WO2016009768A1 - リチウムイオン電池用硫化物系固体電解質 - Google Patents
リチウムイオン電池用硫化物系固体電解質 Download PDFInfo
- Publication number
- WO2016009768A1 WO2016009768A1 PCT/JP2015/067151 JP2015067151W WO2016009768A1 WO 2016009768 A1 WO2016009768 A1 WO 2016009768A1 JP 2015067151 W JP2015067151 W JP 2015067151W WO 2016009768 A1 WO2016009768 A1 WO 2016009768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- sulfide
- lithium ion
- solid
- ion battery
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 62
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 44
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 43
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 41
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims description 27
- 239000007789 gas Substances 0.000 claims description 16
- 229910018091 Li 2 S Inorganic materials 0.000 claims description 15
- 238000010304 firing Methods 0.000 claims description 13
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 11
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 8
- 239000007773 negative electrode material Substances 0.000 claims description 8
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 239000007787 solid Substances 0.000 description 22
- 229910052717 sulfur Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 230000007812 deficiency Effects 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002203 sulfidic glass Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910020346 SiS 2 Inorganic materials 0.000 description 1
- SISKKOQANJSZHO-UHFFFAOYSA-L [Ge+2].S(=O)(=O)([O-])[O-].[Li+] Chemical compound [Ge+2].S(=O)(=O)([O-])[O-].[Li+] SISKKOQANJSZHO-UHFFFAOYSA-L 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- ISJNWFZGNBZPQE-UHFFFAOYSA-N germanium;sulfanylidenesilver Chemical compound [Ge].[Ag]=S ISJNWFZGNBZPQE-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a sulfide solid electrolyte for a lithium ion battery that can be suitably used as a solid electrolyte for a lithium ion battery.
- the lithium ion battery is a secondary battery having a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging.
- Lithium ion batteries have features such as high energy density and long life, so home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools such as power tools In recent years, it has been applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).
- This type of lithium ion battery is composed of a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes.
- the ion conductive layer includes a separator made of a porous film such as polyethylene or polypropylene, and a nonaqueous electrolytic cell.
- the one filled with liquid is generally used.
- an organic electrolyte using a flammable organic solvent as a solvent is used as the electrolyte, it was necessary to improve the structure and materials to prevent volatilization and leakage. It was also necessary to improve the structure and materials in order to prevent the occurrence of short circuits by installing safety devices that suppress the temperature rise.
- an all-solid-state lithium ion battery that uses a solid electrolyte that uses lithium sulfide (Li 2 S) or the like as a starting material to make the battery all solid does not use a flammable organic solvent.
- the device can be simplified, and the manufacturing cost and productivity can be improved.
- the device can be stacked in series in the cell to increase the voltage.
- this type of solid electrolyte does not move except for Li ions, it is expected that side reactions due to the movement of anions will not occur, leading to improvements in safety and durability.
- Solid electrolytes used in such batteries are required to have as high ionic conductivity as possible and to be chemically and electrochemically stable.
- lithium halides, lithium nitrides, lithium oxyacid salts, or derivatives thereof are known as material candidates.
- Patent Document 2 as a material that is crystalline and has a very high ionic conductivity of 6.49 ⁇ 10 ⁇ 5 Scm ⁇ 1 at room temperature, the general formula Li 2 S—GeS is used.
- a sulfide-based solid electrolyte comprising a lithium ion conductive material as a composite compound represented by 2- X (where X represents at least one of Ga 2 S 3 and ZnS) is disclosed. Has been.
- Patent Document 5 as in addition to the high fluidity of the lithium-ion formulation capable solid compound of a single layer, the general formula (I) Li + (12- nx) B n + X 2- 6-x Y - x
- B n + is selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb and Ta
- X 2 ⁇ is selected from the group consisting of S, Se and Te
- Y ⁇ is selected from the group consisting of Cl, Br, I, F, CN, OCN, SCN, N 3 , and 0 ⁇ x ⁇ 2.
- Lithium sulfate germanium ore is disclosed.
- Japanese Patent No. 3184517 Japanese Patent No. 3744665 JP 2001-250580 A JP 2011-96630 A JP 2010-540396 A
- the present inventors paid attention to a compound having a cubic Argyrodite crystal structure and represented by Li 7-x PS 6-x Cl x as a solid electrolyte material used for a lithium ion battery.
- a compound having a cubic Argyrodite crystal structure and represented by Li 7-x PS 6-x Cl x as a solid electrolyte material used for a lithium ion battery.
- an inert gas with an ultra-low dew point is supplied when an all-solid lithium ion battery is assembled as a solid electrolyte of a lithium ion battery. It was necessary to assemble an all-solid-state lithium ion battery in an environment such as a glove box, and there were problems in industrial use.
- the present invention relates to a sulfide solid electrolyte for a lithium ion battery having a cubic Argyrodite type crystal structure and containing a compound represented by Li 7-x PS 6-x Cl x .
- the present invention has a cubic Argyrodite-type crystal structure, contains a compound represented by composition formula (1): Li 7-x-2y PS 6-xy Cl x , and
- the present invention proposes a sulfide-based solid electrolyte for a lithium ion battery characterized by satisfying .8 ⁇ x ⁇ 1.7 and 0 ⁇ y ⁇ ⁇ 0.25x + 0.5.
- the sulfide-based solid electrolyte proposed by the present invention is significantly superior in water resistance and oxidation resistance compared to a sulfide-based solid electrolyte containing a compound represented by Li 7-x PS 6-x Cl x.
- the assembly operation of the all-solid-state lithium ion battery can be performed even in an environment where an inert gas having an ultra-low dew point is not supplied, such as a dry room.
- the sulfide-based solid electrolyte (referred to as “the present solid electrolyte”) according to the present embodiment has a cubic Argyrodite-type crystal structure, and has a composition formula (1): Li 7-x-2y PS 6-xy Cl x It is a sulfide type solid electrolyte containing the compound represented by these.
- composition formula (1) Li 7-x-2y PS 6-xy Cl x , x representing the content of Cl element is preferably 0.8 to 1.7. If x is 0.8 to 1.7, it is possible to obtain a cubic Argyrodite type and to suppress the generation of phases other than Argyrodite type such as Li 3 PS 4 and LiCl. The conductivity of lithium ions can be increased. From this point of view, x is preferably 0.8 to 1.7, and x is particularly preferably 1.0 or more and 1.6 or less, and particularly preferably 1.2 or more and 1.4 or less.
- Li 7-x-2y PS 6-xy Cl x is a value relatively indicating how much the Li 2 S component is smaller than the stoichiometric composition. Yes, it is preferable that 0 ⁇ y ⁇ ⁇ 0.25x + 0.5 is satisfied.
- the conductivity maintenance rate after exposure to dry air can be increased to 50% or more, and the conductivity after exposure to dry air is 1.0 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 or more. It has been confirmed that it can be increased.
- the conductivity maintenance ratio after exposure to dry air is increased to 70% or more.
- the conductivity after exposure to dry air can be increased to 2.0 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 or more, which is more preferable.
- composition formula (1) if 0.25 ⁇ [y / (2-x)], the water resistance and oxidation resistance can be further improved. From such a viewpoint, it is preferable that 0.25 ⁇ [y / (2-x)], more preferably 0.25> [y / (2-x)], and more preferably 0.20 ⁇ . [Y / (2-x)] is more preferable, and among them, when 0.15 ⁇ [y / (2-x)], the water resistance and oxidation resistance can be further improved.
- “(2-x)” is an index relatively indicating the number of S in Li 2 S having weak bonds existing around the skeleton (PS 4 3 ⁇ ) in the crystal structure.
- Y is considered to be a value indicating how much S of Li 2 S having a weak bond is less than the stoichiometric composition. Therefore, [y / (2-x)] is considered to be an index relatively indicating how much Li 2 S having a weak binding force can be reduced with respect to the stoichiometric composition. / (2-x)] can be considered to be able to adjust water resistance and oxidation resistance.
- the present solid electrolyte one that does not substantially contain a phase composed of lithium sulfide (Li 2 S) or lithium chloride (LiCl) is preferable.
