WO2020110480A1 - 負極材料、電池、および電池の製造方法 - Google Patents

負極材料、電池、および電池の製造方法 Download PDF

Info

Publication number
WO2020110480A1
WO2020110480A1 PCT/JP2019/040063 JP2019040063W WO2020110480A1 WO 2020110480 A1 WO2020110480 A1 WO 2020110480A1 JP 2019040063 W JP2019040063 W JP 2019040063W WO 2020110480 A1 WO2020110480 A1 WO 2020110480A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
solid electrolyte
battery
electrolyte material
halide
Prior art date
Application number
PCT/JP2019/040063
Other languages
English (en)
French (fr)
Inventor
龍也 大島
出 佐々木
裕太 杉本
西山 誠司
真志 境田
覚 河瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980045619.5A priority Critical patent/CN112368863B/zh
Priority to EP19891097.8A priority patent/EP3890073A4/en
Priority to JP2020558150A priority patent/JP7429870B2/ja
Publication of WO2020110480A1 publication Critical patent/WO2020110480A1/ja
Priority to US17/160,930 priority patent/US11949064B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a negative electrode material, a battery, and a battery manufacturing method.
  • Non-Patent Document 1 discloses an all-solid-state lithium ion battery using a sulfide solid electrolyte material as a negative electrode material.
  • a negative electrode material includes a reductant of a solid electrolyte material, and the solid electrolyte material is represented by the following formula (1): Li ⁇ M ⁇ X ⁇ Equation (1)
  • ⁇ , ⁇ , and ⁇ are all values greater than 0, and M is at least one element selected from the group consisting of metal elements and metalloid elements other than Li.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • cycle characteristics of a battery can be improved.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 which is an example of the battery according to the second embodiment.
  • 2 is a figure which shows the charging/discharging curve of the reduced body of Example 1.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of the reduced form of Example 1.
  • FIG. 4 is a diagram showing a charge/discharge curve of the reductant of Example 2.
  • FIG. 5 is a diagram showing an X-ray diffraction pattern of the reduced form of Example 2.
  • FIG. 6 is a diagram showing a charge/discharge curve of the reduced body of Example 3.
  • FIG. 7 is a diagram showing an X-ray diffraction pattern of the reduced form of Example 3.
  • FIG. 8 is a figure which shows the charging/discharging curve of the reduced body of Example 4.
  • FIG. 9 is a diagram showing an X-ray diffraction pattern of the reduced form of Example 4.
  • FIG. 10 is a scanning electron microscope (SEM) observation image showing a cross section of the battery of Example 1.
  • FIG. 11 is an SEM observation image showing a cross section of the battery of Example 2.
  • the negative electrode material in the first embodiment includes a reductant of solid electrolyte material (hereinafter, also referred to as “halide solid electrolyte material”) (hereinafter, also referred to as “halide reductant”).
  • the halide solid electrolyte material is a material represented by the following formula (1). Li ⁇ M ⁇ X ⁇ Equation (1)
  • ⁇ , ⁇ , and ⁇ are all values greater than 0.
  • M is at least one element selected from the group consisting of metal elements and metalloid elements other than Li.
  • X is at least one element selected from the group consisting of F, Cl, Br, and I.
  • the “semi-metal element” is B, Si, Ge, As, Sb, and Te.
  • metal element means (I) All elements contained in Groups 1 to 12 of the periodic table except hydrogen, and (Ii) All elements contained in Groups 13 to 16 of the periodic table except B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se. That is, the “metal element” is a group of elements that can become cations when a halide and an inorganic compound are formed.
  • the negative electrode material of the first embodiment can improve the cycle characteristics of the battery.
  • the cycle characteristic of the battery is a discharge capacity maintenance rate after repeating a charging/discharging cycle.
  • Non-Patent Document 1 described in the “Background Art” discloses a battery in which a reductant of a sulfide solid electrolyte material (hereinafter, also referred to as “sulfide reductant”) is used as a negative electrode material.
  • sulfide reductant a reductant of a sulfide solid electrolyte material
  • the present inventors have a problem that a battery using a sulfide reductant as a negative electrode material has a problem that the cycle characteristics of the battery are deteriorated due to a low electron conductivity of the sulfide reductant and the like. I found that.
  • the above-mentioned halide-reduced body shows good electron conductivity. Therefore, the negative electrode material of the first embodiment can improve the cycle characteristics of the battery. Further, the negative electrode material containing a halide reductant can also achieve a higher discharge capacity than the negative electrode material containing a sulfide reductant.
  • the halide solid electrolyte material in the first embodiment has the following formula (1): 1 ⁇ 5, 0 ⁇ 2, and 5.5 ⁇ 6.5 May be satisfied.
  • the cycle characteristics of the battery can be further improved. Further, when the halide solid electrolyte material satisfies the above numerical range, it has a crystal structure with high ion conductivity and can efficiently produce a reduced halide.
  • m is the valence of M.
  • m ⁇ is the sum of the composition ratios of the respective elements times the valence of the element.
  • the composition ratio of the element M1 is ⁇ 1
  • the valence number of the element M1 is m 1
  • the composition ratio of the element M2 is ⁇ 2
  • Is m 2 , m ⁇ m 1 ⁇ 1 +m 2 ⁇ 2 .
  • it is sufficient that the above relational expression is satisfied when those possible valences are used as m.
  • M may include at least one element selected from the group consisting of transition metal elements.
  • M may include Y. That is, the halide solid electrolyte material may contain Y as a metal element.
  • the halide solid electrolyte material containing Y may be represented by the following formula (2), for example. Li a Me1 b Y c X 6 ... Formula (2)
  • Me1 is a group consisting of metal elements other than Li and Y and metalloid elements. At least one element selected.
  • m 1 is the valence of Me1.
  • Me1 contains a plurality of kinds of elements
  • m 1 b is the sum of the composition ratios of the elements and the valence of the element.
  • M e1 may be at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb. Further, in the case where a plurality of valences of the element Me1 can be considered, the above relational expression may be satisfied when the possible valences are used as m 1 .
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (2), the negative electrode material according to the first embodiment absorbs and releases Li by utilizing the valence change of Y. Therefore, the cycle characteristics of the battery can be further improved.
  • M may contain Zr. That is, the halide solid electrolyte material may contain Zr as a metal element.
  • the halide solid electrolyte material containing Zr may be represented by, for example, the following formula (3).
  • Formula (3) Li d Me2 e Zr f X 6 ...
  • Me2 is a metal element or metalloid element other than Li, Y, and Zr. It is at least one element selected from the group consisting of Further, m 2 is the valence of Me2, When Me2 contains a plurality of kinds of elements, m 2 e is the sum of the values obtained by multiplying the composition ratio of each element by the valence of the element.
  • Me2 may be one or more selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Hf, Ti, Sn, Ta, and Nb. Further, when there are a plurality of possible valences of the element Me2, the above relational expression may be satisfied when those possible valences are used as m 2.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (3), the negative electrode material according to the first embodiment utilizes the change in valence of Zr to occlude and release Li. Therefore, the cycle characteristics of the battery can be further improved.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (4).
  • X is two or more kinds of elements selected from the group consisting of Cl, Br, and I.
  • d satisfies 0 ⁇ d ⁇ 2.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (4), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (4) has high ionic conductivity, the halide reductant can be efficiently generated.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (5).
  • X is two or more kinds of elements selected from the group consisting of Cl, Br, and I. That is, in the composition formula (4), d may be 1.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (5), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (5) has high ionic conductivity, it is possible to efficiently produce a halide reductant.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (6). Li 3-3 ⁇ Y 1+ ⁇ Cl 6 ... Formula (6) Here, in the composition formula (6), 0 ⁇ 0.15 is satisfied.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (6), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (6) has high ionic conductivity, it is possible to efficiently generate a halide reductant.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (7). Li 3-3 ⁇ Y 1+ ⁇ Br 6 ... Formula (7) Here, in the composition formula (7), 0 ⁇ 0.25 is satisfied.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (7), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (7) has high ionic conductivity, it is possible to efficiently generate a halide reductant.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (8).
  • Li 3-3 ⁇ +a Y 1+ ⁇ -a Me a Cl 6-xy Br x I y (Equation (8))
  • Me is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (8), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (8) has high ionic conductivity, it is possible to efficiently generate a halide reductant.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (9). Li 3-3 ⁇ Y 1+ ⁇ -a Me a Cl 6-xy Br x I y Formula (9)
  • Me is at least one element selected from the group consisting of Al, Sc, Ga, and Bi.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (9), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (9) has high ionic conductivity, it is possible to efficiently generate a halide reductant.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (10).
  • Me is at least one element selected from the group consisting of Zr, Hf, and Ti.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (10), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Furthermore, since the halide solid electrolyte material satisfying the above formula (10) has high ionic conductivity, it is possible to efficiently produce a halide reductant.
  • the halide solid electrolyte material in the first embodiment may be a material represented by the following composition formula (11). Li 3-3 ⁇ -2a Y 1+ ⁇ -a Me a Cl 6-xy Br x I y Formula (11)
  • Me is at least one element selected from the group consisting of Ta and Nb.
  • the negative electrode material according to the first embodiment when the halide solid electrolyte material satisfies the above formula (11), the negative electrode material according to the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. sell. Further, since the halide solid electrolyte material satisfying the above formula (11) has high ionic conductivity, it is possible to efficiently generate a halide reductant.
  • halide solid electrolyte material in the first embodiment include, for example, Li 2.7 Y 1.1 Cl 6 , Li 3 YBr 3 Cl 3 , Li 3 YBr 6 , Li 2.5 Zr 0.5 Y 0.5 Cl 6 , and Li 3 YBr 2 Cl 6 .
  • 2 I 2 Li 3.1 Y 0.9 Ca 0.1 Cl 6 , Li 3 Y 0.8 Al 0.2 Cl 6 , Li 2.5 Y 0.5 Hf 0.5 Cl 6 , Li 2.8 Y 0.9 Ta 0.1 Cl 6 , Li 4.5 Y 0.475 Bi 0.025 Cl 6 , Li 1.5 Y 1.425 Bi 0.075 Cl 6 , and the like.
  • the negative electrode material in the first embodiment when the materials exemplified above are halide solid electrolyte materials, the negative electrode material in the first embodiment improves the cycle characteristics of the battery and further improves the charge/discharge efficiency of the battery. Can be done. Furthermore, the above-exemplified materials have high ionic conductivity, and thus can efficiently generate a reduced halide.
