WO2016009768A1 - リチウムイオン電池用硫化物系固体電解質 - Google Patents

リチウムイオン電池用硫化物系固体電解質 Download PDF

Info

Publication number
WO2016009768A1
WO2016009768A1 PCT/JP2015/067151 JP2015067151W WO2016009768A1 WO 2016009768 A1 WO2016009768 A1 WO 2016009768A1 JP 2015067151 W JP2015067151 W JP 2015067151W WO 2016009768 A1 WO2016009768 A1 WO 2016009768A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide
lithium ion
solid
ion battery
Prior art date
Application number
PCT/JP2015/067151
Other languages
English (en)
French (fr)
Inventor
宮下 徳彦
崇嗣 筑本
松嶋 英明
松崎 健嗣
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP15822447.7A priority Critical patent/EP3171444B1/en
Priority to CN201580001316.5A priority patent/CN105518923B/zh
Priority to US15/326,238 priority patent/US9899701B2/en
Priority to KR1020167033998A priority patent/KR101807583B1/ko
Publication of WO2016009768A1 publication Critical patent/WO2016009768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte for a lithium ion battery that can be suitably used as a solid electrolyte for a lithium ion battery.
  • the lithium ion battery is a secondary battery having a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging.
  • Lithium ion batteries have features such as high energy density and long life, so home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools such as power tools In recent years, it has been applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).
  • This type of lithium ion battery is composed of a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes.
  • the ion conductive layer includes a separator made of a porous film such as polyethylene or polypropylene, and a nonaqueous electrolytic cell.
  • the one filled with liquid is generally used.
  • an organic electrolyte using a flammable organic solvent as a solvent is used as the electrolyte, it was necessary to improve the structure and materials to prevent volatilization and leakage. It was also necessary to improve the structure and materials in order to prevent the occurrence of short circuits by installing safety devices that suppress the temperature rise.
  • an all-solid-state lithium ion battery that uses a solid electrolyte that uses lithium sulfide (Li 2 S) or the like as a starting material to make the battery all solid does not use a flammable organic solvent.
  • the device can be simplified, and the manufacturing cost and productivity can be improved.
  • the device can be stacked in series in the cell to increase the voltage.
  • this type of solid electrolyte does not move except for Li ions, it is expected that side reactions due to the movement of anions will not occur, leading to improvements in safety and durability.
  • Solid electrolytes used in such batteries are required to have as high ionic conductivity as possible and to be chemically and electrochemically stable.
  • lithium halides, lithium nitrides, lithium oxyacid salts, or derivatives thereof are known as material candidates.
  • Patent Document 2 as a material that is crystalline and has a very high ionic conductivity of 6.49 ⁇ 10 ⁇ 5 Scm ⁇ 1 at room temperature, the general formula Li 2 S—GeS is used.
  • a sulfide-based solid electrolyte comprising a lithium ion conductive material as a composite compound represented by 2- X (where X represents at least one of Ga 2 S 3 and ZnS) is disclosed. Has been.
  • Patent Document 5 as in addition to the high fluidity of the lithium-ion formulation capable solid compound of a single layer, the general formula (I) Li + (12- nx) B n + X 2- 6-x Y - x
  • B n + is selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb and Ta
  • X 2 ⁇ is selected from the group consisting of S, Se and Te
  • Y ⁇ is selected from the group consisting of Cl, Br, I, F, CN, OCN, SCN, N 3 , and 0 ⁇ x ⁇ 2.
  • Lithium sulfate germanium ore is disclosed.
  • Japanese Patent No. 3184517 Japanese Patent No. 3744665 JP 2001-250580 A JP 2011-96630 A JP 2010-540396 A
  • the present inventors paid attention to a compound having a cubic Argyrodite crystal structure and represented by Li 7-x PS 6-x Cl x as a solid electrolyte material used for a lithium ion battery.
  • a compound having a cubic Argyrodite crystal structure and represented by Li 7-x PS 6-x Cl x as a solid electrolyte material used for a lithium ion battery.
  • an inert gas with an ultra-low dew point is supplied when an all-solid lithium ion battery is assembled as a solid electrolyte of a lithium ion battery. It was necessary to assemble an all-solid-state lithium ion battery in an environment such as a glove box, and there were problems in industrial use.
  • the present invention relates to a sulfide solid electrolyte for a lithium ion battery having a cubic Argyrodite type crystal structure and containing a compound represented by Li 7-x PS 6-x Cl x .
  • the present invention has a cubic Argyrodite-type crystal structure, contains a compound represented by composition formula (1): Li 7-x-2y PS 6-xy Cl x , and
  • the present invention proposes a sulfide-based solid electrolyte for a lithium ion battery characterized by satisfying .8 ⁇ x ⁇ 1.7 and 0 ⁇ y ⁇ ⁇ 0.25x + 0.5.
  • the sulfide-based solid electrolyte proposed by the present invention is significantly superior in water resistance and oxidation resistance compared to a sulfide-based solid electrolyte containing a compound represented by Li 7-x PS 6-x Cl x.
  • the assembly operation of the all-solid-state lithium ion battery can be performed even in an environment where an inert gas having an ultra-low dew point is not supplied, such as a dry room.
  • the sulfide-based solid electrolyte (referred to as “the present solid electrolyte”) according to the present embodiment has a cubic Argyrodite-type crystal structure, and has a composition formula (1): Li 7-x-2y PS 6-xy Cl x It is a sulfide type solid electrolyte containing the compound represented by these.
  • composition formula (1) Li 7-x-2y PS 6-xy Cl x , x representing the content of Cl element is preferably 0.8 to 1.7. If x is 0.8 to 1.7, it is possible to obtain a cubic Argyrodite type and to suppress the generation of phases other than Argyrodite type such as Li 3 PS 4 and LiCl. The conductivity of lithium ions can be increased. From this point of view, x is preferably 0.8 to 1.7, and x is particularly preferably 1.0 or more and 1.6 or less, and particularly preferably 1.2 or more and 1.4 or less.
  • Li 7-x-2y PS 6-xy Cl x is a value relatively indicating how much the Li 2 S component is smaller than the stoichiometric composition. Yes, it is preferable that 0 ⁇ y ⁇ ⁇ 0.25x + 0.5 is satisfied.
  • the conductivity maintenance rate after exposure to dry air can be increased to 50% or more, and the conductivity after exposure to dry air is 1.0 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 or more. It has been confirmed that it can be increased.
  • the conductivity maintenance ratio after exposure to dry air is increased to 70% or more.
  • the conductivity after exposure to dry air can be increased to 2.0 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 or more, which is more preferable.
  • composition formula (1) if 0.25 ⁇ [y / (2-x)], the water resistance and oxidation resistance can be further improved. From such a viewpoint, it is preferable that 0.25 ⁇ [y / (2-x)], more preferably 0.25> [y / (2-x)], and more preferably 0.20 ⁇ . [Y / (2-x)] is more preferable, and among them, when 0.15 ⁇ [y / (2-x)], the water resistance and oxidation resistance can be further improved.
  • “(2-x)” is an index relatively indicating the number of S in Li 2 S having weak bonds existing around the skeleton (PS 4 3 ⁇ ) in the crystal structure.
  • Y is considered to be a value indicating how much S of Li 2 S having a weak bond is less than the stoichiometric composition. Therefore, [y / (2-x)] is considered to be an index relatively indicating how much Li 2 S having a weak binding force can be reduced with respect to the stoichiometric composition. / (2-x)] can be considered to be able to adjust water resistance and oxidation resistance.
  • the present solid electrolyte one that does not substantially contain a phase composed of lithium sulfide (Li 2 S) or lithium chloride (LiCl) is preferable.
  • a single phase of Li 7-x-2y PS 6-xy Cl x is even more preferable because charge / discharge efficiency and cycle characteristics when the battery is assembled are improved.
  • substantially free of a phase composed of lithium sulfide (Li 2 S) and lithium chloride (LiCl) means that the peak intensity of lithium sulfide (Li 2 S) and lithium chloride (LiCl) in the XRD chart Means less than 3% of the peak intensity of Li 7-x-2y PS 6-xy Cl x .
  • this solid electrolyte should just contain the compound shown by the said compositional formula (1), and accept
  • the present solid electrolyte can increase the conductivity maintenance rate after exposure to dry air to 50% or more, and further to 70% or more, and the conductivity after exposure to dry air is 1.0 ⁇ 10. -3 S ⁇ cm -1 or higher, and further 2.0 ⁇ 10 -3 S ⁇ cm -1 or higher.
  • dry air means air that has been removed to a moisture concentration of 100 ppm or less (dew point of about ⁇ 42 ° C. or less) with an air dryer or the like.
  • Li 7-x-2y PS Li 7 PS 6 having the same skeleton structure as the 6-xy Cl x is less lithium ion conductivity orthorhombic (space group Pna2 1) high cubic (space group F- 43m), the phase transition point is around 170 ° C., and the crystal structure around room temperature is an orthorhombic crystal with low ion conductivity. Therefore, as shown in Patent Document 3, in order to obtain a cubic crystal having high ion conductivity, usually, a rapid cooling treatment is required after heating once to a phase transition point or higher.
  • the compound of the above composition formula (1) does not have a phase transition point at a temperature higher than room temperature, and the crystal structure can maintain a cubic system having high ion conductivity even at room temperature.
  • a high ionic conductivity can be ensured without a treatment such as rapid cooling, which is particularly preferable in this respect.
  • lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and lithium chloride (LiCl) powder are weighed and pulverized and mixed by a ball mill, a bead mill, a homogenizer, or the like. Is preferred.
  • the pulverization and mixing may be carried out by reducing the crystallinity of the raw material powder or making it amorphous or homogenizing the raw material mixed powder by a very powerful mechanical pulverization mixing such as mechanical alloying. The bond with sulfur is broken, sulfur deficiency occurs during firing, and electron conductivity is exhibited. Therefore, pulverization and mixing that can maintain the crystallinity of the raw material powder is desirable.
  • the sulfide material tends to cause sulfur deficiency when the temperature rises
  • the sulfide material was enclosed in a quartz sample or the like and fired.