- a single phase of Li 7-x-2y PS 6-xy Cl x is even more preferable because charge / discharge efficiency and cycle characteristics when the battery is assembled are improved.
- substantially free of a phase composed of lithium sulfide (Li 2 S) and lithium chloride (LiCl) means that the peak intensity of lithium sulfide (Li 2 S) and lithium chloride (LiCl) in the XRD chart Means less than 3% of the peak intensity of Li 7-x-2y PS 6-xy Cl x .
- this solid electrolyte should just contain the compound shown by the said compositional formula (1), and accept
- the present solid electrolyte can increase the conductivity maintenance rate after exposure to dry air to 50% or more, and further to 70% or more, and the conductivity after exposure to dry air is 1.0 ⁇ 10. -3 S ⁇ cm -1 or higher, and further 2.0 ⁇ 10 -3 S ⁇ cm -1 or higher.
- dry air means air that has been removed to a moisture concentration of 100 ppm or less (dew point of about ⁇ 42 ° C. or less) with an air dryer or the like.
- Li 7-x-2y PS Li 7 PS 6 having the same skeleton structure as the 6-xy Cl x is less lithium ion conductivity orthorhombic (space group Pna2 1) high cubic (space group F- 43m), the phase transition point is around 170 ° C., and the crystal structure around room temperature is an orthorhombic crystal with low ion conductivity. Therefore, as shown in Patent Document 3, in order to obtain a cubic crystal having high ion conductivity, usually, a rapid cooling treatment is required after heating once to a phase transition point or higher.
- the compound of the above composition formula (1) does not have a phase transition point at a temperature higher than room temperature, and the crystal structure can maintain a cubic system having high ion conductivity even at room temperature.
- a high ionic conductivity can be ensured without a treatment such as rapid cooling, which is particularly preferable in this respect.
- lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and lithium chloride (LiCl) powder are weighed and pulverized and mixed by a ball mill, a bead mill, a homogenizer, or the like. Is preferred.
- the pulverization and mixing may be carried out by reducing the crystallinity of the raw material powder or making it amorphous or homogenizing the raw material mixed powder by a very powerful mechanical pulverization mixing such as mechanical alloying. The bond with sulfur is broken, sulfur deficiency occurs during firing, and electron conductivity is exhibited. Therefore, pulverization and mixing that can maintain the crystallinity of the raw material powder is desirable.
- the sulfide material tends to cause sulfur deficiency when the temperature rises
- the sulfide material was enclosed in a quartz sample or the like and fired.
- the gas contained in the quartz sample is expanded by heating, and the pressure in the quartz sample is increased and may be ruptured. Therefore, it was necessary to make the vacuum as much as possible at the time of sealing.
- sulfur deficiency is likely to occur in the sulfide material.
- the crystallization proceeds from about 200 ° C., the present solid electrolyte can be synthesized even when fired at a relatively low temperature.
- the present solid electrolyte which is a sulfide having a desired chemical composition with almost no sulfur deficiency, can be produced by firing at 350 ° C. or higher in an inert atmosphere or hydrogen sulfide gas (H 2 S) flow.
- H 2 S hydrogen sulfide gas
- the sulfur partial pressure in the vicinity of the fired sample can be increased by sulfur gas generated by decomposition of hydrogen sulfide during firing, so that sulfur deficiency is difficult to generate even at high firing temperatures. Electron conductivity can be lowered. Therefore, when firing in an atmosphere containing hydrogen sulfide gas, the firing temperature is preferably 350 to 650 ° C., particularly 450 ° C. or more and 600 ° C. or less, and particularly 500 ° C. or more or 550 ° C. or less. Is particularly preferred. Thus, when calcination is performed under the flow of hydrogen sulfide gas (H 2 S), the calcination can be performed without losing sulfur in the sulfide by calcination at 350 to 650 ° C.
- H 2 S hydrogen sulfide gas
- the firing temperature is preferably 350 to 500 ° C., more preferably 350 ° C. or more and 450 ° C. or less, and particularly preferably 400 ° C. or more and 450 ° C. or less.
- the raw material powder having a small particle size and high reactivity is preferably used.
- baking may be performed in an inert atmosphere.
- the above raw materials are extremely unstable in the atmosphere, decompose by reacting with moisture, generate hydrogen sulfide gas, or oxidize. Therefore, the raw materials are passed through a glove box or the like replaced with an inert gas atmosphere. It is preferable to perform firing in a furnace.
- This solid electrolyte can be used as a solid electrolyte layer of an all-solid lithium ion battery or an all-solid lithium primary battery, a solid electrolyte mixed in a positive electrode / negative electrode mixture, or the like.
- an all solid lithium ion battery can be formed by forming a positive electrode, a negative electrode, and a layer made of the above solid electrolyte between the positive electrode and the negative electrode.
- the solid electrolyte is excellent in water resistance and oxidation resistance, and has little deterioration in characteristics even when handled in dry air.
- an assembly operation of an all-solid-state lithium ion battery can be performed even in a dry room. .
- the layer made of the solid electrolyte is applied by, for example, dropping a slurry made of the solid electrolyte, a binder and a solvent onto the substrate and scrubbing with a doctor blade or the like, a method using an air knife after contacting the slurry, or a screen printing method. It can be produced by forming a film and then removing the solvent through heating and drying. Alternatively, it is possible to produce a green compact by pressing a solid electrolyte powder by pressing or the like and then processing it appropriately.
- a positive electrode material used as a positive electrode active material of a lithium ion battery can be used as appropriate.
- the negative electrode material a negative electrode material used as a negative electrode active material of a lithium ion battery can be appropriately used.
- this solid electrolyte is electrochemically stable, artificial graphite, natural graphite, non-graphitizable, which is charged and discharged at a base potential (about 0.1 V vs Li + / Li) comparable to lithium metal.
- Carbon-based materials such as carbon (hard carbon) can be used. Therefore, the energy density of the all-solid-state lithium ion battery can be greatly improved by using the carbon-based material for the negative electrode material.
- a lithium ion battery having the present solid electrolyte and a negative electrode active material containing carbon such as artificial graphite, natural graphite, or non-graphitizable carbon (hard carbon) can be configured.
- the “solid electrolyte” means any substance that can move ions such as Li + in the solid state.
- X to Y X and Y are arbitrary numbers
- it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified.
- the meaning of “smaller than Y” is also included.
- X or more X is an arbitrary number
- Y or less Y is an arbitrary number
- Examples and comparative examples Use lithium sulfide (Li 2 S) powder, phosphorus sulfide (P 2 S 5 ) powder, and lithium chloride (LiCl) powder so that the total amount is 5 g so that the composition formula shown in Table 1 is obtained.
- Li 2 S lithium sulfide
- P 2 S 5 phosphorus sulfide
- LiCl lithium chloride
- X and “y” in Table 1 respectively represent xy of the composition formula: Li 7-x-2y PS 6-xy Cl x
- Li 2 S under-ratio is the relationship of xy in the composition formula, [Y / (2-x)]
- initial indicates initial conductivity
- dry air exposure 6h indicates conductivity after 6 hours of dry air exposure
- conductivity maintenance ratio indicates initial conductivity. The percentage maintenance of electrical conductivity after 6 hours of dry air exposure is shown.
- A represents the Li 7-x-2y PS 6 -xy Cl x phase cubic Argyrodite type crystal structure
- a + Li 3 PS 4" said Li A mixed phase of 7-x-2y PS 6-xy Cl x phase and Li 3 PS 4 phase is shown.
- a + Li 3 PS 4 (small) means that although Li 3 PS 4 was confirmed in the XRD chart, the peak intensity was 3 of the peak intensity of Li 7-x-2y PS 6-xy Cl x. It shows that it is less than%.
- the conductivity maintenance ratio after exposure to dry air can be increased to 70% or more, It was also found that the conductivity after exposure to dry air can be increased to 2.0 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 or more.
- NCM ternary layered compound LiNi 0.5 Co 0.2 Mn 0.3 O 2
- the positive electrode mixture powder was prepared by ball mill mixing the positive electrode active material powder, the solid electrolyte powder, and the conductive additive (acetylene black) powder at a mass ratio of 60: 38: 2.
- the negative electrode composite powder was prepared by ball mill mixing the negative electrode active material powder and the solid electrolyte powder at a mass ratio of 50:50.