  • halide solid electrolyte material in the first embodiment in addition to the above, for example, a known solid electrolyte material that satisfies the above formula (1) may be used.
  • the reduced halide in the first embodiment has a peak top in the range of the diffraction angle 2 ⁇ of ⁇ a or more and ⁇ b or less. May exist.
  • ⁇ b is the value of the diffraction angle 2 ⁇ of the peak top of the peak reflecting the (220) plane of LiX consisting of halogen (that is, X) contained in the reduced halide and Li.
  • the (220) plane peak of LiX is a peak due to the (220) plane in the Miller index hkl of the rock salt type structure having a crystal structure belonging to the space group Fm-3m such as LiCl, LiBr, and LiI.
  • the halogenated reductant contains two or more halogens, a halogen having a smaller atomic number is selected as the halogen for determining ⁇ b.
  • ⁇ a is the value of the diffraction angle 2 ⁇ at the peak top of the peak derived from the halide solid electrolyte material, and is also the value closest to ⁇ b.
  • the negative electrode material according to the first embodiment can further improve the cycle characteristics of the battery. Specifically, the peak derived from the halide reductant shifts from ⁇ a to ⁇ b as the Li is occluded. On the other hand, as Li is released, the peak derived from the reduced halide is shifted from ⁇ b to ⁇ a. It is considered that the crystal structure of the halide reductant contracts and expands with the absorption and desorption of Li. Therefore, it is presumed that the negative electrode material containing the halide reductant improves the cycle characteristics of the battery.
  • the negative electrode material according to the first embodiment may include a material other than the halide reductant.
  • the negative electrode material in the first embodiment may include, for example, a negative electrode active material, a solid electrolyte material, a binder, and a conductive additive.
  • the binder the materials exemplified as the binder contained in at least one of the negative electrode, the electrolyte layer, and the positive electrode in Embodiment 2 described later can be used.
  • the conductive auxiliary agent the materials exemplified as the conductive auxiliary agent contained in at least one of the negative electrode and the positive electrode in the second embodiment described later can be used.
  • the negative electrode material according to the first embodiment may include a negative electrode active material having a property of occluding and releasing metal ions (for example, lithium ions).
  • a negative electrode active material for example, a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, or the like can be used.
  • the metal material may be a single metal.
  • the metallic material may be an alloy.
  • metal materials include lithium metal, lithium alloys, and the like.
  • carbon materials include natural graphite, coke, graphitizing carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon, and the like.
  • the negative electrode material according to the first embodiment may include a solid electrolyte material having a property of conducting metal ions (for example, lithium ions).
  • a solid electrolyte material for example, a halide solid electrolyte material, a sulfide solid electrolyte material, an oxide solid electrolyte material, a polymer solid electrolyte material, and a complex hydride solid electrolyte material can be used.
  • the ionic conductivity inside the negative electrode is increased, and thus a battery capable of high-power operation can be realized.
  • the halide solid electrolyte material may be the same as the halide solid electrolyte material before the reduction of the halide reductant contained in the negative electrode material in the first embodiment, or another halide different from this. Solid electrolyte materials may be used.
  • Examples of the sulfide solid electrolyte material include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , and Li. 10 GeP 2 S 12 , etc. may be used. Further, in addition to these, LiX (X: F, Cl, Br, I), Li 2 O, MO q , Li p MO q (M: P, Si, Ge, B, Al, Ga, In, Fe, and Zn). At least one selected from the group consisting of (p, q: natural number) and the like may be added.
  • oxide solid electrolyte material examples include NASICON-type solid electrolyte materials represented by LiTi 2 (PO 4 ) 3 and its element substitution products, (LaLi)TiO 3 -based perovskite-type solid electrolyte materials, and Li 14 ZnGe 4 O.
  • the polymer solid electrolyte material for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. By having an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further increased.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • the lithium salt one kind of lithium salt selected from these may be used alone. Alternatively, as the lithium salt, a mixture of two or more lithium salts selected from these may be used.
  • the complex hydride solid electrolyte material for example, LiBH 4 -LiI, LiBH 4 -P 2 S 5 and the like can be used.
  • the negative electrode material according to the first embodiment may include, for example, 30% by mass or more, or 80% by mass or more, of a reduced halide.
  • the negative electrode material according to the first embodiment may be composed of only the reduced halide. When the negative electrode material contains 30% by mass or more of the reduced halide, the energy density of the battery can be sufficiently secured.
  • the negative electrode material according to the first embodiment can improve the cycle characteristics of the battery.
  • the shape of the reduced halide in the first embodiment is not particularly limited.
  • the shape of the reduced halide may be, for example, acicular, spherical, elliptical, or the like.
  • the reduced form of the halide may be in the form of particles.
  • the method for producing the reduced halide is not particularly limited, and a known method capable of reducing the solid halide electrolyte material can be used.
  • an electrochemical method can be mentioned.
  • an electrochemical cell using a Li-containing compound as the counter electrode and a halide solid electrolyte material as the working electrode is prepared. This cell can be produced by sweeping a constant current and reducing the halide solid electrolyte material of the working electrode.
  • the negative electrode material in the first embodiment can be produced by mixing the produced halide reductant with another substance as necessary, or by the produced halide reductant.
  • FIG. 1 is a sectional view showing a schematic configuration of a battery according to the second embodiment.
  • Battery 1000 includes negative electrode 101, electrolyte layer 102, and positive electrode 103.
  • the negative electrode 101 includes the negative electrode material according to the first embodiment described above.
  • the electrolyte layer 102 is arranged between the negative electrode 101 and the positive electrode 103.
  • the battery according to the second embodiment can have improved cycle characteristics.
  • the negative electrode 101 may be made of only the negative electrode material according to the first embodiment described above.
  • the battery according to the second embodiment can further improve the cycle characteristics of the battery.
  • the negative electrode 101 may include a negative electrode active material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • the material that can be used as the negative electrode active material is the same as that described as the negative electrode active material that can be included in the negative electrode material in the first embodiment.
  • the negative electrode 101 may include a solid electrolyte material having a property of conducting metal ions (for example, lithium ions).
  • the material that can be used as the solid electrolyte material is the same as that described as the solid electrolyte material that can be included in the negative electrode material in the first embodiment.
  • the thickness of the negative electrode 101 may be 10 ⁇ m or more and 500 ⁇ m or less. By setting the thickness of the negative electrode to 10 ⁇ m or more, a sufficient energy density can be secured. Further, by setting the thickness of the negative electrode to 500 ⁇ m or less, operation at high output becomes easy. That is, when the thickness of the negative electrode 101 is appropriately adjusted, the energy density of the battery can be sufficiently ensured and the battery can be operated at high output.
  • the electrolyte layer 102 is a layer containing an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material. That is, the electrolyte layer 102 may be a solid electrolyte layer.
  • the solid electrolyte material contained in the electrolyte layer 102 the solid electrolyte material exemplified as the solid electrolyte material that can be contained in the negative electrode material in the first embodiment may be used.
  • the electrolyte layer 102 may include a solid electrolyte material as a main component. That is, the electrolyte layer 102 may include the solid electrolyte material, for example, in a mass ratio of 50% or more (50% by mass or more) with respect to the entire electrolyte layer 102.
  • the electrolyte layer 102 may include a solid electrolyte material, for example, in a mass ratio of 70% or more (70 mass% or more) with respect to the entire electrolyte layer 102.
  • the electrolyte layer 102 contains a solid electrolyte material as a main component, and further contains unavoidable impurities or starting materials, by-products, and decomposition products used when synthesizing the solid electrolyte material. You can leave.
  • the electrolyte layer 102 may include a solid electrolyte material, for example, 100% (100% by mass) in mass ratio with respect to the entire electrolyte layer 102 excluding impurities that are unavoidably mixed.
  • the electrolyte layer 102 may be composed only of the solid electrolyte material.
  • the electrolyte layer 102 may include two or more of the materials listed as the solid electrolyte material.
  • the electrolyte layer 102 may include a halide solid electrolyte material and a sulfide solid electrolyte material.
  • the thickness of the electrolyte layer 102 may be 1 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the electrolyte layer 102 is 1 ⁇ m or more, the possibility that the negative electrode 101 and the positive electrode 103 are short-circuited is reduced.
  • the thickness of the electrolyte layer 102 is 300 ⁇ m or less, operation at high output becomes easy. That is, when the thickness of the electrolyte layer 102 is appropriately adjusted, sufficient safety of the battery can be ensured and the battery can be operated at high output.
  • the positive electrode 103 includes positive electrode active material particles and solid electrolyte particles.
  • the positive electrode 103 includes a positive electrode active material material having a property of inserting and extracting metal ions (eg, lithium ions).
  • metal ions eg, lithium ions
  • As the positive electrode active material lithium-containing transition metal oxide, transition metal fluoride, polyanion material, fluorinated polyanion material, transition metal sulfide, transition metal oxysulfide, transition metal oxynitride, and the like can be used. ..
  • the manufacturing cost can be reduced and the average discharge voltage can be increased.
  • the lithium-containing transition metal oxide include Li(NiCoAl)O 2 , Li(NiCoMn)O 2 and LiCoO 2 .
  • the positive electrode 103 may include a solid electrolyte material.
  • the solid electrolyte material the solid electrolyte material exemplified in Embodiment 1 as the solid electrolyte material that can be contained in the negative electrode material may be used. According to the above configuration, the lithium ion conductivity inside the positive electrode 103 becomes high, and operation at high output becomes possible.
  • the median diameter of the positive electrode active material particles may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material particles is 0.1 ⁇ m or more, the positive electrode active material particles and the solid electrolyte material can form a good dispersion state in the positive electrode. This improves the charge/discharge characteristics of the battery. Further, when the median diameter of the positive electrode active material particles is 100 ⁇ m or less, lithium diffusion in the positive electrode active material particles becomes faster. Therefore, the operation of the battery at high output becomes easy. That is, when the positive electrode active material particles have an appropriate size, a battery having excellent charge/discharge characteristics and capable of operating at high output can be obtained.
  • the median diameter of particles means a particle diameter (d50) corresponding to a volume cumulative 50%, which is obtained from a particle size distribution measured on a volume basis by a laser diffraction scattering method.
  • the median diameter of the positive electrode active material particles may be larger than the median diameter of the solid electrolyte material. This makes it possible to form a favorable dispersed state of the positive electrode active material particles and the solid electrolyte material.
  • the volume ratio “v:100-v” of the positive electrode active material particles and the solid electrolyte material contained in the positive electrode 203 (where v is the volume ratio of the positive electrode active material particles) satisfies 30 ⁇ v ⁇ 95. May be done. When 30 ⁇ v, a sufficient energy density of the battery can be secured. Further, when v ⁇ 95, the operation at high output of the battery becomes easy.
  • the thickness of the positive electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. Further, when the thickness of the positive electrode is 500 ⁇ m or less, the battery can operate at high output. That is, when the thickness of the positive electrode 103 is adjusted to an appropriate range, the energy density of the battery can be sufficiently secured and the battery can be operated at high output.
  • a binder may be included in at least one of the negative electrode 101, the electrolyte layer 102, and the positive electrode 103. By including the binder, the adhesion between particles can be improved.
  • the binder is used in order to improve the binding property of the material forming the electrode.
  • polyvinylidene fluoride polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber, Carboxymethyl cellulose, and the like.
  • binder tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. Further, two or more selected from these may be mixed and used as a binder.
  • At least one of the negative electrode 101 and the positive electrode 103 may include a conductive auxiliary agent.
  • a conductive additive can enhance electronic conductivity.
  • the conductive aid include, for example, graphite of natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride and metal powder such as aluminum.
  • Conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, and the like can be used.
  • cost reduction can be achieved.
  • the battery according to the second embodiment can be configured in various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • the operating temperature of the battery is not particularly limited, but may be -50°C to 100°C.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. You may manufacture by producing the laminated body.
  • the positive electrode, the solid electrolyte layer containing the halide solid electrolyte material in the state before the reduction of the halide reduced material contained in the negative electrode material in the first embodiment, and the negative electrode current collector were arranged in this order. Create a laminate. In this laminate, the solid electrolyte layer and the negative electrode current collector are in contact with each other.
  • the solid electrolyte layer produced by this manufacturing method may be formed only from a halide solid electrolyte material, or may further contain another solid electrolyte material.
  • the positive electrode functions as a counter electrode
  • the solid electrolyte material near the negative electrode current collector included in the solid electrolyte layer functions as a working electrode
  • the solid electrolyte material near the negative electrode current collector is reduced.
  • an example of the battery manufacturing method according to the second embodiment is as follows.
  • a laminated body in which a positive electrode, a solid electrolyte layer containing a halide solid electrolyte material in a state before reduction of a halide reduced body included in the negative electrode material in the first embodiment, and a negative electrode current collector are arranged in this order.
  • Applying a current to the stack including.
  • LYC a powder of the halide solid electrolyte material Li 2.7 Y 1.1 Cl 6
  • LPS Li 2 S—P 2 S 5
  • a halide reduced product was prepared using the electrochemical cell prepared by the following method.
  • metal In thickness 200 ⁇ m
  • metal Li thickness 300 ⁇ m
  • metal In thickness 200 ⁇ m
  • An In-Li alloy was prepared by molding.
  • a reference electrode/counter electrode made of the In-Li alloy was obtained.
  • In-Li alloy was obtained.
  • an insulating ferrule was used to shut off and seal the inside of the insulating outer cylinder from the atmosphere.
  • red-LYC A LYC reductant (hereinafter referred to as “red-LYC”) was produced under the following conditions using the above electrochemical cell.
  • the electrochemical cell was placed in a constant temperature bath at 70°C. Next, when a current amount of one electron was applied to one molecule of LYC at a current density of 0.1 mA/cm 2 to the electrochemical cell, the working electrode obtained by terminating the current application was obtained.
  • the red-LYC (1e charged) sample was used, and the working electrode obtained by ending the current application when a current amount of 2 electrons was applied to one LYC molecule was used as the red-LYC (2e charged) sample. Further, a current was applied to the electrochemical cell at a current density of 0.1 mA/cm 2 to lower the working electrode potential to ⁇ 0.6 V (vs LiIn), but the working electrode was red ⁇
  • the sample was a LYC (fully charged) sample.
  • a working electrode obtained by terminating the current application when a current amount of one electron was applied to LYC was used as a red-LYC (1e discharge) sample.
  • a working electrode was prepared by applying a current to raise the working electrode potential to 1.9 V (vs LiIn) and used as a red-LYC (full discharge) sample.
  • the charge/discharge curves of these red-LYCs are shown in FIG.
  • the potential of the In—Li alloy at 70° C. (0.6 V vs) is added to the measured potential of the working electrode to change the potential to the Li/Li + standard potential.
  • FIG. 3 is a graph showing an XRD pattern of red-LYC. The result shown in FIG. 3 was measured by the following method.
  • An XRD pattern of red-LYC was measured in a dry environment with a dew point of ⁇ 50° C. or lower using a fully automatic multi-purpose X-ray diffractometer (RIGAKU, SmartLab).
  • Cu-K ⁇ 1 radiation was used as the X-ray source. That is, an XRD pattern was measured by the ⁇ -2 ⁇ method using Cu-K ⁇ rays (wavelength 1.5405 ⁇ , that is, 0.15405 nm) as X rays.
  • the peak tops of the red-LYC XRD peaks are both present between the peak top position of the LYC-derived XRD peak (that is, the position of ⁇ a) and the peak top position of the LiCl peak (that is, the position of ⁇ b). did.
  • the LiCl peak shown in FIG. 3 is described based on the data published in the Inorganic Crystal Structure Database (ICSD) (ICSD No. 26909).
  • LYC and Li(NiCoMn)O 2 were weighed in a weight ratio of 30:70 in an argon glove box.
  • a positive electrode material was produced by mixing these in an agate mortar.
  • the prepared battery was placed in a constant temperature bath at 25°C. By applying a current at a current density of 0.1 mA/cm 2 to this battery and raising the voltage to 4.2 V, LYC constituting the reference electrode is reduced, and the positive electrode
  • LYBC a powder of the halide solid electrolyte material Li 3 YBr 3 Cl 3
  • red-LYBC a reduced form of LYBC
  • red-LYBC 1e charging red-LYBC (full charging)
  • red-LYBC full charging
  • red-LYBC full charging
  • FIG. 5 is a graph showing an XRD pattern of red-LYBC. The results shown in FIG. 5 were measured by the same method as in Example 1.
  • red-LYBC XRD peaks are both present between the peak top position of the LYBC-derived XRD peak (that is, the position of ⁇ a) and the peak top position of the LiCl peak (that is, the position of ⁇ b). did.
  • red-LYBC which is the reduced halide of Example 2 contains two kinds of halogens, Cl and Br. Therefore, Cl having a smaller atomic number is selected as the halogen for determining ⁇ b, and the peak top position of the peak on the (220) plane of LiCl becomes ⁇ b.
  • the LiCl peak shown in FIG. 5 is described based on the data published in the Inorganic Crystal Structure Database (ICSD) (ICSD No. 26909).
  • red-LYBC was produced in the same manner as in Example 1 except that LYBC was used as the halide solid electrolyte material.
  • LYB a powder of the halide solid electrolyte material Li 3 YBr 6
  • red-LYB a reduced form of LYB
  • red-LYB red-LYB
  • red-LYB 1e charge
  • red-LYB full charge
  • red-LYB full charge
  • Discharge respectively.
  • the charge/discharge curves of these red-LYBs are shown in FIG. Note that, also in FIG. 6, as in FIG. 2, the potential based on Li/Li + is shown.
  • FIG. 7 is a graph showing the XRD pattern of red-LYB. The results shown in FIG. 7 were measured by the same method as in Example 1.
  • the peak tops of the red-LYB XRD peaks are both present between the peak top position of the LYB-derived XRD peak (that is, the position of ⁇ a) and the peak top position of the LiBr peak (that is, the position of ⁇ b). did.
  • the LiBr peak shown in FIG. 7 is described based on the data published in the Inorganic Crystal Structure Database (ICSD) (ICSD No. 27982).
  • red-LYB was produced in the same manner as in Example 1 except that LYB was used as the halide solid electrolyte material.
  • LZYC a powder of the halide solid electrolyte material Li 2.5 Zr 0.5 Y 0.5 Cl 6
  • FIG. 9 is a graph showing an XRD pattern of red-LZYC. The results shown in FIG. 9 were measured by the same method as in Example 1.
  • the peak tops of the X-ray diffraction peaks of red-LZYC are the peak top positions (that is, the position of ⁇ a) of the X-ray diffraction peaks derived from LZYC, and the peak top positions of the peak of LiCl (that is, the position of ⁇ b). Existed between.
  • the LiCl peak shown in FIG. 9 is described based on the data published in the Inorganic Crystal Structure Database (ICSD) (ICSD No. 26909).
  • red-LZYC was prepared in the same manner as in Example 1 except that LZYC was used as the halide solid electrolyte material.
  • red-LGPS was produced in the same manner as in Example 1 except that LGPS was used instead of the halide solid electrolyte material.
  • the battery was placed in a constant temperature bath at 25°C.
  • the battery was discharged at a current density of 0.1 mA/cm 2 and terminated at a voltage of 2.5V. Next, the battery was charged at a current density of 0.1 mA/cm 2 and terminated at a voltage of 4.2V.
  • FIGS. 10 and 11 show cross-sectional observation images of the batteries of Example 1 and Example 2, respectively.
  • the cross-section observation image was obtained by subjecting the battery after the charge/discharge test to cross-section processing with a cross section polisher (CP) and using a scanning electron microscope (SEM).
  • the batteries of Examples 1 and 2 were composed of a negative electrode containing a halide reductant, a solid electrolyte layer containing a halide solid electrolyte material, and a positive electrode. was confirmed.
  • the battery of the present disclosure can be used, for example, as an all-solid-state lithium-ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示は、電池のサイクル特性を向上させることができる負極材料を提供する。本開示による負極材料は、固体電解質材料の還元体を含む。前記固体電解質材料は、式(1):Liαβγにより表される。ここで、式(1)において、α、β、およびγは、いずれも0より大きい値であり、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素であり、かつ、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも一種の元素である。

Description

負極材料、電池、および電池の製造方法
 本開示は、負極材料、電池、および電池の製造方法に関する。
 非特許文献1には、硫化物固体電解質材料を負極材料として用いた全固体リチウムイオン電池が、開示されている。
F. Han et al., "A Battery Made from Single Material", Adv. Mater. 27(2015),3473-3483
 従来技術においては、電池のサイクル特性のさらなる向上が望まれる。
 本開示の一態様における負極材料は、固体電解質材料の還元体を含み、前記固体電解質材料は、下記の式(1)により表され、
 Liαβγ ・・・式(1)
 ここで、上記式(1)において、α、β、およびγは、いずれも0より大きい値であり、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素であり、かつ、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも一種の元素である。
 本開示によれば、電池のサイクル特性を向上させることができる。
図1は、実施の形態2における電池の一例である電池1000の概略構成を示す断面図である。 図2は、実施例1の還元体の充放電曲線を示す図である。 図3は、実施例1の還元体のX線回折パターンを示す図である。 図4は、実施例2の還元体の充放電曲線を示す図である。 図5は、実施例2の還元体のX線回折パターンを示す図である。 図6は、実施例3の還元体の充放電曲線を示す図である。 図7は、実施例3の還元体のX線回折パターンを示す図である。 図8は、実施例4の還元体の充放電曲線を示す図である。 図9は、実施例4の還元体のX線回折パターンを示す図である。 図10は、実施例1の電池の断面を示す、走査型電子顕微鏡(SEM)観察画像である。 図11は、実施例2の電池の断面を示す、SEM観察画像である。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
(実施の形態1)
 実施の形態1における負極材料は、固体電解質材料(以下、「ハロゲン化物固体電解質材料」とも記載する)の還元体(以下、「ハロゲン化物還元体」とも記載する)を含む。ハロゲン化物固体電解質材料は、下記の式(1)により表される材料である。
 Liαβγ ・・・式(1)
 ここで、上記式(1)において、α、β、およびγは、いずれも0より大きい値である。また、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素である。Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも一種の元素である。
 なお、「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 また、「金属元素」とは、
 (i)水素を除く、周期表1族から12族中に含まれるすべての元素、および、
 (ii)B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く、周期表13族から16族中に含まれるすべての元素、である。すなわち、「金属元素」は、ハロゲン化物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 実施の形態1の負極材料は、以上の構成により、電池のサイクル特性を向上させることができる。なお、ここでの電池のサイクル特性は、充放電サイクルを繰り返した後の放電容量維持率のことである。放電容量維持率は、以下の式により求められる。
放電容量維持率(%)=(充放電サイクルを繰り返した後の放電容量)/(初回の放電容量)×100
 上述のとおり、「背景技術」の欄に記載された非特許文献1には、硫化物固体電解質材料の還元体(以下、「硫化物還元体」とも記載する)を負極材料とした電池が開示されている。本発明者らは、鋭意検討の結果、硫化物還元体を負極材料として用いた電池では、硫化物還元体の電子伝導性が低いこと等の理由により、電池のサイクル特性が低下する課題を有することを見出した。上記のハロゲン化物還元体は、良好な電子伝導性を示す。したがって、実施の形態1の負極材料は、電池のサイクル特性を向上させることができる。また、ハロゲン化物還元体を含む負極材料は、硫化物還元体を含む負極材料と比較して、高い放電容量も実現しうる。
 実施の形態1におけるハロゲン化物固体電解質材料が、上記式(1)において、
 1≦α≦5、
 0<β≦2、および
 5.5≦γ≦6.5
を満たしてもよい。
 また、実施の形態1におけるハロゲン化物固体電解質材料は、上記式(1)において、
 1.5≦α≦4.5、
 0.5≦β≦1.5、および
 γ=6
を満たしてもよい。
 また、実施の形態1におけるハロゲン化物固体電解質材料は、上記式(1)において、
 2.5≦α≦3、
 1≦β≦1.1、および
 γ=6
を満たしてもよい。
 ハロゲン化物固体電解質材料が上記の数値範囲を満たす場合、電池のサイクル特性をより向上させることができる。また、ハロゲン化物固体電解質材料が上記の数値範囲を満たす場合、高イオン伝導性の結晶構造を有し、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料が、上記式(1)において、α+mβ=γの関係を満たしてもよい。ここで、mはMの価数である。なお、Mが複数種の元素を含む場合、mβは、各元素の組成比に当該元素の価数をかけた値の合計となる。例えば、Mが、元素M1と元素M2とを含む場合であって、元素M1の組成比がβ1で元素M1の価数がm1、元素M2の組成比がβ2で元素M2の価数がm2である場合、mβ=m1β1+m2β2となる。また、元素Mの価数が複数考えうる場合は、それらの考えうる価数をmとして用いた場合に上記関係式が満たされればよい。
 以上の構成によれば、電池のサイクル特性をより向上させることができる。
 上記式(1)において、Mは、遷移金属元素からなる群より選ばれる少なくとも一種の元素を含んでもよい。
 以上の構成によれば、電池のサイクル特性をより向上させることができる。
 上記式(1)において、Mは、イットリウム(=Y)およびジルコニウム(=Zr)からなる群より選ばれる少なくとも一種を含んでいてもよい。
 上記式(1)においては、Mは、Yを含んでいてもよい。すなわち、ハロゲン化物固体電解質材料は、金属元素としてYを含んでいてもよい。
 Yを含むハロゲン化物固体電解質材料は、例えば、下記の式(2)により表されてもよい。
 LiaMe1bc6 ・・・式(2)
 ここで、上記式(2)において、a、b、およびcは、a+m1b+3c=6、かつ、c>0を満たし、Me1は、LiおよびY以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素である。また、m1は、Me1の価数である。なお、Me1が複数種の元素を含む場合、m1bは、各元素の組成比に当該元素の価数をかけた値の合計となる。例えば、Me1が、元素Me11と元素Me12とを含む場合であって、元素Me11の組成比がb11で元素Me11の価数がm11、元素Me12の組成比がb12で元素Me12の価数がm12である場合、m1b=m1111+m1212となる。なお、M
e1は、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選ばれる少なくとも一種であってもよい。また、元素Me1の価数が複数考えうる場合は、それらの考えうる価数をm1として用いた場合に上記関係式が満たされればよい。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(2)を満たす場合、実施の形態1における負極材料は、Yの価数変化を利用することでLiを吸蔵および放出することができ、電池のサイクル特性をより向上させることができる。
 上記式(1)においては、Mは、Zrを含んでいてもよい。すなわち、ハロゲン化物固体電解質材料は、金属元素としてZrを含んでいてもよい。
 Zrを含むハロゲン化物固体電解質材料は、例えば、下記の式(3)により表されてもよい。
 LidMe2eZrf6 ・・・式(3)
 ここで、上記式(3)において、d、e、およびfは、d+m2e+3f=6、かつ、f>0を満たし、Me2は、Li、Y、およびZr以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素である。また、m2は、Me2の価数である、
 なお、Me2が複数種の元素を含む場合、m2eは、各元素の組成比に当該元素の価数をかけた値の合計となる。例えば、Me2が、元素Me21と元素Me22とを含む場合であって、元素Me21の組成比がe21で元素Me21の価数がm21、元素Me22の組成比がe22で元素Me22の価数がm22である場合、m2e=m2121+m2222となる。なお、Me2は、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Hf、Ti、Sn、Ta、およびNbからなる群より選ばれる一種または二種以上であってもよい。また、元素Me2の価数が複数考えうる場合は、それらの考えうる価数をm2として用いた場合に上記関係式が満たされればよい
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(3)を満たす場合、実施の形態1における負極材料は、Zrの価数変化を利用することでLiを吸蔵および放出することができ、電池のサイクル特性をより向上させることができる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(4)により表される材料であってもよい。
 Li6-3dd6・・・式(4)
 ここで、組成式(4)において、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。また、組成式(4)において、dは、0<d<2を満たす。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(4)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(4)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(5)により表される材料であってもよい。
 Li3YX6・・・式(5)
 ここで、組成式(5)において、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。すなわち、上記の組成式(4)において、dは1であってもよい。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(5)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(5)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(6)により表される材料であってもよい。
 Li3-3δ1+δCl6・・・式(6)
 ここで、組成式(6)において、0<δ≦0.15、が満たされる。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(6)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(6)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(7)により表される材料であってもよい。
 Li3-3δ1+δBr6・・・式(7)
 ここで、組成式(7)において、0<δ≦0.25、が満たされる。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(7)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(7)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(8)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeaCl6-x-yBrxy ・・・式(8)
 ここで、組成式(8)において、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも一種の元素である。さらに、組成式(8)においては、
-1<δ<2、
0<a<3、
0<(3-3δ+a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(8)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(8)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(9)により表される材料であってもよい。
 Li3-3δ1+δ-aMeaCl6-x-yBrxy ・・・式(9)
 ここで、組成式(9)において、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも一種の元素である。さらに、組成式(9)においては、
-1<δ<1、
0<a<2、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(9)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(9)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(10)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeaCl6-x-yBrxy ・・・式(10)
 ここで、組成式(10)において、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも一種の元素である。さらに、組成式(10)においては、
-1<δ<1、
0<a<1.5、
0<(3-3δ-a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(10)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(10)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料は、下記の組成式(11)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeaCl6-x-yBrxy ・・・式(11)
 ここで、組成式(11)において、Meは、TaおよびNbからなる群より選択される少なくとも一種の元素である。さらに、組成式(11)においては、
-1<δ<1、
0<a<1.2、
0<(3-3δ-2a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 実施の形態1における負極材料において、ハロゲン化物固体電解質材料が上記式(11)を満たす場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、上記式(11)を満たすハロゲン化物固体電解質材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料の具体例として、例えば、Li2.71.1Cl6、Li3YBr3Cl3、Li3YBr6、Li2.5Zr0.50.5Cl6、Li3YBr2Cl22、Li3.10.9Ca0.1Cl6、Li30.8Al0.2Cl6、Li2.50.5Hf0.5Cl6、Li2.80.9Ta0.1Cl6、Li4.50.475Bi0.025Cl6、Li1.51.425Bi0.075Cl6、などが挙げられる。
 実施の形態1における負極材料において、以上に例示された材料をハロゲン化物固体電解質材料とする場合、実施の形態1における負極材料は、電池のサイクル特性を向上させ、さらに電池の充放電効率も向上させうる。さらに、以上に例示された材料は、高イオン伝導性を有するので、効率よくハロゲン化物還元体を生成できる。
 実施の形態1におけるハロゲン化物固体電解質材料としては、上記の他に、例えば、公知の固体電解質材料のうち、上記式(1)を満たすものを用いてもよい。
 実施の形態1におけるハロゲン化物還元体は、Cu-Kα線を線源として用いたX線回折測定によって得られるX線回折パターンにおいて、回折角2θの値がθa以上θb以下の範囲内にピークトップが存在してもよい。
 ここで、θbは、ハロゲン化物還元体に含まれるハロゲン(すなわち、X)とLiとからなるLiXの(220)面を反映するピークのピークトップの回折角2θの値である。LiXの(220)面のピークとは、LiCl、LiBr、およびLiIなどの空間群Fm-3mに属する結晶構造を有する岩塩型構造のミラー指数hklにおける(220)面によるピークである。なお、ハロゲン化物還元体に含まれるハロゲンが2種以上である場合は、θbを決定するためのハロゲンとしてより原子番号が小さいハロゲンが選択される。
 また、θaは、ハロゲン化物固体電解質材料に由来するピークのピークトップの回折角2θの値であって、かつ前記θbに最も近い値である。
 以上の構成によれば、実施の形態1における負極材料は、電池のサイクル特性をより向上させることができる。具体的には、Li吸蔵に伴い、ハロゲン化物還元体に由来するピークはθaからθbにシフトする。一方、Li放出に伴い、ハロゲン化物還元体に由来するピークはθbからθaにシフトする。Li吸蔵および放出に伴い、ハロゲン化物還元体の結晶構造が収縮および膨張すると考えられる。このため、ハロゲン化物還元体を含む負極材料は、電池のサイクル特性を向上させると推察される。
 実施の形態1における負極材料は、ハロゲン化物還元体以外の材料を含んでいてもよい。実施の形態1における負極材料は、例えば、負極活物質、固体電解質材料、結着剤、導電助剤を含んでいてもよい。なお、結着剤としては、後述の、実施の形態2において負極、電解質層、および正極のうちの少なくとも1つに含まれる結着剤として例示されている材料が使用されうる。また、導電助剤としては、後述の、実施の形態2において負極と正極との少なくとも1つに含まれる導電助剤として例示されている材料が使用されうる。
 実施の形態1における負極材料は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する負極活物質を含んでもよい。負極活物質として、例えば、金属材料、炭素材料、酸化物、窒化物、錫化合物、および珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。
 実施の形態1における負極材料は、金属イオン(例えば、リチウムイオン)を伝導する特性を有する固体電解質材料を含んでもよい。固体電解質材料としては、例えば、ハロゲン化物固体電解質材料、硫化物固体電解質材料、酸化物固体電解質材料、高分子固体電解質材料、および錯体水素化物固体電解質材料が用いられうる。
 以上の構成によれば、負極内部のイオン伝導性が高まるので、高出力作動が可能な電池を実現しうる。
 ハロゲン化物固体電解質材料には、実施の形態1における負極材料に含まれるハロゲン化物還元体の還元前のハロゲン化物固体電解質材料と同じものが用いられてもよいし、これとは異なる別のハロゲン化物固体電解質材料が用いられてもよい。
 硫化物固体電解質材料としては、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212、など、が用いられうる。また、これらに、LiX(X:F、Cl、Br、I)、Li2O、MOq、LipMOq(M:P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選ばれる少なくとも一種)(p、q:自然数)などが、添加されてもよい。
 酸化物固体電解質材料としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質材料、(LaLi)TiO3系のペロブスカイト型固体電解質材料、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質材料、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質材料、Li3NおよびそのH置換体、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラス、ガラスセラミックスなど、が用いられうる。
 高分子固体電解質材料としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 錯体水素化物固体電解質材料としては、例えば、LiBH4-LiI、LiBH4-P25など、が用いられうる。
 実施の形態1における負極材料は、ハロゲン化物還元体を、例えば30質量%以上含んでいてもよいし、80質量%以上含んでいてもよい。実施の形態1における負極材料は、ハロゲン化物還元体のみからなっていてもよい。負極材料がハロゲン化物還元体を30質量%以上含む場合、電池のエネルギー密度を十分に確保できる。
 以上の構成によれば、実施の形態1における負極材料は、電池のサイクル特性を向上させることができる。
 実施の形態1における、ハロゲン化物還元体の形状は、特に限定されるものではない。ハロゲン化物還元体の形状は、例えば、針状、球状、および楕円球状などであってもよい。例えば、ハロゲン化物還元体の形状は、粒子状であってもよい。
 ハロゲン化物還元体の製造方法は、特に限定されるものではなく、ハロゲン化物固体電解質材料を還元しうる公知の方法を用いることができる。例えば、電気化学的手法が挙げられる。例えば、対極にLi含有化合物、作用極にハロゲン化物固体電解質材料を用いた電気化学セルを準備する。このセルに定電流を掃引し、作用極のハロゲン化物固体電解質材料を還元することによって、作製することができる。実施の形態1における負極材料は、作製されたハロゲン化物還元体を必要に応じて他の物質と混合することにより、または、作製されたハロゲン化物還元体によって、作製しうる。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 図1は、実施の形態2における電池の概略構成を示す断面図である。
 実施の形態2における電池1000は、負極101と、電解質層102と、正極103とを備える。
 負極101は、上述の実施の形態1における負極材料を含む。
 電解質層102は、負極101と正極103との間に配置される。
 以上の構成により、実施の形態2の電池は、サイクル特性を向上させることができる。
 なお、負極101は、上述の実施の形態1における負極材料のみからなっていてもよい。
 以上の構成によれば、実施の形態2の電池は、電池のサイクル特性をより向上させることができる。
 負極101は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する負極活物質を含んでもよい。負極活物質として用いられうる材料は、実施の形態1において負極材料に含まれうる負極活物質として説明したものと同じである。
 負極101は、金属イオン(例えば、リチウムイオン)を伝導する特性を有する固体電解質材料を含んでもよい。固体電解質材料として用いられうる材料は、実施の形態1において負極材料に含まれうる固体電解質材料として説明したものと同じである。
 以上の構成によれば、負極内部のイオン伝導性が高まり、高出力作動が可能となる。
 負極101の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みを10μm以上とすることで、十分なエネルギー密度を確保することができる。また、負極の厚みを500μm以下とすることで、高出力での動作が容易となる。すなわち、負極101の厚みが適切に調整されていると、電池のエネルギー密度を十分に確保できるとともに、電池を高出力で動作させることができる。
 電解質層102は、電解質材料を含む層である。当該電解質材料は、例えば、固体電解質材料である。すなわち、電解質層102は、固体電解質層であってもよい。電解質層102に含まれる固体電解質材料としては、実施の形態1において負極材料に含まれうる固体電解質材料として例示された固体電解質材料を用いてもよい。
 なお、電解質層102は、固体電解質材料を、主成分として、含んでもよい。すなわち、電解質層102は、固体電解質材料を、例えば、電解質層102の全体に対する質量割合で50%以上(50質量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 また、電解質層102は、固体電解質材料を、例えば、電解質層102の全体に対する質量割合で70%以上(70質量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、電解質層102は、固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 また、電解質層102は、固体電解質材料を、例えば、混入が不可避的な不純物を除いて、電解質層102の全体に対する質量割合で100%(100質量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 以上のように、電解質層102は、固体電解質材料のみから構成されていてもよい。
 なお、電解質層102は、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、電解質層102は、ハロゲン化物固体電解質材料と硫化物固体電解質材料とを含んでもよい。
 電解質層102の厚みは、1μm以上かつ300μm以下であってもよい。電解質層102の厚みが1μm以上の場合には、負極101と正極103とが短絡する可能性が低くなる。また、電解質層102の厚みが300μm以下の場合には、高出力での動作が容易となる。すなわち、電解質層102の厚みが適切に調整されていると、電池の十分な安全性を確保できるとともに、電池を高出力で動作させることができる。
 正極103は、正極活物質粒子と固体電解質粒子とを含む。
 正極103は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する正極活物質材料を含む。正極活物質には、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、および遷移金属オキシ窒化物、など、が用いられうる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを安くでき、平均放電電圧を高めることができる。リチウム含有遷移金属酸化物としては、Li(NiCoAl)O2、Li(NiCoMn)O2、LiCoO2、などが挙げられる。
 正極103は、固体電解質材料を含んでもよい。固体電解質材料としては、実施の形態1において負極材料に含まれうる固体電解質材料として例示された固体電解質材料を用いてもよい。以上の構成によれば、正極103内部のリチウムイオン伝導性が高くなり、高出力での動作が可能となる。
 正極活物質粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質粒子のメジアン径が0.1μm以上であると、正極において、正極活物質粒子と固体電解質材料とが、良好な分散状態を形成できる。これにより、電池の充放電特性が向上する。また、正極活物質粒子のメジアン径が100μm以下であると、正極活物質粒子内のリチウム拡散が速くなる。このため、電池の高出力での動作が容易となる。すなわち、正極活物質粒子が適切な大きさを有していると、優れた充放電特性を有し、かつ高出力での動作が可能な電池が得られる。なお、本明細書において、粒子のメジアン径は、レーザー回折散乱法によって体積基準で測定された粒度分布から求められる、体積累積50%に相当する粒径(d50)を意味する。
 正極活物質粒子のメジアン径は、固体電解質材料のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子と固体電解質材料との良好な分散状態を形成できる。
 正極203に含まれる、正極活物質粒子と固体電解質材料の体積比率「v:100-v」(ここで、vは、正極活物質粒子の体積比率を示す)について、30≦v≦95が満たされてもよい。30≦vでは、十分な電池のエネルギー密度を確保することができる。また、v≦95では、電池の高出力での動作が容易となる。
 正極103の厚みは、10μm以上かつ500μm以下であってもよい。正極の厚みが10μm以上の場合には、十分な電池のエネルギー密度を確保することができる。また、正極の厚みが500μm以下の場合には、電池の高出力での動作が可能となる。すなわち、正極103の厚みが適切な範囲に調整されていると、電池のエネルギー密度を十分に確保できるとともに、電池を高出力で動作させることができる。
 負極101、電解質層102、および正極103のうちの少なくとも1つには、結着剤が含まれてもよい。結着材を含むことにより、粒子同士の密着性が向上し得る。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された二種以上の材料の共重合体が用いられうる。また、これらのうちから選択された二種以上が混合されて、結着剤として用いられてもよい。
 負極101と正極103との少なくとも1つは、導電助剤を含んでもよい。導電助剤を含むことにより電子導電性を高め得る。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 なお、実施の形態2における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 電池の作動温度は、特に限定されるものではないが、-50℃から100℃であってもよい。温度が高いほど、ハロゲン化物還元体のイオン伝導率が向上し、高出力動作を図ることができる。
 実施の形態2における電池は、例えば、正極形成用の材料、電解質層形成用の材料、負極形成用の材料をそれぞれ準備し、公知の方法で、正極、電解質層、および負極がこの順に配置された積層体を作製することによって製造してもよい。
 また、他の製造方法として、例えば、以下の方法を用いることも可能である。
 まず、正極と、実施の形態1における負極材料に含まれるハロゲン化物還元体の還元前の状態であるハロゲン化物固体電解質材料を含む固体電解質層と、負極集電体とがこの順で配置された積層体を作製する。この積層体において、固体電解質層と負極集電体とは互いに接している。この製造方法において作製される固体電解質層は、ハロゲン化物固体電解質材料のみから形成されていてもよいし、他の固体電解質材料をさらに含んでいてもよい。
 次に、この積層体に定電流を印加する。この場合、正極が対極として機能し、固体電解質層に含まれる負極集電体近傍の固体電解質材料が作用極として機能して、負極集電体近傍の固体電解質材料が還元される。これにより、正極と、ハロゲン化物還元体を含む負極と、正極と負極との間に設けられた固体電解質層と、を備えた、実施の形態2の電池が得られる。
 すなわち、実施の形態2の電池の製造方法の一例は、
 正極と、実施の形態1における負極材料に含まれるハロゲン化物還元体の還元前の状態であるハロゲン化物固体電解質材料を含む固体電解質層と、負極集電体とがこの順で配置された積層体であって、かつ前記固体電解質層と前記負極集電体とが接している前記積層体を作製することと、
 前記積層体に電流を印加することと、
を含む。
(実施例)
 以下、実施例および比較例を用いて、本開示の詳細が説明される。なお、本開示の負極材料および電池は、以下の実施例に限定されない。
 <実施例1>
 [ハロゲン化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLiClとYCl3とを、LiCl:YCl3=2.7:1.1のモル比で秤量した。その後、これらの原料粉末を混合し、得られた混合物を、遊星型ボールミル(フリッチュ社製、P-5型)を用い、25時間、600rpmでミリング処理した。以上により、ハロゲン化物固体電解質材料Li2.71.1Cl6(以下、「LYC」と記載する)の粉末を得た。
 [硫化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLi2SとP25とを、Li2S:P25=75:25のモル比で秤量した。これらの原料粉末を乳鉢で粉砕して混合した。その後、得られた混合物を、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理した。得られたガラス状の固体電解質を、不活性雰囲気中、270℃で、2時間熱処理した。以上により、ガラスセラミックス状の固体電解質材料であるLi2S-P25(以下、「LPS」と記載する)を得た。
 [ハロゲン化物還元体の作製]
 以下の方法で作製された電気化学セルを用いて、ハロゲン化物還元体を作製した。
 まず、絶縁性外筒の中で、0.44molのLPSと、0.022molのLYCとを、この順に積層した。これを370MPaの圧力で加圧成形することで、LPS-LYC積層体を得た。積層体におけるLYCにステンレス鋼のピンを配置することで、LYCからなる作用極を得た。
 次に、積層体におけるLPSに接するように、金属In(厚さ200μm)、金属Li(厚さ300μm)、および金属In(厚さ200μm)をこの順に積層し、これを80MPaの圧力で加圧成形することでIn-Li合金を作製した。In-Li合金にステンレス鋼のピンを配置することで、In-Li合金からなる参照極兼対極を得た。これにより、SUS|LYC|LPS|In-Li合金からなる2極式の電気化学セルが得られた。
 次に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断および密閉した。
 最後に、4本のボルトで電気化学セルを上下から拘束することで、電気化学セルに面圧150MPaを印加した。
 以上により、実施例1の電気化学セルが作製された。
 上述の電気化学セルを用いて、以下の条件で、LYCの還元体(以下、「red-LYC」と記載する)を作製した。
 電気化学セルを70℃の恒温槽に配置した。次に、電気化学セルに対して、電流値0.1mA/cm2の電流密度で、LYC1分子に対して1電子分の電流量を印加したところで電流印加を終了して得られた作用極をred-LYC(1e充電)サンプルとし、LYC1分子に対して2電子分の電流量を印加したところで電流印加を終了して得られた作用極をred-LYC(2e充電)サンプルとした。また、電気化学セルに対して、電流値0.1mA/cm2の電流密度で電流を印加して、作用極の電位を-0.6V(vs LiIn)まで下げたものの作用極を、red-LYC(満充電)サンプルとした。
 また、電流値0.1mA/cm2の電流密度で作用極の電位を-0.6V(vs LiIn)まで下げたものに対して、逆方向に電流値0.1mA/cm2の電流密度で、LYCに対して1電子分の電流量を印加したところで電流印加を終了して得られた作用極をred-LYC(1e放電)サンプルとした。また、電流値0.1mA/cm2の電流密度で作用極の電位を-0.6V(vs LiIn)まで下げたものに対して、逆方向に電流値0.1mA/cm2の電流密度で電流を印加し、作用極の電位を1.9V(vs LiIn)まで上げたものの作用極を、red-LYC(満放電)サンプルとした。これらred-LYCの充放電曲線を図2に示す。なお、図2においては、測定した作用極の電位に70℃におけるIn-Li合金の電位(0.6V vs)を足すことにより、Li/Li+基準の電位に変更している。
 [ハロゲン化物還元体のX線回折(XRD)パターン]
 図3は、red-LYCのXRDパターンを示すグラフである。図3に示される結果は、下記の方法により、測定された。
 全自動多目的X線回折装置(RIGAKU社、SmartLab)を用いて、露点-50℃以下のドライ環境でred-LYCのXRDパターンを測定した。X線源については、Cu-Kα1線を用いた。すなわち、Cu-Kα線(波長1.5405Å、すなわち、0.15405nm)をX線として用いて、θ-2θ法でXRDパターンを測定した。
 red-LYCのXRDピークのピークトップは、いずれも、LYC由来のXRDピークのピークトップ位置(すなわち、θaの位置)とLiClのピークのピークトップ位置(すなわち、θbの位置)との間に存在した。なお、図3に示されたLiClのピークは、無機結晶構造データベース(ICSD)に掲載されているデータに基づいて記載されている(ICSD No.26909)。
 [二次電池の作製]
 アルゴングローブボックス内で、LYCと、Li(NiCoMn)O2とを、30:70の重量比率で秤量した。これらをメノウ乳鉢で混合することで正極材料を作製した。
 絶縁性を有する外筒の中で、正極材料12mgと、LYC80mgとを、この順に積層した。これを370MPaの圧力で加圧成形することで、正極-LYC積層体を得た。正極、およびLYCにステンレス鋼のピンを配置することで、LYCからなる作用極および正極である対極を得た。絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。
 最後に、4本のボルトで積層体を上下から拘束することで、積層体に、面圧150MPaを印加した。
 以上により、実施例1の二次電池が作製された。
 作製された電池を25℃の恒温槽に配置した。この電池に電流値0.1mA/cm2の電流密度で電流を印加して、電圧を4.2Vまで上げることで、参照極を構成するLYCを還元して、正極|LYC|red-LYCからなる二次電池が作製された。
 <実施例2>
 [ハロゲン化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLiBrとYCl3とを、LiBr:YCl3=3:1のモル比で秤量した。その後、これらの原料粉末を混合し、得られた混合物を、電気炉を用いて、12時間、460℃で焼成処理した。以上により、ハロゲン化物固体電解質材料Li3YBr3Cl3(以下、「LYBC」と記載する)の粉末を得た。
 [ハロゲン化物還元体の作製]
 ハロゲン化固体電解質材料としてLYBCを用いたこと以外は、実施例1と同様にして、電気化学セルを作製した。LYBCの還元体(以下、「red-LYBC」と記載する)の作製については、実施例1と同様にして、red-LYBC(1e充電)、red-LYBC(満充電)、red-LYBC(満放電)をそれぞれ得た。これらred-LYBCの充放電曲線を図4に示す。なお、図4においても、図2と同様に、Li/Li+基準の電位が示されている。
 [ハロゲン化物還元体のX線回折(XRD)パターン]
 図5は、red-LYBCのXRDパターンを示すグラフである。図5に示される結果は、実施例1と同様の手法で測定された。
 red-LYBCのXRDピークのピークトップは、いずれも、LYBC由来のXRDピークのピークトップ位置(すなわち、θaの位置)とLiClのピークのピークトップ位置(すなわち、θbの位置)との間に存在した。なお、実施例2のハロゲン化物還元体であるred-LYBCには、ハロゲンがClおよびBrの2種含まれている。したがって、θbを決定するためのハロゲンとしてより原子番号が小さいClが選択されて、LiClの(220)面のピークのピークトップ位置がθbとなる。なお、図5に示されたLiClのピークは、無機結晶構造データベース(ICSD)に掲載されているデータに基づいて記載されている(ICSD No.26909)。
 [二次電池の作製]
 ハロゲン化物固体電解質材料としてLYBCを用いたこと以外は、実施例1と同様にして、正極|LYBC|red-LYBCからなる二次電池を作製した。
 <実施例3>
 [ハロゲン化固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLiBrとYBr3とを、LiBr:YBr3=3:1のモル比で秤量した。その後、これらの原料粉末を混合し、得られた混合物を、遊星型ボールミル(フリッチュ社製、P-5型)を用い、25時間、600rpmでミリング処理した。以上により、ハロゲン化物固体電解質材料Li3YBr6(以下、「LYB」と記載する)の粉末を得た。
 [ハロゲン化物還元体の作製]
 ハロゲン化物固体電解質材料としてLYBを用いたこと以外は、実施例1と同様にして、電気化学セルを作製した。LYBの還元体(以下、「red-LYB」と記載する)の作製については、実施例1と同様にして、red-LYB(1e充電)、red-LYB(満充電)、red-LYB(満放電)をそれぞれ得た。これらred-LYBの充放電曲線を図6に示す。なお、図6においても、図2と同様に、Li/Li+基準の電位が示されている。
 [ハロゲン化物還元体のX線回折(XRD)パターン]
 図7は、red-LYBのXRDパターンを示すグラフである。図7に示される結果は、実施例1と同様の手法で測定された。
 red-LYBのXRDピークのピークトップは、いずれも、LYB由来のXRDピークのピークトップ位置(すなわち、θaの位置)とLiBrのピークのピークトップ位置(すなわち、θbの位置)との間に存在した。なお、図7に示されたLiBrのピークは、無機結晶構造データベース(ICSD)に掲載されているデータに基づいて記載されている(ICSD No.27982)。
 [二次電池の作製]
 ハロゲン化物固体電解質材料としてLYBを用いたこと以外は、実施例1と同様にして、正極|LYB|red-LYBからなる二次電池を作製した。
 <実施例4>
 [ハロゲン化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLiClとYCl3とZrCl4とを、LiCl:YCl3:ZrCl4=5:1:1のモル比で秤量した。その後、これらの原料粉末を混合し、得られた混合物を、遊星型ボールミル(フリッチュ社製、P-5型)を用い、25時間、600rpmでミリング処理した。以上により、ハロゲン化物固体電解質材料Li2.5Zr0.50.5Cl6(以下、「LZYC」と記載する)の粉末を得た。
 [ハロゲン化物還元体の作製]
 ハロゲン化物固体電解質材料としてLZYCを用いたこと以外は、実施例1と同様にして、電気化学セルを作製した。LZYCの還元体(以下、「red-LZYC」と記載する)の作製については、実施例1と同様にして、red-LZYC(1e充電)、red-LZYC(2e充電)、red-LYB(満放電)をそれぞれ得た。これらred-LZYCの充放電曲線を図8に示す。なお、図8においても、図2と同様に、Li/Li+基準の電位が示されている。
 [ハロゲン化物還元体のX線回折(XRD)パターン]
 図9は、red-LZYCのXRDパターンを示すグラフである。図9に示される結果は、実施例1と同様の手法で測定された。
 red-LZYCのX線回折ピークのピークトップは、いずれも、LZYC由来のX線回折ピークのピークトップ位置(すなわち、θaの位置)とLiClのピークのピークトップ位置(すなわち、θbの位置)との間に存在した。なお、図9に示されたLiClのピークは、無機結晶構造データベース(ICSD)に掲載されているデータに基づいて記載されている(ICSD No.26909)。
 [二次電池の作製]
 ハロゲン化物固体電解質材料としてLZYCを用いたこと以外は、実施例1と同様にして、正極|LZYC|red-LZYCからなる二次電池を作製した。
 <比較例1>
 [硫化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLi2SとP25とGeS2とを、Li2S:P25:GeS2=5:1:1のモル比で秤量した。これらの原料粉末を乳鉢で粉砕して混合した。その後、得られた混合物を、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理した。以上により、硫化物固体電解質材料Li10GeP212(以下、「LGPS」と記載する)を得た。
 [二次電池の作製]
 ハロゲン化物固体電解質材料の代わりにLGPSを用いたこと以外は、実施例1と同様にして、正極|LGPS|red-LGPSからなる二次電池を作製した。
 <電池の評価>
 [充放電試験]
 上述の実施例1から4、および、比較例1の電池をそれぞれ用いて、以下の条件で、充放電試験を実施した。
 電池を25℃の恒温槽に配置した。
 電流値0.1mA/cm2の電流密度で放電し、電圧2.5Vで終了した。次に、電流値0.1mA/cm2の電流密度で充電し、電圧4.2Vで終了した。
 以上の充放電を、繰り返し10サイクル行った。
 以上により、上述の実施例1から4、および、比較例1の電池のそれぞれについて、10サイクル目放電容量と10サイクル目放電容量維持率(=10サイクル目放電容量/初回放電容量)とを得た。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [電池の断面観察]
 図10および図11は、それぞれ、実施例1および実施例2の電池の断面観察像を示す。断面観察像は、充放電試験後の電池に対してクロスセクションポリッシャ(CP)による断面加工を施し、走査型電子顕微鏡(SEM)を用いることで取得した。図10および図11に示されているように、実施例1および実施例2の電池が、ハロゲン化物還元体を含む負極、ハロゲン化物固体電解質材料を含む固体電解質層、および正極で構成された電池であることが確認された。
 <考察>
 表1に示す実施例1から4と、比較例1との結果から、ハロゲン化物還元体を含む負極材料を用いた電池では、硫化物還元体を含む負極材料を用いた電池と比較して、10サイクル目放電容量および10サイクル目放電容量維持率が高かった。すなわち、ハロゲン化物還元体を含む負極材料を用いた電池では、電池のサイクル特性が向上することが確認された。
 本開示の電池は、例えば、全固体リチウムイオン二次電池などとして、利用されうる。
 1000 電池
 101 負極
 102 電解質層
 103 正極
 

Claims (12)

  1.  固体電解質材料の還元体を含み、
     前記固体電解質材料は、下記の式(1)により表され、
     Liαβγ ・・・式(1)
     ここで、上記式(1)において、
     α、β、およびγは、いずれも0より大きい値であり、  Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素であり、かつ、
     Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも一種の元素である、
     負極材料。
  2.  Cu-Kα線を線源として用いたX線回折測定によって得られる、前記還元体のX線回折パターンにおいて、回折角2θの値がθa以上θb以下の範囲内にピークトップが存在し、
     前記θbは、Liと前記XとからなるLiXの(220)面を反映するピークのピークトップの回折角2θの値であり、
     前記θaは、前記固体電解質材料に由来するピークのピークトップの回折角2θの値であって、かつ前記θbに最も近い値である、
     請求項1に記載の負極材料。
  3.  前記固体電解質材料が、
     1.5≦α≦4.5、
     0.5≦β≦1.5、および
     γ=6
    を満たす、
     請求項1または2に記載の負極材料。
  4.  前記固体電解質材料が、
     α+mβ=γ
    の関係を満たし、
     ここで、mは前記Mの価数である、
     請求項1から3のいずれか一項に記載の負極材料。
  5.  前記Mは、遷移金属元素からなる群より選ばれる少なくとも一種の元素を含む、請求項1から4のいずれか一項に記載の負極材料。
  6.  前記Mは、イットリウムおよびジルコニウムからなる群より選ばれる少なくとも一種の元素を含む、
     請求項5に記載の負極材料。
  7.  前記Mがイットリウムを含み、
     前記固体電解質材料は、下記の式(2)により表され、
     LiaMe1bc6 ・・・式(2)
     ここで、上記式(2)において、
     a、b、およびcは、a+m1b+3c=6、かつ、c>0を満たし、
     Me1は、LiおよびY以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素であり、
     m1は前記Me1の価数である、
     請求項6に記載の負極材料。
  8.  前記Mがジルコニウムを含み、
     前記固体電解質材料は、下記の式(3)により表され、
     LidMe2eZrf6 ・・・式(3)
     ここで、上記式(3)において、
     d、e、およびfは、d+m2e+3f=6、かつ、f>0を満たし、
     Me2は、Li、Y、およびZr以外の金属元素および半金属元素からなる群より選ばれる少なくとも一種の元素であり、
     m2は前記Me2の価数である、
     請求項6に記載の負極材料。
  9.  前記還元体のみからなる、請求項1から8のいずれか一項に記載の負極材料。
  10.  請求項1から9のいずれか一項に記載の負極材料を含む負極と、
     正極と、
     前記負極と前記正極との間に設けられた電解質層と、
    を備える、
     電池。
  11.  前記負極は、前記負極材料のみからなる、請求項10に記載の電池。
  12.  正極と、請求項1から9のいずれか一項に記載の負極材料における前記固体電解質材料を含む固体電解質層と、負極集電体とがこの順で配置され、かつ前記固体電解質層と前記負極集電体とが接している積層体を作製することと、
     前記積層体に電流を印加することと、
     を含む、電池の製造方法。
PCT/JP2019/040063 2018-11-29 2019-10-10 負極材料、電池、および電池の製造方法 WO2020110480A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980045619.5A CN112368863B (zh) 2018-11-29 2019-10-10 负极材料、电池以及电池的制造方法
EP19891097.8A EP3890073A4 (en) 2018-11-29 2019-10-10 NEGATIVE ELECTRODE MATERIAL, BATTERY AND METHOD FOR PRODUCING BATTERY
JP2020558150A JP7429870B2 (ja) 2018-11-29 2019-10-10 負極材料、および電池
US17/160,930 US11949064B2 (en) 2018-11-29 2021-01-28 Negative electrode material, battery, and method for producing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-224239 2018-11-29
JP2018224239 2018-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/160,930 Continuation US11949064B2 (en) 2018-11-29 2021-01-28 Negative electrode material, battery, and method for producing battery

Publications (1)

Publication Number Publication Date
WO2020110480A1 true WO2020110480A1 (ja) 2020-06-04

Family

ID=70852106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040063 WO2020110480A1 (ja) 2018-11-29 2019-10-10 負極材料、電池、および電池の製造方法

Country Status (5)

Country Link
US (1) US11949064B2 (ja)
EP (1) EP3890073A4 (ja)
JP (1) JP7429870B2 (ja)
CN (1) CN112368863B (ja)
WO (1) WO2020110480A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745503A4 (en) 2018-01-26 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE MATERIAL AND USING BATTERY
EP3745508A4 (en) 2018-01-26 2021-03-17 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE MATERIAL AND BATTERY USING IT
CN111587508A (zh) 2018-01-26 2020-08-25 松下知识产权经营株式会社 电池
WO2020110479A1 (ja) 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 負極材料、および、電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028608A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Pile secondaire au lithium
US20040121235A1 (en) * 2002-10-01 2004-06-24 Amatucci Glenn G. Metal fluorides as electrode materials
JP2008234988A (ja) * 2007-03-20 2008-10-02 Sony Corp 負極およびその製造方法、ならびに電池およびその製造方法
JP2011253762A (ja) * 2010-06-03 2011-12-15 Sony Corp リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352869A (en) 1980-12-24 1982-10-05 Union Carbide Corporation Solid state electrolytes
EP0055135B1 (en) 1980-12-24 1985-06-19 Union Carbide Corporation Composition for use as solid state electrolyte and solid state cell employing same
US5714279A (en) 1989-10-24 1998-02-03 The United States Of America As Represented By The Secretary Of The Navy Non-aqueous lithium cells
JP3151925B2 (ja) 1992-05-07 2001-04-03 松下電器産業株式会社 非晶質リチウムイオン伝導性固体電解質並びにその合成法
US5506073A (en) 1992-06-22 1996-04-09 Arizona State University (Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University) Lithium ion conducting electrolytes
JPH08171938A (ja) 1994-12-15 1996-07-02 Mitsubishi Cable Ind Ltd Li二次電池及びその正極
JPH09293516A (ja) 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd 全固体リチウム電池
JPH11238528A (ja) 1998-02-20 1999-08-31 Ngk Insulators Ltd リチウム二次電池
JP2001052733A (ja) 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
KR100513726B1 (ko) 2003-01-30 2005-09-08 삼성전자주식회사 고체 전해질, 이를 채용한 전지 및 그 고체 전해질의 제조방법
JP5076134B2 (ja) 2004-06-08 2012-11-21 国立大学法人東京工業大学 リチウム電池素子
JP5108205B2 (ja) 2005-02-28 2012-12-26 国立大学法人静岡大学 全固体型リチウム二次電池
JP4877229B2 (ja) * 2005-06-23 2012-02-15 株式会社村田製作所 固体電解コンデンサ及びその製造方法
JP4945182B2 (ja) 2006-07-13 2012-06-06 シャープ株式会社 リチウム二次電池及びその製造方法
JP2008060033A (ja) 2006-09-04 2008-03-13 Sony Corp 正極活物質、これを用いた正極および非水電解質二次電池、並びに正極活物質の製造方法
JP5448038B2 (ja) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 硫化物固体電解質材料
JP2011065982A (ja) 2009-08-18 2011-03-31 Seiko Epson Corp リチウム電池用電極体及びリチウム電池
JP5141675B2 (ja) 2009-12-16 2013-02-13 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2012001773A1 (ja) 2010-06-29 2012-01-05 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法、リチウム固体電池の製造方法
US20130295464A1 (en) 2011-01-27 2013-11-07 Idemitsu Kosan Co., Ltd. Composite material of alkaline metal sulfide and conducting agent
JP5721540B2 (ja) 2011-05-30 2015-05-20 株式会社オハラ リチウムイオン伝導性無機物質
JP2013073791A (ja) 2011-09-28 2013-04-22 Panasonic Corp 非水電解質二次電池
WO2014010043A1 (ja) 2012-07-11 2014-01-16 トヨタ自動車株式会社 全固体電池及びその製造方法
FR3004467B1 (fr) 2013-04-12 2016-05-27 Saint-Gobain Cristaux Et Detecteurs Fabrication d'une elpasolite stoechiometrique
FR3005207B1 (fr) 2013-04-24 2016-06-24 Batscap Sa Electrode positive pour batterie lithium
JP6003831B2 (ja) 2013-06-28 2016-10-05 トヨタ自動車株式会社 硫化物固体電解質材料、硫化物ガラス、リチウム固体電池、および、硫化物固体電解質材料の製造方法
WO2015011937A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP6242620B2 (ja) * 2013-07-30 2017-12-06 日本特殊陶業株式会社 全固体電池
JP2015032529A (ja) 2013-08-06 2015-02-16 トヨタ自動車株式会社 硫化物系固体電解質
WO2015030052A1 (ja) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 全固体電池
JP6187069B2 (ja) 2013-09-13 2017-08-30 富士通株式会社 リチウム電池
WO2015049986A1 (ja) 2013-10-04 2015-04-09 独立行政法人産業技術総合研究所 非晶質性の(リチウム)ニオブ硫化物又は(リチウム)チタンニオブ硫化物
JP6114163B2 (ja) * 2013-11-12 2017-04-12 トヨタ自動車株式会社 電極体、及び当該電極体を備える電池
JP6202192B2 (ja) 2014-03-11 2017-09-27 富士通株式会社 複合固体電解質、及び全固体電池
CN104953175A (zh) 2014-03-28 2015-09-30 比亚迪股份有限公司 一种锂离子电池固体电解质及其制备方法和锂离子电池
JP5873533B2 (ja) 2014-07-16 2016-03-01 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
EP3220393B1 (en) 2014-11-10 2021-06-30 Murata Manufacturing Co., Ltd. Glass ceramic, lithium-ion conductor, cell, electronic device, and method for manufacturing electrode
JP6222134B2 (ja) 2015-02-25 2017-11-01 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10218032B2 (en) 2015-03-10 2019-02-26 Tdk Corporation Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
JP6672848B2 (ja) 2015-03-10 2020-03-25 Tdk株式会社 ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
US10446872B2 (en) 2015-08-04 2019-10-15 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP2017059342A (ja) 2015-09-15 2017-03-23 トヨタ自動車株式会社 全固体電池の製造方法
JP6861399B2 (ja) 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 電池
JP2017091955A (ja) 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091953A (ja) 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
CN105254184A (zh) 2015-11-27 2016-01-20 宁波大学 一种稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法
JP2017111954A (ja) 2015-12-16 2017-06-22 セイコーエプソン株式会社 金属酸化物成膜用組成物、正極複合体、正極複合体の製造方法、電池、および電池の製造方法
CN108292780B (zh) 2015-12-22 2021-03-12 丰田自动车欧洲公司 用于固体电解质的材料
JP6881892B2 (ja) 2015-12-25 2021-06-02 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質、全固体電池及び固体電解質の製造方法
US11245131B2 (en) 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP6748344B2 (ja) 2016-02-26 2020-09-02 富士通株式会社 全固体電池
JPWO2017154922A1 (ja) 2016-03-08 2018-11-22 株式会社村田製作所 固体電解質、全固体電池、固体電解質の製造方法及び全固体電池の製造方法
JP6658127B2 (ja) 2016-03-10 2020-03-04 セイコーエプソン株式会社 固体電解質、固体電解質の製造方法およびリチウムイオン電池
WO2017176936A1 (en) 2016-04-05 2017-10-12 Massachusetts Institute Of Technology Lithium metal electrodes and batteries thereof
CN105680048B (zh) 2016-04-05 2019-05-17 惠州亿纬锂能股份有限公司 一种包含氮掺杂石墨烯的正极、其制备方法及采用该正极的锂电池
CN107305965B (zh) 2016-04-25 2022-03-29 松下知识产权经营株式会社 电池和电池制造方法
JP2017224474A (ja) 2016-06-15 2017-12-21 出光興産株式会社 正極合材
CN108258358B (zh) 2016-12-28 2022-11-11 松下知识产权经营株式会社 电池
CN111480258B (zh) 2018-01-05 2024-05-24 松下知识产权经营株式会社 电池
WO2019135348A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111279431B (zh) 2018-01-05 2022-03-25 松下知识产权经营株式会社 固体电解质材料和电池
EP3736834A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL, AND BATTERY
CN111295789B (zh) 2018-01-05 2024-07-19 松下知识产权经营株式会社 固体电解质材料和电池
CN111316378B (zh) 2018-01-05 2021-09-28 松下知识产权经营株式会社 固体电解质材料和电池
EP3736822A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
WO2019135346A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
CN111557058B (zh) 2018-01-05 2023-09-01 松下知识产权经营株式会社 固体电解质材料和电池
CN111492524B (zh) 2018-01-05 2024-07-12 松下知识产权经营株式会社 固体电解质材料和电池
EP3736829A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
CN111295719B (zh) 2018-01-05 2022-03-29 松下知识产权经营株式会社 固体电解质材料和电池
JP7253707B2 (ja) 2018-01-05 2023-04-07 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3745503A4 (en) 2018-01-26 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE MATERIAL AND USING BATTERY
EP3745422A4 (en) 2018-01-26 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
CN111587508A (zh) 2018-01-26 2020-08-25 松下知识产权经营株式会社 电池
EP3745508A4 (en) 2018-01-26 2021-03-17 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE MATERIAL AND BATTERY USING IT
CN111566757B (zh) 2018-01-26 2022-08-12 松下知识产权经营株式会社 固体电解质材料和电池
EP3745518B1 (en) 2018-01-26 2022-04-13 Panasonic Intellectual Property Management Co., Ltd. Battery
EP3863028A4 (en) * 2018-10-01 2021-12-08 Panasonic Intellectual Property Management Co., Ltd. HALID SOLID ELECTROLYTE MATERIAL AND BATTERY WITH IT
WO2020110479A1 (ja) 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 負極材料、および、電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028608A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Pile secondaire au lithium
US20040121235A1 (en) * 2002-10-01 2004-06-24 Amatucci Glenn G. Metal fluorides as electrode materials
JP2008234988A (ja) * 2007-03-20 2008-10-02 Sony Corp 負極およびその製造方法、ならびに電池およびその製造方法
JP2011253762A (ja) * 2010-06-03 2011-12-15 Sony Corp リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. HAN ET AL.: "A Battery Made from Single Material", ADV. MATER., vol. 27, 2015, pages 3473 - 3483, XP055314666, DOI: 10.1002/adma.201500180
See also references of EP3890073A4

Also Published As

Publication number Publication date
JPWO2020110480A1 (ja) 2021-10-14
JP7429870B2 (ja) 2024-02-09
US11949064B2 (en) 2024-04-02
CN112368863B (zh) 2024-08-23
US20210151791A1 (en) 2021-05-20
EP3890073A4 (en) 2022-01-19
CN112368863A (zh) 2021-02-12
EP3890073A1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP7253706B2 (ja) 固体電解質材料、および、電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7253707B2 (ja) 固体電解質材料、および、電池
JP7182196B2 (ja) 電池
JP7349645B2 (ja) 電極材料、および、電池
JP7417924B2 (ja) 固体電解質材料、および、電池
JP7217433B2 (ja) 正極材料およびそれを用いた電池
JP7217432B2 (ja) 正極材料およびそれを用いた電池
JP7165898B2 (ja) 固体電解質材料、および、電池
WO2020110480A1 (ja) 負極材料、電池、および電池の製造方法
JP7429869B2 (ja) 負極材料、および、電池
JP7165899B2 (ja) 固体電解質材料、および、電池
WO2022224505A1 (ja) 正極材料および電池
JP7486092B2 (ja) 正極材料、および、電池
JP7507385B2 (ja) 正極材料、および、電池
WO2023074143A1 (ja) 固体電解質材料および電池
WO2022249686A1 (ja) 固体電解質材料および電池
WO2022264748A1 (ja) 正極材料および電池
WO2023139897A1 (ja) 電池
WO2022254796A1 (ja) 電極材料および電池
WO2023106128A1 (ja) 電池
WO2022254871A1 (ja) 被覆活物質、電極材料および電池
WO2023074144A1 (ja) 正極材料および電池
WO2023013390A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022249760A1 (ja) 固体電解質材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020558150

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891097

Country of ref document: EP

Effective date: 20210629