  • the gas contained in the quartz sample is expanded by heating, and the pressure in the quartz sample is increased and may be ruptured. Therefore, it was necessary to make the vacuum as much as possible at the time of sealing.
  • sulfur deficiency is likely to occur in the sulfide material.
  • the crystallization proceeds from about 200 ° C., the present solid electrolyte can be synthesized even when fired at a relatively low temperature.
  • the present solid electrolyte which is a sulfide having a desired chemical composition with almost no sulfur deficiency, can be produced by firing at 350 ° C. or higher in an inert atmosphere or hydrogen sulfide gas (H 2 S) flow.
  • H 2 S hydrogen sulfide gas
  • the sulfur partial pressure in the vicinity of the fired sample can be increased by sulfur gas generated by decomposition of hydrogen sulfide during firing, so that sulfur deficiency is difficult to generate even at high firing temperatures. Electron conductivity can be lowered. Therefore, when firing in an atmosphere containing hydrogen sulfide gas, the firing temperature is preferably 350 to 650 ° C., particularly 450 ° C. or more and 600 ° C. or less, and particularly 500 ° C. or more or 550 ° C. or less. Is particularly preferred. Thus, when calcination is performed under the flow of hydrogen sulfide gas (H 2 S), the calcination can be performed without losing sulfur in the sulfide by calcination at 350 to 650 ° C.
  • H 2 S hydrogen sulfide gas
  • the firing temperature is preferably 350 to 500 ° C., more preferably 350 ° C. or more and 450 ° C. or less, and particularly preferably 400 ° C. or more and 450 ° C. or less.
  • the raw material powder having a small particle size and high reactivity is preferably used.
  • baking may be performed in an inert atmosphere.
  • the above raw materials are extremely unstable in the atmosphere, decompose by reacting with moisture, generate hydrogen sulfide gas, or oxidize. Therefore, the raw materials are passed through a glove box or the like replaced with an inert gas atmosphere. It is preferable to perform firing in a furnace.
  • This solid electrolyte can be used as a solid electrolyte layer of an all-solid lithium ion battery or an all-solid lithium primary battery, a solid electrolyte mixed in a positive electrode / negative electrode mixture, or the like.
  • an all solid lithium ion battery can be formed by forming a positive electrode, a negative electrode, and a layer made of the above solid electrolyte between the positive electrode and the negative electrode.
  • the solid electrolyte is excellent in water resistance and oxidation resistance, and has little deterioration in characteristics even when handled in dry air.
  • an assembly operation of an all-solid-state lithium ion battery can be performed even in a dry room. .
  • the layer made of the solid electrolyte is applied by, for example, dropping a slurry made of the solid electrolyte, a binder and a solvent onto the substrate and scrubbing with a doctor blade or the like, a method using an air knife after contacting the slurry, or a screen printing method. It can be produced by forming a film and then removing the solvent through heating and drying. Alternatively, it is possible to produce a green compact by pressing a solid electrolyte powder by pressing or the like and then processing it appropriately.
  • a positive electrode material used as a positive electrode active material of a lithium ion battery can be used as appropriate.
  • the negative electrode material a negative electrode material used as a negative electrode active material of a lithium ion battery can be appropriately used.
  • this solid electrolyte is electrochemically stable, artificial graphite, natural graphite, non-graphitizable, which is charged and discharged at a base potential (about 0.1 V vs Li + / Li) comparable to lithium metal.
  • Carbon-based materials such as carbon (hard carbon) can be used. Therefore, the energy density of the all-solid-state lithium ion battery can be greatly improved by using the carbon-based material for the negative electrode material.
  • a lithium ion battery having the present solid electrolyte and a negative electrode active material containing carbon such as artificial graphite, natural graphite, or non-graphitizable carbon (hard carbon) can be configured.
  • the “solid electrolyte” means any substance that can move ions such as Li + in the solid state.
  • X to Y X and Y are arbitrary numbers
  • it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified.
  • the meaning of “smaller than Y” is also included.
  • X or more X is an arbitrary number
  • Y or less Y is an arbitrary number
  • Examples and comparative examples Use lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and lithium chloride (LiCl) powder so that the total amount is 5 g so that the composition formula shown in Table 1 is obtained.
  • Li 2 S lithium sulfide
  • P 2 S 5 phosphorus sulfide
  • LiCl lithium chloride
  • X and “y” in Table 1 respectively represent xy of the composition formula: Li 7-x-2y PS 6-xy Cl x
  • Li 2 S under-ratio is the relationship of xy in the composition formula, [Y / (2-x)]
  • initial indicates initial conductivity
  • dry air exposure 6h indicates conductivity after 6 hours of dry air exposure
  • conductivity maintenance ratio indicates initial conductivity. The percentage maintenance of electrical conductivity after 6 hours of dry air exposure is shown.
  • A represents the Li 7-x-2y PS 6 -xy Cl x phase cubic Argyrodite type crystal structure
  • a + Li 3 PS 4" said Li A mixed phase of 7-x-2y PS 6-xy Cl x phase and Li 3 PS 4 phase is shown.
  • a + Li 3 PS 4 (small) means that although Li 3 PS 4 was confirmed in the XRD chart, the peak intensity was 3 of the peak intensity of Li 7-x-2y PS 6-xy Cl x. It shows that it is less than%.
  • the conductivity maintenance ratio after exposure to dry air can be increased to 70% or more, It was also found that the conductivity after exposure to dry air can be increased to 2.0 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 or more.
  • NCM ternary layered compound LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • the positive electrode mixture powder was prepared by ball mill mixing the positive electrode active material powder, the solid electrolyte powder, and the conductive additive (acetylene black) powder at a mass ratio of 60: 38: 2.
  • the negative electrode composite powder was prepared by ball mill mixing the negative electrode active material powder and the solid electrolyte powder at a mass ratio of 50:50.
  • a positive electrode mixture powder using the sample (solid electrolyte powder) obtained in Examples and Comparative Examples was filled in a mold, and uniaxially molded at 500 MPa to produce a positive electrode mixture pellet of ⁇ 10 mm. Thereafter, a ⁇ 13 mm SUS cylinder serving as a positive electrode was placed in a ⁇ 13 mm closed cell insulating cylinder, and a positive electrode mixture pellet was placed in the center on the cylinder. Further, the sample (solid electrolyte powder) obtained in Examples and Comparative Examples was filled thereon, and uniaxially molded at 200 MPa to produce a laminated pellet of a solid electrolyte-positive electrode mixture.
  • the negative electrode mixture powder is filled on the laminated pellet of the solid electrolyte-positive electrode mixture, and uniaxially molded at 500 MPa to produce a laminated pellet-shaped all solid battery element composed of the negative electrode mixture-solid electrolyte-positive electrode mixture.
  • a SUS cylinder having a diameter of 13 mm serving as a negative electrode is inserted from the negative electrode mixture side of the laminated pellets in the insulating cylinder, and the all solid state battery element contained in the insulating cylinder is put in a SUS sealed battery cell to be all solid. A battery cell was obtained.
  • the production of the all-solid battery element is performed in a glove box replaced with dry air having an average dew point of ⁇ 45 ° C., and the production of the all-solid battery cell thereafter is sufficiently dried.
  • Ar gas dew point -60 ° C. or less
  • the battery characteristic measurement was evaluated by putting an all-solid battery cell in an environmental tester maintained at 25 ° C. and connecting it to a charge / discharge measuring device. At this time, charging was performed by the CC-CV method with an upper limit voltage of 4.2V, and discharging was performed by the CC method with a lower limit voltage of 2.5V.
  • the first cycle 0.064mA / cm 2 (0.05C), and charging and discharging the second cycle at 0.13mA / cm 2 (0.1C). Subsequent cycles were charged at 0.13 mA / cm 2 (0.1 C), the fourth cycle was 0.25 mA / cm 2 (0.2 C), and the fifth cycle was 0.64 mA / cm 2 (0.5 C).
  • the sixth cycle is 1.27 mA / cm 2 (1C)
  • the seventh cycle is 2.54 mA / cm 2 (2C)
  • the eighth cycle is 3.82 mA / cm 2 (3C)
  • the ninth cycle is 6.37 mA. / Cm 2 (5C)
  • the capacity retention rate was calculated based on the discharge capacity of each cycle, assuming that the discharge capacity of the second cycle was 100%. Table 2 shows the results of charge / discharge capacity and rate characteristics in the first cycle.
  • the all-solid-state battery using the samples of Examples 2 and 6 has a high discharge capacity at the first cycle and very good rate characteristics, and can be discharged even at 12.7 mA / cm 2 (10C). It was.
  • These solid electrolytes using all-solid-state batteries have high ionic conductivity and high water resistance and oxidation resistance. Therefore, even if an all-solid-state battery is produced in a dry air atmosphere, the solid electrolyte does not deteriorate and high ionic conductivity is obtained.
  • the all-solid-state battery using the samples of Comparative Examples 1 and 5 had a lower discharge capacity at the first cycle than the all-solid-state batteries prepared with the samples of Examples 2 and 6. Moreover, discharge was not performed at a rate characteristic of 6.37 mA / cm 2 (5C) or more. Since the solid electrolyte used in these all-solid batteries has low water resistance and oxidation resistance, when the all-solid battery is produced in a dry air atmosphere, the solid electrolyte deteriorates and the ionic conductivity decreases. When such a solid electrolyte is used for an all-solid battery, the produced all-solid battery has an increased internal resistance. Even if such an all-solid battery is discharged, the voltage drop is large, so that the lower limit voltage is reached immediately. For this reason, it is considered that the discharge capacity is small even at a low rate, and discharge is not possible at a higher rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 立方晶系Argyrodite型結晶構造を有し、Li7-x-2yPS6-x-yClxで表される化合物に関し、耐水性及び耐酸化性に優れた、新たなリチウムイオン電池用硫化物系固体電解質を提案する。 立方晶系Argyrodite型結晶構造を有し、組成式(1):Li7-x-2yPS6-x-yClxで表される化合物を含有し、且つ、前記組成式において、0.8≦x≦1.7、0<y≦-0.25x+0.5を満足することを特徴とするリチウムイオン電池用硫化物系固体電解質を提案する。

