WO2019135315A1 - 固体電解質材料、および、電池 - Google Patents

固体電解質材料、および、電池 Download PDF

Info

Publication number
WO2019135315A1
WO2019135315A1 PCT/JP2018/041891 JP2018041891W WO2019135315A1 WO 2019135315 A1 WO2019135315 A1 WO 2019135315A1 JP 2018041891 W JP2018041891 W JP 2018041891W WO 2019135315 A1 WO2019135315 A1 WO 2019135315A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
positive electrode
battery
ion conductivity
Prior art date
Application number
PCT/JP2018/041891
Other languages
English (en)
French (fr)
Inventor
章裕 酒井
哲也 浅野
真志 境田
勇祐 西尾
晃暢 宮崎
長谷川 真也
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019563930A priority Critical patent/JP7417923B2/ja
Priority to EP18898735.8A priority patent/EP3736830B1/en
Priority to CN202310865274.6A priority patent/CN116885271A/zh
Priority to CN201880081974.3A priority patent/CN111492442A/zh
Publication of WO2019135315A1 publication Critical patent/WO2019135315A1/ja
Priority to US16/911,447 priority patent/US20200328453A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to solid electrolyte materials and batteries.
  • Patent Document 1 discloses an all-solid-state battery using a sulfide solid electrolyte.
  • Patent Document 2 discloses an all-solid-state battery using a halide containing indium as a solid electrolyte.
  • Non-Patent Document 1 discloses Li 3 YBr 6 .
  • the solid electrolyte material in one aspect of the present disclosure is represented by the following composition formula (1): Li 3 YX 6 ⁇ Formula (1)
  • X is two or more elements selected from the group consisting of Cl, Br, and I.
  • a solid electrolyte material having high lithium ion conductivity can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery in a second embodiment.
  • FIG. 2 is a schematic view showing a method of evaluating the ion conductivity.
  • FIG. 3 is a graph showing the temperature dependency of the ion conductivity of the solid electrolyte.
  • FIG. 4 is a graph showing initial discharge characteristics.
  • FIG. 5 is a graph showing the temperature dependency of the ion conductivity of the solid electrolyte.
  • FIG. 6 is a graph showing the initial discharge characteristics.
  • the solid electrolyte material in the first embodiment is a solid electrolyte material represented by the following composition formula (1).
  • X is two or more elements selected from the group consisting of Cl, Br, and I.
  • Y is doped in a crystal structure having LiX (X is two or more elements selected from the group consisting of Cl, Br and I) as a parent structure.
  • LiX is two or more elements selected from the group consisting of Cl, Br and I
  • vacancies are generated in the crystal structure.
  • the symmetry of the crystal structure changes from the parent structure due to the stable arrangement of Li, Y and vacancy sites in the present structure or the balance between the ionic radius of the anion and the ionic radius of the cation.
  • the Li ions can be conducted in the crystal via the vacancies generated in the changed crystal structure.
  • a halide solid electrolyte material having high lithium ion conductivity can be realized.
  • a solid electrolyte material having a stable structure can be realized in the assumed operating temperature range of the battery (for example, in the range of ⁇ 30 ° C. to 80 ° C.). That is, the solid electrolyte material of Embodiment 1 does not have a configuration in which the phase transition temperature exists in the operating temperature range of the battery (for example, the configuration of Patent Document 2). As a result, even in an environment where there is a temperature change, high ion conductivity can be stably maintained without phase transition occurring in the operating temperature range of the battery.
  • a solid electrolyte exhibiting a high ion conductivity of 1 ⁇ 10 ⁇ 4 S / cm or more can be realized, and an all-solid secondary battery excellent in charge and discharge characteristics can be realized. Furthermore, by adjusting the composition, an ionic conductivity of more than 7 ⁇ 10 ⁇ 4 S / cm is possible, and an all-solid secondary battery capable of more rapid charge and discharge can be realized.
  • the solid electrolyte material of Embodiment 1 it is possible to realize an all-solid secondary battery not containing sulfur. That is, the solid electrolyte material of Embodiment 1 is not a configuration that generates hydrogen sulfide when exposed to the air (for example, the configuration of Patent Document 1). Therefore, it is possible to realize an all-solid secondary battery excellent in safety without generating hydrogen sulfide.
  • X may contain Br and Cl.
  • the solid electrolyte material in Embodiment 1 may be represented by the following composition formula (2).
  • Li 3 YBr 6-x Cl x Formula (2) At this time, 0.5 ⁇ x ⁇ 5.5 may be satisfied in the composition formula (2).
  • the solid electrolyte material in the first embodiment may satisfy 2.0 ⁇ x ⁇ 5.0 in the composition formula (2).
  • X may contain Br and I.
  • the solid electrolyte material in Embodiment 1 may be represented by the following composition formula (3).
  • Li 3 YBr 6-x I x equation (3) At this time, 0.5 ⁇ x ⁇ 5.5 may be satisfied in the composition formula (3).
  • the solid electrolyte material in Embodiment 1 may satisfy 1.0 ⁇ x ⁇ 3.0 in the composition formula (3).
  • the solid electrolyte material in Embodiment 1 may be represented by the following composition formula (4).
  • the solid electrolyte material according to Embodiment 1 may satisfy 0.5 ⁇ l ⁇ 5, 0.5 ⁇ m ⁇ 5, and 0.5 ⁇ n ⁇ 5 in the composition formula (4).
  • the solid electrolyte material in the first embodiment may satisfy 1 ⁇ l ⁇ 4, 1 ⁇ m ⁇ 4, and 1 ⁇ n ⁇ 4 in the composition formula (4).
  • the shape of the solid electrolyte material in the first embodiment is not particularly limited, and may be, for example, needle-like, spherical, elliptical or the like.
  • the solid electrolyte material in Embodiment 1 may be particles.
  • the solid electrolyte material in Embodiment 1 may be formed into a pellet or plate by pressing after laminating a plurality of particles.
  • the solid electrolyte material in Embodiment 1 may contain a crystalline phase or may contain an amorphous phase.
  • the median diameter may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the ion conductivity can be further enhanced.
  • a better dispersed state of the solid electrolyte material, the active material, and the like in Embodiment 1 can be formed.
  • the solid electrolyte material may be smaller than the median diameter of the active material.
  • the solid electrolyte material in Embodiment 1 can be produced, for example, by the following method.
  • a raw material powder of a binary halide so as to achieve the composition ratio of the target composition.
  • LiBr and YCl 3 are prepared at a molar ratio of 3: 1.
  • the raw material is not particularly limited, and, for example, LiCl, LiI, YBr 3 , YI 3 or the like may be used in addition to the aforementioned raw materials.
  • X in the composition formula (1) can be determined by selecting the type of the raw material powder.
  • the above-mentioned values "x", "l", “m” and “n” can be adjusted by adjusting the molar ratio with the raw material.
  • the raw material powders are thoroughly mixed, the raw material powders are mixed, pulverized and reacted using a method of mechanochemical milling.
  • the raw material powders may be well mixed and then sintered in vacuum or in an inert atmosphere such as an argon-nitrogen atmosphere.
  • composition (that is, the crystal structure) of the crystal phase in the solid electrolyte material can be determined by adjusting the reaction method and reaction conditions of the raw material powders.
  • the battery in the second embodiment is configured using the solid electrolyte material described in the first embodiment described above.
  • the battery in Embodiment 2 includes a positive electrode, a negative electrode, and an electrolyte layer.
  • the electrolyte layer is a layer provided between the positive electrode and the negative electrode.
  • At least one of the positive electrode, the electrolyte layer, and the negative electrode includes the solid electrolyte material according to the first embodiment.
  • the charge and discharge characteristics of the battery can be improved.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 in the second embodiment.
  • Battery 1000 in the second embodiment includes positive electrode 201, negative electrode 203, and electrolyte layer 202.
  • the positive electrode 201 includes positive electrode active material particles 204 and solid electrolyte particles 100.
  • the electrolyte layer 202 is disposed between the positive electrode 201 and the negative electrode 203.
  • the electrolyte layer 202 includes an electrolyte material (eg, a solid electrolyte material).
  • an electrolyte material eg, a solid electrolyte material
  • the negative electrode 203 includes negative electrode active material particles 205 and solid electrolyte particles 100.
  • Solid electrolyte particles 100 are particles made of the solid electrolyte material in the first embodiment, or particles containing the solid electrolyte material in the first embodiment as a main component.
  • the positive electrode 201 includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • the positive electrode 201 includes, for example, a positive electrode active material (for example, positive electrode active material particles 204).
  • positive electrode active materials include lithium-containing transition metal oxides (eg, Li (NiCoAl) O 2 , LiCoO 2 , etc.), transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metals Oxyfluorides, transition metal oxysulfides, transition metal oxynitrides, etc. may be used.
  • lithium-containing transition metal oxides eg, Li (NiCoAl) O 2 , LiCoO 2 , etc.
  • transition metal fluorides eg, Li (NiCoAl) O 2 , LiCoO 2 , etc.
  • polyanion materials e.g, Li (NiCoAl) O 2 , LiCoO 2 , etc.
  • transition metal fluorides eg, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metals Oxyfluorides, transition metal oxysulfides, transition metal oxynitrides, etc
  • the positive electrode active material may be coated on part or all of the surface with an oxide or the like different from that of the positive electrode active material in order to perform higher performance battery operation.
  • Typical coat material, LiNbO 3 and the like can be considered.
  • Surface coating material as Okonaere the battery operation is not limited to LiNbO 3, also not be limited the coating method.
  • the thickness of the coating material is preferably about 1 to 100 nm for realizing a high performance battery.
  • the coating material for example, Li-Nb-O compounds such as LiNbO 3, Li-BO compounds such as LiBO 2, Li 3 BO 3, Li-Al-O compounds such LiAlO 2, Li 4 SiO 4, etc.
  • the median diameter of the positive electrode active material particles 204 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material particles 204 is 0.1 ⁇ m or more, the positive electrode active material particles 204 and the halide solid electrolyte material can form a good dispersed state at the positive electrode. As a result, the charge and discharge characteristics of the battery are improved.
  • the median diameter of the positive electrode active material particles 204 is 100 ⁇ m or less, lithium diffusion in the positive electrode active material particles 204 becomes faster. Thus, the battery can operate at high power.
  • the median diameter of the positive electrode active material particles 204 may be larger than the median diameter of the halide solid electrolyte material. Thereby, a good dispersed state of the positive electrode active material particles 204 and the halide solid electrolyte material can be formed.
  • the volume ratio “v: 100 ⁇ v” of the positive electrode active material particles 204 and the halide solid electrolyte material contained in the positive electrode 201 may be 30 ⁇ v ⁇ 95. When 30 ⁇ v, sufficient battery energy density can be secured. Also, at v ⁇ 95, high power operation can be realized.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. In addition, when the thickness of a positive electrode is 500 micrometers or less, the operation
  • the electrolyte layer 202 is a layer containing an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material. That is, the electrolyte layer 202 may be a solid electrolyte layer.
  • the solid electrolyte layer may contain, as a main component, the solid electrolyte material described in the first embodiment. That is, the solid electrolyte layer may contain, for example, 50% or more (that is, 50% by weight or more) of the solid electrolyte material in the above-described Embodiment 1 in a weight ratio to the entire solid electrolyte layer.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer may contain, for example, 70% or more (that is, 70% by weight or more) of the solid electrolyte material in the above-described Embodiment 1 in a weight ratio to the entire solid electrolyte layer.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer further includes unavoidable impurities or starting materials and by-products used when synthesizing the above-mentioned solid electrolyte material while containing the solid electrolyte material according to the above-mentioned Embodiment 1 as a main component. It may contain substances and decomposition products.
  • the solid electrolyte layer may contain, for example, 100% (that is, 100% by weight) by weight of the solid electrolyte material in Embodiment 1 with respect to the whole of the solid electrolyte layer, except for impurities which are inevitably mixed. Good.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer may be composed of only the solid electrolyte material in the first embodiment.
  • the solid electrolyte layer may be composed of only a solid electrolyte material different from the solid electrolyte material in the first embodiment.
  • a solid electrolyte material different from the solid electrolyte material in Embodiment 1 for example, Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , LiI, etc. may be used.
  • X includes at least one selected from the group consisting of Cl, Br, and I.
  • the solid electrolyte layer may simultaneously contain the solid electrolyte material of Embodiment 1 and a solid electrolyte material different from the solid electrolyte material of Embodiment 1 described above. At this time, both may be dispersed uniformly. Instead of this, the layer made of the solid electrolyte material in Embodiment 1 and the layer made of a solid electrolyte material different from the solid electrolyte material in Embodiment 1 described above are sequentially arranged in the stacking direction of the battery. It may be done.
  • the thickness of the solid electrolyte layer may be 1 ⁇ m or more and 100 ⁇ m or less. When the thickness of the solid electrolyte layer is 1 ⁇ m or more, the positive electrode 201 and the negative electrode 203 can be easily separated. When the thickness of the solid electrolyte layer is 100 ⁇ m or less, high power operation can be realized.
  • the negative electrode 203 includes a material having a property of inserting and extracting metal ions (eg, lithium ions).
  • the negative electrode 203 includes, for example, a negative electrode active material (for example, negative electrode active material particles 205).
  • metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. may be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal, lithium alloy, and the like.
  • carbon materials include natural graphite, coke, graphitized carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, or a tin compound can be used.
  • the negative electrode active material having a low average reaction voltage is used, the effect of suppressing the electrolysis by the solid electrolyte material in Embodiment 1 is exhibited better.
  • the median diameter of the negative electrode active material particles 205 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material particles 205 is 0.1 ⁇ m or more, the negative electrode active material particles 205 and the solid electrolyte particles 100 can form a good dispersed state in the negative electrode. This improves the charge and discharge characteristics of the battery.
  • the median diameter of the negative electrode active material particles 205 is 100 ⁇ m or less, lithium diffusion in the negative electrode active material particles 205 becomes faster. Thus, the battery can operate at high power.
  • the median diameter of the negative electrode active material particles 205 may be larger than the median diameter of the solid electrolyte particles 100. Thereby, a favorable dispersed state of the negative electrode active material particles 205 and the halide solid electrolyte material can be formed.
  • the volume ratio “v: 100 ⁇ v” of the negative electrode active material particles 205 to the solid electrolyte particles 100 contained in the negative electrode 203 may be 30 ⁇ v ⁇ 95. When 30 ⁇ v, sufficient battery energy density can be secured. Also, when v ⁇ 95, high power operation can be realized.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode is 10 ⁇ m or more, sufficient energy density of the battery can be secured. In addition, when the thickness of the negative electrode is 500 ⁇ m or less, high power operation can be realized.
  • a sulfide solid electrolyte or an oxide solid electrolyte may be contained in at least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 for the purpose of enhancing the ion conductivity.
  • a sulfide solid electrolyte Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc. may be used.
  • a NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product, (LaLi) TiO 3 -based perovskite-type solid electrolyte, Li 14 ZnGe 4 O 16 , Li 4 SiO 4 LISICON type solid electrolyte represented by LiGeO 4 and its element substituted body, Garnet type solid electrolyte represented by Li 7 La 3 Zr 2 O 12 and its element substituted body, Li 3 N and its H substituted body, Li 3 PO 4 and its N-substituted, etc. can be used.
  • An organic polymer solid electrolyte may be included in at least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 for the purpose of enhancing the ion conductivity.
  • the organic polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. By having an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further enhanced.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • a lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • At least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a non-aqueous electrolyte solution, a gel electrolyte, and an ionic liquid in order to facilitate lithium ion transfer and improve the output characteristics of the battery. It may be
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, fluorine solvents, and the like may be used.
  • cyclic carbonate solvents include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • chain carbonate solvents include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and the like.
  • Examples of cyclic ether solvents include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and the like.
  • Examples of linear ether solvents include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • Examples of cyclic ester solvents include ⁇ -butyrolactone and the like.
  • Examples of linear ester solvents include methyl acetate and the like.
  • Examples of fluorine solvents include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, fluorodimethylene carbonate, and the like.
  • As the non-aqueous solvent one non-aqueous solvent selected therefrom can be used alone.
  • the non-aqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate and fluorodimethylene carbonate.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • concentration of the lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the gel electrolyte one in which a non-aqueous electrolyte is contained in a polymer material can be used.
  • a polymer material polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, a polymer having an ethylene oxide bond, and the like may be used.
  • the cations constituting the ionic liquid are aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like And nitrogen-containing heterocyclic aromatic cations such as cyclic ammonium, pyridiniums, and imidazoliums.
  • aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like
  • nitrogen-containing heterocyclic aromatic cations such as cyclic ammonium, pyridiniums, and imidazoliums.
  • Anions constituting the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 - , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) - , C (SO 2 CF 3 ) 3 - or the like may be used.
  • the ionic liquid may also contain a lithium salt.
  • a binder may be contained in at least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 for the purpose of improving the adhesion between the particles.
  • the binder is used to improve the binding properties of the material constituting the electrode.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene buta
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadienes can be used. Moreover, 2 or more types selected from these may be mixed and it may be used as a binding agent.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid, if necessary.
  • the conductive aid is used to reduce the electrode resistance.
  • Conductive aids include graphites of natural graphite or artificial graphite, carbon blacks such as acetylene black and ketjen black, conductive fibers such as carbon fibers or metal fibers, metal powders such as fluorinated carbon and aluminum, Examples thereof include conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymer compounds such as polyaniline, polypyrrole and polythiophene.
  • cost reduction can be achieved by using a carbon conductive support as the conductive support.
  • the battery in the second embodiment can be configured as a battery of various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • Example 1 Hereinafter, the synthesis and evaluation method of Li 3 YBr 6-x Cl x in this example will be described.
  • x 0.5, 1, 2, 3, 4, 5, and 5.5, and Example 1-1, Example 1-2, and Example 1-, respectively. 3, Example 1-4, Example 1-5, Example 1-6, and Example 1-7.
  • FIG. 2 is a schematic view showing a method of evaluating the ion conductivity.
  • the pressure forming die 300 is composed of an electrically insulating polycarbonate frame 301 and an electron conductive stainless steel punch upper portion 303 and a punch lower portion 302.
  • the ion conductivity was evaluated by the following method using the configuration shown in FIG.
  • a powder of the solid electrolyte material of Example 1 (example of solid electrolyte particles 100) was molded using a die 300 , And uniaxially pressurized at 400 MPa to produce the conductivity measurement cell of Example 1.
  • the ionic conductivity of the solid electrolyte material of Example 1 measured at 22 ° C. was as shown in Table 1 below.
  • FIG. 3 is a graph showing the temperature dependency of the ion conductivity of the solid electrolyte.
  • no abrupt change in conductivity indicating a phase change was observed in all Examples 1-1 to 1-7.
  • the results shown in FIG. 3 were measured by the following method.
  • the solid electrolyte materials of Examples 1-1 to 1-7 were inserted in an equivalent amount of 700 ⁇ m in the insulating outer cylinder. This was pressure-molded at a pressure of 40 MPa to obtain a solid electrolyte layer.
  • aluminum powder corresponding to a thickness of 50 ⁇ m was laminated on the upper and lower surfaces of the solid electrolyte layer.
  • the laminate was produced by pressure-molding this at a pressure of 360 MPa.
  • stainless steel current collectors were disposed above and below the laminate, and current collection leads were attached to the current collectors.
  • the inside of the insulating outer cylinder was shut off from the atmosphere and sealed.
  • the test body containing the laminated body obtained by said method was put into a thermostat, and the temperature dependence of ion conductivity was measured in the temperature rising process and the temperature-fall process, respectively.
  • Li 3 InBr 6 which is a solid electrolyte material of Comparative Example 1 was obtained.
  • the ion conductivity and the phase transition of the solid electrolyte material of Comparative Example 1-1 were evaluated in the same manner as in Example 1 except for the above method.
  • the ionic conductivity measured at 22 ° C. was less than 1 ⁇ 10 ⁇ 7 S / cm.
  • the temperature dependence of the ionic conductivity of the solid electrolyte material of Comparative Example 1-1 is shown in FIG. 3 described above. As shown in FIG. 3, due to the temperature dependence of the conductivity, the conductivity changed rapidly around 55 ° C. in the temperature rising process. That is, phase change was observed in the solid electrolyte material of Comparative Example 1-1.
  • the evaluation of the ion conductivity of the solid electrolyte material of Comparative Example 1-2 was carried out in the same manner as in Example 1 except for the above.
  • the measured ion conductivity was 8.7 ⁇ 10 ⁇ 6 S / cm.
  • the ion conductivity measured at 22 ° C. was 4.0 ⁇ 10 ⁇ 4 S / cm.
  • the ionic conductivity measured at 22 ° C. was 5.0 ⁇ 10 ⁇ 4 S / cm.
  • Example 2 Hereinafter, a method of manufacturing and evaluating a secondary battery using Li 3 YBr 6-x Cl x in this example will be described.
  • the solid electrolyte material Li 3 YBr 6-x Cl x of Example 1 and LiCoO 2 as a positive electrode active material are contained in a glove box maintained in a dry / low oxygen atmosphere with a dew point of ⁇ 90 ° C. or less and an oxygen value of 5 ppm or less. At a volume ratio of 30:70. These were mixed in an agate mortar to produce a positive electrode mixture.
  • the solid electrolyte material of Example 1 was laminated in the order of 700 ⁇ m thickness equivalent and 12.3 mg of the positive electrode mixture.
  • the positive electrode and the solid electrolyte layer were obtained by pressure-molding this at a pressure of 360 MPa.
  • metal In 200 micrometers in thickness
  • a pressure of 80 MPa a laminate composed of a positive electrode, a solid electrolyte layer, and a negative electrode was produced.
  • the secondary battery of Example 2 was produced by the above. Secondary batteries were produced using the solid electrolytes obtained in Examples 1-1 to 1-7, and made them to Examples 2-1 to 2-7, respectively.
  • the results shown in FIG. 4 were measured by the following method. That is, the secondary battery of Example 2 was disposed in a 25 ° C. thermostat. Constant current charging was performed at a current value at which a rate of 0.05 C (20-hour rate) with respect to the theoretical capacity of the battery was reached, and charging was terminated at a voltage of 3.6 V. Next, the battery was discharged at a current value of 0.05 C rate, and the discharge was finished at a voltage of 1.9 V. The initial discharge amount can be obtained from the above measurement results.
  • Comparative Example 2-1 The solid electrolyte material of Comparative Example 1-2 was used as a solid electrolyte used for the positive electrode mixture and the solid electrolyte layer.
  • the preparation of the secondary battery and the charge / discharge test were conducted in the same manner as in Example 2 except for the above.
  • the initial discharge characteristics of the secondary battery of Comparative Example 2-1 are shown in FIG. 4 described above.
  • the initial discharge capacity of the secondary battery of Comparative Example 2-1 was less than 1 ⁇ Ah. That is, in the secondary battery of Comparative Example 2-1, the charge / discharge operation could not be confirmed.
  • the solid electrolyte material according to the present disclosure is an electrolyte material which is capable of stably maintaining high lithium ion conductivity without generating hydrogen sulfide. Furthermore, it is shown that it is possible to realize an all-solid-state battery excellent in charge and discharge characteristics without generating hydrogen sulfide.
  • x 0.5, 1, 2, 3, 4, 5, and 5.5, and Example 3-1, Example 3-2, and Example 3-3, respectively.
  • Examples 3-1 to 3-7 represented by Li 3 YBr 6-x I x in the range of -30 ° C. to 80 ° C. It can be seen that while No. 7 does not cause a phase transition, Comparative Example 1-1 undergoes a phase transition. That is, it can be seen that the structure of Li 3 YBr 6 -x I x is stable in the assumed operating temperature range of the battery.
  • Examples 3-1 to 3-7 show higher ion conductivity of 1 ⁇ 10 -4 S / cm or more. While Comparative Example 3-1 shows the conductivity, it can be seen that the ion conductivity is less than 1 ⁇ 10 -4 S / cm. In addition, it is understood that higher ion conductivity is exhibited at 0.5 ⁇ x ⁇ 4.0 than in Reference Example 1-1 (see Examples 3-1 to 3-5). In addition, it can be seen that in particular, higher ion conductivity is exhibited at 1.0 ⁇ x ⁇ 3.0 (see Examples 3-2 to 3-4).
  • Example 4 Hereinafter, a method of manufacturing and evaluating a secondary battery using Li 3 YBr 6 -x I x in this example will be described.
  • the mixture was stirred while gradually adding the prepared coating solution to 100 mg of a positive electrode active material Li (NiCoAl) O 2 on an agate mortar.
  • the powder after drying was put into an alumina crucible and taken out under the atmosphere.
  • the heat-treated powder was reground in an agate mortar to obtain the positive electrode active material of Example 1 in which the coating layer was formed on the particle surface layer. That is, a plurality of particles of the positive electrode active material were obtained, and all or part of the plurality of particles had a coating layer formed on at least a part of the particle surface.
  • the material of said coating layer is a LiNbO 3.
  • the particle surface was coated with the solid electrolyte material Li 3 YBr 6-x I x of Example 1 and LiNbO 3 in a glove box maintained in a dry / low oxygen atmosphere with a dew point of ⁇ 90 ° C. or less and an oxygen value of 5 ppm or less.
  • the positive electrode active material Li (NiCoAl) O 2 was weighed at a volume ratio of 30:70. These were mixed in an agate mortar to produce a positive electrode mixture.
  • the solid electrolyte material of Example 1 was laminated in the order of 700 ⁇ m thickness equivalent and 12.3 mg of the positive electrode mixture.
  • the positive electrode and the solid electrolyte layer were obtained by pressure-molding this at a pressure of 360 MPa.
  • metal In 200 micrometers in thickness
  • a pressure of 80 MPa a laminate composed of a positive electrode, a solid electrolyte layer, and a negative electrode was produced.
  • Example 4 the secondary battery of Example 4 was produced. Secondary batteries were produced using the solid electrolytes obtained in Examples 3-1 to 3-7, and made them to Examples 4-1 to 4-7, respectively.
  • the results shown in FIG. 4 were measured by the following method. That is, the secondary battery of Example 1 was disposed in a thermostat of 25 ° C. Constant current charging was performed at a current value at which a rate of 0.05 C (20-hour rate) was obtained with respect to the theoretical capacity of the battery, and charging was completed at a voltage of 3.7 V. Next, the battery was discharged at a current value of 0.05 C rate, and the discharge was finished at a voltage of 1.9 V. The initial discharge amount can be obtained from the above measurement results.
  • the solid electrolyte material according to the present disclosure is an electrolyte material which is capable of stably maintaining high lithium ion conductivity without generating hydrogen sulfide. Furthermore, it is shown that it is possible to realize an all-solid-state battery excellent in charge and discharge characteristics without generating hydrogen sulfide.
  • Example 5 The obtained solid electrolyte is referred to as Example 5.
  • the values of l, m and n in Examples 5-1 to 5-10 are shown in Table 5.
  • the ion conductivity was evaluated by the following method using the configuration shown in FIG. In a glove box maintained in a dry / low oxygen atmosphere with a dew point of -90 ° C. or less and an oxygen value of 5 ppm or less, a powder of the solid electrolyte material of Example 5 (example of solid electrolyte particles 100) , And uniaxially pressurized at 400 MPa, to prepare a conductivity measuring cell of Example 5.
  • FIG. 5 is a graph showing the temperature dependency of the ion conductivity of the solid electrolyte.
  • the measurement results for Example 5-5 Li 3 YBr 2 Cl 2 I 2 ) are shown in FIG. In the temperature range of -30.degree. C. to 80.degree. C., no abrupt change in conductivity showing a phase change (ie, phase transition) was observed in all the Examples 5-1 to 5-10.
  • the results shown in FIG. 5 were measured by the following method.
  • the solid electrolyte materials of Examples 5-1 to 5-10 were inserted in an equivalent amount of 700 ⁇ m in the insulating outer cylinder. This was pressure-molded at a pressure of 40 MPa to obtain a solid electrolyte layer.
  • aluminum powder corresponding to a thickness of 50 ⁇ m was laminated on the upper and lower surfaces of the solid electrolyte layer.
  • the laminate was produced by pressure-molding this at a pressure of 360 MPa.
  • stainless steel current collectors were disposed above and below the laminate, and current collection leads were attached to the current collectors.
  • the inside of the insulating outer cylinder was shut off from the atmosphere and sealed.
  • the test body containing the laminated body obtained by said method was put into a thermostat, and the temperature dependence of ion conductivity was measured in the temperature rising process and the temperature-fall process, respectively.
  • the mixture was stirred while gradually adding the prepared coating solution to 100 mg of a positive electrode active material Li (NiCoAl) O 2 on an agate mortar.
  • the powder after drying was put into an alumina crucible and taken out under the atmosphere.
  • the heat-treated powder was reground in an agate mortar to obtain a positive electrode active material of Example 5 in which the coating layer was formed on the particle surface layer. That is, a plurality of particles of the positive electrode active material were obtained, and all or part of the plurality of particles had a coating layer formed on at least a part of the particle surface.
  • the material of said coating layer is a LiNbO 3.
  • the solid electrolyte material of Example 5 was laminated in the order of 700 ⁇ m thickness equivalent and 12.3 mg of the positive electrode mixture.
  • the positive electrode and the solid electrolyte layer were obtained by pressure-molding this at a pressure of 360 MPa.
  • metal In 200 micrometers in thickness
  • a pressure of 80 MPa a laminate composed of a positive electrode, a solid electrolyte layer, and a negative electrode was produced.
  • the secondary battery using the material of Example 5 was produced by the above.
  • the results shown in FIG. 6 were measured by the following method. That is, the secondary battery of Example 5 was disposed in a 25 ° C. thermostat. Constant current charging was performed at a current value at which a rate of 0.05 C (20-hour rate) was obtained with respect to the theoretical capacity of the battery, and charging was completed at a voltage of 3.7 V. Next, the battery was discharged at a current value of 0.05 C rate, and the discharge was finished at a voltage of 1.9 V.
  • an initial discharge amount of 650 ⁇ Ah was obtained. The same measurement is carried out in all the examples 5-1 to 5-10 using the above-mentioned method, and in the examples 5-1 to 5-4 and 5-6 to 10, the same good results as the example 5-5 are obtained. Discharge amount was obtained.
  • the solid electrolyte material according to the present disclosure is an electrolyte material which is capable of stably maintaining high lithium ion conductivity without generating hydrogen sulfide. Furthermore, it is shown that it is possible to realize an all-solid-state battery excellent in charge and discharge characteristics without generating hydrogen sulfide.
  • the battery of the present disclosure can be utilized, for example, as an all solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

固体電解質材料は、下記の組成式(1)により表され、 LiYX・・・式(1) ここで、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。

Description

固体電解質材料、および、電池
 本開示は、固体電解質材料、および、電池に関する。
 特許文献1には、硫化物固体電解質を用いた全固体電池が開示されている。
 特許文献2には、インジウムを含むハロゲン化物を固体電解質として用いた全固体電池が開示されている。
 非特許文献1には、LiYBrが開示されている。
特開2005-353309号公報 特開2006-244734号公報
Z. anorg. allg. Chem. 623 (1997) 1352.
 従来技術においては、高いリチウムイオン伝導度を有する固体電解質材料の実現が望まれる。
 本開示の一様態における固体電解質材料は、下記の組成式(1)により表され、
 LiYX・・・式(1)
 ここで、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。
 本開示によれば、高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
図1は、実施の形態2における電池の概略構成を示す断面図である。 図2は、イオン伝導度の評価方法を示す模式図である。 図3は、固体電解質のイオン伝導度の温度依存性を示すグラフである。 図4は、初期放電特性を示すグラフである。 図5は、固体電解質のイオン伝導度の温度依存性を示すグラフである。 図6は、初期放電特性を示すグラフである。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 実施の形態1における固体電解質材料は、下記の組成式(1)により表される、固体電解質材料である。LiYX・・・式(1)
 ここで、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。
 実施の形態1記載の固体電解質材料の結晶構造はLiX(Xは、Cl、BrおよびIからなる群より選択される二種以上の元素である)を母構造とする結晶構造にYをドーピングすることによって変調される。YとLiの価数の違いおよび結晶全体の電気的中性を満たすために、結晶構造内には空孔が生じる。本構造内のLi、Y、空孔サイトの安定的な配置またはアニオンのイオン半径とカチオンのイオン半径とのバランスで結晶構造の対称性は母構造から変化する。変化した結晶構造内に生じた空孔を経由して、Liイオンは結晶内を伝導することが可能となる。
 以上の構成によれば、高いリチウムイオン伝導度を有するハロゲン化物固体電解質材料を実現できる。また、電池の想定動作温度域(例えば、-30℃から80℃の範囲)において、構造が安定である固体電解質材料を実現できる。すなわち、実施の形態1の固体電解質材料は、相転移温度が電池の動作温度域に存在する構成(例えば、特許文献2の構成)ではない。これにより、温度変化がある環境においても、電池の動作温度域で相転移が生じずに、高いイオン伝導度を安定的に維持できる。
 また、以上の構成によれば、1×10-4S/cm以上の高いイオン伝導度を示す固体電解質が実現可能となり、充放電特性に優れた全固体二次電池が実現可能となる。更に、組成を調整することによって、7×10-4S/cmを超えるイオン伝導度が可能となり、より急速な充放電が可能な全固体二次電池が実現可能となる。
 また、実施の形態1の固体電解質材料を用いることで、硫黄を含まない全固体二次電池を実現することができる。すなわち、実施の形態1の固体電解質材料は、大気に曝露された際に硫化水素が発生する構成(例えば、特許文献1の構成)ではない。このため、硫化水素の発生が無く、安全性に優れた全固体二次電池を実現することができる。
 なお、実施の形態1における固体電解質材料においては、Xは、BrとClを含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、下記の組成式(2)により表されてもよい。
 LiYBr6-xCl・・・式(2)
 このとき、組成式(2)において、0.5≦x≦5.5、が満たされてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(2)において、2.0≦x≦5.0、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料においては、Xは、BrとIを含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、下記の組成式(3)により表されてもよい。
 LiYBr6-x・・・式(3)
 このとき、組成式(3)において、0.5≦x≦5.5、が満たされてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(3)において、1.0≦x≦3.0、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、下記の組成式(4)により表されてもよい。
 LiYClBr・・・式(4)
 このとき、組成式(4)において、l+m+n=6、が満たされてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(4)において、0.5<l<5、0.5<m<5、および0.5<n<5、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(4)において、1≦l≦4、1≦m≦4、および1≦n≦4、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(4)において、n=1、1<l、およびm<4、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(4)において、n=2、1<l、および1<m<4、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、組成式(4)において、l=2、m=2、およびn=2、を満たしてもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
 実施の形態1における固体電解質材料の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状など、であってもよい。例えば、実施の形態1における固体電解質材料は、粒子であってもよい。また、実施の形態1における固体電解質材料は、複数の粒子を積層した後、加圧によりペレット状もしくは板状に成形してもよい。また、実施の形態1における固体電解質材料は、結晶相を含むものであってもよいし、非晶質相を含むものであってもよい。
 例えば、実施の形態1における固体電解質材料の形状が粒子状(例えば、球状)の場合、メジアン径は、0.1μm以上かつ100μm以下であってもよい。
 また、実施の形態1においては、メジアン径は0.5μm以上かつ10μm以下であってもよい。
 以上の構成によれば、イオン伝導性をより高めることができる。また、実施の形態1における固体電解質材料と活物質などとのより良好な分散状態を形成できる。
 また、実施の形態1においては、固体電解質材料は、活物質のメジアン径より小さくてもよい。
 以上の構成によれば、実施の形態1における固体電解質材料と活物質などとのより良好な分散状態を形成できる。
 <固体電解質材料の製造方法>
 実施の形態1における固体電解質材料は、例えば、下記の方法により、製造されうる。
 目的とする組成の配合比となるような二元系ハロゲン化物の原料粉を用意する。例えば、LiYBrClを作製する場合には、LiBrとYClを、3:1のモル比で用意する。原料については特に限定されず、たとえば前述の原料以外にLiCl、LiI、YBr、YI、等を使用してもよい。このとき、原料粉の種類を選択することで、組成式(1)におけるXを決定することができる。また、原料とモル比を調整することで、上述の値「x」、「l」、「m」、「n」を調整できる。原料粉をよく混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合・粉砕・反応させる。これに代えて、原料粉をよく混合した後、真空中、もしくはアルゴン・窒素雰囲気のような不活性雰囲気で焼結してもよい。
 これにより、前述したような結晶相を含む固体電解質材料が得られる。
 なお、固体電解質材料における結晶相の構成(すなわち、結晶構造)は、原料粉どうしの反応方法および反応条件の調整により、決定することができる。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 実施の形態2における電池は、上述の実施の形態1で説明された固体電解質材料を用いて構成される。
 実施の形態2における電池は、正極と、負極と、電解質層と、を備える。
 電解質層は、正極と負極との間に設けられる層である。
 正極と電解質層と負極とのうちの少なくとも1つは、実施の形態1における固体電解質材料を含む。
 以上の構成によれば、電池の充放電特性を向上させることができる。
 以下に、実施の形態2における電池の具体例が、説明される。
 図1は、実施の形態2における電池1000の概略構成を示す断面図である。
 実施の形態2における電池1000は、正極201と、負極203と、電解質層202とを備える。
 正極201は、正極活物質粒子204と固体電解質粒子100とを含む。
 電解質層202は、正極201と負極203との間に配置される。
 電解質層202は、電解質材料(例えば、固体電解質材料)を含む。
 負極203は、負極活物質粒子205と固体電解質粒子100とを含む。
 固体電解質粒子100は、実施の形態1における固体電解質材料からなる粒子、または、実施の形態1における固体電解質材料を主たる成分として含む粒子である。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。正極201は、例えば、正極活物質(例えば、正極活物質粒子204)を含む。
 正極活物質には、例えば、リチウム含有遷移金属酸化物(例えば、Li(NiCoAl)O、LiCoO、など)、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物、など、が用いられうる。
 正極活物質は、より高性能な電池動作を行うために、正極活物質とは異なる酸化物等によって表面の一部またはすべてをコートされていてもよい。代表的なコート材料としては、LiNbO等が考えられる。電池動作を行えれば表面コート材料はLiNbOに限定されず、またそのコート方法も限定されない。典型的にはコート材料の厚みは1~100nm程度が高性能な電池の実現に望ましい。コート材料としては、例えば、LiNbOなどのLi-Nb-O化合物、LiBO、LiBOなどのLi-B-O化合物、LiAlOなどのLi-Al-O化合物、LiSiOなどのLi-Si-O化合物、LiSO、LiTi12などのLi-Ti-O化合物、LiZrOなどのLi-Zr-O化合物、LiMoOなどのLi-Mo-O化合物、LiVなどのLi-V-O化合物、LiWOなどのLi-W-O化合物などが用いられうる。
 正極活物質粒子204のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質粒子204のメジアン径が0.1μm以上の場合、正極において、正極活物質粒子204とハロゲン化物固体電解質材料とが、良好な分散状態を形成し得る。この結果、電池の充放電特性が向上する。また、正極活物質粒子204のメジアン径が100μm以下の場合、正極活物質粒子204内のリチウム拡散が速くなる。このため、電池が高出力で動作し得る。
 正極活物質粒子204のメジアン径は、ハロゲン化物固体電解質材料のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子204とハロゲン化物固体電解質材料との良好な分散状態を形成できる。
 正極201に含まれる、正極活物質粒子204とハロゲン化物固体電解質材料の体積比率「v:100-v」について、30≦v≦95であってもよい。30≦vの場合、十分な電池のエネルギー密度を確保し得る。また、v≦95では、高出力での動作を実現し得る。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。なお、正極の厚みが10μm以上の場合には、十分な電池のエネルギー密度を確保し得る。なお、正極の厚みが500μm以下の場合には、高出力での動作を実現し得る。
 電解質層202は、電解質材料を含む層である。当該電解質材料は、例えば、固体電解質材料である。すなわち、電解質層202は、固体電解質層であってもよい。
 なお、固体電解質層は、上述の実施の形態1における固体電解質材料を、主成分として、含んでもよい。すなわち、固体電解質層は、上述の実施の形態1における固体電解質材料を、例えば、固体電解質層の全体に対する重量割合で50%以上(すなわち、50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 また、固体電解質層は、上述の実施の形態1における固体電解質材料を、例えば、固体電解質層の全体に対する重量割合で70%以上(すなわち、70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、固体電解質層は、上述の実施の形態1における固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、上述の固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 また、固体電解質層は、実施の形態1における固体電解質材料を、例えば、混入が不可避的な不純物を除いて、固体電解質層の全体に対する重量割合で100%(すなわち、100重量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 以上のように、固体電解質層は、実施の形態1における固体電解質材料のみから構成されていてもよい。
 もしくは、固体電解質層は、実施の形態1における固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。実施の形態1における固体電解質材料とは異なる固体電解質材料として、例えば、LiMgX、LiFeX、Li(Al,Ga,In)X、Li(Al,Ga,In)X、LiI、など、が用いられうる。ここで、Xは、Cl、Br、およびIからなる群から選択される少なくとも一つを含む。
 固体電解質層は、実施の形態1における固体電解質材料と、上述の実施の形態1における固体電解質材料とは異なる固体電解質材料とを、同時に含んでもよい。このとき、両者が均一に分散していてもよい。これに代えて、実施の形態1における固体電解質材料からなる層と、上述の実施の形態1における固体電解質材料とは異なる固体電解質材料からなる層とが、電池の積層方向に対して、順に配置されていてもよい。
 固体電解質層の厚みは、1μm以上かつ100μm以下であってもよい。固体電解質層の厚みが1μm以上の場合には、正極201と負極203とを分離しやすくなる。また、固体電解質層の厚みが100μm以下の場合には、高出力での動作を実現し得る。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。負極203は、例えば、負極活物質(例えば、負極活物質粒子205)を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、または錫化合物、を使用できる。平均反応電圧が低い負極活物質を用いた場合に、実施の形態1における固体電解質材料による電気分解抑制の効果が、より良く発揮される。
 負極活物質粒子205のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質粒子205のメジアン径が0.1μm以上の場合、負極において、負極活物質粒子205と固体電解質粒子100とが、良好な分散状態を形成し得る。これにより、電池の充放電特性が向上する。また、負極活物質粒子205のメジアン径が100μm以下の場合、負極活物質粒子205内のリチウム拡散が速くなる。このため、電池が高出力で動作し得る。
 負極活物質粒子205のメジアン径は、固体電解質粒子100のメジアン径よりも、大きくてもよい。これにより、負極活物質粒子205とハロゲン化物固体電解質材料との良好な分散状態を形成できる。
 負極203に含まれる、負極活物質粒子205と固体電解質粒子100の体積比率「v:100-v」について、30≦v≦95であってもよい。30≦vの場合、十分な電池のエネルギー密度を確保し得る。また、v≦95の場合、高出力での動作を実現し得る。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みが10μm以上の場合には、十分な電池のエネルギー密度を確保し得る。また、負極の厚みが500μm以下の場合には、高出力での動作を実現し得る。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、イオン伝導性を高める目的で、硫化物固体電解質または酸化物固体電解質が含まれてもよい。硫化物固体電解質として、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。酸化物固体電解質として、LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO系のペロブスカイト型固体電解質、Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、LiNおよびそのH置換体、LiPOおよびそのN置換体、など、が用いられうる。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、イオン伝導性を高める目的で、有機ポリマー固体電解質が含まれてもよい。有機ポリマー固体電解質として、例えば高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解質液、ゲル電解質、およびイオン液体が含まれてもよい。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。非水溶媒としては、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、フッ素溶媒、など、が使用されうる。環状炭酸エステル溶媒の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、など、が挙げられる。鎖状炭酸エステル溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、など、が挙げられる。環状エーテル溶媒の例としては、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、など、が挙げられる。鎖状エーテル溶媒の例としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、など、が挙げられる。環状エステル溶媒の例としては、γ-ブチロラクトン、など、が挙げられる。鎖状エステル溶媒の例としては、酢酸メチル、など、が挙げられる。フッ素溶媒の例としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネート、など、が挙げられる。非水溶媒として、これらから選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらから選択される2種以上の非水溶媒の組み合わせが、使用されうる。非水電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.5~2mol/リットルの範囲にある。
 ゲル電解質は、ポリマー材料に非水電解液を含ませたものを用いることができる。ポリマー材料として、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、エチレンオキシド結合を有するポリマー、など、が用いられてもよい。
 イオン液体を構成するカチオンは、テトラアルキルアンモニウム、テトラアルキルホスホニウムなどの脂肪族鎖状4級塩類、ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、ピペリジニウム類などの脂肪族環状アンモニウム、ピリジニウム類、イミダゾリウム類などの含窒ヘテロ環芳香族カチオンなどであってもよい。イオン液体を構成するアニオンは、PF 、BF 、SbF 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、C(SOCF などであってもよい。また、イオン液体はリチウム塩を含有してもよい。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 また、正極201および負極203のうちの少なくとも一方は、必要に応じて、導電助剤を含んでもよい。
 導電助剤は、電極抵抗を低減するために、用いられる。導電助剤としては、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が挙げられる。なお、導電助剤として、炭素導電助剤を用いることで、低コスト化が図れる。
 なお、実施の形態2における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 ≪実施例1≫
 以下、本実施例におけるLiYBr6-xClの合成・評価方法について説明する。
 [固体電解質材料の作製]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiBr、YBr、LiCl、およびYClを、モル比でLi:Y:Br:Cl=3:1:6-x:xとなるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 また、本実施例におけるxの値は、x=0.5、1、2、3、4、5、5.5であり、それぞれ実施例1-1、実施例1-2、実施例1-3、実施例1-4、実施例1-5、実施例1-6、実施例1-7とした。
 以上により、実施例1の固体電解質材料であるLiYBr6-xClの粉末を得た。
 [リチウムイオン伝導度の評価]
 図2は、イオン伝導度の評価方法を示す模式図である。加圧成形用ダイス300は、電子的に絶縁性のポリカーボネート製の枠型301と、電子伝導性のステンレス製のパンチ上部303およびパンチ下部302とから構成される。
 図2に示す構成を用いて、下記の方法にて、イオン伝導度の評価を行った。露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例1の固体電解質材料の粉末(固体電解質粒子100の実施例)を加圧成形用ダイス300に充填し、400MPaで一軸加圧し、実施例1の伝導度測定セルを作製した。加圧状態のまま、パンチ上部303とパンチ下部302のそれぞれから導線を取り回し、周波数応答アナライザを搭載したポテンショスタット(Princeton Applied Research社 VersaSTAT4)に接続し、電気化学的インピーダンス測定法により、室温におけるイオン伝導度の測定を行った。
 22℃で測定した、実施例1の固体電解質材料のイオン伝導度は、以下の表1に示されるものであった。
Figure JPOXMLDOC01-appb-T000001
 [相転移の評価]
 図3は、固体電解質のイオン伝導度の温度依存性を示すグラフである。本実施例1の典型的な振る舞いとして実施例1-4(x=3:LiYBrCl)について測定の結果を図3に示す。-30℃から80℃の温度範囲において、すべての実施例1-1~1-7で、相変化(すなわち、相転移)を示す伝導度の急激な変化は見られなかった。
 図3に示される結果は、下記の方法により、測定された。測定の方法は絶縁性外筒の中で、実施例1-1~1-7の固体電解質材料を700μm厚相当分挿入した。これを40MPaの圧力で加圧成型することで、固体電解質層を得た。次に、固体電解質層の上下面に50μm厚相当分のアルミニウム粉末を積層した。これを360MPaの圧力で加圧成型することで、積層体を作製した。次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。上記の方法で得られた積層体を含む試験体を、恒温槽に入れ、イオン伝導度の温度依存性を昇温過程と降温過程でそれぞれ測定した。
 [組成の評価]
 実施例1の固体電解質材料についてICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、実施例1-1~1-7のいずれについてもLi/Yが仕込み組成からのずれが3%以内であった。すなわち、遊星型ボールミルによる仕込み組成と実施例記載の固体電解質材料の組成はほとんど同様であったと言える。
 以下、比較例・参考例となる固体電解質の合成・評価方法について説明する。
 ≪比較例1-1≫
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiBrとInBrとを、モル比でLiBr:InBr=3:1となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、ペレット状に加圧成形した試料を、ガラス管中に真空封入を行い、200℃で1週間焼成を行った。
 以上により、比較例1の固体電解質材料であるLiInBrを得た。
 上記方法以外は、上記の実施例1と同様の方法で、比較例1-1の固体電解質材料のイオン伝導度と相転移の評価を実施した。22℃で測定されたイオン伝導度は、1×10-7S/cm未満であった。
 比較例1-1の固体電解質材料のイオン伝導度の温度依存性は、上述の図3に示される。図3に示されるように、伝導度の温度依存性により、昇温過程において、55℃付近で急激に伝導度が変化した。すなわち、比較例1-1の固体電解質材料では、相変化が見られた。
 ≪比較例1-2≫
 固体電解質の原料粉として、LiClとFeClとを用い、LiCl:FeCl=2:1のモル比で混合した。これにより、比較例1-2の固体電解質材料であるLiFeClを得た。
 これ以外は、上記の実施例1と同様の方法で、比較例1-2の固体電解質材料のイオン伝導度の評価を、実施した。測定されたイオン伝導度は、8.7×10-6S/cmであった。
 ≪参考例1-1≫
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiBr、YBr、をモル比でLi:Y:Br=3:1:6となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 以上により、参考例1-1の固体電解質材料であるLiYBrの粉末を得た。
 22℃で測定されたイオン伝導度は、4.0×10-4S/cmであった。
 ≪参考例1-2≫
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiBr、YBr、をモル比でLi:Y:Cl=3:1:6となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 以上により、参考例1-2の固体電解質材料であるLiYClの粉末を得た。
 22℃で測定されたイオン伝導度は、5.0×10-4S/cmであった。
 ≪考察≫
 実施例1-1~1-7と比較例1-1とを比較すると、本実施例1-1~1-7の固体電解質では-30℃から80℃の範囲において、相転移をしないのに対して、比較例1-1では相転移することがわかる。すなわち、本実施例の固体電解質は、電池の想定動作温度域において、構造が安定であることがわかる。
 また、すべての実施例1-1~1-7において、22℃で5.5×10-4S/cm以上のより高いイオン伝導性を示すことがわかる。本実施例の中でも、特に、2.0≦x≦5.0において、より高いイオン伝導度を示すことがわかる。
 ≪実施例2≫
 以下、本実施例におけるLiYBr6-xClを用いた2次電池の作製・評価方法について説明する。
 [二次電池の作製]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例1の固体電解質材料LiYBr6-xClと、正極活物質であるLiCoOを、30:70の体積比率で秤量した。これらをメノウ乳鉢で混合することで、正極合剤を作製した。
 絶縁性外筒の中で、実施例1の固体電解質材料を700μm厚相当分、正極合剤を12.3mgの順に積層した。これを360MPaの圧力で加圧成型することで、正極と固体電解質層を得た。
 次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)を積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。
 以上により、実施例2の二次電池を作製した。実施例1-1~1-7で得られた固体電解質を用いて二次電池を作製し、それぞれ実施例2-1~2-7とした。
 [充放電試験]
 図4に代表的な初期放電特性としての実施例2-4のグラフ(x=3:LiYBrCl)を示す。
 図4に示される結果は、下記の方法によって測定した。すなわち、実施例2の二次電池を、25℃の恒温槽に、配置した。電池の理論容量に対して0.05Cレート(20時間率)となる電流値で、定電流充電し、電圧3.6Vで充電を終了した。次に、同じく0.05Cレートとなる電流値で、放電し、電圧1.9Vで放電を終了した。以上の測定の結果から初期放電量が得られる。
 すべての実施例2-1~2-7において同様の測定を行い、その初期放電量を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以下、比較例となる固体電解質を用いた2次電池の作製・評価方法について説明する。
 ≪比較例2-1≫
 正極合剤と固体電解質層に用いる固体電解質として、比較例1-2の固体電解質材料を用いた。これ以外は、上記の実施例2と同様の方法で、二次電池の作製および充放電試験を、実施した。比較例2-1の二次電池の初期放電特性は、上述の図4に示される。
 比較例2-1の二次電池の初期放電容量は、1μAh未満であった。すなわち、比較例2-1の二次電池では、充放電動作は確認できなかった。
 ≪考察≫
 本実施例に記載される固体電解質材料においては、いずれも室温において電池の充放電動作を示した。一方で、比較例2-1においては、放電容量がほとんど取れず、電池動作の確認ができなかった。
 以上により、本開示による固体電解質材料は、硫化水素の発生が無く、かつ、高いリチウムイオン伝導度を安定的に維持することができる電解質材料であることが示される。さらに、硫化水素の発生が無く、かつ、充放電特性に優れた全固体電池を実現することができることが示される。
 ≪実施例3≫
 以下、本実施例におけるLiYBr6-xの合成・評価方法について説明する。
 [固体電解質材料の作製]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiBr、YBr、LiI、YIを、モル比でLi:Y:Br:I=3:1:6-x:xとなるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 また、本実施例におけるxの値はx=0.5、1、2、3、4、5、5.5であり、それぞれ実施例3-1、実施例3-2、実施例3-3、実施例3-4、実施例3-5、実施例3-6、実施例3-7とした。
 以上により、実施例3の固体電解質材料であるLiYBr6-xの粉末を得た。
 [リチウムイオン伝導度の評価]
 本実施例におけるイオン伝導度の評価は実施例1と同様の方法で行った。イオン伝導度の測定結果について、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [相転移の評価]
 本実施例の相転移の評価については実施例1と同様の方法で行った。その結果、-30℃から80℃の温度範囲において、すべての実施例3-1~3-7で、相変化(すなわち相転移)を示す伝導度の急激な変化は見られなかった。本実施例3の典型的な振る舞いとして実施例3-3(x=2:LiYBr)について測定の結果を図3に示す。
 [組成の評価]
 実施例3の固体電解質材料についての組成分析をICP法によって行った。その結果、実施例3-1~3-7のいずれについてもLi/Yが仕込み組成からのずれが3%以内であった。この結果、遊星型ボールミルによる仕込み組成と実施例記載の固体電解質材料の組成はほとんど同様であると考えることが出来る。
 以下、比較例となる固体電解質の合成・評価方法について説明する。
 ≪比較例3-1≫
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiIとYIとを、モル比でLiI:YI=3:1となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 以上により、比較例3-1の固体電解質材料であるLiYIの粉末を得た。
 実施例2の固体電解質と同様の方法で行ったイオン導電率を表3に示す。
 ≪考察≫
 実施例3-1~3-7と比較例1-1とを比較すると、-30℃から80℃の範囲において、LiYBr6-xで表される実施例3-1~3-7は相転移をしないのに対して、比較例1-1は相転移することがわかる。すなわち、LiYBr6-xは、電池の想定動作温度域において、構造が安定であることがわかる。
 また、実施例3-1~3-7と比較例3-1とを比較すると、室温近傍において、実施例3-1~3-7は1×10-4S/cm以上のより高いイオン伝導性を示すのに対して、比較例3-1は1×10-4S/cm未満のイオン伝導性であることがわかる。また、0.5≦x≦4.0において、参考例1-1よりも、高いイオン伝導を示すことがわかる(実施例3-1~3-5参照)。また、特に、1.0≦x≦3.0において、より高いイオン伝導を示すことがわかる(実施例3-2~3-4参照)。
 ≪実施例4≫
 以下、本実施例におけるLiYBr6-xを用いた2次電池の作製・評価方法について説明する。
 [正極活物質被覆層の作製]
 アルゴングローブボックス内で、金属Li(本荘ケミカル製)0.06mgとペンタエトキシニオブ(高純度化学製)2.87mgとを、超脱水エタノール(和光純薬製)0.2mLに溶解して、被覆溶液を作製した。
 メノウ乳鉢上で、100mgの正極活物質であるLi(NiCoAl)Oに、作製した被覆溶液を徐々に添加しながら、攪拌した。
 被覆溶液を全て添加した後、30℃のホットプレート上で、目視で乾固が確認できるまで、攪拌を行った。
 乾固後の粉末を、アルミナ製るつぼに入れ、大気雰囲気下に取り出した。
 次いで、大気雰囲気下300℃、1時間の熱処理を行った。
 熱処理後の粉末を、メノウ乳鉢にて再粉砕することで、被覆層を粒子表層に形成した実施例1の正極活物質を得た。すなわち、正極活物質の複数の粒子が得られ、これら複数の粒子のうちの全て又は一部の粒子は、粒子表面の少なくとも一部に被覆層が形成されていた。
 当該被覆層の材料は、LiNbOである。
 [二次電池の作製]
 以下、本実施例におけるLiYBr6-xの2次電池の作製・評価方法について説明する。
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例1の固体電解質材料LiYBr6-xと、LiNbOで粒子表面をコートした正極活物質であるLi(NiCoAl)Oを、30:70の体積比率で秤量した。これらをメノウ乳鉢で混合することで、正極合剤を作製した。
 絶縁性外筒の中で、実施例1の固体電解質材料を700μm厚相当分、正極合剤を12.3mgの順に積層した。これを360MPaの圧力で加圧成型することで、正極と固体電解質層を得た。
 次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)を積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。
 以上により、実施例4の二次電池を作製した。実施例3-1~3-7で得られた固体電解質を用いて二次電池を作製し、それぞれ実施例4-1~4-7とした。
 [充放電試験]
 図4に代表的な初期放電特性としての実施例4-3のグラフ(x=2:LiYBr)を示す。
 図4に示される結果は、下記の方法により、測定された。すなわち、実施例1の二次電池を、25℃の恒温槽に、配置した。電池の理論容量に対して0.05Cレート(20時間率)となる電流値で、定電流充電し、電圧3.7Vで充電を終了した。次に、同じく0.05Cレートとなる電流値で、放電し、電圧1.9Vで放電を終了した。以上の測定の結果から初期放電量が得られる。
 すべての実施例4-1~4-7において同様の測定を行い、その初期放電量を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 ≪考察≫
 本実施例に記載される固体電解質材料においては、いずれも室温において電池の充放電動作を示した。一方で、比較例2-1においては、放電容量がほとんど取れず、電池動作の確認ができなかった。
 以上により、本開示による固体電解質材料は、硫化水素の発生が無く、かつ、高いリチウムイオン伝導度を安定的に維持することができる電解質材料であることが示される。さらに、硫化水素の発生が無く、かつ、充放電特性に優れた全固体電池を実現することができることが示される。
 ≪実施例5≫
 以下、本実施例におけるLiY(BrCl、I)の合成・評価方法について説明する。
 [固体電解質材料の作製]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉LiBr、YBr、LiCl、YCl、LiI、YIを、モル比でLi:Y:Cl:Br:I=3:1:l:m:nとなるように、つまり、LiYClBrI(l+m+n=6)となるように秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。
 得られた固体電解質を実施例5とした。実施例5-1~5-10のl、m、nの数値は、表5に示される。
Figure JPOXMLDOC01-appb-T000005
 [イオン伝導度の評価]
 図2に示す構成を用いて、下記の方法にて、イオン伝導度の評価を行った。露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例5の固体電解質材料の粉末(固体電解質粒子100の実施例)を加圧成形用ダイス300に充填し、400MPaで一軸加圧し、実施例5の伝導度測定セルを作製した。加圧状態のまま、パンチ上部303とパンチ下部302のそれぞれから導線を取り回し、周波数応答アナライザを搭載したポテンショスタット(Princeton Applied Research社 VersaSTAT4)に接続し、電気化学的インピーダンス測定法により、室温におけるイオン伝導度の測定を行った。22℃で測定した、実施例5の固体電解質材料のイオン伝導度は、表5に示されるものであった。
 [相転移の評価]
 図5は、固体電解質のイオン伝導度の温度依存性を示すグラフである。本実施例5の典型的な振る舞いとして実施例5-5(LiYBrClI)について測定の結果を図5に示す。-30℃から80℃の温度範囲において、すべての実施例5-1~5-10で、相変化(すなわち相転移)を示す伝導度の急激な変化は見られなかった。
 図5に示される結果は、下記の方法により、測定された。測定の方法は絶縁性外筒の中で、実施例5-1~5-10の固体電解質材料を700μm厚相当分挿入した。これを40MPaの圧力で加圧成型することで、固体電解質層を得た。次に、固体電解質層の上下面に50μm厚相当分のアルミニウム粉末を積層した。これを360MPaの圧力で加圧成型することで、積層体を作製した。次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。上記の方法で得られた積層体を含む試験体を、恒温槽に入れ、イオン伝導度の温度依存性を昇温過程と降温過程でそれぞれ測定した。
 [組成の評価]
 実施例5の固体電解質材料についてICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、実施例5-1~5-10のいずれについてもLi/Yが仕込み組成からのずれが3%以内であった。すなわち、遊星型ボールミルによる仕込み組成と実施例記載の固体電解質材料の組成はほとんど同様であったと言える。
 [二次電池作製に使用する正極活物質の被覆層の作製]
 アルゴングローブボックス内で、金属Li(本荘ケミカル製)0.06mgとペンタエトキシニオブ(高純度化学製)2.87mgとを、超脱水エタノール(和光純薬製)0.2mLに溶解して、被覆溶液を作製した。
 メノウ乳鉢上で、100mgの正極活物質であるLi(NiCoAl)Oに、作製した被覆溶液を徐々に添加しながら、攪拌した。
 被覆溶液を全て添加した後、30℃のホットプレート上で、目視で乾固が確認できるまで、攪拌を行った。
 乾固後の粉末を、アルミナ製るつぼに入れ、大気雰囲気下に取り出した。
 次いで、大気雰囲気下300℃、1時間の熱処理を行った。
 熱処理後の粉末を、メノウ乳鉢にて再粉砕することで、被覆層を粒子表層に形成した実施例5の正極活物質を得た。すなわち、正極活物質の複数の粒子が得られ、これら複数の粒子のうちの全て又は一部の粒子は、粒子表面の少なくとも一部に被覆層が形成されていた。当該被覆層の材料は、LiNbOである。
 [二次電池の作製]
 以下本実施例における2次電池の作製・評価方法について説明する。
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例5の固体電解質材料LiYClBrと、LiNbOで粒子表面をコートした正極活物質であるLi(NiCoAl)Oを、30:70の体積比率で秤量した。これらをメノウ乳鉢で混合することで、正極合剤を作製した。
 絶縁性外筒の中で、実施例5の固体電解質材料を700μm厚相当分、正極合剤を12.3mgの順に積層した。これを360MPaの圧力で加圧成型することで、正極と固体電解質層を得た。
 次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)を積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。
 以上により、実施例5の材料を用いた二次電池を作製した。
 [充放電試験]
 図6に代表的な初期放電特性としての実施例5-5のグラフ(l=m=n=2:LiYClBrI)を示す。図6に示される結果は、下記の方法によって測定した。すなわち、実施例5の二次電池を、25℃の恒温槽に、配置した。電池の理論容量に対して0.05Cレート(20時間率)となる電流値で、定電流充電し、電圧3.7Vで充電を終了した。次に、同じく0.05Cレートとなる電流値で、放電し、電圧1.9Vで放電を終了した。図6において、実施例5-5では650μAhの初期放電量が得られた。上記の方法を用いてすべての実施例5-1~5-10において同様の測定を行い、実施例5-1~5-4および5-6~10においても実施例5-5と同等の良好な放電量が得られた。
 ≪考察≫
 実施例5-1~5-10と比較例1-1とを比較すると、本実施例の固体電解質では-30℃から80℃の範囲において、相転移をしないのに対して、比較例1-1では相転移をしていることがわかる。すなわち、実施例5-1~5-10は、電池の想定動作温度域において、構造が安定であることがわかる。
 また、すべての実施例5-1~5-10において、22℃で5×10-4S/cm以上のより高いイオン伝導性を示すことがわかる。さらに、LiYClBrIにおけるn=1、1<l、およびm<4の範囲において1×10-3S/cm以上の伝導度を示す(実施例5-1、5-2、および5-4参照)。また、LiYClBrIにおけるn=2、1≦l、および1<m<4の範囲においても、1×10-3S/cm以上の伝導度を示す(実施例5-5、5-8参照)。さらには、m=n=l=2において、3.3×10-3S/cmが得られた(実施例5-5参照)。
 また、本実施例に記載される固体電解質材料においては、いずれも室温において電池の充放電動作を示した。一方で、比較例1-2においては、放電容量がほとんど取れず、電池動作の確認ができなかった。
 以上により、本開示による固体電解質材料は、硫化水素の発生が無く、かつ、高いリチウムイオン伝導度を安定的に維持することができる電解質材料であることが示される。さらに、硫化水素の発生が無く、かつ、充放電特性に優れた全固体電池を実現することができることが示される。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
100 固体電解質粒子
201 正極
202 電解質層
203 負極
204 正極活物質粒子
205 負極活物質粒子
300 加圧成形用ダイス
301 枠型
302 パンチ下部
303 パンチ上部
1000 電池

Claims (17)

  1.  下記の組成式(1)により表され、
     LiYX・・・式(1)
     ここで、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である、固体電解質材料。
  2.  前記Xは、BrとClを含む、請求項1に記載の固体電解質材料。
  3.  下記の組成式(2)により表され、
     LiYBr6-xCl・・・式(2)
     0.5≦x≦5.5、を満たす、請求項2に記載の固体電解質材料。
  4.  2.0≦x≦5.0、を満たす、請求項3に記載の固体電解質材料。
  5.  前記Xは、BrとIを含む、請求項1に記載の固体電解質材料。
  6.  下記の組成式(3)により表され、
     LiYBr6-x・・・式(3)
     0.5≦x≦5.5、を満たす、請求項5に記載の固体電解質材料。
  7.  1.0≦x≦3.0、を満たす、請求項6に記載の固体電解質材料。
  8.  下記の組成式(4)により表され、
     LiYClBr・・・式(4)
     ここで、l+m+n=6、を満たす、請求項1に記載の固体電解質材料。
  9.  0.5<l<5、
     0.5<m<5、および
     0.5<n<5、を満たす、請求項8に記載の固体電解質材料。
  10.  1≦l≦4、
     1≦m≦4、および
     1≦n≦4、を満たす、請求項9に記載の固体電解質材料。
  11.  n=1、
     1<l、および
     m<4、を満たす、請求項10に記載の固体電解質材料。
  12.  n=2、
     1≦l、および
     1<m<4、を満たす、請求項10に記載の固体電解質材料。
  13.  l=2、および
     m=2、を満たす、請求項12に記載の固体電解質材料。
  14.  正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、を備え、
     前記正極と前記負極と前記電解質層とのうちの少なくとも1つは、請求項1から13のいずれかに記載の固体電解質材料を含む、電池。
  15.  前記正極は、
    正極活物質の粒子と、
      前記粒子の少なくとも一部を被覆する酸化物と、
    を含む、請求項14に記載の電池。
  16.  前記正極活物質は、Li(NiCoAl)Oである、請求項15に記載の電池。
  17.  前記酸化物は、LiNbOである、請求項16に記載の電池。
PCT/JP2018/041891 2018-01-05 2018-11-13 固体電解質材料、および、電池 WO2019135315A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019563930A JP7417923B2 (ja) 2018-01-05 2018-11-13 固体電解質材料、および、電池
EP18898735.8A EP3736830B1 (en) 2018-01-05 2018-11-13 Solid electrolyte material and battery
CN202310865274.6A CN116885271A (zh) 2018-01-05 2018-11-13 固体电解质材料和电池
CN201880081974.3A CN111492442A (zh) 2018-01-05 2018-11-13 固体电解质材料和电池
US16/911,447 US20200328453A1 (en) 2018-01-05 2020-06-25 Solid electrolyte material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000418 2018-01-05
JP2018000418 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,447 Continuation US20200328453A1 (en) 2018-01-05 2020-06-25 Solid electrolyte material and battery

Publications (1)

Publication Number Publication Date
WO2019135315A1 true WO2019135315A1 (ja) 2019-07-11

Family

ID=67144173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041891 WO2019135315A1 (ja) 2018-01-05 2018-11-13 固体電解質材料、および、電池

Country Status (5)

Country Link
US (1) US20200328453A1 (ja)
EP (1) EP3736830B1 (ja)
JP (1) JP7417923B2 (ja)
CN (2) CN111492442A (ja)
WO (1) WO2019135315A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970667A (zh) * 2019-12-20 2020-04-07 横店集团东磁股份有限公司 一种复合卤化物固态电解质、其制备方法和用途
CN111900462A (zh) * 2020-07-17 2020-11-06 国联汽车动力电池研究院有限责任公司 一种固体电解质材料及其制备方法和固态锂电池
JPWO2019135317A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135318A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135319A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135316A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2021131426A1 (ja) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 固体電解質組成物、および、固体電解質粒子
WO2021200085A1 (ja) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 正極材料および電池
WO2021200084A1 (ja) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 正極材料および電池
JP6947321B1 (ja) * 2021-03-01 2021-10-13 Tdk株式会社 電池及び電池の製造方法
WO2021221000A1 (ja) * 2020-04-28 2021-11-04 パナソニックIpマネジメント株式会社 正極材料、および、電池
CN113845140A (zh) * 2020-06-28 2021-12-28 宝山钢铁股份有限公司 一种氟掺杂的卤化物固态电解质及制备方法
WO2022246406A1 (en) * 2021-05-17 2022-11-24 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022249686A1 (ja) * 2021-05-26 2022-12-01 パナソニックIpマネジメント株式会社 固体電解質材料および電池
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022254985A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、正極材料、正極および電池
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062154A (zh) * 2020-09-15 2020-12-11 中国科学技术大学 一种氯化锆锂的制备方法及应用
WO2023117698A1 (en) 2021-12-23 2023-06-29 Rhodia Operations Process for the preparation of lithium rare-earth halides

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235155A (ja) * 2003-01-30 2004-08-19 Samsung Electronics Co Ltd 固体電解質、その製造方法及びそれを採用した電池
JP2005353309A (ja) 2004-06-08 2005-12-22 Tokyo Institute Of Technology リチウム電池素子
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
CN105254184A (zh) * 2015-11-27 2016-01-20 宁波大学 一种稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法
JP2016024874A (ja) * 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2017108105A1 (en) * 2015-12-22 2017-06-29 Toyota Motor Europe Materials for solid electrolyte
WO2017154922A1 (ja) * 2016-03-08 2017-09-14 株式会社村田製作所 固体電解質、全固体電池、固体電解質の製造方法及び全固体電池の製造方法
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534845B (zh) * 2011-05-26 2015-09-09 丰田自动车株式会社 被覆活性物质及锂固体电池
FR3004467B1 (fr) * 2013-04-12 2016-05-27 Saint-Gobain Cristaux Et Detecteurs Fabrication d'une elpasolite stoechiometrique
JPWO2019135318A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111557058B (zh) 2018-01-05 2023-09-01 松下知识产权经营株式会社 固体电解质材料和电池
WO2019135319A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736826A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235155A (ja) * 2003-01-30 2004-08-19 Samsung Electronics Co Ltd 固体電解質、その製造方法及びそれを採用した電池
JP2005353309A (ja) 2004-06-08 2005-12-22 Tokyo Institute Of Technology リチウム電池素子
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2016024874A (ja) * 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
CN105254184A (zh) * 2015-11-27 2016-01-20 宁波大学 一种稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法
WO2017108105A1 (en) * 2015-12-22 2017-06-29 Toyota Motor Europe Materials for solid electrolyte
WO2017154922A1 (ja) * 2016-03-08 2017-09-14 株式会社村田製作所 固体電解質、全固体電池、固体電解質の製造方法及び全固体電池の製造方法
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOHNSACK, A. ET AL.: "Ternary halides of the A3 MX 6 type. VI. Ternary chlorides of the rare-earth elements with lithium, Li3MCl6 (M=Tb-Lu, Y, Sc): Synthesis, crystal structures, and ionic motion", ZEITSCHRIFT FÜR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 623, 1997, pages 1067 - 1073, XP055600040, DOI: doi:10.1002/chin.199739018 *
BOHNSACK, A. ET AL.: "Ternary halides of the A3 MX 6 type. VII. The bromides Li3MBr6 (M=Sm-Lu, Y): Synthesis, crystal structure, and ionic mobility", ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 623, 1997, pages 1352 - 1356, XP055600030, DOI: doi:10.1002/zaac.19976230905 *
See also references of EP3736830A4
Z. ANORG. ALLG. CHEM., vol. 623, 1997, pages 1352

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417924B2 (ja) 2018-01-05 2024-01-19 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135317A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135318A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135319A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135316A1 (ja) * 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN110970667A (zh) * 2019-12-20 2020-04-07 横店集团东磁股份有限公司 一种复合卤化物固态电解质、其制备方法和用途
WO2021131426A1 (ja) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 固体電解質組成物、および、固体電解質粒子
WO2021200085A1 (ja) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 正極材料および電池
WO2021200084A1 (ja) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 正極材料および電池
US11978847B2 (en) 2020-04-14 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material, electrolyte including ion conductive material, and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11973186B2 (en) 2020-04-14 2024-04-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including halide material, electrolyte including the same, and methods of forming the same
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11984598B2 (en) 2020-04-23 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
WO2021221000A1 (ja) * 2020-04-28 2021-11-04 パナソニックIpマネジメント株式会社 正極材料、および、電池
CN113845140A (zh) * 2020-06-28 2021-12-28 宝山钢铁股份有限公司 一种氟掺杂的卤化物固态电解质及制备方法
CN111900462A (zh) * 2020-07-17 2020-11-06 国联汽车动力电池研究院有限责任公司 一种固体电解质材料及其制备方法和固态锂电池
US11978849B2 (en) 2020-08-07 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
JP2022132739A (ja) * 2021-03-01 2022-09-13 Tdk株式会社 電池及び電池の製造方法
WO2022186211A1 (ja) * 2021-03-01 2022-09-09 Tdk株式会社 電池及び電池の製造方法
JP6947321B1 (ja) * 2021-03-01 2021-10-13 Tdk株式会社 電池及び電池の製造方法
WO2022246406A1 (en) * 2021-05-17 2022-11-24 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
KR102637203B1 (ko) * 2021-05-17 2024-02-19 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 전해질 물질 및 형성 방법
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
KR20230092885A (ko) * 2021-05-17 2023-06-26 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 전해질 물질 및 형성 방법
WO2022249686A1 (ja) * 2021-05-26 2022-12-01 パナソニックIpマネジメント株式会社 固体電解質材料および電池
WO2022254985A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、正極材料、正極および電池

Also Published As

Publication number Publication date
JP7417923B2 (ja) 2024-01-19
JPWO2019135315A1 (ja) 2021-01-21
EP3736830A4 (en) 2021-03-03
CN116885271A (zh) 2023-10-13
CN111492442A (zh) 2020-08-04
US20200328453A1 (en) 2020-10-15
EP3736830B1 (en) 2024-01-03
EP3736830A1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP7417923B2 (ja) 固体電解質材料、および、電池
US11760649B2 (en) Solid electrolyte material and battery
US11404718B2 (en) Solid electrolyte material and battery
US11427477B2 (en) Solid electrolyte material and battery
JP7417925B2 (ja) 固体電解質材料、および、電池
JP7417927B2 (ja) 固体電解質材料、および、電池
JP7417924B2 (ja) 固体電解質材料、および、電池
US20200328455A1 (en) Solid electrolyte material and battery
WO2019146219A1 (ja) 固体電解質材料、および、電池
JP7417926B2 (ja) 固体電解質材料、および、電池
WO2019146217A1 (ja) 電池
WO2018025582A1 (ja) 固体電解質材料、および、電池
WO2019135341A1 (ja) 固体電解質材料、および、電池
WO2019135342A1 (ja) 固体電解質材料、および、電池
EP4163990A1 (en) Solid electrolyte material, and battery in which same is used
WO2023162758A1 (ja) 固体電解質材料
WO2022215337A1 (ja) 固体電解質材料およびそれを用いた電池
US20230307703A1 (en) Solid electrolyte material, and battery using same
WO2023074143A1 (ja) 固体電解質材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898735

Country of ref document: EP

Effective date: 20200805