- a positive electrode mixture powder using the sample (solid electrolyte powder) obtained in Examples and Comparative Examples was filled in a mold, and uniaxially molded at 500 MPa to produce a positive electrode mixture pellet of ⁇ 10 mm. Thereafter, a ⁇ 13 mm SUS cylinder serving as a positive electrode was placed in a ⁇ 13 mm closed cell insulating cylinder, and a positive electrode mixture pellet was placed in the center on the cylinder. Further, the sample (solid electrolyte powder) obtained in Examples and Comparative Examples was filled thereon, and uniaxially molded at 200 MPa to produce a laminated pellet of a solid electrolyte-positive electrode mixture.
- the negative electrode mixture powder is filled on the laminated pellet of the solid electrolyte-positive electrode mixture, and uniaxially molded at 500 MPa to produce a laminated pellet-shaped all solid battery element composed of the negative electrode mixture-solid electrolyte-positive electrode mixture.
- a SUS cylinder having a diameter of 13 mm serving as a negative electrode is inserted from the negative electrode mixture side of the laminated pellets in the insulating cylinder, and the all solid state battery element contained in the insulating cylinder is put in a SUS sealed battery cell to be all solid. A battery cell was obtained.
- the production of the all-solid battery element is performed in a glove box replaced with dry air having an average dew point of ⁇ 45 ° C., and the production of the all-solid battery cell thereafter is sufficiently dried.
- Ar gas dew point -60 ° C. or less
- the battery characteristic measurement was evaluated by putting an all-solid battery cell in an environmental tester maintained at 25 ° C. and connecting it to a charge / discharge measuring device. At this time, charging was performed by the CC-CV method with an upper limit voltage of 4.2V, and discharging was performed by the CC method with a lower limit voltage of 2.5V.
- the first cycle 0.064mA / cm 2 (0.05C), and charging and discharging the second cycle at 0.13mA / cm 2 (0.1C). Subsequent cycles were charged at 0.13 mA / cm 2 (0.1 C), the fourth cycle was 0.25 mA / cm 2 (0.2 C), and the fifth cycle was 0.64 mA / cm 2 (0.5 C).
- the sixth cycle is 1.27 mA / cm 2 (1C)
- the seventh cycle is 2.54 mA / cm 2 (2C)
- the eighth cycle is 3.82 mA / cm 2 (3C)
- the ninth cycle is 6.37 mA. / Cm 2 (5C)
- the capacity retention rate was calculated based on the discharge capacity of each cycle, assuming that the discharge capacity of the second cycle was 100%. Table 2 shows the results of charge / discharge capacity and rate characteristics in the first cycle.
- the all-solid-state battery using the samples of Examples 2 and 6 has a high discharge capacity at the first cycle and very good rate characteristics, and can be discharged even at 12.7 mA / cm 2 (10C). It was.
- These solid electrolytes using all-solid-state batteries have high ionic conductivity and high water resistance and oxidation resistance. Therefore, even if an all-solid-state battery is produced in a dry air atmosphere, the solid electrolyte does not deteriorate and high ionic conductivity is obtained.
- the all-solid-state battery using the samples of Comparative Examples 1 and 5 had a lower discharge capacity at the first cycle than the all-solid-state batteries prepared with the samples of Examples 2 and 6. Moreover, discharge was not performed at a rate characteristic of 6.37 mA / cm 2 (5C) or more. Since the solid electrolyte used in these all-solid batteries has low water resistance and oxidation resistance, when the all-solid battery is produced in a dry air atmosphere, the solid electrolyte deteriorates and the ionic conductivity decreases. When such a solid electrolyte is used for an all-solid battery, the produced all-solid battery has an increased internal resistance. Even if such an all-solid battery is discharged, the voltage drop is large, so that the lower limit voltage is reached immediately. For this reason, it is considered that the discharge capacity is small even at a low rate, and discharge is not possible at a higher rate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
Description
しかしながら、かかる化合物は、水分や酸素との反応性が極めて高いため、リチウムイオン電池の固体電解質として使用して全固体リチウムイオン電池を組み立てる際には、超低露点の不活性ガスが供給されるグローブボックスなどの環境内で全固体リチウムイオン電池の組立作業を行う必要があり、工業的に利用するには課題を抱えていた。
かかる観点から、xは0.8~1.7であるのが好ましく、中でもxは1.0以上或いは1.6以下、その中でも1.2以上或いは1.4以下であるのが特に好ましい。
yが上記式を満足すると、乾燥空気暴露後の導電率維持率を50%以上に高めることができ、しかも、乾燥空気暴露後の導電率を1.0×10-3 S・cm-1以上に高めることができることが確かめられている。
上組成式(1)において、「(2-x)」は、結晶構造内の骨格部(PS4 3-)の周辺に存在する結合の弱いLi2SにおけるSの数を相対的に示す指標となる値であると考えられ、「y」は、前記の結合の弱いLi2SのSが化学量論組成からどれだけ少ないかを示す値であると考えられる。よって、[y/(2-x)]は、化学量論組成に対し、結合力の弱いLi2Sをどれだけ減少させることができたのかを相対的に示す指標となると考えられ、[y/(2-x)]を調整することで、耐水性及び耐酸化性を調整することができるものと考えることができる。
ここで、「硫化リチウム(Li2S)および塩化リチウム(LiCl)からなる相を実質的に含まない」とは、XRDチャートにおいて、硫化リチウム(Li2S)および塩化リチウム(LiCl)のピーク強度が、Li7-x-2yPS6-x-yClxのピーク強度の3%未満である場合を意味するものである。
なお、本固体電解質は、上記組成式(1)で示される化合物を含有していればよく、不可避不純物を含有することを許容するものである。
本固体電解質は、上述のように、乾燥空気暴露後の導電率維持率を50%以上、さらには70%以上に高めることができ、且つ、乾燥空気暴露後の導電率を1.0×10-3S・cm-1以上、さらには2.0×10-3S・cm-1以上に高めることができる。
なお、本明細書における「乾燥空気」とは、エアードライヤー等で水分濃度を100ppm以下(露点で約-42℃以下)まで除去した空気を意味する。
硫化物系固体電解質はそもそもイオン伝導性に優れており、酸化物に比べて常温で活物質との界面を形成し易く、界面抵抗を低くできることが知られている。中でも、本固体電解質は、硫黄欠損が少なくて結晶性が高いため、電子伝導性が低く、リチウムイオン伝導性が特に優れている。
また、Li7-x-2yPS6-x-yClxと同じ骨格構造を有するLi7PS6は、リチウムイオン伝導性が低い斜方晶(空間群Pna21)と高い立方晶(空間群F-43m)の2つの結晶構造を有しており、約170℃付近がその相転移点であり、室温近傍の結晶構造はイオン伝導性が低い斜方晶である。従って、前記特許文献3に示されるように、イオン伝導性の高い立方晶を得るためには、通常は一度相転移点以上に加熱した後に、急冷処理が必要となる。しかし、上記組成式(1)の化合物の場合には、室温以上の温度において相転移点を有さず、結晶構造は室温においてもイオン伝導性の高い立方晶系を維持することができるため、急冷等の処理をしなくても、高いイオン導電率を確保することができ、この点で特に好ましい。
次に、本固体電解質の製造方法の一例について説明する。但し、ここで説明する製造方法はあくまでも一例であり、この方法に限定するものではない。
この際、粉砕混合は、メカニカルアロイング法など、非常に強力な機械的粉砕混合により、原料粉末の結晶性を低下あるいは非晶質化、もしくは原料混合粉末を均質化させてしまうと、カチオンと硫黄との結合が切れてしまい、焼成時に硫黄欠損が生じ、電子伝導性を発現してしまう。そのため、原料粉末の結晶性を維持できる程度の粉砕混合が望ましい。
これに対し、本固体電解質は、200℃程度から結晶化が進むことから、比較的低温で焼成しても合成することができる。そのため、不活性雰囲気もしくは硫化水素ガス(H2S)流通下、350℃以上で焼成することによって、硫黄欠損がほとんど無い目的の化学組成の硫化物である本固体電解質を作製することができる。
このように硫化水素ガス(H2S)流通下で焼成する際、350~650℃で焼成することにより、硫化物中の硫黄を欠損させることなく焼成することができる。
また、上記の原料は、大気中で極めて不安定で、水分と反応して分解し、硫化水素ガスを発生したり、酸化したりするため、不活性ガス雰囲気に置換したグローブボックス等を通じて、原料を炉内にセットして焼成を行うのが好ましい。
本固体電解質は、全固体リチウムイオン電池又は全固体リチウム一次電池の固体電解質層や、正極・負極合材に混合する固体電解質等として使用できる。
例えば正極と、負極と、正極及び負極の間に上記の固体電解質からなる層とを形成することで、全固体リチウムイオン電池を構成することができる。
この際、本固体電解質は、耐水性及び耐酸化性に優れており、乾燥空気中で取り扱っても特性劣化が少ないため、例えばドライルームなどでも全固体リチウムイオン電池の組立作業を行うことができる。
負極材についても、リチウムイオン電池の負極活物質として使用されている負極材を適宜使用可能である。但し、本固体電解質は、電気化学的に安定であることから、リチウム金属に匹敵する卑な電位(約0.1V vs Li+/Li)で充放電する人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素系材料を使用することができる。そのため、炭素系材料を負極材に用いることで、全固体リチウムイオン電池のエネルギー密度を大きく向上させることができる。よって、例えば本固体電解質と、人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素を含む負極活物質と、を有するリチウムイオン電池を構成することができる。
本発明において「固体電解質」とは、固体状態のままイオン、例えばLi+が移動し得る物質全般を意味する。
また、本発明において「X~Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」又は「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)又は「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」又は「Yより小さいことが好ましい」旨の意図を包含する。
表1に示した組成式となるように、硫化リチウム(Li2S)粉末と、硫化リン(P2S5)粉末と、塩化リチウム(LiCl)粉末とを用い、全量で5gになるようにそれぞれを秤量し、ボールミルで15時間粉砕混合して混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉にて硫化水素ガス(H2S、純度100%)を1.0L/min流通させながら、昇降温速度200℃/hにて500℃で4時間焼成した。その後、試料を乳鉢で解砕し、目開き53μmの篩いで整粒して粉末状のサンプルを得た。
この際、上記秤量、混合、電気炉へのセット、電気炉からの取り出し、解砕及び整粒作業は全て、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で実施した。
実施例・比較例で得られたサンプルについて、組成をICP発光分析法で測定した。
実施例・比較例で得られた粉末状のサンプルをX線回折法(XRD)で分析し、生成相を特定した。
実施例・比較例で得たサンプルを、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で200MPaの圧力にて一軸加圧成形して直径10mm、厚み2~5mmのペレットを作製し、更にペレット上下両面に電極としてのカーボンペーストを塗布した後、180℃で30分熱処理を行い、イオン導電率測定用サンプルを作製した。イオン導電率測定は、室温(25℃)にて交流インピーダンス法にて行った。
実施例・比較例で得たサンプルを、平均露点-45℃の乾燥空気で置換されたグローブボックス内に入れて6時間放置した。その後、サンプルを再び十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内に入れ、初期導電率の測定と同様にイオン導電率を測定した。
また、表1の生成相の項目において、「A」は立方晶系Argyrodite型結晶構造のLi7-x-2yPS6-x-yClx相を示し、「A+Li3PS4」とは、該Li7-x-2yPS6-x-yClx相とLi3PS4相の混合相を示す。また、「A+Li3PS4(小)」とは、XRDチャートにおいて、Li3PS4が確認されたものの、そのピーク強度が、Li7-x-2yPS6-x-yClxのピーク強度の3%未満であることを示している。
実施例2、6及び比較例1、5で得られたサンプルを固体電解質として用いて正極合材、負極合材を調製し、全固体電池を作製して、電池特性評価(1サイクル目充放電容量、効率及びレート特性)を行った。
正極活物質として、三元系層状化合物であるLiNi0.5Co0.2Mn0.3O2(NCM)にZrO2膜をコートした粉末を用い、負極活物質としてグラファイトを用い、固体電解質粉末として実施例及び比較例で得たサンプルを用いた。
正極合材粉末は、正極活物質粉末、固体電解質粉末及び導電助剤(アセチレンブラック)粉末を、質量比で60:38:2の割合でボールミル混合することで調製した。
負極合材粉末は、負極活物質粉末、固体電解質粉末を、質量比で50:50の割合でボールミル混合することで調製した。
実施例・比較例で得たサンプル(固体電解質粉末)を用いた正極合材粉末を金型に充填し、500MPaで一軸成形してφ10mmの正極合材ペレットを作製した。その後、φ13mmの密閉セル用絶縁筒内に、正極側の電極となるφ13mmのSUS製円柱を入れ、その上の中心に正極合材ペレットを置いた。更にその上に実施例・比較例で得たサンプル(固体電解質粉末)を充填し、200MPaで一軸成形して固体電解質-正極合材の積層ペレットを作製した。続けて固体電解質-正極合材の積層ペレットの上に負極合材粉末充填し、500MPaで一軸成形することで負極合材-固体電解質-正極合材からなる積層ペレット形状の全固体電池素子を作製した。その後、負極の電極となるφ13mmのSUS製円柱を絶縁筒内の積層ペレットの負極合材側から入れ、絶縁筒内に入った全固体電池素子をSUS製の密閉型電池セルに入れて全固体電池セルとした。
この際、上記全固体電池セルの作製においては、全固体電池素子の作製まで平均露点-45℃の乾燥空気で置換されたグローブボックス内で行い、その後の全固体電池セルの作製は十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で行った。
電池特性測定は、25℃に保たれた環境試験機内に全固体電池セルを入れて充放電測定装置に接続して評価した。この際、上限電圧を4.2VとしたCC-CV方式で充電し、放電は下限電圧を2.5VとしたCC方式で行った。1サイクル目を0.064mA/cm2(0.05C)、2サイクル目を0.13mA/cm2(0.1C)で充電及び放電した。以後のサイクルは0.13mA/cm2(0.1C)で充電し、4サイクル目を0.25mA/cm2(0.2C)、5サイクル目を0.64mA/cm2(0.5C)、6サイクル目を1.27mA/cm2(1C)、7サイクル目を2.54mA/cm2(2C)、8サイクル目を3.82mA/cm2(3C)、9サイクル目を6.37mA/cm2(5C)、及び10サイクル目で12.7mA/cm2(10C)で放電した。レート特性は、2サイクル目の放電容量を100%として、各サイクルの放電容量をもとに容量維持率を算出した。表2には1サイクル目の充放電容量及びレート特性の結果を示す。
一方、比較例1及び5のサンプルを用いた全固体電池は、実施例2及び6のサンプルで作製した全固体電池と比較すると、1サイクル目の放電容量が低くなった。またレート特性も6.37mA/cm2(5C)以上では放電しなかった。
これらの全固体電池で用いた固体電解質は、耐水性及び耐酸化性が低いため、乾燥空気雰囲気で全固体電池を作製すると劣化し、イオン導電率が低下してしまう。このような固体電解質を全固体電池に用いると、作製した全固体電池の内部抵抗は高くなってしまう。このような全固体電池を放電しても電圧降下が大きいことから、すぐに下限電圧に達してしまう。そのため、低いレートにおいても放電容量が小さく、更に高いレートにおいては放電できないものと考えられる。
Claims (6)
- 立方晶系Argyrodite型結晶構造を有し、組成式(1):Li7-x-2yPS6-x-yClxで表される化合物を含有し、且つ、前記組成式(1)において、0.8≦x≦1.7、0<y≦-0.25x+0.5を満足することを特徴とするリチウムイオン電池用硫化物系固体電解質。
- 上組成式(1)において、さらに1.0≦x≦1.4、及び、0<y≦-0.2x+0.4を満足することを特徴とする請求項1に記載のリチウムイオン電池用硫化物系固体電解質。
- 上組成式(1)において、さらに0.25≧[y/(2-x)]を満足することを特徴とする請求項1又は2に記載のリチウムイオン電池用硫化物系固体電解質。
- 硫化リチウム(Li2S)粉末と、硫化リン(P2S5)粉末と、塩化リチウム(LiCl)粉末とを混合し、不活性雰囲気下、350~500℃で焼成するか、又は、硫化水素ガスを含有する雰囲気下、350~650℃で焼成するかして得られることを特徴とする請求項1~3の何れかに記載のリチウムイオン電池用硫化物系固体電解質。
- 請求項1~4の何れかに記載された固体電解質を備えたリチウムイオン電池。
- 請求項1~4の何れかに記載された固体電解質と、炭素を含む負極活物質とを有するリチウムイオン電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15822447.7A EP3171444B1 (en) | 2014-07-16 | 2015-06-15 | Sulfide-based solid electrolyte for lithium ion batteries and method for making the electrolyte |
CN201580001316.5A CN105518923B (zh) | 2014-07-16 | 2015-06-15 | 锂离子电池用硫化物系固体电解质 |