Description

リチウムイオン電池用硫化物系固体電解質
 本発明は、リチウムイオン電池の固体電解質として好適に用いることができるリチウムイオン電池用硫化物系固体電解質に関する。
 リチウムイオン電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池である。リチウムイオン電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、パワーツールなどの電動工具などの電源として広く用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されている。
 この種のリチウムイオン電池は、正極、負極、及びこの両電極に挟まれたイオン伝導層から構成され、当該イオン伝導層には、ポリエチレン、ポリプロピレン等の多孔質フィルムからなるセパレータに非水系の電解液を満たしたものが一般的に用いられている。ところが、電解質として、このように可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、揮発や漏出を防ぐための構造・材料面での改善が必要であったほか、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善も必要であった。
 これに対し、硫化リチウム(Li2S)などを出発原料として用いた固体電解質を用いて、電池を全固体化してなる全固体型リチウムイオン電池は、可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、しかも製造コストや生産性に優れたものとすることができるばかりか、セル内で直列に積層して高電圧化を図れるという特徴も有している。また、この種の固体電解質では、Liイオン以外は動かないため、アニオンの移動による副反応が生じないなど、安全性や耐久性の向上につながることが期待される。
 このような電池に用いられる固体電解質は、できるだけイオン導電率が高く、かつ化学的・電気化学的に安定であることが求められ、例えばハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩又はこれらの誘導体などがその材料候補として知られている。
 この種の固体電解質に関しては、例えば特許文献1において、一般式Li2S-X(ただし、XはSiS2、GeS2、B23のうち少なくとも一種の硫化物を表わす)で表されるリチウムイオン伝導性硫化物ガラスに、リン酸リチウム(Li3PO4)からなる高温リチウムイオン伝導性化合物を存在させた硫化物系の固体電解質が開示されている。
 また、特許文献2においては、結晶質であり、かつ室温でのイオン導電率が6.49×10-5Scm-1という非常に高いイオン導電率を示す材料として、一般式LiS-GeS-X(ただし、XはGa23、ZnSの少なくとも一種を表す。)で表される複合化合物としてのリチウムイオン伝導性物質を含有することを特徴とする硫化物系の固体電解質が開示されている。
 特許文献3においては、リチウムイオン伝導性および分解電圧の高い硫化物セラミックスとして、Li2SとP25を主成分とし、モル%表示でLi2S=82.5~92.5、P25=7.5~17.5の組成を有する、中でも好ましはモル比でLi2S/P25=7の組成(組成式:Li7PS6)を有する特徴とするリチウムイオン伝導性硫化物セラミックスが開示されている。
 特許文献4においては、化学式:Li (12-n-x)n+2- (6-x) (Bn+はP、As、Ge、Ga、Sb、Si、Sn、Al、In、Ti、V、Nb及びTaから選択される少なくとも一種、X2-はS、Se、及びTeから選択される少なくとも一種、YはF、Cl、Br、I、CN、OCN、SCN及びNから選択される少なくとも一種であり、0≦x≦2)で表され硫銀ゲルマニウム鉱型結晶構造を有するリチウムイオン伝導性材料が開示されている。
 特許文献5においては、リチウムイオンの高流動性に加えて単層での調合が可能な固体化合物として、一般式(I)Li+ (12-n-x)n+2- 6-x- xによるリチウム硫銀ゲルマニウム鉱であって、本式において、Bn+は、P、As、Ge、Ga、Sb、Si、Sn、Al、In、Ti、V、NbおよびTaからなる群から選択され、X2-は、S、SeおよびTeからなる群から選択され、Y-はCl、Br、I、F、CN、OCN、SCN、N3からなる群から選択され、0≦x≦2であるリチウム硫銀ゲルマニウム鉱が開示されている。
特許第3184517号公報 特許第3744665号公報 特開2001-250580号公報 特開2011-96630号公報 特開2010-540396号公報
 本発明者は、リチウムイオン電池に用いる固体電解質材料として、立方晶系Argyrodite型結晶構造を有し、Li7-xPS6-xClxで表される化合物に着目した。
 しかしながら、かかる化合物は、水分や酸素との反応性が極めて高いため、リチウムイオン電池の固体電解質として使用して全固体リチウムイオン電池を組み立てる際には、超低露点の不活性ガスが供給されるグローブボックスなどの環境内で全固体リチウムイオン電池の組立作業を行う必要があり、工業的に利用するには課題を抱えていた。
 そこで本発明は、立方晶系Argyrodite型結晶構造を有し、Li7-xPS6-xClxで表される化合物を含有するリチウムイオン電池用硫化物系固体電解質に関し、耐水性及び耐酸化性を改良し、例えばドライルームなどの超低露点の不活性ガスが供給されない環境内でも全固体リチウムイオン電池の組立作業を行うことができる、新たなリチウムイオン電池用硫化物系固体電解質を提案せんとするものである。
 本発明は、立方晶系Argyrodite型結晶構造を有し、組成式(1):Li7-x-2yPS6-x-yClxで表される化合物を含有し、且つ、前記組成式において、0.8≦x≦1.7、0<y≦ -0.25x+0.5を満足することを特徴とするリチウムイオン電池用硫化物系固体電解質を提案する。
 本発明が提案する硫化物系固体電解質は、Li7-xPS6-xClxで表される化合物を含有する硫化物系固体電解質に比べて、耐水性及び耐酸化性が格段に優れており、乾燥空気中で取り扱っても特性劣化が少ないため、例えばドライルームなどの超低露点の不活性ガスが供給されない環境内でも、全固体リチウムイオン電池の組立作業を行うことができる。
実施例1、5及び9で得たサンプルのXRDパターンを示した図である。 比較例1、3及び4で得たサンプルのXRDパターンを示した図である。 実施例2で得たサンプルを用いて全固体電池セルを作製して、電池評価した際の1サイクル目の充放電特性を示した図である。 実施例6で得たサンプルを用いて全固体電池セルを作製して、電池評価した際の1サイクル目の充放電特性を示した図である。 比較例1で得たサンプルを用いて全固体電池セルを作製して、電池評価した際の1サイクル目の充放電特性を示した図である。 比較例5で得たサンプルを用いて全固体電池セルを作製して、電池評価した際の1サイクル目の充放電特性を示した図である。
 以下に本発明の実施形態について詳細に述べる。但し、本発明の範囲が以下に説明する実施形態に限定されるものではない。
 本実施形態に係る硫化物系固体電解質(「本固体電解質」と称する)は、立方晶系Argyrodite型結晶構造を有し、組成式(1):Li7-x-2yPS6-x-yClxで表される化合物を含有する硫化物系固体電解質である。
 上記組成式(1):Li7-x-2yPS6-x-yClxにおいて、Cl元素の含有量を示すxは0.8~1.7であるのが好ましい。xが0.8~1.7であれば、立方晶系Argyrodite型とすることが可能であり、かつLiPS及びLiClなどのArgyrodite型以外の相の生成を抑制することができるため、リチウムイオンの伝導性を高めることができる。
 かかる観点から、xは0.8~1.7であるのが好ましく、中でもxは1.0以上或いは1.6以下、その中でも1.2以上或いは1.4以下であるのが特に好ましい。
 また、上記組成式(1):Li7-x-2yPS6-x-yClxにおける「y」は、化学量論組成に対してLiS成分がどれだけ少ないかを相対的に示す値であり、0<y≦ -0.25x+0.5を満足するのが好ましい。
 yが上記式を満足すると、乾燥空気暴露後の導電率維持率を50%以上に高めることができ、しかも、乾燥空気暴露後の導電率を1.0×10-3 S・cm-1以上に高めることができることが確かめられている。
 さらに上記組成式(1)において、1.0≦x≦ 1.4、及び、0<y≦ -0.2x+0.4を満足すると、乾燥空気暴露後の導電率維持率を70%以上に高めることができ、しかも、乾燥空気暴露後の導電率を2.0×10-3 S・cm-1以上に高めることができることが確かめられており、さらに好ましい。
 また、上組成式(1)において、0.25≧[y/(2-x)]であれば、耐水性及び耐酸化性をさらに向上させることができる。かかる観点から、0.25≧[y/(2-x)]であるのが好ましく、中でも0.25>[y/(2-x)]であるのがさらに好ましく、その中でも0.20≧[y/(2-x)]であるのがさらに好ましく、その中でも0.15≧[y/(2-x)]であれば、耐水性及び耐酸化性をさらに向上させることができる。
 上組成式(1)において、「(2-x)」は、結晶構造内の骨格部(PS4 3-)の周辺に存在する結合の弱いLi2SにおけるSの数を相対的に示す指標となる値であると考えられ、「y」は、前記の結合の弱いLi2SのSが化学量論組成からどれだけ少ないかを示す値であると考えられる。よって、[y/(2-x)]は、化学量論組成に対し、結合力の弱いLi2Sをどれだけ減少させることができたのかを相対的に示す指標となると考えられ、[y/(2-x)]を調整することで、耐水性及び耐酸化性を調整することができるものと考えることができる。
 本固体電解質においては、硫化リチウム(LiS)または塩化リチウム(LiCl)からなる相を実質的に含まないものが好ましい。Li7-x-2yPS6-x-yClxの単一相であれば、電池を組んだ際の充放電効率やサイクル特性が良好になるため、より一層好ましい。
 ここで、「硫化リチウム(LiS)および塩化リチウム(LiCl)からなる相を実質的に含まない」とは、XRDチャートにおいて、硫化リチウム(LiS)および塩化リチウム(LiCl)のピーク強度が、Li7-x-2yPS6-x-yClxのピーク強度の3%未満である場合を意味するものである。
 なお、本固体電解質は、上記組成式(1)で示される化合物を含有していればよく、不可避不純物を含有することを許容するものである。
(耐湿性)
 本固体電解質は、上述のように、乾燥空気暴露後の導電率維持率を50%以上、さらには70%以上に高めることができ、且つ、乾燥空気暴露後の導電率を1.0×10-3S・cm-1以上、さらには2.0×10-3S・cm-1以上に高めることができる。
 なお、本明細書における「乾燥空気」とは、エアードライヤー等で水分濃度を100ppm以下(露点で約-42℃以下)まで除去した空気を意味する。
(イオン伝導性)
 硫化物系固体電解質はそもそもイオン伝導性に優れており、酸化物に比べて常温で活物質との界面を形成し易く、界面抵抗を低くできることが知られている。中でも、本固体電解質は、硫黄欠損が少なくて結晶性が高いため、電子伝導性が低く、リチウムイオン伝導性が特に優れている。
 また、Li7-x-2yPS6-x-yClxと同じ骨格構造を有するLi7PS6は、リチウムイオン伝導性が低い斜方晶(空間群Pna2)と高い立方晶(空間群F-43m)の2つの結晶構造を有しており、約170℃付近がその相転移点であり、室温近傍の結晶構造はイオン伝導性が低い斜方晶である。従って、前記特許文献3に示されるように、イオン伝導性の高い立方晶を得るためには、通常は一度相転移点以上に加熱した後に、急冷処理が必要となる。しかし、上記組成式(1)の化合物の場合には、室温以上の温度において相転移点を有さず、結晶構造は室温においてもイオン伝導性の高い立方晶系を維持することができるため、急冷等の処理をしなくても、高いイオン導電率を確保することができ、この点で特に好ましい。
(製造方法)
 次に、本固体電解質の製造方法の一例について説明する。但し、ここで説明する製造方法はあくまでも一例であり、この方法に限定するものではない。
 本固体電解質は、例えば硫化リチウム(Li2S)粉末と、硫化リン(P25)粉末と、塩化リチウム(LiCl)粉末とをそれぞれ秤量して、ボールミル、ビーズミル、ホモジナイザー等で粉砕混合するのが好ましい。
 この際、粉砕混合は、メカニカルアロイング法など、非常に強力な機械的粉砕混合により、原料粉末の結晶性を低下あるいは非晶質化、もしくは原料混合粉末を均質化させてしまうと、カチオンと硫黄との結合が切れてしまい、焼成時に硫黄欠損が生じ、電子伝導性を発現してしまう。そのため、原料粉末の結晶性を維持できる程度の粉砕混合が望ましい。
 前記のように混合した後、必要に応じて乾燥させ、次いで、不活性雰囲気もしくは硫化水素ガス(H2S)流通下で焼成し、必要に応じて解砕乃至粉砕し、必要に応じて分級することにより得ることができる。
 なお、硫化物材料は温度が上がると、硫黄欠損が生じやすいため、従来は石英サンプルなどで封入して焼成していた。しかし、それでは工業的に製造することが難しかった。また、封入した石英サンプルは密閉されているため、加熱することで石英サンプル内に含有するガスが膨張し、石英サンプル内の圧力が高まり、破裂するおそれがあった。従って、封入時にはできる限り真空状態にする必要があった。しかしながら、真空状態においては、硫化物材料内に硫黄欠損が生じやすくなる。
