WO2020027102A1 - 摺動部品 - Google Patents

摺動部品 Download PDF

Info

Publication number
WO2020027102A1
WO2020027102A1 PCT/JP2019/029771 JP2019029771W WO2020027102A1 WO 2020027102 A1 WO2020027102 A1 WO 2020027102A1 JP 2019029771 W JP2019029771 W JP 2019029771W WO 2020027102 A1 WO2020027102 A1 WO 2020027102A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
pressure generating
fluid
generating mechanism
fluid introduction
Prior art date
Application number
PCT/JP2019/029771
Other languages
English (en)
French (fr)
Inventor
哲三 岡田
壮敏 板谷
猛 細江
祐貴 佐々木
啓太 梶原
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2020534655A priority Critical patent/JP7201690B2/ja
Priority to KR1020207037305A priority patent/KR102498751B1/ko
Priority to US17/257,260 priority patent/US11608897B2/en
Priority to CN201980043720.7A priority patent/CN112334690B/zh
Priority to EP19843273.4A priority patent/EP3832178B1/en
Publication of WO2020027102A1 publication Critical patent/WO2020027102A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/3416Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with at least one continuous groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/003Preventing or minimising internal leakage of working-fluid, e.g. between stages by packing rings; Mechanical seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • F16C33/743Sealings of sliding-contact bearings by means of a fluid retained in the sealing gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/342Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with means for feeding fluid directly to the face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/19Two-dimensional machined; miscellaneous
    • F05D2250/191Two-dimensional machined; miscellaneous perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Definitions

