WO2022254796A1 - 電極材料および電池 - Google Patents

電極材料および電池 Download PDF

Info

Publication number
WO2022254796A1
WO2022254796A1 PCT/JP2022/004783 JP2022004783W WO2022254796A1 WO 2022254796 A1 WO2022254796 A1 WO 2022254796A1 JP 2022004783 W JP2022004783 W JP 2022004783W WO 2022254796 A1 WO2022254796 A1 WO 2022254796A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
solid electrolyte
battery
electrode material
Prior art date
Application number
PCT/JP2022/004783
Other languages
English (en)
French (fr)
Inventor
暁彦 相良
貴司 大戸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023525381A priority Critical patent/JPWO2022254796A1/ja
Priority to CN202280034725.5A priority patent/CN117296165A/zh
Publication of WO2022254796A1 publication Critical patent/WO2022254796A1/ja
Priority to US18/500,514 priority patent/US20240063378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to electrode materials and batteries.
  • Patent Document 1 discloses a negative electrode material containing lithium titanate as a negative electrode active material and a solid electrolyte formed of a halide, and a battery using the same.
  • the electrode material in one aspect of the present disclosure is a first active material containing Li, Ti, and O; a second active material containing Mo and O; a solid electrolyte; including.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an electrode material according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
  • FIG. 3 is a graph showing the results of an initial charge/discharge test of the battery in Example 4.
  • Patent Document 1 discloses a battery using a negative electrode material containing lithium titanate as a negative electrode active material. Batteries using lithium titanate are known to exhibit high charge-discharge efficiency. In addition, lithium titanate is less likely to cause precipitation of lithium metal. Therefore, when lithium titanate is used for the negative electrode, it is possible to prevent an internal short circuit caused by the deposited metal penetrating the electrolyte layer and coming into contact with the positive electrode. Furthermore, lithium titanate is characterized by small expansion and contraction associated with insertion and extraction of lithium ions. Therefore, the use of lithium titanate as the active material can improve the safety of the battery. On the other hand, lithium titanate has a problem of small capacity per mass.
  • the inventors diligently researched a technique for achieving both charge/discharge efficiency and discharge capacity. As a result, the inventors have arrived at the technique of the present disclosure.
  • the electrode material according to the first aspect of the present disclosure is a first active material containing Li, Ti, and O; a second active material containing Mo and O; a solid electrolyte; including.
  • the first active material containing Li, Ti, and O improves the charge/discharge efficiency of the battery.
  • a second active material containing Mo and O improves the discharge capacity of the battery. Therefore, according to the above configuration, both the charge/discharge efficiency and the discharge capacity can be achieved.
  • the ratio of the mass of the first active material to the total mass of the first active material and the second active material is 50% or more and It may be 99% or less.
  • the first active material undergoes less expansion and contraction due to insertion and extraction of lithium ions than the second active material. Therefore, according to the above configuration, it is possible to improve the safety of the battery while achieving both the charge/discharge efficiency and the discharge capacity of the battery.
  • the ratio may be 70% or more and 95% or less. According to the above configuration, it is possible to further improve the safety of the battery while achieving both the charge/discharge efficiency and the discharge capacity of the battery.
  • the first active material may contain lithium titanium oxide. According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the lithium titanium oxide may contain Li4Ti5O12 . According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the second active material may contain molybdenum oxide. According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the molybdenum oxide may contain MoO2 . According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the solid electrolyte may contain Li, M, and X.
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements.
  • X is at least one selected from the group consisting of F, Cl, Br and I; According to the above configuration, it is possible to improve the output characteristics of the battery.
  • the solid electrolyte may be represented by the following compositional formula (1).
  • ⁇ , ⁇ , and ⁇ are independently values greater than 0. According to the above configuration, it is possible to further improve the output characteristics of the battery.
  • the solid electrolyte may contain Li3YBr2Cl2I2 . According to the above configuration, it is possible to further improve the output characteristics of the battery.
  • the solid electrolyte may not contain sulfur. According to the above configuration, it is possible to improve the safety of the battery.
  • the battery according to the twelfth aspect of the present disclosure includes a first electrode, a second electrode, and an electrolyte layer disposed between the first electrode and the second electrode; At least one selected from the group consisting of the first electrode and the second electrode includes the electrode material according to any one of the first to eleventh aspects.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an electrode material 1000 according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an electrode material 1000 according to Embodiment 1.
  • the electrode material 1000 includes an active material 103 and a solid electrolyte 104.
  • Active material 103 includes first active material 101 containing Li, Ti, and O, and second active material 102 containing Mo and O.
  • FIG. 1 A diagrammatic representation of an active material 103 .
  • the first active material 101 containing Li, Ti, and O improves the charge/discharge efficiency of the battery.
  • the second active material 102 containing Mo and O improves the discharge capacity of the battery. Therefore, if the electrode material 1000 is used, both charge/discharge efficiency and discharge capacity can be achieved.
  • the active material 103 may contain only the first active material 101 and the second active material 102 .
  • “including only the first active material 101 and the second active material 102” means that the active material 103 is intentionally composed of materials other than the first active material 101 and the second active material 102, except for inevitable impurities. Means not added. For example, raw materials for the first active material 101 and the second active material 102, by-products generated when the first active material 101 and the second active material 102 are produced, and the like are included in the unavoidable impurities. The same applies to other substances.
  • the mass ratio of the first active material 101 to the total mass of the first active material 101 and the second active material 102 may be 50% or more and 99% or less. Compared to the second active material 102, the first active material 101 expands and contracts less due to insertion and extraction of lithium ions. Therefore, according to the above configuration, it is possible to improve the safety of the battery while achieving both the charge/discharge efficiency and the discharge capacity of the battery.
  • the ratio of the mass of the first active material 101 to the total mass of the first active material 101 and the second active material 102 can be calculated from the volumes of the first active material 101 and the second active material 102, for example. Specifically, by multiplying the volume of each of the first active material 101 and the second active material 102 by the density of each of the first active material 101 and the second active material 102, the first active material 101 and the second active material 102 can be calculated. From the calculated masses of first active material 101 and second active material 102, the ratio of the mass of first active material 101 to the total mass of first active material 101 and second active material 102 can be calculated.
  • the volume of each of first active material 101 and second active material 102 can be measured, for example, from a cross-sectional SEM image obtained by a scanning electron microscope (SEM). Also, the density of each of the first active material 101 and the second active material 102 can be measured using, for example, a pycnometer.
  • the mass ratio of the first active material 101 to the total mass of the first active material 101 and the second active material 102 may be 70% or more and 95% or less. According to the above configuration, it is possible to further improve the safety of the battery.
  • the mass ratio of the first active material 101 to the total mass of the first active material 101 and the second active material 102 may be 75% or more and 80% or less. According to the above configuration, it is possible to further improve the safety of the battery.
  • the first active material 101 may contain lithium titanium oxide. According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the first active material 101 may contain lithium titanium oxide as a main component.