 これに対し、本固体電解質は、200℃程度から結晶化が進むことから、比較的低温で焼成しても合成することができる。そのため、不活性雰囲気もしくは硫化水素ガス(H2S)流通下、350℃以上で焼成することによって、硫黄欠損がほとんど無い目的の化学組成の硫化物である本固体電解質を作製することができる。
 中でも、焼成時に硫化水素ガスを用いる場合、焼成時に硫化水素が分解して生成する硫黄ガスにより、焼成試料近傍の硫黄分圧を高めることができるため、高い焼成温度においても硫黄欠損は生成しにくく、電子伝導性を低くすることができる。よって、硫化水素ガスを含有する雰囲気下で焼成する場合には、焼成温度は350~650℃とするのが好ましく、中でも450℃以上或いは600℃以下、その中でも500℃以上或いは550℃以下とするのが特に好ましい。
 このように硫化水素ガス(H2S)流通下で焼成する際、350~650℃で焼成することにより、硫化物中の硫黄を欠損させることなく焼成することができる。
 他方、不活性雰囲気下で焼成する場合は、硫化水素ガスの場合とは異なり、焼成時に焼成試料近傍の硫黄分圧を高めることができないため、高い焼成温度の場合、硫黄欠損が生成しやすく、電子伝導性が高くなってしまう。そのため、不活性雰囲気下で焼成する場合は、焼成温度は350~500℃とするのが好ましく、中でも350℃以上或いは450℃以下、その中でも400℃以上或いは450℃以下とするのが特に好ましい。
 なお、通常は原料粉末を完全に反応させて未反応相を消失させるため、硫化水素ガスを流通させて500℃以上で焼成した方が好ましいが、粒径が小さく、反応性が高い原料粉末を用いる場合は、低温でも反応が促進することから、不活性雰囲気で焼成を行ってもよい。
 また、上記の原料は、大気中で極めて不安定で、水分と反応して分解し、硫化水素ガスを発生したり、酸化したりするため、不活性ガス雰囲気に置換したグローブボックス等を通じて、原料を炉内にセットして焼成を行うのが好ましい。
 このように製造することにより、硫黄欠損の生成を抑制することができ、電子伝導性を低くすることができる。そのため、本固体電解質を用いて全固体リチウムイオン電池を作製すれば、電池特性である充放電特性やサイクル特性を良好にすることができる。
<本固体電解質の用途>
 本固体電解質は、全固体リチウムイオン電池又は全固体リチウム一次電池の固体電解質層や、正極・負極合材に混合する固体電解質等として使用できる。
 例えば正極と、負極と、正極及び負極の間に上記の固体電解質からなる層とを形成することで、全固体リチウムイオン電池を構成することができる。
 この際、本固体電解質は、耐水性及び耐酸化性に優れており、乾燥空気中で取り扱っても特性劣化が少ないため、例えばドライルームなどでも全固体リチウムイオン電池の組立作業を行うことができる。
 ここで、固体電解質からなる層は、例えば固体電解質とバインダー及び溶剤から成るスラリーを基体上に滴下し、ドクターブレードなどで擦り切る方法、スラリー接触後にエアーナイフで切る方法、スクリーン印刷法等で塗膜を形成し、その後加熱乾燥を経て溶剤を除去することで作製することができる。又は、固体電解質の紛体をプレス等により圧粉体を作製した後、適宜加工して作製することもできる。
 正極材としては、リチウムイオン電池の正極活物質として使用されている正極材を適宜使用可能である。
 負極材についても、リチウムイオン電池の負極活物質として使用されている負極材を適宜使用可能である。但し、本固体電解質は、電気化学的に安定であることから、リチウム金属に匹敵する卑な電位(約0.1V vs Li/Li)で充放電する人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素系材料を使用することができる。そのため、炭素系材料を負極材に用いることで、全固体リチウムイオン電池のエネルギー密度を大きく向上させることができる。よって、例えば本固体電解質と、人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素を含む負極活物質と、を有するリチウムイオン電池を構成することができる。
<用語の解説>
 本発明において「固体電解質」とは、固体状態のままイオン、例えばLi+が移動し得る物質全般を意味する。
 また、本発明において「X~Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」又は「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)又は「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」又は「Yより小さいことが好ましい」旨の意図を包含する。
 以下、実施例に基づいて本発明を説明する。但し、本発明はこれらに限定されて解釈されるものではない。
(実施例・比較例)
 表1に示した組成式となるように、硫化リチウム(Li2S)粉末と、硫化リン(P25)粉末と、塩化リチウム(LiCl)粉末とを用い、全量で5gになるようにそれぞれを秤量し、ボールミルで15時間粉砕混合して混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1.0L/min流通させながら、昇降温速度200℃/hにて500℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粉末状のサンプルを得た。
 この際、上記秤量、混合、電気炉へのセット、電気炉からの取り出し、解砕及び整粒作業は全て、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で実施した。
<組成の測定>
 実施例・比較例で得られたサンプルについて、組成をICP発光分析法で測定した。
<生成相の特定>
 実施例・比較例で得られた粉末状のサンプルをX線回折法(XRD)で分析し、生成相を特定した。
<初期導電率の測定>
 実施例・比較例で得たサンプルを、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で200MPaの圧力にて一軸加圧成形して直径10mm、厚み2~5mmのペレットを作製し、更にペレット上下両面に電極としてのカーボンペーストを塗布した後、180℃で30分熱処理を行い、イオン導電率測定用サンプルを作製した。イオン導電率測定は、室温(25℃)にて交流インピーダンス法にて行った。
<乾燥空気曝露後の導電率の測定>
 実施例・比較例で得たサンプルを、平均露点-45℃の乾燥空気で置換されたグローブボックス内に入れて6時間放置した。その後、サンプルを再び十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内に入れ、初期導電率の測定と同様にイオン導電率を測定した。
 表1中の「x」「y」はそれぞれ、組成式:Li7-x-2yPS6-x-yClxのxyを示し、「LiS過少割合」は当該組成式におけるxyの関係、すなわち[y/(2-x)]を示し、「初期」は初期導電率を示し、「乾燥空気曝露6h」は6時間乾燥空気曝露後の導電率を示し、「導電率維持率」は初期導電率に対する6時間乾燥空気曝露後の導電率の維持割合(%)を示す。
 また、表1の生成相の項目において、「A」は立方晶系Argyrodite型結晶構造のLi7-x-2yPS6-x-yClx相を示し、「A+LiPS」とは、該Li7-x-2yPS6-x-yClx相とLiPS相の混合相を示す。また、「A+LiPS(小)」とは、XRDチャートにおいて、LiPSが確認されたものの、そのピーク強度が、Li7-x-2yPS6-x-yClxのピーク強度の3%未満であることを示している。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果及びこれまで行ってきた試験結果から、組成式:Li7-x-2yPS6-x-yClxで表される化合物において、0.8≦x≦1.7であり、0<y≦-0.25x+0.5を満足すれば、乾燥空気暴露後の導電率維持率を50%以上に高めることができ、しかも、乾燥空気暴露後の導電率を1.0×10-3S・cm-1以上に高めることができることが分かった。
 さらに、1.0≦x≦1.4、及び、0<y≦-0.2x+0.4を満足すれば、乾燥空気暴露後の導電率維持率を70%以上に高めることができ、しかも、乾燥空気暴露後の導電率を2.0×10-3S・cm-1以上に高めることができることも分かった。
 また、上組成式(1)において、0.25≧[y/(2-x)]であれば、耐水性及び耐酸化性がさらに向上させることができることも分かった。そして、かかる観点から、0.25>[y/(2-x)]であるのがさらに好ましく、その中でも0.20≧[y/(2-x)]であるのがさらに好ましく、その中でも特に0.15≧[y/(2-x)]であれば、耐水性及び耐酸化性をさらに向上させることができることも分かった。
<全固体電池セルの作製と評価>
 実施例2、6及び比較例1、5で得られたサンプルを固体電解質として用いて正極合材、負極合材を調製し、全固体電池を作製して、電池特性評価(1サイクル目充放電容量、効率及びレート特性)を行った。
(材料)
 正極活物質として、三元系層状化合物であるLiNi0.5Co0.2Mn0.3(NCM)にZrO膜をコートした粉末を用い、負極活物質としてグラファイトを用い、固体電解質粉末として実施例及び比較例で得たサンプルを用いた。
(合材調製)
 正極合材粉末は、正極活物質粉末、固体電解質粉末及び導電助剤(アセチレンブラック)粉末を、質量比で60:38:2の割合でボールミル混合することで調製した。
 負極合材粉末は、負極活物質粉末、固体電解質粉末を、質量比で50:50の割合でボールミル混合することで調製した。
(全固体電池セルの作製)
 実施例・比較例で得たサンプル(固体電解質粉末)を用いた正極合材粉末を金型に充填し、500MPaで一軸成形してφ10mmの正極合材ペレットを作製した。その後、φ13mmの密閉セル用絶縁筒内に、正極側の電極となるφ13mmのSUS製円柱を入れ、その上の中心に正極合材ペレットを置いた。更にその上に実施例・比較例で得たサンプル(固体電解質粉末)を充填し、200MPaで一軸成形して固体電解質-正極合材の積層ペレットを作製した。続けて固体電解質-正極合材の積層ペレットの上に負極合材粉末充填し、500MPaで一軸成形することで負極合材-固体電解質-正極合材からなる積層ペレット形状の全固体電池素子を作製した。その後、負極の電極となるφ13mmのSUS製円柱を絶縁筒内の積層ペレットの負極合材側から入れ、絶縁筒内に入った全固体電池素子をSUS製の密閉型電池セルに入れて全固体電池セルとした。
 この際、上記全固体電池セルの作製においては、全固体電池素子の作製まで平均露点-45℃の乾燥空気で置換されたグローブボックス内で行い、その後の全固体電池セルの作製は十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で行った。
(電池特性測定)
 電池特性測定は、25℃に保たれた環境試験機内に全固体電池セルを入れて充放電測定装置に接続して評価した。この際、上限電圧を4.2VとしたCC-CV方式で充電し、放電は下限電圧を2.5VとしたCC方式で行った。1サイクル目を0.064mA/cm(0.05C)、2サイクル目を0.13mA/cm(0.1C)で充電及び放電した。以後のサイクルは0.13mA/cm(0.1C)で充電し、4サイクル目を0.25mA/cm(0.2C)、5サイクル目を0.64mA/cm(0.5C)、6サイクル目を1.27mA/cm(1C)、7サイクル目を2.54mA/cm(2C)、8サイクル目を3.82mA/cm(3C)、9サイクル目を6.37mA/cm(5C)、及び10サイクル目で12.7mA/cm(10C)で放電した。レート特性は、2サイクル目の放電容量を100%として、各サイクルの放電容量をもとに容量維持率を算出した。表2には1サイクル目の充放電容量及びレート特性の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 NCMなどの層状構造を有する正極活物質を用いると、不可逆容量を有するため、1サイクル目の充電容量に対して、(1サイクル目の)放電容量が低くなることが知られている。しかし、実施例2及び6のサンプルを用いた全固体電池は、1サイクル目の放電容量が高く、またレート特性も非常に良好であり、12.7mA/cm(10C)でも放電可能であった。これらの全固体電池用いた固体電解質は、イオン導電率が高く、かつ耐水性及び耐酸化性が高いため、乾燥空気雰囲気で全固体電池を作製しても固体電解質が劣化せず、高いイオン導電率が維持できたため、電池特性としても高い性能を発現しているものと考えられる。
 一方、比較例1及び5のサンプルを用いた全固体電池は、実施例2及び6のサンプルで作製した全固体電池と比較すると、1サイクル目の放電容量が低くなった。またレート特性も6.37mA/cm(5C)以上では放電しなかった。
 これらの全固体電池で用いた固体電解質は、耐水性及び耐酸化性が低いため、乾燥空気雰囲気で全固体電池を作製すると劣化し、イオン導電率が低下してしまう。このような固体電解質を全固体電池に用いると、作製した全固体電池の内部抵抗は高くなってしまう。このような全固体電池を放電しても電圧降下が大きいことから、すぐに下限電圧に達してしまう。そのため、低いレートにおいても放電容量が小さく、更に高いレートにおいては放電できないものと考えられる。

Claims (6)

  1.  立方晶系Argyrodite型結晶構造を有し、組成式(1):Li7-x-2yPS6-x-yClxで表される化合物を含有し、且つ、前記組成式(1)において、0.8≦x≦1.7、0<y≦-0.25x+0.5を満足することを特徴とするリチウムイオン電池用硫化物系固体電解質。
  2.  上組成式(1)において、さらに1.0≦x≦1.4、及び、0<y≦-0.2x+0.4を満足することを特徴とする請求項1に記載のリチウムイオン電池用硫化物系固体電解質。
  3.  上組成式(1)において、さらに0.25≧[y/(2-x)]を満足することを特徴とする請求項1又は2に記載のリチウムイオン電池用硫化物系固体電解質。
  4.  硫化リチウム(Li2S)粉末と、硫化リン(P25)粉末と、塩化リチウム(LiCl)粉末とを混合し、不活性雰囲気下、350~500℃で焼成するか、又は、硫化水素ガスを含有する雰囲気下、350~650℃で焼成するかして得られることを特徴とする請求項1~3の何れかに記載のリチウムイオン電池用硫化物系固体電解質。
  5.  請求項1~4の何れかに記載された固体電解質を備えたリチウムイオン電池。
  6.  請求項1~4の何れかに記載された固体電解質と、炭素を含む負極活物質とを有するリチウムイオン電池。
PCT/JP2015/067151 2014-07-16 2015-06-15 リチウムイオン電池用硫化物系固体電解質 WO2016009768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15822447.7A EP3171444B1 (en) 2014-07-16 2015-06-15 Sulfide-based solid electrolyte for lithium ion batteries and method for making the electrolyte
CN201580001316.5A CN105518923B (zh) 2014-07-16 2015-06-15 锂离子电池用硫化物系固体电解质
US15/326,238 US9899701B2 (en) 2014-07-16 2015-06-15 Sulfide-based solid electrolyte for lithium ion batteries
KR1020167033998A KR101807583B1 (ko) 2014-07-16 2015-06-15 리튬이온 전지용 황화물계 고체 전해질

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-146174 2014-07-16
JP2014146174A JP5873533B2 (ja) 2014-07-16 2014-07-16 リチウムイオン電池用硫化物系固体電解質

Publications (1)

Publication Number Publication Date
WO2016009768A1 true WO2016009768A1 (ja) 2016-01-21

Family

ID=55078269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067151 WO2016009768A1 (ja) 2014-07-16 2015-06-15 リチウムイオン電池用硫化物系固体電解質

Country Status (6)

Country Link
US (1) US9899701B2 (ja)
EP (1) EP3171444B1 (ja)
JP (1) JP5873533B2 (ja)
KR (1) KR101807583B1 (ja)
CN (1) CN105518923B (ja)
WO (1) WO2016009768A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003333A1 (ja) * 2016-07-01 2018-01-04 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
JP2018045997A (ja) * 2016-09-08 2018-03-22 出光興産株式会社 硫化物固体電解質
US20190074544A1 (en) * 2017-09-06 2019-03-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
CN109526242A (zh) * 2016-08-10 2019-03-26 出光兴产株式会社 硫化物固体电解质
WO2019131725A1 (ja) 2017-12-28 2019-07-04 三井金属鉱業株式会社 固体電解質
JP2019117788A (ja) * 2017-12-27 2019-07-18 現代自動車株式会社Hyundai Motor Company 窒素が添加された全固体電池用硫化物界固体電解質
WO2019176895A1 (ja) * 2018-03-12 2019-09-19 三井金属鉱業株式会社 硫化物系固体電解質粒子
DE102019129554A1 (de) 2018-12-18 2020-06-18 Hyundai Motor Company Sulfid-basierter, fester elektrolyt, der mit einem erdalkalimetall dotiert ist, und herstellungsverfahren desgleichen
KR20200070720A (ko) 2018-12-10 2020-06-18 현대자동차주식회사 전자 전도도가 향상된 황화물계 고체전해질 및 이의 제조방법
KR20200070721A (ko) 2018-12-10 2020-06-18 현대자동차주식회사 전고체 전지 음극용 황화물계 고체전해질 및 이의 제조방법
US10811726B2 (en) 2017-11-14 2020-10-20 Samsung Electronics Co., Ltd. Solid electrolyte for all-solid lithium secondary battery, all-solid lithium secondary battery, and method of preparing the solid electrolyte
JP2021122029A (ja) * 2016-09-12 2021-08-26 出光興産株式会社 硫化物固体電解質
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
KR20220044086A (ko) 2020-09-28 2022-04-06 주식회사 포스코 제이케이 솔리드 솔루션 전고체 리튬 이차전지용 황화물계 고체전해질 및 황화물계 고체전해질의 제조방법
JP7095795B1 (ja) 2021-09-30 2022-07-05 Agc株式会社 硫化物系固体電解質粉末の製造方法
US20220344708A1 (en) * 2019-10-29 2022-10-27 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199631A (ja) * 2016-04-28 2017-11-02 出光興産株式会社 硫化物固体電解質、電極合材及びリチウムイオン電池
CN115458802A (zh) 2016-11-16 2022-12-09 出光兴产株式会社 硫化物固体电解质
KR102417506B1 (ko) * 2016-11-16 2022-07-05 현대자동차주식회사 단일원소로부터 유래된 고체전해질 및 이의 제조방법
JP6686860B2 (ja) 2016-12-09 2020-04-22 トヨタ自動車株式会社 硫化物固体電解質の製造方法
CN106785014A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种添加锂硅合金、溴化银和氯化银的硫化锂系固体电解质材料及其制备方法
CN106684442A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种添加锂锡合金和碘化银的硫化锂系固体电解质材料及其制备方法
CN106785003A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种添加锂硅合金和碘化银的硫化锂系固体电解质材料及其制备方法
CN106684460A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种添加锂锡合金和银卤族化合物的硫化锂系固体电解质材料及其制备方法
CN106785000A (zh) * 2017-02-13 2017-05-31 桂林电器科学研究院有限公司 一种添加锂锡合金、碘化银和溴化银的硫化锂系固体电解质材料及其制备方法
CN106684459A (zh) * 2017-02-13 2017-05-17 桂林电器科学研究院有限公司 一种添加锂锡合金和溴化银的硫化锂系固体电解质材料及其制备方法
JP6934042B2 (ja) 2017-03-08 2021-09-08 出光興産株式会社 硫化物固体電解質粒子
JP7321090B2 (ja) * 2017-03-30 2023-08-04 Tdk株式会社 全固体二次電池
JP7013456B2 (ja) 2017-05-24 2022-01-31 出光興産株式会社 硫化物固体電解質
EP3637442A4 (en) 2017-06-09 2021-03-17 Idemitsu Kosan Co.,Ltd. SOLID SULPHIDE ELECTROLYTE MANUFACTURING PROCESS
JP7303106B2 (ja) 2017-06-29 2023-07-04 出光興産株式会社 硫化物固体電解質
US11387486B2 (en) 2017-08-10 2022-07-12 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte
KR102406179B1 (ko) * 2017-10-13 2022-06-07 현대자동차주식회사 침상형 황화물계 고체 전해질의 제조 방법
WO2019135316A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111279431B (zh) 2018-01-05 2022-03-25 松下知识产权经营株式会社 固体电解质材料和电池
WO2019135328A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135315A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736833A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
EP3736828A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
EP3736822A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
JP7417925B2 (ja) 2018-01-05 2024-01-19 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736831B1 (en) 2018-01-05 2023-11-01 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
EP3736891B1 (en) 2018-01-05 2024-07-31 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
WO2019135345A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736834A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL, AND BATTERY
WO2019135323A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 電池
EP3745503A4 (en) 2018-01-26 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE MATERIAL AND USING BATTERY
WO2019146292A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
CN111587508A (zh) 2018-01-26 2020-08-25 松下知识产权经营株式会社 电池
WO2019146219A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
KR102552153B1 (ko) 2018-04-18 2023-07-05 현대자동차주식회사 전고체 전지용 황화물계 고체 전해질의 제조 방법
KR102063159B1 (ko) 2018-07-17 2020-01-08 한국과학기술연구원 셀레늄을 포함하는 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법
KR102636609B1 (ko) * 2018-07-25 2024-02-15 미쓰이금속광업주식회사 정극 활물질
WO2020033809A1 (en) * 2018-08-10 2020-02-13 The Florida State University Research Foundation, Inc. Solid electrolytes, electronic devices, and methods
KR102626921B1 (ko) * 2018-08-10 2024-01-19 삼성전자주식회사 리튬전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 리튬전지
JP6704098B1 (ja) 2018-09-04 2020-06-03 三井金属鉱業株式会社 硫化物系化合物粒子、固体電解質及びリチウム二次電池
WO2020095937A1 (ja) 2018-11-08 2020-05-14 三井金属鉱業株式会社 硫黄含有化合物、固体電解質及び電池
JP6738983B1 (ja) 2018-11-08 2020-08-12 三井金属鉱業株式会社 硫化物固体電解質及び電池
JP7110943B2 (ja) * 2018-11-28 2022-08-02 トヨタ自動車株式会社 電極積層体の製造方法
WO2020110479A1 (ja) 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 負極材料、および、電池
WO2020110480A1 (ja) 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 負極材料、電池、および電池の製造方法
CN109638347A (zh) * 2018-12-02 2019-04-16 桂林理工大学 一种纳米级Argyrodite型固态电解质材料的制备及应用
JP7319900B2 (ja) 2018-12-05 2023-08-02 出光興産株式会社 アルジロダイト型結晶構造を有する固体電解質の製造方法
KR102369870B1 (ko) 2018-12-26 2022-03-04 한양대학교 산학협력단 용매열 합성법을 이용한 리튬 금속 배터리용 고체전해질층의 제조 방법 및 이를 포함하는 리튬 금속 배터리
KR102378488B1 (ko) 2019-03-28 2022-03-25 도요타 지도샤(주) 황화물 고체전해질, 황화물 고체전해질의 전구체, 전고체전지 및 황화물 고체전해질의 제조 방법
EP3951962A4 (en) * 2019-03-29 2022-07-20 Mitsui Mining & Smelting Co., Ltd. SOLID ELECTROLYTE
CN113631507A (zh) * 2019-04-19 2021-11-09 三井金属矿业株式会社 硫化物固体电解质的制造方法
US11264602B2 (en) 2019-05-08 2022-03-01 Samsung Electronics Co., Ltd. Sulfide glass-ceramic lithium-ion solid-state conductor
KR102218226B1 (ko) 2019-05-08 2021-02-22 한국과학기술연구원 할로겐 원소의 함량이 조절된 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법
CN110137565B (zh) * 2019-05-20 2021-05-11 天目湖先进储能技术研究院有限公司 一种硫化物固态电解质的大规模制备方法
WO2021029315A1 (ja) 2019-08-09 2021-02-18 出光興産株式会社 固体電解質の製造方法
EP4029827B1 (en) * 2019-09-11 2024-02-28 Mitsui Mining & Smelting Co., Ltd. Sulfide solid electrolyte
WO2021049415A1 (ja) * 2019-09-11 2021-03-18 三井金属鉱業株式会社 硫化物固体電解質
KR102292653B1 (ko) 2019-09-20 2021-08-24 주식회사 정관 황화물계 고체전해질 제조방법
US11702337B2 (en) 2019-09-27 2023-07-18 Samsung Sdi Co., Ltd. Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical cell including the solid ion conductor, and preparation method of the same
KR102292161B1 (ko) * 2019-10-22 2021-08-24 한국과학기술연구원 다중 칼코겐 원소가 도입된 황화물계 리튬-아지로다이트 이온 초전도체 및 이의 제조방법
KR20220088689A (ko) 2019-10-29 2022-06-28 미쓰이금속광업주식회사 고체 전해질 및 그것을 사용한 전극 합제, 고체 전해질층, 고체 전지
US20220336852A1 (en) 2019-10-29 2022-10-20 Mitsui Mining & Smelting Co., Ltd. Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer, and solid battery using same
EP3817117A1 (en) 2019-11-01 2021-05-05 Samsung SDI Co., Ltd. Solid ion conductor compound, solid electrolyte including solid ion conductor compound, electrochemical cell including solid ion conductor compound, and method of preparing solid ion conductor compound
KR20210054817A (ko) 2019-11-06 2021-05-14 삼성에스디아이 주식회사 고체 전해질, 이를 포함하는 전기화학전지 및 고체 전해질의 제조방법
EP3819964A1 (en) 2019-11-07 2021-05-12 Samsung SDI Co., Ltd. Solid electrolyte, electrochemical cell including solid electrolyte, and method of preparing solid electrolyte
KR20210056504A (ko) * 2019-11-08 2021-05-20 삼성에스디아이 주식회사 전고체 이차전지용 음극층, 이를 포함하는 전고체 이차전지 및 그 제조방법
EP4075450A4 (en) 2019-12-11 2023-06-14 Mitsui Mining & Smelting Co., Ltd. SOLID SULFIDE ELECTROLYTE
EP4078698A4 (en) 2019-12-20 2024-08-14 Blue Current Inc COMPOSITE ELECTROLYTES WITH BINDERS
US11990583B2 (en) 2019-12-27 2024-05-21 Mitsui Mining & Smelting Co., Ltd. Sulfide solid electrolyte and method of producing the same
EP4084123A4 (en) 2019-12-27 2023-09-20 Mitsui Mining & Smelting Co., Ltd. SULFIDIC SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
TWI727734B (zh) * 2020-04-07 2021-05-11 日商三井金屬鑛業股份有限公司 固體電解質
KR102342871B1 (ko) * 2020-06-17 2021-12-24 한국전기연구원 리튬 이차전지용 고체 전해질의 제조 방법
CN111977681B (zh) * 2020-08-08 2023-10-10 天目湖先进储能技术研究院有限公司 硫化物固态电解质材料及其原料的气相合成方法及应用
KR20220028942A (ko) 2020-08-31 2022-03-08 삼성에스디아이 주식회사 전고체 이차전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 전고체 이차전지
US11928472B2 (en) 2020-09-26 2024-03-12 Intel Corporation Branch prefetch mechanisms for mitigating frontend branch resteers
KR20220057051A (ko) 2020-10-29 2022-05-09 한국전기연구원 분무열분해법을 이용한 황화물 다공성 전해질의 제조방법 및 그에 의해 제조된 다공성 전해질
KR102406069B1 (ko) 2020-11-25 2022-06-13 한국과학기술연구원 할로겐의 완전 점유형 구조가 도입된 리튬-아지로다이트 기반 이온 초전도체 및 이의 제조방법
CN114552021A (zh) * 2020-11-26 2022-05-27 中国科学院大连化学物理研究所 一种固态电解质及其制备方法和应用
KR102269019B1 (ko) * 2020-12-14 2021-06-25 한국전자기술연구원 고체전해질 및 그를 포함하는 전고체전지
CN116998025A (zh) * 2021-02-11 2023-11-03 艾姆普斯拉公司 包括基于硫属化物的离子传导结构、特别是基于硫化物的离子传导结构的固态电解质材料
JP2022171151A (ja) 2021-04-30 2022-11-11 エルジー エナジー ソリューション リミテッド 全固体電池用固体電解質及びその製造方法
CN113937351B (zh) * 2021-10-08 2023-09-22 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种硫银锗矿型硫化物锂离子固态电解质及其制备方法和应用
CN114122508B (zh) * 2021-11-26 2024-02-23 湖州昆仑先端固态电池科技有限公司 一种硫化物固体电解质及其制备方法和应用
WO2023110697A1 (en) * 2021-12-17 2023-06-22 Rhodia Operations Solid material comprising li, mg, p, s and halogen elements
JP2023096783A (ja) 2021-12-27 2023-07-07 エルジー エナジー ソリューション リミテッド 硫化物系固体電解質及び硫化物系固体電解質の製造方法
KR20230109855A (ko) 2022-01-14 2023-07-21 한국전기연구원 혼합전도성 아지로다이트계 고체 전해질의 제조방법, 이에 의해 제조되는 아지로다이트계 고체 전해질, 이를 포함하는 활물질-고체 전해질 복합 분말 및 전고체 전지
CN118648133A (zh) * 2022-02-18 2024-09-13 三井金属矿业株式会社 电极合剂、和使用了其的电极浆料以及电池
CN117836992A (zh) 2022-06-10 2024-04-05 株式会社Lg新能源 硫化物类固体电解质、其制备方法以及包含其的固态电池
KR20240033824A (ko) 2022-09-06 2024-03-13 현대자동차주식회사 코어-쉘 구조를 갖는 고체전해질 및 이의 제조방법
KR20240037643A (ko) 2022-09-15 2024-03-22 롯데에너지머티리얼즈 주식회사 황화물계 고체전해질의 제조방법
CN118507816A (zh) * 2024-04-03 2024-08-16 中国科学院精密测量科学与技术创新研究院 一种固态电解质材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
JP2010540396A (ja) * 2007-10-08 2010-12-24 ウニヴェルジテート ジーゲン リチウム硫銀ゲルマニウム鉱
JP2012043646A (ja) * 2010-08-19 2012-03-01 Idemitsu Kosan Co Ltd 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池
JP2012048971A (ja) * 2010-08-26 2012-03-08 Toyota Motor Corp 硫化物固体電解質材料、正極体およびリチウム固体電池
WO2013069243A1 (ja) * 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
WO2013099834A1 (ja) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 硫化物系固体電解質
JP2014093260A (ja) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd 固体電解質成形体及びその製造方法、並びに全固体電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184517A (ja) 1989-12-14 1991-08-12 Matsushita Electric Ind Co Ltd フードミキサー
JP3184517B2 (ja) 1990-11-29 2001-07-09 松下電器産業株式会社 リチウムイオン伝導性固体電解質
JP3744665B2 (ja) 1997-12-09 2006-02-15 トヨタ自動車株式会社 リチウムイオン伝導性固体電解質および電池
JP2001250580A (ja) 2000-03-06 2001-09-14 Masahiro Tatsumisuna 高リチウムイオン伝導性硫化物セラミックスおよびこれを用いた全固体電池
WO2009094524A1 (en) 2008-01-23 2009-07-30 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
JP2011096630A (ja) * 2009-10-02 2011-05-12 Sanyo Electric Co Ltd 固体リチウム二次電池及びその製造方法
EP2905835B1 (en) 2012-10-05 2016-10-12 Fujitsu Limited Lithium-ion conductor and all-solid lithium-ion secondary cell
JP2015018726A (ja) * 2013-07-12 2015-01-29 トヨタ自動車株式会社 硫化物固体電解質の回復方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
JP2010540396A (ja) * 2007-10-08 2010-12-24 ウニヴェルジテート ジーゲン リチウム硫銀ゲルマニウム鉱
JP2012043646A (ja) * 2010-08-19 2012-03-01 Idemitsu Kosan Co Ltd 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池
JP2012048971A (ja) * 2010-08-26 2012-03-08 Toyota Motor Corp 硫化物固体電解質材料、正極体およびリチウム固体電池
WO2013069243A1 (ja) * 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
WO2013099834A1 (ja) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 硫化物系固体電解質
JP2014093260A (ja) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd 固体電解質成形体及びその製造方法、並びに全固体電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
R. PRASADA RAO ET AL.: "Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction", SOLID STATE IONICS, vol. 230, 7 October 2012 (2012-10-07), pages 72 - 76, XP028962239, DOI: doi:10.1016/j.ssi.2012.09.014 *
R.P.RAO ET AL.: "Studies of lithium argyrodite solid electrolytes for all-solid- state batteries", PHYSICA STATUS SOLIDI (A, vol. 208, no. 8, pages 1804 - 1807, XP055188339, DOI: doi:10.1002/pssa.201001117 *
See also references of EP3171444A4 *
SYLVAIN BOULINEAU ET AL.: "Mechanochemical synthesis of Li-argyrodite Li6PS5X(X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application", SOLID STATE IONICS, vol. 221, 23 June 2012 (2012-06-23), pages 1 - 5, XP028432169, DOI: doi:10.1016/j.ssi.2012.06.008 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11699809B2 (en) 2016-07-01 2023-07-11 Mitsui Mining & Smelting Co., Ltd. Sulfide-based solid electrolyte for lithium secondary battery
JP6293383B1 (ja) * 2016-07-01 2018-03-14 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
WO2018003333A1 (ja) * 2016-07-01 2018-01-04 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
JP2018067552A (ja) * 2016-07-01 2018-04-26 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
EP3454405A4 (en) * 2016-07-01 2019-12-18 Mitsui Mining and Smelting Co., Ltd. FIXED ELECTROLYTE ON SULFIDE BASE FOR LITHIUM SECONDARY BATTERY
CN109526242B (zh) * 2016-08-10 2022-04-15 出光兴产株式会社 硫化物固体电解质
CN109526242A (zh) * 2016-08-10 2019-03-26 出光兴产株式会社 硫化物固体电解质
US11264642B2 (en) 2016-08-10 2022-03-01 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte
EP3499629A4 (en) * 2016-08-10 2020-01-29 Idemitsu Kosan Co., Ltd SOLID-SULFIDE ELECTROLYTE
JP2018045997A (ja) * 2016-09-08 2018-03-22 出光興産株式会社 硫化物固体電解質
JP7178452B2 (ja) 2016-09-12 2022-11-25 出光興産株式会社 硫化物固体電解質
JP2021122029A (ja) * 2016-09-12 2021-08-26 出光興産株式会社 硫化物固体電解質
US20190074544A1 (en) * 2017-09-06 2019-03-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
US10879559B2 (en) * 2017-09-06 2020-12-29 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
US10811726B2 (en) 2017-11-14 2020-10-20 Samsung Electronics Co., Ltd. Solid electrolyte for all-solid lithium secondary battery, all-solid lithium secondary battery, and method of preparing the solid electrolyte
US11011777B2 (en) 2017-12-27 2021-05-18 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
US11637313B2 (en) 2017-12-27 2023-04-25 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
US11575154B2 (en) 2017-12-27 2023-02-07 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
US11631891B2 (en) 2017-12-27 2023-04-18 Hyundai Motor Company Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
JP2019117788A (ja) * 2017-12-27 2019-07-18 現代自動車株式会社Hyundai Motor Company 窒素が添加された全固体電池用硫化物界固体電解質
JP7271053B2 (ja) 2017-12-27 2023-05-11 現代自動車株式会社 窒素が添加された全固体電池用硫化物界固体電解質
US11631887B2 (en) 2017-12-28 2023-04-18 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte
KR20200087207A (ko) 2017-12-28 2020-07-20 미쓰이금속광업주식회사 고체 전해질
JP6997216B2 (ja) 2017-12-28 2022-01-17 三井金属鉱業株式会社 固体電解質
JPWO2019131725A1 (ja) * 2017-12-28 2020-10-22 三井金属鉱業株式会社 固体電解質
WO2019131725A1 (ja) 2017-12-28 2019-07-04 三井金属鉱業株式会社 固体電解質
JP6595153B1 (ja) * 2018-03-12 2019-10-23 三井金属鉱業株式会社 硫化物系固体電解質粒子
US11688879B2 (en) 2018-03-12 2023-06-27 Mitsui Mining & Smelting Co., Ltd. Sulfide-based solid electrolyte particles
WO2019176895A1 (ja) * 2018-03-12 2019-09-19 三井金属鉱業株式会社 硫化物系固体電解質粒子
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
KR20200070720A (ko) 2018-12-10 2020-06-18 현대자동차주식회사 전자 전도도가 향상된 황화물계 고체전해질 및 이의 제조방법
KR20200070721A (ko) 2018-12-10 2020-06-18 현대자동차주식회사 전고체 전지 음극용 황화물계 고체전해질 및 이의 제조방법
DE102019129554A1 (de) 2018-12-18 2020-06-18 Hyundai Motor Company Sulfid-basierter, fester elektrolyt, der mit einem erdalkalimetall dotiert ist, und herstellungsverfahren desgleichen
KR20200075250A (ko) 2018-12-18 2020-06-26 현대자동차주식회사 알칼리 토금속이 도핑된 황화물계 고체전해질 및 이의 제조방법
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method
US20220344708A1 (en) * 2019-10-29 2022-10-27 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same
KR20220044086A (ko) 2020-09-28 2022-04-06 주식회사 포스코 제이케이 솔리드 솔루션 전고체 리튬 이차전지용 황화물계 고체전해질 및 황화물계 고체전해질의 제조방법
WO2023053469A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 硫化物系固体電解質粉末の製造方法
JP2023051068A (ja) * 2021-09-30 2023-04-11 Agc株式会社 硫化物系固体電解質粉末の製造方法
JP7095795B1 (ja) 2021-09-30 2022-07-05 Agc株式会社 硫化物系固体電解質粉末の製造方法

Also Published As

Publication number Publication date
KR101807583B1 (ko) 2017-12-11
KR20160145834A (ko) 2016-12-20
US20170222257A1 (en) 2017-08-03
US9899701B2 (en) 2018-02-20
EP3171444A4 (en) 2018-02-21
EP3171444A1 (en) 2017-05-24
CN105518923A (zh) 2016-04-20
CN105518923B (zh) 2017-03-22
EP3171444B1 (en) 2019-09-25
JP2016024874A (ja) 2016-02-08
JP5873533B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5873533B2 (ja) リチウムイオン電池用硫化物系固体電解質
JP5957144B2 (ja) リチウムイオン電池用硫化物系固体電解質
JP5985120B1 (ja) リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
JP5701741B2 (ja) 硫化物系固体電解質
JP6595152B2 (ja) リチウム二次電池の固体電解質及び当該固体電解質用硫化物系化合物
JP6997216B2 (ja) 固体電解質
US10879562B2 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
WO2020045634A1 (ja) 硫化物固体電解質の製造方法、硫化物固体電解質、全固体電池、及び硫化物固体電解質の製造に用いる原料化合物の選択方法
JP5701808B2 (ja) 硫化物系固体電解質の製造方法
KR102151511B1 (ko) 황화물계 고체 전해질 입자
JP6285317B2 (ja) 全固体電池システム
WO2022186303A1 (ja) 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池
TW202138293A (zh) 固體電解質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167033998

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015822447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15326238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE