WO2022186303A1 - 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池 - Google Patents

固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池 Download PDF

Info

Publication number
WO2022186303A1
WO2022186303A1 PCT/JP2022/008976 JP2022008976W WO2022186303A1 WO 2022186303 A1 WO2022186303 A1 WO 2022186303A1 JP 2022008976 W JP2022008976 W JP 2022008976W WO 2022186303 A1 WO2022186303 A1 WO 2022186303A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
less
powder
battery
electrolyte according
Prior art date
Application number
PCT/JP2022/008976
Other languages
English (en)
French (fr)
Inventor
徳彦 宮下
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2023503928A priority Critical patent/JPWO2022186303A1/ja
Publication of WO2022186303A1 publication Critical patent/WO2022186303A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to solid electrolytes.
  • the present invention also relates to an electrode mixture, a solid electrolyte layer and a battery using a solid electrolyte.
  • Patent Document 1 proposes lithium silver sulphate germanium ore represented by Li + (12-n ⁇ x) B n+ X 2-6 - x Y ⁇ x .
  • Bn+ is an element selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb and Ta.
  • X 2- is an element selected from the group consisting of S, Se and Te.
  • Y- is selected from the group consisting of Cl , Br, I, F, CN, OCN, SCN, N3.
  • Non-Patent Document 2 describes a thioantimonate lithium compound represented by Li 6+x Sb 1-x Si x S 5 I and having an aldirodite type crystal structure.
  • an object of the present invention is to provide a solid electrolyte having good ionic conductivity.
  • the present invention provides lithium (Li) element, M element (M is at least one element selected from silicon (Si), antimony (Sb), tin (Sn) and germanium (Ge).), sulfur ( S) element, and iodine (I),
  • XRD X-ray diffractometer
  • FIG. 1 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Example 1.
  • FIG. 2 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Example 2.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Example 3.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Example 4.
  • FIG. 5 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Example 5.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Example 6.
  • FIG. 7 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Comparative Example 2.
  • FIG. 8 is a diagram showing an X-ray diffraction pattern of the solid electrolyte obtained in Comparative Example 4.
  • FIG. 9 is a diagram showing initial charge/discharge characteristics of an all-solid-state battery using the solid electrolyte obtained in Example 1 for the positive electrode layer.
  • FIG. 10 is a diagram showing initial charge/discharge characteristics of an all-solid-state battery using the solid electrolyte obtained in Comparative Example 3 for the positive electrode layer.
  • the present invention relates to solid electrolytes.
  • the solid electrolyte of the present invention has ion conductivity, preferably lithium ion conductivity.
  • the solid electrolyte of the present invention is a sulfide solid electrolyte containing S element as its constituent element, specifically Li element, M element (M is at least one of Si, Sb, Sn and Ge). element.), S element, and I element.
  • the solid electrolyte of the present invention may contain other elements in addition to the elements described above as its constituent elements. For example, it is possible to replace part of the Li element with another alkali metal element, replace part of the S element with another chalcogen element, or replace part of the I element with another halogen (Ha) element. can.
  • solid electrolytes such as Li 6 PS 5 I, Li 6 PS 5 Br and Li 6 PS 5 Cl described in Patent Document 1 are known.
  • the solid electrolyte of the present invention uses M element instead of P element in these sulfide solid electrolytes. By using the M element instead of the P element, the solid electrolyte of the present invention exhibits a higher ionic conductivity than hitherto known sulfide solid electrolytes.
  • the solid electrolyte of the present invention preferably does not contain the P element.
  • the element M preferably contains at least Sb.
  • the solid electrolyte of the present invention preferably contains at least Sb as the M element and further contains another M element.
  • M elements other than Sb include at least one of Si and Sn.
  • the solid electrolyte of the present invention preferably contains at least Si and Sb as M elements, or at least Sn and Sb.
  • the solid electrolyte of the present invention preferably has a ratio of the number of moles of Sb to the total number of moles of all M elements within a predetermined range.
  • the ratio is, for example, preferably 25 mol % or more, preferably 45 mol % or more, more preferably 55 mol % or more, and even more preferably 65 mol % or more.
  • the ratio is, for example, preferably 75 mol % or less, more preferably 73 mol % or less, and even more preferably 70 mol % or less.
  • the solid electrolyte of the present invention may contain Ha element other than I element. This makes it possible to increase the ionic conductivity of the solid electrolyte of the present invention.
  • Ha elements other than the I element include chlorine (Cl) and bromine (Br), and the solid electrolyte of the present invention can contain at least one of these elements.
  • the content (mol) of the Ha element other than the I element relative to 1 mol of the I element is, for example, preferably 1 or less, and 0.6 or less. It is more preferably 0.4 or less. Further, the content (mol) of the Ha element other than the I element with respect to 1 mol of the I element is preferably 0.05 or more, for example, from the viewpoint of obtaining better ion conductivity, and is preferably 0.2 or more. More preferably.
  • XRD X-ray diffraction device
  • the peak intensities of the diffraction peaks A, B and C are Ia, Ib and Ic respectively, it is preferable to satisfy Ia>Ib and Ia>Ic from the viewpoint of further increasing the ionic conductivity of the solid electrolyte.
  • the peak intensity in this specification means the peak height in the X-ray diffraction pattern.
  • the diffraction peak D described above is attributed to lithium iodide (LiI).
  • the solid electrolyte of the present invention contains lithium and iodine as constituent elements.
  • that Id/Ia is equal to or less than the above value means that the amount of lithium iodide contained in the solid electrolyte is small.
  • the amount thereof is preferably as small as possible from the viewpoint of enhancing ion conductivity. From this point of view, it is more preferable to satisfy Id/Ia ⁇ 0.03, and it is even more preferable to satisfy Id/Ia ⁇ 0.01.
  • Id/Ia 0, that is, no diffraction peak D is observed in the XRD diffraction pattern.
  • the solid electrolyte of the present invention is preferably crystalline from the viewpoint of exhibiting high ionic conductivity, and from this viewpoint, it preferably contains a crystal phase having an aldirodite crystal structure. In particular, it is preferable to contain a crystalline phase having a cubic aldirodite crystal structure from the viewpoint of further increasing the ion conductivity. Whether or not the solid electrolyte contains a crystal phase having an aldirodite crystal structure can be determined based on an X-ray diffraction pattern obtained by an X-ray diffraction method.
  • 2 ⁇ 45.6° ⁇ 1.0°, 49.9° ⁇ 1.0°, 56.3° ⁇ 1.0°, depending on the element species constituting the solid electrolyte. , 59.3° ⁇ 1.0°, 65.0° ⁇ 1.0° and 67.8° ⁇ 1.0°.
  • Data of PDF No. 01-077-5737 can be used for identification of diffraction peaks derived from the aldirodite-type crystal structure.
  • the solid electrolyte containing a crystal phase having an aldirodite-type crystal structure means that the solid electrolyte contains at least a crystal phase having an aldirodite-type crystal structure.
  • the solid electrolyte preferably contains a crystal phase having an aldirodite crystal structure as a main phase.
  • the "main phase” refers to the phase that accounts for the largest proportion of the total amount of all crystal phases constituting the solid electrolyte. Therefore, the content of the crystal phase having an aldirodite-type crystal structure contained in the solid electrolyte is preferably, for example, 60% by mass or more, more preferably 70% by mass or more, More preferably, it is at least 90% by mass.
  • the ratio of the crystal phase can be confirmed by, for example, XRD.
  • the solid electrolyte of the present invention may be composed of a single phase composed of a crystal phase having an aldirodite-type crystal structure, or a mixed phase containing a crystal phase having an aldirodite-type crystal structure and other crystal phases. There may be.
  • Other crystal phases include, but are not limited to, other solid electrolyte materials, Li 2 S, Li 3 PS 4 , Li 4 P 2 S 6 and the like.
  • the solid electrolyte of the present invention preferably does not contain a LiI crystal phase as much as possible from the viewpoint of improving ion conductivity. preferably within
  • the solid electrolyte of the present invention is represented by the composition formula Li 6+x MS 5+y I Z Ha ⁇ (Ha represents at least one halogen element other than iodine) from the viewpoint of further improving ion conductivity. preferable.
  • Ha represents at least one halogen element other than iodine
  • x, y, z and ⁇ preferably satisfy the following formulas (3) to (6). -1.0 ⁇ x ⁇ 1.5 (3) -0.5 ⁇ y ⁇ 0.5 (4) 0.5 ⁇ z ⁇ 1.1 (5) 0 ⁇ 0.5 (6)
  • x, y, z and ⁇ preferably satisfy the following formulas (3′) to (6′). -0.5 ⁇ x ⁇ 1.0 (3') -0.3 ⁇ y ⁇ 0.3 (4') 0.8 ⁇ z ⁇ 1.1 (5′) 0.0 ⁇ 0.4 (6′)
  • the solid electrolyte of the present invention has the composition formula Li 6+x+x' Si x' Sb 1-x' S 5+y I Z Ha ⁇ (Ha is other than iodine (I) represents at least one halogen element of ) is preferable from the point of further improvement in ionic conductivity.
  • x, x', y, z and ⁇ preferably satisfy the following formulas (7) to (10). 0 ⁇ x+x' ⁇ 1.5 (7) -0.5 ⁇ y ⁇ 0.5 (8) 0.5 ⁇ z ⁇ 1.1 (9) 0 ⁇ 0.5 (10)
  • z+a which indicates the total amount of the I element and the Ha element, is, for example, preferably 0.8 or more, more preferably 0.9 or more, and even more preferably 0.95 or more. preferable.
  • z+a is, for example, preferably 1.6 or less, more preferably 1.4 or less, even more preferably 1.2 or less, even more preferably 1.1 or less, It is more preferably 1.05 or less.
  • x, x', y, z and ⁇ preferably satisfy the following formulas (7') to (10'). 0.5 ⁇ x+x′ ⁇ 1.0 (7′) -0.3 ⁇ y ⁇ 0.3 (8') 0.8 ⁇ z ⁇ 1.1 (9′) 0 ⁇ 0.4 (10′)
  • x′ is 0.5 or more and 0.7 or less, particularly 0.6 or more and 0.7 or less, from the viewpoint of improving the ionic conductivity of the solid electrolyte. preferable.
  • the solid electrolyte of the present invention is preferably powdery particles, and regarding its particle size, the volume cumulative particle size D50 at a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method is, for example, 0.5 . It is preferably 1 ⁇ m or more.
  • the particle size D50 is equal to or greater than the above value, it is possible to suppress an excessive increase in the surface area of the solid electrolyte particles and an increase in resistance. Moreover, mixing with the active material is facilitated.
  • the particle size D50 is, for example, preferably 150 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 10 ⁇ m or less, even more preferably 7 ⁇ m or less, and 5 ⁇ m or less. is even more preferred.
  • the particle diameter D50 is equal to or less than the above value, the particles of the solid electrolyte are likely to enter the gaps between the active materials, increasing the number of contact points and the contact area. Thereby, the further improvement of ion conductivity can be aimed at.
  • the solid electrolyte of the present invention includes, for example, raw materials such as lithium sulfide (Li 2 S) powder, sulfide powder of element M or elemental powder of element M, sulfur (S) powder, and lithium iodide (LiI) powder. can be obtained by mixing these powders using and sintering the mixed powder. The amount of each powder used is adjusted so that the intended solid electrolyte has a desired composition composed of Li element, M element, S element and I element.
  • the solid electrolyte of the present invention contains Ha element other than I element, such as Cl or Br, for example, lithium chloride powder or lithium bromide powder may be further used.
  • a method for mixing raw material powders it is preferable to use, for example, a ball mill, a bead mill, a homogenizer, or the like. It is also possible to use a mechanical alloying method when mixing the raw material powders. In that case, by increasing the energy applied during mixing, the raw material powders are uniformly mixed at the atomic level, so that a more uniform solid electrolyte can be obtained by firing the obtained mixed powder. However, if the energy during mixing is increased, the media put into the mixing container together with the raw material powder will be worn and mixed as an impurity component, which may adversely affect the properties of the resulting solid electrolyte. From this point of view, it is preferable not to apply too much energy during mixing.
  • the mixed powder obtained by mixing the raw material powders is preferably dried, if necessary, pulverized, classified, and fired in an inert gas atmosphere or hydrogen sulfide (H 2 S) gas flow.
  • Sulfur deficiency can be suppressed by setting the firing temperature to preferably 350° C. or higher.
  • the firing temperature it is possible to suppress the remaining of unreacted raw material powder, such as lithium iodide, in the solid electrolyte, thereby suppressing the decrease in ionic conductivity.
  • the firing temperature when hydrogen sulfide gas is used as the firing atmosphere is, for example, preferably 350° C. or higher and 650° C. or lower, more preferably 450° C. or higher and 600° C. or lower, and 450° C. or higher and 500° C. or lower. It is more preferable to
  • the firing temperature when firing in an inert gas atmosphere is, for example, preferably 350° C. or higher and 550° C. or lower, more preferably 350° C. or higher and 500° C. or lower, and 400° C. or higher and 450° C. or lower. is more preferable.
  • the firing may be performed in an inert gas atmosphere because the reaction is promoted even at a low temperature.
  • the firing time is preferably set to 1 hour or more and 10 hours or less, more preferably 2 hours or more and 8 hours or less, and even more preferably 3 hours or more and 6 hours or less.
  • the heating rate during firing is preferably 250° C./h or less from the viewpoint of eliminating unreacted phases caused by uneven heating, particularly unreacted phases of lithium iodide. Considering the viewpoint of maintaining the firing efficiency, it is preferably 50° C./h or more and 200° C./h or less, particularly 80° C./h or more and 150° C./h or less.
  • the solid electrolyte thus obtained has lithium ion conductivity in the solid state.
  • the lithium ion conductivity of the solid electrolyte is preferably at room temperature, that is, at 25° C., for example, is preferably 1.0 mS/cm or more, more preferably 1.5 mS/cm or more, and more preferably 2.0 mS/cm. It is more preferable that it is above. Lithium ion conductivity can be measured using the method described in Examples below.
  • the solid electrolyte of the present invention can be used as a material for forming a solid electrolyte layer, a positive electrode layer, or a negative electrode layer.
  • the solid electrolyte of the present invention can be used in a battery having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte of the present invention can be used in so-called solid batteries. More specifically, it can be used in lithium solid state batteries.
  • a lithium solid state battery may be a primary battery or a secondary battery. There is no particular limitation on the shape of the battery, and for example, shapes such as laminate, cylindrical and square can be adopted.
  • Solid battery means a solid battery that does not contain any liquid or gel substance as an electrolyte, and also includes, for example, 50% by mass or less, 30% by mass or less, or 10% by mass or less of liquid or gel substance as an electrolyte. Aspects are also included.
  • the solid electrolyte layer contains the solid electrolyte of the present invention
  • the solid electrolyte layer can be removed, for example, by dropping a slurry comprising a sulfide solid electrolyte, a binder, and a solvent onto a substrate and scraping it off with a doctor blade or the like. It can be produced by a method of cutting with an air knife after contacting with , a method of forming a coating film by a screen printing method or the like, and a method of removing the solvent after drying by heating.
  • a powdery sulfide solid electrolyte can be made into a green compact by pressing or the like, and then processed appropriately to produce the green compact.
  • the thickness of the solid electrolyte layer is typically preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of the balance between short circuit prevention and volume capacity density.
  • the solid electrolyte of the present invention may be used together with an active material to form an electrode mixture.
  • the ratio of the solid electrolyte in the electrode mixture is typically 10% by mass or more and 50% by mass or less.
  • the electrode mixture may contain other materials such as a conductive aid and a binder as needed.
  • a positive electrode layer and a negative electrode layer can be produced by mixing an electrode mixture and a solvent to prepare a paste, applying the paste on a current collector such as an aluminum foil, and drying the paste.
  • the positive electrode material used as the positive electrode active material for lithium ion batteries can be used as appropriate.
  • positive electrode active materials containing lithium specifically, spinel-type lithium transition metal oxides and lithium metal oxides having a layered structure can be used.
  • Energy density can be improved by using a high-voltage positive electrode material as the positive electrode material.
  • the positive electrode material may contain a conductive material in addition to the positive electrode active material, or may contain other materials.
  • a negative electrode material that is used as a negative electrode active material for lithium ion batteries can be appropriately used.
  • the sulfide solid electrolyte of the present invention is electrochemically stable, graphite, which is a material that charges and discharges at a base potential (about 0.1 V vs. Li + /Li) comparable to lithium metal or lithium metal, artificial Carbon-based materials such as graphite, natural graphite, and non-graphitizable carbon (hard carbon) can be used as the negative electrode material. This can greatly improve the energy density of solid-state batteries.
  • silicon or tin which are promising as high-capacity materials, can also be used as an active material.
  • the electrolytic solution reacts with the active material during charging and discharging, and corrosion occurs on the surface of the active material, resulting in significant degradation of battery characteristics.
  • the solid electrolyte of the present invention is used instead of the electrolytic solution and silicon or tin is used as the negative electrode active material, the corrosion reaction described above does not occur, and the durability of the battery can be improved.
  • the negative electrode material may also contain a conductive material in addition to the negative electrode active material, or may contain other materials.
  • Example 1 Lithium sulfide (Li 2 S) powder, antimony sulfide (Sb 2 S 3 ) powder, Si powder, S powder, and LiI powder were mixed in a total amount of 2.5 to obtain the composition shown in Table 1 below. Each powder was weighed to 0 g and pulverized and mixed in a planetary ball mill for 20 hours to prepare a mixed powder. After filling this mixed powder in a carbon container and installing it in a tubular electric furnace, hydrogen sulfide gas (purity 100%) is circulated at 1.0 L / min and heated at a temperature increase rate of 100 ° C. / h. and calcined at 475° C. for 4 hours.
  • hydrogen sulfide gas purity 100%
  • the fired product obtained was pulverized in a mortar and sieved with a sieve having an opening of 53 ⁇ m to obtain a solid electrolyte.
  • the weighing and mixing of the powder, the placement of the mixed powder in the electric furnace, the removal of the solid electrolyte from the electric furnace, the crushing and the granulation work are all performed with sufficiently dried argon gas (dew point -60 °C or less) in a glove box.
  • Example 2 Each powder was weighed so as to have the composition shown in Table 1 below. Otherwise, the solid electrolyte was obtained in the same manner as in Example 1.
  • Example 4 Lithium sulfide (Li 2 S) powder, antimony sulfide (Sb 2 S 3 ) powder, Si powder, S powder, LiI powder, lithium bromide (LiBr ) powders were weighed respectively. Also, the firing temperature was set as shown in the same table. A solid electrolyte was obtained in the same manner as in Example 1 except for these.
  • Example 5 Each powder was weighed so as to have the composition shown in Table 1 below. Also, the firing temperature was set as shown in the same table. A solid electrolyte was obtained in the same manner as in Example 1 except for these.
  • Example 1 Each powder was weighed so as to have the composition shown in Table 2 below. Also, the firing temperature was set as shown in Table 2. A solid electrolyte was obtained in the same manner as in Example 1 except for these.
  • Lithium sulfide (Li 2 S) powder, antimony sulfide (Sb 2 S 3 ) powder, Si powder, S powder, LiI powder, and lithium chloride (LiCl) were mixed so as to have the composition shown in Table 2 below.
  • the powder was weighed separately. Also, the firing temperature was set as shown in the same table. A solid electrolyte was obtained in the same manner as in Example 1 except for these.
  • Lithium ion conductivity measurements were performed using a Solartron 1255B Electrochemical Measurement System (1280C) and an Impedance/Gain Phase Analyzer (SI 1260) from Solartron Analytical.
  • the measurement conditions were an AC impedance method with a temperature of 25° C., a frequency of 100 Hz to 1 MHz, and an amplitude of 100 mV.
  • the positive electrode material mixture powder for the positive electrode layer includes positive electrode active material powder, solid electrolyte powder, and carbon nanotube (VGCF (registered trademark)-H manufactured by Showa Denko) as a conductive material in a mass ratio of 60:37:3.
  • VGCF carbon nanotube
  • the negative electrode mixture powder for the negative electrode layer was prepared by mixing the negative electrode active material powder and the solid electrolyte powder in a mass ratio of 50:50 in a mortar.
  • a solid battery cell in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer were laminated was produced by uniaxially pressing between the positive electrode and the negative electrode at 500 MPa.
  • Solid-state battery cells were produced in a glove box filled with sufficiently dried argon gas (dew point of ⁇ 60° C. or less).
  • Battery characteristic evaluation (initial charge/discharge capacity)
  • the battery was charged and discharged with 1.5 mA as 1C (battery capacity: 1.5 mAh).
  • the battery was charged at 0.1 C to 4.4 V by the CC-CV method to obtain the initial charge capacity.
  • Discharge was performed at 0.1 C to 3.0 V by the CC method to obtain the initial discharge capacity.
  • the initial charge/discharge efficiency (%) was calculated by dividing the initial discharge capacity by the initial charge capacity and multiplying by 100.
  • the solid electrolyte obtained in each example does not have a diffraction peak derived from LiI, or only a slight diffraction peak is observed. Moreover, it can be seen that the solid electrolyte obtained in each example has a higher lithium ion conductivity than the solid electrolyte obtained in the comparative example.
  • the solid battery using the solid electrolyte obtained in Example 1 has a higher initial discharge capacity and charge/discharge capacity than the solid battery using the solid electrolyte obtained in Comparative Example 3. It can be seen that the efficiency is high and good battery characteristics are exhibited. This is probably because the solid electrolyte obtained in Example 1 has higher lithium ion conductivity than the solid electrolyte obtained in Comparative Example 3.
  • a solid electrolyte with high ionic conductivity is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

固体電解質は、リチウム(Li)元素、M元素(Mは、ケイ素(Si)、アンチモン(Sb)、スズ(Sn)及びゲルマニウム(Ge)のうちの少なくとも1種の元素である。)、硫黄(S)元素、及びヨウ素(I)を含有する。X線回折パターンにおいて、2θ=24.0°以上24.8°以下の範囲に回折ピークAと、2θ=28.2°以上29.0°以下の範囲に回折ピークBと、2θ=29.5°以上30.3°以下の範囲に回折ピークCとを有する。回折ピークAのピーク強度をIaとし、2θ=25.3°以上25.9°以下の範囲に位置する回折ピークDのピーク強度をIdとしたときId/Iaが0.05以下である。

Description

固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池
 本発明は固体電解質に関する。また本発明は、固体電解質を用いた電極合剤、固体電解質層並びに電池に関する。
 固体電池は、可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、しかも製造コスト及び生産性に優れたものとすることができるばかりか、セル内で直列に積層して高電圧化を図れるという特徴も有している。
 固体電池に用いる固体電解質の一つとして、特許文献1には、Li (12-n-x)n+2- 6-x で表されるリチウム硫銀ゲルマニウム鉱が提案されている。Bn+は、P,As,Ge,Ga,Sb,Si,Sn,Al,In,Ti,V,Nb及びTaからなる群から選択される元素である。X2-は、S,Se及びTeからなる群から選択される元素である。YはCl,Br,I,F,CN,OCN,SCN,Nからなる群から選択される。
 非特許文献1には、Li6+xSb1-xI(M=Si、Ge、Sn)で表され、アルジロダイト型結晶構造を有するチオアンチモネートリチウム化合物が記載されている。非特許文献2には、Li6+xSb1-xSiIで表され、アルジロダイト型結晶構造を有するチオアンチモネートリチウム化合物が記載されている。
US2010/290969A1
J. Am. Chem. Soc., 2019, 141, 19002-19013 ACS Sustainable Chem. Eng., 2021, 9, 1, 120-128
 固体電池の性能を向上させるためには、高イオン伝導性を有する固体電解質が求められている。しかし、上述した特許文献1、非特許文献1及び非特許文献2に記載の固体電解質は、イオン伝導性の点で改良の余地があった。
 したがって本発明の課題は、良好なイオン伝導性を有する固体電解質を提供することにある。
 本発明は、リチウム(Li)元素、M元素(Mは、ケイ素(Si)、アンチモン(Sb)、スズ(Sn)及びゲルマニウム(Ge)のうちの少なくとも1種の元素である。)、硫黄(S)元素、及びヨウ素(I)を含有し、
 CuKαを線源としたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=24.0°以上24.8°以下の範囲に回折ピークAと、2θ=28.2°以上29.0°以下の範囲に回折ピークBと、2θ=29.5°以上30.3°以下の範囲に回折ピークCとを有し、
 前記回折ピークAのピーク強度をIaとし、2θ=25.3°以上25.9°以下の範囲に位置する回折ピークDのピーク強度をIdとしたとき、前記Iaに対する前記Idが下記式(1)を満たす、固体電解質を提供するものである。
   Id/Ia≦0.05      (1)
図1は、実施例1で得られた固体電解質のX線回折パターンを示す図である。 図2は、実施例2で得られた固体電解質のX線回折パターンを示す図である。 図3は、実施例3で得られた固体電解質のX線回折パターンを示す図である。 図4は、実施例4で得られた固体電解質のX線回折パターンを示す図である。 図5は、実施例5で得られた固体電解質のX線回折パターンを示す図である。 図6は、実施例6で得られた固体電解質のX線回折パターンを示す図である。 図7は、比較例2で得られた固体電解質のX線回折パターンを示す図である。 図8は、比較例4で得られた固体電解質のX線回折パターンを示す図である。 図9は、実施例1で得られた固体電解質を正極層に用いた全固体電池の初回充放電特性を示す図である。 図10は、比較例3で得られた固体電解質を正極層に用いた全固体電池の初回充放電特性を示す図である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明は固体電解質に係るものである。本発明の固体電解質はイオン伝導性を有するものであり、好適にはリチウムイオン伝導性を有するものである。
 本発明の固体電解質は、その構成元素としてS元素を含有する硫化物固体電解質であり、具体的にはLi元素、M元素(Mは、Si、Sb、Sn及びGeのうちの少なくとも1種の元素である。)、S元素、及びI元素を含有する。
 本発明の固体電解質は、その構成元素として上述した元素に加えて他の元素を含有していてもよい。例えば、Li元素の一部を他のアルカリ金属元素に置き換えたり、S元素の一部を他のカルコゲン元素に置き換えたり、I元素の一部を他のハロゲン(Ha)元素に置き換えたりすることができる。
 固体電解質としては、例えば先に述べた特許文献1に記載されているLiPSI、LiPSBr及びLiPSClなどの硫化物固体電解質が知られている。本発明の固体電解質は、これらの硫化物固体電解質におけるP元素に代えてM元素を用いたものである。P元素に代えてM元素を用いることで、本発明の固体電解質は、これまで知られている硫化物固体電解質よりも高いイオン伝導性を示す。本発明の固体電解質は、P元素を非含有であることが好ましい。
 本発明の固体電解質が更に高いリチウム伝導性を示す観点から、M元素は、少なくともSbを含むことが好ましい。同様の観点から、本発明の固体電解質は、M元素として少なくともSbを含み且つ更に他のM元素を含むことが好ましい。Sb以外のM元素としては、例えばSi及びSnのうちの少なくとも1種が挙げられる。特に本発明の固体電解質は、M元素としてSi及びSbを少なくとも含むか、又はSn及びSbを少なくとも含むことが好ましい。M元素がSnを含むことにより、固体電解質の大気安定性を向上させることができる。
 本発明の固体電解質は、より良好なイオン伝導性を得る観点から、すべてのM元素の合計のモル数に対するSbのモル数の割合が所定の範囲内であることが好ましい。前記割合は、例えば、25mol%以上であることが好ましく、45mol%以上であることが好ましく、55mol%以上であることが更に好ましく、65mol%以上であることが一層好ましい。一方、前記割合は、例えば、75mol%以下であることが好ましく、73mol%以下であることが更に好ましく、70mol%以下であることが一層好ましい。
 本発明の固体電解質は、I元素以外のHa元素を含有してもよい。これによって、本発明の固体電解質のイオン伝導性を高めることが可能となる。I元素以外のHa元素としては、例えば塩素(Cl)及び臭素(Br)を挙げることができ、本発明の固体電解質は、これらの元素のうちの少なくとも1種を含むことができる。
 本発明の固体電解質がI元素以外のHa元素を含む場合、I元素1モルに対するI元素以外のHa元素の含有量(モル)が、例えば、1以下であることが好ましく、0.6以下であることが更に好ましく、0.4以下であることが一層好ましい。また、I元素1モルに対するI元素以外のHa元素の含有量(モル)は、より良好なイオン伝導性を得られる観点から、例えば、0.05以上であることが好ましく、0.2以上であることが一層好ましい。
 本発明の固体電解質は、CuKαを線源としたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=24.0°以上24.8°以下の範囲に回折ピークAを有し、2θ=28.2°以上29.0°以下の範囲に回折ピークBを有し、2θ=29.5°以上30.3°以下の範囲に回折ピークCを有する。これにより本発明の固体電解質は、高いイオン伝導性を示すものとなる。
 回折ピークA、B及びCのピーク強度をそれぞれIa、Ib及びIcとしたとき、Ia>Ib且つIa>Icを満たすことが、固体電解質のイオン伝導性が一層高くなる観点から好ましい。Ib及びIcは、Ib≧Icを満たしてもよく、Ib≦Icを満たしてもよく、又はIb=Icを満たしてもよい。本明細書におけるピーク強度とは、X線回折パターンにおけるピーク高さのことである。
 本発明の固体電解質においては、2θ=25.3°以上25.9°以下の範囲に位置する回折ピークDのピーク強度をIdとし、上述した回折ピークAのピーク強度をIaとしたとき、Iaに対するIdが下記式(1)を満たすことが、固体電解質のイオン伝導性を一層高める観点から好ましい。
   Id/Ia≦0.05      (1)
 上述した回折ピークDはヨウ化リチウム(LiI)に帰属するものである。ところで本発明の固体電解質は、上述のとおり、その構成元素としてリチウム及びヨウ素を含有する。そして、Id/Iaが上述の値以下であるということは、固体電解質に含まれるヨウ化リチウムの量が少ないことを意味している。つまり、本発明の固体電解質にヨウ化リチウムが含まれる場合、その量はできるだけ少ないことがイオン伝導性を高める観点から好ましい。この観点から、Id/Ia≦0.03を満たすことが更に好ましく、Id/Ia≦0.01を満たすことが一層好ましい。最も好ましくは、Id/Ia=0を満たすこと、すなわちXRD回折パターンに回折ピークDが観察されないことである。
 本発明の固体電解質は結晶質のものであることが、高いイオン伝導性を示す観点から好ましく、この観点からアルジロダイト型結晶構造を有する結晶相を含むことが好ましい。特に、立方晶系アルジロダイト型結晶構造を有する結晶相を含むことが、イオン伝導性が一層高くなる点から好ましい。固体電解質がアルジロダイト型結晶構造を有する結晶相を含むか否かは、X線回折法で得られるX線回折パターンに基づき判断することができる。アルジロダイト型結晶構造の結晶相は、2θ=17.1°±1.0°、24.4°±1.0°28.6±1.0°、29.9°±1.0°、及び42.8°±1.0°に特徴的な回折ピークを示す。また、固体電解質を構成する元素種によっては、前記回折ピークに加えて、2θ=45.6°±1.0°、49.9°±1.0°、56.3°±1.0°、59.3°±1.0°、65.0°±1.0°及び67.8°±1.0°に特徴的な回折ピークを示す場合もある。アルジロダイト型結晶構造に由来する回折ピークの同定には、PDF番号01-077-5737のデータを用いることができる。
 ここで、固体電解質がアルジロダイト型結晶構造を有する結晶相を含むとは、固体電解質が少なくともアルジロダイト型結晶構造を有する結晶相を含むことを意味する。本発明においては、固体電解質がアルジロダイト型結晶構造を有する結晶相を主相として含むことが好ましい。前記「主相」とは、固体電解質を構成するすべての結晶相の総量に対して最も割合の大きい相を指す。よって、固体電解質に含まれるアルジロダイト型結晶構造を有する結晶相の含有割合は、固体電解質を構成する全結晶相に対して、例えば60質量%以上であることが好ましく、中でも70質量%以上、80質量%以上、90質量%以上であることが更に好ましい。なお、結晶相の割合は、例えばXRDにより確認することができる。
 本発明の固体電解質は、アルジロダイト型結晶構造を有する結晶相から構成される単一相からなるものであってもよく、あるいはアルジロダイト型結晶構造を有する結晶相及び他の結晶相を含む混合相であってもよい。他の結晶相としては、他の固体電解質材料や、LiS、LiPS、Liなどを挙げることができるが、これらに限定されるものではない。なお上述したとおり、本発明の固体電解質は、LiIの結晶相を極力含まないことが、イオン伝導性の向上の点から好ましく、当該結晶相を含むとしても、上述した式(1)を満たす範囲内であることが好ましい。
 本発明の固体電解質は、組成式Li6+xMS5+yHaα(Haはヨウ素以外の少なくとも1種のハロゲン元素を表す。)で表されることが、イオン伝導性の一層の向上の点から好ましい。固体電解質の組成をこのように調整することで、LiIの結晶相が生じにくくなり、その結果、固体電解質のイオン伝導性が向上する。
 前記の組成式において、x、y、z及びαは下記式(3)~(6)を満たすことが好ましい。
  -1.0≦x≦1.5     (3)
  -0.5≦y≦0.5     (4)
  0.5≦z≦1.1      (5)
  0≦α≦0.5        (6)
 LiIの結晶相の生成を一層抑制する観点から、x、y、z及びαは下記式(3’)~(6’)を満たすことが好ましい。
   -0.5≦x≦1.0     (3’)
   -0.3≦y≦0.3     (4’)
   0.8≦z≦1.1      (5’)
   0.0≦α≦0.4      (6’)
 前記の組成式において、M元素がSi及びSbである場合、本発明の固体電解質は、組成式Li6+x+x’Six’Sb1-x’5+yHaα(Haはヨウ素(I)以外の少なくとも1種のハロゲン元素を表す。)で表されることが、イオン伝導性の更に一層の向上の点から好ましい。固体電解質の組成をこのように調整することで、LiIの結晶相が生じにくくなり、その結果、固体電解質のイオン伝導性が向上する。
 前記の組成式において、x、x’、y、z及びαは下記式(7)~(10)を満たすことが好ましい。
  0≦x+x’≦1.5     (7)
  -0.5≦y≦0.5     (8)
  0.5≦z≦1.1      (9)
  0≦α≦0.5        (10)
 前記の組成式において、I元素及びHa元素の総量を示すz+aは、例えば、0.8以上であることが好ましく、0.9以上であることが更に好ましく、0.95以上であることが一層好ましい。一方、z+aは、例えば、1.6以下であることが好ましく、1.4以下であることがより好ましく、1.2以下であることが更に好ましく、1.1以下であることが一層好ましく、1.05以下であることがより一層好ましい。
 LiIの結晶相の生成を一層抑制する観点から、x、x’、y、z及びαは下記式(7’)~(10’)を満たすことが好ましい。
   0.5≦x+x’≦1.0  (7’)
   -0.3≦y≦0.3    (8’)
   0.8≦z≦1.1     (9’)
   0≦α≦0.4       (10’)
 前記の式(7)及び(7’)において、x’は0.5以上0.7以下、特に0.6以上0.7以下であることが、固体電解質のイオン伝導性の向上の点から好ましい。
 本発明の固体電解質は、粉末状の粒子であることが好ましく、その粒径に関しては、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50は、例えば、0.1μm以上であることが好ましい。粒径D50が前記の値以上であることにより、固体電解質の粒子の表面積が過度に増えることを抑制でき、抵抗増大を抑制することができる。また活物質との混合が容易となる。一方、粒径D50は、例えば、150μm以下であることが好ましく、50μm以下であることがより好ましく、10μ以下であることが更に好ましく、7μm以下であることが一層好ましく、5μm以下であることがより一層好ましい。粒径D50が前記の値以下であることにより、活物質間の隙間に固体電解質の粒子が入り込みやすくなり、接触点の数が増大し且つ接触面積が増大する。これにより、イオン伝導性の更なる向上を図ることができる。
 次に、本発明の固体電解質の好適な製造方法について説明する。
 本発明の固体電解質は、例えば原料として、硫化リチウム(LiS)粉末と、M元素の硫化物粉末又はM元素の単体の粉末と、硫黄(S)粉末と、ヨウ化リチウム(LiI)粉末とを用い、これらの粉末を混合し、混合粉末を焼成して得ることができる。
 各粉末は、目的とする固体電解質が、Li元素、M元素、S元素及びI元素で構成される所望の組成となるように、その使用量が調整される。
 本発明の固体電解質が、I元素以外のHa元素、例えばCl又はBrを含む場合には、例えば塩化リチウム粉末又は臭化リチウム粉末を更に用いればよい。
 前記の原料のなかには、大気中で極めて不安定で、水分と容易に反応して分解し、硫化水素ガスを発生したり、酸化したりする化合物がある。したがって、固体電解質の製造は、不活性ガス雰囲気に置換したグローブボックス内で行うことが好ましい。これによって、得られる固体電解質に硫黄欠損が生成することを抑制でき、該固体電解質の電子伝導性を低くすることができる。
 原料粉末の混合方法としては、例えばボールミル、ビーズミル、ホモジナイザー等を用いることが好ましい。原料粉末の混合に際して、メカニカルアロイング法を用いることも可能である。その場合には混合時に加えるエネルギーを大きくすることで、原料粉末が原子レベルで均一に混合されることから、得られた混合粉末を焼成することでより均一な固体電解質を得ることができる。尤も、混合時のエネルギーを大きくする場合、原料粉末と一緒に混合容器へ入れるメディアが摩耗することで不純物成分として混入してしまい、得られる固体電解質の特性に悪影響を及ぼす可能性がある。この観点から、混合時に加えるエネルギーを過度に大きくしないように留意することが好ましい。
 原料粉末の混合によって得られた混合粉末は、これを必要に応じて乾燥させた後に解砕、分級し、不活性ガス雰囲気又は硫化水素(HS)ガス流通下で焼成することが好ましい。焼成温度を好ましくは350℃以上に設定することで、硫黄欠損を抑制することができる。また、焼成温度を350℃以上に設定することで、未反応の原料粉末、例えばヨウ化リチウムが固体電解質中に残存することを抑制し、イオン伝導性の低下を抑制することができる。
 特に焼成雰囲気として硫化水素ガスを用いる場合、焼成時に硫化水素が分解して生成する硫黄ガスによって、雰囲気の硫黄分圧を高めることができる。これにより、焼成温度を高く設定しても、得られる固体電解質に硫黄欠損が生成しにくく、電子伝導性の発現を抑制できる。したがって、焼成雰囲気として硫化水素ガスを用いる場合の焼成温度は、例えば、350℃以上650℃以下とすることが好ましく、450℃以上600℃以下とすることが更に好ましく、450℃以上500℃以下とすることが一層好ましい。
 他方、不活性ガス雰囲気下で焼成する場合は、焼成温度を高く設定すると、得られる固体電解質に硫黄欠損が生成しやすくなる場合がある。この観点から、不活性ガス雰囲気下で焼成する場合の焼成温度は、例えば、350℃以上550℃とすることが好ましく、350℃以上500℃以下とすることが更に好ましく、400℃以上450℃以下とすることが一層好ましい。
 なお、通常は原料粉末を完全に反応させて未反応相、特にヨウ化リチウムの未反応相を消失させる目的で、焼成雰囲気として硫化水素ガスを用い450℃以上で焼成することが好ましいが、粒径が小さく、そのことに起因して反応性が高い原料粉末を用いる場合には、低温でも反応が促進することから、不活性ガス雰囲気で焼成を行ってもよい。
 焼成雰囲気によらず焼成時間は、1時間以上10時間以下に設定することが好ましく、2時間以上8時間以下に設定することが更に好ましく、3時間以上6時間以下に設定することが一層好ましい。
 焼成時の昇温速度は、加熱むらに起因する未反応相、特にヨウ化リチウムの未反応相を消失させる観点から、250℃/h以下であることが好ましい。焼成効率を維持する観点を加味すると、50℃/h以上200℃/h以下、特に80℃/h以上150℃/h以下であることが好ましい。
 このようにして得られた固体電解質は、固体の状態においてリチウムイオン伝導性を有するものである。固体電解質のリチウムイオン伝導性は、好ましくは室温、すなわち25℃において、例えば、1.0mS/cm以上であることが好ましく、1.5mS/cm以上であることが更に好ましく、2.0mS/cm以上であることが一層好ましい。リチウムイオン伝導性は、後述する実施例に記載の方法を用いて測定できる。
 本発明の固体電解質は、固体電解質層、正極層又は負極層を構成する材料として用いることができる。具体的には、正極層と、負極層と、正極層及び負極層の間の固体電解質層とを有する電池に、本発明の固体電解質を用いることができる。つまり本発明の固体電解質は、いわゆる固体電池に用いることができる。より具体的には、リチウム固体電池に用いることができる。リチウム固体電池は、一次電池であってもよく、あるいは二次電池であってもよい。電池の形状に特に制限はなく、例えばラミネート型、円筒型及び角型等の形状を採用することができる。「固体電池」とは、液状物質又はゲル状物質を電解質として一切含まない固体電池のほか、例えば50質量%以下、30質量%以下、10質量%以下の液状物質又はゲル状物質を電解質として含む態様も包含する。
 固体電解質層に本発明の固体電解質が含まれる場合、該固体電解質層は、例えば硫化物固体電解質とバインダー及び溶剤からなるスラリーを基体上に滴下し、ドクターブレードなどで擦り切る方法、基体とスラリーとを接触させた後にエアーナイフで切る方法、スクリーン印刷法等で塗膜を形成し、その後加熱乾燥を経て溶剤を除去する方法等で製造できる。あるいは、粉末状の硫化物固体電解質をプレス等によって圧粉体とした後、適宜加工して製造することもできる。
 固体電解質層の厚さは、短絡防止と体積容量密度とのバランスから、典型的には5μm以上300μm以下であることが好ましく、中でも10μm以上100μm以下であることが更に好ましい。
 本発明の固体電解質を、活物質ともに用いて電極合剤を構成してもよい。電極合剤における固体電解質の割合は、典型的には10質量%以上50質量%以下である。電極合剤は、必要に応じて導電助剤やバインダー等のほかの材料を含んでもよい。電極合剤と溶剤とを混合してペーストを作製し、アルミニウム箔等の集電体上に塗布、乾燥させることによって正極層及び負極層を作製できる。
 正極層を構成する正極材としては、リチウムイオン電池の正極活物質として使用されている正極材を適宜使用可能である。例えばリチウムを含む正極活物質、具体的にはスピネル型リチウム遷移金属酸化物及び層状構造を備えたリチウム金属酸化物等を挙げることができる。正極材として高電圧系正極材を使用することで、エネルギー密度の向上を図ることができる。正極材には、正極活物質のほかに、導電材を含ませてもよく、あるいは他の材料を含ませてもよい。
 負極層を構成する負極材としては、リチウムイオン電池の負極活物質として使用されている負極材を適宜使用可能である。本発明の硫化物固体電解質は電気化学的に安定であることから、リチウム金属又はリチウム金属に匹敵する卑な電位(約0.1V対Li/Li)で充放電する材料であるグラファイト、人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素系材料を負極材として使用できる。それによって固体電池のエネルギー密度を大きく向上させ得る。また、高容量材料として有望なケイ素又はスズを活物質として使用することもできる。一般的な電解液を用いた電池では、充放電に伴い電解液と活物質が反応し、活物質表面に腐食が生じることに起因して電池特性の劣化が著しい。このこととは対照的に、電解液の代わりに本発明の固体電解質を用い、負極活物質にケイ素又はスズを用いると、上述した腐食反応が生じないので電池の耐久性の向上を図ることができる。負極材についても、負極活物質のほかに導電材を含ませてもよく、あるいは他の材料を含ませてもよい。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
 以下の表1に示す組成となるように、硫化リチウム(LiS)粉末と、硫化アンチモン(Sb)粉末と、Si粉末と、S粉末と、LiI粉末とを、全量で2.0gとなるようにそれぞれ秤量し、遊星型ボールミルで20時間粉砕混合して混合粉末を調製した。この混合粉末をカーボン製の容器に充填し、これを管状電気炉に設置した後、硫化水素ガス(純度100%)を1.0L/minで流通させながら、昇温速度100℃/hで加熱し、475℃で4時間焼成した。得られた焼成物を乳鉢で解砕し、目開き53μmの篩いで整粒して、固体電解質を得た。
 前記の手順において、粉末の秤量及び混合、混合粉末の電気炉への設置、並びに固体電解質の電気炉からの取り出し、解砕及び整粒作業はすべて、十分に乾燥されたアルゴンガス(露点-60℃以下)で置換されたグローブボックス内で実施した。
  〔実施例2及び3〕
 以下の表1に示す組成となるように各粉末を秤量した。それ以外は実施例1と同様にして固体電解質を得た。
  〔実施例4〕
 以下の表1に示す組成となるように、硫化リチウム(LiS)粉末と、硫化アンチモン(Sb)粉末と、Si粉末と、S粉末と、LiI粉末と、臭化リチウム(LiBr)粉末とをそれぞれ秤量した。また焼成温度を同表に示すとおりとした。それら以外は実施例1と同様にして固体電解質を得た。
  〔実施例5及び6〕
 以下の表1に示す組成となるように各粉末を秤量した。また焼成温度を同表に示すとおりとした。それら以外は実施例1と同様にして固体電解質を得た。
  〔比較例1〕
 以下の表2に示す組成となるように各粉末を秤量した。また、焼成温度を表2に示すとおりとした。それら以外は実施例1と同様にして固体電解質を得た。
  〔比較例2〕
 以下の表2に示す組成となるように各粉末を秤量した。それ以外は実施例1と同様にして固体電解質を得た。
  〔比較例3〕
 以下の表2に示す組成となるように、硫化リチウム(LiS)粉末と、硫化アンチモン(Sb)粉末と、Si粉末と、S粉末と、LiI粉末と、塩化リチウム(LiCl)粉末とをそれぞれ秤量した。また焼成温度を同表に示すとおりとした。それら以外は実施例1と同様にして固体電解質を得た。
  〔比較例4〕
 以下の表2に示す組成となるように各粉末を秤量した。また焼成温度を同表に示すとおりとした。それら以外は実施例1と同様にして固体電解質を得た。
  〔評価1〕
 実施例及び比較例で得られた固体電解質についてXRD測定を行った。実施例1ないし6、並びに比較例2及び4のX線回折パターンを図1ないし8に示す。また、XRD測定の結果に基づきId/Iaの値を算出した。その結果を表1及び2に示す。
 XRD測定は、株式会社リガク製のX線回折装置「Smart Lab」を用いて行った。測定条件は、大気非曝露、走査軸:2θ/θ、走査範囲:10°以上80°以下、ステップ幅0.01°、走査速度1°/minとした。
 X線源はヨハンソン型結晶を用いたCuKα1線とした。検出には一次元検出器を用いた。測定は21.3±1.0°の強度が100以上700以下のカウント数となるように実施した。また、10°以上140°以下の最大ピーク強度が1000以上のカウント数となるように実施した。
  〔評価2〕
 実施例及び比較例で得られた固体電解質について、以下の方法でリチウムイオン伝導率を測定した。その結果を表1及び2に示す。
 各固体電解質を、十分に乾燥されたアルゴンガス(露点-60℃以下)で置換されたグローブボックス内で、約6t/cmの荷重を加え一軸加圧成形し、直径10mm、厚み約1mm~8mmのペレットからなるリチウムイオン伝導率の測定用サンプルを作製した。リチウムイオン伝導率の測定は、Solartron Analyticalのソーラトロン1255B電気化学測定システム(1280C)及びインピーダンス/ゲイン・フェーズアナライザ(SI 1260)を用いて行った。測定条件は、温度25℃、周波数100Hz~1MHz、振幅100mVの交流インピーダンス法とした。
  〔評価3〕
 以下の方法で調製された正極合剤及び負極合剤と、実施例1及び比較例3で得られた固体電解質粉末とを用い、以下の方法で作製された固体電池について、電池特性評価(初回充放電容量)を行った。その結果を表3並びに図9及び10に示す。
(材料)
 正極活物質としてNb酸化物を粒子表面に被覆した層状化合物であるLiNi0.6Co0.2Mn0.2(NCM)粉末(D50=4.2μm)を用いた。負極活物質としてグラファイト粉末(D50=20μm)を用いた、固体電解質は、D50=3μm程度に粒度調整を行った粉末を用いた。
(正極合剤の調製)
 正極層用の正極合剤粉末は、正極活物質粉末、固体電解質粉末、及び導電材としてカーボンナノチューブ(昭和電工製、VGCF(登録商標)-H)を質量比で60:37:3の割合で乳鉢混合することで調製した。
(負極合剤の調製)
 負極層用の負極合剤粉末は、負極活物質粉末及び固体電解質粉末を質量比で50:50の割合で乳鉢混合することで調製した。
(固体電池の作製)
 上下が開口したポリプロピレン製の円筒容器(開口径10.5mm、高さ18mm)の下側開口部を負極電極(SUS製)で閉塞し、その上に固体電解質粉末を載せ、正極電極(SUS製)で閉塞した後、100MPaにて一軸プレスすることで固体電解質層を形成した。次に、一旦正極電極を取り外し、固体電解質層の上に正極合剤粉末を載せて再び正極電極で閉塞した。円筒容器を上下反転させて負極電極を取り外し、固体電解質層の上に負極合剤粉末を載せて負極電極で閉塞した。正極電極と負極電極との間を500MPaにて一軸プレスすることで正極層、固体電解質層及び負極層が積層された固体電池セルを作製した。固体電池セルの作製は、十分に乾燥されたアルゴンガス(露点-60℃以下)で置換されたグローブボックス内で行った。
(電池特性評価(初回充放電容量))
 25℃に保たれた環境試験機内に固体電池セルを載置し、該固体電池セルを充放電測定装置に接続して電池特性を評価した。1.5mAを1Cとして(電池容量:1.5mAh)電池の充放電を行った。0.1Cで4.4VまでCC-CV方式で充電し、初回充電容量を得た。放電は0.1Cで3.0VまでCC方式で行い、初回放電容量を得た。初回放電容量を初回充電容量で除し、100を乗じることで、初回充放電効率(%)を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び2に示す結果から明らかなとおり、各実施例で得られた固体電解質にはLiIに由来する回折ピークが観察されないか、又は僅かに観察されるだけであることが分かる。また、各実施例で得られた固体電解質は、比較例で得られた固体電解質よりもリチウムイオン伝導率が高いことが分かる。
 表3に示す結果から明らかなとおり、実施例1で得られた固体電解質を用いた固体電池は、比較例3で得られた固体電解質を用いた固体電池よりも、初回の放電容量及び充放電効率が高く、良好な電池特性を発現していることが分かる。この理由は、実施例1で得られた固体電解質は、比較例3で得られた固体電解質よりも、リチウムイオン伝導性が高いことに起因していると考えられる。
 本発明によれば、イオン伝導性の高い固体電解質が提供される。

Claims (11)

  1.  リチウム(Li)元素、M元素(Mは、ケイ素(Si)、アンチモン(Sb)、スズ(Sn)及びゲルマニウム(Ge)のうちの少なくとも1種の元素である。)、硫黄(S)元素、及びヨウ素(I)を含有し、
     CuKαを線源としたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=24.0°以上24.8°以下の範囲に回折ピークAと、2θ=28.2°以上29.0°以下の範囲に回折ピークBと、2θ=29.5°以上30.3°以下の範囲に回折ピークCとを有し、
     前記回折ピークAのピーク強度をIaとし、2θ=25.3°以上25.9°以下の範囲に位置する回折ピークDのピーク強度をIdとしたとき、前記Iaに対する前記Idが下記式(1)を満たす、固体電解質。
       Id/Ia≦0.05      (1)
  2.  更にヨウ素(I)以外のハロゲン(Ha)元素を含有する、請求項1に記載の固体電解質。
  3.  ヨウ素(I)の含有量(モル)に対するヨウ素以外のハロゲン(Ha)元素の含有量(モル)が1以下である、請求項2に記載の固体電解質。
  4.  M元素がSi及びSbを含む、請求項1ないし3のいずれか一項に記載の固体電解質。
  5.  M元素がSn及びSbを含む、請求項1ないし3のいずれか一項に記載の固体電解質。
  6.  組成式Li6+xMS5+yZHaα(Haはヨウ素(I)以外の少なくとも1種のハロゲン元素を表す。)で表され、x、y、z及びαは下記(3)~(6)を満たす、請求項1ないし5のいずれか一項に記載の固体電解質。
      -1.0≦x≦1.5     (3)
      -0.5≦y≦0.5     (4)
      0.5≦z≦1.1      (5)
      0≦α≦0.5        (6)
  7.  組成式Li6+x+x’Six’Sb1-x’5+yZHaα(Haはヨウ素(I)元素以外の少なくとも1種のハロゲン元素を表す。)で表され、x、x’、y、z及びαは下記式(7)~(10)を満たす、請求項1ないし6のいずれか一項に記載の固体電解質。
      0≦x+x’≦1.5     (7)
      -0.5≦y≦0.5     (8)
      0.5≦z≦1.1      (9)
      0≦α≦0.5        (10)
  8.  x’が0.5以上0.7以下である、請求項7に記載の固体電解質。
  9.  請求項1ないし8のいずれか一項に記載の固体電解質と活物質とを含む、電極合剤。
  10.  請求項1ないし8のいずれか一項に記載の固体電解質を含有する、固体電解質層。
  11.  正極層と、負極層と、前記正極層及び前記負極層の間の固体電解質層とを有する電池であって、請求項1ないし8のいずれか一項に記載の固体電解質を含有する、電池。
PCT/JP2022/008976 2021-03-03 2022-03-02 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池 WO2022186303A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503928A JPWO2022186303A1 (ja) 2021-03-03 2022-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033775 2021-03-03
JP2021033775 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022186303A1 true WO2022186303A1 (ja) 2022-09-09

Family

ID=83155133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008976 WO2022186303A1 (ja) 2021-03-03 2022-03-02 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池

Country Status (2)

Country Link
JP (1) JPWO2022186303A1 (ja)
WO (1) WO2022186303A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2021013824A1 (en) * 2019-07-24 2021-01-28 Basf Se Lithium ion conducting solid materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2021013824A1 (en) * 2019-07-24 2021-01-28 Basf Se Lithium ion conducting solid materials

Also Published As

Publication number Publication date
JPWO2022186303A1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
CN110800149B (zh) 锂二次电池的固体电解质及该固体电解质用硫化物系化合物
JP6997216B2 (ja) 固体電解質
KR101797510B1 (ko) 리튬 이온 전지용 황화물계 고체 전해질 및 고체 전해질 화합물
JP6293383B1 (ja) リチウム二次電池用硫化物系固体電解質
JP5873533B2 (ja) リチウムイオン電池用硫化物系固体電解質
JP6704098B1 (ja) 硫化物系化合物粒子、固体電解質及びリチウム二次電池
WO2021251347A1 (ja) 固体電解質、電極合剤及び電池
EP4129901A1 (en) Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer and battery using same
CN112203975B (zh) 硫化物固体电解质和电池
WO2022210675A1 (ja) 固体電解質及びその製造方法
JP2020027715A (ja) 結晶性硫化物系固体電解質の製造方法
WO2022186303A1 (ja) 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池
WO2022210471A1 (ja) 固体電解質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763356

Country of ref document: EP

Kind code of ref document: A1