  • the present invention relates to, for example, mechanical seals, bearings, and other sliding parts suitable for sliding parts.
  • it is used for a seal ring that needs to prevent friction from leaking from the sliding surface while reducing friction by interposing a fluid on the sliding surface, for example, a gearbox for a turbocharger or an aircraft engine.
  • Sliding parts such as oil seals or bearings.
  • the sliding surface S of the rotating side sealing ring 4 on the sealed fluid side has the sliding surface S of the sliding surface S on the sealed fluid side.
  • a fluid introduction groove 43 configured to communicate with the peripheral edge but not to the leakage side peripheral edge, a positive pressure generating groove 42 communicating with the fluid introduction groove 43, and a communication with the leakage side peripheral edge of the sliding surface S.
  • the circumferential gap CH in the leakage region between the adjacent positive pressure generation grooves 42 is a leakage region in which fluid flows from the sealed fluid side to the leakage side because the negative pressure of the positive pressure generation groove 42 does not affect the leakage.
  • the spiral groove 41 cannot generate a sufficient dynamic pressure as in the case of the reverse rotation, the fluid flowing through the leak region CH cannot be pushed back, and the sealing performance cannot be sufficiently maintained.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a sliding component capable of exhibiting a seal regardless of a rotation direction.
  • the sliding component of the present invention is: A pair of sliding parts that slide relative to each other, The pair of sliding components has a sliding surface that slides relative to each other, a sealed fluid side edge and a leak side edge, The sliding surface of at least one of the sliding components of the pair of sliding components, a fluid introduction groove communicating with the sealed fluid side peripheral edge, A first pressure generating mechanism having one end communicating with the fluid introduction groove and the other end surrounded by a land; A second pressure generating mechanism, one end of which is communicated with the leak side peripheral edge and the other end of which is surrounded by an annular land portion.
  • the fluid introduction groove and the other end of the first pressure generating mechanism include an overlapping portion that overlaps in a circumferential direction.
  • the fluid is actively introduced into the sliding surface by the fluid introducing groove, and the sliding surface can be lubricated.
  • the fluid introducing groove and the end of the first pressure generating mechanism are circumferentially connected. The provision of the overlapping portion that overlaps in the direction makes it possible to narrow the leak region, so that the leak can be reduced.
  • the sliding component of the present invention has an inclined wall portion facing the other end of the first pressure generating mechanism,
  • the inclined wall portion is provided at the one end of the first pressure generating mechanism with respect to a radial axis connecting an intersection of the inclined wall portion and the peripheral edge of the sealed fluid and the center of one of the sliding components. It is characterized by tilting in the direction of approach.
  • the inclined wall portion of the fluid introduction groove generates the first pressure with respect to a radial axis connecting the intersection of the inclined wall portion and the peripheral edge of the sealed fluid and the center of one of the sliding components. Since it inclines in the direction approaching the mechanism, it is possible to easily form an overlap portion and narrow the leak region, thereby reducing the leak.
  • the sliding component of the present invention The fluid introduction groove and the first pressure generating mechanism are arranged closer to the peripheral edge of the fluid to be sealed than the annular land portion. According to this feature, the fluid introduction groove and the first pressure generating mechanism are disposed closer to the sealed fluid side peripheral edge than the annular land portion, so that the first pressure generating mechanism and the second pressure generating mechanism are annular. Since the first pressure generating mechanism and the second pressure generating mechanism are separated by the land portion, interference can be prevented, and no leakage occurs even at rest.
  • the sliding component of the present invention The fluid introduction groove is formed in a trapezoidal shape. According to this feature, the overlapping portion can be easily formed by using the oblique side of the trapezoid, and the leak region can be narrowed, so that the leak can be reduced.
  • the sliding component of the present invention The fluid introduction groove is formed in a triangular shape.
  • the triangular fluid introduction groove can have a small radial width, so that even in a narrow place, the overlapping portion between the fluid introduction groove and the first pressure generating mechanism can be increased to narrow the leak region. Leakage can be reduced.
  • the sliding component of the present invention The first pressure generation mechanism and the second pressure generation mechanism are characterized in that they are configured by grooves. According to this feature, the first pressure generating mechanism and the second pressure generating mechanism can be easily formed.
  • the sliding component of the present invention The first pressure generation mechanism and the second pressure generation mechanism are characterized by being composed of a dimple group. According to this feature, the first pressure generating mechanism and the second pressure generating mechanism having a desired shape can be easily configured by the dimple group.
  • the sliding component of the present invention The depth of the fluid introduction groove is greater than the depth of the first pressure generating mechanism. According to this feature, the fluid introduction groove takes in the fluid from the sealed fluid side and supplies the fluid to the sliding surface even when the fluid lubrication state is not sufficient in a low-speed rotation state such as at startup, It can contribute to lubrication of the sliding surface.
  • the sliding component of the present invention The depth of the fluid introduction groove is the same as the depth of the first pressure generating mechanism. According to this feature, since the cross-sectional area of the leakage region can be reduced by reducing the cross-sectional area of the fluid introduction groove, the leakage can be reduced.
  • FIG. 2 is a longitudinal sectional view illustrating an example of the mechanical seal according to the first embodiment.
  • FIG. 2 is a view showing a sliding surface of a rotating-side sealing ring according to the first embodiment as viewed from arrows WW in FIG. 1.
  • FIG. 2 is a view showing a sliding surface of a rotating-side sealing ring according to a second embodiment as viewed in the direction of arrows WW in FIG. 1.
  • FIG. 3 is a view showing a sliding surface of a rotating side sealing ring of a third embodiment as viewed in the direction of arrows WW in FIG. 1.
  • FIG. 9 is a view showing a sliding surface of a rotary side sealing ring according to a fourth embodiment as viewed from arrows WW in FIG. 1.
  • FIG. 1 is a longitudinal sectional view illustrating an example of the mechanical seal according to the first embodiment.
  • FIG. 2 is a view showing a sliding surface of a rotating-side sealing ring according to the first embodiment as viewed from arrows WW in
  • FIG. 9 is a view showing a sliding surface of a rotary side sealing ring according to a fifth embodiment as viewed from arrows WW in FIG. 1.
  • FIG. 13 is a view showing a sliding surface of a rotating-side sealing ring according to a sixth embodiment as viewed from arrows WW in FIG. 1.
  • FIG. 13 is a view showing a sliding surface of a rotating-side sealing ring according to a seventh embodiment as viewed from arrows WW in FIG. 1. It is a figure which shows the sliding surface of the rotating side sealing ring of a prior art example.
  • a sliding component according to a first embodiment of the present invention will be described with reference to FIGS.
  • a mechanical seal which is an example of a sliding component will be described.
  • the inner peripheral side of the sliding component constituting the mechanical seal will be described as the sealed fluid side (liquid side or mist-like fluid side), and the outer peripheral side will be described as the leak side (gas side).
  • the present invention is not limited to this, and can be applied to a case where the inner peripheral side is a leak side (gas side) and the outer peripheral side is a sealed fluid side (liquid side or mist-like fluid side).
  • the sealed fluid side liquid side or mist-like fluid side
  • the pressure on the leak side gas side
  • the sealed fluid side liquid side or mist-like fluid side
  • the pressure on the leak side gas side
  • both pressures may be the same.
  • a mechanical seal 1 shown in FIG. 1 is a rotary seal ring 4 rotatable integrally with a sleeve 3 attached to a rotary shaft 2 side, and a circle as the other sliding component provided so as to be movable in the axial direction.
  • An annular stationary sealing ring 7 and a coiled wave spring 8 for urging the stationary sealing ring 7 in the axial direction are provided so that the mirror-finished sliding surfaces S slide closely together. .
  • the rotating seal ring 4 and the stationary seal ring 7 have sliding surfaces S formed in the radial direction, and the fluid to be sealed, for example, liquid or This is to prevent the mist-like fluid (hereinafter, sometimes simply referred to as “liquid”) from flowing out from the inner periphery of the sliding surface S to the leakage side on the outer periphery.
  • Reference numeral 9 denotes an O-ring, which seals between the cartridge 6 and the stationary sealing ring 7.
  • the sleeve 3 and the rotation-side sealing ring 4 are separate bodies is described.
  • the present invention is not limited thereto, and the sleeve 3 and the rotation-side sealing ring 4 may be formed integrally.
  • the material of the rotating side sealing ring 4 and the stationary side sealing ring 7 is selected from silicon carbide (SiC) having excellent wear resistance and carbon having excellent self-lubricating properties.
  • SiC silicon carbide
  • FIG. 2 shows the sliding surface S of the rotary sealing ring 4 of the sliding component according to the first embodiment of the present invention.
  • the outer peripheral side of the sliding surface S of the rotating side sealing ring 4 is a leak side, for example, a gas side
  • the inner peripheral side is a sealed fluid side, for example, a liquid side
  • the rotating side sealing ring 4 is a clock as shown by an arrow. Direction.
  • the sliding surface S of the rotary seal ring 4 includes a fluid introduction groove 13, a positive pressure generation groove 12 (first pressure generation mechanism according to the present invention), and a spiral groove 11 (second pressure generation mechanism according to the present invention).
  • the positive pressure generating groove 12 and the fluid introducing groove 13 are disposed closer to the sealed fluid side peripheral edge 16 than the annular land portion R2, and the spiral groove 11 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2.
  • the fluid introduction grooves 13 and the positive pressure generation grooves 12 are provided in a predetermined number (twelve in the embodiment of FIG. 2) in the circumferential direction so as to surround the sealed peripheral edge 16 on the fluid side.
  • the predetermined number is not limited to the embodiment, and may be one or more as long as it can surround the sealed fluid side peripheral edge 16.
  • the distribution is not limited to equal distribution.
  • the number and shape of the spiral grooves 11 can also be changed according to conditions.
  • the fluid introduction groove 13 is formed in a trapezoidal shape when viewed in the axial direction, only the opening 13a is opened to the sealed fluid side, and the other portion is a groove surrounded and closed by the land. .
  • the fluid introduction groove 13 is adjacent to the opening 13a that opens to the sealed fluid side peripheral edge 16, the wall 13c surrounded by the annular land portion R2 at a position facing the opening 13a, and the opening 13a.
  • An opening side wall portion 13b communicating with an opening portion 12a of the positive pressure generating groove 12 described later, and an inclined wall portion opposed to a toe end 12e (Rayleigh step 12e) of the positive pressure generating groove 12 described later across the land portion R1. 13d.
  • the inclined wall portion 13d has an opening side wall portion 13b (positive pressure). It is inclined in a direction approaching the opening 12a) of the generation groove 12. That is, the inclined wall portion 13d is inclined in a direction in which the area of the fluid introduction groove 13 as viewed in the axial direction decreases.
  • the depth of the fluid introduction groove 13 is set sufficiently deeper than the positive pressure generation groove 12 and the spiral groove 11, for example, about 10 ⁇ m to 500 ⁇ m.
  • the positive pressure generating groove 12 (first pressure generating mechanism according to the present invention) is an arc-shaped groove having a predetermined length.
  • the positive pressure generating groove 12 has an opening 12a at one end in the longitudinal direction (one end of the first pressure generating mechanism in the present invention) and a toe end 12e at the other end in the longitudinal direction (the other end of the first pressure generating mechanism in the present invention).
  • the opening 12a communicates with the fluid introduction groove 13, the toe 12e and the wall 12b are surrounded by a land R1, and the wall 12c is surrounded by an annular land R2.
  • the depth of the positive pressure generating groove 12 is set to about 0.1 ⁇ m to 10 ⁇ m.
  • the spiral groove 11 (the second pressure generating mechanism according to the present invention) has an opening 11a (one end of the second pressure generating mechanism according to the present invention) opening on the leakage side peripheral edge 15, and an annular land at the other end in the longitudinal direction. It has a closed end 11e (the other end of the second pressure generating mechanism according to the present invention) surrounded by a portion R2, and has a pair of walls 11b and 11c surrounded by a land R3 in the short direction.
  • the spiral grooves 11 and the land portions R3 are alternately arranged at predetermined intervals (60 in the example in FIG. 2) at equal intervals in the circumferential direction. Thereby, each spiral groove 11 is separated by the land portion R3.
  • the closed end portion 11e side of the spiral groove 11 is surrounded by an annular land portion R2 that is continuous in the circumferential direction.
  • the spiral groove 11 is separated from the fluid introduction groove 13 and the positive pressure generation groove 12 by the annular land portion R2.
  • the annular land portion R2 is formed by a circle formed by connecting the closed end portion 11e of the spiral groove 11 in the circumferential direction and the wall portion 12c of the positive pressure generating groove 12 facing the closed end portion 11e of the spiral groove 11. It is an annular land portion that is continuous in the circumferential direction and is defined by a circle formed in a circumferential direction.
  • the number of the spiral grooves 11 and the land portions R3 is not limited to 60, and may be more or less than 60.
  • the fluid introduction groove 13 takes in the fluid from the sealed fluid side into the fluid introduction groove 13 through the opening 13a communicating with the sealed fluid side peripheral edge 16 when the fluid lubrication state is not sufficient in a low-speed rotation state such as at startup. Even so, the fluid can be supplied to the sliding surface S to contribute to lubrication of the sliding surface S.
  • the opening 13a of the fluid introduction groove 13 can be enlarged by forming the fluid introduction groove 13 in a trapezoidal shape, the fluid can be sufficiently taken into the fluid introduction groove 13.
  • the fluid introduced into the fluid introduction groove 13 is drawn into the positive pressure generation groove 12 communicating with the fluid introduction groove 13 due to the viscosity of the fluid. .
  • the fluid drawn into the positive pressure generation groove 12 is blocked near the toe 12e to generate a dynamic pressure (positive pressure).
  • This positive pressure increases the fluid film between the sliding surfaces, and improves the lubrication performance.
  • the positive pressure generating groove 12 generates a positive pressure (dynamic pressure) even in a low-speed rotation state of the rotating side seal ring 4 such as at the time of starting, the liquid film on the sliding surface at a low speed is increased.
  • the lubrication performance at the time can be improved.
  • the toe 12e of the positive pressure generating groove 12 is formed to be tapered in the longitudinal direction of the positive pressure generating groove 12, the fluid drawn into the positive pressure generating groove 12 is narrowed. The pressurizing action near 12e can be further enhanced.
  • the inclined wall 13d of the trapezoidal fluid introduction groove 13 can easily form the overlapping portion Lp. Further, by providing the overlapping portion Lp, a circumferential width CH of a gap (hereinafter, referred to as a “leakage region”) between the opening portion 12a of the positive pressure generation groove 12 and the toe portion 12e opposed to the land portion R1 is provided. Can be narrowed down. That is, the circumferential width CH of the leak region where the adjacent fluid introduction groove 13 and the toe end 12e of the positive pressure generation groove 12 do not overlap can be reduced.
  • the circumferential width CH of the leakage region can be reduced, so that even when the spiral groove 11 cannot generate a sufficient dynamic pressure as in the case of the reverse rotation, the fluid flowing through the leakage region can be reduced. Can be reduced, and the sealing performance can be maintained.
  • FIG. 3 shows the sliding surface S of the rotary side sealing ring 4 of the sliding component according to the second embodiment. Only the shape of the fluid introduction groove 23 is different from that of the first embodiment. Same as 1.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and overlapping description will be omitted.
  • the sliding surface S of the rotary seal ring 4 includes a fluid introduction groove 23, a positive pressure generation groove 22 (first pressure generation mechanism according to the present invention), and a spiral groove 21 (second pressure generation mechanism according to the present invention).
  • the positive pressure generating groove 22 and the fluid introducing groove 23 are disposed closer to the sealed fluid side peripheral edge 16 than the annular land portion R2, and the spiral groove 21 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2.
  • the fluid introduction grooves 23 and the positive pressure generating grooves 22 are provided in a predetermined number (12 in the embodiment of FIG. 3) in the circumferential direction so as to surround the peripheral edge 16 on the sealed fluid side.
  • the fluid introduction groove 23 has a width substantially equal to that of the positive pressure generation groove 22, is formed in a trapezoidal shape when viewed in the axial direction, and only the opening 23a is opened to the sealed fluid side peripheral edge 16.
  • the fluid introduction groove 23 has an opening 23 a that opens on the peripheral edge 16 on the fluid-to-be-sealed side, and an opening side wall that communicates with an opening 22 a of a positive pressure generation groove 22 described below at a position facing the opening 23 a.
  • the positive pressure generating groove 22 has an inclined wall portion 23d opposed to the sealed fluid side peripheral edge 16 with the land portion R1 interposed therebetween, and an inclined wall portion 23d opposed to the toe end portion 22e of the positive pressure generating groove 22.
  • the inclined wall portion 23d has an opening side wall portion 23c (positive pressure). It is inclined in a direction approaching the opening 22a) of the generation groove 22. That is, the inclined wall portion 23d is inclined in a direction in which the area of the fluid introduction groove 23 when viewed in the axial direction is reduced.
  • the positive pressure generating groove 22 (first pressure generating mechanism according to the present invention) is an arc-shaped groove having a predetermined length.
  • the positive pressure generating groove 22 has an opening 22a (one end of the first pressure generating mechanism in the present invention) at one end in the longitudinal direction, and a toe end 22e (the other end of the first pressure generating mechanism in the present invention) at the other end in the longitudinal direction. , And has a pair of wall portions 22b and 22c in the lateral direction.
  • the opening 22a communicates with the fluid introduction groove 23, the toe 22e and the wall 22b are surrounded by a land R1, and the wall 22c is surrounded by an annular land R2.
  • the depth of the positive pressure generating groove 12 is set to about 0.1 ⁇ m to 10 ⁇ m.
  • the spiral groove 21 (the second pressure generating mechanism according to the present invention) has an opening 21a (one end of the second pressure generating mechanism according to the present invention) that opens on the leakage side peripheral edge 15, and an annular land at the other end in the longitudinal direction. It has a closed end 21e (the other end of the second pressure generating mechanism according to the present invention) surrounded by the portion R2, and has a pair of walls 21b and 21c in the short direction surrounded by a land R3.
  • the spiral grooves 21 and the land portions R3 are alternately arranged at predetermined intervals (60 in the example of FIG. 2) at equal intervals in the circumferential direction. Thereby, each spiral groove 21 is separated by the land portion R3.
  • the closed end 21e side of the spiral groove 21 is surrounded by an annular land portion R2 that is continuous in the circumferential direction.
  • the spiral groove 21 is separated from the fluid introduction groove 23 and the positive pressure generation groove 22 by the annular land portion R2.
  • the annular land portion R2 is formed by a circle formed by connecting the closed end 21e of the spiral groove 21 in the circumferential direction and the wall 22c of the positive pressure generating groove 22 facing the closed end 21e of the spiral groove 21. It is an annular land portion that is continuous in the circumferential direction and is defined by a circle formed in a circumferential direction.
  • the configuration of the spiral groove 21 is the same as the configuration of the spiral groove 11 of the first embodiment, and a duplicate description will be omitted.
  • the fluid introduction groove 23 is arranged to be inclined with respect to the sealed fluid side peripheral edge 16, the rotating fluid to be sealed can be taken into the fluid introduction groove 23 from the opening 23 a with low resistance.
  • the fluid can be supplied to the sliding surface S to contribute to the lubrication of the sliding surface S.
  • the fluid to be sealed flows into the positive pressure generation groove 22 through the fluid introduction groove 23 from the opening 23 a.
  • the fluid that has flowed into the positive pressure generating groove 22 is blocked by the toe 22e and generates a high positive pressure, and the positive pressure increases the fluid film between the sliding surfaces, thereby improving the lubrication performance.
  • the spiral groove 21 sucks fluid from the opening 21a communicating with the leakage side peripheral edge 15, and generates dynamic pressure (positive pressure) near the closed end 21e on the inner peripheral side.
  • the gap between the sliding surface S of the rotating side sealing ring 4 and the stationary side sealing ring 7 increases, and the sliding surface S becomes in a state of fluid lubrication and has very low friction.
  • the fluid on the sealed fluid side is prevented from leaking to the leak side, and the sealing performance is improved.
  • the fluid introduction groove 23 and the toe 22e of the positive pressure generation groove 22 facing the fluid introduction groove 23 across the land R1 form an overlapping portion Lp that overlaps in the circumferential direction.
  • the circumferential width CH of a gap (hereinafter referred to as a “leakage region”) between the opening 22a of the positive pressure generating groove 22 and the toe 22e facing the fluid introducing groove 23 therebetween is reduced. be able to. That is, the circumferential width CH of the leak region where the fluid introduction groove 23 and the toe end 22e of the positive pressure generation groove 22 do not overlap can be reduced.
  • the spiral groove 21 cannot exert a sufficient pumping action as in the case of the reverse rotation, the leakage flow flowing through the leakage region can be reduced. Furthermore, the pumping effect due to the negative pressure in the positive pressure generating groove 22 can compensate for the reduction in the pumping effect of the spiral groove 21, so that the sealing performance can be improved even in the case of reverse rotation.
  • FIG. 4 shows the sliding surface S of the rotary sealing ring 4 of the sliding component according to the third embodiment. Only the shapes of the fluid introduction groove 33 and the positive pressure generating groove 32 are different from those of the first and second embodiments. The other configuration is the same as in the first and second embodiments.
  • the same members as those of the second and third embodiments are denoted by the same reference numerals, and the overlapping description will be omitted.
  • the sliding surface S of the rotary seal ring 4 includes a fluid introduction groove 33, a positive pressure generation groove 32 (first pressure generation mechanism according to the present invention), and a spiral groove 31 (second pressure generation mechanism according to the present invention).
  • the positive pressure generating groove 32 and the fluid introducing groove 33 are disposed closer to the sealed fluid side peripheral edge 16 than the annular land portion R2, and the spiral groove 31 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2.
  • the fluid introduction grooves 33 and the positive pressure generation grooves 32 are provided in a predetermined number (12 in the embodiment of FIG. 3) in the circumferential direction so as to surround the sealed peripheral edge 16 on the fluid side.
  • the fluid introduction groove 33 is formed in a triangular shape as viewed in the axial direction, and only the opening 33a opens to the peripheral edge 16 on the sealed fluid side.
  • the fluid introduction groove 33 includes an opening 33a that opens to the peripheral edge 16 on the sealed fluid side, an opening side wall 33c that communicates with the opening 32a of the positive pressure generating groove 32, a toe 32e of the positive pressure generating groove 32, and a land. It has the inclined wall part 33d which opposes across R1. With respect to a radial axis r connecting an intersection P between the inclined wall portion 33d and the peripheral edge 16 of the sealed fluid and the center O of the rotary sealing ring 4, the inclined wall portion 33d has an opening side wall portion 33c (positive pressure). It is inclined in a direction approaching the opening 32a) of the generation groove 32. That is, the inclined wall portion 33d is inclined in a direction in which the area of the fluid introduction groove 33 as viewed in the axial direction becomes smaller around the intersection P.
  • the positive pressure generating groove 32 (first pressure generating mechanism according to the present invention) is an arc-shaped groove having a predetermined length.
  • the positive pressure generating groove 32 has an opening 32a at one end in the longitudinal direction (one end of the first pressure generating mechanism in the present invention), and a toe end 32e at the other end in the longitudinal direction (the other end of the first pressure generating mechanism in the present invention). And a pair of wall portions 32b and 32c in the short direction.
  • the opening 32a communicates with the fluid introduction groove 33, the toe 32e and the wall 32b are surrounded by a land R1, and the wall 32c is surrounded by an annular land R2.
  • the depth of the positive pressure generating groove 12 is set to about 0.1 ⁇ m to 10 ⁇ m.
  • the spiral groove 31 (the second pressure generating mechanism according to the present invention) has an opening 31a (one end of the second pressure generating mechanism according to the present invention) opened to the leakage side peripheral edge 15, and an annular land at the other end in the longitudinal direction. It has a closed end portion 31e (the other end of the second pressure generating mechanism according to the present invention) surrounded by the portion R2, and has a pair of wall portions 31b and 31c surrounded by a land portion R3 in the short direction.
  • the spiral grooves 31 and the land portions R3 are alternately arranged at predetermined intervals (60 in the example of FIG. 2) at equal intervals in the circumferential direction. Thereby, each spiral groove 31 is separated by the land portion R3.
  • the closed end 31e side of the spiral groove 31 is surrounded by an annular land portion R2 that is continuous in the circumferential direction.
  • the spiral groove 31 is separated from the fluid introduction groove 33 and the positive pressure generation groove 32 by the annular land portion R2.
  • the annular land portion R2 is formed by a circle formed by connecting the closed end 31e of the spiral groove 31 in the circumferential direction and the wall 32c of the positive pressure generating groove 32 facing the closed end 31e of the spiral groove 31.
  • the number of the spiral grooves 11 and the land portions R3 is not limited to 60, and may be more or less than 60.
  • the configuration of the spiral groove 31 is the same as that of the spiral groove 11 of the first embodiment, and a description thereof will be omitted.
  • the positive pressure generating groove 32 is arranged such that the upstream side communicating with the fluid introduction groove 33 is closer to the sealed fluid side peripheral edge 16 side, and the downstream toe 32 e is closer to the spiral groove 31 side. Accordingly, the positive pressure generating groove 32 is arranged to be inclined from the sealed fluid side to the leakage side from the fluid introducing groove 33 toward the toe end portion 32e.
  • the fluid can be efficiently taken into the tongue 32 with a low loss, a high positive pressure is generated at the toe 32e, and the positive pressure increases the fluid film between the sliding surfaces, thereby improving the lubrication performance. .
  • the overlapping portion Lp between the fluid introduction groove 33 and the positive pressure generation groove 32 can be increased even in a narrow place.
  • the fluid introduction groove 33 can be annularly surrounded by the positive pressure generation groove 32 by making the overlapping portion Lp large and setting the circumferential width CH of the leakage region to zero.
  • Fluid introduction groove 33 and toe 22e of positive pressure generating groove 22 facing fluid introduction groove 33 across land portion R1 constitute an overlapping portion Lp that overlaps in the circumferential direction.
  • the opening portion 32a of the positive pressure generating groove 32 completely overlaps with the toe portion 32e facing the land portion R1.
  • the circumferential width CH of the leakage region can be made zero, and the sealed fluid side of the spiral groove 31 can be annularly surrounded by the positive pressure generating groove 32.
  • the leakage of the fluid from the sealed fluid side to the leak side can be reduced, and further, the inside of the positive pressure generating groove 32 can be reduced. Since the pumping effect due to the negative pressure can compensate for the reduction in the pumping effect of the spiral groove 31, the sealing performance can be improved even in the case of reverse rotation.
  • FIG. 5 shows the sliding surface S of the rotary side sealing ring 4 of the sliding component according to the fourth embodiment. Only the depth of the fluid introduction groove 63 is different from that of the first embodiment. Same as Example 1.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and overlapping description will be omitted.
  • the positive pressure generating groove 12 and the fluid introduction groove 63 are disposed closer to the sealed fluid side peripheral edge 16 than the annular land portion R2, and the spiral groove 11 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2. ing. Note that the positive pressure generating groove 12 and the spiral groove 11 have the same configuration as the positive pressure generating groove 12 and the spiral groove 11 of the first embodiment, and a description thereof will be omitted.
  • the fluid introduction groove 63 is formed in a trapezoidal shape when viewed in the axial direction, and only the opening 63a opens to the sealed fluid side.
  • the fluid introduction groove 63 includes an opening 63a that opens to the sealed fluid side peripheral edge 16, a wall 63c surrounded by the annular land portion R2 at a position facing the opening 63a, And an opening side wall 63b communicating with the opening 12a of the positive pressure generating groove 12, a toe end 12e (Rayleigh step 12e) of the positive pressure generating groove 12 and the land R1. And has a slanted wall 63d opposed thereto.
  • the inclined wall 63d is connected to the opening side wall 63b (positive pressure). It is inclined in a direction approaching the opening 12a) of the generation groove 12. That is, the inclined wall portion 63d is inclined in a direction in which the area of the fluid introduction groove 63 when viewed in the axial direction decreases.
  • the depth of the fluid introduction groove 63 is set to be substantially the same as the depth of the positive pressure generation groove 12 and the spiral groove 11, for example, about 0.1 to 10 ⁇ m.
  • the opening 63a By forming the fluid introduction groove 63 in a trapezoidal shape, the opening 63a can be enlarged, so that the fluid can be easily taken into the fluid introduction groove 63. Accordingly, even when the fluid lubrication state is not sufficient in a low-speed rotation state such as at the time of starting, the fluid can be supplied to the sliding surface S to contribute to the lubrication of the sliding surface S. Further, by utilizing the inclined wall 63d of the trapezoidal fluid introduction groove 63, the end of the positive pressure generating groove 12 on the toe end 12e side and the inclined wall 63d of the fluid introduction groove 63 overlap in the circumferential direction. The portion Lp can be formed.
  • the circumferential width CH of the leakage region where the fluid introduction groove 63 and the toe end 12e of the positive pressure generation groove 12 do not overlap can be reduced. Further, since the depth of the fluid introduction groove 63 is shallower than the fluid introduction groove 13 of the first embodiment, the cross-sectional area of the leak region can be further reduced, so that the leak region can be further narrowed.
  • the spiral groove 11 reduces the pumping action of pumping up the leakage side fluid to the sealed fluid side.
  • the size of the circumferential width CH of the leakage region can be reduced by providing the overlapping portion Lp.
  • the cross-sectional area of the leak region can be further reduced by making the depth of the fluid introduction groove 63 shallower, so that the cross-sectional area of the leak region can be further narrowed. Can be restricted, and the sealing performance can be further improved.
  • FIG. 6 shows the sliding surface S of the rotating side sealing ring 4 of the sliding component according to the fifth embodiment. Only the depth of the fluid introduction groove 73 is different from that of the second embodiment. Same as Example 2.
  • the same members as those in the second embodiment are denoted by the same reference numerals, and the duplicate description will be omitted.
  • the sliding surface S of the rotary seal ring 4 includes a fluid introduction groove 73, a positive pressure generation groove 22 (first pressure generation mechanism according to the present invention), and a spiral groove 21 (second pressure generation according to the present invention).
  • the positive pressure generating groove 22 and the fluid introducing groove 73 are disposed closer to the sealed fluid side peripheral edge 16 than the annular land portion R2, and the spiral groove 21 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2.
  • the positive pressure generating groove 22 and the spiral groove 21 have the same configuration as the positive pressure generating groove 22 and the spiral groove 21 of the second embodiment, and a description thereof will be omitted.
  • the fluid introduction groove 73 has a width substantially equal to that of the positive pressure generation groove 22, is formed in a trapezoidal shape when viewed in the axial direction, and only the opening 73a opens to the sealed fluid side peripheral edge 16.
  • the fluid introduction groove 73 has an opening 73 a that opens to the sealed fluid side peripheral edge 16, and an opening 22 a of the positive pressure generating groove 22 is disposed at a position facing the opening 73 a, and the sealed fluid side peripheral edge 16 and the land portion It has an inclined wall portion 73b opposed across R1, a toe portion 22e of the positive pressure generating groove 22, and an inclined wall portion 73d opposed across the land portion R1.
  • the inclined wall 73d is an opening of the positive pressure generating groove 22. It tilts in the direction approaching 22a. That is, the inclined wall portion 73d is inclined in a direction in which the area of the fluid introduction groove 23 in the axial direction decreases.
  • the depth of the fluid introduction groove 73 is set to be substantially the same as the depth of the positive pressure generation groove 32 and the spiral groove 21, for example, about 0.1 to 10 ⁇ m.
  • the fluid introduction groove 73 can easily take in the fluid, even when the fluid lubrication state is not sufficient in a low-speed rotation state such as at startup, the fluid is supplied to the sliding surface S and the sliding surface S Can contribute to lubrication.
  • the end of the positive pressure generating groove 22 on the toe 22e side and the inclined wall 73d can form an overlapping portion Lp overlapping in the circumferential direction. .
  • the circumferential width CH of the leak region where the fluid introduction groove 73 and the toe end portion 22e of the positive pressure generation groove 22 do not overlap can be reduced.
  • the depth of the fluid introduction groove 73 is shallower than that of the fluid introduction groove 23 of the second embodiment, the cross-sectional area of the leak region can be further reduced. Accordingly, even when the pumping action of the spiral groove 21 is reduced as in the case of the reverse rotation, it is possible to restrict the flow of the fluid from the sealed fluid side to the leak side through the leak area and extend. Can improve the sealing performance.
  • FIG. 7 shows the sliding surface S of the rotating side sealing ring 4 of the sliding component according to the sixth embodiment. Only the depth of the fluid introduction groove 83 is different from that of the third embodiment. Same as Example 3.
  • the same members as those of the third embodiment are denoted by the same reference numerals, and the overlapping description will be omitted.
  • the sliding surface S of the rotary side sealing ring 4 includes a fluid introduction groove 83, a positive pressure generation groove 32 (a first pressure generation mechanism according to the present invention), and a spiral groove 31 (a second pressure generation mechanism according to the present invention).
  • the positive pressure generating groove 32 and the fluid introducing groove 83 are disposed closer to the sealed fluid side peripheral edge 16 than the annular land portion R2, and the spiral groove 31 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2.
  • the positive pressure generating groove 32 and the spiral groove 31 have the same configuration as the positive pressure generating groove 32 and the spiral groove 31 of the second embodiment, and a description thereof will be omitted.
  • the fluid introduction groove 83 is formed in a triangular shape as viewed in the axial direction, and only the opening 83a opens to the peripheral edge 16 on the sealed fluid side.
  • the fluid introduction groove 83 communicates with the opening 32 a of the positive pressure generating groove 32, and has the opening 83 a opened to the sealed peripheral side edge 16, the toe 32 e of the positive pressure generating groove 32, and the land R 1. It has an opposing inclined wall 83d. With respect to a radial axis r connecting an intersection P between the inclined wall portion 83d and the peripheral edge 16 of the sealed fluid and the center O of the rotary sealing ring 4, the inclined wall portion 83d is an opening of the positive pressure generating groove 32. 32a.
  • the inclined wall portion 83d is inclined in a direction in which the area of the fluid introduction groove 83 as viewed in the axial direction decreases.
  • the depth of the fluid introduction groove 83 is set to be substantially the same as the depth of the positive pressure generation groove 32 and the spiral groove 21, for example, about 0.1 to 10 ⁇ m.
  • the fluid introduction groove 83 can easily take in the fluid, the fluid is supplied to the sliding surface S even when the fluid lubrication state is not sufficient in a low-speed rotation state such as at the time of starting, so that the sliding surface S Can contribute to lubrication.
  • the overlapping portion Lp of the fluid introduction groove 83 and the positive pressure generation groove 32 can be increased even in a narrow place.
  • the overlapping portion Lp is enlarged to cover the fluid introduction groove 83 in the circumferential direction with the positive pressure generating groove 32, so that the circumferential width CH of the leak region can be made zero, and the sealed fluid side can be reduced.
  • the periphery 16 can be annularly surrounded.
  • the depth of the fluid introduction groove 83 is smaller than that of the fluid introduction groove 33 of the second embodiment, the cross-sectional area of the leakage region can be further reduced. Accordingly, even when the pumping action of the spiral groove 31 is reduced as in the case of the reverse rotation, it is possible to restrict the flow of the fluid from the sealed fluid side to the leak side through the leak area and extend. Can improve the sealing performance.
  • FIG. 8 shows the sliding surface S of the seventh embodiment.
  • the first pressure generating mechanism and the second pressure generating mechanism are configured by grooves.
  • the first pressure generating mechanism and the second pressure generating mechanism are formed by a dimple group including an aggregate of dimples. It constitutes a generating mechanism.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and overlapping description will be omitted.
  • the sliding surface S of the rotary side sealing ring 4 includes a fluid introduction groove 13, a first pressure generation mechanism 52, and a second pressure generation mechanism 51, and the fluid introduction groove 13 and the first pressure generation mechanism 52 are annular.
  • the second pressure generating mechanism 51 is disposed closer to the leak side peripheral edge 15 than the annular land portion R2.
  • the fluid introduction groove 13 has the same configuration as the fluid introduction groove 13 of the first embodiment.
  • the first pressure generating mechanism 52 includes a plurality of dimples 50 arranged in close proximity to each other and formed of a dimple group formed in an arc shape having a predetermined length.
  • the dimple 50 is a depression having an opening surrounded by the land R1.
  • the dimple group is a pseudo channel in which a land portion R1 is provided around the dimple 50 so that the dimple 50 does not communicate with each other, and a plurality of dimples 50 are arranged close to each other so as to have a desired groove shape.
  • One end of the first pressure generating mechanism 52 composed of a dimple group communicates with the fluid introduction groove 13, and the other end is a closed end 52e surrounded by the land R1.
  • the diameter of the opening of the dimple is set to 10 ⁇ m to 100 ⁇ m, and the depth of the bottom of the dimple 50 is set to about 10 ⁇ m to 100 ⁇ m.
  • the dimples provided on the sliding surface S may be set to have substantially the same opening diameter and depth, or may be set to different opening diameters and depths distributed in a predetermined range.
  • the fluid is sucked into the dimple 50 by the relative sliding between the rotating side sealing ring 4 and the stationary side sealing ring 7, and the fluid is pressurized in the dimple 50 and discharged from the dimple 50.
  • the suction and discharge operations of the fluid by the dimples 50 are continuously performed between the adjacent dimples 50 even if the dimples 50 do not communicate with each other.
  • the fluid flows along the dimple groups arranged in the groove shape, and the dimple group functions as a pseudo channel.
  • the second pressure generating mechanism 51 is a dimple group in which the dimples 50 are arranged close to each other and formed in a spiral shape.
  • the second pressure generating mechanism 51 is configured by alternately arranging a predetermined number (60 in the example of FIG. 5) of dimple groups and land portions R3 in the circumferential direction.
  • the second pressure generating mechanism 51 has an opening 51a at one end and a closed end 51e at the other end.
  • the opening 51a communicates with the leak side peripheral edge 15, and the closed end 51e is surrounded by the annular land portion R2. It is closed.
  • the fluid introduction groove 13 and the closed end 52e of the first pressure generating mechanism 52 form an overlapping portion Lp that overlaps in the circumferential direction.
  • the overlap portion Lp the gap between the adjacent first pressure generating mechanisms 52, that is, the circumferential width CH of the leak region can be reduced, and the leak region can be narrowed.
  • the pumping action of the second pressure generating mechanism 51 is reduced as in the case of the reverse rotation (counterclockwise rotation)
  • the flow of the fluid from the sealed fluid side to the leak side through the leak area is reduced. It can be restricted, and the sealing performance can be improved.
  • the present invention is not limited to this.
  • the first pressure generating mechanism and the second pressure generating mechanism may each be configured as one.
  • the number and shape of the first pressure generating mechanism and the second pressure generating mechanism can be changed according to use conditions.
  • the fluid introduction groove, the first pressure generation mechanism, and the second pressure generation mechanism are provided on the rotating side sealing ring, but the fluid introduction groove, the first pressure generation mechanism, and the second pressure generation mechanism are fixed. It may be provided on the side sealing ring, or may be provided on the rotating side sealing ring and the stationary side sealing ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

【課題】回転方向に関係なく密封性及び潤滑性を発揮できる摺動部品を提供することを目的とする。 【解決手段】互いに相対摺動する一対の摺動部品4,7であって、一対の摺動部品4,7は、互いに相対摺動する摺動面S、並びに、被密封流体側周縁16及び漏れ側周縁15を有し、一対の摺動部品4,7のうち少なくとも一方の摺動部品4の摺動面Sは、被密封流体側周縁16に連通する流体導入溝13と、一端が流体導入溝13に連通するとともに他端がランド部R1により囲まれる第1圧力発生機構12と、一端が漏れ側周縁15に連通するとともに他端が環状ランド部R2により囲まれる第2圧力発生機構11と、を備え、流体導入溝13と第1圧力発生機構12の他端12eとは、周方向に重なる重なり部Lpを備える。

Description

摺動部品
 本発明は、例えば、メカニカルシール、軸受、その他、摺動部に適した摺動部品に関する。特に、摺動面に流体を介在させて摩擦を低減させるとともに、摺動面から流体が漏洩するのを防止する必要のある密封環、例えば、ターボチャージャー用あるいは航空エンジン用のギアボックスに使用されるオイルシール、または軸受などの摺動部品に関する。
 たとえば、図9に示すように、互いに相対摺動する一対の摺動部品のうち、被密封流体側の回転側密封環4の摺動面Sには、摺動面Sの被密封流体側の周縁に連通し、漏れ側の周縁には連通しないように構成された流体導入溝43と、流体導入溝43に連通する正圧発生溝42と、摺動面Sの漏れ側の周縁に連通し、被密封流体側の周縁には連通しないように構成された動圧発生溝41を設けることが知られている。これにより、低速回転状態において、流体導入溝43により流体が積極的に摺動面に導入され、摺動面Sの潤滑を行うことができる。また、定常運転等の回転側密封環の高速回転状態において、動圧発生溝41により発生する動圧により、回転側密封環と固定側密封環との摺動面に僅かな間隙が形成され、摺動面は流体潤滑の状態となり非常に低摩擦とすることができる。同時に、漏れ側に存在する流体が被密封流体側の側に向けてポンピングされるため、被密封流体側の流体が漏れ側の側へ漏れることを防止することができる。(例えば、特許文献1参照)
国際公開第2016/167262号パンフレット(図7)
 しかしながら、上記の特許文献1の従来技術においては、回転側密封環4が、図9の矢印と逆の反時計方向に回転した場合について十分考慮されていなかった。すなわち、回転側密封環4が逆回転すると、スパイラル溝41は十分な動圧を発生することができないので、スパイラル溝41は漏れ側の流体を被密封流体側へ向けて十分なポンピングができなくなる。しかし、逆回転した場合には、正圧発生溝42が逆に負圧を発生するので、スパイラル溝41からの流体は負圧となった正圧発生溝42内へ吸込まれるので、スパイラル溝41のポンピング作用の低下を補うことができる。ところが、隣接する正圧発生溝42間の漏れ領域の周方向隙間CHは、正圧発生溝42の負圧の影響が及ばないため、被密封流体側から漏れ側へ流体が流れる漏れ領域となってしまう。このため、逆転時のようにスパイラル溝41が十分な動圧を発生できない場合には、漏れ領域CHを流れる流体を押し戻すことができず、密封性を十分に保つことができなかった。
 本発明はこのような課題を解決するためになされてもので、回転方向に関係なく密封性を発揮できる摺動部品を提供することを目的とする。
 前記課題を解決するために、本発明の摺動部品は、
 互いに相対摺動する一対の摺動部品であって、
 一対の前記摺動部品は、互いに相対摺動する摺動面、被密封流体側周縁及び漏れ側周縁を有し、
 一対の前記摺動部品のうち少なくとも一方の前記摺動部品の前記摺動面は、前記被密封流体側周縁に連通する流体導入溝と、
 一端が前記流体導入溝に連通するとともに他端がランド部により囲まれる第1圧力発生機構と、
 一端が前記漏れ側周縁に連通するとともに他端が環状ランド部により囲まれる第2圧力発生機構と、を備え、
 前記流体導入溝と、前記第1圧力発生機構の前記他端とは、周方向に重なる重なり部を備えることを特徴としている。
 この特徴によれば、流体導入溝により流体が積極的に摺動面に導入され、摺動面の潤滑を行うことができるとともに、流体導入溝と、第1圧力発生機構の端部とは周方向に重なる重なり部を備えることで漏れ領域を絞ることができるので、漏れを低減することができる。
 本発明の摺動部品は、
 前記流体導入溝は、前記第1圧力発生機構の前記他端と対向する傾斜壁部を有し、
 前記傾斜壁部は、該傾斜壁部と前記被密封流体側周縁との交点と、一方の前記摺動部品の中心とを結んだ径方向軸に対し、前記第1圧力発生機構の前記一端に接近する方向に傾斜することを特徴としている。
 この特徴によれば、流体導入溝の傾斜壁部は、該傾斜壁部と被密封流体側周縁との交点と、一方の摺動部品の中心とを結んだ径方向軸に対し第1圧力発生機構に接近する方向に傾斜するので、容易に重なり部を形成して漏れ領域を絞ることができるので、漏れを低減することができる。
 本発明の摺動部品は、
 前記流体導入溝及び前記第1圧力発生機構は、前記環状ランド部よりも前記被密封流体側周縁寄りに配設されることを特徴としている。
 この特徴によれば、流体導入溝及び第1圧力発生機構は、環状ランド部よりも被密封流体側周縁の側に配設されることで、第1圧力発生機構と第2圧力発生機構は環状ランド部により分離されるので、第1圧力発生機構と第2圧力発生機構の干渉を防ぐことができ、静止時においても漏れが発生することがない。
 本発明の摺動部品は、
 前記流体導入溝は台形状に形成されることを特徴としている。
 この特徴によれば、台形状の斜めの辺を利用して容易に重なり部を形成でき、漏れ領域を絞ることができるので、漏れを低減することができる。
 本発明の摺動部品は、
 前記流体導入溝は三角形に形成されることを特徴としている。
 この特徴によれば、三角形状の流体導入溝は径方向幅を小さくできるので、狭いところでも流体導入溝と第1圧力発生機構の重なり部を大きくして、漏れ領域を絞ることができるので、漏れを低減することができる。
 本発明の摺動部品は、
 第1圧力発生機構、第2圧力発生機構は溝部から構成されることを特徴としている。
 この特徴によれば、第1圧力発生機構、第2圧力発生機構を容易に形成できる。
 本発明の摺動部品は、
 第1圧力発生機構、第2圧力発生機構はディンプル群から構成されることを特徴としている。
 この特徴によれば、ディンプル群により所望の形状を有する第1圧力発生機構、第2圧力発生機構を容易に構成することができる。
 本発明の摺動部品は、
 前記流体導入溝の深さは、前記第1圧力発生機構の深さより深いことを特徴としている。
 この特徴によれば、流体導入溝は、被密封流体側から流体を取り込み、起動時などの低速回転状態において流体潤滑状態が十分でないときであっても、摺動面に流体を供給して、摺動面の潤滑に寄与することができる。
 本発明の摺動部品は、
 前記流体導入溝の深さは、前記第1圧力発生機構の深さと同じであることを特徴としている。
 この特徴によれば、流体導入溝の断面積を小さくすることにより、漏れ領域の断面積を小さくできるので、漏れを低減することができる。
実施例1に係るメカニカルシールの一例を示す縦断面図である。 図1のW-W矢視で実施例1の回転側密封環の摺動面を示す図である。 図1のW-W矢視で実施例2の回転側密封環の摺動面を示す図である。 図1のW-W矢視で実施例3の回転側密封環の摺動面を示す図である。 図1のW-W矢視で実施例4の回転側密封環の摺動面を示す図である。 図1のW-W矢視で実施例5の回転側密封環の摺動面を示す図である。 図1のW-W矢視で実施例6の回転側密封環の摺動面を示す図である。 図1のW-W矢視で実施例7の回転側密封環の摺動面を示す図である。 従来例の回転側密封環の摺動面を示す図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。
 図1及び図2を参照して、本発明の実施例1に係る摺動部品について説明する。
 なお、実施例1においては、摺動部品の一例であるメカニカルシールについて説明する。実施例1においては、メカニカルシールを構成する摺動部品の内周側を被密封流体側(液体側あるいはミスト状の流体側)、外周側を漏れ側(気体側)として説明するが、本発明はこれに限定されることなく、内周側が漏れ側(気体側)、外周側が被密封流体側(液体側あるいはミスト状の流体側)である場合も適用可能である。また、被密封流体側(液体側あるいはミスト状の流体側)と漏れ側(気体側)との圧力の大小関係については、例えば、被密封流体側(液体側あるいはミスト状の流体側)が高圧、漏れ側(気体側)が低圧、あるいは、その逆のいずれでもよく、また、両方の圧力が同一であってもよい。
 図1のメカニカルシール1は、回転軸2側に取付けられたスリーブ3と一体に回転可能な回転側密封環4、かつ、軸方向移動可能な状態で設けられた他方の摺動部品である円環状の固定側密封環7と、固定側密封環7を軸方向に付勢するコイルドウェーブスプリング8と、を備え、鏡面仕上げされた摺動面S同士で密接摺動するようになっている。
 すなわち、このメカニカルシール1は、回転側密封環4及び固定側密封環7は半径方向に形成された摺動面Sを有し、互いの摺動面Sにおいて、被密封流体、例えば、液体あるいはミスト状の流体(以下、単に「液体」ということがある。)が摺動面Sの内周から外周側の漏れ側へ流出するのを防止するものである。なお、符号9はOリングを示しており、カートリッジ6と固定側密封環7との間をシールするものである。また、本例では、スリーブ3と回転側密封環4とは別体の場合について説明しているが、これに限らず、スリーブ3と回転側密封環4とを一体に形成してもよい。
 回転側密封環4及び固定側密封環7の材質は、耐摩耗性に優れた炭化ケイ素(SiC)及び自己潤滑性に優れたカーボンなどから選定されるが、例えば、両者がSiC、あるいは、いずれか一方がSiCであって他方がカーボンの組合せが可能である。
 図2は、本発明の実施例1に係る摺動部品の回転側密封環4の摺動面Sを示したものである。回転側密封環4の摺動面Sの外周側が漏れ側、例えば気体側であり、また、内周側が被密封流体側、例えば液体側であり、回転側密封環4は矢印に示すように時計方向に回転するものとする。
 図2において、回転側密封環4の摺動面Sは、流体導入溝13、正圧発生溝12(本発明に係る第1圧力発生機構)及びスパイラル溝11(本発明に係る第2圧力発生機構)を備える。正圧発生溝12及び流体導入溝13は環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、スパイラル溝11は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、流体導入溝13及び正圧発生溝12は,被密封流体側周縁16を囲むように周方向に所定数(図2の実施例では12個)等配に設けられている。なお、本明細において、所定数とは、実施例に限らず、被密封流体側周縁16を囲むことができれば1個以上であればよい。また、等配に限らない。スパイラル溝11の本数、形状も条件に応じて変えることができる。
 図2において、流体導入溝13は、軸方向視にて台形状に形成され、開口部13aのみが被密封流体側に開口し、他の部分はランド部により囲まれて閉塞される溝である。具体的には、流体導入溝13は、被密封流体側周縁16に開口する開口部13a、開口部13aに対向する位置には環状ランド部R2に囲まれる壁部13c、開口部13aに隣接し、後述する正圧発生溝12の開口部12aに連通する開口部側壁部13b、後述する正圧発生溝12の止端部12e(レイリーステップ12e)とランド部R1を挟んで対向する傾斜壁部13dを有する。傾斜壁部13dと被密封流体側周縁16との交点Pと、回転側密封環4の中心Oと、を結んだ径方向軸rに対し、傾斜壁部13dは開口部側壁部13b(正圧発生溝12の開口部12a)に接近する方向に傾斜する。すなわち、傾斜壁部13dは流体導入溝13の軸方向視の面積が小さくなる方向に傾斜する。なお、流体導入溝13の深さは、正圧発生溝12及びスパイラル溝11より十分深く設定され、例えば、10μm~500μm程度に設定される。
 正圧発生溝12(本発明に係る第1圧力発生機構)は所定の長さを有する弧状の溝である。正圧発生溝12は長手方向の一端に開口部12a(本発明における第1圧力発生機構の一端)、長手方向の他端に止端部12e(本発明における第1圧力発生機構の他端)、短手方向に一対の壁部12b、12cを有する。開口部12aは流体導入溝13に連通し、止端部12e及び壁部12bはランド部R1により囲まれ、壁部12cは環状ランド部R2により囲まれている。なお、正圧発生溝12の深さは、0.1μm~10μm程度に設定される。
 スパイラル溝11(本発明に係る第2圧力発生機構)は、漏れ側周縁15に開口する開口部11a(本発明に係る第2圧力発生機構の一端)、長手方向の他方の端部に環状ランド部R2に囲まれた閉塞端部11e(本発明に係る第2圧力発生機構の他端)を有し、短手方向にはランド部R3に囲まれる一対の壁部11b、11cを有する。スパイラル溝11とランド部R3とは、交互に周方向に所定個数(図2の例では60個)、等間隔に配設される。これにより、各スパイラル溝11はランド部R3によって分離される。また、スパイラル溝11の閉塞端部11e側は、周方向に連続した円環状ランド部R2によって囲まれる。これにより、スパイラル溝11は、環状ランド部R2によって流体導入溝13及び正圧発生溝12と分離される。ここで、環状ランド部R2は、スパイラル溝11の閉塞端部11eを周方向に連ねて形成される円と、スパイラル溝11の閉塞端部11eに対向する正圧発生溝12の壁部12cを周方向に連ねて形成される円とによって区画される周方向に連続した円環状のランド部である。なお、スパイラル溝11とランド部R3の個数は、60個に限らず、60個より多くても、少なくてもよい。
 このように構成された実施例1に係る摺動部品の作用効果について説明する。
 流体導入溝13は、被密封流体側周縁16に連通する開口部13aから被密封流体側から流体導入溝13内に流体を取り込み、起動時などの低速回転状態において流体潤滑状態が十分でないときであっても、摺動面Sに流体を供給して、摺動面Sの潤滑に寄与することができる。また、流体導入溝13は台形に形成することにより、流体導入溝13の開口部13aを大きくできるので、流体導入溝13内に流体を十分取り込むことができる。
 図2に示すように、回転側密封環4が時計方向に回転すると、流体導入溝13に導入された流体は、流体導入溝13に連通する正圧発生溝12内に流体の粘性により引き込まれる。正圧発生溝12内に引き込まれた流体は止端部12e付近で堰き止められて動圧(正圧)を発生する。この正圧により、摺動面間の流体膜を増加させ、潤滑性能を向上させる。この正圧発生溝12は、特に、起動時などの回転側密封環4の低速回転状態においても正圧(動圧)を発生するため、摺動面における低速時の液膜が増大され、低速時における潤滑性能を向上させることができる。なお、正圧発生溝12の止端部12eは、正圧発生溝12の長手方向に先細りに形成されているので、正圧発生溝12内に引き込まれた流体は絞られるので、止端部12e付近での昇圧作用をさらに高めることができる。
 図2に示すように、回転側密封環4が時計方向に回転すると、スパイラル溝11は、漏れ側周縁15に連通する開口部11aから流体を吸い込み、閉塞端部11e付近で動圧(正圧)を発生する。この動圧により回転側密封環4と固定側密封環7との摺動面Sの間隙が大きくなり、摺動面Sは流体潤滑の状態となり非常に低摩擦となる。同時に、スパイラル溝11により流体が漏れ側から被密封流体側へ向けてポンピングされるため、被密封流体側の流体が漏れ側への漏洩が防止され、密封性が向上する。また、スパイラル溝11と正圧発生溝12は環状ランド部R2により分離されるので、スパイラル溝11と正圧発生溝12の干渉を防ぐことができ、静止時においても漏れが発生することがない。
 台形形状の流体導入溝13の傾斜壁部13dを利用して、傾斜壁部13dと、正圧発生溝12の端部の止端部12eとは、容易に重なり部Lpを形成できる。また、重なり部Lpを設けることにより、正圧発生溝12の開口部12aとランド部R1を挟んで対向する止端部12eとの隙間(以下「漏れ領域」と記す。)の周方向幅CHを絞ることができる。すなわち、隣接する流体導入溝13と正圧発生溝12の止端部12eとがラップしない漏れ領域の周方向幅CHを絞ることができる。
 回転側密封環4が、図2の矢印と逆の反時計方向に回転した場合には、スパイラル溝11は、漏れ側の流体を被密封流体側へポンプアップするポンピング作用が低下してしまう。一方、逆回転した場合には、正圧発生溝12内には逆に負圧が発生する。これにより、スパイラル溝11から吐出される流体は負圧となった正圧発生溝12内へ吸込まれるので、逆回転時のスパイラル溝11のポンピング作用の低下を補うことができる。しかし、漏れ領域においては、正圧発生溝12の負圧による吸込みの効果が及ばないため、被密封流体側から漏れ領域を通り漏れ側へ流体が漏れてしまう。そこで、重なり部Lpを設けることにより漏れ領域の周方向幅CHを絞ることができるので、逆転時のようにスパイラル溝11が十分な動圧を発生できない場合であっても、漏れ領域を流れる流体を低減することができ、密封性を維持することができる。
 本発明の実施例2に係る摺動部品について説明する。図3は実施例2に係る摺動部品の回転側密封環4の摺動面Sを示したもので、流体導入溝23の形状が実施例1と相違するのみで、他の構成は実施例1と同じである。以下、実施例1と同じ部材には同じ符号を付し、重複する説明は省略する。
 図3において、回転側密封環4の摺動面Sは、流体導入溝23、正圧発生溝22(本発明に係る第1圧力発生機構)及びスパイラル溝21(本発明に係る第2圧力発生機構)を備える。正圧発生溝22及び流体導入溝23は、環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、スパイラル溝21は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、流体導入溝23及び正圧発生溝22は,被密封流体側周縁16を囲むように周方向に所定数(図3の実施例では12個)等配に設けられている。
 図3において、流体導入溝23は正圧発生溝22と略等しい幅を有し、軸方向視にて台形状に形成され、開口部23aのみが被密封流体側周縁16に開口する。具体的には、流体導入溝23は、被密封流体側周縁16に開口する開口部23a、開口部23aに対向する位置には後述する正圧発生溝22の開口部22aに連通する開口部側壁部23c、被密封流体側周縁16とランド部R1を挟んで対向する傾斜壁部23b、正圧発生溝22の止端部22eと対向する傾斜壁部23dを有する。傾斜壁部23dと被密封流体側周縁16との交点Pと、回転側密封環4の中心Oと、を結んだ径方向軸rに対し、傾斜壁部23dは開口部側壁部23c(正圧発生溝22の開口部22a)に接近する方向に傾斜する。すなわち、傾斜壁部23dは流体導入溝23の軸方向視の面積が小さくなる方向に傾斜する。
 正圧発生溝22(本発明に係る第1圧力発生機構)は所定の長さを有する弧状の溝である。正圧発生溝22は長手方向の一端に開口部22a(本発明における第1圧力発生機構の一端)、長手方向の他端に止端部22e(本発明における第1圧力発生機構の他端)、短手方向に一対の壁部22b、22cを有する。開口部22aは流体導入溝23に連通し、止端部22e及び壁部22bはランド部R1により囲まれ、壁部22cは環状ランド部R2により囲まれている。なお、正圧発生溝12の深さは、0.1μm~10μm程度に設定される。
 スパイラル溝21(本発明に係る第2圧力発生機構)は、漏れ側周縁15に開口する開口部21a(本発明に係る第2圧力発生機構の一端)、長手方向の他方の端部に環状ランド部R2に囲まれた閉塞端部21e(本発明に係る第2圧力発生機構の他端)を有し、短手方向にはランド部R3に囲まれる一対の壁部21b、21cを有する。スパイラル溝21とランド部R3とは、交互に周方向に所定個数(図2の例では60個)、等間隔に配設される。これにより、各スパイラル溝21はランド部R3によって分離される。また、スパイラル溝21の閉塞端部21e側は、周方向に連続した円環状ランド部R2によって囲まれる。これにより、スパイラル溝21は、環状ランド部R2によって流体導入溝23及び正圧発生溝22と分離される。ここで、環状ランド部R2は、スパイラル溝21の閉塞端部21eを周方向に連ねて形成される円と、スパイラル溝21の閉塞端部21eに対向する正圧発生溝22の壁部22cを周方向に連ねて形成される円とによって区画される周方向に連続した円環状のランド部である。
 このように構成された実施例2に係る摺動部品の作用効果について説明する。なお、スパイラル溝21の構成は実施例1のスパイラル溝11の構成と同じなので、重複する説明は省略する。
 流体導入溝23は、被密封流体側周縁16に対し傾斜して配置されるので、回転する被密封流体側の流体を低抵抗で開口部23aから流体導入溝23内に取り込むことができる。これにより、起動時などの低速回転状態において流体潤滑状態が十分でないときであっても、摺動面Sに流体を供給して、摺動面Sの潤滑に寄与することができる。
 図3に示すように、回転側密封環4が時計方向に回転すると、被密封側流体は、開口部23aから流体導入溝23を通り正圧発生溝22へ流れ込む。正圧発生溝22へ流れ込んだ流体は、止端部22eで堰き止められ高い正圧を発生し、この正圧によって摺動面間の流体膜を増加させ、潤滑性能を向上させることができる。スパイラル溝21は、漏れ側周縁15に連通する開口部21aから流体を吸い込み、内周側の閉塞端部21e付近で動圧(正圧)を発生する。この動圧により回転側密封環4と固定側密封環7との摺動面Sの間隙が大きくなり、摺動面Sは流体潤滑の状態となり非常に低摩擦となる。同時に、スパイラル溝21により流体が漏れ側から被密封流体側へ向けてポンピングされるため、被密封流体側の流体が漏れ側への漏洩が防止され、密封性が向上する。
 また、流体導入溝23と、該流体導入溝23とランド部R1を挟んで対向する正圧発生溝22の止端部22eとは、周方向に重なる重なり部Lpを構成する。重なり部Lpを設けることにより、正圧発生溝22の開口部22a流体導入溝23を挟んで対向する止端部22eとの隙間(以下「漏れ領域」と記す。)の周方向幅CHを絞ることができる。すなわち、流体導入溝23と正圧発生溝22の止端部22eとがラップしない漏れ領域の周方向幅CHを絞ることができる。これにより、逆転時のようにスパイラル溝21が十分なポンピング作用を発揮できない場合であっても、漏れ領域を流れる漏れ流れを低減できる。さらには正圧発生溝22内の負圧によるポンピング効果がスパイラル溝21のポンピング効果の低減を補うことができるので、逆回転した場合でも密封性を向上することができる。
 本発明の実施例3に係る摺動部品について説明する。図4は実施例3に係る摺動部品の回転側密封環4の摺動面Sを示したもので、流体導入溝33、正圧発生溝32の形状が実施例1、2と相違するのみで、他の構成は実施例1,2と同じである。以下、実施例2、3と同じ部材には同じ符号を付し、重複する説明は省略する。
 図4において、回転側密封環4の摺動面Sは、流体導入溝33、正圧発生溝32(本発明に係る第1圧力発生機構)及びスパイラル溝31(本発明に係る第2圧力発生機構)を備える。正圧発生溝32及び流体導入溝33は、環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、スパイラル溝31は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、流体導入溝33及び正圧発生溝32は,被密封流体側周縁16を囲むように周方向に所定数(図3の実施例では12個)等配に設けられている。
 図4において、流体導入溝33は軸方向視にて三角形に形成され、開口部33aのみが被密封流体側周縁16に開口する。流体導入溝33は、被密封流体側周縁16に開口する開口部33a、正圧発生溝32の開口部32aに連通する開口部側壁部33c、正圧発生溝32の止端部32eとランド部R1を挟んで対向する傾斜壁部33dを有する。傾斜壁部33dと被密封流体側周縁16との交点Pと、回転側密封環4の中心Oと、を結んだ径方向軸rに対し、傾斜壁部33dは開口部側壁部33c(正圧発生溝32の開口部32a)に接近する方向に傾斜する。すなわち、傾斜壁部33dは、流体導入溝33の軸方向視の面積が交点Pを中心に小さくなる方向に傾斜する。
 正圧発生溝32(本発明に係る第1圧力発生機構)は所定の長さを有する弧状の溝である。正圧発生溝32は長手方向の一端に開口部32a(本発明における第1圧力発生機構の一端)、長手方向の他端に止端部32e(本発明における第1圧力発生機構の他端)、短手方向に一対の壁部32b、32cを有する。開口部32aは流体導入溝33に連通し、止端部32e及び壁部32bはランド部R1により囲まれ、壁部32cは環状ランド部R2により囲まれている。なお、正圧発生溝12の深さは、0.1μm~10μm程度に設定される。
 スパイラル溝31(本発明に係る第2圧力発生機構)は、漏れ側周縁15に開口する開口部31a(本発明に係る第2圧力発生機構の一端)、長手方向の他方の端部に環状ランド部R2に囲まれた閉塞端部31e(本発明に係る第2圧力発生機構の他端)を有し、短手方向にはランド部R3に囲まれる一対の壁部31b、31cを有する。スパイラル溝31とランド部R3とは、交互に周方向に所定個数(図2の例では60個)、等間隔に配設される。これにより、各スパイラル溝31はランド部R3によって分離される。また、スパイラル溝31の閉塞端部31e側は、周方向に連続した円環状ランド部R2によって囲まれる。これにより、スパイラル溝31は、環状ランド部R2によって流体導入溝33及び正圧発生溝32と分離される。ここで、環状ランド部R2は、スパイラル溝31の閉塞端部31eを周方向に連ねて形成される円と、スパイラル溝31の閉塞端部31eに対向する正圧発生溝32の壁部32cを周方向に連ねて形成される環状部とによって区画される周方向に連続した環状のランド部である。なお、スパイラル溝11とランド部R3の個数は、60個に限らず、60個より多くても、少なくてもよい。
 このように構成された実施例3に係る摺動部品の作用効果について説明する。スパイラル溝31は実施例1のスパイラル溝11と構成が同じなので説明を省略する。
 正圧発生溝32は、流体導入溝33に連通する上流側は被密封流体側周縁16側に寄りに、下流側の止端部32eはスパイラル溝31側に寄った状態で配設される。これにより、正圧発生溝32は、流体導入溝33側から止端部32eに向かって、被密封流体側から漏れ側へ傾いて配置されるので、回転時に流体導入溝33から正圧発生溝32内へ低損失で効率良く流体を取り込むことができ、止端部32eで高い正圧を発生し、この正圧によって摺動面間の流体膜を増加させ、潤滑性能を向上させることができる。
 また、三角形状の流体導入溝33は径方向幅を小さくできるので、狭いところでも流体導入溝33と正圧発生溝32の重なり部Lpを大きくすることができる。図4の実施例では、重なり部Lpを大きくして漏れ領域の周方向幅CHをゼロにして、流体導入溝33を正圧発生溝32によって環状に囲むことができる。
 また、流体導入溝33と、該流体導入溝33とランド部R1を挟んで対向する正圧発生溝22の止端部22eとは、周方向に重なる重なり部Lpを構成する。重なり部Lpを設けることにより、正圧発生溝32の開口部32aとランド部R1を挟んで対向する止端部32eとは完全にオーバーラップする。これにより、漏れ領域の周方向幅CHをゼロにして、スパイラル溝31の被密封流体側を正圧発生溝32によって環状に囲むことができる。これにより、逆転時のようにスパイラル溝31が十分なポンピング作用を発揮できない場合であっても、被密封流体側から漏れ側への流体の漏れを低減でき、さらには正圧発生溝32内が負圧によるポンピング効果がスパイラル溝31のポンピング効果の低減を補うことができるので、逆回転した場合でも密封性を向上することができる。
 本発明の実施例4に係る摺動部品について説明する。図5は実施例4に係る摺動部品の回転側密封環4の摺動面Sを示したもので、流体導入溝63の深さが実施例1と相違するのみで、他の構成は実施例1と同じである。以下、実施例1と同じ部材には同じ符号を付し、重複する説明は省略する。
 流体導入溝63、正圧発生溝12(本発明に係る第1圧力発生機構)及びスパイラル溝11(本発明に係る第2圧力発生機構)を備える。正圧発生溝12及び流体導入溝63は環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、スパイラル溝11は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、正圧発生溝12及びスパイラル溝11は、実施例1の正圧発生溝12及びスパイラル溝11と構成が同じなので説明を省略する。
 図5において、流体導入溝63は、軸方向視にて台形形状に形成され、開口部63aのみが被密封流体側に開口する。具体的には、流体導入溝63は、被密封流体側周縁16に開口する開口部63a、開口部63aに対向する位置には環状ランド部R2に囲まれる壁部63c、被密封流体側周縁16とランド部R1を挟んで対向するとともに、正圧発生溝12の開口部12aに連通する開口部側壁部63b、正圧発生溝12の止端部12e(レイリーステップ12e)とランド部R1を挟んで対向する傾斜壁部63dを有する。傾斜壁部63dと被密封流体側周縁16との交点Pと、回転側密封環4の中心Oと、を結んだ径方向軸rに対し、傾斜壁部63dは開口部側壁部63b(正圧発生溝12の開口部12a)に接近する方向に傾斜する。すなわち、傾斜壁部63dは、流体導入溝63の軸方向視の面積が小さくなる方向に傾斜する。なお、流体導入溝63の深さは、正圧発生溝12及びスパイラル溝11とほぼ同じ深さに設定され、例えば、0.1~10μm程度に設定される。
 このように構成された実施例4に係る摺動部品の作用効果について説明する。なお、正圧発生溝12及びスパイラル溝11の作用効果は、実施例1と同じなので重複する説明は省略する。
 流体導入溝63は台形に形成することにより、開口部63aを大きくできるので、流体導入溝63内に流体を容易に取り込むことができる。これにより,起動時などの低速回転状態において流体潤滑状態が十分でないときであっても、摺動面Sに流体を供給して、摺動面Sの潤滑に寄与することができる。また、台形の流体導入溝63の傾斜壁部63dを利用して、正圧発生溝12の止端部12e側の端部と流体導入溝63の傾斜壁部63dとは、周方向に重なる重なり部Lpを形成できる。
 重なり部Lpを設けることにより、流体導入溝63と正圧発生溝12の止端部12eとがラップしない漏れ領域の周方向幅CHを絞ることができる。さらに流体導入溝63の深さは、実施例1の流体導入溝13より浅いので、漏れ領域の断面積をさらに小さくすることができるので、漏れ領域をさらに絞ることができる。
 回転側密封環4が、図5の矢印と逆の反時計方向に回転した場合には、スパイラル溝11は、漏れ側の流体を被密封流体側へポンプアップするポンピング作用が低下してしまう。しかし、スパイラル溝11のポンピング作用が低下しても、重なり部Lpを設けることによって漏れ領域の周方向幅CHの大きさを絞ることができる。しかも流体導入溝63の深さを浅くして漏れ領域の断面積をさらに小さくして、漏れ領域の断面積をさらに絞ることができるので、被密封流体側から漏れ領域を通り漏れ側への流れを制限することができ、密封性を一層向上できる。
 本発明の実施例5に係る摺動部品について説明する。図6は実施例5に係る摺動部品の回転側密封環4の摺動面Sを示したもので、流体導入溝73の深さが実施例2と相違するのみで、他の構成は実施例2と同じである。以下、実施例2と同じ部材には同じ符号を付し、重複する説明は省略する。
 図6において、回転側密封環4の摺動面Sは、流体導入溝73、正圧発生溝22(本発明に係る第1圧力発生機構)及びスパイラル溝21(本発明に係る第2圧力発生機構)を備える。正圧発生溝22及び流体導入溝73は、環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、スパイラル溝21は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、正圧発生溝22及びスパイラル溝21は、実施例2の正圧発生溝22及びスパイラル溝21と構成が同じなので説明を省略する。
 図6において、流体導入溝73は正圧発生溝22と略等しい幅を有し、軸方向視にて台形状に形成され、開口部73aのみが被密封流体側周縁16に開口する。具体的には、
流体導入溝73は、被密封流体側周縁16に開口する開口部73a、開口部73aに対向する位置には正圧発生溝22の開口部22aが配置され、被密封流体側周縁16とランド部R1を挟んで対向する傾斜壁部73b、正圧発生溝22の止端部22eとランド部R1を挟んで対向する傾斜壁部73dを有する。傾斜壁部73dと被密封流体側周縁16との交点Pと、回転側密封環4の中心Oと、を結んだ径方向軸rに対し、傾斜壁部73dは正圧発生溝22の開口部22aに接近する方向に傾斜する。すなわち、傾斜壁部73dは、流体導入溝23の軸方向視の面積が小さくなる方向に傾斜する。なお、流体導入溝73の深さは、正圧発生溝32及びスパイラル溝21とほぼ同じ深さに設定され、例えば、0.1~10μm程度に設定される。
 このように構成された実施例5に係る摺動部品の作用効果について説明する。なお、正圧発生溝22及びスパイラル溝21の作用効果は、実施例2と同じなので重複する説明は省略する。
 流体導入溝73は流体を容易に取り込むことができるので、起動時などの低速回転状態において流体潤滑状態が十分でないときであっても、摺動面Sに流体を供給して、摺動面Sの潤滑に寄与することができる。
 また、台形の流体導入溝73の傾斜壁部73dを利用して、正圧発生溝22の止端部22e側の端部と傾斜壁部73dとは、周方向に重なる重なり部Lpを形成できる。これにより、流体導入溝73と正圧発生溝22の止端部22eとがラップしない漏れ領域の周方向幅CHを絞ることができる。さらに流体導入溝73の深さは実施例2の流体導入溝23より浅いので、漏れ領域の断面積をさらに小さくすることができる。これにより、逆転時のようにスパイラル溝21のポンピング作用が低下したときであっても、流体が被密封流体側から漏れ領域を通り漏れ側への流出するのを制限することができ、延いては密封性を向上できる。
 本発明の実施例6に係る摺動部品について説明する。図7は実施例6に係る摺動部品の回転側密封環4の摺動面Sを示したもので、流体導入溝83の深さが実施例3と相違するのみで、他の構成は実施例3と同じである。以下、実施例3と同じ部材には同じ符号を付し、重複する説明は省略する。
 図7において、回転側密封環4の摺動面Sは、流体導入溝83、正圧発生溝32(本発明に係る第1圧力発生機構)及びスパイラル溝31(本発明に係る第2圧力発生機構)を備える。正圧発生溝32及び流体導入溝83は、環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、スパイラル溝31は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、正圧発生溝32及びスパイラル溝31は、実施例2の正圧発生溝32及びスパイラル溝31と構成が同じなので説明を省略する。
 図7において、流体導入溝83は軸方向視にて三角形に形成され、開口部83aのみが被密封流体側周縁16に開口する。流体導入溝83は、正圧発生溝32の開口部32aに連通するとともに、被密封流体側周縁16に開口する開口部83a、正圧発生溝32の止端部32eとランド部R1を挟んで対向する傾斜壁部83dを有する。傾斜壁部83dと被密封流体側周縁16との交点Pと、回転側密封環4の中心Oと、を結んだ径方向軸rに対し、傾斜壁部83dは正圧発生溝32の開口部32aに接近する方向に傾斜する。すなわち、傾斜壁部83dは流体導入溝83の軸方向視の面積が小さくなる方向に傾斜する。なお、流体導入溝83の深さは、正圧発生溝32及びスパイラル溝21とほぼ同じ深さに設定され、例えば、0.1~10μm程度に設定される。
 このように構成された実施例6に係る摺動部品の作用効果について説明する。なお、正圧発生溝32及びスパイラル溝31の作用効果は、実施例3と同じなので重複する説明は省略する。
 流体導入溝83は流体を容易に取り込むことができるので、起動時などの低速回転状態において流体潤滑状態が十分でないときであっても、摺動面Sに流体を供給して、摺動面Sの潤滑に寄与することができる。
 また、三角形状の流体導入溝83は径方向幅を小さくできるので、狭いところでも流体導入溝83と正圧発生溝32の重なり部Lpを大きくすることができる。図7の実施例では、重なり部Lpを大きくして流体導入溝83を正圧発生溝32によって周方向に覆って、漏れ領域の周方向幅CHをゼロにすることができ、被密封流体側周縁16を環状に囲むことができる。さらに流体導入溝83の深さが実施例2の流体導入溝33より浅いので、漏れ領域の断面積をさらに小さくすることができる。これにより、逆転時のようにスパイラル溝31のポンピング作用が低下したときであっても、流体が被密封流体側から漏れ領域を通り漏れ側への流出するのを制限することができ、延いては密封性を向上できる。
 本発明の実施例7に係る摺動部品について説明する。図8は実施例7の摺動面Sを示したものである。実施例1~6においては、第1圧力発生機構及び第2圧力発生機構は溝により構成したが、実施例7においては、ディンプルの集合体からなるディンプル群によって第1圧力発生機構及び第2圧力発生機構を構成している。以下、実施例1と同じ部材には同じ符号を付し、重複する説明は省略する。
 図8において、回転側密封環4の摺動面Sは、流体導入溝13、第1圧力発生機構52及び第2圧力発生機構51を備え、流体導入溝13及び第1圧力発生機構52は環状ランド部R2よりも被密封流体側周縁16寄りに配設され、また、第2圧力発生機構51は環状ランド部R2よりも漏れ側周縁15寄りに配設されている。なお、流体導入溝13は、実施例1の流体導入溝13と同じ構成である。
 第1圧力発生機構52は、ディンプル50を複数、近接して配列して、所定の長さを有する弧状に形成されたディンプル群から構成される。ディンプル50はランド部R1で囲まれた開口部を有するくぼみである。ディンプル群は、ディンプル50が互いに連通しないように、ディンプル50の周囲にランド部R1を設けて、所望の溝形状となるように複数のディンプル50を近接して配置した疑似流路である。ディンプル群から構成される第1圧力発生機構52の一端は流体導入溝13に連通し、他端はランド部R1により囲まれた閉塞端部52eとなっている。なお、ディンプルの開口部の径は10μm~100μm、ディンプル50の底部の深さは10μm~100μm程度に設定される。摺摺動面Sに配設されるディンプルは、略同一の開口径、深さに設定してもよいが、所定の範囲の分布する異なる開口径及び深さに設定してもよい。
 回転側密封環4と固定側密封環7の相対摺動により、流体はディンプル50に吸い込まれ、ディンプル50内で昇圧してディンプル50から吐き出される。そして、ディンプル50を近接して配置すると、ディンプル50は互いに連通していなくても、ディンプル50による流体の吸い込み、吐き出し動作が、隣接するディンプル50の間で連続して行われる。これにより、ディンプル50を溝状に配列してディンプル群を構成すると、流体は溝状に配列されたディンプル群に沿って流れ、ディンプル群は疑似流路として機能する。
 第2圧力発生機構51は、ディンプル50を近接して配列してスパイラル状に構成したディンプル群である。第2圧力発生機構51は、ディンプル群とランド部R3とを交互に周方向に所定個数(図5の例では60個)配設して構成される。また、第2圧力発生機構51に一端に開口部51a、他端に閉塞端部51eを有し、開口部51aは漏れ側周縁15に連通し、閉塞端部51eは環状ランド部R2により囲まれ閉塞されている。
 図8に示すように、回転側密封環4が時計方向に回転すると、流体導入溝13に連通する第1圧力発生機構52内に流体が引き込まれ、流体は第1圧力発生機構52に沿って流れて閉塞端部52e付近で堰き止められて動圧(正圧)を発生する。また、スパイラル状の第2圧力発生機構51は、漏れ側周縁15に連通する開口部51aからディンプル群内へ流体をポンピングし、ポンピングされた流体はスパイラル状のディンプル群に沿って流れ、閉塞端部51e付近で動圧(正圧)を発生する。この動圧(正圧)により回転側密封環4と固定側密封環7との摺動面Sの間の間隙が大きくなり、摺動面Sは流体潤滑の状態となり非常に低摩擦となる。
 流体導入溝13と第1圧力発生機構52の閉塞端部52eは周方向に重なる重なり部Lpを形成している。重なり部Lpを設けることにより、隣接する第1圧力発生機構52間の隙間、すなわち漏れ領域の周方向幅CHを小さくして、漏れ領域を絞ることができる。これにより、逆転(反時計方向に回転)時のように、第2圧力発生機構51によるポンピング作用が低下した場合でも、流体が被密封流体側から漏れ領域を通り漏れ側への流出するのを制限することができ、延いては密封性を向上できる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 前記実施例では、第1圧力発生機構及び第2圧力発生機構は複数設ける場合について説明したが、これに限らない。たとえば、回転側密封環、固定側密封環の大きさが小さい場合には、第1圧力発生機構及び第2圧力発生機構をそれぞれ1個で構成してもよい。第1圧力発生機構及び第2圧力発生機構の個数、形状は、使用条件に応じて変えることができる。
 前記実施例において、流体導入溝、第1圧力発生機構及び第2圧力発生機構は回転側密封環に設けられていたが、流体導入溝、第1圧力発生機構及び第2圧力発生機構は、固定側密封環に設けてもよいし、回転側密封環及び固定側密封環に設けてもよい。
1      メカニカルシール
2      回転軸
3      スリーブ
4      回転側密封環
5      ハウジング
7      固定側密封環
8      コイルドウェーブスプリング
11     スパイラル溝(第2圧力発生機構)
11a    開口部(第2圧力発生機構の一端)
11e    閉塞端部(第2圧力発生機構の他端)
12     正圧発生溝(第1圧力発生機構)
12a    開口部(第1圧力発生機構の一端)
12e    止端部(第1圧力発生機構の他端)
13     流体導入溝
13a    開口部
15     漏れ側周縁
16     被密封流体側周縁
21     スパイラル溝(第2圧力発生機構)
21a    開口部(第2圧力発生機構の一端)
21e    閉塞端部(第2圧力発生機構の他端)
22     正圧発生溝(第1圧力発生機構)
22a    開口部(第1圧力発生機構の一端)
22e    止端部(第1圧力発生機構の他端)
23     流体導入溝
23a    開口部
31     スパイラル溝(第2圧力発生機構)
31a    開口部(第2圧力発生機構の一端)
31e    閉塞端部(第2圧力発生機構の他端)
32     正圧発生溝
32a    開口部(第1圧力発生機構の一端)
32e    止端部(第1圧力発生機構の他端)
33     流体導入溝
33a    開口部
50     ディンプル
51     第2圧力発生機構(ディンプル群)
51a    開口部(第2圧力発生機構の一端)
51e    閉塞端部(第2圧力発生機構の他端)
52     第1圧力発生機構(ディンプル群)
52e    止端部(第1圧力発生機構の他端)
CH     漏れ領域の幅
Lp     重なり部
R1      ランド部
R2      環状ランド部
R3      ランド部
S      摺動面

Claims (12)

  1.  互いに相対摺動する一対の摺動部品であって、
     一対の前記摺動部品は、互いに相対摺動する摺動面、被密封流体側周縁及び漏れ側周縁を有し、
     一対の前記摺動部品のうち少なくとも一方の前記摺動部品の前記摺動面は、前記被密封流体側周縁に連通する流体導入溝と、
     一端が前記流体導入溝に連通するとともに他端がランド部により囲まれる第1圧力発生機構と、
     一端が前記漏れ側周縁に連通するとともに他端が環状ランド部により囲まれる第2圧力発生機構と、を備え、
     前記流体導入溝と、前記第1圧力発生機構の前記他端とは、周方向に重なる重なり部を備えることを特徴とする摺動部品。
  2.  前記流体導入溝は、前記第1圧力発生機構の前記他端と対向する傾斜壁部を有し、
     前記傾斜壁部は、該傾斜壁部と前記被密封流体側周縁との交点と、一方の前記摺動部品の中心とを結んだ径方向軸に対し、前記第1圧力発生機構の前記一端に接近する方向に傾斜することを特徴とする請求項1に記載の摺動部品。
  3.  前記流体導入溝及び前記第1圧力発生機構は、前記環状ランド部よりも前記被密封流体側周縁寄りに配設されることを特徴とする請求項1又は2に記載の摺動部品。
  4.  前記流体導入溝は台形状に形成されることを特徴とする請求項1ないし3のいずれかに記載の摺動部品。
  5.  前記流体導入溝は三角形に形成されることを特徴とする請求項1ないし3のいずれかに記載の摺動部品。
  6.  前記第1圧力発生機構は溝部から構成されることを特徴とする請求項1ないし5のいずれかに記載の摺動部品。
  7.  前記第1圧力発生機構は、複数のディンプルからなるディンプル群から構成されることを特徴とする請求項1ないし5のいずれかに記載の摺動部品。
  8.  前記第2圧力発生機構は溝部から構成されることを特徴とする請求項1ないし7のいずれかに記載の摺動部品。
  9.  前記第2圧力発生機構は、複数のディンプルからなるディンプル群から構成されることを特徴とする請求項1ないし7のいずれかに記載の摺動部品。
  10.  前記第2圧力発生機構は、スパイラル状に形成されることを特徴とする請求項1ないし9のいずれかに記載の摺動部品。
  11.  前記流体導入溝の深さは、前記第1圧力発生機構の深さより深いことを特徴とする請求項1ないし10のいずれかに記載の摺動部品。
  12.  前記流体導入溝の深さは、前記第1圧力発生機構の深さと同じであることを特徴とする請求項1ないし10のいずれかに記載の摺動部品。
PCT/JP2019/029771 2018-08-01 2019-07-30 摺動部品 WO2020027102A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020534655A JP7201690B2 (ja) 2018-08-01 2019-07-30 摺動部品
KR1020207037305A KR102498751B1 (ko) 2018-08-01 2019-07-30 슬라이딩 부품
US17/257,260 US11608897B2 (en) 2018-08-01 2019-07-30 Slide component
CN201980043720.7A CN112334690B (zh) 2018-08-01 2019-07-30 滑动组件
EP19843273.4A EP3832178B1 (en) 2018-08-01 2019-07-30 Slide component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144640 2018-08-01
JP2018-144640 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027102A1 true WO2020027102A1 (ja) 2020-02-06

Family

ID=69231851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029771 WO2020027102A1 (ja) 2018-08-01 2019-07-30 摺動部品

Country Status (6)

Country Link
US (1) US11608897B2 (ja)
EP (1) EP3832178B1 (ja)
JP (1) JP7201690B2 (ja)
KR (1) KR102498751B1 (ja)
CN (1) CN112334690B (ja)
WO (1) WO2020027102A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879420A (zh) * 2021-01-14 2021-06-01 沈睿 一种陶瓷轴承
WO2023095905A1 (ja) * 2021-11-29 2023-06-01 イーグル工業株式会社 摺動要素

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148926A (zh) * 2017-10-03 2020-05-12 伊格尔工业股份有限公司 滑动部件
KR102407098B1 (ko) * 2018-01-12 2022-06-10 이구루코교 가부시기가이샤 슬라이딩 부품
WO2019151396A1 (ja) 2018-02-01 2019-08-08 イーグル工業株式会社 摺動部品
EP3922874A4 (en) 2019-02-04 2022-11-09 Eagle Industry Co., Ltd. SLIDING ELEMENT
EP3922877B1 (en) 2019-02-04 2023-12-06 Eagle Industry Co., Ltd. Sliding component and method for manufacturing sliding component
KR20230022986A (ko) 2020-07-06 2023-02-16 이구루코교 가부시기가이샤 슬라이딩 부품
JPWO2022009771A1 (ja) 2020-07-06 2022-01-13

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236067A (ja) * 1989-03-03 1990-09-18 Nippon Pillar Packing Co Ltd 端面非接触形メカニカルシール
JPH0590048U (ja) * 1992-02-06 1993-12-07 イーグル工業株式会社 両方向回転型ガスシール
JP2004003578A (ja) * 2002-04-02 2004-01-08 Eagle Ind Co Ltd 摺動部品
JP2010133496A (ja) * 2008-12-04 2010-06-17 Eagle Ind Co Ltd 摺動部品
WO2014024742A1 (ja) * 2012-08-04 2014-02-13 イーグル工業株式会社 摺動部品
WO2014103630A1 (ja) * 2012-12-25 2014-07-03 イーグル工業株式会社 摺動部品
WO2016167262A1 (ja) 2015-04-15 2016-10-20 イーグル工業株式会社 摺動部品
WO2016186019A1 (ja) * 2015-05-19 2016-11-24 イーグル工業株式会社 摺動部品