  • main component means a component contained at a mass ratio of 50% or more.
  • the first active material 101 may contain 70% or more of lithium titanium oxide in mass ratio with respect to the entire first active material 101 .
  • the first active material 101 may be lithium titanium oxide.
  • Lithium titanium oxides include , for example , Li4Ti5O12 , Li7Ti5O12 , and LiTi2O4 .
  • the lithium titanium oxide may contain at least one selected from these materials.
  • the lithium titanium oxide may contain Li4Ti5O12 . According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the lithium titanium oxide may be Li4Ti5O12 .
  • the second active material 102 may contain molybdenum oxide. According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the second active material 102 may contain molybdenum oxide as a main component.
  • the second active material 102 may contain molybdenum oxide at a mass ratio of 70% or more with respect to the entire second active material 102 .
  • the second active material 102 may be molybdenum oxide.
  • Molybdenum oxides include MoO2 .
  • Molybdenum oxide may include MoO2 . According to the above configuration, it is easier to achieve both the charge/discharge efficiency and the discharge capacity.
  • the molybdenum oxide may be MoO2 .
  • the solid electrolyte 104 may contain Li, M, and X.
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements.
  • X is at least one selected from the group consisting of F, Cl, Br and I; According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be improved. Thereby, the output characteristics of the battery can be improved.
  • metal elements are B, Si, Ge, As, Sb and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and All elements contained in groups 13 to 16 of the periodic table except Se. That is, the term “semimetallic element” or “metallic element” refers to a group of elements that can become cations when an inorganic compound is formed with a halogen element.
  • the solid electrolyte 104 may consist essentially of Li, M, and X. “Consisting substantially of Li, M, and X” means that in the solid electrolyte 104, the molar ratio of the total amount of substances of Li, M, and X to the total amount of substances of all elements constituting the solid electrolyte 104 ( That is, it means that the molar fraction) is 90% or more. As an example, the molar ratio may be 95% or greater.
  • the solid electrolyte 104 may consist of Li, M, and X only. "Consisting only of Li, M, and X” means that in the solid electrolyte 104, the molar ratio of the total amount of Li, M, and X to the total amount of all elements constituting the solid electrolyte 104 is 100%. means that
  • the solid electrolyte 104 may be represented by the following compositional formula (1).
  • composition formula (1) ⁇ , ⁇ , and ⁇ are each independently a value greater than 0. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved. Thereby, the output characteristics of the battery can be further improved.
  • M is at least one selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanoid elements. may contain. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved.
  • Group 1 elements include, for example, Na, K, Rb, and Cs.
  • Group 2 elements include, for example, Mg, Ca, Sr, and Ba.
  • Group 3 elements include Sc and Y, for example.
  • Group 4 elements include, for example, Ti, Zr, and Hf.
  • Lanthanide elements include, for example, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • solid electrolyte 104 contains Li, M, and X
  • M contains at least one element selected from the group consisting of Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements. good too. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved.
  • Group 5 elements include, for example, Nb and Ta.
  • Examples of Group 12 elements include Zn.
  • Group 13 elements include, for example, Al, Ga, and In.
  • Examples of Group 14 elements include Sn.
  • M is Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd. , Tb, Dy, Ho, Er, Tm, Yb, and Lu. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved.
  • M may contain at least one selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved.
  • X may contain at least one selected from the group consisting of Br, Cl, and I. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved.
  • the solid electrolyte 104 contains Li, M, and X
  • X may contain Br, Cl, and I. According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved.
  • the solid electrolyte 104 may be represented by the following compositional formula (2).
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • the solid electrolyte 104 may be represented by the following compositional formula (3).
  • the solid electrolyte 104 may be represented by the following compositional formula (4).
  • composition formula (4) 0 ⁇ x ⁇ 6 and 0 ⁇ y ⁇ 6 are satisfied.
  • solid electrolyte 104 may be at least one selected from the group consisting of Li3YCl6 , Li3YBr6 , Li3YBr2Cl4 , and Li3YBr2Cl2I2 . good.
  • the solid electrolyte 104 may contain Li3YBr2Cl2I2 . According to the above configuration, the ionic conductivity of the solid electrolyte 104 can be further improved. Thereby, the output characteristics of the battery can be further improved.
  • the solid electrolyte 104 may contain Li3YBr2Cl2I2 as a main component.
  • the solid electrolyte 104 may contain Li 3 YBr 2 Cl 2 I 2 at a mass ratio of 70% or more with respect to the solid electrolyte 104 as a whole.
  • the solid electrolyte 104 may be Li3YBr2Cl2I2 .
  • the solid electrolyte 104 may not contain sulfur. According to the above configuration, generation of hydrogen sulfide gas can be suppressed. Thereby, the safety of the battery can be improved.
  • the shape of the solid electrolyte 104 is not limited.
  • the shape of the solid electrolyte 104 may be, for example, acicular, spherical, oval, fibrous, or the like.
  • the shape of the solid electrolyte 104 may be, for example, particulate.
  • Solid electrolyte 104 may be formed to have a pellet shape or plate shape.
  • the median diameter of the solid electrolyte 104 may be 0.1 ⁇ m or more and 100 ⁇ m or less. According to the above configuration, the active material 103 and the solid electrolyte 104 can form a good dispersion state in the electrode. This improves the charge/discharge characteristics of the battery.
  • volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the median diameter of the solid electrolyte 104 may be 0.5 ⁇ m or more and 10 ⁇ m or less. According to the above configuration, the active material 103 and the solid electrolyte 104 can form a better dispersed state in the electrode.
  • the shape of the active material 103 is not limited. That is, the shape of the first active material 101 and the second active material 102 may be, for example, acicular, spherical, ellipsoidal, or the like. The shape of the first active material 101 and the second active material 102 may be, for example, particulate.
  • the median diameter of the active material 103 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the active material 103 is 0.1 ⁇ m or more, the active material 103 and the solid electrolyte 104 can form a good dispersion state in the electrode. This improves the charge/discharge characteristics of the battery.
  • the median diameter of the active material 103 is 100 ⁇ m or less, the diffusion rate of lithium inside the active material 103 increases. This allows the battery to operate at high output.
  • the median diameter of the active material 103 may be larger than the median diameter of the solid electrolyte 104 . According to the above configuration, the active material 103 and the solid electrolyte 104 can form a good dispersion state in the electrode.
  • the median diameter of the first active material 101 may be larger than the median diameter of the second active material 102 .
  • the median diameter of first active material 101 may be smaller than the median diameter of second active material 102 .
  • the median diameter of first active material 101 may be equal to the median diameter of second active material 102 .
  • At least one selected from the group consisting of the first active material 101 and the second active material 102 may be coated with a coating material. Both first active material 101 and second active material 102 may be coated with a coating material. Either one of first active material 101 and second active material 102 may be coated with a coating material.
  • a material with low electronic conductivity can be used as the coating material.
  • oxide materials, oxide solid electrolytes, and the like can be used as the coating material.
  • oxide materials examples include SiO2 , Al2O3 , TiO2 , B2O3 , Nb2O5 , WO3 , and ZrO2 .
  • oxide solid electrolytes that can be used as coating materials include Li—Nb—O compounds such as LiNbO 3 , Li—B—O compounds such as LiBO 2 and Li 3 BO 3 , and Li—Al—O compounds such as LiAlO 2 .
  • Li--Si--O compounds such as Li 4 SiO 4
  • Li--Ti--O compounds such as Li 2 SO 4 and Li 4 Ti 5 O 12
  • Li--Zr--O compounds such as Li 2 ZrO 3
  • Li 2 Examples include Li--Mo--O compounds such as MoO 3 , Li--VO compounds such as LiV 2 O 5 and Li--WO compounds such as Li 2 WO 4 .
  • the coating material may be an oxide solid electrolyte.
  • Oxide solid electrolytes have high ionic conductivity. Oxide solid electrolytes have excellent high potential stability. Therefore, by using the oxide solid electrolyte as the coating material, the charge/discharge efficiency of the battery can be further improved.
  • the coating material may evenly coat the active material 103 (the first active material 101 and/or the second active material 102). In this case, since direct contact between the active material 103 and the solid electrolyte 104 is suppressed, side reactions of the solid electrolyte 104 can be suppressed. Therefore, the charging and discharging efficiency of the battery can be improved.
  • the coating material may partially cover the active material 103 (the first active material 101 and/or the second active material 102). Electron conductivity between particles of the active material 103 is improved by direct contact between the plurality of active materials 103 via portions not having the coating material. Therefore, it is possible to operate the battery at a high output.
  • the first active material 101, the second active material 102 and the solid electrolyte 104 may be in contact with each other.
  • the electrode material 1000 may include a plurality of first active material 101 particles, a plurality of second active material 102 particles, and a plurality of solid electrolyte 104 particles.
  • the content of the active material 103 and the content of the solid electrolyte 104 may be the same or different.
  • Electrode material 1000 can be manufactured, for example, by the following method.
  • the electrode material 1000 is obtained.
  • a method for mixing first active material 101, second active material 102, and solid electrolyte 104 is not particularly limited.
  • the first active material 101, the second active material 102, and the solid electrolyte 104 may be mixed using a device such as a mortar, and the first active material 101 and the second active material 102 may be mixed using a mixing device such as a ball mill. and solid electrolyte 104 may be mixed.
  • the mixing ratio of first active material 101 and second active material 102 to solid electrolyte 104 is not particularly limited.
  • the solid electrolyte 104 can be produced, for example, by the following method.
  • Raw material powder is prepared so as to have a compounding ratio of the desired composition.
  • the raw material powder may be, for example, a halide.
  • LiBr, LiCl, and YCl3 are prepared in a molar ratio of 2.0:1.0:1.0.
  • the raw material powders may be mixed in a pre-adjusted molar ratio so as to compensate for composition changes that may occur during the synthesis process.
  • the kind of raw material powder is not limited to the above.
  • a combination of LiCl and YBr3 , and mixed anion compounds such as LiBr0.5Cl0.5 may be used.
  • Mixtures of oxygen-containing raw powders (eg, oxides, hydroxides, sulfates, or nitrates) and halides (eg, ammonium halides) may be used.
  • the raw material powder is well mixed using a mortar and pestle, ball mill, or mixer to obtain a mixed powder.
  • the mixed powder is pulverized using the method of mechanochemical milling. By doing so, the raw material powder reacts to obtain the solid electrolyte 104 .
  • the solid electrolyte 104 may be obtained by sintering the mixed powder in a vacuum or an inert atmosphere after thoroughly mixing the raw material powders.
  • Firing may be performed, for example, within the range of 100°C or higher and 650°C or lower for 1 hour or longer. As a result, the above-described solid electrolyte 104 containing a crystalline phase is obtained.
  • the composition of the crystal phase in the solid electrolyte 104 (that is, the crystal structure) includes the elements (for example, M and X) constituting the solid electrolyte 104, the ratio of the constituent elements of the solid electrolyte 104, the reaction method between the raw material powders, and can be determined by the choice of reaction conditions.
  • Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • a battery 2000 in Embodiment 2 includes a first electrode 201 , an electrolyte layer 202 and a second electrode 203 .
  • the electrolyte layer 202 is arranged between the first electrode 201 and the second electrode 203 .
  • At least one selected from the group consisting of first electrode 201 and second electrode 203 includes electrode material 1000 in the first embodiment.
  • FIG. 2 illustrates the case where the second electrode 203 includes electrode material 1000 .
  • both charging/discharging efficiency and discharging capacity can be achieved in the battery 2000 .
  • the first electrode 201 may be a positive electrode.
  • the second electrode 203 is a negative electrode.
  • the first electrode 201 may be a negative electrode.
  • the second electrode 203 is the positive electrode.
  • Both the first electrode 201 and the second electrode 203 may contain the electrode material 1000 .
  • Either one of the first electrode 201 and the second electrode 203 may contain the electrode material 1000 .
  • the second electrode 203 may contain the electrode material 1000 . That is, the second electrode 203 may contain the active material 103 as a negative electrode active material and the solid electrolyte 104 as a solid electrolyte.
  • v1 represents the volume ratio of the active material 103 when the total volume of the active material 103 and the solid electrolyte 104 contained in the first electrode 201 is 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v1 is satisfied.
  • v1 ⁇ 95 the battery 2000 can operate at high output.
  • v2 represents the volume ratio of the active material 103 when the total volume of the active material 103 and the solid electrolyte 104 contained in the second electrode 203 is 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v2 is satisfied.
  • v2 ⁇ 95 the battery 2000 can operate at high output.
  • the thickness of the first electrode 201 may be 10 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the first electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of the first electrode 201 is 1000 ⁇ m or less, the battery 2000 can operate at high output.
  • the thickness of the second electrode 203 may be 10 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the second electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of the second electrode 203 is 1000 ⁇ m or less, the battery 2000 can operate at high output.
  • the electrolyte layer 202 is a layer containing an electrolyte.
  • the electrolyte is, for example, a solid electrolyte. That is, electrolyte layer 202 may be a solid electrolyte layer.
  • a halide solid electrolyte As the solid electrolyte contained in the electrolyte layer 202, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • the materials exemplified as the solid electrolyte 104 in Embodiment 1 may be used. That is, electrolyte layer 202 may contain a solid electrolyte having the same composition as that of solid electrolyte 104 . According to the above configuration, the charge/discharge efficiency of the battery 2000 can be further improved.
  • the electrolyte layer 202 may contain a halide solid electrolyte having a composition different from that of the solid electrolyte 104 .
  • the electrolyte layer 202 may contain two or more halogen solid electrolytes selected from the materials listed as the solid electrolyte 104 .
  • the electrolyte layer 202 may contain only one halogen solid electrolyte selected from the materials listed as the solid electrolyte 104 .
  • Sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 or the like may be used.
  • LiX, Li2O , MOq , LipMOq , etc. may be added to these.
  • X includes at least one selected from the group consisting of F, Cl, Br and I.
  • M includes at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q are natural numbers respectively.
  • One or more sulfide solid electrolytes selected from the above materials may be used.
  • oxide solid electrolytes examples include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and their elemental substitutions, Li 3 N and its H substitutions , Li 3 PO 4 and its N-substituted products, LiBO 2 , Li 3 BO 3 and other Li--B--O compounds as a base to which Li 2 SO 4 and Li 2 CO 3 are added, glass, glass ceramics, etc. can be used.
  • NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ), LiC ( SO2CF3 ) 3 , etc. may be used.
  • One or more lithium salts selected from the above lithium salts may be used.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 or the like
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 or the like
  • the electrolyte layer 202 may contain a solid electrolyte as a main component.
  • the electrolyte layer 202 may contain 70% or more of the solid electrolyte in mass ratio with respect to the entire electrolyte layer 202 .
  • the electrolyte layer 202 may contain only a solid electrolyte.
  • the electrolyte layer 202 may contain two or more of the materials listed above as solid electrolytes.
  • the shape of the solid electrolyte contained in the electrolyte layer 202 is not limited.
  • the shape of the solid electrolyte may be, for example, acicular, spherical, oval, fibrous, and the like.
  • the shape of the solid electrolyte may be, for example, particulate.
  • the solid electrolyte may be formed to have a pellet shape or plate shape.
  • the median diameter of the solid electrolyte may be 0.1 ⁇ m or more and 100 ⁇ m or less. According to the above configuration, the ionic conductivity of the solid electrolyte can be improved. Also, the solid electrolyte and other materials can form a good dispersion state in the electrolyte layer 202 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the solid electrolyte contained in the electrolyte layer 202 may be 0.5 ⁇ m or more and 10 ⁇ m or less. According to the above configuration, the ionic conductivity of the solid electrolyte can be further improved.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the first electrode 201 and the second electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 1000 ⁇ m or less, battery 2000 can operate at high output.
  • the first electrode 201 may further contain active materials other than the first active material 101 and the second active material 102 .
  • the first electrode 201 may contain a positive electrode active material.
  • the first electrode 201 may contain only a positive electrode active material as an active material.
  • the positive electrode active material includes, for example, a material that has the property of absorbing and releasing metal ions such as lithium ions.
  • positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, and transition metal oxynitrides.
  • lithium-containing transition metal oxides are Li(Ni,Co,Al) O2 , Li(Ni,Co,Mn) O2 , and LiCoO2 .
  • the positive electrode active material may include lithium nickel cobalt manganate.
  • the positive electrode active material may be, for example, Li(Ni,Co,Mn) O2 .
  • the notation "(A, B, C)" in the chemical formula means "at least one selected from the group consisting of A, B, and C".
  • “(Ni, Co, Al)” is synonymous with “at least one selected from the group consisting of Ni, Co, and Al”.
  • the first electrode 201 may further contain a solid electrolyte. According to the above configuration, the ionic conductivity of the first electrode 201 can be improved. Thereby, the output characteristics of the battery 2000 can be improved.
  • a halide solid electrolyte As the solid electrolyte contained in the first electrode 201, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • Solid electrolyte contained in the electrolyte layer 202 can be used as the halide solid electrolyte, sulfide solid electrolyte, oxide solid electrolyte, polymer solid electrolyte, or complex hydride solid electrolyte.
  • the second electrode 203 may further contain an active material other than the first active material 101 and the second active material 102.
  • the second electrode 203 may contain a negative electrode active material.
  • the second electrode 203 may contain only the negative electrode active material as an active material.
  • the negative electrode active material includes, for example, a material that has a property of intercalating and deintercalating metal ions such as lithium ions.
  • Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, and silicon compounds.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • Examples of metal materials include lithium metal and lithium alloys.
  • Carbon materials include, for example, natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • the second electrode 203 may further contain a solid electrolyte. According to the above configuration, the ionic conductivity of the second electrode 203 can be improved. Thereby, the output characteristics of the battery 2000 can be improved.
  • a halide solid electrolyte As the solid electrolyte contained in the second electrode 203, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • Solid electrolyte contained in the electrolyte layer 202 can be used as the halide solid electrolyte, sulfide solid electrolyte, oxide solid electrolyte, polymer solid electrolyte, or complex hydride solid electrolyte.
  • the shape of the solid electrolyte contained in the first electrode 201 and the second electrode 203 is not limited.
  • the shape of the solid electrolyte may be, for example, acicular, spherical, oval, fibrous, and the like.
  • the shape of the solid electrolyte may be, for example, particulate.
  • the solid electrolyte may be formed to have a pellet shape or plate shape.
  • the median diameter of the solid electrolyte may be 0.1 ⁇ m or more and 100 ⁇ m or less. According to the above configuration, the positive electrode active material and the solid electrolyte can form a good dispersed state in the first electrode 201 . Also, the negative electrode active material and the solid electrolyte can form a good dispersion state in the second electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the solid electrolyte contained in the first electrode 201 and the second electrode 203 may be 0.5 ⁇ m or more and 10 ⁇ m or less. According to the above configuration, the positive electrode active material and the solid electrolyte can form a better dispersed state in the first electrode 201 . Also, the negative electrode active material and the solid electrolyte can form a better dispersed state in the second electrode 203 .
  • the shapes of the positive electrode active material and the negative electrode active material are not limited.
  • the shape of the positive electrode active material and the negative electrode active material may be, for example, acicular, spherical, oval, or the like.
  • the shape of the positive electrode active material and the negative electrode active material may be, for example, particulate.
  • the median diameter of the positive electrode active material and the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material and the negative electrode active material is 0.1 ⁇ m or more, the positive electrode active material and the solid electrolyte can form a good dispersion state in the first electrode 201 .
  • the negative electrode active material and the solid electrolyte can form a better dispersed state in the second electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the positive electrode active material and the negative electrode active material is 100 ⁇ m or less, the diffusion rate of lithium increases in the first electrode 201 and the second electrode 203 . This allows the battery to operate at high output.
  • the median diameters of the positive electrode active material and the negative electrode active material may be larger than the median diameter of the solid electrolyte. According to the above configuration, the positive electrode active material and the solid electrolyte can form a good dispersed state in the first electrode 201 . Also, the negative electrode active material and the solid electrolyte can form a better dispersed state in the second electrode 203 .
  • the volume ratio "v3:100-v3" between the positive electrode active material and the solid electrolyte contained in the first electrode 201 may satisfy 30 ⁇ v3 ⁇ 95.
  • v3 represents the volume ratio of the positive electrode active material when the total volume of the positive electrode active material and the solid electrolyte contained in the first electrode 201 is 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v3 is satisfied.
  • v3 ⁇ 95 the battery 2000 can operate at high output.
  • the volume ratio "v4:100-v4" between the negative electrode active material and the solid electrolyte contained in the second electrode 203 may satisfy 30 ⁇ v4 ⁇ 95.
  • v4 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte contained in the second electrode 203 is 100.
  • 30 ⁇ v4 is satisfied, a sufficient energy density of the battery 2000 can be secured.
  • v4 ⁇ 95 is satisfied, the battery 2000 can operate at high output.
  • At least one selected from the group consisting of the first electrode 201, the electrolyte layer 202, and the second electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, Carboxymethyl cellulose etc.
  • tetrafluoroethylene hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene.
  • Copolymers of two or more materials can also be used as binders. A mixture of two or more selected from the above materials may also be used as the binder.
  • At least one of the first electrode 201 and the second electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • conductive aids include graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber and metal fiber, carbon fluoride, and metal powder such as aluminum.
  • conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymeric compounds such as polyaniline, polypyrrole, and polythiophene. Cost reduction can be achieved when a carbon conductive aid is used as the conductive aid.
  • the shape of the battery 2000 includes, for example, coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • Battery 2000 can be manufactured, for example, by the following method. A method for manufacturing battery 2000 will be described below, taking as an example a case where second electrode 203 includes electrode material 1000 in Embodiment 1. FIG.
  • a material for forming the first electrode 201, a material for forming the electrolyte layer 202, and an electrode material 1000 as a material for forming the second electrode 203 are prepared respectively.
  • a laminate in which the first electrode 201, the electrolyte layer 202, and the second electrode 203 are arranged in this order is produced by a known method. Thus, battery 2000 is obtained.
  • the solid electrolyte contained in first electrode 201 and the solid electrolyte contained in electrolyte layer 202 are manufactured by a method similar to the method for manufacturing solid electrolyte 104 described in the method for manufacturing electrode material 1000 in Embodiment 1. sell.
  • Example 1>> [Production of solid electrolyte] Under an argon atmosphere with a dew point of ⁇ 60° C. or lower (hereinafter referred to as “dry argon atmosphere”), the raw material powders LiBr, LiCl, LiI, YCl 3 , and YBr 3 were mixed at a molar ratio of Li:Y:Br:Cl: It was weighed so that I 3:1:2:2:2. The raw material powder was pulverized and mixed in a mortar to obtain a mixture. Then, using a planetary ball mill (manufactured by Fritsch, Model P-7), the mixture was milled at 600 rpm for 25 hours. Thus, Li 3 YBr 2 Cl 2 I 2 powder was obtained as the solid electrolyte of Example 1.
  • Electrode material Li 4 Ti 5 O 12 (manufactured by Toshima Seisakusho Co., Ltd.) was used as the first active material. MoO 2 (manufactured by Kojundo Chemical Co., Ltd.) was used as the second active material. Vapor-grown carbon fiber (VGCF-H, manufactured by Showa Denko KK) was used as a conductive aid. In a dry argon atmosphere, the solid electrolyte of Example 1, the first active material, the second active material, and the conductive aid were mixed in a mass ratio of 29.7:51.4:17.2:1.7. weighed. These ingredients were mixed in a mortar. Thus, an electrode material of Example 1 was obtained. In the electrode material of Example 1, the mass ratio of the first active material and the second active material was 75:25. "VGCF" is a registered trademark of Showa Denko K.K.
  • the obtained electrode material was used as a material for forming the first electrode.
  • Li 6 PS 5 Cl manufactured by MSE, which is a solid electrolyte, was used as a material for forming the electrolyte layer. 21.0 mg of electrode material and 80 mg of Li 6 PS 5 Cl were weighed respectively. The electrode material and Li 6 PS 5 Cl were layered in this order in an electrically insulating outer cylinder, and pressure-molded at 720 MPa. Thus, a laminate composed of the first electrode and the electrolyte layer was produced.
  • metal In with a thickness of 200 ⁇ m, metal Li with a thickness of 300 ⁇ m, and metal In with a thickness of 200 ⁇ m were arranged in this order on the electrolyte layer of the laminate.
  • a three-layer laminate consisting of a first electrode, an electrolyte layer, and an In--Li--In layer was produced.
  • stainless steel current collectors were placed on both sides of the three-layer laminate, and current collector leads were attached to each current collector.
  • the battery of Example 1 was produced by using an electrically insulating ferrule to shield and seal the inside of the electrically insulating outer cylinder from the outside atmosphere.
  • the battery was placed in a constant temperature bath at 25°C.
  • the battery was constant current charged at a current value of 115 ⁇ A. Charging was terminated when the potential vs. Li reached 1.0V.
  • constant current discharge was performed at a current value of 115 ⁇ A, and the discharge was terminated when the potential against Li reached 2.5V. Based on the above charge/discharge results, the discharge capacity at 115 ⁇ A discharge was obtained, and the charge/discharge efficiency at 115 ⁇ A charge/discharge was calculated. The results are shown in Table 1.
  • the discharge capacity increased as the ratio of the mass of the second active material to the total mass of the first active material and the second active material increased. As the ratio of the mass of the second active material to the total mass of the first active material and the second active material increased, the charge/discharge efficiency decreased.
  • MoO 2 as the second active material reversibly reacts with lithium in the same potential range as Li 4 Ti 5 O 12 as the first active material.
  • the density and mass capacity of MoO 2 are 6.47 g/cm 3 and 209 mAh/g. Therefore, MoO 2 has a higher energy density per volume compared to Li 4 Ti 5 O 12 . Therefore, by substituting MoO 2 for a portion of Li 4 Ti 5 O 12 , the energy density per volume of the battery could be increased. As a result, the discharge capacity per mass of the battery was able to be improved.
  • MoO 2 has a lower charge-discharge efficiency than Li 4 Ti 5 O 12 . Therefore, the charge/discharge efficiency of the battery decreased as the mass ratio of the second active material increased.
  • Li 4 Ti 5 O 12 as the first active material has less expansion and contraction due to insertion and extraction of lithium ions than MoO 2 as the second active material. Therefore, in Example 1, in which the ratio of the mass of the first active material to the total mass of the first active material and the second active material is 75%, both the charge and discharge efficiency and the discharge capacity of the battery are achieved. Compared to 2, the safety of the battery could be further improved.
  • Example 4 [Production of solid electrolyte]
  • the raw material powder was pulverized and mixed in a mortar to obtain a mixture.
  • using a planetary ball mill manufactured by Fritsch, Model P-7
  • the mixture was milled at 600 rpm for 25 hours.
  • powder of Li 3 YBr 2 Cl 4 was obtained as the solid electrolyte of Example 4.
  • Li(Ni, Co, Mn)O 2 was used as a positive electrode active material.
  • Vapor-grown carbon fiber (VGCF-H, manufactured by Showa Denko KK) was used as a conductive aid.
  • the positive electrode active material, the solid electrolyte of Example 4, and the conductive aid were weighed out in a mass ratio of 83:16:1. These ingredients were mixed in a mortar. Thus, a positive electrode material of Example 4 was obtained.
  • the electrode material of Example 1 was used as the negative electrode material. 14.0 mg of the negative electrode material, 80 mg of the solid electrolyte of Example 4, and 8.5 mg of the positive electrode material were weighed respectively. The negative electrode material, the solid electrolyte of Example 4, and the positive electrode material were laminated in this order in an electrically insulating outer cylinder, and pressure-molded at 720 MPa. Thus, a laminate composed of the positive electrode, the electrolyte layer and the negative electrode was produced. Next, collectors made of stainless steel were arranged on both sides of the laminate, and collector leads were attached to each collector. Finally, the battery of Example 4 was produced by using an electrically insulating ferrule to isolate and seal the inside of the electrically insulating outer cylinder from the outside atmosphere.
  • the battery was placed in a constant temperature bath at 25°C.
  • the battery was constant current charged at a current value of 64 ⁇ A. Charging was terminated when the potential vs. Li reached 2.75V.
  • constant current discharge was performed at a current value of 64 ⁇ A, and the discharge was terminated when the potential against Li reached 0.95V. Results are shown in FIG.
  • ⁇ Consideration ⁇ 3 is a graph showing the results of an initial charge/discharge test of the battery in Example 4.
  • FIG. 3 the vertical axis indicates voltage (V), and the horizontal axis indicates capacity per mass (arbitrary unit).
  • Li 3 YBr 2 Cl 4 was used as the solid electrolyte contained in the positive electrode material and the solid electrolyte for the electrolyte layer.
  • Li3YBr2Cl2I2 was used as the solid electrolyte contained in the negative electrode material.
  • a solid electrolyte containing Li, M, and X was used as the solid electrolyte.
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X is at least one selected from the group consisting of F, Cl, Br, and I.
  • the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示の一態様における電極材料は、Li、Ti、およびOを含む第1活物質と、MoおよびOを含む第2活物質と、固体電解質と、を含む。本開示の一態様における電池は、第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された電解質層を備え、前記第1電極および前記第2電極からなる群より選ばれる少なくとも1つは、前記電極材料を含む。

Description

電極材料および電池
 本開示は、電極材料および電池に関する。
 特許文献1には、負極活物質としてのチタン酸リチウムと、ハロゲン化物で形成された固体電解質とを含む負極材料、およびそれを用いた電池が開示されている。
国際公開第2019/146295号
 従来技術においては、充放電効率と放電容量とを両立させることが望まれる。
 本開示の一様態における電極材料は、
 Li、Ti、およびOを含む第1活物質と、
 MoおよびOを含む第2活物質と、
 固体電解質と、
 を含む。
 本開示によれば、充放電効率と放電容量とを両立できる。
図1は、実施の形態1における電極材料の概略構成を示す断面図である。 図2は、実施の形態2における電池の概略構成を示す断面図である。 図3は、実施例4における電池の初期の充放電試験の結果を示すグラフである。
 (本開示の基礎となった知見)
 特許文献1には、負極活物質としてチタン酸リチウムを含む負極材料を用いた電池が開示されている。チタン酸リチウムを用いた電池は、高い充放電効率を示すことが知られている。また、チタン酸リチウムは、リチウム金属の析出を発生させにくい。そのため、チタン酸リチウムを負極に用いると、析出した金属が電解質層を貫通して正極と接触することによる内部短絡を防止することができる。さらに、チタン酸リチウムには、リチウムイオンの挿入および脱離に伴う膨張および収縮が小さいという特徴がある。したがって、活物質としてチタン酸リチウムを用いると、電池の安全性を向上させることができる。一方で、チタン酸リチウムには、質量あたりの容量が小さいという問題がある。
 本発明者らは、充放電効率と放電容量とを両立させるための技術ついて鋭意研究した。その結果、本開示の技術を想到するに至った。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電極材料は、
 Li、Ti、およびOを含む第1活物質と、
 MoおよびOを含む第2活物質と、
 固体電解質と、
 を含む。
 Li、Ti、およびOを含む第1活物質は、電池の充放電効率を向上させる。MoおよびOを含む第2活物質は、電池の放電容量を向上させる。したがって、以上の構成によれば、充放電効率と放電容量とを両立できる。
 本開示の第2態様において、例えば、第1態様に係る電極材料では、前記第1活物質および前記第2活物質の合計の質量に対する前記第1活物質の質量の比率は、50%以上かつ99%以下であってもよい。第1活物質は、第2活物質と比較してリチウムイオンの挿入および脱離に伴う膨張および収縮が小さい。したがって、以上の構成によれば、電池の充放電効率と放電容量とを両立させつつ、電池の安全性を向上させることができる。
 本開示の第3態様において、例えば、第2態様に係る電極材料では、前記比率は、70%以上かつ95%以下であってもよい。以上の構成によれば、電池の充放電効率と放電容量とを両立させつつ、電池の安全性をさらに向上させることができる。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る電極材料では、前記第1活物質は、リチウムチタン酸化物を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 本開示の第5態様において、例えば、第4態様に係る電極材料では、前記リチウムチタン酸化物は、Li4Ti512を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る電極材料では、前記第2活物質は、モリブデン酸化物を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 本開示の第7態様において、例えば、第6態様に係る電極材料では、前記モリブデン酸化物は、MoO2を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る電極材料では、前記固体電解質は、Li、M、およびXを含んでいてもよい。Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つである。Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。以上の構成によれば、電池の出力特性を向上させることができる。
 本開示の第9態様において、例えば、第8態様に係る電極材料では、前記固体電解質は、下記の組成式(1)により表されてもよい。
 Liαβγ ・・・式(1)
 ここで、α、β、およびγは、それぞれ独立して0より大きい値である。以上の構成によれば、電池の出力特性をより向上させることができる。
 本開示の第10態様において、例えば、第9態様に係る電極材料では、前記固体電解質は、Li3YBr2Cl22を含んでいてもよい。以上の構成によれば、電池の出力特性をより向上させることができる。
 本開示の第11態様において、例えば、第8から第10態様のいずれか1つに係る電極材料では、前記固体電解質は、硫黄を含んでいなくてもよい。以上の構成によれば、電池の安全性を向上させることができる。
 本開示の第12態様に係る電池は、
 第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された電解質層を備え、
 前記第1電極および前記第2電極からなる群より選ばれる少なくとも1つは、第1から第11態様のいずれか1つに係る電極材料を含む。
 以上の構成によれば、電池において充放電効率と放電容量とを両立させることができる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1における電極材料1000の概略構成を示す断面図である。
 電極材料1000は、活物質103および固体電解質104を含む。活物質103は、Li、Ti、およびOを含む第1活物質101と、MoおよびOを含む第2活物質102とを含む。
 Li、Ti、およびOを含む第1活物質101は、電池の充放電効率を向上させる。MoおよびOを含む第2活物質102は、電池の放電容量を向上させる。したがって、電極材料1000を用いれば、充放電効率と放電容量とを両立できる。
 活物質103は、第1活物質101および第2活物質102のみを含んでいてもよい。本開示において、「第1活物質101および第2活物質102のみを含む」とは、不可避不純物を除き、活物質103に第1活物質101および第2活物質102以外の材料が意図的に添加されていないことを意味する。例えば、第1活物質101および第2活物質102それぞれの原料、第1活物質101および第2活物質102それぞれを作製する際に生じる副生成物などは、不可避不純物に含まれる。他の物質についても同様である。
 第1活物質101および第2活物質102の合計の質量に対する第1活物質101の質量の比率は、50%以上かつ99%以下であってもよい。第2活物質102と比較して、第1活物質101におけるリチウムイオンの挿入および脱離に伴う膨張および収縮は小さい。したがって、以上の構成によれば、電池の充放電効率と放電容量とを両立させつつ、電池の安全性を向上させることができる。
 第1活物質101および第2活物質102の合計の質量に対する第1活物質101の質量の比率は、例えば、第1活物質101および第2活物質102それぞれの体積から算出しうる。具体的には、第1活物質101および第2活物質102それぞれの体積に、第1活物質101および第2活物質102それぞれの密度を乗じることで、第1活物質101および第2活物質102それぞれの質量を算出しうる。算出された第1活物質101および第2活物質102それぞれの質量から、第1活物質101および第2活物質102の合計の質量に対する第1活物質101の質量の比率を算出できる。第1活物質101および第2活物質102それぞれの体積は、例えば、走査型電子顕微鏡(SEM)による断面SEM像から計測可能である。また、第1活物質101および第2活物質102それぞれの密度は、例えば、ピクノメーターを用いて計測可能である。
 第1活物質101および第2活物質102の合計の質量に対する第1活物質101の質量の比率は、70%以上かつ95%以下であってもよい。以上の構成によれば、電池の安全性をさらに向上させることができる。
 第1活物質101および第2活物質102の合計の質量に対する第1活物質101の質量の比率は、75%以上かつ80%以下であってもよい。以上の構成によれば、電池の安全性をさらに向上させることができる。
 第1活物質101は、リチウムチタン酸化物を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 第1活物質101は、リチウムチタン酸化物を主成分として含んでいてもよい。本開示において、「主成分」とは、質量比率で50%以上含まれた成分を意味する。
 第1活物質101は、第1活物質101の全体に対する質量比率でリチウムチタン酸化物を70%以上含んでいてもよい。
 第1活物質101は、リチウムチタン酸化物であってもよい。
 リチウムチタン酸化物としては、例えば、Li4Ti512、Li7Ti512、およびLiTi24が挙げられる。第1活物質101がリチウムチタン酸化物を含む場合、リチウムチタン酸化物は、これらの材料から選ばれる少なくとも1つを含んでいてもよい。
 リチウムチタン酸化物は、Li4Ti512を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 リチウムチタン酸化物は、Li4Ti512であってもよい。
 第2活物質102は、モリブデン酸化物を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 第2活物質102は、モリブデン酸化物を主成分として含んでいてもよい。
 第2活物質102は、第2活物質102の全体に対する質量比率でモリブデン酸化物を70%以上含んでいてもよい。
 第2活物質102は、モリブデン酸化物であってもよい。
 モリブデン酸化物としては、MoO2が挙げられる。
 モリブデン酸化物は、MoO2を含んでいてもよい。以上の構成によれば、充放電効率と放電容量とをより両立させやすい。
 モリブデン酸化物は、MoO2であってもよい。
 固体電解質104は、Li、M、およびXを含んでいてもよい。ここで、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つである。Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。以上の構成によれば、固体電解質104のイオン伝導度を向上させることができる。これにより、電池の出力特性を向上させることができる。
 本開示において、「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く周期表13族から16族中に含まれるすべての元素である。すなわち、「半金属元素」または「金属元素」とは、ハロゲン元素と無機化合物を形成した際に、カチオンとなりうる元素群である。
 固体電解質104は、実質的にLi、M、およびXからなっていてもよい。「実質的にLi、M、およびXからなる」とは、固体電解質104において、固体電解質104を構成する全元素の物質量の合計に対するLi、M、およびXの物質量の合計のモル比(すなわち、モル分率)が90%以上であることを意味する。一例として、モル比は95%以上であってもよい。
 固体電解質104は、Li、M、およびXのみからなっていてもよい。「Li、M、およびXのみからなる」とは、固体電解質104において、固体電解質104を構成する全元素の物質量の合計に対するLi、M、およびXの物質量の合計のモル比が100%であることを意味する。
 固体電解質104は、下記の組成式(1)により表されてもよい。
 Liαβγ ・・・式(1)
 組成式(1)において、α、β、およびγは、それぞれ独立して0より大きい値である。以上の構成によれば、固体電解質104のイオン伝導度をより向上させることができる。これにより、電池の出力特性をより向上させることができる。
 固体電解質104がLi、M、およびXを含む場合、Mは、第1族元素、第2族元素、第3族元素、第4族元素、およびランタノイド元素からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をより向上させることができる。
 第1族元素としては、例えば、Na、K、Rb、およびCsが挙げられる。第2族元素としては、例えば、Mg、Ca、Sr、およびBaが挙げられる。第3族元素としては、例えば、ScおよびYが挙げられる。第4族元素としては、例えば、Ti、Zr、およびHfが挙げられる。ランタノイド元素としては、例えば、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuが挙げられる。
 固体電解質104がLi、M、およびXを含む場合、Mは、第5族元素、第12族元素、第13族元素、および第14族元素からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をより向上させることができる。
