이 많이 발생하며 집전 효율이 좋지 않다는 문제점이 있었다.
1865(직경:18mm, 높이:65mm)이나 2170(직경:21mm, 높이:70mm)의 폼 팩터를 가진 소형 원통형 배터리는 저항과 발열이 큰 이슈가 되지 않는다. 하지만, 원통형 배터리를 전기 자동차에 적용하기 위해 폼 팩터를 증가시킬 경우, 급속 충전 과정에서 전극 탭 주변에서 많은 열이 발생하면서 원통형 배터리가 발화하는 문제가 발생할 수 있다.
이러한 문제점을 해결하기 위해, 젤리롤 타입의 전극 조립체의 상단 및 하단에 각각 양극 무지부 및 음극 무지부가 위치하도록 설계하고, 이러한 무지부에 집전체를 용접시켜 집전 효율이 개선된 구조를 갖는 원통형 배터리(소위 탭-리스(Tab-less) 원통형 배터리)가 제시되었다.
도 1 내지 도 3은 탭-리스 원통형 배터리의 제조 과정을 보여주는 도면이다. 도 1은 전극의 구조를 나타내고, 도 2는 전극의 권취 공정을 나타내고, 도 3은 무지부의 절곡 표면영역에 집전체가 용접되는 공정을 나타낸다.
도 1 내지 도 3을 참조하면, 양극(10)과 음극(11)은 쉬트 모양의 집전체(20)에 활물질(21)이 코팅된 구조를 가지며, 권취 방향(X)을 따라 한쪽 장변 측에 무지부(22)를 포함한다.
전극 조립체(A)는 양극(10)과 음극(11)을 도 2에 도시된 것처럼 2장의 분리막(12)과 함께 순차적으로 적층시킨 후 일방향(X)으로 권취시켜 제작한다. 이 때, 양극(10)과 음극(11)의 무지부는 서로 반대 방향으로 배치된다. 양극(10)과 음극(11)의 위치는 도시된 것과 반대로 변경될 수 있다.
권취 공정 이후, 양극(10)의 무지부(10a)과 음극(11)의 무지부(11a)는 코어측으로 절곡되어 절곡 표면 영역을 형성한다 그 이후에는, 무지부(10a,11a)에 집전체(30, 31)를 각각 용접시켜 결합시킨다.
양극 무지부(10a)와 음극 무지부(11a)에는 별도의 전극 탭이 결합되어 있지 않으며, 집전체(30, 31)가 외부의 전극 단자와 연결되며, 전류 패스가 전극 조립체(A)의 권취 축 방향(화살표 참조)을 따라 큰 단면적으로 형성되므로 배터리의 저항을 낮출 수 있는 장점이 있다. 저항은 전류가 흐르는 통로의 단면적에 반비례하기 때문이다.
탭-리스 원통형 배터리에서, 무지부(10a,11a)와 집전체(30,31)의 용접 특성을 향상시키기 위해서는 무지부(10a,11a)의 용접 지점에 강한 압력을 가하여 최대한 평평하게 무지부(10a, 11a)를 절곡시켜야 한다.
무지부(10a, 11b)이 절곡될 때 전극 조립체(A)의 코어에 인접한 무지부(32)가 절곡되면서 전극 조립체(A)의 코어에 있는 공동(33)을 전부 또는 상당 부분을 폐색한다. 이 경우, 전해액 주액 공정에서 문제를 일으킨다. 즉, 전극 조립체(A)의 코어에 있는 공동(33)은 전해액이 주입되는 통로로 사용된다. 그런데, 해당 통로가 폐색되면 전해액 주입이 어렵다. 또한, 전해액 주입기가 공동(33)에 삽입되는 과정에서 코어 근처에서 절곡된 무지부(32)와 간섭을 일으켜 무지부(32)가 찢어지는 문제가 발생할 수 있다.
또한, 집전체(30, 31)가 용접되는 무지부(10a, 11a)의 절곡 부위는 여러 겹으로 중첩되어 있어야 하고 빈 공간(빈틈)이 존재하면 안 된다. 그래야만, 충분한 용접 강도를 얻을 수 있고 레이저 용접 등의 최신 기술을 사용하더라도 레이저가 전극 조립체(A) 내부로 침투하여 분리막이나 활물질을 융발시키는 문제를 방지할 수 있다.
무지부(10a, 11a)가 동일한 레이어 수로 중첩되기 위해서는 각 권회 턴의 위치를 기준으로 해당 위치의 무지부(10a, 11a)가 코어측으로 절곡되면서 그 안쪽의 권회 턴에서 절곡된 무지부의 윗면을 덮어야 한다. 또한, 권회턴 사이의 간격을 d라고 하고, 각 권회턴의 무지부(10a, 11a) 절곡 길이를 e라고 할 때, 절곡 길이 e는 d*n(n은 2 이상의 자연수) 이상의 길이를 가져야 한다. 그래야만 무지부(10a, 11a)가 동일한 수량으로 여러 겹으로 중첩되는 영역이 생긴다. 또한, 무지부(10a, 11a)가 동일한 수로 중첩되는 영역을 전극 조립체의 반경 방향에서 충분히 얻기 위해서는 무지부(10a, 11a)의 길이가 충분히 길어야 한다. 하지만, 소형 원통형 배터리에 포함되어 있는 전극 조립체는 반경이 작아서 무지부(10a, 11a)의 절곡 길이를 충분히 길게 설계하는 개념을 도출할 수 있는 동기를 착상하기 어렵다.
본 발명은 상기와 같은 종래기술의 배경하에서 창안된 것으로서, 전극 조립체의 양단에 노출된 무지부를 절곡시킬 때 전극 조립체의 반경 방향에서 무지부가 10장 이상 중첩되는 영역을 충분히 확보하여 집전체의 용접 시 분리막이나 활물질층의 손상을 방지할 수 있는 무지부 절곡 구조를 가진 전극 조립체를 제공하는데 그 목적이 있다.
본 발명의 다른 기술적 과제는 무지부가 절곡되더라도 전해액 주입 통로가 폐색되지 않은 전극 조립체를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 에너지 밀도가 향상되고 저항이 감소된 전극 조립체를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 개선된 구조의 전극 조립체를 포함하는 배터리와 이를 포함하는 배터리 팩, 그리고 배터리 팩을 포함하는 자동차를 제공하는데 있다.
본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달서하기 위한 본 발명의 일 측면에 따른 전극 조립체는, 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권회되어 코어와 외주면을 정의한 전극 조립체에 있어서, 상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고, 상기 무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡됨으로써 상기 무지부의 중첩 레이어들을 포함하는 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 전극 조립체의 권취 축 방향으로 상기 무지부의 적층수가 10 이상일 수 있다.
일 측면에서, 상기 제1전극의 총 권회턴수를 n1이라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n1의 자연수)를 총 권회턴수 n1로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R1,k라고 정의하면, 무지부의 적층수가 10 이상인 조건을 만족하는 R1,k의 반경 방향 구간의 길이 비율이 무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상일 수 있다.
바람직하게, 무지부의 적층수가 10 이상인 조건을 만족하는 R1,k의 반경 방향 구간 길이 비율이 무지부가 절곡된 상대 반경 위치 구간 대비 30% 내지 85%일 수 있다.
다른 측면에서, 상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고, 상기 무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡됨으로써 상기 무지부의 중첩 레이어들을 포함하는 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 전극 조립체의 권취 축 방향으로 상기 무지부의 적층수가 10 이상일 수 있다.
또 다른 측면에서, 상기 제2전극의 총 권회턴수를 n2라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n2의 자연수)를 총 권회턴수 n2로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R2,k라고 정의하면, 무지부의 적층수가 10 이상인 조건을 만족하는 R2,k의 반경 방향 구간의 길이 비율이 상기 무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상일 수 있다.
바람직하게, 무지부의 적층수가 10 이상인 조건을 만족하는 R2,k의 반경 방향 구간의 길이 비율이 상기 무지부가 절곡된 상대 반경 위치 구간 대비 30% 내지 85%일 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서 상대 반경 위치 R1,1부터 미리 설정된 제1상대 반경 위치 R1,k*까지 구간의 무지부 높이가 권회턴수 k*+1의 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작을 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서, 첫 번째 권회턴의 상대 반경 위치 R1,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R1,k*까지 구간의 무지부는 그 높이가 절곡된 무지부들이 중첩되어 형성하는 상기 절곡 표면영역보다 낮을 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서, 첫 번째 권회턴에 상대 반경 위치 R1,1부터 k*번째 권회턴의 제1상대 반경 위치 R1,k*까지의 구간은 전극 조립체의 코어를 향해 절곡되지 않을 수 있다.
또 다른 측면에서, 제2전극의 권회 구조에 있어서 첫 번째 권회턴의 상대 반경 위치 R2,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지 구간의 무지부 높이가 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작을 수 있다.
또 다른 측면에서, 첫 번째 권회턴의 상대 반경 위치 R2,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지의 구간에서 무지부는 그 높이가 절곡된 무지부들이 중첩되어 형성하는 절곡 표면영역보다 낮을 수 있다.
또 다른 측면에서, 첫 번째 권회턴의 상대 반경 위치 R2,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지 구간의 무지부는 전극 조립체의 코어를 향해 절곡되지 않을 수 있다.
바람직하게, 상기 제1전극 또는 제2전극의 무지부는 서로 독립적으로 절곡 가능한 복수의 분절편으로 분할되어 있을 수 있다.
바람직하게, 복수의 분절편 각각은 절곡 라인의 상부 영역이 절곡 라인을 밑변으로 하는 기하학적 도형의 형태를 가지며, 상기 기하학적 도형은 하나 이상의 직선, 하나 이상의 곡선 또는 이들이 조합이 연결된 것일 수 있다.
일 측면에서, 상기 기하학적 도형은 밑변으로부터 상부로 가면서 폭이 단계적으로 또는 연속적으로 감소할 수 있다.
다른 측면에서, 상기 기하학적 도형의 밑변과 이것과 교차하는 측변 사이의 하부 내각은 60도 내지 85도일 수 있다.
또 다른 측면에서, 상기 복수의 분절편은 상기 하부 내각이 상기 전극 조립체의 권회 방향과 평행한 일 방향을 따라 단계적으로 또는 연속적으로 증가할 수 있다.
또 다른 측면에서, 복수의 분절편 각각은 절곡 라인의 상부 영역이 절곡 라인을 밑변으로 하는 사다리꼴 도형의 형태를 가지며, 상기 전극 조립체의 코어 중심을 기준으로 분절편이 배치된 권회턴의 반경을 r, 분절편의 하부에 대응되는 권회턴의 원호 길이를 Larc, 반경이 r인 권회턴에 인접 배치된 분절편 쌍의 측변이 서로 평행하다는 가정이 적용될 때의 분절편 하부 내각을 θassumption이라고 할 때, 상기 인접 배치된 분절편 쌍의 실제 하부 내각 θreal는 하기 수식을 만족할 수 있다.
θreal > θassumption
θ1 = 90°- 360°*(Larc/2πr)*0.5
또 다른 측면에서, 상기 전극 조립체의 코어 중심을 기준으로 상기 분절편의 하부에 대응되는 권회턴의 원호 길이 Larc에 대응되는 원주각이 45이하일 수 있다.
또 다른 측면에서, 상기 전극 조립체의 코어 중심을 기준으로 반경이 r인 권회턴에 배치된 인접하는 분절편들의 중첩율을 수식 (θrealassumptoin-1)으로 정의할 때, 분절편의 중첩율은 0보다 크고 0.05 이하일 수 있다.
또 다른 측면에서, 상기 전극 조립체의 코어 중심을 기준으로 반경이 r인 권회턴에 배치된 인접하는 분절편 쌍을 통과하는 가상의 원을 그렸을 때, 각 분절편을 통과하는 원호의 쌍이 서로 중첩될 수 있다.
또 다른 측면에서, 각 분절편을 통과하는 원호의 길이 대비 중첩되는 원호의 길이 비율을 분절편의 중첩율로 정의할 때, 분절편의 중첩율은 0보다 크고 0.05 이하일 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서 첫 번째 권회턴의 상대 반경 위치 R1,1부터 k*번째 권회턴의 제1 상대 반경 위치 R1,k*까지 구간의 무지부는 그 높이가 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작고 코어측을 향해 절곡되지 않을 수 있다.
또 다른 측면에서, 상대 반경 위치 R1,1부터 R1,k*까지에 대응되는 상기 제1전극의 길이는 상대 반경 위치 R1,k*+1 내지 1까지에 대응되는 상기 제1전극의 길이 대비 1% 내지 30%일 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서, k*+1번째 권회턴의 상대 반경 위치 R1,k*+1의 무지부 절곡 길이 fd1,k*+1는 첫 번째 권회턴의 상대 반경 위치 R1,1 내지 k*번째 상대 반경 위치 R1,k*까지의 반경 방향 길이보다 짧을 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서, 상기 전극 조립체의 코어 반경을 rc라고 정의할 때, 코어의 중심부터 0.9rc 구간이 k*+1번째 권회턴의 상대 반경 위치 R1,k*+1 내지 1의 구간에 위치하는 무지부의 절곡부에 의해 차폐되지 않을 수 있다.
또 다른 측면에서, k*+1번째 권회턴의 상대 반경 위치 R1,k*+1의 무지부 절곡 길이 fd1,k*+1, 코어의 반경 rc 및, 상대 반경 위치 R1,k*+1이 전극 조립체의 중심으로부터 이격된 거리 d1,k*+1은 하기 수식을 만족할 수 있다.
fd1,k*+1 + 0.90*rc ≤ d1,k*+1
또 다른 측면에서, 상기 제2전극의 권회 구조에 있어서 첫 번째 권회턴의 상대 반경 위치 R2,1 내지 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지 구간의 무지부는 그 높이가 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작고 코어측을 향해 절곡되지 않을 수 있다.
또 다른 측면에서, 상대 반경 위치 R2,1부터 R2,k*까지에 대응되는 상기 제2전극의 길이는 상대 반경 위치 R2,k*+1 내지 1까지에 대응되는 상기 제2전극의 길이 대비 1% 내지 30%일 수 있다.
또 다른 측면에서, 상기 제2전극의 권취구조에 있어서, k*+1번째 권회턴의 상대 반경 위치 R2,k*+1에 위치하는 무지부의 절곡 길이 fd2,k*+1는 첫 번째 권회턴의 상대 반경 위치 R2,1 내지 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지의 반경 방향 길이보다 짧을 수 있다.
또 다른 측면에서, 상기 제2전극의 권취구조에 있어서, 상기 전극 조립체의 코어 반경을 rc라고 정의할 때, 코어의 중심부터 0.90rc 구간이 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1의 구간에 위치하는 제2전극의 무지부의 절곡부에 의해 차폐되지 않을 수 있다.
또 다른 측면에서, k*+1번째 권회턴의 상대 반경 위치 R2,k*+1의 무지부 절곡 길이 fd2,k*+1, 코어의 반경 rc 및, 상대 반경 위치 R2,k*+1이 전극 조립체의 중심으로부터 이격된 거리 d2,k*+1은 하기 수식을 만족할 수 있다.
fd2,k*+1 + 0.90*rc ≤ d2,k*+1
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서 k*+1번째 권회턴의 상대 반경 위치 R1,k*+1 내지 미리 설정된 k@번째 권회턴의 제2상대 반경 위치 R1,k@까지 구간의 무지부는 복수의 분절편으로 분할되어 있고 그 높이가 권취 방향과 평행한 일 방향을 따라 단계적으로 증가할 수 있다.
또 다른 측면에서, 상대 반경 위치 R1,k*+1 내지 R1,k@까지 구간의 반경 방향 길이는 코어를 제외한 제1전극의 권회 구조의 반경 대비 1% 내지 56%일 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서 미리 설정된 k@+1번째 권회턴의 상대 반경 위치 R1,k@+1부터 상대 반경 위치 1까지 제1전극의 무지부는 복수의 분절편으로 분할되어 있고, 복수의 분절편 높이는 상대 반경 위치 R1,k@+1부터 상대 반경 위치 1까지 실질적으로 동일할 수 있다.
또 다른 측면에서, 상기 제2전극의 권회 구조에 있어서 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 미리 설정된 k@번째 권회턴의 제2상대 반경 위치 R2,k@까지 구간의 무지부는 복수의 분절편으로 분할되어 있고 그 높이가 권회 방향과 평행한 일 방향을 따라 단계적으로 또는 점진적으로 증가할 수 있다.
또 다른 측면에서, 상대 반경 위치 R2,k*+1 내지 R2,k@까지 구간의 반경 방향 길이는 코어를 제외한 제2전극의 권회 구조의 반경 대비 1% 내지 56%일 수 있다.
또 다른 측면에서, 상기 제2전극의 권회 구조에 있어서 k@+1번째 권회턴의 제2상대 반경 위치 R2,k@+1부터 상대 반경 위치 1까지 제2전극의 무지부는 복수의 분절편으로 분할되어 있고, 복수의 분절편 높이는 k@+1번째 권회턴의 상대 반경 위치 R2,k@+1부터 상대 반경 위치 1까지 실질적으로 동일할 수 있다.
또 다른 측면에서, 상기 제1전극의 권회 구조에 있어서, 상기 전극 조립체의 반경 방향으로 절곡되는 무지부는 독립적으로 절곡 가능한 복수의 분절편으로 분할되고, 복수의 분절편의 권취 축 방향의 높이 및 권취 방향의 폭 중 적어도 하나는 개별적으로 또는 그룹별로 권회 방향과 평행한 일 방향을 따라 단계적으로 증가할 수 있다.
또 다른 측면에서, 상기 제2전극의 권회 구조에 있어서, 상기 전극 조립체의 반경 방향으로 절곡되는 무지부는 독립적으로 절곡 가능한 복수의 분절편으로 분할되고, 복수의 분절편의 권취 축 방향의 높이 및 권취 방향의 폭 중 적어도 하나는 개별적으로 또는 그룹별로 권회 방향과 평행한 일 방향을 따라 단계적으로 증가할 수 있다.
또 다른 측면에서, 상기 복수의 분절편 각각은, 권취 방향에서 1 내지 11mm의 폭 조건; 권취 축 방향에서 2 내지 10mm의 높이 조건; 및 권취 방향에서 0.05 내지 1mm의 이격 피치 조건 중에서 적어도 하나 이상의 조건을 충족할 수 있다.
또 다른 측면에서, 상기 복수의 분절편 사이에는 절단홈이 개재되고, 상기 절단홈의 하단과 상기 활물질층 사이에 소정의 갭이 구비될 수 있다.
또 다른 측면에서, 상기 갭의 길이는 0.2 내지 4mm일 수 있다.
또 다른 측면에서, 복수의 분절편은 상기 전극 조립체의 권취 방향을 따라 복수의 분절편 그룹을 형성하며, 동일한 분절편 그룹에 속한 분절편들은 권취 방향의 폭, 권취 축 방향의 높이 및 권취 방향의 이격 피치 중 적어도 하나 이상이 서로 실질적으로 동일할 수 있다.
또 다른 측면에서, 동일한 분절편 그룹에 속한 분절편들은 상기 전극 조립체의 권취 방향과 평행한 일 방향으로 가면서 권취 방향의 폭, 권취 축 방향의 높이 및 권취 방향의 이격 피치 중 적어도 하나가 단계적으로 증가할 수 있다.
또 다른 측면에서, 복수의 분절편 그룹 중에서 적어도 일부는 전극 조립체의 동일한 권회턴에 배치될 수 있다.
또 다른 측면에서, 상기 제1전극의 무지부에 의해 형성되는 절곡 표면영역은, 상기 전극 조립체의 외주측으로부터 코어측으로 적층수 증가구간과 적층수 균일구간을 포함하고, 상기 적층수 증가구간은 무지부의 적층수가 1부터 최대치까지 증가하는 구간으로 정의되고, 상기 적층수 균일구간은 상기 무지부의 적층수가 최대치로 도달된 반경 위치부터 상기 무지부의 절곡이 시작되는 반경 위치까지의 구간으로 정의되고, 상기 적층수 균일구간의 반경 방향 길이는 무지부의 절곡이 시작된 권회턴부터 무지부의 절곡이 끝나는 권회턴까지의 반경 방향 길이 대비 30% 이상일 수 있다.
또 다른 측면에서, 상기 제2전극의 무지부에 의해 형성되는 절곡 표면영역은, 상기 전극 조립체의 외주측으로부터 코어측으로 적층수 증가구간과 적층수 균일구간을 포함하고, 상기 적층수 증가구간은 무지부의 적층수가 1부터 최대치까지 증가하는 구간으로 정의되고, 상기 적층수 균일구간은 상기 무지부의 적층수가 최대치로 도달된 반경 위치부터 상기 무지부의 절곡이 시작되는 반경 위치까지의 구간으로 정의되고, 상기 적층수 균일구간의 반경 방향 길이는 무지부의 절곡이 시작된 권회턴부터 무지부의 절곡이 끝나는 권회턴까지의 반경 방향 길이 대비 30% 이상일 수 있다.
또 다른 측면에서, 상기 제1전극 및 상기 제2전극의 두께는 80um 내지 250um이고, 상기 전극 조립체의 반경 방향으로 인접하는 권회턴에 위치한 무지부 간격은 200um 내지 500um일 수 있다.
또 다른 측면에서, 상기 제1전극의 무지부의 두께는 10um 내지 25um일 수 있다.
또 다른 측면에서, 상기 제2전극의 무지부의 두께는 5um 내지 20um일 수 있다.
또 다른 측면에서, 상기 제1전극의 무지부에 의해 형성된 절곡 표면영역의 일부 영역은 무지부의 중첩 레이어들의 총 적층 두께가 100um 내지 975um일 수 있다.
또 다른 측면에서, 상기 제1전극의 무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제1전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 1.0% 내지 16.3%일 수 있다.
또 다른 측면에서, 상기 제2전극의 무지부에 의해 형성된 절곡 표면영역의 일부 영역은 무지부의 중첩 레이어들의 총 적층 두께가 50um 내지 780um일 수 있다.
또 다른 측면에서, 상기 제2전극의 무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제2전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 0.5% 내지 13.0%일 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 다른 측면에 따를 전극 조립체는, 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권취되어 코어와 외주면을 정의한 전극 조립체에 있어서, 상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 제1무지부를 포함하고, 상기 제1무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제1절곡 표면영역을 형성하고, 상기 제1절곡 표면영역의 일부 영역은 상기 제1무지부의 적층 두께가 100 um 내지 975um일 수 있다.
일 측면에서, 상기 제1전극의 제1무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제1전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 1.0% 내지 16.3%일 수 있다.
다른 측면에서, 상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제2무지부를 포함하고, 상기 제2무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제2절곡 표면영역을 형성하고, 상기 제2절곡 표면영역의 일부 영역은 상기 제2무지부의 적층 두께가 50 um 내지 780um일 수 있다.
또 다른 측면에서, 상기 제2전극의 제2무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제2전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 0.5% 내지 13.0%일 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 또 다른 측면에 따른 배터리는, 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권취되어 코어와 외주면을 정의한 전극 조립체로서, 상기 제1전극 및 상기 제2전극 중 적어도 하나는 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고, 상기 무지부의 적어도 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 무지부의 적층수가 10 이상인 것인 전극 조립체; 상기 전극 조립체가 수납되며, 상기 제1전극 및 상기 제2전극 중 하나와 전기적으로 연결되어 제1극성을 띠는 전지 하우징; 상기 전지 하우징의 개방단을 밀봉하는 밀봉체; 상기 제1전극 및 상기 제2전극 중 다른 하나와 전기적으로 연결되고, 표면이 외부로 노출된 제2극성을 띠는 단자; 및 상기 절곡 표면영역에 용접되고, 상기 전지 하우징 또는 상기 단자 중 어느 하나에 전기적으로 연결되는 집전체를 포함하고, 상기 집전체의 용접 영역은 상기 무지부의 적층수가 10 이상인 절곡 표면영역과 중첩될 수 있다.
일 측면에서, 상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제1무지부를 포함하고, 상기 제1전극의 총 권회턴수를 n1이라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n1의 자연수)를 총 권회턴수 n1로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R1,k라고 정의하면, 상기 제1무지부의 적층수가 10 이상인 조건을 만족하는 R1,k의 반경 방향 구간의 길이 비율이 상기 제1무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상일 수 있다.
다른 측면에서, 상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제2무지부를 포함하고, 상기 제2전극의 총 권회턴수를 n2라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n2의 자연수)를 총 권회턴수 n2로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R2,k라고 정의하면, 상기 제2무지부의 적층수가 10 이상인 조건을 만족하는 R2,k의 반경 방향 구간의 길이 비율이 상기 제2무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상일 수 있다.
또 다른 측면에서, 상기 집전체의 용접 영역은 상기 무지부의 적층수가 10 이상인 절곡 표면영역과 50% 이상 중첩될 수 있다.
바람직하게, 상기 집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상일 수 있다.
바람직하게, 상기 용접 영역은 상기 전극 조립체의 코어 중심을 기준으로 반경 방향으로 4mm 이상 및 상기 전극 조립체 반경의 50% 이하의 거리로 이격되어 있을 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 또 다른 측면에 따른 배터리는, 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권취되어 코어와 외주면을 정의한 전극 조립체로서, 상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 제1무지부를 포함하고, 상기 제1무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제1절곡 표면영역을 형성하고, 상기 제1절곡 표면영역의 일부 영역은 상기 제1무지부의 적층 두께가 100 um 내지 975um인 것인 전극 조립체; 상기 전극 조립체가 수납되며, 상기 제1전극 및 상기 제2전극 중 하나와 전기적으로 연결되어 제1극성을 띠는 전지 하우징; 상기 전지 하우징의 개방단을 밀봉하는 밀봉체; 상기 제1전극 및 상기 제2전극 중 다른 하나와 전기적으로 연결되고, 표면이 외부로 노출된 제2극성을 띠는 단자; 및 상기 제1절곡 표면영역에 용접되고, 상기 전지 하우징 또는 상기 단자 중 어느 하나에 전기적으로 연결되는 제1집전체를 포함하고, 상기 제1집전체의 용접 영역은 상기 제1무지부의 적층 두께가 100um 내지 975um인 상기 제1절곡 표면영역의 일부 영역과 중첩될 수 있다.
또 다른 측면에서, 상기 제1전극의 제1무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제1전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 제1절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 제1절곡 표면영역의 무지부 적층 두께의 비율이 1.0% 내지 16.3%일 수 있다.
상기 제1집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상일 수 있다.
바람직하게, 제1집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상일 수 있다.
또 다른 측면에서, 상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제2무지부를 포함하고, 상기 제2무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제2절곡 표면영역을 형성하고, 상기 제2절곡 표면영역의 일부 영역은 상기 제2무지부의 적층 두께가 50 um 내지 780um이고, 상기 제2절곡 표면영역에 용접되고, 상기 전지 하우징 또는 상기 단자 중 다른 하나에 전기적으로 연결되는 제2집전체를 포함하고, 상기 제2집전체의 용접 영역은 상기 제2무지부의 적층 두께가 50um 내지 780um인 상기 제2절곡 표면영역의 일부 영역과 중첩될 수 있다.
또 다른 측면에서, 상기 제2전극의 제2무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제2전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 제2절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 제2절곡 표면영역의 무지부 적층 두께의 비율이 0.5% 내지 13%일 수 있다.
바람직하게, 상기 제2집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상일 수 있다.
또 다른 측면에서, 상기 제1집전체의 용접 영역은 상기 제1무지부의 적층 두께가 100um 내지 975um인 상기 제1절곡 표면영역의 일부 영역과 50% 이상 중첩될 수 있다.
또 다른 측면에서, 상기 제2집전체의 용접 영역은 상기 제2무지부의 적층 두께가 50um 내지 780um인 상기 제2절곡 표면영역의 일부 영역과 50% 이상 중첩될 수 있다.
또 다른 측면에서, 상기 제1집전체의 용접 영역과 상기 제2집전판의 용접 영역은 상기 전극 조립체의 코어 중심을 기준으로 실적으로 동일한 거리만큼 이격된 위치로부터 상기 전극 조립체의 반경 방향으로 연장되어 있을 수 있다.
또 다른 측면에서, 상기 제1집전체의 용접 영역이 연장된 길이가 상기 제2집전체의 용접 영역이 연장된 길이보다 더 길 수 있다.
상기 기술적 과제는 상술한 배터리를 포함하는 배터리 팩과 이를 포함하는 자동차에 의해서도 달성될 수 있다.
본 발명의 일 측면에 따르면, 전극 조립체의 양단에 노출된 무지부를 절곡시킬 때 전극 조립체의 반경 방향에서 무지부가 10장 이상 중첩되는 영역을 충분히 확보하여 용접 출력을 증가시키더라도 분리막이나 활물질층의 손상을 방지할 수 있다.
본 발명의 또 다른 측면에 따르면, 전극 조립체의 코어에 인접한 무지부 구조를 개선하여 무지부가 절곡될 때 전극 조립체의 코어에 있는 공동이 폐색되는 것을 방지하여 전해액 주입 공정과 전지 하우징과 집전체의 용접 공정을 용이하게 진행할 수 있다.
본 발명의 또 다른 측면에 따르면. 스트립 형태의 전극 탭을 대신하여 무지부의 절곡 표면영역을 집전체와 직접 용접함으로써 에너지 밀도가 향상되고 저항이 감소된 전극 조립체를 제공할 수 있다.
본 발명의 또 다른 측면에 따르면, 내부 저항이 낮고, 집전체와 무지부의 용접 강도가 향상된 구조를 갖는 배터리, 이를 포함하는 배터리 팩 및 자동차를 제공할 수 있다.
이 밖에도 본 발명은 여러 다른 효과를 가질 수 있으며, 이에 대해서는 각 실시예에서 설명하거나, 통상의 기술자가 용이하게 유추할 수 있는 효과 등에 대해서는 해당 설명을 생략하도록 한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 종래의 탭-리스 원통형 배터리의 제조에 사용되는 전극판의 구조를 나타내는 평면도이다.
도 2는 종래의 탭-리스 원통형 배터리의 전극판 권취 공정을 나타낸 도면이다.
도 3은 종래의 탭-리스 원통형 배터리에 있어서 무지부의 절곡 표면영역에 집전체가 용접되는 공정을 나타낸다.
도4는 본 발명의 실시예에 따른 전극판의 구조를 나타낸 평면도이다.
도 5는 본 발명의 실시예에 따른 분절편의 폭, 높이 및 이격 피치의 정의를 나타낸 도면이다.
도 6은 본 발명의 실시예에 따른 분절편의 중첩 조건을 설명하기 위한 도면이다.
도 7a 및 도 7b는 각각 본 발명의 실시예에 따라 무지부의 절곡 구조가 형성되기 전에 전극 조립체의 상부 단면 구조와 하부 단면 구조를 나타낸 도면이다.
도 8a와 도 8b는 각각 본 발명의 실시예에 따라 무지부가 절곡되면서 절곡 표면영역이 형성된 전극 조립체의 단면도와 사시도이다.
도 9a는 4680의 폼 팩터를 가진 원통형 배터리에 포함되는 반경이 22mm인 전극 조립체에 있어서 제1전극의 분절편들이 원주 방향으로 중첩되지 않고 외주측으로부터 코어측으로 절곡되었을 때 반경 방향으로 분절편들이 중첩되면서 형성된 절곡 표면영역을 나타낸 단면도이다.
도 9b는 4680의 폼 팩터를 가진 원통형 배터리에 포함되는 반경이 22mm인 전극 조립체에 있어서 제1전극의 분절편들이 원주 방향으로 중첩되면서 외주측으로부터 코어측으로 절곡되었을 때 반경 방향 및 원주 방향으로 분절편들이 중첩되면서 형성된 절곡 표면영역을 나타낸 단면도이다.
도 10은 본 발명의 일 실시예에 따른 원통형 배터리를 Y축 방향을 따라 자른 단면도이다.
도 11은 본 발명의 다른 실시예에 따른 원통형 배터리를 Y축 방향을 따라 자른 단면도이다.
도 12는 본 발명의 실시예에 따른 제1집전체의 구조를 나타낸 평면도이다.
도 13은 본 발명의 실시예에 따른 제2집전체의 구조를 나타낸 사시도이다.
도 14는 본 발명의 실시예에 따라 복수의 원통형 배터리들이 전기적으로 연결된 상태를 나타낸 평면도이다.
도 15는 도 14에 있어서 복수의 원통형 배터리들의 전기적 연결을 상세하게 보여주는 부분 확대 평면도이다.
도 16은 본 발명의 실시예에 따른 원통형 배터리를 포함하는 배터리 팩을 나타낸 도면이다.
도 17은 본 발명의 실시예에 따른 배터리 팩을 포함하는 자동차를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
2 개의 비교 대상이 동일하다는 언급은 '실질적으로 동일'한 것을 의미한다. 따라서 ‘실질적 동일’은 당업계에서 낮은 수준으로 간주되는 편차, 예를 들어 5% 이내의 편차를 가지는 경우를 포함할 수 있다. 또한, 소정 영역에서 어떠한 파라미터가 균일하다는 것은 평균적 관점에서 균일하다는 것을 의미할 수 있다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것으로, 특별히 반대되는 기재가 없는 한, 제1 구성요소는 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에서, 특별히 반대되는 기재가 없는 한, 각 구성요소는 단수일 수도 있고 복수일 수도 있다.
구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.
또한 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다.
명세서 전체에서, "A 및/또는 B" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, A, B 또는 A 및 B를 의미하며, "C 내지 D" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, C 이상이고 D 이하인 것을 의미한다.
설명의 편의상 본 명세서에서 젤리롤 형태로 감기는 전극 조립체의 권취축의 길이방향을 따르는 방향을 축방향(Y)이라 지칭한다. 그리고 상기 권취축을 둘러싸는 방향을 원주방향 또는 둘레방향(X)이라 지칭한다. 그리고 상기 권취축에 가까워지거나 권취축으로부터 멀어지는 방향을 반경방향이라 지칭한다. 이들 중 특히 권취축에 가까워지는 방향을 구심방향, 권취축으로부터 멀어지는 방향을 원심방향이라 지칭한다.
먼저, 본 발명의 실시예에 따른 전극 조립체에 관해 설명한다. 전극 조립체는 쉬트 형상을 가진 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 일 축을 중심으로 권취된 구조를 가진 젤리롤 타입의 전극 조립체이다. 하지만 본 발명이 전극 조립체의 구체적인 타입에 의해 한정되는 것은 아니므로 상기 전극 조립체는 당업계에 잘 알려진 어떠한 권취 구조라도 구비할 수 있다.
바람직하게, 제1전극 및 제2전극 중 적어도 하나는 권취 방향의 장변 단부에 활물질이 코팅되지 않은 무지부를 포함한다. 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용된다.
도 4는 본 발명의 실시예에 따른 전극(40)의 구조를 나타낸 평면도이다.
도 4를 참조하면, 전극(40)은 금속 포일로 이루어진 집전체(41) 및 활물질층(42)을 포함한다. 금속 포일은 알루미늄 또는 구리일 수 있으며, 전극(40)의 극성에 따라 적절하게 선택된다. 활물질층(42)은 집전체(41)의 적어도 일면에 형성되며, 권취 방향(X)의 장변 단부에 무지부(43)를 포함한다. 무지부(43)는 활물질이 코팅되지 않은 영역이다. 활물질층(42)과 무지부(43)의 경계에는 절연 코팅층(44)이 형성될 수 있다. 절연 코팅층(44)은 적어도 일부가 활물질층(42)과 무지부(43)의 경계와 중첩되도록 형성된다. 절연 코팅층(44)은 고분자 수지를 포함하고, Al2O3와 같은 무기물 필터를 포함할 수 있다. 절연 코팅층(44)이 형성된 무지부(43)의 영역도 활물질층(42)이 없으므로 무지부(43)에 해당한다.
바람직하게, 전극(40)의 무지부(43)에 있어서 절곡되는 부분은 복수의 분절편(61)을 포함할 수 있다. 복수의 분절편(61)은 코어측으로부터 외주측으로 가면서 높이가 단계적으로 증가할 수 있다. 높이가 단계적으로 증가하는 구간은 전극 조립체의 코어측과 인접한 무지부 영역(코어측 무지부 A)을 제외한 나머지 영역이다. 바람직하게, 코어측 무지부(A)는 높이가 다른 부분보다 상대적으로 낮다.
분절편(61)은 레이저로 노칭된 것일 수 있다. 분절편(61)은 초음파 커팅이나 타발 등 공지의 금속박 커팅 공정으로 형성할 수 있다.
전극(40)이 권취 되었을 때, 각 분절편(61)은 절곡 라인(62) 지점에서 전극 조립체의 반경 방향, 예컨대 코어 측으로 절곡될 수 있다. 코어는 전극 조립체의 권취 중심에 있는 공동(cavity)을 지칭한다. 각 분절편(61)은 절곡 라인(62)을 밑변으로 하는 기하학적 도형의 형태를 가진다. 기하학적 도형에 있어서, 하부의 폭이 상부의 폭보다 클 수 있다. 또한, 기하학적 도형에 있어서, 하부의 폭이 상부로 갈수록 점진적으로 또는 단계적으로(미도시) 증가할 수 있다. 바람직하게, 기하학적 도형은 사다리꼴 모양을 가질 수 있다.
변형 예에서, 기하학적 도형은 적어도 하나의 직선, 적어도 하나의 곡선 또는 이들의 조합이 연결된 형태를 가질 수 있다. 일 예에서, 기하학적 도형은 삼각형, 사각형, 평형사변형 등의 다각형일 수 있다. 다른 예에서, 기하학적 도형은 반원형, 반타원형 등과 같이 원호 형태를 가질 수 있다.
분절편(61)의 절곡 가공시 활물질층(42) 및/또는 절연 코팅층(44)이 손상되는 것을 방지하기 위해 분절편(61) 사이의 절단홈 하단(도 5의 D4가 지시하는 부분)과 활물질층(42) 사이에 소정의 갭을 두는 것이 바람직하다. 무지부(43)가 절곡될 때 절단홈 하단 근처에 응력이 집중되기 때문이다. 갭은 0.2 내지 4mm인 것이 바람직하다. 갭이 해당 수치범위로 조절되면, 분절편(61)의 절곡 가공시 생기는 응력에 의해 절단홈 하단 근처의 활물질층(42) 및/또는 절연 코팅층(44)이 손상되는 것을 방지할 수 있다. 또한, 갭은 분절편(61)의 노칭 또는 커팅시 공차로 인한 활물질층(42) 및/또는 절연 코팅층(44)의 손상을 방지한다.
복수의 분절편(61)은 코어측에서 외주측으로 가면서 복수의 분절편 그룹을 이룰 수 있다. 동일한 분절편 그룹에 속한 분절편의 폭, 높이 및 이격 피치는 실질적으로 동일할 수 있다.
도 5는 본 발명의 실시예에 따른 분절편(61)의 폭, 높이 및 이격 피치의 정의를 나타낸 도면이다.
도 5를 참조하면, 분절편(61)들 사이에는 절단홈(63)이 형성된다. 절단홈(63) 하부의 모서리 부분은 라운드 모양을 가진다. 즉, 절단홈(63)은 실질적으로 직선 형태인 저부(63a)와 라운드부(63c)를 포함한다. 라운드부(63c)는 저부(63a)와 분절편(61)의 측변(63b)을 연결한다. 변형 예에서, 절단홈(63)의 저부(63a)는 원호 모양으로 대체될 수 있다. 이 경우, 분절편(61)의 측변(63b)들은 저부(63a)의 원호 형상에 의해 부드럽게 연결될 수 있다.
바람직하게, 라운드부(63c)의 곡률 반경은 0 초과 0.5mm 이하, 보다 바람직하게는 0 초과 0.1mm이하일 수 있다. 보다 바람직하게, 라운드부(63c)는, 0.01mm 내지 0.05m의 곡률 반경을 가질 수 있다. 라운드부(63c)의 곡률 반경이 상기 수치범위를 충족할 때, 전극(40)이 권취 공정 등에서 주행되는 동안 절단홈(63)의 하부에서 크랙이 생기는 것을 방지할 수 있다.
분절편(61)의 폭(D1), 높이(D2) 및 이격 피치(D3)은 무지부(43)의 절곡 가공 시 무지부(43)가 찢어지는 것을 방지하고 용접 강도 향상을 위해 무지부(43)의 적층수를 충분히 증가시키면서 무지부(43)의 비정상적 변형을 가능한 방지할 수 있도록 설계한다. 비정상적 변형은 절곡 지점 하부의 무지부가 직선 상태를 유지하지 못하고 주저 않으면서 불규칙하게 변형되는 것을 말한다. 절곡 지점은 D4에 의해 지시된 절단홈(63)의 하단으로부터 2mm 이하, 바람직하게는 1mm 이하로 이격된 지점일 수 있다.
분절편(61)의 폭(D1)은 분절편(61)의 양측 측변(63b)로부터 연장한 2개의 직선과 절단홈(63)의 저부(63a)로부터 연장되는 직선이 만나는 두 지점 사이의 길이로 정의된다. 분절편(61)의 높이는 분절편(61)의 최상단 변과 절단홈(63)의 저부(63a)로부터 연장된 직선 사이의 최단 거리로 정의된다. 분절편(61)의 이격 피치(D3)는 절단홈(63)의 저부(63a)로부터 연장된 직선과 상기 저부(63a)와 연결된 2개의 측벽(63b)으로부터 연장된 직선들이 만나는 두 지점 사이의 길이로 정의된다. 측변(63b) 및/또는 저부(63a)가 곡선일 때, 직선은 측변(63b) 및/또는 저부(63a)로부터 연장되는 접선으로 대체 가능하다.
바람직하게, 분절편(61)의 폭(D1)은 1mm 내지 11mm의 범위에서 조절할 수 있다. D1이 1mm 미만이면, 분절편(61)이 코어측으로 절곡되었을 때 용접 강도를 충분히 확보할 수 있을 정도로 중첩되지 않는 영역 또는 빈 공간(틈)이 발생한다. 반면, D1이 11mm를 초과하면, 분절편(61)이 절곡될 때 절곡 지점(D4) 근처의 무지부(43)가 응력에 의해 찢어질 가능성이 있다. 절곡 지점(D4)는 절단홈(63)의 저부(63a)로부터 이격될 수 있다. 이격 거리는 2mm 이하, 바람직하게는 1mm이하일 수 있다. 또한, 분절편(61)의 높이는 2mm 내지 10mm의 범위에서 조절할 수 있다. D2가 2mm 미만이면, 분절편(61)이 코어측으로 절곡되었을 때 용접 강도를 충분히 확보할 수 있을 정도로 중첩되지 않는 영역 또는 빈 공간(틈)이 발생한다. 반면, D2가 10mm를 넘으면 권취 방향(X)으로 무지부의 평탄도를 균일하게 유지하면서 전극판을 제조하기 어렵다. 즉, 무지부의 높이가 커져서 너울이 생긴다. 또한, 분절편(61)의 이격 피치(D3)는 0.05mm 내지 1mm의 범위에서 조절할 수 있다. D3이 0.05mm 미만이면, 전극(40)이 권취 공정 등에서 주행될 때 응력에 의해 절단홈(63)의 하단 근처에서 무지부(43)에 크랙이 생길 수 있다. 반면, D3이 1mm를 초과하면 분절편(61)이 절곡되었을 때 용접 강도를 충분히 확보할 수 있을 정도로 분절편(61)들이 서로 중첩되지 않는 영역 또는 빈 공간(틈)이 발생할 수 있다.
한편, 전극(40)의 집전체(41)가 알루미늄으로 이루어질 경우, 이격 피치 D3은 0.5mm 이상으로 설정하는 것이 보다 바람직하다. D3이 0.5mm 이상일 경우, 전극(40)이 권취 공정 등에서 300gf 이상의 장력(tension) 하에서 100mm/sec 이상의 속도로 주행하더라도, 절단홈(63)의 하부에서 크랙이 생기는 것을 방지할 수 있다.
실험 결과에 따르면, 전극(40)의 집전체(41)가 15um 두께의 알루미늄 포일이고, D3이 0.5mm 이상일 경우, 상기 주행 조건 하에서 전극(40)이 주행되었을 때 절단홈(63)의 하부에서 크랙이 생기지 않는다.
다시 도4를 참조하면, 코어측 무지부(A)의 폭(dA)은 분절편(61)들을 코어측으로 절곡시켰을 때 전극 조립체의 코어를 90% 이상 가리지 않는 조건을 적용하여 설계한다.
일 예에서, 코어측 무지부(A)의 폭(dA)은 그룹1의 분절편(61)의 절곡 길이에 비례하여 증가할 수 있다. 절곡 길이는 절곡 지점(도 4의 62)을 기준으로 한 분절편(61)의 높이에 해당한다.
구체적인 예에서, 전극(40)이 폼 팩터가 4680인 원통형 배터리의 전극 조립체를 제조하는데 사용되는 경우, 코어측 무지부(A)의 폭(dA)은 전극 조립체 코어의 직경에 따라 180mm 내지 350mm로 설정할 수 있다.
바람직하게, 전극(40)의 장변 길이(Le) 대비 코어측 무지부(A)의 폭(dA)의 비율 dA/Le은 1% 내지 30%일 수 있다. 직경이 46mm 수준의 대형(large size) 원통형 배터리는 전극(40)의 길이가 3000mm 내지 5000mm로서 상당히 길므로, 코어측 무지부(A)를 충분히 길게 설계할 수 있다. 1865이나 2170의 폼 팩터를 가진 원통형 배터리는 전극판의 길이가 600mm 내지 1200mm 수준이다. 통상적인 원통형 배터리에서는 비율 dA/Le을 상기의 수치범위로 설계하는 것이 어렵다.
일 실시예에서, 각 분절편 그룹의 폭은 전극 조립체의 동일한 권취 턴을 구성할 수 있도록 설계될 수 있다.
다른 실시예에서, 각 분절편 그룹의 폭은 전극 조립체의 복수의 권취 턴을 구성할 수 있도록 설계될 수 있다.
일 변형예에서, 동일한 분절편 그룹에 속한 분절편(61)의 폭 및/또는 높이 및/또는 이격 피치는 그룹 내에서 또는 그룹 간에 점진적으로 및/또는 단계적으로 및/또는 불규칙적으로 증가 또는 감소할 수 있다.
그룹1 내지 그룹7은 분절편 그룹의 일 예시에 불과하다. 그룹들의 수와 각 그룹에 포함되는 분절편(61)의 수는 무지부(43)의 절곡 과정에서 응력을 최대한 분산시키고 용접 강도를 충분히 확보할 수 있으며 분절편(61)의 측변(63b) 사이 갭이 최소화되며 분절편(61)이 서로 간섭을 일으키지 않으며 전극 조립체의 반경 방향을 따라 여러 겹으로 중첩되도록 조절될 수 있다.
일 변형예에서, 일부 그룹의 분절편은 제거될 수 있다. 이 경우, 분절편이 제거된 부분의 무지부 높이는 코어측 무지부(A)의 높이와 동일할 수 있다.
바람직하게, 전극(40)은 장변 방향을 따라 분절편(61)의 높이가 변화하는 높이 가변 구간과 분절편(61)의 높이가 균일한 높이 균일 구간으로 구분될 수 있다.
전극(40)에 있어서, 높이 가변 구간은 그룹1 내지 그룹7에 대응되는 구간이고, 높이 균일 구간은 그룹 7보다 외주 측에 위치하는 구간이다.
구체적인 예에서, 코어측 무지부(A)의 폭(dA)은 180~350mm일 수 있다. 그룹1의 폭은 코어측 무지부(A)의 폭 대비 35~55%일 수 있다. 그룹2의 폭은 그룹1의 폭 대비 120~150%일 수 있다. 그룹3의 폭은 그룹2의 폭 대비 110~135%일 수 있다. 그룹4의 폭은 그룹 3의 폭 대비 75~90%일 수 있다. 그룹5의 폭은 그룹4의 폭 대비 120~150%일 수 있다. 그룹6의 폭은 그룹5의 폭 대비 100~120%일 수 있다. 그룹7의 폭은 그룹6의 폭 대비 90~120%일 수 있다.
그룹1 내지 7의 폭이 일정한 증가 또는 감소 패턴을 보이지 않는 이유는, 분절편의 폭은 그룹1에서 그룹7로 갈수록 점차 증가하지만 그룹 내에 포함되는 분절편의 수는 정수 개로 제한되고 전극(40)의 두께를 권취 방향(X)을 따라 편차를 가지기 때문이다. 따라서, 특정 분절편 그룹에서는 분절편의 수가 감소될 수 있다. 따라서, 그룹의 폭은 코어측으로부터 외주측으로 가면서 상기의 예시처럼 불규칙한 변화 양상을 나타낼 수 있다.
전극 조립체의 반경 방향에서 연속해서 인접하는 3개의 분절편 그룹 각각에 대한 권취 방향의 폭을 각각 W1, W2 및 W3이라고 했을 때 W2/W1 보다 W3/W2가 작은 분절편 그룹의 조합을 포함할 수 있다.
상기 구체적인 예에서, 그룹4 내지 그룹6이 이에 해당한다. 그룹4에 대한 그룹5의 폭 비율은 120~150%이고, 그룹5에 대한 그룹6의 폭 비율은 100~120%로서 그 값이 120~150%보다 작다.
바람직하게, 복수의 분절편(61)은 코어측으로부터 외주측으로 갈수록 하부 내각(θ)이 증가할 수 있다. 하부 내각(θ)은 절곡 라인(도 4의 62)을 통과하는 직선과 분절편(61)의 측변(63b)로부터 연장된 직선(또는 접선) 사이의 각도에 해당한다. 분절편(61)이 좌우 비대칭일 경우, 좌측 내각과 우측 내각은 서로 다를 수 있다.
전극 조립체의 반경이 증가하면 곡률 반경이 증가한다. 분절편(61)의 하부 내각(θ)이 전극 조립체의 반경이 증가함에 따라 함께 증가하면 분절편(61)이 절곡될 때 반경 방향 및 원주 방향으로 생기는 응력을 완화시킬 수 있다. 또한, 하부 내각(θ)이 증가하면, 분절편(61)이 절곡되었을 때 안쪽의 분절편(61)과 중첩되는 면적 및 분절편(61)의 적층수도 함께 증가함으로써 반경 방향 및 원주 방향에서 용접 강도를 균일하게 확보할 수 있고 절곡 표면영역을 평탄하게 형성할 수 있다.
바람직하게, 전극 조립체의 반경이 증가함에 따라 하부 내각(θ)의 각도를 조절하면, 분절편(61)들이 절곡되었을 때, 전극 조립체의 반경 방향뿐만 아니라 원주 방향에서도 분절편(61)들이 중첩될 수 있다.
도 6의 (a)와 (b)는 코어 중심을 기준으로 반경이 r인 임의의 권회턴에서 전극 조립체의 코어측으로 절곡된 분절편(61)들의 측변이 평행하게 이격된 예와 절곡된 분절편(61)들의 측변이 서로 교차되는 예를 각각 나타낸다.
도 6을 참조하면, 전극 조립체의 코어 중심(O)을 기준으로 반경이 r인 권회턴에 인접하는 분절편(61)의 쌍이 배치되어 있다. 인접하는 분절편(61)들의 폭과 높이는 실질적으로 동일하다.
도 6의 (a)에서, 하부 내각 θassumption은 분절편(61)의 측변이 실질적으로 평행하다고 가정했을 때의 각도이다. 하부 내각 θassumption은 분절편(61)의 하부에 대응되는 원호 길이 Larc에 의해 고유하게 결정될 수 있는 각도이다. 반면, θreal은 인접하는 분절편(61)의 측변이 서로 교차될 경우의 실제 하부 내각이다.
바람직하게, 하부 내각 θassumption과 θreal이 하기 수식1을 만족할 때, 코어 중심(O)을 기준으로 반경 r에 위치한 권회턴에 배치된 분절편(61)들이 원주 방향으로 서로 중첩될 수 있다.
<수식1>
θreal > θassumption
θassumption = 90°- 360°*(Larc/2πr)*0.5
θreal > 90°- 360°*(Larc/2πr)*0.5
여기서, r은 전극 조립체의 코어 중심을 기준으로 분절편(61)이 배치된 권회턴의 반경이다.
Larc는 r을 반지름으로 하는 원에 있어서 분절편의 하부(점선)에 대응되는 원호(실선)의 길이로서 분절편(61)의 폭(D1)으로부터 고유하게 결정된다.
'360°*(Larc/2πr)'은 분절편(61)의 하부(점선)에 대응되는 원호(실선)의 원주각 α이다.
'360°*(Larc/2πr)*0.5'는 직각 삼각형 OAB에 있어서 선분 OB와 선분 OA 사이의 각도이다.
'90°- 360°*(Larc/2πr)*0.5'는 직각 삼각형 OAB에 있어서 선분 OA와 선분 AB 사이의 각도로서 분절편(61)의 하부 내각(θassumption)에 근사적으로 대응한다.
바람직하게, 임의의 권회턴 반경 r에서 Larc의 원주각 α는 45°이하일 수 있다. 각 원주각 α가 45°를 초과하면 분절편(61)의 절곡이 잘 이루어지지 않는다. 따라서, 임의의 반경 r에서 Larc는 D1의 하한인 1mm보다 크고 (45/360)*(2πr) 이하의 길이를 가진다.
원주각α는 분절편(61)이 위치하는 권회턴의 반경에 의존하여 달라질 수 있다. 일 측면에서, 분절편(61)의 원주각 α는 상기 수치범위 조건을 충족하면서 전극 조립체의 반경 방향을 따라 점진적으로 또는 단계적으로 증가하거나 그 반대(vice versa)일 수 있다. 다른 측면에서, 분절편(61)의 원주각 α는 상기 수치범위 조건을 충족하면서 전극 조립체의 반경 방향을 따라 점진적으로 또는 단계적으로 증가하다가 점진적으로 또는 단계적으로 감소하거나 그 반대(vice versa)일 수 있다. 또 다른 측면에서, 분절편(61)의 원주각 α는 상기 수치범위 조건을 충족하면서 전극 조립체의 반경 방향을 따라 실질적으로 동일하게 유지될 수 있다.
바람직하게, 분절편(61)의 권회 방향 폭(D1)이 권회 방향을 따라 변화할 때 분절편(61)의 원주각 α는 45도 이하이고 분절편(61)의 권회 방향 폭(D1)은 1m 내지 11 mm의 범위에 속할 수 있다.
일 예에서, r이 20mm이고 원주각 α가 30°인 경우, Larc는 10.5mm이며, θassumption 은 약 75도이다. 다른 예로, r이 25mm이고 원주각 α가 25°인 경우, Larc는 10.9mm이며, θassumption 은 약 77.5도이다.
바람직하게, 임의의 권회턴 반경 r에서, (θrealassumption-1)은 원주 방향에서 분절편(61)의 중첩율로 정의될 수 있다. 분절편(61)의 중첩율은 0보다 크고 0.05 이하인 것이 바람직하다. θassumption은 권회턴 반경 r에서 원호 Larc에 의해 고유하게 결정되는 각도이다. 분절편(61)의 중첩율이 0.05보다 커지면, 분절편(61)들이 절곡될 때 측변이 서로 간섭하면서 절곡이 잘 이루어지지 않을 수 있다.
분절편(61)의 중첩 정도는 중첩율에 비례하여 커진다. 분절편들(61)이 권회턴의 원주 방향을 따라 서로 중첩되면, 분절편들(61)이 절곡되었을 때 분절편(61)의 적층수가 더욱 증가될 수 있다. 이에 대한 실시예는 후술한다.
바람직하게, 전극(40)이 폼 팩터가 4680인 원통형 배터리의 전극 조립체를 제조하는데 사용되며, 코어의 반경이 4mm이고, 코어와 가장 인접한 분절편의 높이가 3mm일 경우, 전극 조립체의 반경이 7mm부터 22mm까지 증가할 때 분절편(61)의 하부 내각은 60도 내지 85도 구간에서 단계적으로 증가할 수 있다.
상기 반경 범위와 하부 내각 범위는 폼 팩터 및 코어의 직경, 코어와 가장 인접한 분절편의 높이, 분절편(61)의 폭(D1), 및 중첩율의 설계 사양으로부터 결정될 수 있다.
한편, 분절편이 중첩되는 조건은 다음과 같이 변경될 수 있다. 즉, 도 6의 (b)와 같이 전극 조립체(40)의 코어 중심(O)을 기준으로 이웃하는 분절편(61) 쌍을 통과하는 가상의 원을 그렸을 때 각 분절편을 통과하는 원호 e1-e2 및 e3-e4 -가 서로 중첩되면 이웃하는 분절편(61) 쌍이 서로 중첩될 수 있다. 분절편(61)의 중첩율은 반지름이 다른 복수의 가상 원을 그렸을 때 원호 e1-e2(또는 e3-e4)의 길이 대비 중첩된 원호 e2-e3의 비율 중 최대값으로 정의될 수 있다. 분절편(61)의 중첩율은 0보다 크고 0.05 이하일 수 있다.
분절편(61)의 형상은 위치에 따라 다르게 변경하는 것도 가능하다. 일 예에서, 응력이 집중되는 구간은 응력 분산에 유리한 라운드 형상(예컨대, 반원형, 반타원형 등)을 적용하고, 응력이 상대적으로 낮은 구간은 면적이 최대한 넓은 다각 형상(예컨대, 사각형, 사다리꼴, 평형 사변형 등)을 적용할 수 있다.
무지부 분절 구조는 코어측 무지부(A)에도 적용이 가능하다. 다만, 코어측 무지부(A)에 분절 구조가 적용되면, 코어의 곡률 반경에 따라 분절편이 절곡될 때 코어측 무지부(A)의 단부가 외주측으로 휘는 역포밍(reverse forming) 현상이 발생할 수 있다. 따라서, 코어측 무지부(A)에는 분절 구조가 없거나, 분절 구조를 적용하더라도 코어의 곡률 반경을 고려하여 분절편(61)의 폭 및/또는 높이 및/또는 이격 피치를 역포밍이 생기지 않는 수준으로 조절하는 것이 바람직하다.
상술한 실시예들(변형예들)의 전극판 구조는 젤리롤 타입의 전극 조립체에 포함된 극성이 다른 제1전극 및/또는 제2전극에 적용될 수 있다. 또한, 제1전극 및 제2전극 중 어느 하나에 실시예들(변형예들)의 전극 구조가 적용될 경우, 다른 하나에는 종래의 전극판 구조가 적용될 수 있다. 또한, 제1전극 및 제2전극에 적용된 전극판 구조는 서로 동일하지 않고 다를 수 있다.
일 예로, 제1전극과 제2전극이 각각 양극 및 음극일 때, 제1전극에는 실시예들(변형예들) 중 어느 하나가 적용되고 제2전극에는 종래의 전극 구조(도1 참조)가 적용될 수 있다.
다른 예로, 제1전극과 제2전극이 각각 양극 및 음극일 때, 제1전극에는 실시예들(변형예들) 중 어느 하나가 선택적으로 적용되고 제2전극에는 실시예들(변형예들) 중 어느 하나가 선택적으로 적용될 수 있다.
본 발명에 있어서, 양극에 코팅되는 양극 활물질과 음극에 코팅되는 음극 활물질은 당업계에 공지된 활물질이라면 제한없이 사용될 수 있다.
일 예에서, 양극 활물질은 일반 화학식 A[AxMy]O2+z(A는 Li, Na 및 K 중 적어도 하나 이상의 원소를 포함; M은 Ni, Co, Mn, Ca, Mg, Al, Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, 및 Cr에서 선택된 적어도 하나 이상의 원소를 포함; x ≥ 0, 1 ≤ x+y ≤2, ­0.1 ≤ z ≤ 2; 화학량론 계수 x, y 및 z는 화합물이 전기적 중성을 유지하도록 선택됨)로 표시되는 알칼리 금속 화합물을 포함할 수 있다.
다른 예에서, 양극 활물질은 US6,677,082, US6,680,143 등에 개시된 알칼리 금속 화합물 xLiM1O2­(1­x)Li2M2O3(M1은 평균 산화 상태 3을 갖는 적어도 하나 이상의 원소를 포함; M2는 평균 산화 상태 4를 갖는 적어도 하나 이상의 원소를 포함; 0≤x≤1)일 수 있다.
또 다른 예에서, 양극 활물질은, 일반 화학식 LiaM1 xFe1­xM2 yP1­yM3 zO4­z(M1은 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg 및 Al에서 선택된 적어도 하나 이상의 원소를 포함; M2는 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si, Ge, V 및 S에서 선택된 적어도 하나 이상의 원소를 포함; M3는 F를 선택적으로 포함하는 할로겐족 원소를 포함; 0 < a ≤2, 0 ≤ x ≤ 1, 0 ≤ y < 1, 0 ≤ z < 1; 화학량론 계수 a, x, y 및 z는 화합물이 전기적 중성을 유지하도록 선택됨), 또는 Li3M2(PO4)3[M은 Ti, Si, Mn, Fe, Co, V, Cr, Mo, Ni, Al, Mg 및 Al에서 선택된 적어도 하나의 원소를 포함]로 표시되는 리튬 금속 포스페이트일 수 있다.
바람직하게, 양극 활물질은 1차 입자 및/또는 1차 입자가 응집된 2차 입자를 포함할 수 있다.
일 예에서, 음극 활물질은 탄소재, 리튬금속 또는 리튬금속화합물, 규소 또는 규소화합물, 주석 또는 주석 화합물 등을 사용할 수 있다. 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 음극 활물질로 사용 가능하다. 탄소재로는 저결정 탄소, 고결정성 탄소 등이 모두 사용될 수 있다.
분리막은 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있다. 다른 예시로서, 분리막은 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있다.
분리막의 적어도 한 쪽 표면에는 무기물 입자의 코팅층을 포함할 수 있다. 또한 분리막 자체가 무기물 입자의 코팅층으로 이루어지는 것도 가능하다. 코팅층을 구성하는 입자들은 인접하는 입자 사이 사이에 인터스티셜 볼륨(interstitial volume)이 존재하도록 바인더와 결합된 구조를 가질 수 있다.
무기물 입자는 유전율이 5이상인 무기물로 이루어질 수 있다. 비제한적인 예시로서, 상기 무기물 입자는 Pb(Zr,Ti)O3(PZT), Pb1­xLaxZr1­yTiyO3(PLZT), PB(Mg3Nb2/3)O3­PbTiO3(PMN­PT), BaTiO3, hafnia(HfO2), SrTiO3, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO 및 Y2O3로 이루어진 군에서 선택된 적어도 하나 이상의 물질을 포함할 수 있다.
실시예에 따른 전극 조립체는 실시예의 전극(40)을 제1전극(양극) 및 제2전극(음극)에 적용한 젤리롤 타입의 전극 조립체(80)이다. 하지만 본 발명이 전극 조립체의 구체적인 타입에 의해 한정되는 것은 아니다.
도 7a 및 도 7b는 각각 본 발명의 실시예에 따라 무지부(43a, 43a')의 절곡 구조가 형성되기 전에 전극 조립체(80)의 상부 단면 구조와 하부 단면 구조를 나타낸 도면이다. 또한, 도 8a와 도 8b는 각각 본 발명의 실시예에 따라 무지부(43a, 43a')가 절곡되면서 절곡 표면영역(F)이 형성된 전극 조립체(80)의 단면도와 사시도이다.
전극 조립체(80)는 도 2를 통해 설명한 권취 공법으로 제조할 수 있다. 설명의 편의를 위해 분리막 밖으로 연장된 무지부(43a, 43a')의 돌출 구조를 상세하게 도시하고, 분리막의 권회 구조에 대한 상세한 도시는 생략한다. 전극 조립체(80)의 상부로 돌출된 무지부(43a)는 제1전극(40)으로부터 연장된 것이다. 전극 조립체(80)의 하부로 돌출된 무지부(43a')는 제2전극(40')으로부터 연장된 것이다. 분리막의 단부 위치는 점선으로 표시하였다.
무지부(43a, 43a')의 높이가 변화하는 패턴은 개략적으로 도시하였다. 즉, 단면이 잘리는 위치에 따라서 무지부(43a, 43a')의 높이는 불규칙하게 변화할 수 있다. 일 예로, 사다리꼴 모양을 가진 분절편(61)의 사이드들이 잘리면 단면에서의 무지부 높이는 분절편(61)의 높이(도4의 D2)보다 낮아진다. 또한, 절단홈(도 5의 63)이 잘린 지점에서는 무지부(43a, 43a')가 도시되지 않았다.
이하에서는, 도면을 참조하여, 제1전극(40)의 무지부(43a)에 관한 구조적 특징을 상세하게 설명한다. 바람직하게, 제2전극(40')의 무지부(43a')도 제1전극(40)의 무지부(43a)와 실질적으로 동일한 특징을 구비할 수 있다.
도 7a, 도 7b, 도 8a 및 도 8b를 참조하면, 제1전극(40) 및 제2전극(40')의 무지부(43a, 43a')는 반경 반향으로 절곡되어 절곡 표면영역(F)을 형성한다.
제1전극(40)의 권회 구조에 있어서, 제1전극(40)의 총 권회턴수를 n1이라할 때, k번째 권회턴의 권회턴수 인덱스 k(1~n1의 자연수)를 총 권회턴수 n1으로 나눗셈 연산한 값을 k번째 권회턴의 상대 반경 위치 R1,k라고 정의할 때, 무지부(43a)의 적층수가 10 이상인 상대 반경 위치 R1,k 구간의 반경 방향 길이는 분절편이 포함된 권회턴들의 반경 방향 길이 대비 30% 이상이다.
참고로, 첫 번째 권회턴의 상대 반경 위치는 권회턴수 인덱스가 1이므로 1/n1이다. k번째 권회턴의 상대 반경 위치는 k/n1이다. 가장 마지막 n1번째 권회턴의 상대 반경 위치는 1이다. 즉, 상대 반경 위치는 전극 조립체(80)의 코어측으로부터 외주까지 1/n1부터 1까지 증가한다.
제2전극(40')의 권회 구조에 있어서, 제2전극(40')의 총 권회턴수를 n2라할 때, k번째 권회턴수 위치에서 권회턴수 인덱스 k(1~n2의 자연수)를 총 권회턴수 n2로 나눗셈 연산한 값을 k번째 권회턴의 상대 반경 위치 R2,k라고 정의할 때, 무지부 절곡부의 적층수가 10 이상인 상대 반경 위치 R2,k 구간의 반경 방향 길이는 분절편들이 배치된 권회턴의 반경 방향 길이 대비 30% 이상이다.
참고로, 첫 번째 권회턴의 상대 반경 위치는 권회턴수 인덱스가 1이므로 1/n2이다. k번째 권회턴의 상대 반경 위치는 k/n2이다. 가장 마지막 n2번째 권회턴의 상대 반경 위치는 1이다. 즉, 상대 반경 위치는 전극 조립체(80)의 코어측으로부터 외주까지 1/n2부터 1까지 증가한다.
바람직하게, 제1전극(40) 및 제2전극(40')의 권회턴수 인덱스 k에는 서로 다른 값이 할당될 수 있는 변수로 이해하여야 한다.
무지부(43a, 43a')가 반경 방향으로 절곡되면, 도 8a 및 도 8b에 도시된 바와 같이, 전극 조립체(80)의 상부 및 하부에 절곡 표면영역(F)이 형성된다.
도 8a 및 도 8b를 참조하면, 복수의 분절편(61)이 전극 조립체(80)의 코어(C) 측으로 절곡되면서 반경 방향을 따라 여러 겹으로 중첩된다.
분절편(61)들의 적층수는 절곡 표면영역(F) 상의 임의의 반경 지점에서 권취 축 방향(Y)으로 가상의 선을 그었을 때 가상의 선과 교차하는 분절편(61)의 수로 정의될 수 있다.
바람직하게, 분절편(61)들의 적층수는 절곡 표면영역(F)과 집전체 사이의 용접 강도를 충분히 증가시키고 용접 공정 시 분리막과 활물질층이 손상되는 것을 방지하기 위해서 분절편(61)이 포함된 권회턴들의 반경 방향 길이(R1)를 기준으로 적어도 30% 이상의 반경 구간에서 10장 이상일 수 있다.
집전체는 무지부(43a, 43'a)의 절곡 표면영역(F)에 레이저로 용접될 수 있다. 대안적으로, 저항 용접 등의 다른 공지의 용접 기술이 사용될 수 있다. 레이저 용접이 적용될 때, 용접 강도를 충분히 확보하기 위해 레이저의 출력을 증가시키는 것이 바람직하다. 레이저의 출력이 증가하면, 레이저가 무지부(43a, 43a')가 중첩된 영역을 관통하여 전극 조립체(80)의 내부까지 침투하여 분리막과 활물질층을 손상시킬 수 있다. 따라서, 레이저의 관통을 방지하기 위해서는 용접 영역에서 무지부(43a, 43a')의 적층수를 일정한 수준 이상으로 증가시키는 것이 바람직하다. 무지부(43a, 43a')의 적층수를 증가시키기 위해서는 분절편(61)의 높이를 증가시켜야 한다. 하지만, 분절편(61)의 높이를 증가시키면 전극(40)의 제조 과정에서 무지부(43a, 43a')에 너울이 발생할 수 있다. 따라서, 분절편(61)의 높이는 적절한 수준, 바람직하게 2mm 내지 10mm로 조절하는 것이 바람직하다.
절곡 표면영역(F)에서 분절편(61)의 적층수가 10 이상인 반경 구간을 R1 대비 30% 이상으로 설계하고, 분절편(61)들이 10장 이상 중첩된 영역과 집전체를 레이저 용접하면 레이저의 출력을 증대시키더라도 무지부의 중첩부위가 레이저를 충분히 마스킹하여 레이저에 의해 분리막과 활물질층이 손상되는 현상을 방지할 수 있다. 또한, 레이저가 조사되는 영역에서 분절편(61)의 적층수가 크므로 용접 비즈가 충분한 볼륨과 두께로 형성된다. 따라서, 용접 강도가 충분히 확보될 수 있고 용접 계면의 저항도 낮출 수 있다.
집전체의 용접 시 레이저의 출력은 절곡 표면영역(F)과 집전체 사이의 소망하는 용접 강도에 의해 결정될 수 있다. 용접 강도는 무지부(43a, 43a')의 적층수에 비례하여 증가한다. 무지부(43a, 43a')의 적층수가 증가할수록 레이저에 의해 형성되는 용접 비즈의 볼륨이 커지기 때문이다.
바람직하게, 용접 강도는 2kgf/cm2 이상, 더욱 바람직하게는 4kgf/cm2이상일 수 있다. 용접 강도가 상기 수치범위를 충족할 경우, 권취 축 방향 및/또는 반경 방향을 따라 전극 조립체(80)에 심한 진동이 인가되더라도 용접 계면의 물성이 저하되지 않으며, 용접 비즈의 볼륨이 충분하여 용접 계면의 저항도 감소시킬 수 있다. 상기 용접 강도 조건을 구현하기 위한 레이저의 출력은 레이저 장비에 따라 차이는 있는데, 250W 내지 320W의 범위 또는 레이저 최대 출력 사양의 40% 내지 100% 범위에서 적절하게 조절될 수 있다.
용접 강도는 집전체가 절곡 표면영역(F)으로부터 분리되기 시작할 때 집전체의 단위 면적당 인장력(kgf/cm2)으로서 정의될 수 있다. 구체적으로, 집전체의 용접을 완료한 후 집전체에 인장력을 가하되 그 크기를 점차 증가시킨다. 인장력이 커지면 용접 계면으로부터 무지부(43a, 43a')가 분리되기 시작한다. 이 때, 집전체에 가해진 인장력을 집전체의 면적으로 나눈 값이 용접 강도이다.
바람직하게, 제1전극(40)은 집전판(포일)(41) 및 그것의 적어도 일면에 형성된 활물질 코팅층(42)을 포함하고, 전극 집전체(41)의 두께는 10um 내지 25um이고, 전극 조립체(80)의 반경 방향으로 인접하는 권회턴 사이의 간격은 200um 내지 500um일 수 있다. 바람직하게, 집전판(41)은 알루미늄으로 이루어질 수 있다.
제2전극(40')은 집전판(포일) 및 그것의 적어도 일면에 형성된 활물질 코팅층을 포함하고, 집전판의 두께는 5 내지 20um이고, 전극 조립체(80)의 반경 방향에서 인접하는 권회턴 사이의 간격은 200 내지 500um일 수 있다. 집전판은 구리일 수 있다.
도 4, 도 7a 및 도 7b를 참조하면, 제1전극(40)의 권회 구조에 있어서 제1전극(40)의 상대 반경 위치 R1,1부터 미리 설정된 제1상대 반경 위치 R1,k*까지 구간의 무지부 높이가 권회턴수 k*+1의 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1 까지 구간의 무지부 높이보다 작을 수 있다. 상대 반경 위치 R1,1부터 미리 설정된 제1상대 반경 위치 R1,k*까지 구간의 무지부 높이는 코어측 무지부(A)의 무지부 높이에 대응한다(도4 참조).
제1전극(40)의 권회 구조에서, 외주측에 분절편(61)이 포함되지 않은 권회턴이 존재하면, 상대 반경 위치 1은 분절편(61)을 포함하는 최외곽 권회턴의 상대 반경 위치에 대응할 수 있다.
바람직하게, 제1전극(40)의 권회 구조에 있어서, 상대 반경 위치 R1,1부터 제1상대 반경 위치 R1,k*까지 구간의 무지부는 그 높이가 절곡된 무지부들이 중첩되어 형성되는 절곡 표면영역(F)보다 낮을 수 있다.
바람직하게, 제1전극(40)의 권회 구조에 있어서, 상대 반경 위치 R1,1부터 제1상대 반경 위치 R1,k*까지의 구간에서 무지부는 전극 조립체(80)의 코어를 향해 절곡되지 않을 수 있다.
제1전극(40)과 유사하게, 제2전극(40')의 권회 구조에 있어서 상대 반경 위치 R2,1부터 미리 설정된 제1상대 반경 위치 R2,k*까지 구간의 무지부 높이가 권회턴 k*+1의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1 까지 구간의 무지부 높이보다 작을 수 있다.
제2전극(40')의 권회 구조에서, 외주측에 분절편(61)이 포함되지 않은 권회턴이 존재하면, 상대 반경 위치 1은 분절편(61)을 포함하는 최외곽 권회턴의 상대 반경 위치에 대응할 수 있다.
또한, 상대 반경 위치 R2,1부터 미리 설정된 제1상대 반경 위치 R2,k*까지의 구간에서 무지부는 그 높이가 절곡된 무지부들이 중첩되어 형성되는 절곡 표면영역(F)보다 낮을 수 있다.
바람직하게, 상대 반경 위치 R2,1부터 제1상대 반경 위치 R2,k*까지 구간의 무지부는 전극 조립체의 코어를 향해 절곡되지 않을 수 있다.
바람직하게, 제2전극(40')의 권회 구조에 있어서 상대 반경 위치 R2,1부터 제1 상대 반경 위치 R2,k*까지 구간의 무지부는 그 높이가 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1 까지 구간의 무지부 높이보다 작고 코어측을 향해 절곡되지 않을 수 있다.
제1전극(40)의 권회 구조에 있어서, 상대 반경 위치 R1,k*+1의 무지부 절곡 길이 fd1,k*+1는 상대 반경 위치 R1,1 내지 상대 반경 위치 R1,k*까지의 반경 반향 길이보다 짧을 수 있다. 따라서, 전극 조립체(80)의 코어(C)가 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1의 구간에 위치하는 무지부(43a)의 절곡부에 의해 차폐되지 않을 수 있다.
대안적으로, 전극 조립체(80)의 코어(C)는 그것의 반경(rc)을 기준으로 90% 이상이 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1의 구간에 위치하는 무지부(43a)의 절곡부에 의해 차폐되지 않을 수 있다. 즉, 코어(C)는 적어도 0 내지 0.9rc에 해당하는 반경 구간이 무지부(43a)의 절곡부에 의해 차폐되지 않을 수 있다.
바람직하게, 상대 반경 위치 R1,k*+1에 위치한 무지부(43a)의 절곡 길이 fd1,k*+1, 코어의 반경(rc) 및 상대 반경 위치 R1,k*+1이 코어(C)의 중심으로부터 이격된 거리(d1,k*+1)는 하기 수식 2를 만족할 수 있다.
<수식 2>
fd1,k*+1 + 0.9*rc ≤ d1,k*+1
바람직하게, 제2전극(40')의 권회 구조에 있어서 상대 반경 위치 R2,1 내지 제1상대 반경 위치 R2,k*까지 구간의 무지부는 그 높이가 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1 구간의 무지부 높이보다 작고 코어측을 향해 절곡되지 않을 수 있다.
제2전극(40')의 권취구조에 있어서, 상대 반경 위치 R2,k*+1에 위치하는 무지부의 절곡 길이 fd2,k*+1는 상대 반경 위치 R2,1 내지 제1상대 반경 위치 R2,k*까지의 길이보다 짧을 수 있다. 따라서, 전극 조립체(80)의 코어(C)가 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1의 구간에 위치하는 무지부의 절곡부에 의해 차폐되지 않을 수 있다.
대안적으로, 전극 조립체(80)의 코어(C)는 그것의 반경(rc)을 기준으로 90% 이상이 상대 반경 위치 R2,k*+1에 위치하는 무지부(43a')의 절곡부에 의해 차폐되지 않을 수 있다.
바람직하게, 상대 반경 위치 R2,k*+1에 위치한 무지부(43a')의 절곡 길이 fd2,k*+1, 코어의 반경(rc) 및 상대 반경 위치 R2,k*+1이 코어(C)의 중심으로부터 이격된 거리(d2,k*+1)는 하기 수식 3을 만족할 수 있다.
<수식 3>
fd2,k*+1 + 0.9*rc ≤ d2,k*+1
바람직하게, 제1전극(40)의 권회 구조에 있어서 미리 설정된 k@+1번째 권회턴의 제2상대 반경 위치 R1,k@+1부터 상대 반경 위치 1까지 제1전극(40)의 무지부는 복수의 분절편(61)으로 분할되어 있고, 복수의 분절편(61) 높이는 상대 반경 위치 R1,k@+1부터 상대 반경 위치 1까지 실질적으로 동일할 수 있다.
한편, 제1전극(40)의 권회 구조에 있어서 상대 반경 위치 R1,k*+1 내지 미리 설정된 k@번째 권회턴의 제2상대 반경 위치 R1,k@까지 구간의 무지부(43a)는 복수의 분절편(61)으로 분할되어 있고 그 높이가 외주 측을 향해 단계적으로 또는 점진적으로 증가할 수 있다. 따라서, 상대 반경 위치 R1,k*+1 부터 R1,k@까지의 구간은 높이 가변 구간에 해당한다.
예를 들어, 반경이 22mm인 제1전극(40)의 권회 구조에서, 분절편의 높이 가변 구간의 반경 방향 길이를 H1이라고 정의하고, 코어(C)를 제외한 제1전극(40)의 권회 구조의 반경(R-rc) 대비 H1의 비율을 높이 가변 구간 비율(H1/(R-rc))이라고 정의할 때, 높이 가변 구간 비율은 소수 첫째 자리에서 반올림하여 다음과 같이 계산될 수 있다.
예시1에서, R은 22mm, 코어 반경(rc)은 5mm, R-rc는 17mm일 수 있다. 분절편(61)의 높이는 반경 7mm 내지 15mm 구간에서 2mm 내지 10mm까지 8 단계로 변화할 수 있다. 반경 15mm 이후에는 분절편(61)의 높이는 10mm로 유지된다. H1은 8mm이므로 높이 가변 구간 비율은 47%(8mm/17mm)일 수 있다.
예시2에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 14mm 구간에서 2mm 내지 9mm까지 7 단계로 변화할 수 있다. 반경 14mm 이후에는 분절편(61)의 높이는 9mm로 유지된다. H1은 7mm이므로 높이 가변 구간 비율은 41%(7mm/17mm)일 수 있다.
예시3에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 13mm 구간에서 2mm 내지 8mm까지 6 단계로 단계적으로 변화할 수 있다. 반경 13mm 이후에는 분절편(61)의 높이는 8mm로 유지된다. H1은 6mm이므로 높이 가변 구간 비율은 35%(6mm/17mm)일 수 있다.
예시4에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 12mm 구간에서 2mm 내지 7mm까지 5 단계로 단계적으로 변화할 수 있다. 반경 12mm 이후에는 분절편(61)의 높이는 7mm로 유지된다. H1은 5mm이므로 높이 가변 구간 비율은 29%(5mm/17mm)일 수 있다.
예시5에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 11mm 구간에서 2mm 내지 6mm까지 4 단계로 단계적으로 변화할 수 있다. 반경 11mm 이후에는 분절편(61)의 높이는 6mm로 유지된다. H1은 4mm이므로 높이 가변 구간 비율은 24%(4mm/17mm)일 수 있다.
예시6에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 10mm 구간에서 2mm 내지 5mm까지 3 단계로 단계적으로 변화할 수 있다. 반경 10mm 이후에는 분절편(61)의 높이는 5mm로 유지된다. H1은 3mm이므로 높이 가변 구간 비율은 18%(3mm/17mm)일 수 있다.
예시7에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 9mm 구간에서 2mm 내지 4mm까지 2 단계로 단계적으로 변화할 수 있다. 반경 9mm 이후에는 분절편(61)의 높이는 4mm로 유지된다. H1은 2mm이므로 높이 가변 구간 비율은 12%(2mm/17mm)일 수 있다.
예시8에서, R 및 rc는 예시1과 동일하다. 분절편(61)의 높이는 반경 7mm 내지 8mm 구간에서 2mm 내지 3mm까지 1 단계로 단계적으로 변화할 수 있다. 반경 8mm 이후에는 분절편(61)의 높이는 3mm로 유지된다. H1은 1mm이므로 높이 가변 구간 비율은 6%(1mm/17mm)일 수 있다.
종합하면, R이 22mm, rc가 5mm일 때, 반경 7mm 내지 15mm 구간에서 분절편의 높이가 2mm 내지 10mm 범위에서 1단계 내지 제8단계 중 어느 하나의 단계로 변화할 때, 높이 가변 구간 비율은 6% 내지 47%일 수 있다.
높이 가변 구간 비율의 수치범위는 코어(C)의 반경(rc)의 크기에 따라 변할 수 있다. 계산 방식은 상기와 유사하므로 결과만 개시한다.
일 예에서, R이 22mm, rc가 4mm일 때, 반경 6mm 내지 14mm 구간에서 분절편의 높이가 2mm 내지 10mm 범위에서 1단계 내지 제8단계 중 어느 하나의 단계로 단계적으로 변화할 때, 높이 가변 구간 비율은 6% 내지 44%일 수 있다.
다른 예에서, R이 22mm, rc가 3mm일 때, 반경 5mm 내지 13mm 구간에서 분절편의 높이가 2mm 내지 10mm 범위에서 1단계 내지 제8단계 중 어느 하나로 단계적으로 변화할 때, 높이 가변 구간 비율은 5% 내지 42%일 수 있다.
또 다른 예에서, R이 22mm, rc가 2mm일 때, 반경 4mm 내지 12mm 구간에서 분절편의 높이가 2mm 내지 10mm 범위에서 1단계 내지 제8단계 중 어느 하나로 단계적으로 변화할 때, 높이 가변 구간 비율은 5% 내지 40%일 수 있다.
상기의 계산 예들로부터, 코어(C)의 반경(rc)가 2mm 내지 5mm의 범위에서 변할 때, 높이 가변 구간 비율은 5% 내지 47%이다. 전극 조립체(80)의 반경이 일정할 때, 높이 가변 구간 비율의 하한과 상한은 코어(C)의 반경(rc)이 감소할수록 그에 따라 감소한다.
한편, 높이 가변 구간 비율의 상한과 하한은, 반경 1mm 증가당 분절편(61)의 높이 변화 폭과 높이 변화 횟수에 의해 변할 수 있다.
일 예에서, 분절편(61)의 높이가 반경 1mm 증가당 0.2mm씩 변화할 때, 비율 높이 가변 구간 비율의 하한과 상한은 각각 1% 및 9%이다.
다른 예에서, 분절편(61)의 높이가 반경 1mm 증가당 1.2mm씩 변화할 때, 높이 가변 구간 비율의 하한과 상한은 각각 6% 및 56%이다.
상술한 예시들로부터 높이 가변 구간 비율은 1% 내지 56%인 것이 바람직하다. 분절편(61)의 높이 가변 구간 비율이 상기 수치범위를 충족하면, 무지부(40)의 적층수가 10 장 이상인 상대 반경 위치의 반경 방향 길이 비율이 분절편(61)을 포함하는 권회턴들의 반경 방향 길이(R1) 대비 적어도 30% 이상이 될 수 있다. 후술하겠지만, 이러한 구성은 집전체의 용접 강도와 저항 측면에서 유용한 효과를 제공한다.
다시 도4 및 도 7b를 참조하면, 제2전극(40')의 권회 구조에 있어서도 상대 반경 위치 R2,k*+1 내지 미리 설정된 k@번째 권회턴의 제2상대 반경 위치 R2,k@까지 구간의 무지부는 복수의 분절편(61)으로 분할되어 있고 그 높이가 외주 측을 향해 단계적으로 또는 점진적으로 증가할 수 있다. 따라서, 상대 반경 위치 R2,k*+1 부터 R2,k@까지의 구간은 높이 가변 구간에 해당한다.
제2전극(40')의 권회 구조에서, 높이 가변 구간의 반경 방향 길이를 H2라고 정의하고, 코어(C)를 제외한 제2전극(40')의 권회 구조의 반경(R-rc) 대비 H2의 비율을 높이 가변 구간 비율(H2/(R-rc))이라고 정의할 때, 높이 가변 구간 비율은 제1전극과 마찬가지로 1% 내지 56%인 것이 바람직하다.
무지부(43a')의 분절편(61)에 대한 높이 가변 구간 비율이 상기 수치범위를 충족하면, 무지부(40)의 적층수가 10 장 이상인 상대 반경 위치의 비율이 분절편(61)을 포함하는 권회턴들의 반경 방향 길이(R2) 대비 적어도 30% 이상이 될 수 있다.
제2전극(40')의 권회 구조에 있어서 k@+1번째 권회턴의 상대 반경 위치 R2,k@+1부터 상대 반경 위치 1까지 제2전극(40')의 무지부는 복수의 분절편(61)으로 분할되어 있고, 복수의 분절편(61) 높이는 상대 반경 위치 R2,k@+1부터 상대 반경 위치 1까지 실질적으로 동일할 수 있다.
바람직하게, 제1전극(40)의 권회 구조에 있어서, 코어측으로 절곡되는 무지부(43a)는 복수의 분절편(61)으로 분할되고, 복수의 분절편(61)의 권취 축 방향의 높이 및 권취 방향의 폭 중 적어도 하나는 개별적으로 또는 그룹별로 코어측으로부터 외주측으로 갈수록 점진적으로 또는 단계적으로 증가할 수 있다.
유사하게, 제2전극(40')의 권회 구조에 있어서, 코어측으로 절곡되는 무지부(43a')는 복수의 분절편(61)으로 분할되고, 복수의 분절편(61)의 권취 축 방향의 높이 및 권취 방향의 폭 중 적어도 하나는 개별적으로 또는 그룹별로 코어측으로부터 외주측으로 갈수록 점진적으로 또는 단계적으로 증가할 수 있다.
바람직하게, 무지부(43a, 43a')의 절곡 부분이 복수의 분절편(61)으로 분할될 때 복수의 분절편(61) 각각은, 권취 방향에서 1 내지 11mm의 폭(도 5의 D1) 조건; 권취 축 방향에서 2 내지 10mm의 높이(도 5의 D2) 조건; 및 권취 방향에서 0.05 내지 1mm의 이격 피치(D3) 조건 중에서 적어도 하나 이상의 조건을 충족할 수 있다.
바람직하게, 분절편(61)의 절단홈 저부(도 5의 D4로 지시된 부분)와 활물질층(42) 사이에 소정의 갭이 구비될 수 있다. 바람직하게, 갭은 0.2 내지 4mm일 수 있다.
도4를 참조하면, 무지부(43a, 43a')의 절곡 부분이 복수의 분절편(61)으로 분할될 때 복수의 분절편(61)은 코어측으로부터 외주측으로 가면서 복수의 분절편 그룹을 형성하며, 동일한 분절편 그룹에 속한 분절편들은 권취 방향의 폭, 권취 축 방향의 높이 및 권취 방향의 이격 피치 중 적어도 하나 이상이 서로 동일할 수 있다.
바람직하게, 복수의 분절편 그룹 중에서 적어도 일부는 전극 조립체(80)의 동일한 권회턴에 배치될 수 있다. 일 예에서, 각 그룹에 포함된 분절편들은 전극 조립체(80)의 권회 구조에서 적어도 하나 이상의 권회턴을 구성할 수 있다. 다른 예에서, 각 그룹에 포함된 분절편들은 전극 조립체(80)의 권회 구조에서 적어도 2개 이상의 권회턴을 구성할 수 있다.
도 9a는 4680의 폼 팩터를 가진 원통형 배터리에 포함되는 반경이 22mm인 전극 조립체에 있어서 복수의 분절편(61)으로 분할되어 있는 제1전극(40)의 무지부(43a)가 외주측으로부터 코어측으로 절곡되면서 절곡 표면영역(F)을 형성하고, 절곡 표면영역(F)의 일부는 반경 방향을 따라 무지부(43a)가 10장 이상으로 중첩되고, 전극 조립체(80)의 반경 방향을 따라 적층수 증가구간과 적층수 균일구간이 나타난 모습을 도시한 부분 단면도이다.
도 9a를 참조하면, 절곡 표면영역(F)에서 무지부(43a)의 적층수는 전극 조립체(80)의 외주로부터 코어측으로 갈수록 순차적으로 증가하다가 최대값에 도달되며, 최대값이 소정 반경 구간에서 유지되다가 코어 근처에서 1~2장 감소한다. 코어 근처의 반경 구간은 적층수 감소구간이라고 명명될 수 있다.
이하, 무지부(43a)의 적층수가 전극 조립체(80)의 외주로부터 코어측으로 가면서 최대값까지 순차적으로 증가하는 반경 구간을 적층수 증가구간이라고 정의하고, 무지부(43a)의 적층수가 최대값으로 유지되는 구간과 코어 근처의 나머지 구간을 합하여 적층수 균일구간이라고 정의한다. 적층수 균일구간은 무지부(43a)의 적층수가 최대값으로 유지되는 구간을 포함하므로, 절곡 표면영역(F)이 다른 부분보다 평탄하여 용접 최적 영역에 해당한다.
도 9a에 있어서, 무지부(43a)는 도 5에 도시된 것처럼 사다리꼴 모양의 분절편으로 분할되어 있으며, 무지부(43a)는 절단홈(63)의 저부(63a)를 기준으로 윗부분만을 도시한 것이다. 절단홈(63)의 단면에 대응되는 부분은 무지부(43a)가 도시되지 않았다.
분절편(61)들이 실제로 절곡되는 지점은 완전히 동일하지 않으며, 절단홈(63) 하단으로부터 소정 거리 이격되어 있다. 코어측으로 가면서 무지부(43a)의 중첩수가 늘어나면서 중첩에 대한 저항이 생기므로, 절단홈(63) 하단으로부터 소정 거리 이격된 지점에서 절곡을 진행하는 것이 바람직하다. 이격 거리는 2mm 이하, 바람직하게는 1mm 이하이다. 이격 거리가 존재하면, 반경 방향에서 분절편(61)들의 중첩이 보다 잘 이루어진다.
절곡 표면영역(F)은 서로 다른 권회턴에 위치한 분절편들이 전극 조립체(80)의 반경 방향으로 중첩되면서 형성된 것이다. 도 9a에 도시된 실시예에서, 분절편(61)들은 원주 방향으로 중첩되지 않았다. 즉, 도 6의 (a)와 같이 분절편(61)의 측변 사이에 갭이 존재한다. 갭의 존재 조건은 분절편의 폭, 높이, 이격 피치, 하부 내각 등을 조절하여 충족시킬 수 있다. 분절편들이 원주 방향으로 중첩될 때의 절곡 표면영역(F)에 관해서는 도 9b를 참조하여 후술하기로 한다.
본 실시예에서, 전극 조립체(80)의 코어의 반경(rc)은 4mm이다. 또한, 분절편의 높이는 3mm로부터 시작한다. 전극 조립체의 반경을 기준으로 4mm 내지 7mm까지는 무지부(43a)에 분절편이 존재하지 않는다. 즉, 전극 조립체의 총 반경 22mm 중에서 반경 7mm 내지 22mm까지의 구간에 분절편이 존재하며, 분절편(61)이 존재하는 반경 구간의 폭은 15mm이다. 만약, 코어의 반경(rc)을 기준으로 최대 10%가 분절편에 의해 가려진다면, 분절편의 배치가 시작되는 지점은 코어측으로 이동될 수 있다.
권회 구조에 있어서, 대략 반경 7mm 지점의 권회턴부터 3mm의 높이를 가진 분절편이 배치된다. 분절편의 높이는 권회 구조의 반경 7mm부터 코어측으로부터 외주측으로 가면서 반경 1mm 증가당 1mm씩 증가한다. 분절편의 높이가 증가하는 주기는 단위 반경(1mm)당 0.2mm 내지 1.2mm 범위에서 변경이 가능하다.
도 9a의 (a)는 분절편의 최대 높이가 8mm인 경우이다. 이 경우, 전극 조립체의 반경이 코어 중심으로부터 7mm가 되는 지점부터 분절편이 배치된다. 그래야만, 3mm의 높이를 가진 분절편이 코어측으로 절곡되었을 때 반경이 4mm 인 코어를 가리지 않는다. 분절편의 높이는, 반경이 7mm 내지 12mm까지 증가할 때 3mm에서 8mm까지 5단계로 증가한다. 또한, 분절편의 높이는 반경 12mm 내지 22mm까지 8mm로 유지된다. 이러한 실시예에서, 분절편의 높이 가변 구간은 반경 7mm 내지 12mm까지이며, 높이 가변 구간 비율은 28%(5/18, 소수 첫째 자리 반올림, 이하 동일)이다.
도 9a의 (b)는 분절편의 최대 높이가 7mm인 경우이다. 이 경우에도, 전극 조립체의 반경이 코어 중심으로부터 7mm가 되는 지점부터 분절편이 배치된다. 그래야만, 3mm의 높이를 가진 분절편이 코어측으로 절곡되었을 때 반경이 4mm 인 코어를 가리지 않는다. 분절편의 높이는 반경이 7mm 내지 11mm까지 증가할 때 3mm에서 7mm까지 4단계로 증가한다. 또한, 분절편의 높이는 반경 11mm 내지 22mm까지 7mm로 유지된다. 이러한 실시예에서, 분절편의 높이 가변 구간은 반경 7mm 내지 11mm까지이며, 높이 가변 구간 비율은 22%(4/18)이다.
도 9a의 (c)는 분절편의 최대 높이가 6mm인 경우이다. 이 경우에도, 전극 조립체의 반경이 코어 중심으로부터 7mm가 되는 지점부터 분절편이 배치된다. 그래야만, 3mm의 높이를 가진 분절편이 코어측으로 절곡되었을 때 반경이 4mm 인 코어를 가리지 않는다. 분절편의 높이는 반경이 7mm 내지 10mm까지 증가할 때 3mm에서 6mm까지 3단계로 증가한다. 또한, 분절편의 높이는 반경 10mm 내지 22mm까지 6mm로 유지된다. 이러한 실시예에서, 분절편의 높이 가변 구간은 반경 7mm 내지 10mm까지이며, 높이 가변 구간 비율은 17%(3/18)이다.
도 9a의 (a), (b) 및 (c)에 나타낸 실시예들에 있어서, 분절편의 높이 가변 구간은 반경 7mm부터 시작한다. 그리고, 높이 가변 구간의 비율은 17% 내지 28%이다. 이러한 비율 범위는 상술한 바람직한 범위 1% 내지 56%에 포함된다.
도 9a를 참조하면, 외주측으로부터 코어측으로 가면서 무지부(43a)의 적층수는 순차적으로 증가하며, 분절편의 최소 길이는 3mm로 동일하더라도 분절편의 최대 길이가 6mm, 7mm 및 8mm로 늘어날수록 적층수의 최대값이 12, 15 18로 증가하는 것을 알 수 있다. 또한, 절곡 표면영역(F)의 두께는 적층수에 따라 비례적으로 증가한다.
일 예로, 분절편의 최대 높이가 8mm일 때, 무지부(43a)의 적층수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 7mm 구간에서 18장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 8mm 구간에서는 무지부(43a)의 적층수가 18장 수준으로 균일하게 유지된다. 본 예에서, 적층수 균일구간은 적층수가 적어도 16 장 이상이며 반경 방향 폭은 8mm이다. 적층수 균일구간의 폭은 분절편을 포함하는 권회턴들의 반경 방향 길이(15mm) 대비 53%(8/15, 소수점 첫째자리 반올림하였으며, 이하 동일)이다.
다른 예로, 분절편의 최대 높이가 7mm일 때, 무지부(43a)의 적층수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 6mm 구간에서 15장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 9mm 구간에서는 무지부(43a)의 적층수가 15장 수준으로 균일하게 유지된다. 따라서, 적층수 균일구간의 반경 방향 폭은 9mm이며, 적층수 균일구간은 적층수가 적어도 13 장 이상이다. 적층수 균일구간의 폭은 분절편을 포함하는 권회턴들의 반경 방향 길이(15mm) 대비 60%(9/15)이다.
또 다른 예로, 분절편의 최대 높이가 5mm일 때, 무지부(43a)의 적층수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 5mm 구간에서 12장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 10mm 구간에서는 무지부(43a)의 적층수가 12장 수준으로 균일하게 유지된다. 따라서, 적층수 균일구간의 반경 방향 폭은 10mm이며 적층수 균일구간은 적층수가 적어도 11 장 이상이다. 적층수 균일구간의 폭은 분절편을 포함하는 권회턴들의 반경 방향 길이(15mm) 대비 67%(10/15)이다.
실시예에 따르면, 분절편의 최소 길이가 3mm이고, 분절편의 최대 길이가 6mm, 7mm 및 8mm일 때 적층수가 서서히 증가하는 적층수 증가구간의 길이는 각각 5mm, 6mm 및 7mm로 증가하고, 무지부(43a)의 적층수가 10장 이상인 적층수 균일구간의 비율은 53% 내지 67%임을 확인할 수 있다.
한편, 절곡 표면영역(F)의 두께는 무지부(43a)의 적층수에 비례하여 증가한다. 높이 가변 구간에서 분절편의 최소 높이와 최대 높이에 의존하여, 무지부(43a)의 적층수는 10까지 낮아질 수 있으므로 무지부(43a)의 적층수는 10 내지 18이다. 일 예에서, 무지부(43a)가 알루미늄이고 그 두께가 10um 내지 25um일 때, 절곡 표면영역(F)의 두께는 100um 내지 450um일 수 있다. 다른 예에서, 무지부(43a)가 구리이고 그 두께가 5um 내지 20um일 때, 절곡 표면영역(F)의 두께는 50um 내지 360um일 수 있다. 절곡 표면영역(F)의 두께가 상기 수치범위의 조건을 충족하면, 절곡 표면영역(F)에 집전체를 레이저를 이용하여 용접할 때, 절곡 표면영역(F)이 레이저의 에너지를 충분히 흡수한다. 그 결과, 절곡 표면영역(F)에 용접 비즈가 충분한 볼륨으로 형성되어 용접강도가 증가된다. 또한, 용접 부위가 레이저에 의해 천공되면서 절곡 표면영역(F)의 하부에 있는 분리막 등이 손상되는 것을 방지할 수 있다.
바람직하게, 집전체는 절곡 표면영역(F)에 용접될 수 있다. 집전체의 용접 영역은 적어도 일부가 반경 방향을 기준으로 적층수 균일구간과 중첩될 수 있다.
바람직하게, 전극 조립체의 반경 방향에서 집전체의 용접 영역의 50% 내지 100%가 적층수 균일구간과 중첩될 수 있다. 용접 영역의 중첩 비율이 증가할수록 용접 강도의 향상 측면 그리고 용접 비즈 볼륨의 증가 측면에서 바람직하다. 집전체의 용접 영역 중에서 적층수 균일구간과 중첩되지 않는 나머지 영역은 적층수 증가구간과 중첩될 수 있다.
한편, 도 6을 참조하여 설명한 것처럼, 무지부(43a)의 분절편(61)들이 절곡되어 절곡 표면영역(F)을 형성함에 있어서, 각 분절편 그룹에 포함된 분절편의 하부 내각이 수식 1의 조건을 만족하면 동일 권회턴에 위치한 인접 분절편(61)들의 측변이 교차하면서 원주 방향으로 서로 중첩될 수 있다. 이러한 경우, 전극 조립체의 반경 방향에서 무지부(43a)의 적층수가 더욱 증가될 수 있다.
도 9b는 분절편들이 원주 방향으로 중첩될 때 적층수 증가구간과 적층수 균일구간을 예시적으로 나타낸 절곡 표면영역(F)의 단면도이다.
도 9b를 참조하면, 외주측으로부터 코어측으로 가면서 무지부(43a)의 중첩 수는 순차적을 증가한다. 분절편의 높이 가변 구간은 도 9a의 실시예와 동일하게 반경 7mm 부터이다. 분절편의 높이는 3mm로부터 시작하여 반경 1mm 증가당 1mm씩 증가한다. 분절편 높이의 최대값이 6mm, 7mm, 8mm, 9mm 및 10mm로 늘어날수록 적층수 균일구간이 시작되는 반경 위치의 적층수가 18, 22, 26, 30 및 34로 증가한다. 분절편 높이의 최대값이 6mm, 7mm, 8mm인 동일 조건 하에서, 도 9a의 실시예보다 적층수가 6 내지 8장 더 많다. 이는 분절편들이 원주 방향으로 중첩되었기 때문이다.
구체적으로, 분절편 높이의 최대값이 10mm일 때, 무지부(43a)의 적층수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 9mm 구간(적층수 증가구간)에서 34장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 6mm 구간에서는 무지부(43a)의 적층수가 34장으로 유지되다가 코어 근처에서 적층수가 39장까지 더 늘어난다. 코어 근처에서 적층수가 더 늘어나는 것은 원주 방향으로의 분절편 중첩이 코어측으로 갈수록 더 심화되기 때문이다. 적층수가 더 증가하는 코어 근처의 반경 구간은 적층수 추가 증가구간이라고 정의될 수 있다. 본 예에서, 적층수 균일구간은 적층수가 적어도 34장 이상이며 반경 방향 폭은 6mm이다. 적층수 균일구간은 반경 7mm부터 시작하며 분절편이 포함된 권회턴들의 반경 방향 길이(15mm) 대비 40%(6/15, 소수점 첫째자리 반올림하였으며, 이하 동일)이다.
다른 예로, 분절편 높이의 최대값이 9mm일 때, 무지부(43a)의 적층수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 8mm 구간에서 30장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 7mm 구간에서는 무지부(43a)의 적층수가 30장으로 유지되다가 코어 근처에서 36장까지 더 늘어난다. 따라서, 적층수 균일구간의 반경 방향 폭은 7mm이며, 적층수 균일구간은 적층수가 적어도 30장 이상이다. 적층수 균일구간은 반경 7mm부터 시작하며 분절편이 포함된 권회턴들의 반경 방향 길이(15mm) 대비 47%(7/15)이다.
또 다른 예로, 분절편 높이의 최대값이 8mm일 때, 무지부(43a)의 적층수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 7mm 구간에서 26장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 8mm 구간에서는 무지부(43a)의 적층수가 26장으로 유지되다가 코어 근처에서 28장까지 더 늘어난다. 따라서, 적층수 균일구간의 반경 방향 폭은 8mm이며 적층수 균일구간은 적층수가 적어도 26 장 이상이다. 적층수 균일구간은 반경 7mm부터 시작하며 분절편이 포함된 권회턴들의 반경 방향 길이(15mm) 대비 53%(8/15)이다.
또 다른 예로, 분절편 높이의 최대값이 7mm일 때, 무지부(43a)의 중첩 수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 6mm 구간에서 22장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 9mm 구간에서는 무지부(43a)의 적층수가 22장으로 유지되다가 코어 근처에서 23장까지 더 늘어난다. 따라서, 적층수 균일구간의 반경 방향 폭은 9mm이며 적층수 균일구간은 적층수가 적어도 22 장 이상이다. 적층수 균일구간은 반경 7mm부터 시작되며 분절편이 포함된 권회턴들의 반경 방향 길이(15mm) 대비 60%(9/15)에 해당하는 구간이다.
또 다른 예로, 분절편 높이의 최대값이 6mm일 때, 무지부(43a)의 중첩 수는 전극 조립체(80)의 외주 표면으로부터 코어 측으로 반경 5mm 구간까지 18장까지 증가하고, 적층수의 증가가 멈추는 반경 지점부터 코어측으로 반경 10mm 구간에서는 무지부(43a)의 적층수가 18장으로 일정 구간 유지되다가 코어 근처에서 20장까지 더 늘어난다. 따라서, 적층수 균일구간의 반경 방향 폭은 10mm이며 적층수 균일구간은 적층수가 적어도 18 장 이상이다. 적층수 균일구간은 반경 7mm부터 시작하며 분절편이 포함된 권회턴들의 반경 방향 길이(15mm) 대비 67%(10/15)에 해당하는 구간이다.
도 9b에 나타낸 실시예에 따르면, 분절편 높이의 최소값이 3m이고, 분절편 높이의 최대값이 6mm, 7mm, 8mm, 9mm 및 10mm일 때 적층수가 서서히 증가하는 적층수 증가구간의 길이는 5mm, 6mm, 7mm, 8mm 및 9mm까지 증가한다. 그리고, 적층수가 10장 이상인 적층수 균일구간의 비율은 40% 내지 67%임을 확인할 수 있다.
한편, 도 9b의 실시예에서, 절곡 표면영역(F)의 두께는 무지부(43a)의 적층수에 비례하여 증가한다. 무지부(43a)의 적층수는 18 내지 39이다. 일 예에서, 무지부(43a)가 알루미늄이고 그 두께가 10um 내지 25um일 때, 절곡 표면영역(F)의 두께는 180um 내지 975um일 수 있다. 다른 예에서, 무지부(43a)가 구리이고 그 두께가 5um 내지 20um일 때, 절곡 표면영역(F)의 두께는 90um 내지 780um일 수 있다. 절곡 표면영역(F)의 두께가 상기 수치범위의 조건을 충족하면, 절곡 표면영역(F)에 집전체를 레이저를 이용하여 용접할 때, 절곡 표면영역(F)이 레이저의 에너지를 충분히 흡수한다. 그 결과, 절곡 표면영역(F)에 용접 비즈가 충분한 볼륨으로 형성되어 용접강도가 증가된다. 또한, 용접 부위가 레이저에 의해 천공되면서 절곡 표면영역(F)의 하부에 있는 분리막 등이 손상되는 것을 방지할 수 있다.
바람직하게, 집전체의 용접 영역은 적어도 일부가 반경 방향을 기준으로 적층수 균일구간과 중첩될 수 있다. 바람직하게, 전극 집전체(80)의 반경 방향에서 집전체의 용접 영역의 50% 내지 100%가 적층수 균일구간과 중첩될 수 있다. 용접 영역의 중첩 비율이 증가할수록 용접 강도의 측면에서 바람직하다. 집전체의 용접 영역 중에서 적층수 균일구간과 중첩되지 않는 영역은 적층수 증가구간과 중첩될 수 있다.
도 9a 및 도 9b에 나타낸 실시예에 있어서, 무지부(43a)의 적층수 균일구간은 전극 조립체의 반경(R), 코어의 반경(rc), 분절편의 높이 가변 구간에서 분절편 높이의 최소값과 최대값, 그리고 전극 조립체의 반경 방향에서 분절편의 높이 증가 폭에 의해 증감될 수 있다는 것을 당업자는 자명하게 이해할 것이다.
적층수 균일구간의 비율은 코어(rc)의 반경에 반비례한다. 또한, 적층수 균일구간의 비율은, 분절편의 최소 높이가 동일할 때, 높이 가변 구간의 폭이 작을수록 증가한다. 또한, 적층수 균일구간의 비율은, 분절편의 최대 높이가 동일할 때, 높이 가변 구간의 폭이 작을수록 증가한다.
일 예에서, 전극 조립체의 직경(R)이 22mm, 코어의 반경(rc)이 2mm, 분절편의 높이 가변 구간에서 분절편의 높이가 반경 9mm부터 12mm까지 7mm부터 10mm까지 변할 때 적층수 균일구간의 비율은 30% 수준까지 감소할 수 있다.
다른 예에서, 전극 조립체의 직경(R)이 22mm, 코어의 반경(rc)이 2mm, 분절편의 높이 가변 구간에서 분절편의 높이가 반경 5mm부터 6mm까지 3mm부터 4mm까지 변할 때 적층수 균일구간의 비율은 85% 수준까지 증가할 수 있다.
따라서, 적층수 균일구간의 반경 방향 길이는 분절편이 포함된 권회턴들의 반경 방향 길이 대비 30% 이상이고, 바람직하게는 30% 내지 85%일 수 있다.
한편, 도 9a 및 도 9b를 참조하여 설명했듯이, 분절편의 높이 균일 구간에서의 분절편의 최대 높이가 6mm 내지 10mm일 때, 분절편의 최소 높이와 반경 방향으로의 분절편 높이 증가량을 변화시킴으로써 적층수 균일구간에서 무지부(43a)의 적층수는 10 내지 39의 범위로 조절될 수 있다. 절곡 표면영역(F)의 적층수 균일구간은 높이 균일 구간에 포함된 분절편들이 절곡되어 형성된 구간을 포함한다. 절곡 표면영역(F)의 두께는 무지부(43a)를 구성하는 재질의 두께에 따라 달라진다. 무지부(43a)가 알루미늄으로 이루어지고 그 두께가 10um 내지 25um일 때 절곡 표면영역(F)의 무지부 적층 두께는 100um(0.1mm) 내지 975um(0.975mm)이다. 이 경우, 높이 균일 구간에 포함되어 있는 높이 6mm 내지 10mm의 분절편들이 절곡되어 형성된 절곡 표면영역(F)의 부분에서 분절편의 높이 대비 절곡 표면영역(F)의 무지부 적층 두께 비율은 1.0%(0.1mm/10mm) 내지 16.3%(0.975mm/6mm)이다. 다른 예에서, 무지부(43a)가 구리로 이루어지고 그 두께가 5um 내지 20um일 때 절곡 표면영역(F)의 무지부 적층 두께는 50um(0.05mm) 내지 780um(0.780mm)이다. 이 경우, 높이 균일 구간에 포함되어 있는 높이 6mm 내지 10mm의 분절편들이 절곡되어 형성된 절곡 표면영역(F)의 부분에서 분절편의 높이 대비 절곡 표면영역(F)의 무지부 적층 두께 비율은 0.5%(0.05mm/10mm) 내지 13.0%(0.780mm/6mm)이다. 높이 균일 구간에 포함되어 있는 분절편의 높이 대비 절곡 표면영역(F)의 두께 비율이 상기 수치범위를 만족할 때, 해당 절곡 표면영역(F)에 집전체를 용접했을 때 바람직한 용접 강도를 달성할 수 있다.
본 발명의 실시예(변형예)에 따른 다양한 전극 조립체 구조는 젤리롤 타입의 원통형 배터리 또는 당업계에 공지된 어떠한 배터리에도 적용될 수 있다.
바람직하게, 원통형 배터리는, 예를 들어 폼 팩터의 비(원통형 배터리의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Φ)의 비로 정의됨)가 대략 0.4 보다 큰 원통형 배터리일 수 있다.
여기서, 폼 팩터란, 원통형 배터리의 직경 및 높이를 나타내는 값을 의미한다. 본 발명의 일 실시예에 따른 원통형 배터리의 폼 팩터는, 예를 들어 46110, 4875, 48110, 4880, 4680 등일 수 있다. 폼 팩터를 나타내는 수치에서, 앞의 숫자 2개는 배터리의 직경을 나타내고, 나머지 숫자는 배터리의 높이를 나타낸다.
폼 팩터의 비가 0.4를 초과하는 원통형 배터리에 탭-리스 구조를 가진 전극 조립체를 적용할 경우, 무지부를 절곡할 때 반경 방향으로 가해지는 응력이 커서 무지부가 찢어지기 쉽다. 또한, 무지부의 절곡 표면영역에 집전체를 용접할 때 용접 강도를 충분히 확보하고 저항을 낮추기 위해서는 무지부의 적층수를 충분히 증가시켜야 한다. 이러한 요구 조건은 본 발명의 실시예들(변형예들)에 따른 전극판과 전극 조립체에 의해 달성될 수 있다.
본 발명의 일 실시예에 따른 배터리는, 대략 원기둥 형태로서, 그 직경이 대략 46mm이고, 그 높이는 대략 110mm이고, 폼 팩터의 비는 0.418인 원통형 배터리일 수 있다.
다른 실시예에 따른 배터리는, 대략 원기둥 형태로서, 그 직경이 대략 48mm이고, 그 높이는 대략 75mm이고, 폼 팩터의 비는 0.640인 원통형 배터리일 수 있다.
또 다른 실시예에 따른 배터리는, 대략 원기둥 형태로서, 그 직경이 대략 48mm이고, 그 높이는 대략 110mm이고, 폼 팩터의 비는 0.436인 원통형 배터리일 수 있다.
또 다른 실시예에 따른 배터리는, 대략 원기둥 형태로서, 그 직경이 대략 48mm이고, 그 높이는 대략 80mm이고, 폼 팩터의 비는 0.600인 원통형 배터리일 수 있다.
또 다른 실시예에 따른 배터리는, 대략 원기둥 형태로서, 그 직경이 대략 46mm이고, 그 높이는 대략 80mm이고, 폼 팩터의 비는 0.575인 원통형 배터리일 수 있다.
종래에는, 폼 팩터의 비가 대략 0.4 이하인 배터리들이 이용되었다. 즉, 종래에는, 예를 들어 1865 배터리, 2170 배터리 등이 이용되었다. 1865 배터리의 경우, 그 직경이 대략 18mm이고, 그 높이는 대략 65mm이고, 폼 팩터의 비는 0.277이다. 21700 배터리의 경우, 그 직경이 대략 21mm이고, 그 높이는 대략 70mm이고, 폼 팩터의 비는 0.300이다.
이하, 본 발명의 실시예에 따른 원통형 배터리에 대해 상세히 설명하기로 한다.
도 10은 본 발명의 일 실시예에 따른 원통형 배터리(190)을 Y축 방향을 따라 자른 단면도이다.
도 10을 참조하면, 본 발명의 일 실시예에 따른 원통형 배터리(190)은 제1전극, 분리막 및 제2전극을 포함하는 전극 조립체(110), 전극 조립체(110)를 수납하는 전지 하우징(142) 및 전지 하우징(142)의 개방단부를 밀봉하는 밀봉체(143)를 포함한다.
전지 하우징(142)은, 상방에 개구부가 형성된 원통형의 용기이다. 전지 하우징(142)은 알루미늄이나 스틸과 같은 도전성을 갖는 금속 재질로 이루어진다. 전지 하우징(142)은 상단 개구부를 통해 내측 공간에 전극 조립체(110)를 수용하며 전해질도 함께 수용한다.
전해질은 A+B--와 같은 구조를 갖는 염일 수 있다. 여기서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함한다. 그리고 B-는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나 이상의 음이온을 포함한다.
전해질은 또한 유기 용매에 용해시켜 사용할 수 있다. 유기 용매로는, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylenecarbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드 (dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄 (dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 또는 이들의 혼합물이 사용될 수 있다.
전극 조립체(110)는, 젤리롤 형상 또는 당업계에 공지된 형상이라면 어떠한 것이라도 가질 수 있다. 전극 조립체(110)는, 도 2에 도시된 바와 같이, 하부 분리막, 제1전극, 상부 분리막 및 제2전극을 순차적으로 적어도 1회 적층하여 형성된 적층체를 권취 중심(C)을 기준으로 하여 권취시킴으로써 제조될 수 있다.
제1전극과 제2전극은 극성이 다르다. 즉 하나가 양의 극성을 띠면 다른 하나는 음의 극성을 띤다. 제1전극과 제2전극 중 적어도 하나는 상술한 실시예들(변형예들)에 따른 전극 구조를 가질 수 있다. 또한, 제1전극과 제2전극 중 다른 하나는 종래의 전극 구조 또는 실시예들(변형예들)에 따른 전극 구조를 가질 수 있다.
전극 조립체(110)의 상부와 하부에는 각각 제1전극의 무지부(146a)와 제2전극의 무지부(146b)가 돌출된다.
밀봉체(143)는 캡(143a), 캡(143a)와 전지 하우징(142) 사이에 기밀성을 제공하며 절연성을 가진 제1가스켓(143b) 및 상기 캡(143a)와 전기적으로 및 기계적으로 결합된 연결 플레이트(143c)를 포함할 수 있다.
캡(143a)는 전도성을 갖는 금속 재질로 이루어지는 부품이며, 전지 하우징(142)의 상단 개구부를 커버한다. 캡(143a)는, 제1전극의 무지부(146a)와 전기적으로 연결되며, 전지 하우징(142)과는 제1가스켓(143b)을 통해 전기적으로 절연된다. 따라서 캡(143a)는, 원통형 배터리(140)의 제1전극 단자로서 기능할 수 있다.
캡(143a)는 전지 하우징(142)에 형성된 비딩부(147) 상에 안착되며, 크림핑부(148)에 의해 고정된다. 캡(143a)와 크림핑부(148) 사이에는, 전지 하우징(142)의 기밀성을 확보하고 전지 하우징(142)과 캡(143a) 사이의 전기적 절연을 위해 제1가스켓(143b)이 개재될 수 있다. 캡(143a)는 그 중심부로부터 상방으로 돌출 형성된 돌출부(143d)를 구비할 수 있다.
전지 하우징(142)은 제2전극의 무지부(146b)와 전기적으로 연결된다. 따라서 전지 하우징(142)은 제2전극과 동일한 극성을 갖는다. 만약, 제2전극이 음의 극성을 가지면, 전지 하우징(142) 또한 음의 극성을 가진다.
전지 하우징(142)은 상단에 비딩부(147) 및 크림핑부(148)를 구비한다. 비딩부(147)는 전지 하우징(142)의 외주면 둘레를 압입하여 형성한다. 비딩부(147)는 전지 하우징(142)의 내부에 수용된 전극 조립체(110)가 전지 하우징(142)의 상단 개구부를 통해 빠져나오지 못하도록 하며, 밀봉체(143)가 안착되는 지지부로서 기능할 수 있다.
크림핑부(148)는 비딩부(147)의 상부에 형성된다. 크림핑부(148)는, 비딩부(147) 상에 배치되는 캡(143a)의 외주면, 그리고 캡(143a)의 상면 일부를 감싸도록 연장 및 절곡된 형태를 갖는다.
원통형 배터리(140)은 제1집전체(144) 및/또는 제2집전체(145) 및/또는 인슐레이터(146)를 더 포함할 수 있다.
제1집전체(144)는 플레이트 형상을 가지며 전극 조립체(110)의 상부에 결합된다. 제1집전체(144)는 알루미늄, 구리, 니켈 등과 같은 도전성을 갖는 금속 재질로 이루어지며 제1전극의 무지부(146a)가 절곡되면서 형성된 절곡 표면영역(F1)에 전기적으로 연결된다.
제1집전체(144)에는 리드(149)가 연결될 수 있다. 리드(149)는 전극 조립체(110)의 상방으로 연장되어 연결 플레이트(143c)에 결합되거나 캡(143a)의 하면에 직접 결합될 수 있다. 리드(149)와 다른 부품의 결합은 용접을 통해 이루어질 수 있다.
바람직하게, 제1집전체(144)는 리드(149)와 일체로 형성될 수 있다. 이 경우, 리드(149)는 제1집전체(144)의 중심부로부터 외측으로 연장된 길다란 플레이트 형상을 가질 수 있다.
무지부(146a)의 절곡 표면영역(F1)과 제1집전체(144) 간의 결합은 예를 들어 레이저 용접에 의해 이루어질 수 있다. 레이저 용접은, 집전체 모재를 부분적으로 용융시키는 방식으로 이루어질 수 있다. 레이저 용접은 저항 용접, 초음파 용접 등으로 대체 가능하다.
바람직하게, 무지부(146a)는 복수의 분절편으로 분할되어 있으며, 절곡 표면영역(F1)은 복수의 분절편이 코어(C) 측으로 절곡되면서 형성된 것이다. 절곡 표면영역(F1)은 무지부(146a)의 적층수가 10장 이상인 반경 방향 길이가, 분절편이 포함된 권회턴들의 반경 방향 길이 대비 30% 이상, 보다 바람직하게는 30% 내지 85%일 수 있다.
무지부(146a)의 절곡 표면영역(F1)과 제1집전체(144) 사이의 용접영역은 절곡 표면영역(F1)의 적층수 균일구간(W1)과 적어도 50% 이상 중첩될 수 있고, 중첩 비율이 높을수록 더욱 바람직하다.
무지부(146a)의 절곡 표면영역(F1)과 제1집전체(144) 사이의 용접이 레이저로 이루어질 때, 용접 강도는 바람직하게, 2kgf/cm2 이상, 더욱 바람직하게는 4kgf/cm2이상일 수 있다. 용접 강도 상한은 레이저 용접 장비의 사양에 의해 결정될 수 있다. 일 예에서, 용접 강도는 8kgf/cm2 이하, 또는 6kgf/cm2 이하일 수 있다. 용접 강도의 구현을 위한 레이저 출력은 레이저 장비에 따라 다르다. 일 예시로, 레이저 출력은 250W 내지 320W일 수 있다. 다른 예로서, 레이저 출력은 레이저 용접 장비의 최대 출력 사양 대비 40% 내지 100% 범위에서 적절하게 조절될 수 있다.
용접 강도가 상기 수치범위를 충족할 경우, 권취 축 방향 및/또는 반경 방향을 따라 전극 조립체(110)에 심한 진동이 인가되더라도 용접 계면의 물성이 저하되지 않으며, 용접 비즈의 볼륨이 충분하여 용접 계면의 저항도 감소시킬 수 있다.
전극 조립체(110)의 하면에는 플레이트 형상을 가진 제2집전체(145)가 결합될 수 있다. 제2집전체(145)의 일 면은 제2전극의 무지부(146b)가 절곡되면서 형성된 절곡 표면영역(F2)에 용접에 의해 결합되며, 반대쪽 면은 전지 하우징(142)의 내측 바닥 면 상에 용접에 의해 결합될 수 있다.
바람직하게, 무지부(146b)는 복수의 분절편으로 분할되어 있으며, 절곡 표면영역(F2)은 복수의 분절편이 코어(C) 측으로 절곡되면서 형성된 것이다. 절곡 표면영역(F2)은 무지부(146b)의 적층수가 10장 이상인 반경 방향 길이가, 분절편이 포함된 권회턴들의 반경 방향 길이 대비 30% 이상, 보다 바람직하게는 30% 내지 85%일 수 있다.
제2집전체(145)와 제2전극의 무지부(146b) 사이의 결합 구조는 제1집전체(144)와 제1전극의 무지부(146a) 사이의 결합 구조와 실질적으로 동일할 수 있다.
무지부(146b)의 절곡 표면영역(F2)과 제2집전체(145) 사이의 용접영역은 적층수 균일구간(W2)과 적어도 50% 이상 중첩될 수 있고, 중첩 비율이 높을수록 더욱 바람직하다.
무지부(146b)의 절곡 표면영역(F2)과 제2집전체(145) 사이의 용접이 레이저로 이루어질 때, 용접 강도는 바람직하게, 2kgf/cm2 이상, 더욱 바람직하게는 4kgf/cm2이상일 수 있다. 용접 강도 상한은 레이저 용접 장비의 사양에 의해 결정될 수 있다. 일 예에서, 용접 강도는 8kgf/cm2 이하, 또는 6kgf/cm2 이하일 수 있다. 용접 강도의 구현을 위한 레이저 출력은 레이저 장비에 따라 다르다. 일 예시로, 레이저 출력은 250W 내지 320W일 수 있다. 다른 예로서, 레이저 출력은 레이저 용접 장비의 최대 출력 사양 대비 40% 내지 100% 범위에서 적절하게 조절될 수 있다.
용접 강도가 상기 수치범위를 충족할 경우, 권취 축 방향 및/또는 반경 방향을 따라 전극 조립체(110)에 심한 진동이 인가되더라도 용접 계면의 물성이 저하되지 않으며, 용접 비즈의 볼륨이 충분하여 용접 계면의 저항도 감소시킬 수 있다.
인슐레이터(146)는 제1집전체(144)를 커버할 수 있다. 인슐레이터(146)는 제1집전체(144)의 상면에서 제1집전체(144)를 커버함으로써, 제1집전체(144)와 전지 하우징(142)의 내주면 사이의 직접 접촉을 방지할 수 있다.
인슐레이터(146)는, 제1집전체(144)로부터 상방으로 연장되는 리드(149)가 인출될 수 있도록, 리드 홀(151)을 구비한다. 리드(149)는 리드 홀(151)을 통해 상방으로 인출되어 연결 플레이트(143c)의 하면 또는 캡(143a)의 하면에 결합된다.
인슐레이터(146)의 가장자리 둘레 영역은, 제1집전체(144)와 비딩부(147) 사이에 개재되어, 전극 조립체(110) 및 제1집전체(144)의 결합체를 고정시킬 수 있다. 이에 따라, 전극 조립체(110) 및 제1집전체(144)의 결합체는, 배터리(140)의 높이 방향의 이동이 제한되어 배터리(140)의 조립 안정성이 향상될 수 있다.
인슐레이터(146)는 절연성이 있는 고분자 수지로 이루어질 수 있다. 일 예에서, 인슐레이터(146)는 폴리에틸렌, 폴리프로필렌, 폴리이미드 또는 폴리부틸렌테레프탈레이트로 이루어질 수 있다.
전지 하우징(142)은 그 하면에 형성된 벤팅부(152)를 더 구비할 수 있다. 벤팅부(152)는 전지 하우징(142)의 하면 중 주변 영역과 비교하여 더 얇은 두께를 갖는 영역에 해당한다. 벤팅부(152)는, 주변 영역과 비교하여 구조적으로 취약하다. 따라서, 원통형 배터리(190)에 이상이 발생하여 내부 압력이 일정 수준 이상으로 증가하면, 벤팅부(152)가 파열되어 전지 하우징(142)의 내부에 생성된 가스가 외부로 배출될 수 있다.
벤팅부(152)가 전지 하우징(142)의 하면에 원을 그리며 연속적으로 또는 불연속적으로 형성될 수 있다. 변형 예에서, 벤팅부(152)는 직선 패턴 또는 그 밖의 다른 패턴으로 형성될 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 원통형 배터리(200)을 Y 축을 따라 자른 단면도이다.
도 11을 참조하면, 원통형 배터리(200)은 도 10에 도시된 원통형 배터리(190)과 비교하여 전극 조립체의 구조는 실질적으로 동일하고, 전극 조립체를 제외한 나머지 구조가 변경된 점에서 차이가 있다.
구체적으로, 원통형 배터리(200)은 단자(172)가 관통 설치된 전지 하우징(171)을 포함한다. 단자(172)는 전지 하우징(171)의 폐쇄면(도면의 상부면)에 설치된다. 단자(172)는 절연성이 있는 제2가스켓(173)이 개재된 상태에서 전지 하우징(171)의 관통 홀에 리벳팅된다. 단자(172)는 중력 방향과 반대 방향을 향해 외부로 노출된다.
단자(172)는, 단자 노출부(172a) 및 단자 삽입부(172b)를 포함한다. 단자 노출부(172a)는, 전지 하우징(171)의 폐쇄면의 외측으로 노출된다. 단자 노출부(172a)는, 전지 하우징(171)의 폐쇄면의 대략 중심부에 위치할 수 있다. 단자 노출부(172a)의 최대 지름은 전지 하우징(171)에 형성된 관통 홀의 최대 지름보다 더 크게 형성될 수 있다. 단자 삽입부(172b)는, 전지 하우징(171)의 폐쇄면의 대략 중심부를 관통하여 제1전극의 무지부(146a)와 전기적으로 연결될 수 있다. 단자 삽입부(172b)는, 전지 하우징(171)의 내측 면 상에 리벳(rivet) 결합될 수 있다. 즉, 단자 삽입부(172b)의 하부 가장자리는, 전지 하우징(171)의 내측 면을 향해 휘어진 형태를 가질 수 있다. 단자 삽입부(172b)의 단부의 최대 지름은 전지 하우징(171)의 관통 홀의 최대 지름보다 더 클 수 있다.
단자 삽입부(172b)의 하단면은 실질적으로 평평하며 제1전극의 무지부(146a)에 연결된 제1집전체(144)의 중앙부에 용접될 수 있다. 제1집전체(144)와 전지 하우징(171)의 내측면 사이에는 절연물질로 이루어진 인슐레이터(174)가 개재될 수 있다. 인슐레이터(174)는 제1집전체(144)의 상부와 전극 조립체(110)의 상단 가장자리 부분을 커버한다. 이로써, 전극 조립체(110)의 외주측에 노출된 무지부(146a)가 다른 극성을 가진 전지 하우징(171)의 내측면과 접촉하여 단락을 일으키는 것을 방지할 수 있다.
인슐레이터(174)는 전지 하우징(171)의 폐쇄부 내측면과 접촉하고, 제1집전체(144)의 상부면과 접촉한다. 이를 위해, 인슐레이터(174)는 전지 하우징(171)의 폐쇄부 내측면과 제1집전체(144)의 상부면 사이의 이격 거리에 대응되는 두께 또는 이격 거리보다 약간(slightly) 큰 두께를 가진다.
바람직하게, 제1집전체(144)는 무지부(146a)의 절곡 표면영역(F1)에 레이저 용접될 수 있다. 이 때, 용접은 무지부(146a)의 절곡 표면영역(F1)에 있어서 무지부(146a)의 적층수가 10장 이상인 적층수 균일구간을 포함하는 영역에서 이루어진다.
무지부(146a)의 적층수가 10장 이상인 적층수 균일구간의 반경 방향 길이는 분절편이 포함된 권회턴들의 반경 방향 길이 대비 30% 이상, 보다 바람직하게는 30% 내지 85%일 수 있다.
무지부(146a)의 절곡 표면영역(F1)과 제1집전체(144) 사이의 용접영역은 적층수 균일구간(W1)과 적어도 50% 이상 중첩될 수 있고, 중첩 비율이 높을수록 더욱 바람직하다.
무지부(146a)의 절곡 표면영역(F1)과 제1집전체(144) 사이의 용접이 레이저로 이루어질 때, 용접 강도는 바람직하게, 2kgf/cm2 이상, 더욱 바람직하게는 4kgf/cm2이상일 수 있다. 용접 강도 상한은 레이저 용접 장비의 사양에 의해 결정될 수 있다. 일 예에서, 용접 강도는 8kgf/cm2 이하, 또는 6kgf/cm2 이하일 수 있다. 용접 강도의 구현을 위한 레이저 출력은 레이저 장비에 따라 다르다. 일 예시로, 레이저 출력은 250W 내지 320W일 수 있다. 다른 예로서, 레이저 출력은 레이저 용접 장비의 최대 출력 사양 대비 40% 내지 100% 범위에서 적절하게 조절될 수 있다.
용접 강도가 상기 수치범위를 충족할 경우, 권취 축 방향 및/또는 반경 방향을 따라 전극 조립체(110)에 심한 진동이 인가되더라도 용접 계면의 물성이 저하되지 않으며, 용접 비즈의 볼륨이 충분하여 용접 계면의 저항도 감소시킬 수 있다.
제2가스켓(173)은 전지 하우징(171)과 단자(172) 사이에 개재되어 서로 반대 극성을 갖는 전지 하우징(171)과 단자(172)가 전기적으로 서로 접촉되는 것을 방지한다. 이로써 대략 플랫한 형상을 갖는 전지 하우징(171)의 상면이 원통형 배터리(200)의 제2전극 단자로서 기능할 수 있다.
제2가스켓(173)은, 가스켓 노출부(173a) 및 가스켓 삽입부(173b)를 포함한다. 가스켓 노출부(173a)는 단자(172)의 단자 노출부(172a)와 전지 하우징(171) 사이에 개재된다. 가스켓 삽입부(173b)는 단자(172)의 단자 삽입부(172b)와 전지 하우징(171) 사이에 개재된다. 가스켓 삽입부(173b)는, 단자 삽입부(172b)의 리벳팅(reveting) 시에 함께 변형되어 전지 하우징(171)의 내측 면에 밀착될 수 있다. 제2가스켓(173)은, 예를 들어 절연성을 갖는 고분자 수지로 이루어질 수 있다.
제2가스켓(173)의 가스켓 노출부(173a)는, 단자(172)의 단자 노출부(172a)의 외주면을 커버하도록 연장된 형태를 가질 수 있다. 제2가스켓(173)이 단자(172)의 외주면을 커버하는 경우 버스바 등의 전기적 연결 부품을 전지 하우징(171)의 상면 및/또는 단자(172)에 결합시키는 과정에서 단락이 발생되는 것을 방지할 수 있다. 도면에 도시되어 있지는 않으나, 가스켓 노출부(173a)는, 단자 노출부(172a)의 외주면뿐만 아니라 상면의 일부도 함께 커버하도록 연장된 형태를 가질 수 있다.
제2가스켓(173)이 고분자 수지로 이루어지는 경우에 있어서, 제2가스켓(173)은 열 융착에 의해 전지 하우징(171) 및 단자(172)와 결합될 수 있다. 이 경우, 제2가스켓(173)과 단자(172)의 결합 계면 및 제2가스켓(173)과 전지 하우징(171)의 결합 계면에서의 기밀성이 강화될 수 있다. 한편, 제2가스켓(173)의 가스켓 노출부(173a)가 단자 노출부(172a)의 상면까지 연장된 형태를 갖는 경우에 있어서, 단자(172)는 인서트 사출에 의해 제2가스켓(173)과 일체로 결합될 수 있다.
전지 하우징(171)의 상면 중에서 단자(172) 및 제2가스켓(173)이 차지하는 영역을 제외한 나머지 영역(175)이 단자(172)와 반대 극성을 갖는 제2전극 단자에 해당한다.
제2집전체(176)는, 전극 조립체(110)의 하부에 결합된다. 제2집전체(176)는 알루미늄, 스틸, 구리, 니켈 등의 도전성을 갖는 금속 재질로 이루어지며 제2전극의 무지부(146b)와 전기적으로 연결된다.
바람직하게, 제2집전체(176)는, 전지 하우징(171)과 전기적으로 연결된다. 이를 위해, 제2집전체(176)는 가장 자리 부분의 적어도 일부가 전지 하우징(171)의 내측 면과 제1가스켓(178b) 사이에 개재되어 고정될 수 있다.
일 예에서, 제2집전체(176)의 가장 자리 부분의 적어도 일부는 전지 하우징(171) 하단에 형성된 비딩부(180)의 하단면에 지지된 상태에서 용접에 의해 비딩부(17)에 고정될 수 있다. 변형예에서, 제2집전체(176)의 가장 자리 부분의 적어도 일부는 전지 하우징(171)의 내벽 면에 직접적으로 용접될 수 있다.
바람직하게, 제2집전체(176)와 무지부(146b)의 절곡 표면영역(F2)은 용접, 예컨대 레이저 용접에 의해 결합될 수 있다. 이 때, 용접은 무지부(146b)의 절곡 표면영역(F2)에 있어서 무지부(146b)의 적층수가 10장 이상인 적층수 균일구간을 포함하는 영역에서 이루어진다.
무지부(146b)의 적층수가 10장 이상인 반경 방향 길이는 분절편이 포함된 권회턴들의 반경 방향 길이 대비 30% 이상, 보다 바람직하게는 30% 내지 85%일 수 있다.
무지부(146b)의 절곡 표면영역(F2)과 제2집전체(176) 사이의 용접영역은 적층수 균일구간(W2)과 적어도 50% 이상 중첩될 수 있고, 중첩 비율이 높을수록 더욱 바람직하다.
무지부(146b)의 절곡 표면영역(F2)과 제2집전체(176) 사이의 용접이 레이저로 이루어질 때, 용접 강도는 바람직하게, 2kgf/cm2 이상, 더욱 바람직하게는 4kgf/cm2이상일 수 있다.
용접 강도가 상기 수치범위를 충족할 경우, 권취 축 방향 및/또는 반경 방향을 따라 전극 조립체(110)에 심한 진동이 인가되더라도 용접 계면의 물성이 저하되지 않으며, 용접 비즈의 볼륨이 충분하여 용접 계면의 저항도 감소시킬 수 있다.
전지 하우징(171)의 하부 개방단을 밀봉하는 밀봉체(178)는 캡(178a)와 제1가스켓(178b)을 포함한다. 제1가스켓(178b)은 캡(178a)와 전지 하우징(171)을 전기적으로 분리시킨다. 크림핑부(181)는 캡(178a)의 가장자리와 제1가스켓(178b)을 함께 고정시킨다. 캡(178a)에는 벤트부(179)가 구비된다. 벤트부(179)의 구성은 상술한 실시예(변형예)와 실질적으로 동일하다.
바람직하게, 캡(178a)는 도전성이 있는 금속 재질로 이루어진다. 하지만, 캡(178a)와 전지 하우징(171) 사이에 제1가스켓(178b)이 개재되어 있으므로 캡(178a)는 전기적 극성을 띠지 않는다. 밀봉체(178)는 전지 하우징(171) 하부의 개방단을 밀봉시키고 배터리(200)의 내부 압력이 임계치 이상 증가하였을 때 가스를 배출시키는 기능을 한다.
바람직하게, 제1전극의 무지부(146a)와 전기적으로 연결된 단자(172)는 제1전극 단자로 사용된다. 또한, 제2집전체(176)를 통해 제2전극의 무지부(146b)와 전기적으로 연결된 전지 하우징(171)의 상부 표면 중에서 단자(172)를 제외한 부분(175)은 제1전극 단자와 극성이 다른 제2전극 단자로 사용된다. 이처럼, 2개의 전극 단자가 원통형 배터리(200)의 상부에 위치할 경우, 버스바 등의 전기적 연결 부품을 원통형 배터리(200)의 일 측에만 배치시키는 것이 가능하다. 이는, 배터리 팩 구조의 단순화 및 에너지 밀도의 향상을 가져올 수 있다. 또한, 제2전극 단자로 사용되는 부분(175)은 대략 플랫한 형태를 가지므로 버스바 등의 전기적 연결 부품을 접합시키는데 있어서 충분한 접합 면적을 확보할 수 있다. 이에 따라, 원통형 배터리(200)은 전기적 연결 부품의 접합 부위에서의 저항을 바람직한 수준으로 낮출 수 있다.
본 발명에 있어서, 무지부(146a, 146b)를 코어측을 향해 절곡시키더라도 전극 조립체(110)의 코어(C)이 폐색되지 않고 상부로 개방될 수 있다.
즉, 도 4에 도시된 것처럼, 제1 및 제2전극의 무지부의 높이, 특히 코어측 무지부(A)의 높이를 낮게 설계하고, 코어측 무지부(A)에 인접시켜 분절편(61)의 높이 가변 구간을 배치하되 코어측 무지부(A)에 가장 인접한 분절편(61)의 높이를 조절함으로써 전극 조립체(110)의 코어 근처에 있는 무지부가 절곡되더라도 전극 조립체(110)의 코어(C)가 폐색되지 않도록 한다.
코어(C)가 폐색되지 않으면, 전해질 주액 공정에 어려움이 없고, 전해액 주액 효율이 향상된다. 또한, 코어(C)에 용접 지그를 삽입하여 집전체(145)와 전지 하우징(142) 바닥 사이의 용접 또는 집전체(144)와 단자(172) 사이의 용접 공정을 용이하게 진행할 수 있다.
무지부(146a, 146b)가 분절 구조를 가지는 경우 분절편들의 폭 및/또는 높이 및/또는 이격 피치를 상술한 실시예의 수치범위를 만족하도록 조절하면, 분절편들이 절곡될 때 분절편들이 용접 강도를 충분히 확보할 수 있을 정도로 여러 겹으로 중첩되며 절곡 표면영역(F1, F2) 상에 빈 공간(빈틈)을 형성하지 않는다.
본 발명에 있어서, 제1집전체(144) 및 제2집전체(176)의 용접 영역은 전극 조립체(110)의 코어(C) 중심을 기준으로 반경 방향으로 4mm 이상 이격되어 있고, 상기 전극 조립체(110) 반경의 50% 이하의 거리로 이격되어 있을 수 있다. 4mm의 이격 거리는 코어(C)의 최소 반경(2mm)과 분절편(61)의 최소 높이(2mm)를 고려하여 결정된 것이다. 상기 전극 조립체(110) 반경의 50% 이하의 거리는 충분한 용접 영역의 확보 측면을 고려하여 설정한 것이다.
또한, 상기 제1집전체(144)의 용접 영역과 상기 제2집전판(176)의 용접 영역은 상기 전극 조립체(110)의 코어(C) 중심을 기준으로 실질적으로 동일한 거리만큼 이격된 위치로부터 상기 전극 조립체의 반경 방향으로 연장되어 있을 수 있다. 이 때, 상기 제1집전체의 용접 영역이 연장된 길이가 상기 제2집전체의 용접 영역이 연장된 길이보다 더 긴 것이 바람직하다.
한편, 제1집전체(144)와 제2집전체(176)는 도 12 및 도 13에 도시된 바와 같은 새로운 구조를 가질 수 있다.
도 12는 본 발명의 일 실시예에 따른 제1집전체(144)의 구조를 나타낸 상부 평면도이다.
도 12를 참조하면, 제1집전체(144)은, 테두리부(144a), 제1 무지부 결합부(144b) 및 단자 결합부(144c)를 포함할 수 있다. 상기 테두리부(144a)는, 전극 조립체(110)의 상부에 배치된다. 상기 테두리부(144a)는, 그 내부에 빈 공간(S)이 형성된 대략 림(rim) 형태를 가질 수 있다. 본 발명의 도면에서는 상기 테두리부(144a)가 대략 원형의 림 형태를 갖는 경우만을 도시하고 있으나, 이로써 본 발명이 한정되는 것은 아니다. 상기 테두리부(144a)는, 도시된 것과는 달리 대략 사각의 림 형태, 육각의 림 형태, 팔각의 림 형태 또는 그 밖의 다른 림 형태를 가질 수도 있는 것이다.
상기 단자 결합부(144c)는, 단자(172)의 바닥면에 형성된 평탄부와의 결합을 위한 용접 면적 확보를 위해 상기 단자(172)의 바닥면에 형성된 평탄부의 직경과 동일하거나 더 큰 직경을 가질 수 있다.
상기 제1 무지부 결합부(144b)는, 테두리부(144a)로부터 내측으로 연장되며 무지부(146a)와 결합된다. 상기 단자 결합부(144c)는, 제1 무지부 결합부(144b)와 이격되어 테두리부(144a)의 내측에 위치한다. 상기 단자 결합부(144c)는, 단자(172)와 용접에 의해 결합될 수 있다. 상기 단자 결합부(144c)는, 예를 들어 테두리부(144a)에 의해 둘러싸인 내측 공간의 대략 중심부에 위치할 수 있다. 상기 단자 결합부(144c)는, 전극 조립체(110)의 코어(C)에 형성된 홀과 대응되는 위치에 구비될 수 있다. 상기 단자 결합부(144c)는, 전극 조립체(110)의 코어(C)에 형성된 홀이 단자 결합부(144c)의 외측으로 노출되지 않도록 전극 조립체(110)의 코어(C)에 형성된 홀을 커버하도록 구성될 수 있다. 이를 위해, 상기 단자 결합부(144c)는, 전극 조립체(110)의 코어(C)에 형성된 홀보다 더 큰 직경 또는 폭을 가질 수 있다.
상기 제1 무지부 결합부(144b)와 단자 결합부(144c)는, 직접적으로 연결되지 않고 서로 이격되도록 배치되며 테두리부(144a)에 의해 간접적으로 연결될 수 있다. 이처럼, 상기 제1집전체(144)은, 제1 무지부 결합부(144b)와 단자 결합부(144c)가 서로 직접 연결되어 있지 않고, 테두리부(144a)를 통해서 연결된 구조를 가짐으로써 원통형 배터리(200)에 충격 및/또는 진동이 발생하는 경우 제1 무지부 결합부(144b)와 제1 무지부(146a) 간의 결합 부위와 단자 결합부(144c)와 단자(172) 간의 결합 부위에 가해지는 충격을 분산시킬 수 있다. 본 발명의 도면에서는, 상기 제1 무지부 결합부(144b)가 4개인 경우만이 도시되어 있으나, 이로써 본 발명이 한정되는 것은 아니다. 상기 제1 무지부 결합부(144b)의 개수는 형상의 복잡성에 따른 제조의 난이도, 전기 저항, 전해액 함침성을 고려한 테두리부(144a) 내측의 공간 등을 고려하여 다양하게 결정될 수 있다.
상기 제1집전체(144)은, 테두리부(144a)로부터 내측으로 연장되며 단자 결합부(144c)와 연결되는 브릿지부(144d)를 더 포함할 수 있다. 상기 브릿지부(144d)는, 적어도 그 일부가 제1 무지부 결합부(144b) 및 테두리부(144a)와 비교하여 그 단면적이 더 작게 형성될 수 있다. 예를 들어, 상기 브릿지부(144d)는, 적어도 그 일부가 제1 무지부 결합부(144b)와 비교하여 폭 및/또는 두께가 더 작게 형성될 수 있다. 이 경우, 상기 브릿지부(144d)에서 전기 저항이 증가하고, 따라서 상기 브릿지부(144d)를 통해 전류가 흐를 때 상대적으로 큰 저항이 브릿지부(144d)의 일부에서 과전류 히팅(heating)으로 인한 용융을 일으키고, 이는 과전류를 비가역적으로 차단한다. 상기 브릿지부(144d)는 이러한 과전류 차단 기능을 고려하여 그 단면적이 적절한 수준으로 조절될 수 있다.
상기 브릿지부(144d)는, 테두리부(144a)의 내측면으로부터 단자 결합부(144c)를 향하는 방향을 따라 그 폭이 점점 좁아지는 테이퍼부(144e)를 구비할 수 있다. 상기 테이퍼부(144e)가 구비되는 경우, 브릿지부(144d)와 테두리부(144a)의 연결 부위에서 부품의 강성이 향상될 수 있다. 상기 테이퍼부(144e)가 구비되는 경우, 원통형 배터리(200)의 제조 공정에 있어서, 예를 들어 이송 장비 및/또는 작업자가 테이퍼부(144e)를 파지함으로써 제1집전체(144) 및/또는 제1집전체(144)와 전극 조립체(110)의 결합체를 용이하고 안전하게 이송할 수 있다. 즉, 상기 테이퍼부(144e)가 구비되는 경우, 제1 무지부 결합부(144b) 및 단자 결합부(144c)와 같이 다른 부품과 용접이 이루어지는 부분을 파지함으로써 발생될 수 있는 제품의 불량 발생을 방지할 수 있다.
상기 제1 무지부 결합부(144b)는, 복수개가 구비될 수 있다. 복수의 상기 제1 무지부 결합부(144b)는, 테두리부(144a)의 연장 방향을 따라 서로 동일 간격으로 배치될 수 있다. 복수의 상기 제1 무지부 결합부(144b) 각각의 연장 길이는 서로 대략 동일할 수 있다. 상기 제1 무지부 결합부(144b)는, 무지부(146a)의 절곡 표면영역(F1)과 용접에 의해 결합될 수 있다. 제1 무지부 결합부(144b)와 절곡 표면영역(W1) 사이의 용접에 의해 형성되는 용접 패턴(144f)은 전극 조립체(110)의 반경 방향을 따라 연장될 구조를 가질 수 있다. 용접 패턴(144f)은 라인 패턴 또는 점 패턴의 배열일 수 있다.
상기 단자 결합부(144c)는, 복수의 상기 제1 무지부 결합부(144b)에 의해 둘러 싸이도록 배치될 수 있다. 상기 단자 결합부(144c)는, 단자(172)와 용접에 의해 결합될 수 있다. 상기 브릿지부(144d)는, 서로 인접한 한 쌍의 제1 무지부 결합부(144b) 사이에 위치할 수 있다. 이 경우, 상기 브릿지부(144d)로부터 테두리부(144a)의 연장 방향을 따라 상기 한 쌍의 제1 무지부 결합부(144b) 중 어느 하나에 이르는 거리는, 브릿지부(144d)로부터 테두리부(144a)의 연장 방향을 따라 상기 한 쌍의 제1 무지부 결합부(144b) 중 나머지 하나에 이르는 거리와 대략 동일할 수 있다. 복수의 상기 제1 무지부 결합부(144b) 각각의 단면적은 대략 동일하게 형성될 수 있다. 복수의 상기 제1 무지부 결합부(144b) 각각의 폭 및 두께는 대략 동일하게 형성될 수 있다.
도면에 도시되지는 않았으나, 상기 브릿지부(144d)는, 복수개가 구비될 수 있다. 복수의 브릿지부(144d) 각각은, 서로 인접한 한 쌍의 제1 무지부 결합부(144b) 사이에 배치될 수 있다. 복수의 상기 브릿지부(144d)는, 테두리부(144a)의 연장 방향을 따라 서로 대략 동일한 간격으로 배치될 수 있다. 복수의 상기 브릿지부(144d) 각각으로부터 테두리부(144a)의 연장 방향을 따라 서로 인접한 한 쌍의 제1 무지부 결합부(144b) 중 어느 하나에 이르는 거리는, 나머지 하나의 제1 무지부 결합부(144b)에 이르는 거리와 대략 동일할 수 있다.
상술한 바와 같이 제1 무지부 결합부(144b) 및/또는 브릿지부(144d)가 복수개 구비되는 경우에 있어서, 제1 무지부 결합부(144b)들 간의 거리 및/또는 브릿지부(144d)들 간의 거리 및/또는 제1 무지부 결합부(144b)와 브릿지부(144d) 간의 거리가 일정하게 형성되면, 제1 무지부 결합부(144b)로부터 브릿지부(144d)를 향하는 전류 또는 브릿지부(144d)로부터 제1 무지부 결합부(144b)를 향하는 전류의 흐름이 원활하고 균일하게 형성될 수 있다.
한편, 상기 제1집전체(144)와 무지부(146a)의 절곡 표면영역(F1) 간의 결합은 용접에 의해 이루어질 수 있다. 이 경우, 예를 들어 레이저 용접, 초음파 용접, 스폿 용접 등이 적용될 수 있다. 바람직하게, 용접 영역은 절곡 표면영역(F1)의 적층수 균일구간(W1)과 적어도 50% 이상 중첩될 수 있다.
브릿지부(144d)는, 브릿지부(144d)의 단면적을 부분적으로 감소시키도록 형성되는 노칭부(N)를 구비할 수 있다. 노칭부(N)의 단면적의 조절은, 예를 들어 브릿지부(144d)의 폭 및/또는 두께의 부분적인 감소를 통해 실현될 수 있다. 노칭부(N)가 구비되는 경우, 노칭부(N)가 형성된 영역에서의 전기 저항이 증가하게 되고, 이로써 과전류 발생 시에 신속한 전류 차단이 가능하게 된다.
노칭부(N)는, 파단 시에 발생되는 이물질이 전극 조립체(110)의 내부로 유입되는 것을 방지하기 위해, 전극 조립체(110)의 적층수 균일구간과 대응되는 영역에 구비되는 것이 바람직하다. 이는, 이 영역에서는 무지부(146a)의 분절편들의 적층수가 최대로 유지되고, 이로써 중첩된 분절편들이 마스크(mask)로서 기능할 수 있기 때문이다. 예들 들어, 노칭부(N)는, 적층수 균일구간 중에서 무지부(146a)의 적층수가 최대인 영역에 구비될 수 있다.
도 13은 본 발명의 일 실시예에 따른 제2집전체(176)의 구조를 나타낸 상부 평면도이다.
도 13을 참조하면, 제2집전체(176)은, 전극 조립체(110)의 하부에 배치된다. 또한, 상기 제2집전체(176)은, 전극 조립체(110)의 무지부(146b)와 전지 하우징(171)을 전기적으로 연결시키도록 구성될 수 있다. 제2집전체(176)은 도전성을 갖는 금속 재질로 이루어지며 무지부(146b)와 연결된다. 또한, 상기 제2집전체(176)은, 전지 하우징(171)과 전기적으로 연결된다. 상기 제2집전체(176)은, 전지 하우징(171)의 내측 면과 제1가스켓(178b) 사이에 개재되어 고정될 수 있다. 구체적으로, 상기 제2집전체(176)은, 전지 하우징(171)의 비딩부(180)의 하면과 제1가스켓(178b) 사이에 개재될 수 있다. 다만, 이로써 본 발명이 한정되는 것은 아니며, 이와는 달리, 상기 제2집전체(176)은, 비딩부(180)가 형성되지 않은 영역에서 전지 하우징(171)의 내벽 면에 용접될 수도 있다.
상기 제2집전체(176)은, 전극 조립체(110)의 하부에 배치되는 지지부(176a), 상기 지지부(176a)로부터 대략 전극 조립체(110)의 반경 방향을 따라 연장되어 무지부(146b)의 절곡 표면영역(F2)에 결합되는 제2 무지부 결합부(176b) 및 상기 지지부(176a)로부터 대략 전극 조립체(110)의 반경 방향을 따라 연장되어 전지 하우징(171)의 내측 면 상에 결합되는 하우징 결합부(176c)를 포함할 수 있다. 상기 제2 무지부 결합부(176b)와 하우징 결합부(176c)는, 지지부(176a)를 통해 간접적으로 연결되며, 서로 직접 연결되지 않는다. 따라서, 본 발명의 원통형 배터리(200)에 외부 충격이 가해졌을 때, 제2집전체(176)과 전극 조립체(110)의 결합 부위 및 제2집전체(176)과 전지 하우징(171)의 결합 부위에 손상 발생 가능성을 최소화할 수 있다. 다만, 본 발명의 제2집전체(176)이 이처럼 제2 무지부 결합부(176b)와 하우징 결합부(176c)가 간접적으로만 연결된 구조를 갖는 경우로 한정되는 것은 아니다. 예를 들어, 상기 제2집전체(176)은, 제2 무지부 결합부(176b)와 하우징 결합부(176c)를 간접적으로 연결시키는 지지부(176a)를 구비하지 않는 구조 및/또는 무지부(146b)와 하우징 결합부(176c)가 서로 직접 연결된 구조를 가질 수도 있는 것이다.
상기 지지부(176a) 및 제2 무지부 결합부(176b)는 전극 조립체(110)의 하부에 배치된다. 상기 제2 무지부 결합부(176b)는, 무지부(146b)의 절곡 표면영역(F2)과 결합된다. 상기 제2 무지부 결합부(176b) 뿐만 아니라, 상기 지지부(176a) 역시 무지부(146b)와 결합될 수도 있다. 상기 제2 무지부 결합부(176b)와 무지부(146b)는 용접에 의해 결합될 수 있다. 상기 지지부(176a) 및 제2 무지부 결합부(176b)는, 전지 하우징(171)에 비딩부(180)가 형성되는 경우에 있어서 비딩부(180)보다 상부에 위치한다.
상기 지지부(176a)는, 전극 조립체(110)의 코어(C)에 형성되는 홀과 대응되는 위치에 형성되는 집전판 홀(176d)을 구비한다. 서로 연통되는 상기 전극 조립체(110)의 코어(C)와 집전판 홀(176d)은, 단자(172)와 제1집전체(144)의 단자 결합부(144c) 간의 용접을 위한 용접봉의 삽입 또는 레이저 빔의 조사를 위한 통로로서 기능할 수 있다. 상기 집전판 홀(176d)은, 전극 조립체(110)의 코어(C)에 형성된 홀과 대략 동일하거나 이보다 더 큰 직경을 가질 수 있다. 상기 제2 무지부 결합부(176b)가 복수 개 구비되는 경우, 복수의 제2 무지부 결합부(176b)들은 제2집전체(176)의 지지부(176a)로부터 대략 방사상으로 전지 하우징(171)의 측벽을 향해 연장된 형태를 가질 수 있다. 상기 복수의 제2 무지부 결합부(176b)들 각각은 지지부(176a)의 둘레를 따라 상호 이격되어 위치할 수 있다.
상기 하우징 결합부(176c)는 복수 개가 구비될 수 있다. 이 경우, 복수의 하우징 결합부(176c)들은 제2집전체(176)의 중심부로부터 대략 방사상으로 전지 하우징(171)의 측벽을 향해 연장된 형태를 가질 수 있다. 이에 따라, 상기 제2집전체(176)과 전지 하우징(171) 간의 전기적 연결은 복수의 지점에서 이루어질 수 있다. 이처럼 복수의 지점에서 전기적 연결을 위한 결합이 이루어짐으로써 결합 면적을 극대화하여 전기 저항을 최소화할 수 있다. 상기 복수의 하우징 결합부(176c)들 각각은 지지부(176a)의 둘레를 따라 상호 이격되어 위치할 수 있다. 서로 이웃하는 제2 무지부 결합부(176b) 사이에는 적어도 하나의 하우징 결합부(176c)가 위치할 수 있다. 상기 복수의 하우징 결합부(176c)들은, 전지 하우징(171)의 내측 면 중, 예를 들어 비딩부(180)에 결합될 수 있다. 상기 하우징 결합부(176c)들은, 특히 비딩부(180)의 하면에 용접을 통해 결합될 수 있다. 용접은, 예를 들어 레이저 용접, 초음파 용접 또는 스폿 용접 등이 적용될 수 있다. 이와 같이 비딩부(180) 상에 하우징 결합부(176c)를 용접 결합시킴으로써 원통형 배터리(200)의 저항 수준을 대략 4 미리옴 이하로 제한할 수 있다. 또한, 비딩부(180)의 하면이 전지 하우징(171)의 상면에 대략 나란한 방향, 즉 전지 하우징(171)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 갖도록 하고 하우징 결합부(176c) 역시 동일한 방향, 즉 반경 방향 및 원주 방향을 따라 연장된 형태를 갖도록 함으로써 하우징 결합부(176c)가 비딩부(180) 상에 안정적으로 접촉하도록 할 수 있다. 또한, 이처럼 상기 하우징 결합부(176c)가 비딩부(180)의 평탄부 상에 안정적으로 접촉됨에 따라 두 부품 간의 용접이 원활하게 이루어질 수 있고, 이로써 두 부품 간의 결합력 향상 및 결합 부위에서의 저항 증가 최소화 효과를 얻을 수 있다.
상기 하우징 결합부(176c)는 전지 하우징(171)의 내측 면 상에 결합되는 접촉부(176e) 및 지지부(176a)와 접촉부(176e) 사이를 연결하는 연결부(176f)를 포함할 수 있다.
상기 접촉부(176e)는, 전지 하우징(171)의 내측 면 상에 결합된다. 상기 전지 하우징(171)에 비딩부(180)가 형성되는 경우에 있어서, 상기 접촉부(176e)는 상술한 바와 같이 비딩부(180) 상에 결합될 수 있다. 좀 더 구체적으로, 상기 접촉부(176e)는, 전지 하우징(171)에 형성된 비딩부(180)의 하면에 형성된 평탄부에 전기적으로 결합될 수 있으며, 비딩부(180)의 하면과 제1가스켓(178b) 사이에 개재될 수 있다. 이 경우, 안정적인 접촉 및 결합을 위해 접촉부(176e)는 비딩부(180)에서 전지 하우징(171)의 원주 방향을 따라 소정의 길이로 연장된 형태를 가질 수 있다.
한편, 상기 제2집전체(176)의 중심부에서 전극 조립체(110)의 반경 방향을 따라 제2 무지부 결합부(176b)의 단부에 이르는 최대 거리는, 비딩부(180)가 형성된 영역에서의 전지 하우징(171)의 내경, 즉 전지 하우징(171)의 최소 내경과 동일하거나 이보다 더 작게 형성됨이 바람직하다. 이는, 전지 하우징(171)을 높이 방향을 따라 압축시키는 사이징 공정 진행 시에 비딩부(180)에 의해 제2집전체(176) 간의 간섭이 발생하고 이에 따라 제2집전체(176)에 의해 전극 조립체(110)가 눌리는 현상을 방지하기 위함이다.
제2 무지부 결합부(176b)는 홀(176g)을 포함한다. 홀(176g)은 전해액이 이동할 수 있는 통로로 사용될 수 있다. 제2 무지부 결합부(176b)와 절곡 표면영역(W2) 사이의 용접에 의해 형성되는 용접 패턴(176h)은 전극 조립체(110)의 반경 방향을 따라 연장될 구조를 가질 수 있다. 용접 패턴(176h)은 라인 패턴 또는 점 패턴의 배열일 수 있다.
본 발명의 실시예에 따른 원통형 배터리(200)은 상부에서 전기적 연결을 수행할 수 있는 이점이 있다.
도 14는 복수의 원통형 배터리(200)들이 전기적으로 연결된 상태를 나타낸 상부 평면도이고, 도 15는 도 14의 부분 확대도이다.
도 14 및 도 15를 참조하면, 복수의 원통형 배터리(200)들은 버스바(210)를 이용하여 원통형 배터리(200)의 상부에서 직렬 및 병렬로 연결될 수 있다. 원통형 배터리(200)들의 수는 배터리 팩의 용량을 고려하여 증감될 수 있다.
각 원통형 배터리(200)에 있어서, 단자(172)는 양의 극성을 가지고 전지 하우징(171)의 단자(172) 주변의 평평한 면(171a)은 음의 극성을 가질 수 있다. 물론, 그 반대도 가능하다.
바람직하게, 복수의 원통형 배터리(200)들은 복수의 열과 행으로 배치될 수 있다. 열은 도면에서 상하 방향이고, 행은 도면에서 좌우 방향이다. 또한, 공간 효율성을 최대화 하기 위해, 원통형 배터리(200)들은 최밀 팩킹 구조(closest packing structure)로 배치될 수 있다. 최밀 팩킹 구조는, 전지 하우징(171)의 외부로 노출된 단자(172)의 중심을 서로 연결했을 때 정삼각형이 만들어질 때 형성된다. 바람직하게, 버스바(210)는, 동일 열에 배치된 원통형 배터리(200)들을 서로 병렬로 연결시키고, 인접하는 2개의 열에 배치된 원통형 배터리(200)들을 서로 직렬로 연결시킨다.
바람직하게, 버스바(210)는, 직렬 및 병렬 연결을 위해 바디부(211), 복수의 제1 버스바 단자(212) 및 복수의 제2 버스바 단자(213)를 포함할 수 있다. 상기 바디부(211)는, 인접하는 단자(172) 사이에서 원통형 배터리(200)들의 열을 따라 연장될 수 있다. 대안적으로, 상기 바디부(211)는, 원통형 배터리(200)들의 열을 따라 연장되되, 지그재그 형상과 같이 규칙적으로 절곡될 수 있다.
복수의 제1 버스바 단자(212)는, 바디부(211)의 일측으로부터 연장되며, 연장 방향에 위치한 원통형 배터리(200)의 단자(172)와 전기적으로 결합될 수 있다. 제1 버스바 단자(212)와 단자(172) 간의 전기적 결합은 레이저 용접, 초음파 용접 등으로 이루어질 수 있다.
복수의 제2 버스바 단자(213)는, 바디부(211)의 타측으로부터 연장되며, 연장 방향에 위치한 단자(172) 주변의 평평한 면(171a)에 전기적으로 결합될 수 있다. 제2 버스바 단자(213)와 평평한 면(171a) 간의 전기적 결합은 레이저 용접, 초음파 용접 등으로 이루어질 수 있다.
바람직하게, 상기 바디부(211), 복수의 제1 버스바 단자(212) 및 복수의 제2 버스바 단자(213)는 하나의 도전성 금속판으로 이루어질 수 있다. 금속판은, 예를 들어 알루미늄 판 또는 구리 판일 수 있는데, 본 발명이 이에 한정되는 것은 아니다. 변형 예에서, 상기 바디부(211), 복수의 제1 버스바 단자(212) 및 제2 버스바 단자(213)는 별개의 피스 단위로 제작한 후 서로 용접 등을 통해 결합될 수도 있다.
상술한 본 발명의 원통형 배터리(200)은, 절곡 표면영역(F1, F-2)을 통한 용접 면적 확대, 제2집전체(176)을 이용한 전류 패스(path)의 다중화, 전류 패스 길이의 최소화 등을 통해 저항이 최소화된 구조를 갖는다. 양극과 음극 사이, 즉 단자(172)와 그 주변의 평평한 면(171a) 사이에서의 저항 측정기를 통해 측정되는 원통형 배터리(200)의 AC 저항은 급속 충전에 적합한 0.5 밀리오옴(miliohm) 내지 4 밀리오옴(miliohm), 바람직하게는 1 밀리오옴(miliohm) 내지 4 밀리오옴(miliohm)일 수 있다.
본 발명에 따른 원통형 배터리(200)은, 양의 극성을 가진 단자(172)와 음의 극성을 가진 평평한 면(171a)이 동일한 방향에 위치하고 있으므로 버스바(210)를 이용하여 원통형 배터리(200)들의 전기적 연결을 용이하게 구현할 수 있다.
또한, 원통형 배터리(200)의 단자(172)와 그 주변의 평평한 면(171a)은 면적이 넓으므로 버스바(210)의 결합 면적을 충분히 확보하여 원통형 배터리(200)을 포함하는 배터리 팩의 저항을 충분히 낮출 수 있다.
상술한 실시예들(변형예들)에 따른 원통형 배터리는 배터리 팩을 제조하는데 사용될 수 있다.
도 16은 본 발명의 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.
도 16을 참조하면, 본 발명의 실시예에 따른 배터리 팩(300)은 원통형 배터리(301)이 전기적으로 연결된 집합체 및 이를 수용하는 팩 하우징(302)을 포함한다. 원통형 배터리(301)은 상술한 실시예들(변형예들)에 따른 배터리 중 어느 하나일 수 있다. 도면에서는, 도면 도시의 편의상 원통형 배터리(301)들의 전기적 연결을 위한 버스바, 냉각 유닛, 외부 단자 등의 부품의 도시는 생략되었다.
배터리 팩(300)은 자동차에 탑재될 수 있다. 자동차는 일 예로 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있다. 자동차는 4륜 자동차 또는 2륜 자동차를 포함한다.
도 17은 도 16의 배터리 팩(300)을 포함하는 자동차를 설명하기 위한 도면이다.
도 17을 참조하면, 본 발명의 일 실시예에 따른 자동차(V)는, 본 발명의 일 실시예에 따른 배터리 팩(300)을 포함한다. 자동차(V)는, 본 발명의 일 실시예에 따른 배터리 팩(300)으로부터 전력을 공급 받아 동작한다.
본 발명의 일 측면에 따르면, 전극 조립체의 양단에 노출된 무지부를 절곡시킬 때 전극 조립체의 반경 방향에서 무지부가 10장 이상 중첩되는 영역을 충분히 확보하여 집전체의 용접 시 분리막이나 활물질층의 손상을 방지할 수 있다.
본 발명의 또 다른 측면에 따르면, 전극 조립체의 코어에 인접한 무지부 구조를 개선하여 무지부가 절곡될 때 전극 조립체의 코어에 있는 공동이 폐색되는 것을 방지하여 전해액 주입 공정과 전지 하우징과 집전체의 용접 공정을 용이하게 진행할 수 있다.
본 발명의 또 다른 측면에 따르면. 스트립 형태의 전극 탭을 대신하여 무지부의 절곡 표면영역을 집전체에 직접 용접함으로써 에너지 밀도가 향상되고 저항이 감소된 전극 조립체를 제공할 수 있다.
본 발명의 또 다른 측면에 따르면, 내부 저항이 낮고, 집전체와 무지부 사이의 용접 강도가 향상된 구조를 갖는 원통형 배터리, 이를 포함하는 배터리 팩 및 자동차를 제공할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (78)

  1. 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권회되어 코어와 외주면을 정의한 전극 조립체에 있어서,
    상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고,
    상기 무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡됨으로써 상기 무지부의 중첩 레이어들을 포함하는 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 전극 조립체의 권취 축 방향으로 상기 무지부의 적층수가 10 이상인 것을 특징으로 하는 전극 조립체.
  2. 제1항에 있어서,
    상기 제1전극의 총 권회턴수를 n1이라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n1의 자연수)를 총 권회턴수 n1로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R1,k라고 정의하면, 무지부의 적층수가 10 이상인 조건을 만족하는 R1,k의 반경 방향 구간의 길이 비율이 무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상인 것을 특징으로 하는 전극 조립체.
  3. 제2항에 있어서,
    무지부의 적층수가 10 이상인 조건을 만족하는 R1,k의 반경 방향 구간 길이 비율이 무지부가 절곡된 상대 반경 위치 구간 대비 30% 내지 85%인 것을 특징으로 하는 전극 조립체.
  4. 제1항에 있어서,
    상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고,
    상기 무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡됨으로써 상기 무지부의 중첩 레이어들을 포함하는 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 전극 조립체의 권취 축 방향으로 상기 무지부의 적층수가 10 이상인 것을 특징으로 하는 전극 조립체.
  5. 제4항에 있어서,
    상기 제2전극의 총 권회턴수를 n2라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n2의 자연수)를 총 권회턴수 n2로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R2,k라고 정의하면, 무지부의 적층수가 10 이상인 조건을 만족하는 R2,k의 반경 방향 구간의 길이 비율이 상기 무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상인 것을 특징으로 하는 전극 조립체.
  6. 제5항에 있어서,
    무지부의 적층수가 10 이상인 조건을 만족하는 R2,k의 반경 방향 구간의 길이 비율이 상기 무지부가 절곡된 상대 반경 위치 구간 대비 30% 내지 85%인 것을 특징으로 하는 전극 조립체.
  7. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서 첫번째 권회턴의 상대 반경 위치 R1,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R1,k*까지 구간의 무지부 높이가 권회턴수 k*+1의 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작은 것을 특징으로 하는 전극 조립체.
  8. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서, 첫 번째 권회턴의 상대 반경 위치 R1,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R1,k*까지 구간의 무지부는 그 높이가 절곡된 무지부들이 중첩되어 형성하는 상기 절곡 표면영역보다 낮은 것을 특징으로 하는 전극 조립체.
  9. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서, 첫 번째 권회턴에 상대 반경 위치 R1,1부터 k*번째 권회턴의 제1상대 반경 위치 R1,k*까지의 구간은 전극 조립체의 코어를 향해 절곡되지 않는 것을 특징으로 하는 전극 조립체.
  10. 제5항에 있어서,
    제2전극의 권회 구조에 있어서 첫 번째 권회턴의 상대 반경 위치 R2,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지 구간의 무지부 높이가 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작은 것을 특징으로 하는 전극 조립체.
  11. 제5항에 있어서,
    첫 번째 권회턴의 상대 반경 위치 R2,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지의 구간에서 무지부는 그 높이가 절곡된 무지부들이 중첩되어 형성하는 절곡 표면영역보다 낮은 것을 특징으로 하는 전극 조립체.
  12. 제5항에 있어서,
    첫 번째 권회턴의 상대 반경 위치 R2,1부터 미리 설정된 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지 구간의 무지부는 전극 조립체의 코어를 향해 절곡되지 않는 것을 특징으로 하는 전극 조립체.
  13. 제1항 또는 제4항에 있어서,
    상기 제1전극 또는 제2전극의 무지부는 서로 독립적으로 절곡 가능한 복수의 분절편으로 분할되어 있는 것을 특징으로 하는 전극 조립체.
  14. 제13항에 있어서,
    복수의 분절편 각각은 절곡 라인을 밑변으로 하는 기하학적 도형의 형태를 가지며,
    상기 기하학적 도형은 하나 이상의 직선, 하나 이상의 곡선 또는 이들이 조합이 연결된 것임을 특징으로 하는 전극 조립체.
  15. 제14항에 있어서,
    상기 기하학적 도형은 밑변으로부터 상부로 가면서 폭이 단계적으로 또는 연속적으로 감소하는 것을 특징으로 하는 전극 조립체.
  16. 제15항에 있어서,
    상기 기하학적 도형의 밑변과 이것과 교차하는 측변 사이의 하부 내각은 60도 내지 85도임을 특징으로 하는 전극 조립체.
  17. 제16항에 있어서,
    상기 복수의 분절편은 상기 하부 내각이 상기 전극 조립체의 권회 방향과 평행한 일 방향을 따라 단계적으로 또는 점진적으로 증가하는 것을 특징으로 하는 전극 조립체.
  18. 제14항에 있어서,
    복수의 분절편 각각은 절곡 라인을 밑변으로 하는 사다리꼴 도형의 형태를 가지며,
    상기 전극 조립체의 코어 중심을 기준으로 분절편이 배치된 권회턴의 반경을 r, 분절편의 하부에 대응되는 권회턴의 원호 길이를 Larc, 반경이 r인 권회턴에 인접 배치된 분절편 쌍의 측변이 서로 평행하다는 가정이 적용될 때의 분절편 하부 내각을 θassumption이라고 할 때, 상기 인접 배치된 분절편 쌍의 실제 하부 내각 θreal는 하기 수식을 만족하는 것을 특징으로 하는,
    θreal > θassumption
    θassumption = 90°- 360°*(Larc/2πr)*0.5
    전극 조립체.
  19. 제18항에 있어서,
    상기 전극 조립체의 코어 중심을 기준으로 상기 분절편의 하부에 대응되는 권회턴의 원호 길이 Larc에 대응되는 원주각이 45도 이하임을 특징으로 하는 전극 조립체.
  20. 제18항에 있어서,
    상기 전극 조립체의 코어 중심을 기준으로 반경이 r인 권회턴에 배치된 인접하는 분절편들의 중첩율을 수식 (θrealassumptoin-1)으로 정의할 때, 분절편의 중첩율은 0보다 크고 0.05 이하임을 특징으로 하는 전극 조립체.
  21. 제14항에 있어서,
    상기 전극 조립체의 코어 중심을 기준으로 반경이 r인 권회턴에 배치된 인접하는 분절편 쌍을 통과하는 가상의 원을 그렸을 때, 각 분절편을 통과하는 원호의 쌍이 서로 중첩되는 것을 특징으로 하는 전극 조립체.
  22. 제21항에 있어서,
    각 분절편을 통과하는 원호의 길이 대비 중첩되는 원호의 길이 비율을 분절편의 중첩율로 정의할 때, 분절편의 중첩율은 0보다 크고 0.05 이하임을 특징으로 하는 전극 조립체.
  23. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서 첫 번째 권회턴의 상대 반경 위치 R1,1부터 k*번째 권회턴의 제1 상대 반경 위치 R1,k*까지 구간의 무지부는 그 높이가 상대 반경 위치 R1,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작고 코어측을 향해 절곡되지 않는 것을 특징으로 하는 전극 조립체.
  24. 제23항에 있어서,
    상대 반경 위치 R1,1부터 R1,k*까지에 대응되는 상기 제1전극의 길이는 상대 반경 위치 R1,k*+1 내지 1까지에 대응되는 상기 제1전극의 길이 대비 1% 내지 30%임을 특징으로 하는 전극 조립체.
  25. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서, k*+1번째 권회턴의 상대 반경 위치 R1,k*+1의 무지부 절곡 길이 fd1,k*+1는 첫 번째 권회턴의 상대 반경 위치 R1,1 내지 k*번째 상대 반경 위치 R1,k*까지의 반경 방향 길이보다 짧은 것을 특징으로 하는 전극 조립체.
  26. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서, 상기 전극 조립체의 코어 반경을 rc라고 정의할 때, 코어의 중심부터 0.90rc 구간이 k*+1번째 권회턴의 상대 반경 위치 R1,k*+1 내지 1의 구간에 위치하는 무지부의 절곡부에 의해 차폐되지 않는 것을 특징으로 하는 전극 조립체.
  27. 제26항에 있어서,
    k*+1번째 권회턴의 상대 반경 위치 R1,k*+1의 무지부 절곡 길이 fd1,k*+1, 코어의 반경 rc 및, 상대 반경 위치 R1,k*+1이 전극 조립체의 중심으로부터 이격된 거리 d1,k*+1은 하기 수식을 만족하는 것을 특징으로 하는,
    fd1,k*+1 + 0.90*rc ≤ d1,k*+1
    전극 조립체.
  28. 제5항에 있어서,
    상기 제2전극의 권회 구조에 있어서 첫 번째 권회턴의 상대 반경 위치 R2,1 내지 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지 구간의 무지부는 그 높이가 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1까지 구간의 무지부 높이보다 작고 코어측을 향해 절곡되지 않는 것을 특징으로 하는 전극 조립체.
  29. 제28항에 있어서,
    상대 반경 위치 R2,1부터 R2,k*까지에 대응되는 상기 제2전극의 길이는 상대 반경 위치 R2,k*+1 내지 1까지에 대응되는 상기 제2전극의 길이 대비 1% 내지 30%임을 특징으로 하는 전극 조립체.
  30. 5항에 있어서,
    상기 제2전극의 권취구조에 있어서, k*+1번째 권회턴의 상대 반경 위치 R2,k*+1에 위치하는 무지부의 절곡 길이 fd2,k*+1는 첫 번째 권회턴의 상대 반경 위치 R2,1 내지 k*번째 권회턴의 제1상대 반경 위치 R2,k*까지의 반경 방향 길이보다 짧은 것을 특징으로 하는 전극 조립체.
  31. 제5항에 있어서,
    상기 제2전극의 권취구조에 있어서, 상기 전극 조립체의 코어 반경을 rc라고 정의할 때, 코어의 중심부터 0.90rc 구간이 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 상대 반경 위치 1의 구간에 위치하는 제2전극의 무지부의 절곡부에 의해 차폐되지 않는 것을 특징으로 하는 전극 조립체.
  32. 제31항에 있어서,
    k*+1번째 권회턴의 상대 반경 위치 R2,k*+1의 무지부 절곡 길이 fd2,k*+1, 코어의 반경 rc 및, 상대 반경 위치 R2,k*+1이 전극 조립체의 중심으로부터 이격된 거리 d2,k*+1은 하기 수식을 만족하는 것을 특징으로 하는,
    fd2,k*+1 + 0.90*rc ≤ d2,k*+1
    전극 조립체.
  33. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서 k*+1번째 권회턴의 상대 반경 위치 R1,k*+1 내지 미리 설정된 k@번째 권회턴의 제2상대 반경 위치 R1,k@까지 구간의 무지부는 복수의 분절편으로 분할되어 있고 그 높이가 권취 방향과 평행한 일 방향을 따라 점진적으로 또는 단계적으로 증가하는 것을 특징으로 하는 전극 조립체.
  34. 제33항에 있어서,
    상대 반경 위치 R1,k*+1 내지 R1,k@까지 구간의 반경 방향 길이는 코어를 제외한 제1전극의 권회 구조의 반경 대비 1% 내지 56%임을 특징으로 하는 전극 조립체.
  35. 제2항에 있어서,
    상기 제1전극의 권회 구조에 있어서 미리 설정된 k@+1번째 권회턴의 상대 반경 위치 R1,k@+1부터 상대 반경 위치 1까지 제1전극의 무지부는 복수의 분절편으로 분할되어 있고, 복수의 분절편 높이는 상대 반경 위치 R1,k@+1부터 상대 반경 위치 1까지 실질적으로 동일한 것을 특징으로 하는 전극 조립체.
  36. 제5항에 있어서,
    상기 제2전극의 권회 구조에 있어서 k*+1번째 권회턴의 상대 반경 위치 R2,k*+1 내지 미리 설정된 k@번째 권회턴의 제2상대 반경 위치 R2,k@까지 구간의 무지부는 복수의 분절편으로 분할되어 있고 그 높이가 권회 방향과 평행한 일 방향을 따라 단계적으로 또는 점진적으로 증가하는 것을 특징으로 하는 전극 조립체.
  37. 제36항에 있어서,
    상대 반경 위치 R2,k*+1 내지 R2,k@까지 구간의 반경 방향 길이는 코어를 제외한 제2전극의 권회 구조의 반경 대비 1% 내지 56%임을 특징으로 하는 전극 조립체.
  38. 제5항에 있어서,
    상기 제2전극의 권회 구조에 있어서 k@+1번째 권회턴의 제2상대 반경 위치 R2,k@+1부터 상대 반경 위치 1까지 제2전극의 무지부는 복수의 분절편으로 분할되어 있고, 복수의 분절편 높이는 k@+1번째 권회턴의 상대 반경 위치 R2,k@+1부터 상대 반경 위치 1까지 실질적으로 동일한 것을 특징으로 하는 전극 조립체.
  39. 제1항에 있어서,
    상기 제1전극의 권회 구조에 있어서, 상기 전극 조립체의 반경 방향으로 절곡되는 무지부는 독립적으로 절곡 가능한 복수의 분절편으로 분할되고,
    복수의 분절편의 권취 축 방향의 높이 및 권취 방향의 폭 중 적어도 하나는 개별적으로 또는 그룹별로 권회 방향과 평행한 일 방향을 따라 점진적으로 또는 단계적으로 증가하는 것을 특징으로 하는 전극 조립체.
  40. 제4항에 있어서,
    상기 제2전극의 권회 구조에 있어서, 상기 전극 조립체의 반경 방향으로 절곡되는 무지부는 독립적으로 절곡 가능한 복수의 분절편으로 분할되고,
    복수의 분절편의 권취 축 방향의 높이 및 권취 방향의 폭 중 적어도 하나는 개별적으로 또는 그룹별로 권회 방향과 평행한 일 방향을 따라 점진적으로 또는 단계적으로 증가하는 것을 특징으로 하는 전극 조칩체
  41. 제13항에 있어서,
    복수의 분절편 각각은, 권취 방향에서 1 내지 11mm의 폭 조건; 권취 축 방향에서 2 내지 10mm의 높이 조건; 및 권취 방향에서 0.05 내지 1mm의 이격 피치 조건 중에서 적어도 하나 이상의 조건을 충족하는 것을 특징으로 하는 전극 조립체.
  42. 제13항에 있어서,
    상기 복수의 분절편 사이에는 절단홈이 개재되고,
    상기 절단홈의 하단과 상기 제1전극 또는 상기 제2전극의 활물질층 사이에 소정의 갭이 구비되는 것을 특징으로 하는 전극 조립체.
  43. 제32항에 있어서,
    상기 갭의 길이는 0.2 내지 4mm임을 특징으로 하는 전극 조립체.
  44. 제13항에 있어서,
    복수의 분절편은 상기 전극 조립체의 권취 방향을 따라 복수의 분절편 그룹을 형성하며, 동일한 분절편 그룹에 속한 분절편들은 권취 방향의 폭, 권취 축 방향의 높이 및 권취 방향의 이격 피치 중 적어도 하나 이상이 서로 실질적으로 동일한 것을 특징으로 하는 전극 조립체.
  45. 제44항에 있어서,
    동일한 분절편 그룹에 속한 분절편들은 상기 전극 조립체의 권취 방향과 평행한 일 방향으로 가면서 권취 방향의 폭, 권취 축 방향의 높이 및 권취 방향의 이격 피치 중 적어도 하나가 점진적으로 또는 단계적으로 증가하는 것을 특징으로 하는 전극 조립체.
  46. 제44항에 있어서,
    복수의 분절편 그룹 중에서 적어도 일부는 전극 조립체의 동일한 권회턴에 배치되는 것을 특징으로 하는 전극 조립체.
  47. 제1항에 있어서,
    상기 제1전극의 무지부에 의해 형성되는 절곡 표면영역은, 상기 전극 조립체의 외주측으로부터 코어측으로 적층수 증가구간과 적층수 균일구간을 포함하고,
    상기 적층수 증가구간은 무지부의 적층수가 전극 조립체의 코어를 향해 증가하는 구간으로 정의되고, 상기 적층수 균일구간은 상기 무지부의 적층수 증가가 멈추는 위치부터 상기 무지부의 절곡이 시작되는 반경 위치까지의 구간으로 정의되고,
    상기 적층수 균일구간의 반경 방향 길이는 무지부의 절곡이 시작된 권회턴부터 무지부의 절곡이 끝나는 권회턴까지의 반경 방향 길이 대비 30% 이상임을 특징으로 하는 전극 조립체.
  48. 제5항에 있어서,
    상기 제2전극의 무지부에 의해 형성되는 절곡 표면영역은, 상기 전극 조립체의 외주측으로부터 코어측으로 적층수 증가구간과 적층수 균일구간을 포함하고,
    상기 적층수 증가구간은 무지부의 적층수가 전극 조립체의 코어를 향해 증가하는 구간으로 정의되고, 상기 적층수 균일구간은 상기 무지부의 적층수 증가가 멈추는 위치부터 상기 무지부의 절곡이 시작되는 반경 위치까지의 구간으로 정의되고,
    상기 적층수 균일구간의 반경 방향 길이는 무지부의 절곡이 시작된 권회턴부터 무지부의 절곡이 끝나는 권회턴까지의 반경 방향 길이 대비 30% 이상임을 특징으로 하는 전극 조립체.
  49. 제4항에 있어서,
    상기 제1전극 및 상기 제2전극의 두께는 80um 내지 250um이고,
    상기 전극 조립체의 반경 방향으로 인접하는 권회턴에 위치한 무지부 간격은 200um 내지 500um임을 특징으로 하는 전극 조립체.
  50. 제1항에 있어서,
    상기 제1전극의 무지부의 두께는 10um 내지 25um임을 특징으로 하는 전극 조립체.
  51. 제4항에 있어서,
    상기 제2전극의 무지부의 두께는 5um 내지 20um임을 특징으로 하는 전극 조립체.
  52. 제1항에 있어서,
    상기 제1전극의 무지부에 의해 형성된 절곡 표면영역의 일부 영역은 무지부의 중첩 레이어들의 총 적층 두께가 100um 내지 975um임을 특징으로 하는 전극 조립체.
  53. 제52항에 있어서,
    상기 제1전극의 무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제1전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 1.0% 내지 16.3%임을 특징으로 하는 전극 조립체.
  54. 제4항에 있어서,
    상기 제2전극의 무지부에 의해 형성된 절곡 표면영역의 일부 영역은 무지부의 중첩 레이어들의 총 적층 두께가 50um 내지 780um임을 특징으로 하는 전극 조립체.
  55. 제54항에 있어서,
    상기 제2전극의 무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제2전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 0.5% 내지 13.0%임을 특징으로 하는 전극 조립체
  56. 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권취되어 코어와 외주면을 정의한 전극 조립체에 있어서,
    상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 제1무지부를 포함하고,
    상기 제1무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제1절곡 표면영역을 형성하고, 상기 제1절곡 표면영역의 일부 영역은 상기 제1무지부의 적층 두께가 100 um 내지 975um임을 특징으로 하는 전극 조립체.
  57. 제56항에 있어서,
    상기 제1전극의 제1무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제1전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 1.0% 내지 16.3%임을 특징으로 하는 전극 조립체.
  58. 제56항에 있어서,
    상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제2무지부를 포함하고,
    상기 제2무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제2절곡 표면영역을 형성하고,
    상기 제2절곡 표면영역의 일부 영역은 상기 제2무지부의 적층 두께가 50 um 내지 780um임을 특징으로 하는 전극 조립체.
  59. 제58항에 있어서,
    상기 제2전극의 제2무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제2전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 절곡 표면영역의 무지부 적층 두께의 비율이 0.5% 내지 13.0%임을 특징으로 하는 전극 조립체
  60. 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권취되어 코어와 외주면을 정의한 전극 조립체로서, 상기 제1전극 및 상기 제2전극 중 적어도 하나는 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 무지부를 포함하고, 상기 무지부의 적어도 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 절곡 표면영역을 형성하고, 상기 절곡 표면영역의 일부 영역은 상기 무지부의 적층수가 10 이상인 것인 전극 조립체;
    상기 전극 조립체가 수납되며, 상기 제1전극 및 상기 제2전극 중 하나와 전기적으로 연결되어 제1극성을 띠는 전지 하우징;
    상기 전지 하우징의 개방단을 밀봉하는 밀봉체;
    상기 제1전극 및 상기 제2전극 중 다른 하나와 전기적으로 연결되고, 표면이 외부로 노출된 제2극성을 띠는 단자; 및
    상기 절곡 표면영역에 용접되고, 상기 전지 하우징 또는 상기 단자 중 어느 하나에 전기적으로 연결되는 집전체를 포함하고,
    상기 집전체의 용접 영역은 상기 무지부의 적층수가 10 이상인 절곡 표면영역과 중첩되는 것을 특징으로 하는 배터리.
  61. 제60항에 있어서,
    상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제1무지부를 포함하고,
    상기 제1전극의 총 권회턴수를 n1이라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n1의 자연수)를 총 권회턴수 n1로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R1,k라고 정의하면, 상기 제1무지부의 적층수가 10 이상인 조건을 만족하는 R1,k의 반경 방향 구간의 길이 비율이 상기 제1무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상임을 특징으로 하는 배터리.
  62. 제60항에 있어서,
    상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제2무지부를 포함하고,
    상기 제2전극의 총 권회턴수를 n2라고 정의하고, k번째 권회턴 위치에서 권회턴 인덱스 k(1~n2의 자연수)를 총 권회턴수 n2로 나눗셈 연산한 값을 권회턴 인덱스 k에 대한 상대 반경 위치 R2,k라고 정의하면, 상기 제2무지부의 적층수가 10 이상인 조건을 만족하는 R2,k의 반경 방향 구간의 길이 비율이 상기 제2무지부가 절곡된 상대 반경 위치 구간 대비 적어도 30% 이상인 것을 특징으로 하는 배터리.
  63. 제60항에 있어서,
    상기 집전체의 용접 영역은 상기 무지부의 적층수가 10 이상인 절곡 표면영역과 50% 이상 중첩되는 것을 특징으로 하는 배터리.
  64. 제63항에 있어서,
    상기 집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상임을 특징으로 하는 배터리.
  65. 제60항에 있어서,
    상기 용접 영역은 상기 전극 조립체의 코어 중심을 기준으로 반경 방향으로 4mm 이상 및 상기 전극 조립체 반경의 50% 이하의 거리로 이격되어 있는 것을 특징으로 하는 배터리.
  66. 제1전극 및 제2전극과 이들 사이에 개재된 분리막이 축을 중심으로 권취되어 코어와 외주면을 정의한 전극 조립체로서, 상기 제1전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 제1무지부를 포함하고, 상기 제1무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제1절곡 표면영역을 형성하고, 상기 제1절곡 표면영역의 일부 영역은 상기 제1무지부의 적층 두께가 100 um 내지 975um인 것인 전극 조립체;
    상기 전극 조립체가 수납되며, 상기 제1전극 및 상기 제2전극 중 하나와 전기적으로 연결되어 제1극성을 띠는 전지 하우징;
    상기 전지 하우징의 개방단을 밀봉하는 밀봉체;
    상기 제1전극 및 상기 제2전극 중 다른 하나와 전기적으로 연결되고, 표면이 외부로 노출된 제2극성을 띠는 단자; 및
    상기 제1절곡 표면영역에 용접되고, 상기 전지 하우징 또는 상기 단자 중 어느 하나에 전기적으로 연결되는 제1집전체를 포함하고,
    상기 제1집전체의 용접 영역은 상기 제1무지부의 적층 두께가 100um 내지 975um인 상기 제1절곡 표면영역의 일부 영역과 중첩되는 것을 특징으로 하는 배터리.
  67. 제66항에 있어서,
    상기 제1전극의 제1무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제1전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 제1절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 제1절곡 표면영역의 무지부 적층 두께의 비율이 1.0% 내지 16.3%임을 특징으로 하는 배터리.
  68. 제66항에 있어서,
    제1집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상임을 특징으로 하는 배터리.
  69. 제66항에 있어서,
    상기 제2전극은 장변 단부에 상기 전극 조립체의 권취 축 방향을 따라 상기 분리막의 외부로 노출된 제2무지부를 포함하고, 상기 제2무지부의 일부는 상기 전극 조립체의 반경 방향으로 절곡되어 제2절곡 표면영역을 형성하고, 상기 제2절곡 표면영역의 일부 영역은 상기 제2무지부의 적층 두께가 50 um 내지 780um이고,
    상기 제2절곡 표면영역에 용접되고, 상기 전지 하우징 또는 상기 단자 중 다른 하나에 전기적으로 연결되는 제2집전체를 포함하고,
    상기 제2집전체의 용접 영역은 상기 제2무지부의 적층 두께가 50um 내지 780um인 상기 제2절곡 표면영역의 일부 영역과 중첩되는 것을 특징으로 하는 배터리.
  70. 제69항에 있어서,
    상기 제2전극의 제2무지부는 서로 독립 가능한 복수의 분절편으로 분할되어 있고 상기 제2전극은 분절편의 높이가 가변되는 높이 가변 구간과 분절편의 높이가 균일한 높이 균일 구간을 포함하고, 상기 제2절곡 표면영역 중에서 상기 높이 균일 구간에 포함된 분절편이 상기 조립체의 반경 방향을 따라 절곡됨으로써 형성된 영역은 분절편의 높이에 대한 제2절곡 표면영역의 무지부 적층 두께의 비율이 0.5% 내지 13%임을 특징으로 하는 배터리
  71. 제69항에 있어서,
    상기 제2집전체의 용접 영역은 용접 강도가 2kgf/cm2 이상임을 특징으로 하는 배터리.
  72. 제66항에 있어서,
    상기 제1집전체의 용접 영역은 상기 제1무지부의 적층 두께가 100um 내지 975um인 상기 제1절곡 표면영역의 일부 영역과 50% 이상 중첩되는 것을 특징으로 하는 배터리.
  73. 제69항에 있어서,
    상기 제2집전체의 용접 영역은 상기 제2무지부의 적층 두께가 50um 내지 780um인 상기 제2절곡 표면영역의 일부 영역과 50% 이상 중첩되는 것을 특징으로 하는 배터리.
  74. 제69항에 있어서,
    상기 제1집전체의 용접 영역과 상기 제2집전판의 용접 영역은 상기 전극 조립체의 코어 중심을 기준으로 실질적으로 동일한 거리만큼 이격된 위치로부터 상기 전극 조립체의 반경 방향으로 연장되어 있는 것을 특징으로 하는 배터리.
  75. 제74항에 있어서,
    상기 제1집전체의 용접 영역이 연장된 길이가 상기 제2집전체의 용접 영역이 연장된 길이보다 더 긴 것을 특징으로 하는 배터리.
  76. 제66항에 있어서,
    상기 배터리의 저항은 4 miliohm 이하인 것을 특징으로 하는 배터리.
  77. 제60항 내지 제76항 중 어느 한 항에 따른 배터리를 포함하는 배터리 팩.
  78. 제77항에 따른 배터리 팩;을 포함하는 자동차.
PCT/KR2022/001010 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차 WO2022158862A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22742838.0A EP4243195A2 (en) 2021-01-19 2022-01-19 Electrode assembly, battery, and battery pack and vehicle comprising same
JP2023528505A JP2023550338A (ja) 2021-01-19 2022-01-19 電極組立体、バッテリー、それを含むバッテリーパック及び自動車
CN202280010641.8A CN116783771A (zh) 2021-01-19 2022-01-19 电极组件、电池以及包括该电池的电池组和车辆
CA3204064A CA3204064A1 (en) 2021-01-19 2022-01-19 Electrode assembly, battery, and battery pack and vehicle including the same
US18/273,010 US20240128517A1 (en) 2021-01-19 2022-01-19 Electrode assembly, battery, and battery pack and vehicle including the same

Applications Claiming Priority (64)

Application Number Priority Date Filing Date Title
KR10-2021-0007278 2021-01-19
KR20210007278 2021-01-19
KR20210022897 2021-02-19
KR10-2021-0022881 2021-02-19
KR20210022894 2021-02-19
KR20210022891 2021-02-19
KR10-2021-0022894 2021-02-19
KR10-2021-0022897 2021-02-19
KR10-2021-0022891 2021-02-19
KR20210022881 2021-02-19
KR10-2021-0024424 2021-02-23
KR20210024424 2021-02-23
KR20210030300 2021-03-08
KR10-2021-0030300 2021-03-08
KR20210030291 2021-03-08
KR10-2021-0030291 2021-03-08
KR20210046798 2021-04-09
KR10-2021-0046798 2021-04-09
KR10-2021-0058183 2021-05-04
KR20210058183 2021-05-04
KR10-2021-0077046 2021-06-14
KR20210077046 2021-06-14
KR10-2021-0084326 2021-06-28
KR20210084326 2021-06-28
KR20210131208 2021-10-01
KR20210131215 2021-10-01
KR10-2021-0131208 2021-10-01
KR20210131205 2021-10-01
KR10-2021-0131205 2021-10-01
KR10-2021-0131215 2021-10-01
KR10-2021-0131225 2021-10-01
KR10-2021-0131207 2021-10-01
KR20210131225 2021-10-01
KR20210131207 2021-10-01
KR10-2021-0137001 2021-10-14
KR20210137001 2021-10-14
KR10-2021-0137856 2021-10-15
KR1020210137856A KR20220105112A (ko) 2021-01-19 2021-10-15 원통형 이차전지, 그리고 이를 포함하는 배터리 팩 및 자동차
KR20210142196 2021-10-22
KR10-2021-0142196 2021-10-22
KR20210153472 2021-11-09
KR10-2021-0153472 2021-11-09
KR20210160823 2021-11-19
KR10-2021-0160823 2021-11-19
KR20210163809 2021-11-24
KR10-2021-0163809 2021-11-24
KR10-2021-0165866 2021-11-26
KR20210165866 2021-11-26
KR20210172446 2021-12-03
KR10-2021-0172446 2021-12-03
KR10-2021-0177091 2021-12-10
KR20210177091 2021-12-10
KR10-2021-0194593 2021-12-31
KR20210194572 2021-12-31
KR10-2021-0194572 2021-12-31
KR20210194611 2021-12-31
KR10-2021-0194612 2021-12-31
KR10-2021-0194610 2021-12-31
KR20210194612 2021-12-31
KR20210194610 2021-12-31
KR10-2021-0194611 2021-12-31
KR1020210194593A KR20220105118A (ko) 2021-01-19 2021-12-31 원통형 배터리 셀, 그리고 이를 포함하는 배터리 팩 및 자동차
KR10-2022-0001802 2022-01-05
KR20220001802 2022-01-05

Publications (2)

Publication Number Publication Date
WO2022158862A2 true WO2022158862A2 (ko) 2022-07-28
WO2022158862A3 WO2022158862A3 (ko) 2022-09-15

Family

ID=79730080

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/KR2022/001006 WO2022158858A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001011 WO2022158863A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001007 WO2022158859A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001008 WO2022158860A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001009 WO2022158861A2 (ko) 2021-01-19 2022-01-19 전지 및 이에 적용되는 집전체, 그리고 이러한 전지를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001005 WO2022158857A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001012 WO2022158864A2 (ko) 2021-01-19 2022-01-19 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차
PCT/KR2022/001010 WO2022158862A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차

Family Applications Before (7)

Application Number Title Priority Date Filing Date
PCT/KR2022/001006 WO2022158858A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001011 WO2022158863A2 (ko) 2021-01-19 2022-01-19 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001007 WO2022158859A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001008 WO2022158860A2 (ko) 2021-01-19 2022-01-19 배터리 및 이에 적용되는 집전체, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001009 WO2022158861A2 (ko) 2021-01-19 2022-01-19 전지 및 이에 적용되는 집전체, 그리고 이러한 전지를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001005 WO2022158857A2 (ko) 2021-01-19 2022-01-19 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/001012 WO2022158864A2 (ko) 2021-01-19 2022-01-19 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차

Country Status (11)

Country Link
US (5) US20240128517A1 (ko)
EP (16) EP4044334A3 (ko)
JP (8) JP2023550338A (ko)
KR (16) KR102437061B1 (ko)
CN (16) CN217655927U (ko)
CA (8) CA3205236A1 (ko)
DE (8) DE202022002774U1 (ko)
ES (2) ES2973526T3 (ko)
HU (1) HUE065419T2 (ko)
PL (2) PL4047725T3 (ko)
WO (8) WO2022158858A2 (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2973526T3 (es) 2021-01-19 2024-06-20 Lg Energy Solution Ltd Terminal de electrodo, celda de batería cilíndrica, paquete de baterías y vehículo
SE2150506A1 (en) * 2021-04-22 2022-10-23 Northvolt Ab A cylindrical secondary cell
SE544360C2 (en) * 2021-04-22 2022-04-19 Northvolt Ab Cylindrical secondary cell
WO2023279260A1 (zh) * 2021-07-06 2023-01-12 江苏时代新能源科技有限公司 电池单体、电池、用电设备及电池单体的制造方法和设备
CA3235893A1 (en) 2021-10-22 2023-04-27 Hae-Jin Lim Electrode assembly, battery, and battery pack and vehicle including the same
EP4366073A1 (en) * 2021-10-29 2024-05-08 LG Energy Solution, Ltd. Cylindrical battery cell, and battery pack including same and vehicle including same and current collector plate
KR102577169B1 (ko) * 2021-12-02 2023-09-11 삼성에스디아이 주식회사 원통형 이차 전지
KR20230111855A (ko) * 2022-01-19 2023-07-26 삼성에스디아이 주식회사 이차 전지
IT202200003533A1 (it) * 2022-02-25 2023-08-25 Gd Spa Batteria elettrica
IT202200003536A1 (it) * 2022-02-25 2023-08-25 Gd Spa Metodo di assemblaggio di una batteria elettrica
DE102022115671A1 (de) 2022-06-23 2023-12-28 Bayerische Motoren Werke Aktiengesellschaft Speicherzelle für einen elektrischen Energiespeicher, insbesondere eines Kraftfahrzeugs, elektrischer Energiespeicher sowie Verfahren zum Herstellen einer Speicherzelle
WO2024039186A1 (ko) * 2022-08-16 2024-02-22 주식회사 엘지에너지솔루션 초음파 용접 장치 및 초음파 용접 시스템
WO2024043767A1 (ko) * 2022-08-26 2024-02-29 주식회사 엘지에너지솔루션 압력 센서를 포함하는 원통형 배터리, 스웰링 압력 모니터링 장치 및 이를 포함하는 배터리 관리 시스템
WO2024045058A1 (zh) * 2022-08-31 2024-03-07 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
EP4336632A1 (de) * 2022-09-07 2024-03-13 VARTA Microbattery GmbH Energiespeicherelement und verfahren zum herstellen eines solchen energiespeicherelements
WO2024057631A1 (ja) * 2022-09-14 2024-03-21 パナソニックエナジー株式会社 電池
KR102586883B1 (ko) * 2022-09-15 2023-10-10 삼성에스디아이 주식회사 원통형 이차전지
SE2251078A1 (en) * 2022-09-16 2024-03-17 Northvolt Ab A secondary cell
KR102559655B1 (ko) * 2022-09-21 2023-07-24 삼성에스디아이 주식회사 이차전지
CN115275529B (zh) * 2022-09-27 2022-12-09 楚能新能源股份有限公司 圆柱型锂离子电池及其制备工艺
KR102619896B1 (ko) * 2022-10-04 2024-01-02 삼성에스디아이 주식회사 원통형 이차 전지
WO2024076106A1 (ko) * 2022-10-04 2024-04-11 주식회사 엘지에너지솔루션 원통형 이차전지, 그리고 이를 포함하는 배터리 팩 및 자동차
KR102670692B1 (ko) * 2022-10-04 2024-05-30 삼성에스디아이 주식회사 원통형 이차 전지
KR102559656B1 (ko) * 2022-10-06 2023-07-24 삼성에스디아이 주식회사 이차전지
CN115295860B (zh) * 2022-10-09 2022-12-20 深圳海润新能源科技有限公司 二次电池的制备方法、二次电池及电池模组
CN115472970A (zh) * 2022-10-13 2022-12-13 中创新航科技股份有限公司 圆柱电池
CN115621629A (zh) * 2022-10-13 2023-01-17 中创新航科技股份有限公司 圆柱电池
CN115395146A (zh) * 2022-10-13 2022-11-25 中创新航科技股份有限公司 圆柱电池
CN115483488A (zh) * 2022-10-13 2022-12-16 中创新航科技股份有限公司 圆柱电池
KR102586886B1 (ko) * 2022-10-26 2023-10-10 삼성에스디아이 주식회사 원통형 이차 전지
WO2024091065A1 (ko) * 2022-10-27 2024-05-02 주식회사 엘지에너지솔루션 전지 캔과 캡의 용접 구조 및 이를 적용한 배터리 셀
KR102570308B1 (ko) * 2022-10-27 2023-08-24 삼성에스디아이 주식회사 원통형 이차 전지
KR20240061226A (ko) 2022-10-31 2024-05-08 주식회사 엘지에너지솔루션 이차 전지
WO2024101903A1 (ko) * 2022-11-08 2024-05-16 주식회사 엘지에너지솔루션 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024101898A1 (ko) * 2022-11-11 2024-05-16 주식회사 엘지에너지솔루션 배터리 셀, 배터리 팩 및 이를 포함하는 자동차
KR20240072732A (ko) * 2022-11-17 2024-05-24 주식회사 엘지에너지솔루션 젤리롤, 이차 전지, 배터리 팩 및 자동차
WO2024112110A1 (ko) * 2022-11-22 2024-05-30 주식회사 엘지에너지솔루션 배터리 셀, 배터리 팩 및 이를 포함하는 자동차
KR102614640B1 (ko) * 2022-12-06 2023-12-15 삼성에스디아이 주식회사 원통형 이차 전지
CN115566373B (zh) * 2022-12-07 2023-03-03 楚能新能源股份有限公司 一种错位型的全极耳极片、卷绕电芯和圆柱电池
CN218827495U (zh) * 2022-12-14 2023-04-07 中创新航科技股份有限公司 电池包
SE2251580A1 (en) * 2022-12-23 2023-09-18 Northvolt Ab Secondary cell
CN115799653A (zh) * 2022-12-29 2023-03-14 蜂巢能源科技股份有限公司 电芯、模组及电池包
KR102637571B1 (ko) * 2023-01-02 2024-02-16 삼성에스디아이 주식회사 이차전지
KR102604971B1 (ko) * 2023-08-04 2023-11-23 (주)금양 애노드 집전체
KR102597478B1 (ko) * 2023-08-08 2023-11-02 (주)금양 캐소드 집전체
CN116722321A (zh) * 2023-08-10 2023-09-08 宁德时代新能源科技股份有限公司 电极组件、电池单体及其装配方法、电池包、用电装置
CN116864909B (zh) * 2023-09-01 2024-01-26 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761314A (en) 1970-06-23 1973-09-25 Accumulateurs Fixes High discharge rate electric cells and batteries
CN1444303A (zh) 2002-03-08 2003-09-24 居永明 可反复充放电的锂离子动力电池及其制造方法
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CN1309105C (zh) 2003-12-24 2007-04-04 松下电器产业株式会社 卷式电化学元件用极板组和电池
CN108496269A (zh) 2016-11-02 2018-09-04 株式会社Lg化学 电极组件及用于制造该电极组件的方法
CN110476273A (zh) 2017-04-14 2019-11-19 株式会社Lg化学 二次电池及制造该二次电池的方法
CN110870099A (zh) 2017-07-18 2020-03-06 戴森技术有限公司 能量存储装置
KR20210007278A (ko) 2019-07-10 2021-01-20 주식회사 이음파트너스 골목길 위급 상황 신고 장치
KR20210022897A (ko) 2019-08-21 2021-03-04 씨에스케이(주) 스크러버용 버너
KR20210022891A (ko) 2019-08-21 2021-03-04 한양대학교 산학협력단 차선 유지 제어 방법 및 그 장치
KR20210022881A (ko) 2019-08-21 2021-03-04 한국항공우주산업 주식회사 회전익 항공기 자동착륙 시스템
KR20210022894A (ko) 2019-08-21 2021-03-04 에이엠티 주식회사 챔버 내 모듈 ic 그립핑장치
KR20210024424A (ko) 2019-08-23 2021-03-05 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 무선 베어러에 대한 헤더 압축 구성 방법 및 장치
KR20210030300A (ko) 2020-10-23 2021-03-17 (주)쓰리엠탑 협업 멀티 로봇청소기
KR20210030291A (ko) 2013-12-17 2021-03-17 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20210046798A (ko) 2018-10-15 2021-04-28 이.온 스베리지 에이비 한 쌍의 도관과 충전 트렌치를 포함하는 트렌치 충전 방법
KR20210058183A (ko) 2019-11-13 2021-05-24 건국대학교 산학협력단 E형 간염바이러스에 대한 나노겔 백신용 조성물
KR20210077046A (ko) 2019-12-16 2021-06-25 현대자동차주식회사 자율주행 차량의 운행 제어 시스템 및 방법
KR20210084326A (ko) 2019-12-27 2021-07-07 (주)글루가 네일 아트의 제조 방법
KR20210131207A (ko) 2020-04-23 2021-11-02 안병로 필터 교체형 위생 마스크
KR20210131215A (ko) 2020-04-21 2021-11-02 유아이패스, 인크. 로봇 프로세스 자동화를 위한 테스트 자동화
KR20210131205A (ko) 2020-04-23 2021-11-02 최재연 고성능 선루프
KR20210131225A (ko) 2020-04-22 2021-11-02 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. 영상 프레임 처리 방법, 장치, 전자 기기, 저장 매체 및 프로그램
KR20210137001A (ko) 2019-03-12 2021-11-17 소니그룹주식회사 무선 통신 장치 및 방법
KR20210137856A (ko) 2020-05-11 2021-11-18 삼성전자주식회사 디스플레이 및 카메라를 포함하는 전자 장치
KR20210142196A (ko) 2019-04-16 2021-11-24 허니웰 인터내셔날 인코포레이티드 수소와 요오드로부터 요오드화수소를 제조하기 위한 통합된 방법 및 촉매
KR20210153472A (ko) 2020-06-10 2021-12-17 주식회사 이엠피이모션캡쳐 모션 및 얼굴 캡쳐를 이용한 실시간 방송플랫폼 제공 방법, 장치 및 그 시스템
KR20220001802A (ko) 2020-06-30 2022-01-06 주식회사 쓰리스타 흡배기 체크밸브가 부착된 필터교체형 마스크

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794773A (en) 1987-07-29 1989-01-03 Monarch Machine Tool Company Method of measuring camber
DE69404765T2 (de) * 1993-06-04 1998-03-12 Katayama Tokushu Kogyo Kk Batteriebehälter, Blech für die Formgebung des Batteriebehälters und Verfahren für die Herstellung des Bleches
JP2897104B2 (ja) * 1994-06-03 1999-05-31 古河電池株式会社 密閉型アルカリ蓄電池の製造方法
JPH10106532A (ja) * 1996-09-30 1998-04-24 Sanyo Electric Co Ltd 密閉型蓄電池
JP3260675B2 (ja) * 1997-10-14 2002-02-25 日本碍子株式会社 リチウム二次電池
JP4479013B2 (ja) * 1998-02-13 2010-06-09 株式会社ジーエス・ユアサコーポレーション 円筒形電池
JP3588264B2 (ja) 1999-02-22 2004-11-10 三洋電機株式会社 二次電池
JP2001028274A (ja) 1999-02-24 2001-01-30 Sanyo Electric Co Ltd 電気エネルギー蓄積素子
JP3252846B2 (ja) * 1999-06-01 2002-02-04 日本電気株式会社 非水電解液二次電池およびその製造方法
DE10027001C2 (de) 1999-06-01 2002-10-24 Nec Corp Sekundärbatterie mit einem nichtwässrigen Elektrolyten und Verfahren zur Herstellung dieser
FR2796205B1 (fr) 1999-07-08 2001-10-05 Cit Alcatel Accumulateur electrochimique etanche comportant un dispositif de reprise de courant en aluminium
KR100325861B1 (ko) * 1999-10-27 2002-03-07 김순택 밀폐전지
JP2001148238A (ja) 1999-11-19 2001-05-29 Sony Corp 2次電池
KR100349908B1 (ko) * 1999-12-15 2002-08-22 삼성에스디아이 주식회사 각형 밀폐전지
JP2002289170A (ja) 2001-03-27 2002-10-04 Toshiba Battery Co Ltd アルカリ二次電池
DE10144281A1 (de) 2001-09-08 2003-03-27 Nbt Gmbh Galvanisches Element mit Wickelektrodensatz
JP4401634B2 (ja) * 2002-09-04 2010-01-20 パナソニック株式会社 蓄電池およびその製造方法
JP4654575B2 (ja) 2003-10-27 2011-03-23 パナソニック株式会社 円筒形電池とそれを用いた電池間接続構造
JP5030379B2 (ja) 2003-12-24 2012-09-19 パナソニック株式会社 電極群からなる捲回形電気化学素子および電池
CN2681364Y (zh) 2004-02-27 2005-02-23 何策衡 具有极组负极封装的充电电池
KR100536253B1 (ko) * 2004-03-24 2005-12-12 삼성에스디아이 주식회사 이차 전지
KR100599793B1 (ko) * 2004-05-19 2006-07-13 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR100599792B1 (ko) 2004-05-19 2006-07-13 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체 및 집전판
KR20050121914A (ko) * 2004-06-23 2005-12-28 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR100599749B1 (ko) 2004-06-23 2006-07-12 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
CN101010818B (zh) 2004-07-28 2011-06-08 株式会社杰士汤浅 密封电池及其制造方法以及由多个密封电池构成的电池组及其制造方法
KR20060022128A (ko) 2004-09-06 2006-03-09 삼성에스디아이 주식회사 원통형 리튬 이온 이차 전지 및 이에 사용되는 권취형전극 조립체
KR100612236B1 (ko) * 2004-09-07 2006-08-11 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
JP4563264B2 (ja) * 2004-09-22 2010-10-13 日本碍子株式会社 リチウム二次電池
JP2006252890A (ja) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd 筒型二次電池及びその製造方法
JP5051410B2 (ja) 2005-05-30 2012-10-17 株式会社Gsユアサ 密閉形電池用リード、そのリードを用いた密閉形電池及びその電池の製造方法
KR100719740B1 (ko) * 2005-09-22 2007-05-17 삼성에스디아이 주식회사 이차전지 및 그 제조방법
CN100468827C (zh) 2005-12-20 2009-03-11 深圳华粤宝电池有限公司 电池圆柱外壳及圆柱防爆电池及其加工方法和设备
CN100573978C (zh) 2005-12-30 2009-12-23 比亚迪股份有限公司 二次电池
JP5019557B2 (ja) * 2006-02-03 2012-09-05 日立マクセルエナジー株式会社 筒形非水電解液一次電池
CN101083317A (zh) 2006-05-31 2007-12-05 比亚迪股份有限公司 一种二次电池
JP2008041527A (ja) 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 電池缶及びそれを用いた電池
US8568915B2 (en) * 2006-08-11 2013-10-29 Johnson Controls—SAFT Power Solutions LLC Battery with integrally formed terminal
JP5172138B2 (ja) 2006-12-19 2013-03-27 パナソニック株式会社 アルカリ蓄電池
JP2008243811A (ja) 2007-02-28 2008-10-09 Matsushita Electric Ind Co Ltd 電池
JP2008262825A (ja) 2007-04-12 2008-10-30 Hitachi Maxell Ltd コイン形非水電解液二次電池
JP2008288079A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 無水銀アルカリ乾電池
CN201066701Y (zh) 2007-07-13 2008-05-28 深圳市比克电池有限公司 锂离子电池
KR100922352B1 (ko) 2007-10-02 2009-10-21 삼성에스디아이 주식회사 이차 전지
CN201117731Y (zh) 2007-10-24 2008-09-17 中国电子科技集团公司第十八研究所 一种高倍率充放电二次电池结构
JP2009110751A (ja) * 2007-10-29 2009-05-21 Panasonic Corp 二次電池
JP2009110885A (ja) 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 密閉電池及びその製造方法
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
EP2347461B1 (en) * 2008-11-21 2016-04-06 Johnson Controls Saft Advanced Power Solutions LLC Current collector for an electrochemical cell
KR101574082B1 (ko) * 2008-12-12 2015-12-04 삼성에스디아이 주식회사 이차 전지
CN201466087U (zh) 2009-06-11 2010-05-12 天津力神电池股份有限公司 一种锂离子电池负极柱铆接密封结构
DE102009060800A1 (de) * 2009-06-18 2011-06-09 Varta Microbattery Gmbh Knopfzelle mit Wickelelektrode und Verfahren zu ihrer Herstellung
KR101839158B1 (ko) * 2009-10-13 2018-03-15 파워지닉스 시스템즈, 인코포레이티드 양성 캔을 포함하는 원통형 니켈-아연 전지
KR101093957B1 (ko) * 2010-01-11 2011-12-15 삼성에스디아이 주식회사 이차전지
CN201781028U (zh) 2010-07-30 2011-03-30 比亚迪股份有限公司 一种二次电池
KR101240717B1 (ko) 2010-10-13 2013-03-11 삼성에스디아이 주식회사 이차 전지
JP5527176B2 (ja) 2010-11-25 2014-06-18 ソニー株式会社 非水電解質電池
JP2014053071A (ja) * 2010-12-29 2014-03-20 Sanyo Electric Co Ltd 円筒形電池及びその製造方法
US20120171535A1 (en) * 2010-12-31 2012-07-05 Fuyuan Ma Nickel-zinc battery and manufacturing method thereof
US9231270B2 (en) * 2011-02-16 2016-01-05 Shin-Kobe Electric Machinery Co., Ltd. Lithium-ion battery
JP6070552B2 (ja) * 2011-06-28 2017-02-01 日本ケミコン株式会社 蓄電デバイスの製造方法
JP5767407B2 (ja) * 2011-07-13 2015-08-19 エルジー・ケム・リミテッド 円筒型二次電池
JP6175758B2 (ja) * 2011-11-29 2017-08-09 株式会社Gsユアサ 蓄電素子
CN202423400U (zh) 2011-12-16 2012-09-05 日本碍子株式会社 阳极容器、钠硫电池及模块电池
US9324976B2 (en) * 2012-02-21 2016-04-26 Johnson Controls Technology Company Electrochemical cell having a fixed cell element
US9768422B2 (en) * 2012-04-17 2017-09-19 Kabushiki Kaisha Toyota Jidoshokki Electricity storage device
JP5868265B2 (ja) 2012-05-25 2016-02-24 日立オートモティブシステムズ株式会社 単電池および組電池
CN105190952A (zh) * 2013-04-01 2015-12-23 日立汽车系统株式会社 锂离子二次电池及其制造方法
US9805877B2 (en) * 2013-04-10 2017-10-31 Maxwell Technologies, Inc. Collector plate for energy storage device and methods of manufacturing
FR3011128B1 (fr) * 2013-09-25 2015-10-30 Commissariat Energie Atomique Procede de realisation d'un faisceau electrochimique d'un accumulateur au lithium
EP2876338B1 (en) * 2013-11-21 2016-03-30 Western Global Holdings Limited Check valve with back pressure relief
CN203553261U (zh) 2013-11-27 2014-04-16 杭州山合江新能源技术有限公司 一种用于极盖和集流体间的平面式连接结构
JP6364757B2 (ja) 2013-11-29 2018-08-01 日本ケミコン株式会社 蓄電デバイスおよびその製造方法
JP2015222685A (ja) 2014-05-23 2015-12-10 トヨタ自動車株式会社 二次電池用の電極
CN110429320B (zh) * 2014-06-26 2022-09-23 松下知识产权经营株式会社 卷绕型电池
KR101679413B1 (ko) * 2015-04-03 2016-11-25 (주)오렌지파워 중공형 이차전지
KR101743136B1 (ko) * 2014-07-16 2017-06-02 주식회사 엘지화학 내부 저항이 감소된 이차전지 및 그의 제조방법
KR20160043725A (ko) * 2014-10-14 2016-04-22 주식회사 엘지화학 노치를 포함하는 원형 이차전지
JP6398655B2 (ja) * 2014-11-26 2018-10-03 トヨタ自動車株式会社 電池及びその製造方法
KR101926293B1 (ko) 2015-03-26 2018-12-06 니뽄 도쿠슈 도교 가부시키가이샤 전기 화학 반응 단위 및 연료 전지 스택
JP6550863B2 (ja) 2015-03-31 2019-07-31 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
CN105449291B (zh) 2015-04-16 2017-12-01 东莞市创明电池技术有限公司 一种圆柱型电池无极耳焊接的制备方法
CN106159350B (zh) * 2015-04-27 2019-04-26 深圳金山电池有限公司 一种纽扣型锂离子二次电池及其制备方法
CN204596910U (zh) * 2015-04-27 2015-08-26 深圳金山电池有限公司 一种纽扣型锂离子二次电池
JP2016225014A (ja) * 2015-05-27 2016-12-28 日立オートモティブシステムズ株式会社 円筒形二次電池
US9793530B2 (en) 2015-07-17 2017-10-17 Atieva, Inc. Battery assembly with linear bus bar configuration
KR102397218B1 (ko) * 2015-08-27 2022-05-12 삼성에스디아이 주식회사 배터리 팩
JP6861368B2 (ja) 2015-08-31 2021-04-21 パナソニックIpマネジメント株式会社 非水電解質二次電池
KR20170033543A (ko) * 2015-09-17 2017-03-27 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR102470495B1 (ko) * 2015-11-24 2022-11-24 삼성에스디아이 주식회사 이차전지 및 그 제조방법
JP2017120765A (ja) * 2015-12-25 2017-07-06 パナソニック株式会社 非水電解質二次電池
US10797275B2 (en) * 2015-12-28 2020-10-06 Gs Yuasa International Ltd. Energy storage device and method for manufacturing the energy storage device
US10193123B2 (en) * 2016-03-01 2019-01-29 Atieva, Inc. Battery pack bus bar assembly with enlarged interconnect mounting platforms
JP2018092776A (ja) * 2016-12-01 2018-06-14 株式会社豊田自動織機 電池製造方法及び電池
CN206471426U (zh) * 2016-12-30 2017-09-05 江西佳沃新能源有限公司 一种锂电池结构
JP6868400B2 (ja) * 2017-01-17 2021-05-12 Fdk株式会社 筒型電池の封口体、筒型電池
CN206461019U (zh) * 2017-02-13 2017-09-01 山东巨维新能源股份有限公司 端面引流结构的铝壳圆柱电池
CN206461044U (zh) 2017-02-13 2017-09-01 山东巨维新能源股份有限公司 端面引流结构的钢壳圆柱电池
JP2020071898A (ja) * 2017-03-03 2020-05-07 株式会社Gsユアサ 蓄電素子
CN206619636U (zh) 2017-03-30 2017-11-07 陕西沃特玛新能源有限公司 一种电池
CN108428847B (zh) * 2017-04-07 2023-08-29 宁德时代新能源科技股份有限公司 二次电池
US10431853B2 (en) * 2017-05-02 2019-10-01 Apple Inc. Rechargeable battery features and components
KR102316488B1 (ko) * 2017-05-25 2021-10-22 주식회사 엘지화학 원통형 셀 연결 분리형 버스바와 이를 이용한 배터리 모듈 및 제조 방법
CN107482156B (zh) 2017-08-29 2020-11-06 江苏英能新能源科技有限公司 一种大单体锂离子电池
US11600878B2 (en) 2017-08-31 2023-03-07 Panasonic Intellectual Property Management Co., Ltd. Battery block and battery module provided with same
KR102263435B1 (ko) 2017-09-13 2021-06-11 주식회사 엘지에너지솔루션 비딩부가 생략된 원통형 전지셀
CN207217654U (zh) 2017-09-14 2018-04-10 合肥国轩高科动力能源有限公司 一种绝缘连接片及使用此连接片的全极耳锂离子电池
CN207381468U (zh) 2017-11-13 2018-05-18 济南圣泉集团股份有限公司 电极引出结构及储能器件
KR102288405B1 (ko) * 2017-12-26 2021-08-09 주식회사 엘지에너지솔루션 공간 활용성과 안전성이 향상된 원통형 전지셀 조립체 및 이를 포함하는 배터리 모듈
US20190296283A1 (en) * 2018-03-23 2019-09-26 Sf Motors, Inc. Integrated battery cell modules with plug-in battery cells for electric vehicles
WO2019194182A1 (ja) 2018-04-06 2019-10-10 三洋電機株式会社 円筒形電池
CN208400966U (zh) 2018-05-29 2019-01-18 江西中汽瑞华新能源科技有限公司 一种大容量圆柱形二次锂电池
JP7128666B2 (ja) 2018-06-11 2022-08-31 Fdk株式会社 二次電池
KR102665556B1 (ko) * 2018-07-13 2024-05-10 주식회사 엘지에너지솔루션 절연 가스켓 및 이를 포함하는 이차전지
TWI679311B (zh) 2018-08-10 2019-12-11 南韓商Kcf科技有限公司 最小化隆起、皺紋或撕裂的銅箔、包含其的電極、包含其的二次電池、及製造其的方法
KR102622370B1 (ko) * 2018-08-16 2024-01-09 주식회사 엘지에너지솔루션 이차전지
KR102480958B1 (ko) * 2018-10-05 2022-12-23 주식회사 엘지에너지솔루션 이차전지
KR20200041625A (ko) * 2018-10-12 2020-04-22 삼성에스디아이 주식회사 이차전지
CN113302786B (zh) 2019-01-18 2023-05-09 三洋电机株式会社 密闭电池
CN209487560U (zh) 2019-01-23 2019-10-11 深圳新恒业电池科技有限公司 电池
CN209912959U (zh) * 2019-06-24 2020-01-07 福建卫东新能源股份有限公司 一种碱性蓄电池电极结构
KR102358157B1 (ko) 2019-06-27 2022-02-04 코리아크레딧뷰로 (주) 보이스 피싱 예방 방법
CN114175301A (zh) 2019-07-30 2022-03-11 株式会社村田制作所 二次电池、电池包、电子设备、电动工具、电动航空器以及电动车辆
WO2021020237A1 (ja) 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
CN110459705A (zh) * 2019-09-05 2019-11-15 重庆市紫建电子有限公司 一种提升径向空间利用率的纽扣电池
CN211208547U (zh) 2019-12-06 2020-08-07 苏州市齐凡电子科技有限公司 一种公母连接片组件
CN111430588B (zh) * 2020-03-03 2023-08-22 珠海冠宇电池股份有限公司 扣式电池的外壳组件、扣式电池以及电子产品
CN211879534U (zh) 2020-04-30 2020-11-06 宁德时代新能源科技股份有限公司 电极组件、二次电池、电池组及装置
CN111952525B (zh) * 2020-08-20 2023-06-20 华霆(合肥)动力技术有限公司 同侧集流装置、电池模组和电动车
CN112310574A (zh) 2020-09-30 2021-02-02 宁德时代新能源科技股份有限公司 圆柱型电池单体、电池、用电装置、制造方法及制造系统
ES2973526T3 (es) 2021-01-19 2024-06-20 Lg Energy Solution Ltd Terminal de electrodo, celda de batería cilíndrica, paquete de baterías y vehículo
WO2023065186A1 (zh) * 2021-10-20 2023-04-27 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备、电池单体的制备方法及装置
CN114446386B (zh) * 2022-01-17 2024-02-02 中国人民解放军国防科技大学 一种血液ctDNA的检测方法

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761314A (en) 1970-06-23 1973-09-25 Accumulateurs Fixes High discharge rate electric cells and batteries
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CN1444303A (zh) 2002-03-08 2003-09-24 居永明 可反复充放电的锂离子动力电池及其制造方法
CN1309105C (zh) 2003-12-24 2007-04-04 松下电器产业株式会社 卷式电化学元件用极板组和电池
KR20210030291A (ko) 2013-12-17 2021-03-17 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
CN108496269A (zh) 2016-11-02 2018-09-04 株式会社Lg化学 电极组件及用于制造该电极组件的方法
CN110476273A (zh) 2017-04-14 2019-11-19 株式会社Lg化学 二次电池及制造该二次电池的方法
CN110870099A (zh) 2017-07-18 2020-03-06 戴森技术有限公司 能量存储装置
KR20210046798A (ko) 2018-10-15 2021-04-28 이.온 스베리지 에이비 한 쌍의 도관과 충전 트렌치를 포함하는 트렌치 충전 방법
KR20210137001A (ko) 2019-03-12 2021-11-17 소니그룹주식회사 무선 통신 장치 및 방법
KR20210142196A (ko) 2019-04-16 2021-11-24 허니웰 인터내셔날 인코포레이티드 수소와 요오드로부터 요오드화수소를 제조하기 위한 통합된 방법 및 촉매
KR20210007278A (ko) 2019-07-10 2021-01-20 주식회사 이음파트너스 골목길 위급 상황 신고 장치
KR20210022891A (ko) 2019-08-21 2021-03-04 한양대학교 산학협력단 차선 유지 제어 방법 및 그 장치
KR20210022894A (ko) 2019-08-21 2021-03-04 에이엠티 주식회사 챔버 내 모듈 ic 그립핑장치
KR20210022881A (ko) 2019-08-21 2021-03-04 한국항공우주산업 주식회사 회전익 항공기 자동착륙 시스템
KR20210022897A (ko) 2019-08-21 2021-03-04 씨에스케이(주) 스크러버용 버너
KR20210024424A (ko) 2019-08-23 2021-03-05 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 무선 베어러에 대한 헤더 압축 구성 방법 및 장치
KR20210058183A (ko) 2019-11-13 2021-05-24 건국대학교 산학협력단 E형 간염바이러스에 대한 나노겔 백신용 조성물
KR20210077046A (ko) 2019-12-16 2021-06-25 현대자동차주식회사 자율주행 차량의 운행 제어 시스템 및 방법
KR20210084326A (ko) 2019-12-27 2021-07-07 (주)글루가 네일 아트의 제조 방법
KR20210131215A (ko) 2020-04-21 2021-11-02 유아이패스, 인크. 로봇 프로세스 자동화를 위한 테스트 자동화
KR20210131225A (ko) 2020-04-22 2021-11-02 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. 영상 프레임 처리 방법, 장치, 전자 기기, 저장 매체 및 프로그램
KR20210131205A (ko) 2020-04-23 2021-11-02 최재연 고성능 선루프
KR20210131208A (ko) 2020-04-23 2021-11-02 안병로 실시간 체온정보 측정이 가능한 위생 마스크
KR20210131207A (ko) 2020-04-23 2021-11-02 안병로 필터 교체형 위생 마스크
KR20210137856A (ko) 2020-05-11 2021-11-18 삼성전자주식회사 디스플레이 및 카메라를 포함하는 전자 장치
KR20210153472A (ko) 2020-06-10 2021-12-17 주식회사 이엠피이모션캡쳐 모션 및 얼굴 캡쳐를 이용한 실시간 방송플랫폼 제공 방법, 장치 및 그 시스템
KR20220001802A (ko) 2020-06-30 2022-01-06 주식회사 쓰리스타 흡배기 체크밸브가 부착된 필터교체형 마스크
KR20210030300A (ko) 2020-10-23 2021-03-17 (주)쓰리엠탑 협업 멀티 로봇청소기

Also Published As

Publication number Publication date
JP2023549148A (ja) 2023-11-22
KR20220113329A (ko) 2022-08-12
EP4044332A2 (en) 2022-08-17
JP2024500131A (ja) 2024-01-04
DE202022002772U1 (de) 2023-05-11
WO2022158864A3 (ko) 2022-09-15
EP4318699A3 (en) 2024-02-28
WO2022158858A2 (ko) 2022-07-28
KR20220107132A (ko) 2022-08-02
KR20220105144A (ko) 2022-07-26
DE202022002773U1 (de) 2023-05-19
WO2022158860A3 (ko) 2022-09-15
KR102437061B1 (ko) 2022-08-26
KR20220113654A (ko) 2022-08-16
EP4044358A2 (en) 2022-08-17
EP4044336B1 (en) 2024-03-06
WO2022158860A2 (ko) 2022-07-28
CA3205236A1 (en) 2022-07-28
WO2022158861A2 (ko) 2022-07-28
EP4044332A3 (en) 2022-09-07
EP4325652A2 (en) 2024-02-21
WO2022158859A2 (ko) 2022-07-28
CN114824413A (zh) 2022-07-29
CN217239536U (zh) 2022-08-19
EP4047725A2 (en) 2022-08-24
KR20220108012A (ko) 2022-08-02
EP4311013A2 (en) 2024-01-24
CN114864956A (zh) 2022-08-05
KR20220123354A (ko) 2022-09-06
KR20220105147A (ko) 2022-07-26
KR20220105141A (ko) 2022-07-26
KR20220105145A (ko) 2022-07-26
EP4325652A3 (en) 2024-02-28
EP4047703A3 (en) 2022-09-07
EP4044336A2 (en) 2022-08-17
KR20220105142A (ko) 2022-07-26
KR20220105143A (ko) 2022-07-26
CA3204067A1 (en) 2022-07-28
DE202022002770U1 (de) 2023-05-16
CA3204064A1 (en) 2022-07-28
DE202022002774U1 (de) 2023-05-22
HUE065419T2 (hu) 2024-05-28
JP2023549770A (ja) 2023-11-29
PL4047725T3 (pl) 2024-05-20
CA3202317A1 (en) 2022-07-28
WO2022158861A3 (ko) 2022-09-15
CN114865054A (zh) 2022-08-05
US20240021958A1 (en) 2024-01-18
EP4044334A3 (en) 2022-08-31
US20240136674A1 (en) 2024-04-25
CN114865053A (zh) 2022-08-05
PL4047703T3 (pl) 2024-04-29
EP4047703A2 (en) 2022-08-24
CN114864857A (zh) 2022-08-05
EP4047703B1 (en) 2024-01-03
KR20220105148A (ko) 2022-07-26
WO2022158857A3 (ko) 2022-09-15
DE202022002771U1 (de) 2023-05-12
WO2022158864A2 (ko) 2022-07-28
US20240128517A1 (en) 2024-04-18
WO2022158862A3 (ko) 2022-09-15
EP4047725A3 (en) 2022-08-31
CN217740748U (zh) 2022-11-04
EP4376211A1 (en) 2024-05-29
CA3204066A1 (en) 2022-07-28
EP4250469A2 (en) 2023-09-27
KR102448987B1 (ko) 2022-09-29
JP2023549378A (ja) 2023-11-24
EP4239784A2 (en) 2023-09-06
ES2973526T3 (es) 2024-06-20
EP4047702A1 (en) 2022-08-24
KR102448822B1 (ko) 2022-09-29
KR102446797B1 (ko) 2022-09-26
EP4044336A3 (en) 2022-08-31
CN217239510U (zh) 2022-08-19
KR20220107133A (ko) 2022-08-02
KR20220107131A (ko) 2022-08-02
JP2024501458A (ja) 2024-01-12
WO2022158857A2 (ko) 2022-07-28
CN115000339A (zh) 2022-09-02
KR102446351B1 (ko) 2022-09-22
CN217655927U (zh) 2022-10-25
WO2022158863A3 (ko) 2022-09-15
JP2023551123A (ja) 2023-12-07
KR20220108011A (ko) 2022-08-02
ES2974169T3 (es) 2024-06-26
KR102444337B1 (ko) 2022-09-16
WO2022158859A3 (ko) 2022-09-15
DE202022002791U1 (de) 2023-06-28
EP4044358B1 (en) 2024-03-06
EP4047725B1 (en) 2024-01-10
EP4312301A3 (en) 2024-02-28
EP4228082A2 (en) 2023-08-16
EP4318699A2 (en) 2024-02-07
WO2022158863A2 (ko) 2022-07-28
JP2023551128A (ja) 2023-12-07
DE202022002769U1 (de) 2023-05-25
CN217655909U (zh) 2022-10-25
EP4311013A3 (en) 2024-02-21
KR20220105146A (ko) 2022-07-26
EP4243195A2 (en) 2023-09-13
CN217239523U (zh) 2022-08-19
WO2022158858A3 (ko) 2022-09-15
US20230246244A1 (en) 2023-08-03
US20220231345A1 (en) 2022-07-21
CN114865242A (zh) 2022-08-05
EP4044358A3 (en) 2022-08-31
CN114865174A (zh) 2022-08-05
EP4312301A2 (en) 2024-01-31
JP2023550338A (ja) 2023-12-01
CA3203047A1 (en) 2022-07-28
EP4047702B1 (en) 2024-06-05
CA3202172A1 (en) 2022-07-28
DE202022002775U1 (de) 2023-05-16
KR102438158B1 (ko) 2022-08-30
KR102448988B1 (ko) 2022-09-29
CA3203640A1 (en) 2022-07-28
EP4044334A2 (en) 2022-08-17
CN218182246U (zh) 2022-12-30
CN217239587U (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2022158862A2 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2022177378A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023090574A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023085893A1 (ko) 분리막, 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023075523A1 (ko) 원통형 배터리 셀, 이를 포함하는 배터리 및 자동차 및 집전판
WO2024019549A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023090576A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2024019568A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023090577A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023096062A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차
WO2024019552A1 (ko) 원통형 배터리, 배터리 팩 및 자동차
WO2023090573A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2022177360A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩 및 자동차
WO2024136620A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩
WO2023014018A1 (ko) 전극 조립체, 이차전지, 이를 포함하는 배터리 팩 및 자동차
WO2023068889A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023063808A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023068494A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023096389A1 (ko) 전극 조립체 및 그 제조 방법 및 장치, 전극 조립체를 포함하는 원통형 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023068898A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068885A1 (ko) 전극 조립체, 원통형 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023068888A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068891A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068893A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068886A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742838

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2023528505

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022742838

Country of ref document: EP

Effective date: 20230605

ENP Entry into the national phase

Ref document number: 3204064

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18273010

Country of ref document: US

Ref document number: 202280010641.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE