WO2017135553A1 - Llzo 고체전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법 - Google Patents

Llzo 고체전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법 Download PDF

Info

Publication number
WO2017135553A1
WO2017135553A1 PCT/KR2016/013120 KR2016013120W WO2017135553A1 WO 2017135553 A1 WO2017135553 A1 WO 2017135553A1 KR 2016013120 W KR2016013120 W KR 2016013120W WO 2017135553 A1 WO2017135553 A1 WO 2017135553A1
Authority
WO
WIPO (PCT)
Prior art keywords
llzo
conductive polymer
secondary battery
solid
lithium
Prior art date
Application number
PCT/KR2016/013120
Other languages
English (en)
French (fr)
Other versions
WO2017135553A8 (ko
Inventor
김호성
김민영
양승훈
김다혜
김경준
최승우
임진섭
장덕례
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to JP2018540736A priority Critical patent/JP6652752B2/ja
Priority to US16/072,571 priority patent/US10886560B2/en
Publication of WO2017135553A1 publication Critical patent/WO2017135553A1/ko
Publication of WO2017135553A8 publication Critical patent/WO2017135553A8/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state lithium secondary battery containing LLZO solid electrolyte and its
  • all solid lithium secondary batteries containing LLZO solid electrolytes including conductive polymers, lithium salts and inorganic-free ceramic solid electrolytes at the same time in the positive electrode and the composite solid electrolyte layer, are manufactured in Guam.
  • Lithium secondary batteries have high electrochemical capacity, high operating potential, and excellent charge cycle characteristics, making them suitable for portable information terminals, portable electronic devices, small household electric power storage devices, motor cycles, electric vehicles, hybrid electric vehicles, etc. As demand increases, the demand for lithium secondary batteries increases and safety is required.
  • Korean Unexamined Patent Publication No. 2012-0132533 discloses an all-solid-state lithium secondary battery having excellent output characteristics using a sulfide-based solid electrolyte as an electrolyte.
  • a sulfide solid electrolyte is a toxic gas 3 ⁇ 4 hydrogen sulfide (H 2). S) There is a problem that gas is generated.
  • Oxide solid electrolytes have a lower ion conductivity than sulfide solid electrolytes, but have recently been attracting attention due to their excellent quality.
  • conventional oxide-based solid electrolytes have increased cell internal resistance due to the interfacial reaction between the electrolyte and electrodes, and There is a problem that the discharge capacity and cycle characteristics of the battery can be reduced.
  • the object of the present invention is to conduct conductive polymers and lithium salts simultaneously in the anode and composite solid electrolyte layers. And an all-solid-state lithium secondary battery having improved discharge capacity and cycle characteristics, including an inorganic ceramic solid electrolyte (LLZ0).
  • LLZ0 inorganic ceramic solid electrolyte
  • the present invention provides a method for manufacturing an all-solid-lithium secondary battery that can reduce the internal resistance of a battery by controlling interfacial, solid electrolyte particle, and electrolyte / electrode interface reactions.
  • an anode comprising a cathode active material, a first LLZO, a first conductive polymer, a first lithium salt, and a conductive material; an anode including a lithium metal; and between the anode and the cathode, Comprising a second LLZO, a second conductive polymer and a second lithium salt
  • a composite solid electrolyte layer wherein the first and second LLZO are independently LLZO doped or undoped aluminum, respectively, the undoped LLZO is represented by the following formula 1, the doped LLZO is represented by the following formula All solids indicated by
  • a lithium secondary battery is provided.
  • the first LLZO and the second LLZO may be LLZOs independently doped with aluminum, respectively.
  • the aluminum-doped LLZO garnet crystal structure may be used.
  • the composite includes 100 parts by weight of the positive electrode active material, 5 to 25 parts by weight of the first LLZO, 5 to 25 parts by weight of the first conductive polymer, and 5 to 25 parts by weight of the conductive material.
  • the electrolyte layer may include 1 to 300 parts by weight of the conductive polymer with respect to 100 parts by weight of the second LLZO.
  • the first conductive polymer and the second conductive polymer are each independently
  • Polyethylene oxide Polyethylene glycol (Polyethylene glycol) Polypropylene oxide (Polypropylene oxide), Polyphosphazene (Polyphosphazene), Polysiloxane (Polysiloxane) and may include one or more selected from their copolymers.
  • the first conductive polymer and the second conductive polymer are each independently averaged.
  • It may be a polyethylene oxide having a molecular weight of 500 to 1,000,000.
  • NMC lithium metal oxide
  • the conductive material may include one or more selected from carbon black, acetylene black, and ketjen blackosis.
  • the first lithium salt and the second lithium salt are each independently lithium perchlorate (LiC10 4 ), lithium triflate (LiCF 3 SO 3 ), lithium nucleofluorophosphate (LipF 6 ),
  • LiBF 4 Lithium tetrafluoroborate
  • Litrifluoromethanesulfonylimide LiN (CF 3 S0 2 ) 2 .
  • Lithium metal oxide NMC
  • lithium perchlorate LiC10 4
  • a positive electrode comprising a carbon black
  • negative electrode comprising lithium metal
  • (Polyethylene oxide) sayieo the positive electrode and the negative electrode 1, the aluminum-doped LLZO, polyethylene oxide, and
  • a composite solid electrolyte layer comprising lithium perchlorate (LiC10 4 );
  • anode comprising a conductive polymer, a first lithium salt and a conductive material; (b) preparing a composite solid electrolyte layer comprising a second LLZO, a second conductive polymer and a second lithium salt; (c) stacking the anode and the composite solid electrolyte layer to produce a laminate; and (d) disposing a cathode including a lithium metal on the composite solid electrolyte layer of the laminate.
  • a composite solid electrolyte layer comprising a second LLZO, a second conductive polymer and a second lithium salt
  • a manufacturing method is provided.
  • the manufacturing method of the all-solid-state lithium secondary battery is (c) the positive electrode and the
  • the composite solid electrolyte layer may be laminated and pressurized to a pressure of 0.1 to 1.0 MPa in the temperature range (T) of Equation 1 below to manufacture the laminated body.
  • the melting temperature T 1 ml silver-based conductive polymer, ⁇ ⁇ 2 silver is the melting temperature of the second conductive polymer.
  • the first conductive polymer and the second conductive polymer are polyethylene oxide, and step (c) laminates the anode and the composite solid electrolyte layer.
  • the method of manufacturing the all-solid-state lithium secondary battery is carried out by the temperature of Equation 1 below.
  • the method may further comprise pressurizing to a pressure of 0.1 to 1.0 MPa.
  • T ml is the melting temperature of the first conductive polymer and T m2 is the melting temperature of the second conductive polymer.
  • Step (a) may be a step of producing a cathode by casting slurry after mixing the cathode active material, LLZO, and the first conductive high boom, the first lithium salt and the conductive material.
  • Preparing a composite solid electrolyte layer comprising LLZO, a second conductive polymer, and a second lithium salt; (c ') preparing a laminate by arranging the anode, a composite solid electrolyte layer on the anode, and a cathode containing lithium metal on the composite solid electrolyte layer; and (d') the laminate is In the temperature range (T) of 1, 0.1 to 1.0
  • Tm T ml when T ml > T m2
  • Ttn T m2 when T ml ⁇ T m2
  • T ml is the melting temperature of the first conductive polymer and T m2 is the melting temperature of the second conductive polymer.
  • the all-solid-state lithium secondary battery of the present invention is different from the conventional technology in terms of anode and
  • the cell's discharge capacity and cycle characteristics can be improved.
  • the manufacturing method of the all-solid-state lithium secondary battery of the present invention is positive and negative.
  • FIG. 1 is a schematic diagram of an all-solid-state lithium secondary battery of the present invention.
  • FIG. 2 is a result of measuring layer discharge characteristics of an all-solid-state lithium secondary battery manufactured according to Example 1 and Comparative Example 1.
  • FIG. FIG. 3 is a result of measuring the discharge capacity according to the cycle at 55 ° C. of the all-solid-state lithium secondary battery manufactured according to Example 1.
  • Example 4 is a result of measuring the layer discharge characteristics of the all-solid-state lithium secondary battery prepared in Example 1 and Example 2 at 70 ° C.
  • FIG. 5 shows the impedance measurement results of the composite solid electrolyte layer prepared according to Preparation Examples 2 to 5 and the polyethylene oxide film prepared according to Preparation Example 6.
  • FIG. 5 shows the impedance measurement results of the composite solid electrolyte layer prepared according to Preparation Examples 2 to 5 and the polyethylene oxide film prepared according to Preparation Example 6.
  • FIG. 1 is a schematic diagram of an all-solid-state lithium secondary battery of the present invention.
  • the polymer and the second conductive polymer are PEO, the positive electrode active material is Ni-Co-Mn tricomponent lithium metal oxide (NMC), and the aluminum current collector and the lithium metal cathode are illustrated as laminated, but the scope of the present invention is It is not limited.
  • An all-solid-state lithium secondary battery of the present invention includes an anode including a cathode active material, a first LLZO, a first conductive polymer, a first lithium salt, and a conductive material; an anode containing a lithium metal; and between the anode and the cathode.
  • Containing a second lithium salt, a second LLZO, a second conductive polymer Composite solid electrolyte layer may include.
  • the first and second LLZOs are each independently doped or undoped with aluminum.
  • the undoped LLZO is represented by the following formula 1, the doped
  • LLZO can be represented by the following formula (2).
  • the first and second LLZOs may be aluminum doped LLZOs, and the aluminum doped LLZOs may have a garnet crystal structure.
  • the crystal structure has high ion conductivity and excellent potential safety.
  • the positive electrode may include 100 parts by weight of the positive electrode active material; 5 to 50 parts by weight of the first LLZO; 5 to 25 parts by weight of the first conductive polymer; and 5 to 25 parts by weight of the conductive material.
  • the anode may include 5 to 30 parts by weight of the first conductive polymer with respect to 100 parts by weight of the cathode active material, and more preferably,
  • 10 to 20 parts by weight of the first conductive polymer may be included with respect to 100 parts by weight of the positive electrode active material.
  • the cycle characteristics can be improved, and preferably it can comprise 10 to 40 parts by weight of the first LLZO with respect to 100 parts by weight of the positive electrode active material.
  • the composite solid electrolyte layer may include 1 to 300 parts by weight of the second conductive polymer relative to 100 parts by weight of the second LLZO, and preferably 1 to 280 parts by weight of the second conductive polymer based on 100 parts by weight of the second LLZO.
  • the first conductive polymer and the second conductive polymer are each independently
  • Polyethylene oxide, Polyethylene glycol, Polypropylene oxide, Polyphosphazene, Polysiloxane, and their copolymers are possible, but preferably have an average molecular weight of 500 to It may be 1,000,000 polyethylene oxide.
  • the polyethylene oxide may have an average molecular weight of 1,000 to 400,000, and more preferably the polyethylene oxide having an average molecular weight of 5,000 to 300,000.
  • Both LLZO and conductive polymer are present in the anode and the composite solid electrolyte layer.
  • the interfacial characteristics between the active material / active material particles, the solid electrolyte particles, and the electrolyte layer / electrode can be improved, thereby improving the discharge capacity and cycle characteristics of the all-solid-state lithium secondary battery.
  • the conductive polymer will be described in more detail.
  • a polymer means a value above a conductivity of io- 7 scm- '(value above semiconductor), and in most cases, an electron acceptor or electron donor
  • High conductivity can be achieved by doping.
  • Doped polyethylene, polypyrrole, polythiophene, etc. are known as representative conductive polymers.
  • Polyethylene oxide may be preferred.
  • the positive electrode active material is lithium cobalt oxide (LiCo0 2), lithium nickel oxide (LiNi0 2) such as the layered-compound or the compound 1 or more transition metal substituted with; formula Li 1 + x Mn 2.
  • lithium manganese oxides such as x 0 4 (wherein X is 0 to 0.33;) LiMn0 3 , LiMn 2 0 3 , and LiMn0 2 ; lithium copper oxide (Li 2 Cu0 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7, etc .;
  • Disulfide compounds Fe 2 (Mo0 4 ) 3 ; Li [Ni l / 3 Co l / 3 Nn l / 3 0] 2 , which can be expressed as LUNi x Co ⁇ Nn x OMCkx ⁇ .S), a three-component lithium metal oxide (NMC) of Ni-Co-Mn You can, but they are not limited to these.
  • the cathode active material may be a three-component lithium metal oxide (NMC) of Ni-Co-Mn, preferably represented by the following Chemical Formula 3.
  • NMC lithium metal oxide
  • the conductive material may be carbon black, acetylene black, ketjen black, and the like.
  • Preferably carbon black Preferably carbon black.
  • the first lithium salt and the second lithium salt are independently lithium perchlorate (LiCl0 4 ), lithium triflate (LiCF 3 S0 3 ), lithium nucleofluorophosphate (LipF 6 ),
  • Lithium trifluoromethanesulfonylimide LiN (CF 3 S0 2 ) 2
  • LiN (CF 3 S0 2 ) 2 Lithium trifluoromethanesulfonylimide
  • lithium perchlorate Preferably lithium perchlorate.
  • the all-solid-state lithium secondary battery is preferably LLZO doped with aluminum
  • a positive electrode comprising lithium metal oxide (NMC), lithium perchlorate (LiC10 4 ) and carbon black; a negative electrode containing lithium metalol; and between the positive electrode and the negative electrode, LLZO doped with aluminum, polyethylene oxide and And a composite solid electrolyte layer comprising lithium perchlorate (Liao 4 ).
  • an anode may be manufactured by casting a slurry containing a mixture of the cathode active material, the first LLZO, the first conductive polymer, the first lithium salt, and the conductive material and then drying the slurry.
  • the composite solid electrolyte complex may be coated onto a substrate to produce a composite solid electrolyte layer.
  • the substrate functions as polyethylene terephthalate (PET), polyethylenenaphthalate (PEN), poly ethersulf one (PES), poly arbonate (PC), polypropylene (PP), and the like, and preferably PET.
  • PET polyethylene terephthalate
  • PEN polyethylenenaphthalate
  • PS poly ethersulf one
  • PC poly arbonate
  • PP polypropylene
  • the coating may be any coating method that does not damage the substrate.
  • step c To manufacture (step c).
  • the anode and the composite solid electrolyte layer may be laminated, and the laminate may be manufactured by pressurizing at a pressure of 0.1 to 1.0 MPa in the temperature range (T) of Equation 1 below.
  • T mr is the melting temperature of the first conductive polymer and! Melting temperature of the silver second conductive polymer.
  • the pressurization may be performed at a pressure of preferably 0.1 to 1.0 MPa, more preferably at 0.1 to 0.8 MPa, and more preferably at 0.2 to 0.4 MPa.
  • the pressurization may be performed for 5 seconds to 5 minutes, preferably 5 seconds to 3 minutes, and more preferably 5 seconds to 1 minute.
  • the first conductive polymer and the second conductive polymer are preferably
  • the stack may be prepared by stacking the anode and the composite solid electrolyte layer and pressurizing at a pressure of 0.1 to 1.0 MPa at a temperature of 65 to 115 ° C.
  • the laminate is pressurized at a melting temperature of the first conductive polymer and the second conductive polymer to be higher than the melting temperature of the first conductive polymer and the second conductive polymer.
  • the second conductive polymer included in the composite solid electrolyte layer is melted and then bonded to improve the interfacial properties between the anode and the composite solid electrolyte layer, thereby reducing the internal resistance of the battery.
  • step (d) optionally, the resultant of step (d) is obtained in the temperature range (T)
  • It may further include pressurizing to a pressure of 0.1 to 1.0 MPa.
  • the second conductive polymer included in the composite solid electrolyte layer may be melted and then bonded, and the effect thereof is as described above in step (c).
  • Another method of manufacturing an all-solid-state lithium secondary battery includes (a ') preparing an anode including a cathode active material, a first LLZO, a first conductive polymer, a first lithium salt, and a conductive material; (b ') preparing a composite solid electrolyte layer comprising a second LLZO, a second conductive polymer, and a second lithium salt; (c iii ) a composite solid electrolyte layer on the anode, the anode, and the composite solid electrolyte Preparing a laminate by disposing a cathode including a lithium metal on the layer; and (d ') the laminate is pressurized at a pressure of 0.1 to 1.0 MPa in the temperature range (T) of Equation 1 to form a total solid lithium.
  • Manufacturing a secondary battery may include.
  • step (c) It is included in the composite solid electrolyte layer that the two conductive polymers can be melted and then bonded, and the effect thereof is as described in step (c).
  • Nitrates La (N0 3 6H 2 0), zirconium nitrates (ZrO (N0 3 ) r 2H 2 0) and aluminum nitrates ( ⁇ 1 ( ⁇ 0 3 ) 3 ⁇ 9 ⁇ 2 0) were dissolved to depart the molar concentration of 1 mole.
  • Material solution was prepared. The starting material solution and the complexing agent are added with 0.6 mol of ammonia water and an aqueous sodium hydroxide solution in an appropriate amount to give a mixed solution having a pH of 11 and the reaction mixture is 25 ° C. The reaction time was 4 hr and the stirring speed of the stirring rod was 1,300 rpm to coprecipitate to discharge the precursor slurry in the form of liquid slurry to the discharge part.
  • the precursor slurry was washed with purified water and then dried overnight.
  • the dried precursor was pulverized with a ball mill, and then excess LiOH.H 2 0 was added and mixed with a ball mill to prepare a mixture.
  • the LiOH.H 2 0 content of water was added in an excess of 3 wt% to 100 parts by weight relative to 100 parts by weight of Li in the solid electrolyte in which Li in LiOH.H 2 0 was generated.
  • the mixture was added at 900 ° C. for 2 hours.
  • pulverization was performed to prepare Li 625 La 3 Zr 2 Al 025 2 , which is aluminum-doped LLZO (Al-LLZO).
  • a composite of A1-LLZO prepared in Preparation Example 1 and the total weight of polyethylene oxide (A1-LLZO + PEO) were mixed in the same manner as in Preparation Example 2, except that the content of A1-LLZO was 50%.
  • a solid electrolyte layer was prepared.
  • a polyethylene oxide film was prepared in the same manner as in Preparation Example 2, except that A1-LLZO prepared in Preparation Example 1 was not added.
  • the mixing ratio of A1-LLZO prepared according to the binder and Preparation Example 1 was mixed so that the weight ratio ( ⁇ %) was 70: 10: 10: 10.
  • the PEO binder is PEO (Polyethylene Oxide, average molecular weight: 200,000,
  • ACN and LiC10 4 is a mixed solution and the PEO is 25 ⁇ ⁇ ⁇ 3 ⁇ 4 based on the total weight of the PEO binder.
  • the PEO binder is designed to have ionic conductivity.
  • NMC, Super-p and A1-LLZO prepared according to Preparation Example 1 were first weighed by the weight ratio, and then mixed for 30 minutes using a mortar to prepare a mixed powder.
  • the PEO binder was mixed at the weight ratio after transferring to a dedicated silver mixer, and then mounted on the mixer, and mixed three times for 5 minutes at 2,000 rpm once to prepare a mixture.
  • the mixture was weighed by the weight ratio, and then mixed for 30 minutes using a mortar to prepare a mixed powder.
  • the PEO binder was mixed at the weight ratio after transferring to a dedicated silver mixer, and then mounted on the mixer, and mixed three times for 5 minutes at 2,000 rpm once to prepare a mixture.
  • the mixture were first weighed by the weight ratio, and then mixed for 30 minutes using a mortar to prepare a mixed powder.
  • the PEO binder was mixed at the weight ratio after transferring to a dedicated silver mixer, and then mounted on the mixer, and mixed three times for 5 minutes at 2,000 rpm once to prepare a
  • ACN acetonitrile
  • zircon ball was added and then mixed at 2,000 rpm for 5 minutes to prepare a slurry.
  • the slurry was cast on aluminum foil and 60 ° C. in a vacuum oven. It was dried for 24 hours to weed the anode. After drying, the thickness was adjusted to about 35.
  • the mixed weight ratio of NMC: Super-p: PEO binder: Al-LLZO is 60: 10: 10: 10 instead of the mixed weight ratio of NMC: Super-p: PEO binder: Al-LLZO. :
  • the anode was manufactured in the same manner as in Production Example 3, except that the mixture was mixed at 10:10:20.
  • a mixture was prepared by mixing the mixing ratio of 8% solution of NCM, Super-P, and PVDF (poly-U-difluoroethene) to a weight ratio (wt ⁇ 3 ⁇ 4) of 80:10:10 based on solids, and then mixing the mixture. The mixture was used for 5 minutes at 2,000 rpm using a silky mixer. After stirring, NMP (n-methyl-2-pyrrolidone) was added, and again, the mixture was stirred and adjusted to an appropriate viscosity by adding a 2 mm zircon ball, followed by 5 minutes at 2,000 rpm using a Syncki mixer. The slurry was prepared by stirring. The slurry was cast using a glass rod on aluminum foil and dried 24 hours in a 110 ° C. dryer to prepare an anode. The thickness after drying was adjusted to about 15 / IT1.
  • the anode prepared according to Preparation Example 7 and the composite solid electrolyte layer prepared according to Preparation Example 4 were each laminated to a size of 016, and then laminated. Next, the mixture was heated to about 70 to 80 ° C. for 0.3 seconds for about 10 seconds. A laminated body was manufactured by applying MPa pressure. A lithium solid metal secondary battery was fabricated using a 2032 standard coin cell on a lithium metal.
  • An all-solid-state lithium secondary battery was manufactured in the same manner as in Example 1, except that the anode prepared according to Preparation Example 8 was used instead of the cathode manufactured according to Preparation Example 7.
  • An all-solid-state lithium secondary battery was manufactured in the same manner as in Example 1, except that the anode prepared according to Preparation Example 9 was used instead of the anode manufactured according to Preparation Example 7.
  • Test Example 1 Measurement of layer discharge characteristics Anode bar? 1 more ⁇ )
  • FIG. 2 (a) shows the layer discharge characteristics of the all-solid-state lithium secondary battery manufactured according to Example 1, measured at 55 ° C. with a current of 0.1 C.
  • FIG. 2 (b) is a comparative example. The layer discharge characteristics of the all-solid-state lithium secondary battery manufactured according to (1) were measured at 70 ° C. with a current of 0.1 C.
  • the all-solid-state lithium secondary battery manufactured according to Example 1 has an initial discharge capacity of about 130 mAh / g or more at 55 ° C., and maintains a discharge capacity of about 83% at 45 cycles.
  • the cycle characteristics of the all-solid-state lithium secondary battery manufactured according to Example 1 including the conductive polymer PEO and the solid electrolyte LLZO in the positive electrode were significantly greater. It was found to improve.
  • an all-solid-state lithium secondary battery manufactured according to Example 1 is 45
  • Example 3 Measurement of total low emission properties (composition of the anode pole ⁇
  • FIG. 4 (a) shows the layer discharge characteristics of the all-solid-state lithium secondary battery manufactured according to Example 1, measured at 70 ° C. with a current of 0.1 C
  • FIG. 4 (b) shows an embodiment.
  • the layer discharge characteristics of the all-solid-state lithium secondary battery manufactured according to (2) were measured and measured at 70 ° C. with a current of X1C.
  • the all-solid-state lithium secondary battery manufactured according to Example 1 slightly increases initial discharge at 70 ° C. than 55 ° C., and maintains 85% of discharge capacity at 30 cycles.
  • the all-solid-state lithium secondary battery manufactured according to Example 2 exhibited an excellent initial discharge capacity of about 150 mAh / g, but an increase in capacity decrease with the layer discharge cycle.
  • the all-solid-state lithium secondary battery manufactured according to Example 1 was prepared at 70 ° C.
  • FIG. 5 is a composite solid electrolyte layer prepared according to Preparation Examples 2 to 5 and a polyethylene oxide film prepared according to Preparation Example 6, respectively, mounted at SUS jig at room temperature, and subjected to impedance measurement under 7 MHz-100 mHz and 5 mV conditions. It is the result calculated by the ion conductivity.
  • the polyethylene oxide film had an ion conductivity of 2.68 ⁇ 10 ⁇ 7 S / cm.
  • the composite solid electrolyte layer prepared according to Production Examples 2 to 5 increased the content of A1-LLZO by 30, 50, 70, and 90 wt%, respectively.
  • x 10- 7, 4.83 x 10 6 , 7.59 x 10 6, 3.43 x 10 5 was increased in S / cm.
  • an electrochemical cell to which the polyethylene oxide film and the composite solid electrolyte layer were applied was manufactured and measured by a cyclic voltammetry.
  • the working electrode is made of SUS and the counter electrode is made of lithium metal.
  • an electrochemical cell to which a polyethylene oxide film prepared according to Preparation Example 6 and a composite solid electrolyte layer prepared according to Preparation Example 4 is applied may be up to about 5V.
  • the electrochemical response appeared to be safe, especially when the electrochemical cell applied with the composite solid electrolyte layer prepared according to Production Example 4 moves the polymer decomposition oxidation potential in the (+) direction, and increases the amount of A1-LLZO. It can be seen that the chemical potential window is further increased.
  • Test Example 6 Sedimentation Capacity of Coisem According to Contents of PEO / LLZO in Composite Solids
  • a layer discharge test was conducted at a 0.1 C current density on a composite solid electrolyte layer and a polyethylene oxide film prepared according to Production Example 6, and a 2032 standard coin cell applied with a cathode and a lithium metal cathode prepared according to Production Example 9.
  • the composite solid electrolyte layer prepared according to Preparation Example 4 (A1-LLZO) was shown.
  • the all-solid-state lithium secondary battery of the present invention is different from the conventional technology with the positive electrode and the
  • the discharge capacity and cycle characteristics of the cell can be improved by including conductive polymers, lithium salts and inorganic ceramic solid electrolytes simultaneously in the composite solid electrolyte layer.
  • the manufacturing method of the all-solid-state lithium secondary battery of the present invention is positive and negative.

Abstract

본발명은 양극활물질, 제 1 LLZO, 제 1전도성 고분자, 제 1리튬염 및 도전재를 포함하는 양극;리튬 금속을 포함하는 음극; 및 양극과 음극사이에, 제 2 LLZO, 제 2 전도성 고분자 및 제 2 리튬염을 포함하는 복합고체전해질층;을 포함하고, 제 1및 제 2 LLZO는 각각 독립적으로 알루미늄이 도핑 또는 비도핑된 LLZO인 전고체 리튬이차전지가 제공된다. 본 발명의 전고체리튬이차전지는 양극과 복합고체전해질층에 동시에 전도성 고분자, 리튬염 및 무기계 세라믹 고체전해질을 포함하여 전지의 방전용량 및 싸이클 특성이 향상될 수 있다. 또한, 본 발명의 전고체 리튬이차전지의 제조방법은 양극과 복합고체전해질층에 동시에 전도성 고분자, 리튬염 및 무기계 세라믹 고체전해질을 포함시켜 비소결 방식으로 전고체 리륨이차전지를 제조함으로써 제조비용을 감소시키고, 활물질 /활물질간,고체전해질 입자 간, 전해질 /전극 간의 계면반응을 제어하여 전지의 내부저항을 보다 감소시킬 수 있다.

Description

명세서
발명의명칭: ιχζο고체전해질을 ^함하는전^체리튬이차전지 및그의제조방법
기술분야
[1] 본발명은 LLZO고체전해질을포함하는전고체리튬이차전지및그의
제조방법에 ¾한것으로,양극과복합고체전해질층에동시에전도성고^자, 리튬염및무기계세라믹고체전해질을포함하는 LLZO고체전해질을포함하는 전고체리튬이차전지및.그의제조방법에괌한것이다.
배경기술
[2] 리튬이차전지는큰전기화학용량,높은작동전위및우수한충맣전사이클 특성을갖기때문에휴대정보단말기,휴대전자기기,가정용소형전력저장 장치,모터사이클,전기자동차,하이브리드전기자동차등의용도로수요가 증가하고있다.이와같은용도의확산에따라리튬이차전지의안전성향상및 고성능화가요구되고있다.
[3] 종래의리튬이차전지는액체전해질을사용함에따라공기중의물에노출될 경우쉽게발화되어안전성문제가항상제기되어왔다.이러한안전성뭄제는 전기자동차가가시화되면서더욱이슈화되고있다.
[4] 이에따라,최근안전성향상을목적으로불연재료인무기재료로이루어진 고체전해질을이용한전고체이차전지 (All-Solid-State Secondary Battery)의 연구가활발하게이루어지고있다.전고체이차전지는안전성,고에너지밀도, 고출력,장수명,제조공정의단순화,전지의대형화 /콤팩트화및저가화등의 관점에서차세대이차전지로주목되고있다ᅳ
[5] 전고체이차전지의핵심기술은높은이온전도도를나타내는고체전해질을 개발하는것이다.현재까지알려진전고체이차전지용고체전해질에는황화물 고체전해질과,산화물고체전해질이있다.
[6] 대한민국공개특허공보제 2012-0132533호에는전해질로서황화물계고체 전해질을사용하여우수한출력특성을갖는전고체리튬이차전지가개시되어 있다.그러나,황화물고체전해질은유독가스 ¾황화수소 (H2S)가스가 발생된다는문제점이있다.
[7] 산화물고체전해질은황화물고체전해질에비해낮은이온전도도를보이지만 정성이우수하여최근주목받고있다.그러나종래의산화물계고체전해질은 전해질 /전극간의계면반웅등에의해전지의내부저항이증가하여,셀의 방전용량및싸이클특성이저하될수있는문제점이있다.
발명의상세한설명
기술적과제
[8] 본발명의목적은양극과복합고체전해질층에동시에전도성고분자,리튬염 및무기계세라믹고체전해질 (LLZ0)을포함하여방전용량및싸이클특성이 향상된전고체리튬이차전지를제공하는데있다.
[9] 또한,양극과복합고체전해질층에동시에 ¾도성 ^붐자,리튬염및무기계 세라믹 체전해질을포함시켜비소결방식으 £전고체리튬이차전지를 제조함으로써제조비용을감소시키고,활물질 /활물질간,고체전해질입자간, 전해질 /전극간의계면반웅을제어하여전지의내부저항을보다감소시킬수 있는전고체리튬이차전지의제조방법을제공하는데있다.
과제해결수단
[10] 본발명의일측면에따르면,양극활물질,제 1 LLZO,제 1전도성고분자,제 1 리튬염및도전재를포함하는양극;리튬금속을포함하는음극;및상기양극과 음극사이에,제 2 LLZO,제 2전도성고분자및제 2리튬염을포함하는
복합고체전해질층;을포함하고,상기제 1및제 2 LLZO는각각독립적으로 알루미늄이도핑또는비도핑된 LLZO이고,상기비도핑된 LLZO는하기화학식 1로표시되고,상기도핑된 LLZO는하기화학식 2로표시되는전고체
리튬이차전지가제공된다.
[Π] [화학식 1]
[12] LixLayZrz012(6<x<9, 2<y<4, 1<ζ<3)
[13] [화학식 2]
[14] LixLayZrzAlw012(5<x<9, 2<y<4, 1<ζ<3, 0<w<l)
[15]
[16] 상기제 1 LLZO및제 2 LLZO가각각독립적으로알루미늄이도핑된 LLZO일 수있다.
[17] 상기알루미늄이도핑된 LLZO가가넷결정구조일수있다.
[18] 상기양극이상기양극활물질 100중량부에대하여,상기제 1 LLZO 5내지 50 증량부와,상기제 1전도성고분자 5내지 25중량부와,상기도전재 5내지 25 중량부를포함하고,상기복합고체전해질층이상기제 2 LLZO 100중량부에 대하여상기전도성고분자 1내지 300중량부를포함할수있다.
[19] 상기제 1전도성고분자및제 2전도성고분자가각각독립적으로
폴리에틸렌옥사이드 (Polyethylene oxide),폴리에틸렌글리콜 (Polyethylene glycol) 폴리프로필렌옥사이드 (Polypropylene oxide),폴리포스파젠 (Polyphosphazene), 폴리실록산 (Polysiloxane)및그들의공증합체중에서선택된 1종이상을포함할 수있다.
[20] 상기제 1전도성고분자및제 2전도성고분자가각각독립적으로평균
분자량이 500내지 1,000,000인폴리에틸렌옥사이드 (Polyethylene oxide)일수 있다.
[21] 상기양극활물질이아래화학식 3으로표시되는 Ni-Co-Mn의 3성분계
리튬금속산화물 (NMC)일수있다. [22] [화학식 3]
[23] LiNipCoqMnr02
[24] 여기서 0<p<0.9, 0<q<0.5, 0<r<0.5, p+q+r=l이다.
[25]
[26] 상기도전재가카본블랙,아세틸렌블랙,및케첸블랙증에서선택된 1종이상을 포함할수있다.
[27] 상기제 1리튬염및제 2리튬염이각각독립적으로리튬퍼클로레이트 (LiC104), 리튬트리플레이트 (LiCF3S03),리튬핵사플루오로포스페이트 (LipF6),
리튬테트라플루오로보레이트 (LiBF4)및
리튬트리플루오로메탄설포닐이미드 (LiN(CF3S02)2)증에서선/택된】종이상일 수있다.
[28] 상기전고체리튬이차전지가알루미늄이도핑된 LLZO,
폴리에틸렌옥사이드 (Polyethylene oxide), Ni-Co-Mn의 3성분계
리튬금속산화물 (NMC),리튬퍼클로레이트 (LiC104)및카본블랙을포함하는 양극;리튬금속을포함하는음극;및상기양극과음극사이어 1,알루미늄이 도핑된 LLZO,폴리에틸렌옥사이드 (Polyethylene oxide)및
리륨퍼클로레이트 (LiC104)을포함하는복합고체전해질층;올포함할수있다.
[29] 본발명의다른또하나의측면에따르면, (a)양극활물질,제 1 LLZO,제 1
전도성고분자,제 1리튬염및도전재를포함하는양극을제조하는단계; (b)제 2 LLZO,제 2전도성고분자및계 2리튬염을포함하는복합고체전해질층올 제조하는단계; (c)상기양극과상기복합고체전해질층을적층하여적충체를 제조하는단계;및 (d)상기적층체의복합고체전해질층상에리튬금속을 포함하는음극을배치하는단계;를포함하는전고체리튬이차전지의
제조방법이제공된다.
[30] 상기전고체리튬이차전지의제조방법이단계 (c)가상기양극과상기
복합고체전해질층을적층하고,아래식 1의온도범위 (T)에서, 0.1내지 1.0 MPa의압력으로가압하여적층체를제조하는단계일수있다.
[31] [식 1]
[32] Tm <T< Tm+50°C
[33] 상기식 1에서, Tml > Tm2인경우 Tm = Tml이고 , Tml < Tm2인경우 Tm = Tm^l고,
Tml = Tm2인경우 Tm= Tm^1며,
[34] 여기서, Tml은계 1전도성고분자의용융온도이고, Τπι2은제 2전도성고분자의 용융온도이다.
[35] 상기제 1전도성고분자및제 2전도성고분자가폴리에틸렌옥사이드이고, 단계 (c)가상기양극과상기복합고체전해질층을적층하고
65°C (폴리에틸렌옥사이드의용융온도)내지 U5°C의온도에서 0.1내지 1.0 MPa 의압력으로가압하여적층체를제조하는단계일수있다.
[36] 상기전고체리튬이차전지의제조방법이단계 (d)의결과물을아래식 1의온도 범위 (T)에서, 0.1내지 1.0 MPa의압력으로가압하는단계를추가로포함할수 있다.
[37] [식 1]
[38] Tm <T< Tm+50°C
[39] 상기식 1에서, Tml > Tm2인경우 Tm = Tml이고, Tml < Tm2인경우 Tm = Tm2이고,
Tml = Tm2인경우 Tm = Tml이며,
[40] 여기서, Tml은제 1전도성고분자의용융온도이고, Tm2은제 2전도성고분자의 용융온도이다.
[41] 단계 (a)가상기양극활물질, LLZO,제 1전도성고붐자,제 1리륨염및도전재를 흔합한슬러리를캐스팅한후건조하여양극을제조하는단계일수있다.
[42] 본발명의다른또하나의측면에따르면, (a')양극활물질,제 1 LLZO,제 1
전도성고분자ᅳ게 1리튬염및도전재를포함하는양극을제조하는단계; (b')제 2
LLZO,제 2전도성고분자및제 2리튬염을포함하는복합고체전해질층을 제조하는단계; (c')상기양극,상기양극상에복합고체전해질층,및상기 복합고체전해질층상에리튬금속을포함하는음극올배치하여적층체를 제조하는단계;및 (d')상기적층체를아래식 1의온도범위 (T)에서, 0.1내지 1.0
MPa의압력 로가압하여전고체리튬이차전지를제조하는단계;를포함할수 있다.
[43] [식 1]
[44] Tm <T< Tm+50°C
[45] 상기식 1에서, Tml > Tm2인경우 Tm = Tml이고, Tml < Tm2인경우 Ttn = Tm2이고,
Tml = Tm2인경우 Tm = Tm,이며,
[46] 여기서, Tml은제 1전도성고분자의용융온도이고, Tm2은제 2전도성고분자의 용융온도이다.
발명의효과
[47] 본발명의전고체리튬이차전지는종래기술과는다르게양극과
복합고체전해질층에동시에전도성고분자,리튬염및무기계세라믹
고체전해질을포함하여전지의방전용량및싸이클특성이향상될수있다.
[48] 또한,본발명의전고체리튬이차전지의제조방법은양극과
복합고체전해질층에동시에전도성고분자,리튬염및무기계세라믹
고체전해질을포함시켜비소결방식으로전고체리튬이차전지를제조함으로써 제조비용을감소시키고,활물질 /활물질간,고체전해질입자간,전해질 /전극 간의계면반웅을쎄어하여전지의내부저항을보다감소시킬수있다.
도면의간단한설명
[49] 도 1은본발명의전고체리튬이차전지의개략도이다.
[50] 도 2는실시예 1및비교예 1에따라제조된전고체리튬이차전지의층방전 특성을측정한결과이다. [51] 도 3은실시예 1에따라제조된전고체리튬이차전지를 55°C에서싸이클에 따른방전용량을측정한결과이다.
[52] 도 4는실시예 1및실시예 2에따라제조된전고체리륨이차전지를 70oC에서 층방전특성을측정한결과이다.
[53] 도 5는제조예 2내지 5에따라제조된복합고체전해질층과제조예 6에따라 제조된폴리에틸렌옥사이드막의임피던스측정결과이다.
[54] 도 6은제조예 6에따라제조된폴리에틸렌옥사이드막과제조예 4에따라
제조된복합고체전해질층을적용한전기화학샐의산화환원거동을측정한 결과이다.
[55] 도 7은제조예 2내지 5에따라제조된복합고체전해질층과제조예 6에따라 제조된폴리에틸렌옥사이드막을적용한코인셀의방전용량을측정한결과이다. 발명의실시를위한최선의형태
[56] 이하,본발명이속하는기술분야에서통상의지식을가진자가용이하게
실시할수있도록첨부된도면을참조하여본발명의실시예를상세히
설명하도록한다.
[57] 그러나,이하의설명은본발명을특정한실시형태에대해한정하려는것이 아니며,본발명을설명함에있어서관련된.공지기술에대한구체적인설명이 본발명의요지를흐릴수있다고판단되는경우그상세한설명을생략한다.
[58] 본원에서사용한용어는단지특정한실시예를설명하기위해사용된것으로, 본발명을한정하려는의도가아니다.단수의표현은문맥상명백하게다르게 뜻하지않는한,복수의표현을포함한다.본출원에서, "포함하다"또는 "가지다'' 등의용어는명세서상에기재된특징,숫자,단계,동작,구성요소,또는이들을 조합한것이존재함을지정하려는것이지 ,하나또는그이상의다른특징들이나 숫자,단계,동작,구성요소,또는이들을조합한것들의존재또는부가가능성을 미리배제하지않는것으로이해되어야한다.
[59]
[60] 도 1은본발명의전고체리튬이차전지의개략도이다.여기서,제 1전도성
고분자및제 2전도성고분자는 PEO이고,양극활물질은 Ni-Co-Mn의 3성분계 리튬금속산화물 (NMC)이고,알루미늄집전체및리튬금속음극이적층된 것으로예시하였으나,본발명의범위가여기에한정되지않는다.
[61] 이하,도 1을참조하여본발명의전고체리튬이차전지에대해상세히
설명하도록한다.다만,이는예시로서제시되는것으로,이에의해본발명이 제한되지는않으며본발명은후술할청구범위의범주에의해정의될뿐이다.
[62]
[63] 본발명의전고체리튬이차전지는양극활물질,제 1 LLZO,제 1전도성고분자, 제 1리튬염및도전재를포함하는양극;리륨금속을포함하는음극;및상기 양극과음극사이에,제 2 LLZO,계 2전도성고분자맟제 2리튬염을포함하는 복합고체전해질층;을포함할수있다.
[64] 상기제 1및제 2 LLZO는각각독립적으로알루미늄이도핑또는비도핑된
LLZO이고,상기비도핑된 LLZO는하기화학식 1로표시되고,상기도핑된
LLZO는하기화학식 2로표시될수있다.
[65] [화학식 1]
[66] LixLayZr2012(6<x<9, 2<y<4, l≤z<3)
[67] [화학식 2]
[68] LixLayZrzAlw012(5<x<9, 2<y<4, 1<ζ<3, 0<w<l)
[69]
[70] 바람직하게는상기제 1및게 2 LLZO는알루미늄이도핑된 LLZO일수있고, 상기알루미늄이도핑된 LLZO는가넷결정구조일수있다.상기가넷
결정구조는이온전도도가높고전위안전성이우수한구조이다.
[71] 상기양극은양극활물질 100중량부;제 1 LLZO 5내지 50중량부;제 1전도성 고분자 5내지 25중량부;및도전재 5내지 25중량부;를포함할수밌다.
[72] 상기양극은바람직하게는상기양극활물질 100중량부에대하여제 1전도성 고분자 5내지 30증량부를포함할수있으며,더욱바람직하게는상기
양극활물질 100중량부에대하여제 1전도성고분자 10내지 20중량부를포함할 수있다.
[73] 상기양극에포함되는양극활물질의함량에따라전고체리튬이차전지의
싸이클특성이개선될수있으며,바람직하게는상기양극활물질 100중량부에 대하여제 1 LLZO 10내지 40중량부를포함할수있다.
[74] 상기복합고체전해질층은제 2 LLZO 100증량부에대하여제 2전도성고분자 1 내지 300중량부를포함할수있고,바람직하게는제 2 LLZO 100중량부에 대하여제 2전도성고분자 1내지 280증량부를포함할수있고,더욱
바람직하게는제 2 LLZO 100중량부에대하여제 2전도성고분자 1내지 250 중량부를포함할수있다.
[75] 상기제 1전도성고분자및게 2전도성고분자는각각독립적으로
폴리에틸렌옥사이드 (Polyethylene oxide),폴리에틸렌글리콜 (Polyethylene glycol), 폴리프로필렌옥사이드 (Polypropylene oxide),폴리포스파젠 (Polyphosphazene), 폴리실록산 (Polysiloxane)및그들의공중합체등이가능하나,바람직하게는평균 분자량이 500내지 1,000,000인폴리에틸렌옥사이드일수있다.더욱
바람직하게는평균분자량이 1,000내지 400,000인폴리에틸렌옥사이드,더욱더 바람직하게는평균분자량이 5,000내지 300,000인폴리에틸렌옥사이드일수 있다.
[76] 상기양극과상기복합고체전해질층에 LLZO와전도성고분자가모두
포함됨으로써활물질 /활물질입자간,고체전해질입자간,전해질층 /전극간의 계면특성이향상되어전고체리튬이차전지의방전용량및싸이클특성이 향상될수있다. [77] 상기전도성고분자를좀더상세하게설명하면,일받적으로전도성
고분자는전도율 io-7scm-' (반도체이상의값)이상의값을 a시하는고^자를 의미하며 ,대부분의경우는전자수용체또는전자공여체를고붐자에
도프함으로써높은전도율이얻어질수있다.도프된폴리에틸렌,폴리피롤, 폴리티오펜등이대표적인전도성고분자로알려져있다.본발명에서는 리튬염과복합화하여최적의이온전도성을가질수있는전도성고분자를 선택하는것이바람직하며,폴리에틸렌옥사이드 (Polyethylene oxide)가바람직할 수있다.
[78] 상기양극활물질은리튬코발트산화물 (LiCo02),리튬니켈산화물 (LiNi02) 등의층상화합물이나 1또는그이상의전이금속으로치환된화합물;화학식 Li 1+xMn2.x04(여기서, X는 0 ~ 0.33임;), LiMn03, LiMn203, LiMn02등의리튬 망간산화물;리튬동산화물 (Li2Cu02); LiV308, LiFe304, V205, Cu2V207등의 바나듐산화물;화학식 LiNi^MxC :여기서, M = Co, Mn, Al, Cu, Fe, Mg, B또는 Ga이고, x = 0.01 - 0.3임)으로표현되는 Ni사이트형리튬니켈산화물;화학식 LiMn2_xMx02(여기서, M = Co, Ni, Fe, Cr, Zn또는 Ta이고, x = 0.01 ~ 0.1임 )또는 Li 2Mn3M08(여기서, M = Fe, Co, Ni, Cu또는 Zn임)으로표현되는리튬망간복합 산화물;화학식의 Li일부가알칼리토금속이온으로치환된 LiMn204;
디설파이드화합물; Fe2(Mo04)3; Ni-Co-Mn의 3성분계리튬금속산화물 (NMC)인 LUNixCo^NnxOMCkx^.S)로표현될수있는 Li[Nil/3Col/3Nnl/30]2등을들수 있지만,이들만으로한정되는것은아니다.
[79] 상기양극활물질은바람직하게는아래화학식 3으로표시되는 Ni-Co-Mn의 3성분계리튬금속산화물 (NMC)일수있다.
[80] [화학식 3]
[81] LiNipCoqMnr02
[82] 여기서 0<p<0.9, 0<q<0.5, 0<r<0.5, p+q+r=l이다.
[83]
[84] 상기도전재는카본블랙,아세틸렌블랙,케첸블랙등이가능하며,
바람직하게는카본블랙일수있다.
[85] 상기제 1리튬염및제 2리튬염은각각독립적으로리튬퍼클로레이트 (LiCl04), 리튬트리플레이트 (LiCF3S03),리튬핵사플루오로포스페이트 (LipF6),
리톱테트라플루오로보레이트 (LiBF4),
리륨트리플루오로메탄설포닐이미드 (LiN(CF3S02)2)등이가능하나,
바람직하게는리튬퍼클로레이트일수있다.
[86] 상기전고체리튬이차전지는바람직하게는알루미늄이도핑된 LLZO,
폴리애틸렌옥사이드 (Polyethylene oxide), Ni-Co-Mn의 3성분계
리튬금속산화물 (NMC),리튬퍼클로레이트 (LiC104)및카본블랙을포함하는 양극;리튬금속올포함하는음극;및상기양극과음극사이에,알루미늄이 도핑된 LLZO,폴리에틸렌옥사이드 (Polyethylene oxide)및 리튬퍼클로레이트 (Liao4)을포함하는복합고체전해질층;을포함할수있다.
[87]
[88] 이하,본발명의전고체리튬이차전지의제조방법에대하여상세히설명하도록 한다.
[89] 머저.양극활물짐.체 1 LLZO.체 1저도성고분자.제 1리튜염 및도저재름
포함하는양극음제조하다 (다계 aV
[90] 좀더상세하게설명하면,상기양극활물질,제 1 LLZO,제 1전도성고분자,제 1 리륨염및도전재를흔합한슬러리를캐스팅한후건조하여양극을제조할수 있다.
[91] 다은으로. ^2 LLZO.제 2저도성고분자및제 2리튜염음포함하는
복합고체저해짐총음체조하다 ί다계 h
[92] 좀더상세하게설명하면,상기제 2 LLZO,제 2전도성고분자및리튬염을
포함하는복합고체전해질흔합물을기재상에코팅하여복합고체전해질층을 제조할수있다.
[93] 상기기재는 PET(polyethylene terephthalate), PEN(polyethylenenaphthalate), PES (poly ethersulf one) , PC (Poly c arbonate) , PP(polypropylene)등이기능하며, 바람직하게는 PET일수있다.
[94] 상기코팅은기재에손상을입히지않는코팅방법이라면어느것이든가능할 수있다.
[95] 다은으로.상기 양극과상기복한고체저해짐총을적총하여 적총체름
제조한다 (단계 c).
[96] 바람직하게는상기양극과상기복합고체전해질층을적층하고,아래식 1의 온도범위 (T)에서, 0.1내지 1.0 MPa의압력으로가압하여적층체를제조할수 있다.
[97] [식 1]
[98] Tm <T< Tm+50°C
[99] 상기식 1에서, Tml > Tm2인경우 Tm = Tml이고, Tml < Tm2인경우 Tm = Tm2이고,
Tml = Tm2인경우 Tm= Tml이며,
[100] 여기서 , Tmr 제 1전도성고분자의용융온도이고,! 은제 2전도성고분자의 용융온도이디-.
[101]
[102] 상기가압은바람직하게는 0.1내지 1.0 MPa의압력으로수행될수있으며, 더욱바람직하게는 0.1내지 0.8 MPa,더욱더바람직하게는 0.2내지 0.4 MPa로 수행될수있다.
[103] 상기가압은 5초내지 5분동안수행될수있으며,바람직하게는 5초내지 3분, 더욱바람직하게는 5초내지 1분동안수행될수있다.
[104] 상기제 1전도성고분자및게 2전도성고분자는바람직하게는
폴리에틸렌옥사이드일수있고,폴리에틸렌옥사이드인경우단계 (c)는상기 양극과상기복합고체전해질층을적층하고 65내지 115°C의온도에서 0.1내지 1.0 MPa의압력으로가압하여적층체를제조하는단계일수있다.
[105] 상기적층체는제 1전도성고분자및제 2전도성고분자의용융온도이상에서 가압이수행됨으로써,양극에포함되는게 1전도성고분자와
복합고체전해질층에포함되는제 2전도성고분자가용융된후접착되어양극과 복합고체전해질층사이의계면특성이향상되고,이로인해전지의내부저항이 감소될수있다.
[106] 마지만으로.상기 체의복한고체저해짐총상에 리류금속음포함하는
은극음배치하여저고체리튜이차저지름제조하다다계 d).
[107] 단계 (d)이후에선택적으로단계 (d)의결과물을상기식 1의온도범위 (T)에서,
0.1내지 1.0 MPa의압력으로가압하는단계를추가로포함할수있다.
[108] 상기가압에의해서양극에포함되는제 1전도성고분자와
복합고체전해질층에포함되는제 2전도성고분자가용융된후접착될수 있으며,이로인한효과는단계 (c)에서상술한바와같다.
[109]
[110] 또다른형태의전고체리튬이차전지의제조방법은 (a')양극활물질,제 1 LLZO, 제 1전도성고분자,제 1리튬염및도전재를포함하는양극을제조하는단계; (b') 제 2 LLZO,제 2전도성고분자및제 2리튬염을포함하는복합고체전해질층을 제조하는단계; (cᅳ)상기양극,상기양극상에복합고체전해질층,및상기 복합고체전해질층상에리륨금속을포함하는음극을배치하여적층체를 제조하는단계;및 (d')상기적층체를상기식 1의온도범위 (T)에서, 0.1내지 1.0 MPa의압력으로가압하여전고체리튬이차전지를제조하는단계;를포함할수 있다.
[1 11] 상기가압에의해서양극에포함되는제 1전도성고분자와
복합고체전해질층에포함되는게 2전도성고분자가용융된후접착될수 있으며,이로인한효과는단계 (c)에서상술한바와같다.
발명의실시를위한형태
[112] [실시예]
[1 13] 이하,본발명의바람직한실시예를들어설명하도록한다.그러나이는예시를 위한것으로서이에의하여본발명의범위가한정되는것은아니다.
[114]
[115] 제조예 1 :암루미뉴이도¾되 리롭라타뉴지르코뉴산화물 (Aluminum doped lithium lanthanum zirconium oxide. Al-LLZO)의제조
[116] 증류수에출발물질인 La:Zr:Al의몰비율이 3:2:0.25가되도록란타늄
질산염 (La(N03 6H20),지르코늄질산염 (ZrO(N03)r2H20)및알루미늄 질산염 (Α1(Ν03)3·9Η20)을용해시켜출발물질이 1몰농도인출발물질용액을 제조하였다. [117] 쿠에트테일러와류반웅기의주입부를통하여상기출발물질용액,착화제로 암모니아수 0.6몰,및수산화나트륨수용액을적정량첨가하여 pH가 11로 조절된흔합용액이되도록하고반웅옴도는 25°C,반웅시간은 4hr,교반봉의 교반속도는 1,300 rpm으로하여공침시켜액상슬러리형태의전구체슬러리를 토출부로토출하였다.상기쿠에트테일러와류반응기의공침반웅에서테일러 수는 640이상으로하였다.
[118] 상기전구체슬러리를정제수로세척한후,밤새건조하였다.건조된전구체를 볼밀로분쇄한후,과잉의 LiOH.H20을첨가하고,볼밀로흔합하여흔합물을 제조하였다.상기흔합물의 LiOH.H20함량은 LiOH.H20중 Li의함량이 생성되는고체전해질중 Li 100중량부에대하여 103중량부가되도록 3 wt%과잉 투입하였다.상기혼합물을 900°C에서 2시간동안하소한후분쇄하여 알루미늄이도핑된 LLZO(Al-LLZO)인 Li625La3Zr2Al0252를제조하였다.
[119]
[120] 제조예 2:복합고체저해짐층의제조 (LLZO 30wt%)
[121] 제조예 1에따라제조된 A1-LLZO및폴리에틸렌옥사이드 (PEO,평균분자량:
200,000,용융온도: 65°C)전체중량 (A1-LLZO + PEO)에대해 A1-LLZO의함량이 30^%가되도록 A1-LLZO와 PEO고체전해질바인더를칭량하고,싱키 혼합기 (Thinky mixer)를이용하여 2,000rpm으로 5분동안교반하여흔합물을 제조하였다.
[122] 이때,상기 PEO고체전해질바인더는 PEO, ACN및 LiC104를포함하는혼합 용액이고, PEO가 PEO고체전해질바인더전체중량을기준으로 25^%가 되도록하였다.또한,상기 PEO고체전해질바인더는이온전도성을가지도록 설계하였으며, PEO와 LiC104의함량비가 [EO]: [Li] = 15: 1이되도록하였다.
[123] 상기흔합물에 ACN을흔합하고,싱키혼합기로교반하여적절한점도로
조절하였다.다음으로, 2mm지르콘볼을첨가하고싱키흔합기로 2,000rpm으로 5분동안교반하여슬러리를제조하였다.상기술러리는 PETXpolyethylene terephthalate)필름상에캐스팅하고상온건조하였으며,그두께가 80 가 되도록조절하여복합고체전해질층을제조하였다.
[124]
[125] 제조예 3:복합고체저해짐층의제조 Π ΖΟ 50wt%)
[126] 제조예 1에따라제조된 A1-LLZO및폴리에틸렌옥사이드전체중량 (A1-LLZO + PEO)에대해 A1-LLZO의함량이 50\ %가되도록한것을제외하고는제조예 2와동일한방법으로복합고체전해질층을제조하였다.
[127]
[128] 제조예 4:복합고체저해짐층의제조 Π ΖΟ 70wt -|
[129] 제조예 1에따라제조된 A1-LLZO및폴리에틸렌옥사이드전체중량 (A1-LLZO + PEO)에대해 A1-LLZO의함량이 7(½1%가되도록한것을제외하고는제조예 2와동일한방법으로복합고체전해질층을제조하였다. [130]
[131] 체조예 5:복함고체저해짐층의제조 (LLZO 90wt%)
[132] 제조예 1에따라제조된 A1-LLZO및폴리에틸렌옥사이드전체중량 (A1-LLZO + PEO)에대해 A1-LLZO의함량이 90\ %가되도록한것을제외하고는제조예 2와동일한방법으로복합고체전해질층을제조하였다.
[133]
[134] 체조예 6:폴리에팀레옥사이드막의거ᅵ조 (LLZO Owt%)
[135] 제조예 1에따라제조된 A1-LLZO를첨가하지않은것을제외하고는제조예 2와동일한방법으로폴리에틸렌옥사이드막을제조하였다.
[136]
[137] 체조예 7:양극의제조
[138] 양극활물질 (리튬니켈코발트망간산화물, NMC),도전재 (Super-p), PEO
바인더및제조예 1에따라제조된 A1-LLZO의흔합비율을중량비 (\ %)가 70:10:10:10이되도록혼합하였다.
[139] 이때 ,상기 PEO바인더는 PEO(Polyethylene Oxide,평균분자량: 200,000,
용융온도: 65°C), ACN및 LiC104를포함하는흔합용액이고, PEO가 PEO바인더 전체중량을기준으로 25\^<¾가되도록하였다.또한,상기 PEO바인더는 이온전도성을가지도록설계하였으며, PEO와 LiC104의함량비가 [EO]: [Li] = 15 : 1아되도록하였다.
[140] 구체적으로,먼저 NMC, Super-p및제조예 1에따라제조된 A1-LLZO를상기 중량비로칭량한후,막자사발을이용하여 30분동안흔합하여흔합분말을 제조하였다.상기혼합분말은싱키흔합기 (Thinky mixer)전용용기에옮겨담은 후상기중량비로 PEO바인더를혼합하고,흔합기에장착하여 1회 2,000rpm으로 5분동안 3회혼합하여흔합물을제조하였다.다음으로,상기혼합물에
ACN(acetonitrile)을흔합하여적절한점도로조절하고,지르콘볼을넣은후 2,000rpm으로 5분동안흔합하여슬러리를제조하였다.마지막으로,상기 슬러리를알루미늄포일상에캐스팅하고,진공오븐에 60°C로 24시간건조하여 양극을제초하였다.건조후두께는약 35 로조절하였다.
[141]
[142] 제조예 8:양극의체조
[143] NMC:Super-p:PEO바인더: Al-LLZO의흔합중량비율을 70:10:10:10로흔합한 것대신에 NMC:Super-p:PEO바인더: Al-LLZO의흔합중량비율을 60: 10: 10:20로 혼합한것을제외하고는제조예 3과동일한방법으로양극을제조하였다.
[144]
[145] 제조예 9:양극의제조
[146] NCM, Super-P및 PVDF(poly-U-difluoroethene) 8%용액의혼합비율을고형분 기준으로중량비 (wt<¾)가 80:10:10이되도록칭량한후흔합하여혼합물을 제조하였다.상기흔합물을싱키흔합기를이용하여 2,000rpm으로 5분동안 교반한후, NMP(n-methyl-2-pyrrolidone)를첨가하고,다시싱키혼합기로 교반하여적절함점도로조절하였다.그후 2mm의지르콘볼을넣고싱키 흔합기를이용하여 2,000rpm으로 5분동안교반하여슬러리를제조하였다.상기 슬러리는알루미늄포일에유리막대를이용하여캐스팅하고 110°C건조기에서 24hr건조하여양극을제조하였다.건조후두께는약 15/ IT1로조절하였다.
[147]
[148] [전고체리튬이차전지의제조]
[149] 심시예 1
[150] 제조예 7에따라제조된양극과제조예 4에따라제조된복합고체전해질층을 각각 016사이즈로편칭한후적층하였다.다음으로,약 70~80oC로가열하면서 약 10초동안 0.3 MPa압력을가하여적층체를제조하였다.상기적층체상에 리튬금속을올려, 2032규격의코인셀로전고체리튬이차전지를제조하였다.
[151]
[152] 줘시예 2
[153] 제조예 7에따라제조된양극대신에제조예 8에따라제조된양극을사용한 것을제외하고는실시예 1과동일한방법으로전고체리튬이차전지를 제조하였다.
[154]
[155] 비교예 1
[156] 제조예 7에따라제조된양극대신에제조예 9에따라제조된양극을사용한 것을제외하고는실시예 1과동일한방법으로전고체리튬이차전지를 제조하였다.
[157]
[158] [시험예]
[159]
[160] 시험예 1:층방저특성측정 양극바? 1더 ^화)
[161] 도 2의 (a)는실시예 1에따라제조된전고체리튬이차전지의층방전특성을 0.1C의전류로 55°C에서측정하여나타낸것이고,도 2의 (b)는비교예 1에따라 제조된전고체리튬이차전지의층방전특성을 0.1C의전류로 70oC에서측정하여 나타낸것이다.
[162] 도 2를참조하면,실시예 1에따라제조된전고체리튬이차전지는 55°C에서 초기방전용량이약 130 mAh/g이상이고, 45싸이클에서는약 83%의방전용량을 유지하는것으로나타났다.반면에비교예 1에따라제조된전고체
리튬이차전지는실시예 1에따라제조된전고체리튬이차전지에비해싸이클 용량이감소되는것을확인할수있었다.
[163] 따라서,양극에 PVDF를포함하는비교예 1에따라제조된전고체
리튬이차전지에비해양극에전도성고분자 PEO및고체전해질 LLZO를 포함하는실시예 1에따라제조된전고체리튬이차전지의싸이클특성이크게 개선되는것을알수있었다.
[164]
[165] 시험예 2:싸이큼에따른방저용량측정
[166] 도 3은실시예 1에따라제조된전고체리튬이차전지를 550C에서싸이클에 따른방전용량을측정한결과이다.
[167] 도 3을참조하면,실시예 1에따라제조된전고체리튬이차전지는 45
싸이클에서약 83%의방전용량을유지하는것으로나타났다.
[168] 따라서,실시예 1에따라제조된전고체리튬이차전지가우수한방전용량
특성을갖는것올알수있었다.
[169]
[170] 시 예 3:총방저특성측정 (앙극의조성변 Λ
[171] 도 4의 (a)는실시예 1에따라제조된전고체리튬이차전지의층방전특성을 0.1C의전류로 70°C에서측정하여나타낸것이고,도 4의 (b)는실시예 2에따라 제조된전고체리튬이차전지의층방전특성을 (X1C의전류로 70oC에서측정하여 나타낸것이다.
[172] 도 4를참조하면,실시예 1에따라제조된전고체리튬이차전지는 70°C에서 초기방전용량이 55°C에서보다약간증가하고, 30싸이클에서는 85%의 방전용량을유지하는것으로나타났다.실시예 2에따라제조된전고체 리튬이차전지는초기방전용량은약 150mAh/g으로우수하나,층방전싸이클에 따른용량감소가증가하는것으로나타났다.
[173] 따라서,실시예 1에따라제조된제조된전고체리튬이차전지는 70°C의
고온에서도전고체리튬이차전지의열화현상이억제되고,오히려 55°C에서보다 더우수한초기방전용량과싸이클특성을갖는것을알수있었다.또한,실시예 2에따라제조된제조된전고체리튬이차전지에비해싸이클특성이더우수한 것을알수있었다.
[174]
[175] 시험예 4:임피더스측정
[176] 도 5는제조예 2내지 5에따라제조된복합고체전해질층과제조예 6에따라 제조된폴리에틸렌옥사이드막을각각상온에서 SUS지그에장착하고, 7MHz-100mHz, 5mV조건으로임피던스측정을실시하여이온전도값으로 계산한결과이다.
[177] 도 5를참조하면, LLZO가함유되지않은제조예 6에따라제조된
폴리에틸렌옥사이드막은이온전도도가 2.68 X 10-7 S/cm로나타났다.제조예 2 내지 5에따라제조된복합고체전해질층은 A1-LLZO의함량을 30, 50, 70, 90wt% 증가시킬경우각각 7.9 X 10-7, 4.83 X 106, 7.59 x 106, 3.43 x 105 S/cm로증가하는 것으로나타났다.
[178] 따라서 , A1-LLZO의함량이증가할수록복합고체전해질층의이온전도도가 증가하는것을알수있었다. [179]
[180] 시 예 5:산화화워거동측
[181] 도 6은제조예 6에따라제조된폴리에틸렌옥사이드막과제조예 4에따라
제조된복합고체전해질층을적용한전기화학샐의산화환원거동을측정한 결과이다ᅳ
[182] 상기산화환원거동을측정하여전기화학적전위안전성을평가하기위해상기 폴리에틸렌옥사이드막및복합고체전해질층을적용한전기화학셀을제조하여 전위주사법 (Cyclic Voltammetry)으로측정하였다.상기전기화학셀의
작용전극은 SUS,상대전극은리튬금속을적용하였다.
[183] 도 6을참조하면,제조예 6에따라제조된폴리에틸렌옥사.이드막과제조예 4에 따라제조된복합고체전해질층을적용한전기화학셀은약 5V까지는
전기화학적반웅성이안전한것으로나타났다.특히제조예 4에따라제조된 복합고체전해질층을적용한전기화학셀은고분자분해산화전위가더욱 (+) 방향으로이동하여, A1-LLZO첨가량이증가할경우전기화학적전위창이더욱 증가하는것을확인할수있다.
[184]
[185] 시험예 6:복합고체?ᅥ해짐층의 PEO/LLZO함량에따른코이셈의 방저용량
[186] 도 7은제조예 2내지 5에따라제조된복합고체전해질층과제조예 6에따라 제조된폴리에틸렌옥사이드막을적용한코인샐의방전용량을측정한결과이다.
[187] 상기방전용량을측정하기위해,제조예 2내지 5에따라제조된
복합고체전해질층및제조예 6에따라제조된폴리에틸렌옥사이드막과제조예 9에따라제조된양극,리튬금속음극을적용한 2032규격의코인샐을 0.1C 전류밀도로층방전실험을실시하였다.
[188] 도 7을참조하면,복합고체전해질층의 A1-LLZO함량이증가할수록용량이 증가하며싸이클특성도개선되는경향을나타냈다.특히제조예 4에따라 제조된복합고체전해질층 (A1-LLZO함량 70 ^%)을적용한코인샐의특성이 우수하게나타났으며,이는제조예 4에따라제조된복합고체전해질층을적용한 코인셀의계면제어특성이가장우수하기때문으로판단된다.
[189] 따라서 , A1-LLZO및폴리에틸렌옥사이드전체중량 ( A1-LLZO + PEO)에대해 A1-LLZO의함량이 70^%가되도록복합고체전해질층을제조하는것이 바람직한것을알수있었다.
[190]
[191] 본발명의범위는상기상세한설명보다는후술하는특허청구범위에의하여 나타내어지며,특허청구범위의의미및범위그리고그균등개념으로부터 도출되는모든변경또는변형된형태가본발명의범위에포함되는것으로 해석되어야한다. 산업상이용가능성
[192] 본발명의전고체리튬이차전지는종래기술과는다르게양극과
복합고체전해질층에동시에전도성고분자,리튬염및무기계세라믹 고체전해질을포함하여전지의방전용량및싸이클특성이향상될수있다.
[193] 또한,본발명의전고체리튬이차전지의제조방법은양극과
복합고체전해질층에동시에전도성고분자,리튬염및무기계세라믹 고체전해질을포함시켜비소결방식으로전고체리튬이차전지를제조함으로써 제조비용올감소시키고,활물질 /활물질간,고체전해질입자간,전해질 /전극 간의계면반옹을제어하여전지의내부저항을보다감소시킬수있다.

Claims

청구범위 [청구항 1] 양극활물질,제 1 LLZO,제 1전도성고분자,제 1리튬염및도전재를 포함하는양극; 리튬금속을포함하는음극;및 상기양극과음극사이에 ,제 2 LLZO,제 2전도성고분자및제 2리튬염을 포함하는복합고체전해질층;을포함하고, 상기제 1및제 2 LLZO는각각독립적으로알루미늄이도핑또는 비도핑된 LLZO이고, 상기비도핑된 LLZO는하기화학식 1로표시되고, 상기도핑된 LLZO는하기화학식 2로표시되는전고체리륨이차전지.
[화학식 1]
LixLayZrzO,2(6<x<9, 2<y<4, 1<ζ<3)
[화학식 2]
LixLayZr2AlwOl2(5<x<9, 2<y<4, 1<ζ<3, 0<w<l)
[청구항 2] 제 1항에있어서,
상기제 1 LLZO및게 2 LLZO가각각독립적으로알루미늄이도핑된
LLZO인것을특징으로하는전고체리륨이차전지.
[청구항 3] 제 2항에있어서,
상기알루미늄이도핑된 LLZO가가넷결정구조인것을특징으로하는 전고체리륨이차전지.
[청구항 4] 제 1항에있어서,
상기양극이상기양극활물질 100중량부에대하여 ,상기제 1 LLZO 5 내지 50중량부와,상기제 1전도성고분자 5내지 25증량부와,상기 도전재 5내지 25중량부를포함하고,
상기복합고체전해질층이상기제 2 LLZO 100증량부에대하여상기 전도성고분자 1내지 300중량부를포함하는것을특징으로하는전고체 리튬이차전지.
[청구항 5] 게 1항에있어서,
상기제 1전도성고분자및제 2전도성고분자가각각독립적으로 폴리에틸렌옥사이드 (Polyethylene oxide),폴리에틸렌글리콜 (Polyethylene glycol),폴리프로필렌옥사이드 (Polypropylene oxide),
폴리포스파젠 (Polyphosphazene),폴리실록산 (Polysiloxane)및그들의 공증합체중에서선택된 1종이상을포함하는것을특징으로하는전고체 리튬이차전지.
[청구항 6] 계 1항에있어서,
상기제 1전도성고분자및제 2전도성고분자가각각독립적으로평균 분자량이 500내지 1000,000인폴리에틸렌옥사이드 (Polyethylene oxide)인 것을특징으로하는전고체리튬이차전지.
[청구항 7] 게 1항에있어서,
상기양극활물질이아래화학식 3으로표시되는 Ni-Co-Mn의 3성분계 리튬금속산화물 (NMC)인것을특징으로하는전고체리튬이차전지 . [화학식 3]
LiNipCoqMnr02
여기서 0<p<0.9, 0<q<0.5, 0<r<0.5, p+q+r=l이다.
[청구항 8] 제 1항에있어서,
상기도전재가카본블랙,아세틸렌블랙,및케첸블랙중에서선택된 1종 이상을포함하는것올특징으로하는전고체리튬이차전지 .
[청구항 9] 제 1항에있어서,
상기제 1리튬염및제 2리튬염이각각독립적으로
리튬퍼클로레이트 (LiC104),리튬트리플레이트 (LiCF3S03), 리튬핵사플루오로포스페이트 (LipF6),리튬테트라플루오로보레이트 (LiBF
4)및리튬트리플루오로메탄실포닐이미드 (LiN(CF3S02)2)중에서선택된
1종이상인것을특징으로하는전고체리튬이차전지 .
[청구항 10] 제 1항에있어서 ,상기전고체리튬이차전지가
알루미늄이도핑된 LLZO,폴리에틸렌옥사이드 (Polyethylene oxide),
Ni-C으 Mn의 3성분계리튬금속산화물 (NMC),리튬퍼클로레이트 (LiC104) 및카본블택을포함하는양극;
리튬금속을포함하는음극;및
상기양극과음극사이에,알투미늄이도핑된 LLZO,
폴리에틸렌옥사이드 (Polyethylene oxide)및리튬퍼클로레이트 (LiC104)을 포함하는복합고체전해질층;을
포함하는것을특징으로하는전고체리튬이차전지.
[청구항 11] (a)양극활물질,제 1 LLZO,제 1전도성고분자,제 1리튬염및도전재를 포함하는양극을제조하는단계;
(b)제 2 LLZO,제 2전도성고분자및제 2리튬염을포함하는 복합고체전해질층을제조하는단계;
(c)상기양극과상기복합고체전해질층을적층하여적층체를제조하는 단계;및
(d)상기적층체의복합고체전해질층상에리튬금속을포함하는음극을 배치하는단계;를
포함하는전고체리튬이차전지의제조방법ᅳ
[청구항 12] 제 11항에있어서,전고체리튬이차전지의제조방법이
단계 (c)가상기양극과상기복합고체전해질층을적층하고,아래식 1의 온도범위 (T)에서, 0.1내지 l.O MPa의압력으로가압하여적층체를 제조하는단계인것을특징으로하는전고체리튬이차전지의제조방법. [식 1]
Tm <T< Tm+50°C
상기식 1에서, Tml > Tm2 ¾경우 Tm = Tml이고 , Tml < Tm2인경우 Tm = Tm2 이고, Tml = Tm2인경우 Tm= Tml이며 ,
여기서, Tml은계 1전도성고분자의용융온도이고, Tm2은제 2전도성 고분자의용융온도이다.
[청구항 13] 제 11항에있어서,
상기제 1전도성고분자및제 2전도성고분자가
폴리에틸렌옥사이드이고,
단계 (c)가상기양극과상기복합고체전해질층을적층하고 65°C (폴리에틸렌옥사이드의용융온도)내지 115°C의온도에서 0.1내지 1.0 MPa의압력으로가압하여적층체를제조하는단계인것을특징으로 하는전고체리륨이차전지의제조방법.
[청구항 14] 제 11항에있어서,상기전고체리튬이차전지의제조방법이
단계 (d)의결과물을아래식 1의은도범위 (T)에서, 0.1내지 1.0 MPa의 압력으로가압하는단계를추가로포함하는것을특징으로하는전고체 리튬이차전지의제조방법.
[식 1]
Tm <T< Tm+50°C
상기식 1에서, Tml > Tm2인경우 Tm = Tml이고, Tml < Tm2인경우 Tm = Tm2 이고, Tml = Tm2인경우 Tm = Tml이며 ,
여기서 , Tm 제 1전도성고분자의용융온도이고, Tm2은제 2전도성 고분자의용융온도이디-.
[청구항 15] 제 11항에있어서,
단계 (a)가상기양극활물질, LLZO,제 1전도성고분자,제 1리튬염및 도전재를혼합한슬러리를캐스팅한후건조하여양극을제조하는 단계인것을특징으로하는전고체리튬이차전지의제조방법.
[청구항 16] (a')양극활물질,제 1 LLZO,제 1전도성고분자,제 1리튬염및도전재를 포함하는양극을제조하는단계;
(b')제 2 LLZO,제 2전도성고분자및제 2리륨염을포함하는 복합고체전해질층을제조하는단계;
(C)상기양극,상기양극상에복합고체전해질층,및상기 복합고체전해질층상에리튬금속을포함하는음극을배치하여적층체를 제조하는단계;및
(d')상기적층체를아래식 1의온도범위 (T)에서, 0.1내지 1.0 MPa의 압력으로가압하여전고체리튬이차전지를제조하는단계;를 포함하는전고체리튬이차전지의제조방법.
[식 1] Tm <T< Tm+50°C
상기식 1에서, Tml > Tm2인경우 Tm = Tml이고, Tml < Tm2인경우 Tm = T, 이고, Tml = Tm2인경우 Tm = Tml이며,
여기서, Tmr 거 l l전도성고분자의용융은도이고, Tm2은제 2전도성 고분자의용융온도이다.
PCT/KR2016/013120 2016-02-03 2016-11-15 Llzo 고체전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법 WO2017135553A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018540736A JP6652752B2 (ja) 2016-02-03 2016-11-15 Llzo固体電解質を含む全固体リチウム二次電池及びその製造方法
US16/072,571 US10886560B2 (en) 2016-02-03 2016-11-15 All-solid-state lithium secondary battery containing LLZO solid electrolyte and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0013381 2016-02-03
KR1020160013381A KR101793168B1 (ko) 2016-02-03 2016-02-03 Llzo 고체전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법

Publications (2)

Publication Number Publication Date
WO2017135553A1 true WO2017135553A1 (ko) 2017-08-10
WO2017135553A8 WO2017135553A8 (ko) 2019-01-24

Family

ID=59500897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013120 WO2017135553A1 (ko) 2016-02-03 2016-11-15 Llzo 고체전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법

Country Status (4)

Country Link
US (1) US10886560B2 (ko)
JP (1) JP6652752B2 (ko)
KR (1) KR101793168B1 (ko)
WO (1) WO2017135553A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119591A (zh) * 2018-08-17 2019-01-01 张家港市国泰华荣化工新材料有限公司 一种固态电池用复合正极及其制备方法
CN109671985A (zh) * 2018-12-15 2019-04-23 华南理工大学 一种一体化结构在固态锂离子电池中的应用
CN110832687A (zh) * 2018-03-27 2020-02-21 株式会社Lg化学 用于全固态电池的复合固体电解质膜和包含其的全固态电池
EP3707770A4 (en) * 2017-11-07 2021-09-01 The Regents of The University of Michigan SOLID-STATE BATTERY ELECTROLYTE WITH INCREASED STABILITY TO CATHODE MATERIALS

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039713A (ko) * 2017-08-07 2020-04-16 더 리젠츠 오브 더 유니버시티 오브 미시건 고체 상태 배터리용 혼합 이온 및 전자 도체
KR102016916B1 (ko) 2017-12-26 2019-09-02 한국화학연구원 Llzo 산화물 고체 전해질 분말의 제조방법
KR102012431B1 (ko) * 2018-02-14 2019-08-20 한국생산기술연구원 전고체 리튬이차전지용 음극, 그의 제조방법 및 그를 포함하는 전고체 리튬이차전지
KR102016622B1 (ko) * 2018-02-21 2019-08-30 한국생산기술연구원 전위 안정성이 우수한 전고체 리튬이차전지 및 그의 제조방법
KR102088648B1 (ko) * 2018-04-20 2020-03-13 (주)티디엘 전고체 리튬이차전지의 제조 방법
KR102087326B1 (ko) * 2018-06-22 2020-03-10 한국생산기술연구원 유무기 복합 고체전해질 및 그를 포함하는 전고체 리튬이차전지
KR102101466B1 (ko) * 2018-08-10 2020-04-16 한국생산기술연구원 복합리튬염의 고체전해질을 적용한 전고체 리튬이차전지 및 그의 제조방법
JP6873963B2 (ja) * 2018-11-09 2021-05-19 株式会社豊田中央研究所 リチウム電池及び複合構造体の製造方法
US10923765B2 (en) * 2018-12-31 2021-02-16 Robert Bosch Gmbh Lithium conducting ceramic oxide decontamination method
KR102200967B1 (ko) * 2019-01-08 2021-01-11 한국생산기술연구원 전고체 리튬이차전지용 갈륨-가돌리늄이 도핑된 고체전해질 및 그의 제조방법
KR102201326B1 (ko) * 2019-01-08 2021-01-11 한국생산기술연구원 이산화티타늄이 코팅된 양극활물질의 제조방법
KR20200102910A (ko) * 2019-02-22 2020-09-01 포항공과대학교 산학협력단 고체 전해질용 조성물과 이의 제조방법
CN109755642B (zh) * 2019-03-19 2020-12-11 北京化工大学 一种三维网状结构的无机固态电解质薄膜的制备方法
KR20200122904A (ko) * 2019-04-19 2020-10-28 주식회사 엘지화학 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
FR3095552B1 (fr) * 2019-04-25 2021-04-02 Renault Sas Procédé de formation d’une cellule de batterie Li-ion
DE102019206133A1 (de) * 2019-04-29 2020-10-29 Vitesco Technologies Germany Gmbh Festkörperelektrolytschicht und Batteriezelle aufweisend eine Festkörperelektrolytschicht
DE102019206131B4 (de) * 2019-04-29 2023-05-17 Vitesco Technologies Germany Gmbh Elektrode und Batteriezelle aufweisend eine Elektrode
KR102064526B1 (ko) * 2019-08-05 2020-01-10 한국생산기술연구원 양극 복합소재, 그의 제조방법 및 그를 포함하는 전고체 리튬이차전지
WO2021023599A1 (en) 2019-08-06 2021-02-11 Rhodia Operations Method of preparation of a garnet-type inorganic material
KR102347824B1 (ko) * 2019-08-07 2022-01-07 한국생산기술연구원 코팅에 의해 초기용량 및 충방전 싸이클 성능이 향상된 양극 활물질을 포함하는 양극, 그를 포함하는 전고체 리튬이차전지
KR20220071232A (ko) * 2019-10-25 2022-05-31 니뽄 도쿠슈 도교 가부시키가이샤 리튬 이온 전도성 고체 전해질 및 리튬 이온 전도성 고체 전해질의 제조 방법
TWI725589B (zh) * 2019-10-25 2021-04-21 輝能科技股份有限公司 氧化物固態電解質的原相回收方法、鋰電池製造方法及其綠色環保電池
KR102252684B1 (ko) 2019-11-22 2021-05-17 세방전지(주) 술폰화 산화 알루미늄을 포함하는 고체 전해질을 포함하는 전고체 전지 및 이의 제조방법
JPWO2021177346A1 (ko) * 2020-03-05 2021-09-10
CN115315832A (zh) 2020-03-18 2022-11-08 皮尔西卡公司 用于固态锂离子电池的高能量密度锂金属基阳极
US11699811B2 (en) 2020-03-25 2023-07-11 Samsung Electronics Co., Ltd. Bilayer component for a lithium battery
KR102327722B1 (ko) * 2020-03-26 2021-11-17 한국화학연구원 복합 양극재 및 이를 포함하는 이차전지 양극 및 이의 제조방법
KR102340214B1 (ko) 2020-03-26 2021-12-15 목포대학교산학협력단 전고체 리튬이차전지용 고체전해질 제조 방법
JP2023537172A (ja) 2020-04-29 2023-08-31 ソルヴェイ(ソシエテ アノニム) Llzoガーネットのフッ素化のための方法
DE102020207388A1 (de) * 2020-06-15 2021-12-16 Schott Ag Verfahren zur Herstellung eines leitenden Verbundmaterials für eine Batterie sowie leitendes Verbundmaterial
US11631888B2 (en) 2020-07-13 2023-04-18 Samsung Electronics Co., Ltd. Amorphous nitrogen-rich solid state lithium electrolyte
US11821091B2 (en) * 2020-07-24 2023-11-21 Uchicago Argonne, Llc Solvent-free processing of lithium lanthanum zirconium oxide coated-cathodes
KR20220049789A (ko) 2020-10-15 2022-04-22 (주)그리너지 이온성 액체를 포함하는 고체 고분자 전해질막 이의 제조방법
CN112864458B (zh) * 2021-03-12 2022-06-03 合肥国轩高科动力能源有限公司 一种双层复合固态电解质材料及其制备方法、应用
US20230015952A1 (en) * 2021-03-16 2023-01-19 Alexander Kosyakov Composite solid electrolyte
US11888162B2 (en) * 2021-05-24 2024-01-30 Solid Energies Inc. Silicon-based composite anodes for high energy density, high cycle life solid-state lithium-ion battery
CN114551987A (zh) * 2021-09-17 2022-05-27 万向一二三股份公司 一种循环寿命长的llzo固体电解质、固体锂电池的制备方法
US11923501B2 (en) * 2021-09-30 2024-03-05 Uchicago Argonne, Llc Solid-state nanofiber polymer multilayer composite electrolytes and cells
KR102526171B1 (ko) * 2021-11-25 2023-04-26 한국생산기술연구원 부피변화가 작은 고용량 양극소재의 제조방법 및 그를 포함하는 전고체 리튬이차전지의 제조방법
EP4270578A1 (en) 2022-04-29 2023-11-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for producing a coated ceramic particle based on a llzo material
WO2023234713A1 (ko) * 2022-05-31 2023-12-07 주식회사 엘지에너지솔루션 리튬 이차 전지용 복합 고체 전해질 및 이의 제조방법
WO2024063160A1 (ja) * 2022-09-22 2024-03-28 住友化学株式会社 電解質組成物、電解質、及び電池
CN115799607A (zh) * 2022-10-31 2023-03-14 海南大学 一种氧化物基复合固态电解质及其固态锂电池
US11801514B1 (en) * 2023-02-10 2023-10-31 CR Nano, Inc. Mechanochemical production of tunable planar materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110149A (ja) * 2012-11-30 2014-06-12 Murata Mfg Co Ltd 全固体型電池用積層体
KR20150000564A (ko) * 2013-06-24 2015-01-05 삼성전자주식회사 복합양극활물질, 그 제조방법 및 이를 채용한 양극과 리튬전지
KR20150041217A (ko) * 2013-10-04 2015-04-16 한국기계연구원 고체 전해질 - 리튬 이온 전도성 고분자 복합 필름 및 그 제조 방법
KR20150125810A (ko) * 2014-04-30 2015-11-10 한국전기연구원 리튬 이차전지용 리튬 산화물-고분자 복합 전해질 및 그를 포함하는 이차전지
KR20150138267A (ko) * 2013-03-21 2015-12-09 유니버시티 오브 메릴랜드, 컬리지 파크 고체 상태 전해질 물질을 가진 이온-전도 배터리

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645675B1 (en) * 1999-09-02 2003-11-11 Lithium Power Technologies, Inc. Solid polymer electrolytes
JP2002280072A (ja) * 2001-03-19 2002-09-27 National Institute Of Advanced Industrial & Technology 無機/有機複合高分子固体電解質を組み込んだ電池
JP4155054B2 (ja) * 2003-02-18 2008-09-24 日産自動車株式会社 バイポーラ電池
KR101462125B1 (ko) 2010-03-31 2014-11-17 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 전고체 리튬 전지
KR102086665B1 (ko) 2012-07-06 2020-03-09 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
JP6110823B2 (ja) 2013-09-25 2017-04-05 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
CN105683127B (zh) * 2013-10-07 2020-08-28 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
KR20150093049A (ko) * 2014-02-06 2015-08-17 삼성전자주식회사 리튬 공기 전지용 양극 및 이를 포함하는 리튬 공기 전지
JP6071938B2 (ja) * 2014-03-28 2017-02-01 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
KR101612062B1 (ko) 2014-05-08 2016-04-27 울산과학기술원 복합 전극-복합 전해질 합체, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110149A (ja) * 2012-11-30 2014-06-12 Murata Mfg Co Ltd 全固体型電池用積層体
KR20150138267A (ko) * 2013-03-21 2015-12-09 유니버시티 오브 메릴랜드, 컬리지 파크 고체 상태 전해질 물질을 가진 이온-전도 배터리
KR20150000564A (ko) * 2013-06-24 2015-01-05 삼성전자주식회사 복합양극활물질, 그 제조방법 및 이를 채용한 양극과 리튬전지
KR20150041217A (ko) * 2013-10-04 2015-04-16 한국기계연구원 고체 전해질 - 리튬 이온 전도성 고분자 복합 필름 및 그 제조 방법
KR20150125810A (ko) * 2014-04-30 2015-11-10 한국전기연구원 리튬 이차전지용 리튬 산화물-고분자 복합 전해질 및 그를 포함하는 이차전지

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3707770A4 (en) * 2017-11-07 2021-09-01 The Regents of The University of Michigan SOLID-STATE BATTERY ELECTROLYTE WITH INCREASED STABILITY TO CATHODE MATERIALS
CN110832687A (zh) * 2018-03-27 2020-02-21 株式会社Lg化学 用于全固态电池的复合固体电解质膜和包含其的全固态电池
US11476498B2 (en) 2018-03-27 2022-10-18 Lg Energy Solution, Ltd. Complex solid electrolyte membrane for all-solid-state battery and all-solid-state battery including same
CN110832687B (zh) * 2018-03-27 2023-05-05 株式会社Lg新能源 用于全固态电池的复合固体电解质膜和包含其的全固态电池
CN109119591A (zh) * 2018-08-17 2019-01-01 张家港市国泰华荣化工新材料有限公司 一种固态电池用复合正极及其制备方法
CN109671985A (zh) * 2018-12-15 2019-04-23 华南理工大学 一种一体化结构在固态锂离子电池中的应用

Also Published As

Publication number Publication date
KR101793168B1 (ko) 2017-11-20
KR20170092262A (ko) 2017-08-11
WO2017135553A8 (ko) 2019-01-24
JP6652752B2 (ja) 2020-02-26
US20190051934A1 (en) 2019-02-14
US10886560B2 (en) 2021-01-05
JP2019505074A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6652752B2 (ja) Llzo固体電解質を含む全固体リチウム二次電池及びその製造方法
KR101865834B1 (ko) 전고체 리튬이차전지 및 그의 제조방법
KR102605650B1 (ko) 고체 전해질, 이를 포함하는 리튬전지
KR101847035B1 (ko) 전도성 고분자를 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR101850901B1 (ko) 젤 고분자 전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR101939142B1 (ko) 갈륨(Ga)이 도핑된 LLZO 고체 전해질을 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR101935365B1 (ko) 플렉서블 고체전해질, 이를 포함하는 전고체형 리튬전지, 및 이의 제조방법
KR102108136B1 (ko) 고체 전해질을 적용한 전고체 리튬이차전지 및 그의 제조방법
KR101946381B1 (ko) 박막형 고체전해질 복합시트 및 그를 포함하는 전고체 리튬이차전지
JP6692863B2 (ja) 全固体リチウム二次電池用固体電解質の製造方法
KR101876861B1 (ko) 전고체 리튬이차전지용 복합 고체전해질 및 그의 제조방법
KR102016622B1 (ko) 전위 안정성이 우수한 전고체 리튬이차전지 및 그의 제조방법
KR102101466B1 (ko) 복합리튬염의 고체전해질을 적용한 전고체 리튬이차전지 및 그의 제조방법
KR20200000192A (ko) 유무기 복합 고체전해질 및 그를 포함하는 전고체 리튬이차전지
KR102350047B1 (ko) 황화물계 고체전해질 기반 양극을 포함하는 고전압 전고체 리튬이차전지 및 그의 제조방법
KR101768452B1 (ko) 음극, 그를 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR102272459B1 (ko) 이중구조의 복합 고체 전해질층, 그를 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR102241068B1 (ko) 가소제를 포함하는 고이온전도성 전고체 리튬이차전지 및 그의 제조방법
EP3823073A1 (en) Lithium secondary battery
KR20200130090A (ko) 황화물 유리-세라믹 리튬 이온 고체상태 전도체
KR100910264B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20170092264A (ko) 전도성 고분자를 포함하는 전고체 리튬이차전지 및 그의 제조방법
KR102012414B1 (ko) 복합계면층을 포함하는 전고체 리튬이차전지 및 그의 제조방법
CN110870124B (zh) 用于二次电池的聚合物电解质和包括该聚合物电解质的锂二次电池
KR102347799B1 (ko) 황화물계 및 산화물계 융합 고체전해질을 포함하는 고전압 안전성 전고체 리튬이차전지 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889531

Country of ref document: EP

Kind code of ref document: A1