US15/326,238 US9899701B2 (en) | 2014-07-16 | 2015-06-15 | Sulfide-based solid electrolyte for lithium ion batteries |
KR1020167033998A KR101807583B1 (ko) | 2014-07-16 | 2015-06-15 | 리튬이온 전지용 황화물계 고체 전해질 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-146174 | 2014-07-16 | ||
JP2014146174A JP5873533B2 (ja) | 2014-07-16 | 2014-07-16 | リチウムイオン電池用硫化物系固体電解質 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016009768A1 true WO2016009768A1 (ja) | 2016-01-21 |
Family
ID=55078269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067151 WO2016009768A1 (ja) | 2014-07-16 | 2015-06-15 | リチウムイオン電池用硫化物系固体電解質 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9899701B2 (ja) |
EP (1) | EP3171444B1 (ja) |
JP (1) | JP5873533B2 (ja) |
KR (1) | KR101807583B1 (ja) |
CN (1) | CN105518923B (ja) |
WO (1) | WO2016009768A1 (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018003333A1 (ja) * | 2016-07-01 | 2018-01-04 | 三井金属鉱業株式会社 | リチウム二次電池用硫化物系固体電解質 |
JP2018045997A (ja) * | 2016-09-08 | 2018-03-22 | 出光興産株式会社 | 硫化物固体電解質 |
US20190074544A1 (en) * | 2017-09-06 | 2019-03-07 | Idemitsu Kosan Co., Ltd. | Method for producing solid electrolyte |
CN109526242A (zh) * | 2016-08-10 | 2019-03-26 | 出光兴产株式会社 | 硫化物固体电解质 |
WO2019131725A1 (ja) | 2017-12-28 | 2019-07-04 | 三井金属鉱業株式会社 | 固体電解質 |
JP2019117788A (ja) * | 2017-12-27 | 2019-07-18 | 現代自動車株式会社Hyundai Motor Company | 窒素が添加された全固体電池用硫化物界固体電解質 |
WO2019176895A1 (ja) * | 2018-03-12 | 2019-09-19 | 三井金属鉱業株式会社 | 硫化物系固体電解質粒子 |
DE102019129554A1 (de) | 2018-12-18 | 2020-06-18 | Hyundai Motor Company | Sulfid-basierter, fester elektrolyt, der mit einem erdalkalimetall dotiert ist, und herstellungsverfahren desgleichen |
KR20200070720A (ko) | 2018-12-10 | 2020-06-18 | 현대자동차주식회사 | 전자 전도도가 향상된 황화물계 고체전해질 및 이의 제조방법 |
KR20200070721A (ko) | 2018-12-10 | 2020-06-18 | 현대자동차주식회사 | 전고체 전지 음극용 황화물계 고체전해질 및 이의 제조방법 |
US10811726B2 (en) | 2017-11-14 | 2020-10-20 | Samsung Electronics Co., Ltd. | Solid electrolyte for all-solid lithium secondary battery, all-solid lithium secondary battery, and method of preparing the solid electrolyte |
JP2021122029A (ja) * | 2016-09-12 | 2021-08-26 | 出光興産株式会社 | 硫化物固体電解質 |
US11127974B2 (en) | 2018-05-14 | 2021-09-21 | Samsung Electronics Co., Ltd. | Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte |
KR20220044086A (ko) | 2020-09-28 | 2022-04-06 | 주식회사 포스코 제이케이 솔리드 솔루션 | 전고체 리튬 이차전지용 황화물계 고체전해질 및 황화물계 고체전해질의 제조방법 |
JP7095795B1 (ja) | 2021-09-30 | 2022-07-05 | Agc株式会社 | 硫化物系固体電解質粉末の製造方法 |
US20220344708A1 (en) * | 2019-10-29 | 2022-10-27 | Mitsui Mining & Smelting Co., Ltd. | Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same |
US11799126B2 (en) | 2019-05-31 | 2023-10-24 | Samsung Electronics Co., Ltd. | Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017199631A (ja) * | 2016-04-28 | 2017-11-02 | 出光興産株式会社 | 硫化物固体電解質、電極合材及びリチウムイオン電池 |
CN115458802A (zh) | 2016-11-16 | 2022-12-09 | 出光兴产株式会社 | 硫化物固体电解质 |
KR102417506B1 (ko) * | 2016-11-16 | 2022-07-05 | 현대자동차주식회사 | 단일원소로부터 유래된 고체전해질 및 이의 제조방법 |
JP6686860B2 (ja) | 2016-12-09 | 2020-04-22 | トヨタ自動車株式会社 | 硫化物固体電解質の製造方法 |
CN106785014A (zh) * | 2017-02-13 | 2017-05-31 | 桂林电器科学研究院有限公司 | 一种添加锂硅合金、溴化银和氯化银的硫化锂系固体电解质材料及其制备方法 |
CN106684442A (zh) * | 2017-02-13 | 2017-05-17 | 桂林电器科学研究院有限公司 | 一种添加锂锡合金和碘化银的硫化锂系固体电解质材料及其制备方法 |
CN106785003A (zh) * | 2017-02-13 | 2017-05-31 | 桂林电器科学研究院有限公司 | 一种添加锂硅合金和碘化银的硫化锂系固体电解质材料及其制备方法 |
CN106684460A (zh) * | 2017-02-13 | 2017-05-17 | 桂林电器科学研究院有限公司 | 一种添加锂锡合金和银卤族化合物的硫化锂系固体电解质材料及其制备方法 |
CN106785000A (zh) * | 2017-02-13 | 2017-05-31 | 桂林电器科学研究院有限公司 | 一种添加锂锡合金、碘化银和溴化银的硫化锂系固体电解质材料及其制备方法 |
CN106684459A (zh) * | 2017-02-13 | 2017-05-17 | 桂林电器科学研究院有限公司 | 一种添加锂锡合金和溴化银的硫化锂系固体电解质材料及其制备方法 |
JP6934042B2 (ja) | 2017-03-08 | 2021-09-08 | 出光興産株式会社 | 硫化物固体電解質粒子 |
JP7321090B2 (ja) * | 2017-03-30 | 2023-08-04 | Tdk株式会社 | 全固体二次電池 |
JP7013456B2 (ja) | 2017-05-24 | 2022-01-31 | 出光興産株式会社 | 硫化物固体電解質 |
EP3637442A4 (en) | 2017-06-09 | 2021-03-17 | Idemitsu Kosan Co.,Ltd. | SOLID SULPHIDE ELECTROLYTE MANUFACTURING PROCESS |
JP7303106B2 (ja) | 2017-06-29 | 2023-07-04 | 出光興産株式会社 | 硫化物固体電解質 |
US11387486B2 (en) | 2017-08-10 | 2022-07-12 | Idemitsu Kosan Co., Ltd. | Sulfide solid electrolyte |
KR102406179B1 (ko) * | 2017-10-13 | 2022-06-07 | 현대자동차주식회사 | 침상형 황화물계 고체 전해질의 제조 방법 |
WO2019135316A1 (ja) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
CN111279431B (zh) | 2018-01-05 | 2022-03-25 | 松下知识产权经营株式会社 | 固体电解质材料和电池 |
WO2019135328A1 (ja) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019135315A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
EP3736833A4 (en) | 2018-01-05 | 2021-03-10 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE MATERIAL AND BATTERY |
EP3736828A4 (en) | 2018-01-05 | 2021-03-10 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE AND BATTERY |
EP3736822A4 (en) | 2018-01-05 | 2021-03-10 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE AND BATTERY |
JP7417925B2 (ja) | 2018-01-05 | 2024-01-19 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
EP3736831B1 (en) | 2018-01-05 | 2023-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
EP3736891B1 (en) | 2018-01-05 | 2024-07-31 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
WO2019135345A1 (ja) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
EP3736834A4 (en) | 2018-01-05 | 2021-03-10 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE MATERIAL, AND BATTERY |
WO2019135323A1 (ja) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
EP3745503A4 (en) | 2018-01-26 | 2021-03-10 | Panasonic Intellectual Property Management Co., Ltd. | POSITIVE ELECTRODE MATERIAL AND USING BATTERY |
WO2019146292A1 (ja) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 正極材料およびそれを用いた電池 |
CN111587508A (zh) | 2018-01-26 | 2020-08-25 | 松下知识产权经营株式会社 | 电池 |
WO2019146219A1 (ja) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
KR102552153B1 (ko) | 2018-04-18 | 2023-07-05 | 현대자동차주식회사 | 전고체 전지용 황화물계 고체 전해질의 제조 방법 |
KR102063159B1 (ko) | 2018-07-17 | 2020-01-08 | 한국과학기술연구원 | 셀레늄을 포함하는 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법 |
KR102636609B1 (ko) * | 2018-07-25 | 2024-02-15 | 미쓰이금속광업주식회사 | 정극 활물질 |
WO2020033809A1 (en) * | 2018-08-10 | 2020-02-13 | The Florida State University Research Foundation, Inc. | Solid electrolytes, electronic devices, and methods |
KR102626921B1 (ko) * | 2018-08-10 | 2024-01-19 | 삼성전자주식회사 | 리튬전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 리튬전지 |
JP6704098B1 (ja) | 2018-09-04 | 2020-06-03 | 三井金属鉱業株式会社 | 硫化物系化合物粒子、固体電解質及びリチウム二次電池 |
WO2020095937A1 (ja) | 2018-11-08 | 2020-05-14 | 三井金属鉱業株式会社 | 硫黄含有化合物、固体電解質及び電池 |
JP6738983B1 (ja) | 2018-11-08 | 2020-08-12 | 三井金属鉱業株式会社 | 硫化物固体電解質及び電池 |
JP7110943B2 (ja) * | 2018-11-28 | 2022-08-02 | トヨタ自動車株式会社 | 電極積層体の製造方法 |
WO2020110479A1 (ja) | 2018-11-29 | 2020-06-04 | パナソニックIpマネジメント株式会社 | 負極材料、および、電池 |
WO2020110480A1 (ja) | 2018-11-29 | 2020-06-04 | パナソニックIpマネジメント株式会社 | 負極材料、電池、および電池の製造方法 |
CN109638347A (zh) * | 2018-12-02 | 2019-04-16 | 桂林理工大学 | 一种纳米级Argyrodite型固态电解质材料的制备及应用 |
JP7319900B2 (ja) | 2018-12-05 | 2023-08-02 | 出光興産株式会社 | アルジロダイト型結晶構造を有する固体電解質の製造方法 |
KR102369870B1 (ko) | 2018-12-26 | 2022-03-04 | 한양대학교 산학협력단 | 용매열 합성법을 이용한 리튬 금속 배터리용 고체전해질층의 제조 방법 및 이를 포함하는 리튬 금속 배터리 |
KR102378488B1 (ko) | 2019-03-28 | 2022-03-25 | 도요타 지도샤(주) | 황화물 고체전해질, 황화물 고체전해질의 전구체, 전고체전지 및 황화물 고체전해질의 제조 방법 |
EP3951962A4 (en) * | 2019-03-29 | 2022-07-20 | Mitsui Mining & Smelting Co., Ltd. | SOLID ELECTROLYTE |
CN113631507A (zh) * | 2019-04-19 | 2021-11-09 | 三井金属矿业株式会社 | 硫化物固体电解质的制造方法 |
US11264602B2 (en) | 2019-05-08 | 2022-03-01 | Samsung Electronics Co., Ltd. | Sulfide glass-ceramic lithium-ion solid-state conductor |
KR102218226B1 (ko) | 2019-05-08 | 2021-02-22 | 한국과학기술연구원 | 할로겐 원소의 함량이 조절된 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법 |
CN110137565B (zh) * | 2019-05-20 | 2021-05-11 | 天目湖先进储能技术研究院有限公司 | 一种硫化物固态电解质的大规模制备方法 |
WO2021029315A1 (ja) | 2019-08-09 | 2021-02-18 | 出光興産株式会社 | 固体電解質の製造方法 |
EP4029827B1 (en) * | 2019-09-11 | 2024-02-28 | Mitsui Mining & Smelting Co., Ltd. | Sulfide solid electrolyte |
WO2021049415A1 (ja) * | 2019-09-11 | 2021-03-18 | 三井金属鉱業株式会社 | 硫化物固体電解質 |
KR102292653B1 (ko) | 2019-09-20 | 2021-08-24 | 주식회사 정관 | 황화물계 고체전해질 제조방법 |
US11702337B2 (en) | 2019-09-27 | 2023-07-18 | Samsung Sdi Co., Ltd. | Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical cell including the solid ion conductor, and preparation method of the same |
KR102292161B1 (ko) * | 2019-10-22 | 2021-08-24 | 한국과학기술연구원 | 다중 칼코겐 원소가 도입된 황화물계 리튬-아지로다이트 이온 초전도체 및 이의 제조방법 |
KR20220088689A (ko) | 2019-10-29 | 2022-06-28 | 미쓰이금속광업주식회사 | 고체 전해질 및 그것을 사용한 전극 합제, 고체 전해질층, 고체 전지 |
US20220336852A1 (en) | 2019-10-29 | 2022-10-20 | Mitsui Mining & Smelting Co., Ltd. | Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer, and solid battery using same |
EP3817117A1 (en) | 2019-11-01 | 2021-05-05 | Samsung SDI Co., Ltd. | Solid ion conductor compound, solid electrolyte including solid ion conductor compound, electrochemical cell including solid ion conductor compound, and method of preparing solid ion conductor compound |
KR20210054817A (ko) | 2019-11-06 | 2021-05-14 | 삼성에스디아이 주식회사 | 고체 전해질, 이를 포함하는 전기화학전지 및 고체 전해질의 제조방법 |
EP3819964A1 (en) | 2019-11-07 | 2021-05-12 | Samsung SDI Co., Ltd. | Solid electrolyte, electrochemical cell including solid electrolyte, and method of preparing solid electrolyte |
KR20210056504A (ko) * | 2019-11-08 | 2021-05-20 | 삼성에스디아이 주식회사 | 전고체 이차전지용 음극층, 이를 포함하는 전고체 이차전지 및 그 제조방법 |
EP4075450A4 (en) | 2019-12-11 | 2023-06-14 | Mitsui Mining & Smelting Co., Ltd. | SOLID SULFIDE ELECTROLYTE |
EP4078698A4 (en) | 2019-12-20 | 2024-08-14 | Blue Current Inc | COMPOSITE ELECTROLYTES WITH BINDERS |
US11990583B2 (en) | 2019-12-27 | 2024-05-21 | Mitsui Mining & Smelting Co., Ltd. | Sulfide solid electrolyte and method of producing the same |
EP4084123A4 (en) | 2019-12-27 | 2023-09-20 | Mitsui Mining & Smelting Co., Ltd. | SULFIDIC SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME |
TWI727734B (zh) * | 2020-04-07 | 2021-05-11 | 日商三井金屬鑛業股份有限公司 | 固體電解質 |
KR102342871B1 (ko) * | 2020-06-17 | 2021-12-24 | 한국전기연구원 | 리튬 이차전지용 고체 전해질의 제조 방법 |
CN111977681B (zh) * | 2020-08-08 | 2023-10-10 | 天目湖先进储能技术研究院有限公司 | 硫化物固态电解质材料及其原料的气相合成方法及应用 |
KR20220028942A (ko) | 2020-08-31 | 2022-03-08 | 삼성에스디아이 주식회사 | 전고체 이차전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 전고체 이차전지 |
US11928472B2 (en) | 2020-09-26 | 2024-03-12 | Intel Corporation | Branch prefetch mechanisms for mitigating frontend branch resteers |
KR20220057051A (ko) | 2020-10-29 | 2022-05-09 | 한국전기연구원 | 분무열분해법을 이용한 황화물 다공성 전해질의 제조방법 및 그에 의해 제조된 다공성 전해질 |
KR102406069B1 (ko) | 2020-11-25 | 2022-06-13 | 한국과학기술연구원 | 할로겐의 완전 점유형 구조가 도입된 리튬-아지로다이트 기반 이온 초전도체 및 이의 제조방법 |
CN114552021A (zh) * | 2020-11-26 | 2022-05-27 | 中国科学院大连化学物理研究所 | 一种固态电解质及其制备方法和应用 |
KR102269019B1 (ko) * | 2020-12-14 | 2021-06-25 | 한국전자기술연구원 | 고체전해질 및 그를 포함하는 전고체전지 |
CN116998025A (zh) * | 2021-02-11 | 2023-11-03 | 艾姆普斯拉公司 | 包括基于硫属化物的离子传导结构、特别是基于硫化物的离子传导结构的固态电解质材料 |
JP2022171151A (ja) | 2021-04-30 | 2022-11-11 | エルジー エナジー ソリューション リミテッド | 全固体電池用固体電解質及びその製造方法 |
CN113937351B (zh) * | 2021-10-08 | 2023-09-22 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种硫银锗矿型硫化物锂离子固态电解质及其制备方法和应用 |
CN114122508B (zh) * | 2021-11-26 | 2024-02-23 | 湖州昆仑先端固态电池科技有限公司 | 一种硫化物固体电解质及其制备方法和应用 |
WO2023110697A1 (en) * | 2021-12-17 | 2023-06-22 | Rhodia Operations | Solid material comprising li, mg, p, s and halogen elements |
JP2023096783A (ja) | 2021-12-27 | 2023-07-07 | エルジー エナジー ソリューション リミテッド | 硫化物系固体電解質及び硫化物系固体電解質の製造方法 |
KR20230109855A (ko) | 2022-01-14 | 2023-07-21 | 한국전기연구원 | 혼합전도성 아지로다이트계 고체 전해질의 제조방법, 이에 의해 제조되는 아지로다이트계 고체 전해질, 이를 포함하는 활물질-고체 전해질 복합 분말 및 전고체 전지 |
CN118648133A (zh) * | 2022-02-18 | 2024-09-13 | 三井金属矿业株式会社 | 电极合剂、和使用了其的电极浆料以及电池 |
CN117836992A (zh) | 2022-06-10 | 2024-04-05 | 株式会社Lg新能源 | 硫化物类固体电解质、其制备方法以及包含其的固态电池 |
KR20240033824A (ko) | 2022-09-06 | 2024-03-13 | 현대자동차주식회사 | 코어-쉘 구조를 갖는 고체전해질 및 이의 제조방법 |
KR20240037643A (ko) | 2022-09-15 | 2024-03-22 | 롯데에너지머티리얼즈 주식회사 | 황화물계 고체전해질의 제조방법 |
CN118507816A (zh) * | 2024-04-03 | 2024-08-16 | 中国科学院精密测量科学与技术创新研究院 | 一种固态电解质材料及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002109955A (ja) * | 2000-10-02 | 2002-04-12 | Osaka Prefecture | 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池 |
JP2010540396A (ja) * | 2007-10-08 | 2010-12-24 | ウニヴェルジテート ジーゲン | リチウム硫銀ゲルマニウム鉱 |
JP2012043646A (ja) * | 2010-08-19 | 2012-03-01 | Idemitsu Kosan Co Ltd | 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池 |
JP2012048971A (ja) * | 2010-08-26 | 2012-03-08 | Toyota Motor Corp | 硫化物固体電解質材料、正極体およびリチウム固体電池 |
WO2013069243A1 (ja) * | 2011-11-07 | 2013-05-16 | 出光興産株式会社 | 固体電解質 |
WO2013099834A1 (ja) * | 2011-12-28 | 2013-07-04 | 三井金属鉱業株式会社 | 硫化物系固体電解質 |
JP2014093260A (ja) * | 2012-11-06 | 2014-05-19 | Idemitsu Kosan Co Ltd | 固体電解質成形体及びその製造方法、並びに全固体電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03184517A (ja) | 1989-12-14 | 1991-08-12 | Matsushita Electric Ind Co Ltd | フードミキサー |
JP3184517B2 (ja) | 1990-11-29 | 2001-07-09 | 松下電器産業株式会社 | リチウムイオン伝導性固体電解質 |
JP3744665B2 (ja) | 1997-12-09 | 2006-02-15 | トヨタ自動車株式会社 | リチウムイオン伝導性固体電解質および電池 |
JP2001250580A (ja) | 2000-03-06 | 2001-09-14 | Masahiro Tatsumisuna | 高リチウムイオン伝導性硫化物セラミックスおよびこれを用いた全固体電池 |
WO2009094524A1 (en) | 2008-01-23 | 2009-07-30 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
JP2011096630A (ja) * | 2009-10-02 | 2011-05-12 | Sanyo Electric Co Ltd | 固体リチウム二次電池及びその製造方法 |
EP2905835B1 (en) | 2012-10-05 | 2016-10-12 | Fujitsu Limited | Lithium-ion conductor and all-solid lithium-ion secondary cell |
JP2015018726A (ja) * | 2013-07-12 | 2015-01-29 | トヨタ自動車株式会社 | 硫化物固体電解質の回復方法 |
-
2014
- 2014-07-16 JP JP2014146174A patent/JP5873533B2/ja active Active
-
2015
- 2015-06-15 EP EP15822447.7A patent/EP3171444B1/en active Active
- 2015-06-15 CN CN201580001316.5A patent/CN105518923B/zh active Active
- 2015-06-15 KR KR1020167033998A patent/KR101807583B1/ko active IP Right Grant
- 2015-06-15 WO PCT/JP2015/067151 patent/WO2016009768A1/ja active Application Filing
- 2015-06-15 US US15/326,238 patent/US9899701B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002109955A (ja) * | 2000-10-02 | 2002-04-12 | Osaka Prefecture | 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池 |
JP2010540396A (ja) * | 2007-10-08 | 2010-12-24 | ウニヴェルジテート ジーゲン | リチウム硫銀ゲルマニウム鉱 |
JP2012043646A (ja) * | 2010-08-19 | 2012-03-01 | Idemitsu Kosan Co Ltd | 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池 |
JP2012048971A (ja) * | 2010-08-26 | 2012-03-08 | Toyota Motor Corp | 硫化物固体電解質材料、正極体およびリチウム固体電池 |
WO2013069243A1 (ja) * | 2011-11-07 | 2013-05-16 | 出光興産株式会社 | 固体電解質 |
WO2013099834A1 (ja) * | 2011-12-28 | 2013-07-04 | 三井金属鉱業株式会社 | 硫化物系固体電解質 |
JP2014093260A (ja) * | 2012-11-06 | 2014-05-19 | Idemitsu Kosan Co Ltd | 固体電解質成形体及びその製造方法、並びに全固体電池 |
Non-Patent Citations (4)
Title |
---|
R. PRASADA RAO ET AL.: "Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction", SOLID STATE IONICS, vol. 230, 7 October 2012 (2012-10-07), pages 72 - 76, XP028962239, DOI: doi:10.1016/j.ssi.2012.09.014 * |
R.P.RAO ET AL.: "Studies of lithium argyrodite solid electrolytes for all-solid- state batteries", PHYSICA STATUS SOLIDI (A, vol. 208, no. 8, pages 1804 - 1807, XP055188339, DOI: doi:10.1002/pssa.201001117 * |
See also references of EP3171444A4 * |
SYLVAIN BOULINEAU ET AL.: "Mechanochemical synthesis of Li-argyrodite Li6PS5X(X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application", SOLID STATE IONICS, vol. 221, 23 June 2012 (2012-06-23), pages 1 - 5, XP028432169, DOI: doi:10.1016/j.ssi.2012.06.008 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11699809B2 (en) | 2016-07-01 | 2023-07-11 | Mitsui Mining & Smelting Co., Ltd. | Sulfide-based solid electrolyte for lithium secondary battery |
JP6293383B1 (ja) * | 2016-07-01 | 2018-03-14 | 三井金属鉱業株式会社 | リチウム二次電池用硫化物系固体電解質 |
WO2018003333A1 (ja) * | 2016-07-01 | 2018-01-04 | 三井金属鉱業株式会社 | リチウム二次電池用硫化物系固体電解質 |
JP2018067552A (ja) * | 2016-07-01 | 2018-04-26 | 三井金属鉱業株式会社 | リチウム二次電池用硫化物系固体電解質 |
EP3454405A4 (en) * | 2016-07-01 | 2019-12-18 | Mitsui Mining and Smelting Co., Ltd. | FIXED ELECTROLYTE ON SULFIDE BASE FOR LITHIUM SECONDARY BATTERY |
CN109526242B (zh) * | 2016-08-10 | 2022-04-15 | 出光兴产株式会社 | 硫化物固体电解质 |
CN109526242A (zh) * | 2016-08-10 | 2019-03-26 | 出光兴产株式会社 | 硫化物固体电解质 |
US11264642B2 (en) | 2016-08-10 | 2022-03-01 | Idemitsu Kosan Co., Ltd. | Sulfide solid electrolyte |
EP3499629A4 (en) * | 2016-08-10 | 2020-01-29 | Idemitsu Kosan Co., Ltd | SOLID-SULFIDE ELECTROLYTE |
JP2018045997A (ja) * | 2016-09-08 | 2018-03-22 | 出光興産株式会社 | 硫化物固体電解質 |
JP7178452B2 (ja) | 2016-09-12 | 2022-11-25 | 出光興産株式会社 | 硫化物固体電解質 |
JP2021122029A (ja) * | 2016-09-12 | 2021-08-26 | 出光興産株式会社 | 硫化物固体電解質 |
US20190074544A1 (en) * | 2017-09-06 | 2019-03-07 | Idemitsu Kosan Co., Ltd. | Method for producing solid electrolyte |
US10879559B2 (en) * | 2017-09-06 | 2020-12-29 | Idemitsu Kosan Co., Ltd. | Method for producing solid electrolyte |
US10811726B2 (en) | 2017-11-14 | 2020-10-20 | Samsung Electronics Co., Ltd. | Solid electrolyte for all-solid lithium secondary battery, all-solid lithium secondary battery, and method of preparing the solid electrolyte |
US11011777B2 (en) | 2017-12-27 | 2021-05-18 | Hyundai Motor Company | Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries |
US11637313B2 (en) | 2017-12-27 | 2023-04-25 | Hyundai Motor Company | Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries |
US11575154B2 (en) | 2017-12-27 | 2023-02-07 | Hyundai Motor Company | Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries |
US11631891B2 (en) | 2017-12-27 | 2023-04-18 | Hyundai Motor Company | Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries |
JP2019117788A (ja) * | 2017-12-27 | 2019-07-18 | 現代自動車株式会社Hyundai Motor Company | 窒素が添加された全固体電池用硫化物界固体電解質 |
JP7271053B2 (ja) | 2017-12-27 | 2023-05-11 | 現代自動車株式会社 | 窒素が添加された全固体電池用硫化物界固体電解質 |
US11631887B2 (en) | 2017-12-28 | 2023-04-18 | Mitsui Mining & Smelting Co., Ltd. | Solid electrolyte |
KR20200087207A (ko) | 2017-12-28 | 2020-07-20 | 미쓰이금속광업주식회사 | 고체 전해질 |
JP6997216B2 (ja) | 2017-12-28 | 2022-01-17 | 三井金属鉱業株式会社 | 固体電解質 |
JPWO2019131725A1 (ja) * | 2017-12-28 | 2020-10-22 | 三井金属鉱業株式会社 | 固体電解質 |
WO2019131725A1 (ja) | 2017-12-28 | 2019-07-04 | 三井金属鉱業株式会社 | 固体電解質 |
JP6595153B1 (ja) * | 2018-03-12 | 2019-10-23 | 三井金属鉱業株式会社 | 硫化物系固体電解質粒子 |
US11688879B2 (en) | 2018-03-12 | 2023-06-27 | Mitsui Mining & Smelting Co., Ltd. | Sulfide-based solid electrolyte particles |
WO2019176895A1 (ja) * | 2018-03-12 | 2019-09-19 | 三井金属鉱業株式会社 | 硫化物系固体電解質粒子 |
US11127974B2 (en) | 2018-05-14 | 2021-09-21 | Samsung Electronics Co., Ltd. | Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte |
KR20200070720A (ko) | 2018-12-10 | 2020-06-18 | 현대자동차주식회사 | 전자 전도도가 향상된 황화물계 고체전해질 및 이의 제조방법 |
KR20200070721A (ko) | 2018-12-10 | 2020-06-18 | 현대자동차주식회사 | 전고체 전지 음극용 황화물계 고체전해질 및 이의 제조방법 |
DE102019129554A1 (de) | 2018-12-18 | 2020-06-18 | Hyundai Motor Company | Sulfid-basierter, fester elektrolyt, der mit einem erdalkalimetall dotiert ist, und herstellungsverfahren desgleichen |
KR20200075250A (ko) | 2018-12-18 | 2020-06-26 | 현대자동차주식회사 | 알칼리 토금속이 도핑된 황화물계 고체전해질 및 이의 제조방법 |
US11799126B2 (en) | 2019-05-31 | 2023-10-24 | Samsung Electronics Co., Ltd. | Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method |
US20220344708A1 (en) * | 2019-10-29 | 2022-10-27 | Mitsui Mining & Smelting Co., Ltd. | Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same |
KR20220044086A (ko) | 2020-09-28 | 2022-04-06 | 주식회사 포스코 제이케이 솔리드 솔루션 | 전고체 리튬 이차전지용 황화물계 고체전해질 및 황화물계 고체전해질의 제조방법 |
WO2023053469A1 (ja) * | 2021-09-30 | 2023-04-06 | Agc株式会社 | 硫化物系固体電解質粉末の製造方法 |
JP2023051068A (ja) * | 2021-09-30 | 2023-04-11 | Agc株式会社 | 硫化物系固体電解質粉末の製造方法 |
JP7095795B1 (ja) | 2021-09-30 | 2022-07-05 | Agc株式会社 | 硫化物系固体電解質粉末の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101807583B1 (ko) | 2017-12-11 |
KR20160145834A (ko) | 2016-12-20 |
US20170222257A1 (en) | 2017-08-03 |
US9899701B2 (en) | 2018-02-20 |
EP3171444A4 (en) | 2018-02-21 |
EP3171444A1 (en) | 2017-05-24 |
CN105518923A (zh) | 2016-04-20 |
CN105518923B (zh) | 2017-03-22 |
EP3171444B1 (en) | 2019-09-25 |
JP2016024874A (ja) | 2016-02-08 |
JP5873533B2 (ja) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5873533B2 (ja) | リチウムイオン電池用硫化物系固体電解質 | |
JP5957144B2 (ja) | リチウムイオン電池用硫化物系固体電解質 | |
JP5985120B1 (ja) | リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物 | |
JP5701741B2 (ja) | 硫化物系固体電解質 | |
JP6595152B2 (ja) | リチウム二次電池の固体電解質及び当該固体電解質用硫化物系化合物 | |
JP6997216B2 (ja) | 固体電解質 | |
US10879562B2 (en) | Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same | |
WO2020045634A1 (ja) | 硫化物固体電解質の製造方法、硫化物固体電解質、全固体電池、及び硫化物固体電解質の製造に用いる原料化合物の選択方法 | |
JP5701808B2 (ja) | 硫化物系固体電解質の製造方法 | |
KR102151511B1 (ko) | 황화물계 고체 전해질 입자 | |
JP6285317B2 (ja) | 全固体電池システム | |
WO2022186303A1 (ja) | 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池 | |
TW202138293A (zh) | 固體電解質 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15822447 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167033998 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015822447 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015822447 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15326238 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |