WO2015199171A1 - 摺動部品 - Google Patents

摺動部品 Download PDF

Info

Publication number
WO2015199171A1
WO2015199171A1 PCT/JP2015/068315 JP2015068315W WO2015199171A1 WO 2015199171 A1 WO2015199171 A1 WO 2015199171A1 JP 2015068315 W JP2015068315 W JP 2015068315W WO 2015199171 A1 WO2015199171 A1 WO 2015199171A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure fluid
fluid side
sliding surface
pressure
low
Prior art date
Application number
PCT/JP2015/068315
Other languages
English (en)
French (fr)
Inventor
壮敏 板谷
雄一郎 徳永
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to AU2015281104A priority Critical patent/AU2015281104B2/en
Priority to JP2016529650A priority patent/JP6392343B2/ja
Priority to EP15811264.9A priority patent/EP3163133B1/en
Priority to US15/121,665 priority patent/US9765892B2/en
Priority to CN201580012448.8A priority patent/CN106104112B/zh
Publication of WO2015199171A1 publication Critical patent/WO2015199171A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed in the sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • the present applicant provides a plurality of dimples 50 on the sliding surface S as shown in FIG. 6, and moves the cavitation formation region 50 a on the upstream side of each dimple 50 toward the low-pressure fluid side.
  • the downstream positive pressure generation region 50b is disposed closer to the high-pressure fluid side, the fluid is sucked in the upstream cavitation formation region 50a, and the sucked fluid is drawn from the downstream positive pressure generation region 50b.
  • An invention for returning to the high-pressure side has been filed earlier (hereinafter referred to as “Prior Art 2”; see Patent Document 2).
  • the prior art 2 is an epoch-making invention in that it has both functions of leakage prevention and lubrication regardless of the pressure difference between the inner and outer circumferences of the sliding surface.
  • the basic shape is a crank shape
  • the fluid movement from the upstream cavitation formation region 50a to the downstream positive pressure generation region 50b is slightly less smooth, so the low pressure fluid side X of the positive pressure generation region 50b
  • the generation of dynamic pressure in the fluid may be excessive, leading to leakage, and the distance from the pressure peak position in the dynamic pressure generation region to the low pressure fluid side may not be so large, leading to leakage.
  • the present invention relates to an improvement of the invention described in Patent Document 2, and includes cavitation on the upstream side of a recessed portion (referred to as “dimple” in the present specification) such as a dimple formed on a sliding surface. Smooth movement of fluid from the area to the downstream positive pressure generation area further improves both leakage prevention and lubrication functions regardless of the pressure difference between the inner and outer periphery of the sliding surface.
  • An object of the present invention is to provide a sliding part provided with It is another object of the present invention to provide a sliding component having a further improved function of preventing leakage by disposing a cavitation region over the entire circumference on the low pressure fluid side of the sliding surface.
  • a plurality of dimples are independently provided in the circumferential direction on one sliding surface of the pair of sliding components that slide relative to each other.
  • the cavitation formation region on the upstream side of the dimple is disposed near the low pressure fluid side
  • the positive pressure generation region on the downstream side is disposed near the high pressure fluid side
  • the edge on the low pressure fluid side of the positive pressure generation region is
  • the taper shape is inclined along the rotation direction of the mating sliding surface from the low-pressure fluid side toward the high-pressure fluid side, and is smoothly connected to an edge on the low-pressure fluid side of the cavitation forming region. It is said.
  • the sliding component of the present invention is secondly characterized in that, in the first feature, the upstream side start end of the cavitation forming region is the rotational direction of the mating sliding surface from the low pressure fluid side toward the high pressure fluid side. And a taper shape that is inclined along the upper surface of the dimple and disposed so as to overlap in the radial direction with a positive pressure generating region of the dimple disposed on the upstream side.
  • the fluid that attempts to leak from the positive pressure generation region of the upstream dimple to the low pressure fluid side flows into the upstream side of the cavitation formation region of the downstream dimple, and leaks to the low pressure fluid side. Is prevented and the sealing performance is improved.
  • the arrangement efficiency of the dimples on the sliding surface can be improved.
  • the sliding component of the present invention is the high pressure fluid side of the sliding surface provided with the dimple or the high pressure fluid of the other sliding surface.
  • a positive pressure generating mechanism comprising a Rayleigh step communicating with the high pressure fluid side via a radial groove is disposed on the side, a pressure release groove is provided between the positive pressure generating mechanism and the dimple, and the pressure The open groove is characterized in that it communicates with the high-pressure fluid side via the radial groove.
  • a fluid film can be formed and lubricated by a positive pressure generating mechanism comprising a Rayleigh step disposed on the high-pressure fluid side, and sealing and lubrication can be performed with dimples disposed on the low-pressure fluid side. The sealing action by the dimples can be ensured.
  • the sliding component according to the first or second aspect, wherein the high-pressure fluid side of the sliding surface provided with the dimple or the high-pressure fluid of the other sliding surface is provided.
  • a positive pressure generating mechanism including a Rayleigh step communicating with the high-pressure fluid side is disposed on the side.
  • a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step disposed on the high-pressure fluid side, and sealing and lubrication are performed by dimples disposed on the low-pressure fluid side. Since there is no need to provide deep grooves such as radial grooves and pressure release grooves, there is an advantage that the processing is easy.
  • the present invention has the following excellent effects.
  • (1) The edge on the low-pressure fluid side of the positive pressure generation region has a tapered shape that inclines along the rotational direction of the mating sliding surface from the low-pressure fluid side to the high-pressure fluid side, and the low-pressure fluid side of the cavitation formation region Smoothly connected to the edge of the dimple, the fluid can smoothly move from the upstream cavitation region of the dimple formed on the sliding surface to the downstream positive pressure generation region. Since no positive pressure is generated in the flow of fluid that hits the edge, generation of dynamic pressure on the low-pressure fluid side at the tip side of the positive pressure generation region can be suppressed, and the amount of fluid leaking to the low-pressure fluid side can be reduced. it can.
  • the positive pressure generating portion where positive pressure is generated in the positive pressure generating region is a portion close to the high pressure fluid side, the distance from the pressure peak position of the positive pressure generating portion to the low pressure fluid side is increased. The gradient is reduced and the amount of leakage can be reduced.
  • the upstream start end of the cavitation formation region has a tapered shape that inclines in the rotational direction of the mating sliding surface from the low pressure fluid side toward the high pressure fluid side, and the dimple disposed on the upstream side
  • the fluid that leaks from the positive pressure generation region of the upstream dimple to the low pressure fluid side is upstream of the cavitation formation region of the downstream dimple. Inflow, leakage to the low-pressure fluid side is prevented and sealing performance is improved.
  • the arrangement efficiency of the dimples on the sliding surface can be improved.
  • a positive pressure generating mechanism comprising a Rayleigh step communicating with the high-pressure fluid side via a radial groove is provided on the high-pressure fluid side of the sliding surface provided with the dimples or on the high-pressure fluid side of the other sliding surface.
  • the pressure release groove is provided between the positive pressure generating mechanism and the dimple, and the pressure release groove is arranged on the high pressure fluid side by communicating with the high pressure fluid side via the radial groove.
  • a fluid film can be formed and lubricated by a positive pressure generating mechanism consisting of a Rayleigh step, and sealing and lubrication can be performed with dimples arranged on the low-pressure fluid side. Can be.
  • a positive pressure generating mechanism comprising a Rayleigh step communicating with the high pressure fluid side is disposed on the high pressure fluid side of the sliding surface provided with the dimple or on the high pressure fluid side of the other sliding surface.
  • a fluid film is formed and lubricated by a positive pressure generating mechanism comprising a Rayleigh step disposed on the high-pressure fluid side, and sealing and lubrication are performed with dimples disposed on the low-pressure fluid side. Since there is no need to provide deep grooves such as directional grooves and pressure release grooves, there is an advantage that processing is easy.
  • FIG. 1 shows a sliding surface of a sliding component according to Embodiment 1 of the present invention.
  • (A) is a diagram for explaining a positive pressure generating mechanism consisting of a narrowing gap (step) on the downstream side of the dimple
  • (b) is a diagram for explaining a negative pressure generating mechanism consisting of an expanding gap (step) on the upstream side of the dimple.
  • is there. 3 shows a sliding surface of a sliding component according to Embodiment 2 of the present invention. It shows the sliding surface of the sliding component which concerns on Example 3 of this invention. The sliding surface of the prior art 2 is shown.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type that seals a sealed fluid on a high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • An annular rotary ring 3 provided on the rotary shaft 1 side for driving a pump impeller (not shown) on the high-pressure fluid side via a sleeve 2 so as to be rotatable integrally with the rotary shaft 1, and a pump
  • An annular stationary ring 5 provided in the housing 4 in a non-rotating state and movable in the axial direction is wrapped with a coiled wave spring 6 and a bellows 7 that urge the stationary ring 5 in the axial direction.
  • the sliding surfaces S mirror-finished are slid closely. That is, this mechanical seal prevents the sealed fluid from flowing out from the outer periphery of the rotating shaft 1 to the atmosphere side on the sliding surfaces S of the rotating ring 3 and the stationary ring 5.
  • the present invention is not limited to the inside type, but can also be applied to an outside type that seals the sealed fluid on the high-pressure fluid side that is about to leak from the inner periphery to the outer periphery of the sliding surface. Needless to say.
  • FIG. 2 shows a sliding surface of the sliding component according to the first embodiment of the present invention, and a case where dimples are formed on the sliding surface of the stationary ring 5 in FIG. 1 will be described as an example. The same applies when dimples are formed on the sliding surface of the rotating ring 3.
  • a plurality of dimples 10 are provided on the sliding surface S in the circumferential direction.
  • the dimples 10 do not communicate with the high-pressure fluid side and the low-pressure fluid side, and the dimples 10 are provided so as to be separated from each other in the circumferential direction independently of each other.
  • the number, area, and depth of the dimples 10 have properties that are appropriately determined according to the diameter of the sliding component, the width and relative movement speed of the sliding surface, and the sealing and lubrication conditions.
  • a dimple having a large depth and a shallow depth is preferable in terms of fluid lubrication and liquid film formation.
  • the dimples 10 are provided in six equal distributions.
  • each dimple 10 the upstream cavitation formation region 10a is disposed closer to the low pressure fluid side, and the downstream positive pressure generation region 10b is disposed closer to the high pressure fluid side so that these two regions communicate with each other.
  • the fluid sucked in the cavitation formation region 10a of each dimple 10 generates dynamic pressure (positive pressure) in the positive pressure generation region 10b through the dimple 10 and is close to the radial direction. It is designed to be returned to the side.
  • the cavitation formation region 10a on the upstream side of each dimple 10 shown in FIG. 2 is disposed separately from the low-pressure fluid side via a sliding surface S1 having a constant width, and has a constant width so as to form an arc shape.
  • the downstream positive pressure generation region 10b extends from the cavitation formation region 10a toward the high-pressure fluid side so as to incline along the rotation direction of the mating sliding surface, and the tip 10c thereof has a high pressure. Although it is close to the fluid side, it is separated from the high-pressure fluid side via a sliding surface S2 having a certain width.
  • the low pressure fluid side edge 10d of the positive pressure generation region 10b has a tapered shape that inclines along the rotation direction of the mating sliding surface from the low pressure fluid side toward the high pressure fluid side, and the low pressure of the cavitation formation region 10a. It is smoothly connected to the edge 10e on the fluid side.
  • the edge 10d on the low-pressure fluid side of the positive pressure generation region 10b is not limited to a straight line, and may be a curve that is convex or concave on the low-pressure fluid side. In the case of a straight line, a single straight line is desirable, and in the case of a curve, the curvature is desirably uniform.
  • the edge 10d on the low-pressure fluid side of the positive pressure generation region 10b has a tapered shape that inclines along the rotation direction of the mating sliding surface from the low-pressure fluid side toward the high-pressure fluid side, and the cavitation formation region 10a. Is smoothly connected to the low-pressure fluid side edge 10e, so that the fluid flowing into the cavitation formation region 10a smoothly flows into the positive pressure generation region 10b, and the fluid flowing into the low-pressure fluid side edge 10d has a positive flow.
  • the positive pressure generating portion where the positive pressure is generated in the positive pressure generating region 10b is a portion of a substantially triangular region P indicated by hatching in FIG. 2, the distance from the pressure peak position on the tip side to the low pressure fluid side As a result, the pressure gradient becomes smaller, and the amount of leakage can be reduced.
  • the taper angle ⁇ of the edge 10d on the low-pressure fluid side of the positive pressure generation region 10b is preferably as small as possible so that the fluid that hits the edge 10d on the low-pressure fluid side flows smoothly and no positive pressure is generated.
  • the taper angle ⁇ is set to 0 ° ⁇ ⁇ 45 °.
  • the upstream end 10f of the cavitation formation region 10a of each dimple 10 is formed in a tapered shape that is inclined along the rotational direction of the mating sliding surface from the low-pressure fluid side toward the high-pressure fluid side. Are arranged so as to overlap with the positive pressure generation region 10b of the dimple 10 arranged in the radial direction.
  • the upstream start end 10f of the cavitation formation region 10a is formed in a tapered shape inclined so as to be substantially parallel to the low pressure fluid side edge 10d of the positive pressure generation region 10b of the dimple 10 disposed on the upstream side.
  • the positive pressure generating region 10b of the dimple 10 disposed on the upstream side is disposed so as to overlap in the radial direction. Therefore, the fluid indicated by the arrow R trying to leak from the positive pressure generating region 10b of the upstream dimple 10 to the low pressure fluid side flows into the upstream side of the cavitation forming region 10a of the downstream dimple 10 and is low pressure. Leakage to the fluid side is prevented and sealing performance is improved.
  • the dimple arrangement efficiency on the sliding surface S (the ratio of the total area of the dimples to the total area of the sliding surface) can be improved.
  • the fact that the upstream start end 10f and the low-pressure fluid side edge 10d are “substantially parallel” means that the angle of intersection of the two is in the range of 0 ° to 30 °.
  • the shape of the dimple 10 shown in FIG. 2 is merely an example.
  • an upstream cavitation formation region 10a is disposed near the low pressure fluid side
  • a downstream positive pressure generation region 10b is disposed near the high pressure fluid side.
  • the low pressure fluid side edge 10d of the positive pressure generation region 10b is inclined along the rotation direction of the mating sliding surface from the low pressure fluid side to the high pressure fluid side. It only needs to have a tapered shape and be smoothly connected to the edge 10e on the low-pressure fluid side of the cavitation forming region 10a.
  • the tip side is bent at an obtuse angle with respect to the main body as in the side shape on the tip side of the ski.
  • the starting end 10f is formed in a tapered shape inclined along the rotational direction of the mating sliding surface from the low-pressure fluid side toward the high-pressure fluid side, and is arranged on the upstream side.
  • 10 positive pressure generation regions 10b may be arranged so as to overlap in the radial direction, and the taper angle and the degree of overlap in the radial direction with the positive pressure generation region 10b of the upstream dimple 10 are designed. It only has to be decided.
  • FIG. 3A As indicated by an arrow, the rotating ring 3 rotates counterclockwise with respect to the fixed ring 5, but when the dimple 10 is formed on the sliding surface S of the fixed ring 5, A narrowing gap (step) 11 exists on the downstream side of the dimple 10.
  • the sliding surfaces of the opposed rotating rings 3 are flat.
  • the fluid interposed between the sliding surfaces of the rotating ring 3 and the stationary ring 5 tends to follow the moving direction of the rotating ring 3 due to its viscosity.
  • the presence of the narrowing gap (step) 11 generates a dynamic pressure (positive pressure) as indicated by a broken line.
  • FIG. 4 shows a sliding surface of the sliding component according to the second embodiment of the present invention, and a case where dimples are formed on the sliding surface of the stationary ring 5 in FIG. 1 will be described as an example.
  • the second embodiment is different from the first embodiment shown in FIG. 2 in that a positive pressure generating mechanism including a Rayleigh step is disposed on the high pressure fluid side of the sliding surface provided with the dimples. Is basically the same as that of the first embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
  • a dimple 10 is disposed on the low pressure fluid side, and a positive pressure generating mechanism including a Rayleigh step 20 is disposed on the high pressure fluid side.
  • the Rayleigh step 20 is composed of a narrowing step 21, a groove portion 22, and a radial groove 23 communicating with the high pressure fluid side. Between the Rayleigh step 20 and the dimple 10, the high pressure fluid side and the radial groove 23 are interposed. And a pressure release groove 24 communicated with each other.
  • the groove portion 22 is disposed so as to be separated from the high-pressure fluid side via a sliding surface S3 having a constant width, and extends in the circumferential direction with a constant width so as to form an arc shape.
  • the depth of the groove portion 22 is several times the depth of the dimple 10.
  • the pressure release groove 24 releases the dynamic pressure (positive pressure) generated in the Rayleigh step 20 to the pressure of the high-pressure side fluid, so that the fluid flows into the dimple 10 on the low-pressure fluid side, and the dimple 10 has a negative pressure generation capability. It serves to prevent weakening, and plays a role of guiding the fluid that is about to flow into the low-pressure fluid side by the positive pressure generated at the Rayleigh step 20 on the high-pressure fluid side to the pressure release groove 24 and letting it escape to the high-pressure fluid side. It is.
  • the dimples 10 are provided in 6 equal distributions, and the Rayleigh steps 20 are provided in 8 equal distributions.
  • the depth and width of the groove part 22, the radial groove 23 and the pressure release groove 24 are appropriately determined according to the diameter of the sliding component, the width and relative movement speed of the sliding surface, and the sealing and lubrication conditions. It is of a nature.
  • the depth of the groove portion 22 is about 1 ⁇ 2 to several times the depth of the dimple 10, and the depth of the radial groove 23 and the pressure release groove 24 is ten times the depth of the dimple 10. That's it.
  • a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step 20 disposed on the high-pressure fluid side, and sealing and lubrication are performed by the dimple 10 disposed on the low-pressure fluid side.
  • the fluid sucked in the cavitation formation region 10 a of the dimple 10 is guided from the positive pressure generation region 10 b to the pressure release groove 24 and returned to the high pressure fluid side through the radial groove 23.
  • the fluid film is formed and lubricated by the positive pressure generating mechanism including the Rayleigh step 20 disposed on the high-pressure fluid side, and the dimple 10 disposed on the low-pressure fluid side is sealed and lubricated. The sealing action by the dimple 10 can be ensured.
  • FIG. 5 shows a sliding surface of the sliding component according to the third embodiment of the present invention, and a case where dimples are formed on the sliding surface of the stationary ring 5 in FIG. 1 will be described as an example.
  • the third embodiment is different from the first embodiment shown in FIG. 2 in that a positive pressure generating mechanism including a Rayleigh step is disposed on the high-pressure fluid side of the sliding surface provided with the dimples. Is basically the same as that of the first embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
  • a dimple 10 is disposed on the low pressure fluid side, and a positive pressure generating mechanism including a Rayleigh step 30 is disposed on the high pressure fluid side.
  • the Rayleigh step 30 includes a narrowing step 31, a groove portion 32, and a radial groove 33 communicating with the high-pressure fluid side on the upstream side of the groove portion 32, and a sliding surface is provided between the Rayleigh step 30 and the dimple 10. S is interposed.
  • the groove portion 32 is disposed separately from the high-pressure fluid side via a sliding surface S3 having a constant width, and has a constant width and extends in the circumferential direction so as to form an arc shape.
  • the depth of the groove portion 22 is about 1 ⁇ 2 to several times the depth of the dimple 10.
  • the narrowing step 31 has a tapered shape that is inclined from the low-pressure fluid side toward the high-pressure fluid side along the rotational direction of the mating sliding surface.
  • the radial groove 33 has a width equal to or greater than the width of the groove portion 32.
  • the depth of the radial groove 33 is approximately the same as the depth of the groove portion 32 and is several times the depth of the dimple 10. Therefore, it is easy for the high-pressure fluid to flow into the groove portion 32, and the sliding surface S is sufficiently lubricated.
  • a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step 30 disposed on the high-pressure fluid side, and sealing and lubrication are performed by the dimple 10 disposed on the low-pressure fluid side.
  • the fluid sucked in the cavitation forming region 10a of the dimple 10 is returned to the high pressure fluid side while lubricating the sliding surface S from the positive pressure generating region 10b.
  • the present invention can also be applied to a case where the inner peripheral side is a high-pressure fluid.
  • the positive pressure generation region may be disposed on the inner peripheral side.
  • the upstream cavitation formation region 10a has a certain width so as to form an arc shape and extends in the circumferential direction
  • the downstream positive pressure generation region 10b is
  • the cavitation formation region 10a has a shape that is substantially the same as the width of the cavitation formation region 10a from the cavitation formation region 10a and extends so as to incline along the rotation direction of the mating sliding surface
  • the cavitation forming region 10a and the positive pressure generating region 10b may be disposed so as to have different widths.
  • the positive pressure generating mechanism including the dimple 10 and the Rayleigh steps 20 and 30 is disposed on the sliding surface of the stationary ring 5 out of the rotating ring 3 and the stationary ring 5.
  • the present invention is not limited to this, and it may be disposed on the sliding surface of the rotating ring 3, and the dimple 10 is disposed on one of the sliding surfaces of the rotating ring 3 and the stationary ring 5, and the other sliding surface.
  • a positive pressure generating mechanism including Rayleigh steps 20 and 30 may be disposed on the surface.
  • the dimple 10 may be disposed on the sliding surface of the rotating ring 3, and the positive pressure generating mechanism including the Rayleigh steps 20 and 30 may be disposed on the sliding surface of the stationary ring 5.
  • the lubrication function can be further improved.
  • the radial groove 23 and the pressure release groove 24 are disposed on the side where the positive pressure generating mechanism including the Rayleigh step 20 is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

 摺動面に形成されたディンプルの上流側のキャビテーション領域から下流側の正圧発生領域への流体の移動をスムーズにする。 一対の摺動部品の互いに相対摺動する一方側の摺動面に複数のディンプル10が周方向に独立して設けられ、各ディンプル10の上流側のキャビテーション形成領域10aは低圧流体側に寄って配置されると共に下流側の正圧発生領域10bは高圧流体側に寄って配置され、正圧発生領域10bの低圧流体側の縁10dは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、キャビテーション形成領域10aの低圧流体側の縁と滑らかに接続されることを特徴としている。

Description

摺動部品
 本発明は、たとえば、メカニカルシール、軸受、その他、摺動部に適した摺動部品に関する。特に、摺動面に流体を介在させて摩擦を低減させるとともに、摺動面から流体が漏洩するのを防止する必要のある密封環または軸受などの摺動部品に関する。 
 摺動部品の一例である、メカニカルシールにおいて、密封性を長期的に維持させるためには、「密封」と「潤滑」という相反する条件を両立させなければならない。特に、近年においては、環境対策などのために、被密封流体の漏れ防止を図りつつ、機械的損失を低減させるべく、より一層、低摩擦化の要求が高まっている。低摩擦化の手法としては、回転により摺動面間に動圧を発生させ、液膜を介在させた状態で摺動する、いわゆる流体潤滑状態とすることにより達成できる。しかしながら、この場合、摺動面間に正圧が発生するため、流体が正圧部分から摺動面外へ流出する。軸受でいう側方漏れであり、シールの場合の漏れに該当する。 
 液体シールにおいては、気体より粘度が大きいため、平面同士であっても面の微小なうねりや粗さの凹凸等により動圧効果が得られる。このため、密封性能を優先した構造を採用することが多い。一方、密封と潤滑を両立させるために、漏れた液体を高圧側に引き戻す、ポンピング効果を有した機構もいくつか考案されている。たとえば、特許文献1には、回転リングの軸封面に流体を高圧室側へ移送するらせん溝が円周方向に複数設けられた 
発明が開示されている(以下、「従来技術1」という。)。 
 また、摺動部品に関する発明として、本出願人は、図6に示すように、摺動面Sに複数のディンプル50を設け、各ディンプル50の上流側のキャビテーション形成領域50aを低圧流体側に寄って配置すると共に、下流側の正圧発生領域50bを高圧流体側に寄って配置し、流体を上流側のキャビテーション形成領域50aで吸入し、吸入された流体を下流側の正圧発生領域50bから高圧側に戻すようにした発明を先に出願している(以下、「従来技術2」という。特許文献2参照。)。 
 しかしながら、上記従来技術1では、シールなどの摺動面の内・外周に圧力差がある場合、圧力に対抗したポンピング作用が必要となり、圧力の大きさによっては流体を押し戻すことができない場合がある。このため、圧力差が小さい場合には漏れを防止することは可能であるが、圧力差が大きい場合には漏れ量は多くならざるを得ないという問題があった。 
 また、上記従来技術2は、摺動面の内・外周の差圧の大きさに関係することなく漏れ防止と潤滑の両機能を奏する点で画期的な発明であるが、各ディンプル50の基本的な形状がクランク状であることにより、上流側のキャビテーション形成領域50aから下流側の正圧発生領域50bへの流体移動において若干スムーズさを欠くため、正圧発生領域50bの低圧流体側Xにおける動圧発生が過大になり漏れにつながるおそれがあり、また、動圧発生領域の圧力ピーク位置から低圧流体側までの距離がそれほど大きくとれないため漏れにつながるおそれがあるという問題があった。 
特開平8-193662号公報(第4頁、図5,6) 国際公開第2014/050920号
 本発明は、上記特許文献2に記載の発明の改良に係るものであって、摺動面に形成されたディンプルなどの窪み部分(本明細書においては「ディンプル」という。)の上流側のキャビテーション領域から下流側の正圧発生領域への流体の移動をスムーズにすることにより、摺動面の内・外周の差圧の大きさに関係することなく、より一層の漏れ防止と潤滑の両機能を備えた摺動部品を提供することを目的とするものである。 
 また、摺動面の低圧流体側において全周にわたってキャビテーション領域を配設することにより、より一層、漏れ防止の機能を向上させた摺動部品を提供することを目的とするものである。 
 上記目的を達成するため本発明の摺動部品は、第1に、一対の摺動部品の互いに相対摺動する一方側の摺動面に複数のディンプルが周方向に独立して設けられ、各ディンプルの上流側のキャビテーション形成領域は低圧流体側に寄って配置されると共に下流側の正圧発生領域は高圧流体側に寄って配置され、前記正圧発生領域の前記低圧流体側の縁は、前記低圧流体側から前記高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、前記キャビテーション形成領域の前記低圧流体側の縁と滑らかに接続されることを特徴としている。 
 この特徴によれば、摺動面に形成されたディンプルの上流側のキャビテーション領域から下流側の正圧発生領域への流体の移動をスムーズにすることができ、低圧流体側の縁にぶつかった流体の流れにおいて正圧が立たないため、正圧発生領域の先端側の低圧流体側における動圧発生を抑えることができ、低圧流体側に漏洩する流体の量を低減することができる。また、正圧発生領域において正圧が発生する正圧発生部は高圧流体側に近い部分であるため、正圧発生部の圧力ピーク位置から低圧流体側までの距離が大きくなり、その結果、圧力勾配が小さくなり、漏れ量を低減することができる。 
 また、本発明の摺動部品は、第2に、第1の特徴において、前記キャビテーション形成領域の上流側の始端は、前記低圧流体側から前記高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、上流側に配置されたディンプルの正圧発生領域と径方向において重複するように配設されることを特徴としている。 
 この特徴によれば、上流側のディンプルの正圧発生領域から低圧流体側に漏洩しようとする流体は下流側のディンプルのキャビテーション形成領域の上流側に流入することになり、低圧流体側への漏洩が阻止され密封性が向上される。また、摺動面におけるディンプルの配置効率を向上することができる。 
 また、本発明の摺動部品は、第3に、第1または第2の特徴において、前記ディンプルが設けられた前記摺動面の前記高圧流体側、又は、他方の摺動面の前記高圧流体側には前記高圧流体側と半径方向溝を介して連通するレイリーステップからなる正圧発生機構が配設され、前記正圧発生機構と前記ディンプルとの間に圧力開放溝が設けられ、前記圧力開放溝は高圧流体側と前記半径方向溝を介して連通されていることを特徴としている。 
 この特徴によれば、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑できると共に、低圧流体側に配設されたディンプルで密封と潤滑とを行うことができるものであって、ディンプルによる密封作用を確実なものとすることができる。 
 また、本発明の摺動部品は、第4に、第1または第2の特徴において、前記ディンプルが設けられた前記摺動面の前記高圧流体側、又は、他方の摺動面の前記高圧流体側には前記高圧流体側と連通するレイリーステップからなる正圧発生機構が配設されていることを特徴としている。 
 この特徴によれば、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプルで密封と潤滑とを行うものであって、半径方向溝及び圧力開放溝のような深溝を設ける必要がないため、加工が容易であるというメリットがある。 
 本発明は、以下のような優れた効果を奏する。 
(1)正圧発生領域の低圧流体側の縁は、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、キャビテーション形成領域の低圧流体側の縁と滑らかに接続されることにより、摺動面に形成されたディンプルの上流側のキャビテーション領域から下流側の正圧発生領域への流体の移動をスムーズにすることができ、低圧流体側の縁にぶつかった流体の流れにおいて正圧が立たないため、正圧発生領域の先端側の低圧流体側における動圧発生を抑えることができ、低圧流体側に漏洩する流体の量を低減することができる。また、正圧発生領域において正圧が発生する正圧発生部は高圧流体側に近い部分であるため、正圧発生部の圧力ピーク位置から低圧流体側までの距離が大きくなり、その結果、圧力勾配が小さくなり、漏れ量を低減することができる。 
(2)キャビテーション形成領域の上流側の始端は、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、上流側に配置されたディンプルの正圧発生領域と径方向において重複するように配設されることにより、上流側のディンプルの正圧発生領域から低圧流体側に漏洩しようとする流体は下流側のディンプルのキャビテーション形成領域の上流側に流入することになり、低圧流体側への漏洩が阻止され密封性が向上される。また、摺動面におけるディンプルの配置効率を向上することができる。 
(3)ディンプルが設けられた摺動面の高圧流体側、又は、他方の摺動面の高圧流体側には高圧流体側と半径方向溝を介して連通するレイリーステップからなる正圧発生機構が配設され、正圧発生機構とディンプルとの間に圧力開放溝が設けられ、圧力開放溝は高圧流体側と半径方向溝を介して連通されていることにより、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑できると共に、低圧流体側に配設されたディンプルで密封と潤滑とを行うことができるものであって、ディンプルによる密封作用を確実なものとすることができる。 
(4)ディンプルが設けられた摺動面の高圧流体側、又は、他方の摺動面の高圧流体側には高圧流体側と連通するレイリーステップからなる正圧発生機構が配設されていることにより、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプルで密封と潤滑とを行うものであって、半径方向溝及び圧力開放溝のような深溝を設ける必要がないため、加工が容易であるというメリットがある。 
本発明の実施例に係るメカニカルシールの一例を示す縦断面図である。 本発明の実施例1に係る摺動部品の摺動面を示したものである。 (a)はディンプルの下流側の狭まり隙間(段差)からなる正圧発生機構を、(b)はディンプルの上流側の拡がり隙間(段差)からなる負圧発生機構を、説明するための図である。 本発明の実施例2に係る摺動部品の摺動面を示したものである。 本発明の実施例3に係る摺動部品の摺動面を示したものである。 従来技術2の摺動面を示したものである。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。  
 図1ないし図3を参照して、本発明の実施例1に係る摺動部品について説明する。 
 なお、本実施例においては、メカニカルシールを構成する部品が摺動部品である場合を例にして説明する。   
 図1は、メカニカルシールの一例を示す縦断面図であって、摺動面の外周から内周方向に向かって漏れようとする高圧流体側の被密封流体を密封する形式のインサイド形式のものであり、高圧流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた円環状の回転環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた円環状の固定環5とが、この固定環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、ラッピング等によって鏡面仕上げされた摺動面S同士で密接摺動するようになっている。すなわち、このメカニカルシールは、回転環3と固定環5との互いの摺動面Sにおいて、被密封流体が回転軸1の外周から大気側へ流出するのを防止するものである。 
 なお、本発明は、インサイド形式のものに限らず、摺動面の内周から外周方向に向かって漏れようとする高圧流体側の被密封流体を密封するアウトサイド形式のものにも適用できることはいうまでもない。 
 図2は、本発明の実施例1に係る摺動部品の摺動面を示したもので、図1の固定環5の摺動面にディンプルが形成された場合を例にして説明する。 
 なお、回転環3の摺動面にディンプルが形成される場合も同じである。
 図2において、摺動面Sにはディンプル10が周方向に複数設けられている。ディンプル10は、高圧流体側及び低圧流体側とは連通しておらず、また、各ディンプル10は相互に独立して周方向において離間するように設けられている。ディンプル10の数、面積及び深さは、摺動部品の径、摺動面の幅及び相対移動速度、並びに、密封及び潤滑の条件等に応じて適宜決定される性質のものであるが、面積が大きく、深さの浅いディンプルの方が流体潤滑作用及び液膜形成の点で好ましい。図2の場合、ディンプル10は6等配に設けられている。 
 各ディンプル10は、上流側のキャビテーション形成領域10aは低圧流体側に寄って配置されると共に下流側の正圧発生領域10bは高圧流体側に寄って配置され、これら2つの領域が連通されるような形状に形成されており、各ディンプル10のキャビテーション形成領域10aで吸入された流体は当該ディンプル内を通って正圧発生領域10bで動圧(正圧)を発生し、径方向に近い高圧流体側に戻されるようになっている。 
 図2に示された各ディンプル10の上流側のキャビテーション形成領域10aは、一定幅の摺動面S1を介して低圧流体側とは隔離されて配設され、円弧状をなすように一定幅を有して周方向に延び、下流側の正圧発生領域10bは、キャビテーション形成領域10aから高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するように延び、その先端10cは高圧流体側に近接するものの一定幅の摺動面S2を介して高圧流体側とは隔離されて配設されている。そして、正圧発生領域10bの低圧流体側の縁10dは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、キャビテーション形成領域10aの低圧流体側の縁10eと滑らかに接続されている。 
 正圧発生領域10bの低圧流体側の縁10dは、直線に限らず、低圧流体側に凸あるいは凹の曲線でもよい。直線の場合、単一の直線が望ましく、また、曲線の場合、曲率は一様であることが望ましい。 
 上記のように、正圧発生領域10bの低圧流体側の縁10dは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなし、キャビテーション形成領域10aの低圧流体側の縁10eと滑らかに接続されていることにより、キャビテーション形成領域10aに流入した流体は正圧発生領域10bにスムーズに流れ、低圧流体側の縁10dにぶつかった流体の流れにおいて正圧が立たないため、上記従来技術2の摺動部品に比べ、正圧発生領域10bの先端側の低圧流体側における動圧発生を抑えることができ、低圧流体側に漏洩する流体の量を低減することができる。また、正圧発生領域10bにおいて正圧が発生する正圧発生部は図2のハッチングで示された略三角形の領域Pの部分であるため、先端側の圧力ピーク位置から低圧流体側までの距離が大きくなり、その結果、圧力勾配が小さくなり、漏れ量を低減することができる。 
 その際、正圧発生領域10bの低圧流体側の縁10dのテーパ角θは、低圧流体側の縁10dにぶつかった流体がスムーズに流れ正圧が立たないようにする観点から小さいほど望ましい。テーパ角θは、例えば、0゜<θ≦45゜に設定される。 
 一方、各ディンプル10のキャビテーション形成領域10aの上流側の始端10fは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状に形成されると共に、上流側に配置されたディンプル10の正圧発生領域10bと径方向において重複するように配設されている。 
 詳述すると、キャビテーション形成領域10aの上流側の始端10fは、上流側に配置されたディンプル10の正圧発生領域10bの低圧流体側の縁10dとほぼ平行になるように傾斜したテーパ形状に形成されると共に、上流側に配置されたディンプル10の正圧発生領域10bと径方向において重複するように配設されている。そのため、上流側のディンプル10の正圧発生領域10bから低圧流体側に漏洩しようとする矢印Rで示される流体は下流側のディンプル10のキャビテーション形成領域10aの上流側に流入することになり、低圧流体側への漏洩が阻止され密封性が向上される。また、摺動面Sにおけるディンプルの配置効率(摺動面の全面積に対するディンプルの全面積の占める割合)を向上することができる。 
 なお、上流側の始端10fと低圧流体側の縁10dとが「ほぼ平行」とは、両者の交角が0゜~30°の範囲に有ることを意味する。  
 図2に示すディンプル10の形状は、一例に過ぎず、要は、低圧流体側に寄って上流側のキャビテーション形成領域10aが配置され、高圧流体側に寄って下流側の正圧発生領域10bが配置されたものにおいて、正圧発生領域10bに関しては、正圧発生領域10bの低圧流体側の縁10dは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなし、キャビテーション形成領域10aの低圧流体側の縁10eと滑らかに接続されていればよく、例えば、スキー板の先端側の側面形状のように先端側が本体部に対して鈍角でもって曲げられ、かつ、滑らかに接続された形状が挙げられる。 
 また、キャビテーション形成領域10aに関しては、始端10fは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状に形成されると共に、上流側に配置されたディンプル10の正圧発生領域10bと径方向において重複するように配設されればよく、テーパの角度及び上流側のディンプル10の正圧発生領域10bとの径方向における重複の程度などは、設計的に決められればよい。 
 ここで、図3を参照しながら、本発明におけるディンプルを設けた場合の正圧発生機構及び負圧発生機構について説明する。 
 図3(a)において、矢印で示すように、固定環5に対して回転環3が反時計方向に回転移動するが、固定環5の摺動面Sにディンプル10が形成されていると、該ディンプル10の下流側には狭まり隙間(段差)11が存在する。相対する回転環3の摺動面は平坦である。 
 回転環3が矢印で示す方向に相対移動すると、回転環3及び固定環5の摺動面間に介在する流体が、その粘性によって、回転環3の移動方向に追随移動しようとするため、その際、狭まり隙間(段差)11の存在によって破線で示すような動圧(正圧)が発生される。 
 図3(b)においては、矢印で示すように、固定環5に対して回転環3は反時計方向に回転移動するが、固定環5の摺動面Sにディンプル10が形成されていると、ディンプル10の上流側には拡がり隙間(段差)12が存在する。相対する回転環3の摺動面は平坦である。 
 回転環3が矢印で示す方向に相対移動すると、回転環3及び固定環5の摺動面間に介在する流体が、その粘性によって、回転環3の移動方向に追随移動しようとするため、その際、拡がり隙間(段差)12の存在によって破線で示すような動圧(負圧)が発生される。 
 このため、ディンプル10内の上流側には負圧が発生し、下流側には正圧が発生することになる。そして、上流側の負圧発生領域にはキャビテーションが発生する。 
 図4は、本発明の実施例2に係る摺動部品の摺動面を示したもので、図1の固定環5の摺動面にディンプルが形成された場合を例にして説明する。実施例2は、ディンプルの設けられた摺動面の高圧流体側にレイリーステップからなる正圧発生機構が配設された点で図2に示された実施例1と相違するが、その他の点は実施例1と基本的には同じであり、同じ部材は同じ符号を付し、重複する説明は省略する。 
 図4において、摺動面Sには、低圧流体側にディンプル10が配設され、高圧流体側にはレイリーステップ20からなる正圧発生機構が配設されている。 
 レイリーステップ20は、狭まり段差21、グルーブ部22及び高圧流体側と連通する半径方向溝23から構成されており、レイリーステップ20とディンプル10との間には高圧流体側と半径方向溝23を介して連通された圧力開放溝24が設けられている。グルーブ部22は、一定幅の摺動面S3を介して高圧流体側とは隔離されて配設され、円弧状をなすように一定幅を有して周方向に延びている。グルーブ部22の深さは、ディンプル10の深さの数倍である。圧力開放溝24は、レイリーステップ20で発生した動圧(正圧)を高圧側流体の圧力まで開放することで、流体が低圧流体側のディンプル10に流入し、ディンプル10の負圧発生能力が弱まることを防止するためのものであり、高圧流体側のレイリーステップ20で発生した正圧により低圧流体側に流入しようとする流体を圧力開放溝24に導き、高圧流体側に逃す役割を果たすものである。 
 図4の場合、ディンプル10は6等配に設けられ、レイリーステップ20は8等配に設けられている。 
 グルーブ部22、半径方向溝23及び圧力開放溝24の深さ及び幅は、摺動部品の径、摺動面の幅及び相対移動速度、並びに、密封及び潤滑の条件等に応じて適宜決定される性質のものである。例えば、グルーブ部22の深さは、ディンプル10の深さの1/2~数倍程度であり、また、半径方向溝23及び圧力開放溝24の深さは、ディンプル10の深さの十倍以上である。 
 実施例2においては、高圧流体側に配設されたレイリーステップ20からなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプル10で密封と潤滑とを行うものであり、ディンプル10のキャビテーション形成領域10aで吸入された流体は正圧発生領域10bから圧力開放溝24に導かれ、半径方向溝23を介して高圧流体側に戻される。このように、本例では、高圧流体側に配設されたレイリーステップ20からなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプル10で密封と潤滑とを行うことができるものであって、ディンプル10による密封作用を確実なものとすることができる。 
 図5は、本発明の実施例3に係る摺動部品の摺動面を示したもので、図1の固定環5の摺動面にディンプルが形成された場合を例にして説明する。実施例3は、ディンプルの設けられた摺動面の高圧流体側にレイリーステップからなる正圧発生機構が配設された点で図2に示された実施例1と相違するが、その他の点は実施例1と基本的には同じであり、同じ部材は同じ符号を付し、重複する説明は省略する。 
 図5において、摺動面Sには、低圧流体側にディンプル10が配設され、高圧流体側にはレイリーステップ30からなる正圧発生機構が配設されている。 
 レイリーステップ30は、狭まり段差31、グルーブ部32及びグルーブ部32の上流側において高圧流体側と連通する半径方向溝33から構成されており、レイリーステップ30とディンプル10との間には摺動面Sが介在されている。 
 グルーブ部32は、一定幅の摺動面S3を介して高圧流体側とは隔離されて配設され、円弧状をなすように一定幅を有して周方向に延びている。グルーブ部22の深さは、ディンプル10の深さの1/2~数倍程度である。 
 狭まり段差31は、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなしている。このように狭まり段差31が形成されていると、狭まり段差31付近で発生する正圧のピークは高圧流体側に寄るため、高圧の流体は主として高圧流体側に排出され、ディンプル10側への流れは減少される。 
 半径方向溝33は、グルーブ部32の幅と同程度、あるいは、それ以上の幅を有する。 
 半径方向溝33の深さは、グルーブ部32の深さと同程度であり、ディンプル10の深さの数倍である。そのため、グルーブ部32には高圧流体の流入が容易であり、摺動面Sの潤滑が十分に行われる。 
  実施例3においては、高圧流体側に配設されたレイリーステップ30からなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプル10で密封と潤滑とを行うものであり、ディンプル10のキャビテーション形成領域10aで吸入された流体は正圧発生領域10bから摺動面Sを潤滑しながら高圧流体側に戻される。実施例3では、実施例2のように、半径方向溝23及び圧力開放溝24のような深溝を設ける必要がないため、加工が容易であるというメリットがある。 
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 
 例えば、前記実施例では、摺動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状摺動面の軸方向一方側に潤滑油を密封しながら回転軸と摺動する軸受の摺動部品として利用することも可能である。 
 また、例えば、前記実施例では、外周側に高圧の被密封流体が存在する場合について説明したが、内周側が高圧流体の場合にも適用でき、その場合、ディンプルのキャビテーション形成領域が外周側に、また、正圧発生領域が内周側に位置するように配設すればよい。 
 また、例えば、前記実施例では、ディンプルの形状について、上流側のキャビテーション形成領域10aは、円弧状をなすように一定幅を有して周方向に延び、下流側の正圧発生領域10bは、キャビテーション形成領域10aから高圧流体側に向けてキャビテーション形成領域10aの幅と略同じ幅を有して相手摺動面の回転方向に沿って傾斜するように延びた形状を示しているが、これに限らず、例えば、キャビテーション形成領域10aと正圧発生領域10bの幅が異なるように配設したものでもよい。 
 また、前記実施例2及び3においては、回転環3及び固定環5のうち、固定環5の摺動面にディンプル10及びレイリーステップ20、30からなる正圧発生機構が配設された場合について説明したが、これに限らず、回転環3の摺動面に配設されてもよく、また、回転環3及び固定環5のいずれか一方の摺動面にディンプル10が、他方の摺動面にレイリーステップ20、30からなる正圧発生機構が配設されてもよい。例えば、回転環3の摺動面にディンプル10が配設され、固定環5の摺動面にレイリーステップ20、30からなる正圧発生機構が配設されてもよく、その場合、密封機能及び潤滑機能のより一層の向上を図ることができる。なお、半径方向溝23及び圧力開放溝24はレイリーステップ20からなる正圧発生機構の設けられる側に配設される。 
  1        回転軸 
  2        スリーブ 
  3        回転環 
  4        ハウジング 
  5        固定環 
  6        コイルドウェーブスプリング 
  7        ベローズ 
 10        ディンプル 
 10a       キャビテーション形成領域 
 10b       正圧発生領域 
 10c       正圧発生領域の先端 
 10d       正圧発生領域の低圧流体側の縁 
 10e       キャビテーション形成領域の低圧流体側の縁 
 10f       キャビテーション形成領域の上流側の始端 
 11        狭まり隙間(段差) 
 12        拡がり隙間(段差) 
 20        レイリーステップ(正圧発生機構) 
 21        狭まり段差 
 22         グルーブ部レイリーステップ 
 23        半径方向溝 
 24        圧力開放溝 
 30         レイリーステップ 
 31         狭まり段差 
 32        グルーブ部 
 33        半径方向溝 
 S         摺動面 
 P         正圧発生部 
 θ         テーパ角 
 R         正圧発生領域から低圧流体側に漏洩しようとする流体 

Claims (4)

  1.  一対の摺動部品の互いに相対摺動する一方側の摺動面に複数のディンプルが周方向に独立して設けられ、各ディンプルの上流側のキャビテーション形成領域は低圧流体側に寄って配置されると共に下流側の正圧発生領域は高圧流体側に寄って配置され、前記正圧発生領域の前記低圧流体側の縁は、前記低圧流体側から前記高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、前記キャビテーション形成領域の前記低圧流体側の縁と滑らかに接続されることを特徴とする摺動部品。 
  2.  前記キャビテーション形成領域の上流側の始端は、前記低圧流体側から前記高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に、上流側に配置されたディンプルの正圧発生領域と径方向において重複するように配設されることを特徴とする請求項1記載の摺動部品。 
  3.  請求項1または2記載の摺動部品において、前記ディンプルが設けられた前記摺動面の前記高圧流体側、又は、他方の摺動面の前記高圧流体側には前記高圧流体側と半径方向溝を介して連通するレイリーステップからなる正圧発生機構が配設され、前記正圧発生機構と前記ディンプルとの間に圧力開放溝が設けられ、前記圧力開放溝は高圧流体側と前記半径方向溝を介して連通されていることを特徴とする摺動部品。 
  4.  請求項1または2記載の摺動部品において、前記ディンプルが設けられた前記摺動面の前記高圧流体側、又は、他方の摺動面の前記高圧流体側には前記高圧流体側と連通するレイリーステップからなる正圧発生機構が配設されていることを特徴とする摺動部品。 
PCT/JP2015/068315 2014-06-26 2015-06-25 摺動部品 WO2015199171A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2015281104A AU2015281104B2 (en) 2014-06-26 2015-06-25 Sliding component
JP2016529650A JP6392343B2 (ja) 2014-06-26 2015-06-25 摺動部品
EP15811264.9A EP3163133B1 (en) 2014-06-26 2015-06-25 Sliding component
US15/121,665 US9765892B2 (en) 2014-06-26 2015-06-25 Sliding component
CN201580012448.8A CN106104112B (zh) 2014-06-26 2015-06-25 滑动部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131055 2014-06-26
JP2014-131055 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015199171A1 true WO2015199171A1 (ja) 2015-12-30

Family

ID=54938248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068315 WO2015199171A1 (ja) 2014-06-26 2015-06-25 摺動部品

Country Status (6)

Country Link
US (1) US9765892B2 (ja)
EP (1) EP3163133B1 (ja)
JP (1) JP6392343B2 (ja)
CN (1) CN106104112B (ja)
AU (1) AU2015281104B2 (ja)
WO (1) WO2015199171A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105505A1 (ja) * 2016-12-07 2018-06-14 イーグル工業株式会社 しゅう動部品
TWI640704B (zh) * 2017-06-06 2018-11-11 祥景精機股份有限公司 具有反曲點溝槽之非接觸式氣體軸封
WO2019049847A1 (ja) * 2017-09-05 2019-03-14 イーグル工業株式会社 摺動部品
WO2022230460A1 (ja) * 2021-04-28 2022-11-03 イーグル工業株式会社 摺動部品
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479023B2 (ja) * 2014-09-04 2019-03-06 イーグル工業株式会社 メカニカルシール
EP3309431B1 (en) * 2015-06-15 2022-07-20 Eagle Industry Co., Ltd. Slide component
CN109844382B (zh) * 2016-11-14 2021-01-12 伊格尔工业股份有限公司 滑动部件
WO2018092829A1 (ja) * 2016-11-18 2018-05-24 イーグル工業株式会社 摺動部材
EP3339654B1 (de) * 2016-12-20 2021-03-03 Grundfos Holding A/S Kreiselpumpe
CN107327576A (zh) * 2017-07-24 2017-11-07 浙江工业大学 一种环槽‑空化织构组合型低泄漏机械密封端面结构
US20210355992A1 (en) * 2018-10-24 2021-11-18 Eagle Industry Co., Ltd. Sliding member
US11933405B2 (en) 2019-02-14 2024-03-19 Eagle Industry Co., Ltd. Sliding component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050920A1 (ja) * 2012-09-29 2014-04-03 イーグル工業株式会社 摺動部品
WO2014061544A1 (ja) * 2012-10-18 2014-04-24 イーグル工業株式会社 摺動部品

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231269A (ja) * 1983-06-14 1984-12-25 Arai Pump Mfg Co Ltd メカニカルシ−ル
CA2096759A1 (en) * 1992-08-06 1994-02-07 Mark G. Pospisil Mechanical end face seal system
JPH08193662A (ja) 1995-01-13 1996-07-30 Mitsubishi Heavy Ind Ltd メカニカルシール
US6152452A (en) * 1997-10-17 2000-11-28 Wang; Yuming Face seal with spiral grooves
DE29810759U1 (de) * 1998-06-16 1998-09-10 Burgmann Dichtungswerk Feodor Gleitring einer Gleitringdichtungsanordnung
CN2622494Y (zh) 2003-06-06 2004-06-30 彭建 干气密封摩擦副
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
US8888104B2 (en) * 2010-09-16 2014-11-18 Stein Seal Company Intershaft seal system for minimizing pressure induced twist
EP2626604B1 (en) * 2010-10-06 2019-06-12 Eagle Industry Co., Ltd. Sliding part
CN201896950U (zh) 2011-01-24 2011-07-13 大连华阳光大密封有限公司 干气密封配对环
US9039013B2 (en) * 2011-05-04 2015-05-26 United Technologies Corporation Hydrodynamic non-contacting seal
CN102359596A (zh) 2011-09-26 2012-02-22 清华大学 一种单向旋转三维l形槽端面密封结构
CN102779112A (zh) 2012-05-31 2012-11-14 兰州石化职业技术学院 干气密封拟合曲线槽型线的生成方法
CN103185140B (zh) 2013-02-26 2016-06-22 浙江工业大学 仿鸟翼翅槽的径向分流型槽端面机械密封结构
CN103470773B (zh) 2013-08-23 2016-08-10 浙江工业大学 仿鸟翼型多通道槽端面密封结构
EP3309431B1 (en) * 2015-06-15 2022-07-20 Eagle Industry Co., Ltd. Slide component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050920A1 (ja) * 2012-09-29 2014-04-03 イーグル工業株式会社 摺動部品
WO2014061544A1 (ja) * 2012-10-18 2014-04-24 イーグル工業株式会社 摺動部品

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553353A4 (en) * 2016-12-07 2020-08-05 Eagle Industry Co., Ltd. SLIDING COMPONENT
WO2018105505A1 (ja) * 2016-12-07 2018-06-14 イーグル工業株式会社 しゅう動部品
EP4191098A1 (en) * 2016-12-07 2023-06-07 Eagle Industry Co., Ltd. Sliding component
JPWO2018105505A1 (ja) * 2016-12-07 2019-10-24 イーグル工業株式会社 しゅう動部品
US11053974B2 (en) 2016-12-07 2021-07-06 Eagle Industry Co., Ltd. Sliding component
US10697547B2 (en) 2017-06-06 2020-06-30 Scenic Precise Element Inc. Shaft sealing device
TWI640704B (zh) * 2017-06-06 2018-11-11 祥景精機股份有限公司 具有反曲點溝槽之非接觸式氣體軸封
KR20200036927A (ko) * 2017-09-05 2020-04-07 이구루코교 가부시기가이샤 슬라이딩 부품
KR102352197B1 (ko) 2017-09-05 2022-01-17 이구루코교 가부시기가이샤 슬라이딩 부품
US11221071B2 (en) 2017-09-05 2022-01-11 Eagle Industry Co., Ltd. Sliding component
WO2019049847A1 (ja) * 2017-09-05 2019-03-14 イーグル工業株式会社 摺動部品
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
WO2022230460A1 (ja) * 2021-04-28 2022-11-03 イーグル工業株式会社 摺動部品

Also Published As

Publication number Publication date
US20170167615A1 (en) 2017-06-15
CN106104112B (zh) 2017-12-19
EP3163133B1 (en) 2020-02-12
EP3163133A1 (en) 2017-05-03
AU2015281104A1 (en) 2016-09-15
JP6392343B2 (ja) 2018-09-19
US9765892B2 (en) 2017-09-19
CN106104112A (zh) 2016-11-09
JPWO2015199171A1 (ja) 2017-04-20
EP3163133A4 (en) 2018-04-11
AU2015281104B2 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6392343B2 (ja) 摺動部品
JP6456950B2 (ja) 摺動部品
JP6058018B2 (ja) 摺動部品
JP6161632B2 (ja) 摺動部品
JP6776232B2 (ja) 摺動部品
JP6910371B2 (ja) しゅう動部品
JP6204974B2 (ja) 摺動部品
JP6211009B2 (ja) 摺動部品
JP6757546B2 (ja) 摺動部品
JP6184970B2 (ja) 摺動部品
JP6279474B2 (ja) 摺動部品
JP6345695B2 (ja) 摺動部品
JP6713990B2 (ja) 摺動部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529650

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15121665

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015281104

Country of ref document: AU

Date of ref document: 20150625

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015811264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811264

Country of ref document: EP