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS366305B1 (ja) 1960-03-31 1961-05-30
US3085808A (en) 1960-05-17 1963-04-16 Worthington Corp Mechanical seal with controlled leakage
US3232680A (en) 1963-08-19 1966-02-01 Whittaker Corp Fluid bearing
US3410565A (en) 1966-07-27 1968-11-12 Worthington Corp Centrifugal and face contact seal
FR1505487A (fr) 1966-10-28 1967-12-15 Guinard Pompes Perfectionnement aux joints tournants à régulation de fuite
US3466052A (en) 1968-01-25 1969-09-09 Nasa Foil seal
US3499653A (en) 1968-06-05 1970-03-10 Crane Packing Co Rotary mechanical seal of the gap type
US3656227A (en) 1970-03-26 1972-04-18 Gen Motors Corp Method of making a mold for bidirectional hydrodynamic shaft seals
US3804424A (en) 1972-04-24 1974-04-16 Crane Packing Co Gap seal with thermal and pressure distortion compensation
JPS4933614A (ja) 1972-07-24 1974-03-28
JPS5477305A (en) 1977-12-02 1979-06-20 Hitachi Constr Mach Co Ltd Compound pump motor
JPS57146955A (en) 1981-03-06 1982-09-10 Shinsaku Kaguchi Sealing device for rotary member
JPS58109771A (ja) 1981-12-23 1983-06-30 Eagle Ind Co Ltd 非接触型メカニカルシ−ル
JPS58137667A (ja) 1982-02-10 1983-08-16 Nippon Seiko Kk 磁性流体シ−ル
US4486026A (en) 1982-02-10 1984-12-04 Nippon Seiko K.K. Sealing and bearing means by use of ferrofluid
JPS5958252A (ja) 1982-09-29 1984-04-03 Honda Motor Co Ltd Vベルト伝動装置
US4406466A (en) 1982-11-29 1983-09-27 Elliott Turbomachinery Co., Inc. Gas lift bearing and oil seal
JPS60107461A (ja) 1983-11-15 1985-06-12 Jidosha Kiki Co Ltd 動力舵取装置の制御方法
JPH06100642B2 (ja) 1984-09-29 1994-12-12 株式会社東芝 光応用磁界センサ
JPS6237572A (ja) 1985-08-12 1987-02-18 Ebara Res Co Ltd 軸封装置
DE3619489A1 (de) 1986-06-10 1987-12-17 Gutehoffnungshuette Man Wellendichtung
JPS6333027A (ja) 1986-07-28 1988-02-12 Nippon Hoso Kyokai <Nhk> 音声デジタル信号伝送方式
CH677266A5 (ja) 1986-10-28 1991-04-30 Pacific Wietz Gmbh & Co Kg
JPH01133572A (ja) 1987-11-16 1989-05-25 Sanyo Electric Co Ltd 単相周波数変換回路
JPH0314371A (ja) 1989-06-13 1991-01-23 Fuji Photo Film Co Ltd ビデオカメラの映像動揺補正装置
JPH0335372A (ja) 1989-06-30 1991-02-15 Mita Ind Co Ltd 画像判別装置
JP2554542B2 (ja) 1989-07-06 1996-11-13 株式会社 藤井合金製作所 ガスコックの製造方法
JPH0341267A (ja) 1989-07-07 1991-02-21 Mitsuwa Gas Kiki Kk 鋳鉄製ガスコックの製造方法
JPH0660691B2 (ja) 1990-04-17 1994-08-10 イーグル工業株式会社 両回転式準接触メカニカルシール及びリング摺動面の溝加工方法
US5492341A (en) 1990-07-17 1996-02-20 John Crane Inc. Non-contacting, gap-type seal having a ring with a patterned seal face
JPH0496671A (ja) 1990-08-11 1992-03-30 Omron Corp ハーモニックドライブ型静電モータ
JPH04145267A (ja) 1990-10-08 1992-05-19 Ebara Corp 非接触端面シール
GB9103217D0 (en) 1991-02-15 1991-04-03 Crane John Uk Ltd Mechanical face seals
DE4303237A1 (de) 1992-02-06 1993-10-21 Eagle Ind Co Ltd Gasdichtung
US5201531A (en) 1992-04-02 1993-04-13 John Crane Inc. Face seal with double spiral grooves
JPH0769019B2 (ja) 1992-05-18 1995-07-26 日本ピラー工業株式会社 非接触形メカニカルシール
US5501470A (en) 1992-12-11 1996-03-26 Nippon Pillar Packing Co., Ltd. Non-contacting shaft sealing device with grooved face pattern
US5441283A (en) 1993-08-03 1995-08-15 John Crane Inc. Non-contacting mechanical face seal
BR9407404A (pt) 1993-09-01 1996-11-05 Durametallic Corp Dispositivo de vedação a fluido
US5498007A (en) 1994-02-01 1996-03-12 Durametallic Corporation Double gas barrier seal
DE4407453A1 (de) 1994-03-05 1995-09-07 Albrecht Dipl Ing Kayser Gas- und öldichtes Spiralnuten-Axiallager
JP2563081B2 (ja) 1994-03-22 1996-12-11 日本ピラー工業株式会社 非接触形軸封装置
JP3387236B2 (ja) 1994-09-22 2003-03-17 株式会社島津製作所 生体磁気計測装置
JPH09329247A (ja) 1996-06-11 1997-12-22 Ebara Corp 非接触端面シール
JP2999415B2 (ja) 1996-07-24 2000-01-17 日本ピラー工業株式会社 メカニカルシール
JPH10281299A (ja) 1997-04-11 1998-10-23 Mitsubishi Heavy Ind Ltd メカニカルシール装置
US5895051A (en) 1997-07-16 1999-04-20 Freudenberg-Nok General Partnership Noise abating beads on a rack seal
JPH1151043A (ja) 1997-08-05 1999-02-23 Seiko Instr Inc 流体動圧軸受、この軸受を有するスピンドルモータ、及びこのモータを備えた回転体装置
JP4075170B2 (ja) 1998-12-17 2008-04-16 松下電器産業株式会社 動圧軸受装置及びそれを使用したスピンドルモータ
US6189896B1 (en) 1999-04-08 2001-02-20 Caterpillar Inc. Controlled leakage rotating seal ring with elements for receiving and holding a lubricant on a face thereof
JP2001295833A (ja) 2000-04-18 2001-10-26 Matsushita Electric Ind Co Ltd スラスト動圧軸受
JP2001317638A (ja) 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd シール構造体および圧縮機
US6446976B1 (en) 2000-09-06 2002-09-10 Flowserve Management Company Hydrodynamic face seal with grooved sealing dam for zero-leakage
CN2460801Y (zh) 2001-01-18 2001-11-21 王玉明 可双向旋转的螺旋槽端面密封装置
JP3984462B2 (ja) 2001-11-26 2007-10-03 日本電産株式会社 動圧軸受装置
CN2534429Y (zh) 2001-12-27 2003-02-05 中国石油天然气股份有限公司 双列同向流体动压槽上游泵送机械密封
JP4495402B2 (ja) 2002-03-19 2010-07-07 イーグル工業株式会社 摺動部品
US6902168B2 (en) 2002-03-19 2005-06-07 Eagle Industry Co., Ltd. Sliding element
JP2004003548A (ja) 2002-05-31 2004-01-08 Nitto Seiko Co Ltd セルフタッピンねじ
DK2011510T3 (da) 2002-07-18 2011-03-28 Univ Washington Farmaceutiske sammensætninger indeholdende immunologisk aktive Herpes simplex-virus(HSV) proteinfragmenter
JP4316956B2 (ja) 2002-10-23 2009-08-19 イーグル工業株式会社 摺動部品
US7160031B2 (en) 2003-11-20 2007-01-09 Matsushita Electric Industrial Co., Ltd. Thrust dynamic pressure bearing, spindle motor using the same, and information recording and reproducing apparatus using them
JP4719414B2 (ja) 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
JP2005188651A (ja) 2003-12-25 2005-07-14 Yamada Seisakusho Co Ltd ウォーターポンプにおけるメカニカルシール
US7568839B2 (en) 2004-02-18 2009-08-04 Seiko Instruments Inc. Fluid dynamic pressure bearing, motor, and recording medium driving device
GB2413603A (en) 2004-04-30 2005-11-02 Corac Group Plc A dry gas seal assembly
JP4700394B2 (ja) 2004-05-12 2011-06-15 ミネベア株式会社 流体動圧軸受、該流体動圧軸受を備えたスピンドルモータ並びに記録ディスク駆動装置
JP2006009828A (ja) 2004-06-22 2006-01-12 Citizen Fine Tech Co Ltd 動圧流体軸受装置
JP4322747B2 (ja) 2004-07-06 2009-09-02 イーグル工業株式会社 シール装置
JP4262656B2 (ja) 2004-09-10 2009-05-13 日本ピラー工業株式会社 非接触型シール装置
CN102322526B (zh) 2004-11-09 2014-10-22 伊格尔工业股份有限公司 机械密封装置
US8162322B2 (en) 2006-10-25 2012-04-24 Rexnord Industries, Llc Hydrodynamic seal with circumferentially varying lift force
JP2008144864A (ja) 2006-12-11 2008-06-26 Nok Corp スラスト軸受
US7770895B2 (en) 2007-05-01 2010-08-10 Eaton Corporation Segmented seal portion and assembly
EP2230425B1 (en) 2008-01-11 2014-04-02 Eagle Industry Co., Ltd. Mechanical seal sliding member, and mechanical seal
JP2009250378A (ja) 2008-04-08 2009-10-29 Eagle Ind Co Ltd 液体用のメカニカルシール装置
US8205891B2 (en) 2008-09-15 2012-06-26 Stein Seal Company Intershaft seal assembly
JP5367423B2 (ja) 2009-03-17 2013-12-11 イーグル工業株式会社 シール装置
JP5271858B2 (ja) 2009-09-29 2013-08-21 アイシン精機株式会社 メカニカルシール及び液体ポンプ
CN101749431B (zh) 2010-01-28 2013-07-31 浙江工业大学 珍珠链状的圆环槽环带端面机械密封结构
WO2011105513A1 (ja) 2010-02-26 2011-09-01 Nok株式会社 シールリング
JP5518527B2 (ja) 2010-03-04 2014-06-11 イーグル工業株式会社 摺動部品
CN101776152B (zh) 2010-03-05 2013-08-21 北京化工大学 外加压式动静压气体润滑密封装置
JP5122607B2 (ja) 2010-06-17 2013-01-16 キヤノンマシナリー株式会社 平面摺動機構
EP2626604B1 (en) 2010-10-06 2019-06-12 Eagle Industry Co., Ltd. Sliding part
US9039013B2 (en) 2011-05-04 2015-05-26 United Technologies Corporation Hydrodynamic non-contacting seal
US9062775B2 (en) 2011-07-01 2015-06-23 Eaton Corporation Scooping hydrodynamic seal
KR101513278B1 (ko) 2011-08-05 2015-04-17 이구루코교 가부시기가이샤 메커니컬 실
EP2754930B1 (en) 2011-09-10 2017-06-14 Eagle Industry Co., Ltd. Sliding component
US9777840B2 (en) 2012-09-29 2017-10-03 Eagle Industry Co., Ltd. Sliding component
JP6158205B2 (ja) * 2012-10-19 2017-07-05 イーグルブルグマンジャパン株式会社 ベローズシール
JP6161632B2 (ja) * 2012-12-25 2017-07-12 イーグル工業株式会社 摺動部品
JP6211009B2 (ja) 2013-01-16 2017-10-11 イーグル工業株式会社 摺動部品
EP2977654B1 (en) 2013-03-17 2018-04-25 Eagle Industry Co., Ltd. Sliding component
JP6275692B2 (ja) 2013-03-17 2018-02-07 イーグル工業株式会社 摺動部品
EP2990700B1 (en) 2013-04-24 2019-08-07 Eagle Industry Co., Ltd. Sliding part
CN103267132B (zh) 2013-05-28 2015-08-05 南京林业大学 自泵送流体动压型机械密封
EP3091258B1 (en) 2013-12-09 2020-03-04 Eagle Industry Co., Ltd. Sliding component
AU2014362551B2 (en) 2013-12-09 2017-06-01 Eagle Industry Co., Ltd. Sliding component
CN103791097A (zh) 2014-02-28 2014-05-14 江苏大学 一种自动排泄颗粒的组合流体动压槽机械密封
CN104019237B (zh) 2014-05-29 2016-12-07 浙江工业大学 深槽环带动压型端面机械密封结构
EP2975306B1 (en) 2014-07-18 2017-06-14 LEONARDO S.p.A. Sealing ring
JP6479023B2 (ja) 2014-09-04 2019-03-06 イーグル工業株式会社 メカニカルシール
JP6224568B2 (ja) 2014-10-17 2017-11-01 イーグル工業株式会社 メカニカルシール
EP3299686B1 (en) 2015-05-21 2022-03-23 Eagle Industry Co., Ltd. Sliding component
JP6776232B2 (ja) 2015-06-15 2020-10-28 イーグル工業株式会社 摺動部品
CN114935012A (zh) 2015-06-30 2022-08-23 伊格尔工业股份有限公司 密封装置
CN109563934A (zh) 2016-08-15 2019-04-02 伊格尔工业股份有限公司 滑动部件
CN206017723U (zh) 2016-09-14 2017-03-15 中国石油大学(华东) 包络线型液体润滑端面机械密封结构
CN106439037B (zh) 2016-11-18 2018-06-29 西华大学 具有组合槽端面的密封环及机械密封装置
US11053974B2 (en) 2016-12-07 2021-07-06 Eagle Industry Co., Ltd. Sliding component
WO2018139232A1 (ja) 2017-01-30 2018-08-02 イーグル工業株式会社 摺動部品
KR102276083B1 (ko) 2017-01-30 2021-07-13 이구루코교 가부시기가이샤 슬라이딩 부품
CN107166036B (zh) 2017-06-21 2018-09-21 浙江工业大学 一种低泄漏螺旋槽液膜机械密封端面结构
JP7154692B2 (ja) 2017-07-04 2022-10-18 イーグル工業株式会社 メカニカルシール
CN108506494B (zh) 2018-04-23 2020-03-17 西安交通大学 一种仿鱼骨型干气密封结构
JP7387239B2 (ja) 2019-02-04 2023-11-28 イーグル工業株式会社 摺動部品
CN113412369B (zh) 2019-02-14 2023-11-14 伊格尔工业股份有限公司 滑动部件
US11821461B2 (en) * 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
CN113508238B (zh) * 2019-03-22 2023-07-25 伊格尔工业股份有限公司 滑动部件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236067A (ja) * 1989-03-03 1990-09-18 Nippon Pillar Packing Co Ltd 端面非接触形メカニカルシール
JPH0590048U (ja) * 1992-02-06 1993-12-07 イーグル工業株式会社 両方向回転型ガスシール
JP2004003578A (ja) * 2002-04-02 2004-01-08 Eagle Ind Co Ltd 摺動部品
JP2010133496A (ja) * 2008-12-04 2010-06-17 Eagle Ind Co Ltd 摺動部品
WO2014024742A1 (ja) * 2012-08-04 2014-02-13 イーグル工業株式会社 摺動部品
WO2014103630A1 (ja) * 2012-12-25 2014-07-03 イーグル工業株式会社 摺動部品
WO2016167262A1 (ja) 2015-04-15 2016-10-20 イーグル工業株式会社 摺動部品
WO2016186019A1 (ja) * 2015-05-19 2016-11-24 イーグル工業株式会社 摺動部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832178A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879420A (zh) * 2021-01-14 2021-06-01 沈睿 一种陶瓷轴承
WO2023095905A1 (ja) * 2021-11-29 2023-06-01 イーグル工業株式会社 摺動要素

Also Published As

Publication number Publication date
US20210364034A1 (en) 2021-11-25
JPWO2020027102A1 (ja) 2021-08-02
EP3832178A4 (en) 2022-04-27
US11608897B2 (en) 2023-03-21
EP3832178B1 (en) 2024-05-01
JP7201690B2 (ja) 2023-01-10
CN112334690A (zh) 2021-02-05
EP3832178A1 (en) 2021-06-09
KR20210011026A (ko) 2021-01-29
CN112334690B (zh) 2023-02-28
KR102498751B1 (ko) 2023-02-13

Similar Documents

Publication Publication Date Title
WO2020027102A1 (ja) 摺動部品
JP6776232B2 (ja) 摺動部品
JP6678169B2 (ja) 摺動部品
JP6861730B2 (ja) しゅう動部品
JP6678170B2 (ja) 摺動部品
JP6058018B2 (ja) 摺動部品
JP6161632B2 (ja) 摺動部品
WO2018139231A1 (ja) 摺動部品
EP3361128B1 (en) Sliding component
JP7098260B2 (ja) 摺動部品
JP6345695B2 (ja) 摺動部品
WO2019069887A1 (ja) 摺動部品
WO2014042045A1 (ja) 摺動部品
JP6456950B2 (ja) 摺動部品
JPWO2020166589A1 (ja) 摺動部品
WO2020171102A1 (ja) 摺動部品
JP7171553B2 (ja) 摺動部品
WO2020085122A1 (ja) 摺動部材
WO2020071274A1 (ja) 摺動部材
WO2024024839A1 (ja) 摺動部品
WO2023223914A1 (ja) 摺動部品
JP2020153468A (ja) 摺動部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207037305

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020534655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843273

Country of ref document: EP

Effective date: 20210301