 第5族元素としては、例えば、NbおよびTaが挙げられる。第12族元素としては、例えば、Znが挙げられる。第13族元素としては、例えば、Al、Ga、およびInが挙げられる。第14族元素としては、例えば、Snが挙げられる。
 固体電解質104がLi、M、およびXを含む場合、Mは、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をさらに向上させることができる。
 固体電解質104がLi、M、およびXを含む場合、Mは、Mg、Ca、Sr、Y、Sm、Gd、Dy、およびHfからなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をさらに向上させることができる。
 固体電解質104がLi、M、およびXを含む場合、Xは、Br、Cl、およびIからなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をさらに向上させることができる。
 固体電解質104がLi、M、およびXを含む場合、Xは、Br、Cl、およびIを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をさらに向上させることができる。
 固体電解質104がLi、M、およびXを含む場合、Mは、Y(=イットリウム)を含んでいてもよい。すなわち、固体電解質104は、金属元素としてYを含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をさらに向上させることができる。
 固体電解質104がLi、M、およびXを含む場合、Mは、Y(=イットリウム)であってもよい。
 固体電解質104がYを含む場合、固体電解質104は、下記の組成式(2)により表されてもよい。
 Li3YX6 ・・・式(2)
 組成式(2)において、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 固体電解質104がYを含む場合、固体電解質104は、下記の組成式(3)により表されてもよい。
 Li3YBrxCl6-x ・・・式(3)
 組成式(3)において、0≦x≦6が満たされる。
 固体電解質104がYを含む場合、固体電解質104は、下記の組成式(4)により表されてもよい。
 Li3YBrxCly6-x-y ・・・式(4)
 組成式(4)において、0≦x≦6、および0≦y≦6が満たされる。
 より具体的には、固体電解質104は、Li3YCl6、Li3YBr6、Li3YBr2Cl4、およびLi3YBr2Cl22からなる群より選ばれる少なくとも1つであってもよい。
 固体電解質104は、Li3YBr2Cl22を含んでいてもよい。以上の構成によれば、固体電解質104のイオン伝導度をより向上させることができる。これにより、電池の出力特性をより向上させることができる。
 固体電解質104は、Li3YBr2Cl22を主成分として含んでいてもよい。
 固体電解質104は、固体電解質104の全体に対する質量比率でLi3YBr2Cl22を70%以上含んでいてもよい。
 固体電解質104は、Li3YBr2Cl22であってもよい。
 固体電解質104は、硫黄を含んでいなくてもよい。以上の構成によれば、硫化水素ガスの発生を抑制できる。これにより、電池の安全性を向上させることができる。
 固体電解質104の形状は限定されない。固体電解質104の形状は、例えば、針状、球状、楕円球状、および繊維状などであってもよい。固体電解質104の形状は、例えば、粒子状であってもよい。固体電解質104は、ペレット状または板状を有するように形成されてもよい。
 固体電解質104の形状が粒子状(例えば、球状)の場合、固体電解質104のメジアン径は、0.1μm以上かつ100μm以下であってもよい。以上の構成によれば、活物質103と固体電解質104とが、電極において良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 固体電解質104のメジアン径は、0.5μm以上かつ10μm以下であってもよい。以上の構成によれば、活物質103と固体電解質104とが、電極においてより良好な分散状態を形成しうる。
 活物質103の形状は限定されない。すなわち、第1活物質101および第2活物質102の形状は、例えば、針状、球状、楕円球状などであってもよい。第1活物質101および第2活物質102の形状は、例えば、粒子状であってもよい。
 活物質103の形状が粒子状(例えば、球状)の場合、活物質103のメジアン径は、0.1μm以上かつ100μm以下であってもよい。活物質103のメジアン径が0.1μm以上であると、活物質103と固体電解質104とが、電極において良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。活物質103のメジアン径が100μm以下であると、活物質103の内部におけるリチウムの拡散速度が速くなる。これにより、電池が高出力で動作しうる。
 活物質103のメジアン径は、固体電解質104のメジアン径より大きくてもよい。以上の構成によれば、活物質103と固体電解質104とが、電極において良好な分散状態を形成しうる。
 活物質103の形状が粒子状(例えば、球状)の場合、第1活物質101のメジアン径は、第2活物質102のメジアン径より大きくてもよい。第1活物質101のメジアン径は、第2活物質102のメジアン径より小さくてもよい。第1活物質101のメジアン径は、第2活物質102のメジアン径と等しくてもよい。
 第1活物質101および第2活物質102からなる群より選ばれる少なくとも1つは、被覆材料によって被覆されていてもよい。第1活物質101および第2活物質102のいずれもが、被覆材料によって被覆されていてもよい。第1活物質101および第2活物質102のいずれか一方が、被覆材料によって被覆されていてもよい。
 被覆材料として、電子伝導度が低い材料が用いられうる。被覆材料として、酸化物材料および酸化物固体電解質などが用いられうる。
 酸化物材料としては、例えば、SiO2、Al23、TiO2、B23、Nb25、WO3、およびZrO2などが用いられうる。
 被覆材料として使用できる酸化物固体電解質としては、例えば、LiNbO3などのLi-Nb-O化合物、LiBO2およびLi3BO3などのLi-B-O化合物、LiAlO2などのLi-Al-O化合物、Li4SiO4などのLi-Si-O化合物、Li2SO4、Li4Ti512などのLi-Ti-O化合物、Li2ZrO3などのLi-Zr-O化合物、Li2MoO3などのLi-Mo-O化合物、LiV25などのLi-V-O化合物、Li2WO4などのLi-W-O化合物などが挙げられる。
 被覆材料は、酸化物固体電解質であってもよい。
 酸化物固体電解質は、高いイオン伝導度を有する。酸化物固体電解質は、優れた高電位安定性を有する。このため、酸化物固体電解質を被覆材料として用いることで、電池の充放電効率をより向上させることができる。
 被覆材料は、活物質103(第1活物質101および/または第2活物質102)を一様に被覆していてもよい。この場合、活物質103と固体電解質104との直接接触が抑制されるので、固体電解質104の副反応を抑制できる。このため、電池の充放電効率を向上させることができる。
 被覆材料は、活物質103(第1活物質101および/または第2活物質102)の一部を被覆していてもよい。被覆材料を有さない部分を介して、複数の活物質103同士が直接接触することで、活物質103の粒子間での電子伝導度が向上する。このため、電池の高出力での動作が可能となる。
 電極材料1000において、第1活物質101、第2活物質102および固体電解質104は、互いに接触していてもよい。
 電極材料1000は、複数の第1活物質101の粒子、複数の第2活物質102の粒子、および複数の固体電解質104の粒子を含んでいてもよい。
 電極材料1000において、活物質103の含有量と固体電解質104の含有量とは、互いに同じであってもよいし、異なっていてもよい。
 <電極材料の製造方法>
 電極材料1000は、例えば、下記の方法により製造されうる。
 第1活物質101、第2活物質102および固体電解質104を混合することによって、電極材料1000が得られる。第1活物質101、第2活物質102および固体電解質104を混合する方法は特に限定さない。例えば、乳鉢などの器具を用いて第1活物質101、第2活物質102および固体電解質104を混合してもよく、ボールミルなどの混合装置を用いて第1活物質101、第2活物質102および固体電解質104を混合してもよい。第1活物質101および第2活物質102と固体電解質104との混合比率は特に限定されない。
 なお、固体電解質104は、例えば、下記の方法により製造されうる。
 目的とする組成の配合比となるような原料粉を用意する。原料粉は、例えば、ハロゲン化物であってもよい。例えば、固体電解質104としてLi3YBr2Cl4を作製する場合には、LiBr、LiCl、およびYCl3が、2.0:1.0:1.0のモル比で用意される。合成過程において生じ得る組成変化を相殺するように、原料粉は、予め調整されたモル比で混合されてもよい。
 原料粉の種類は上記に限るものではない。例えば、LiClとYBr3との組み合わせ、および、LiBr0.5Cl0.5のような複合アニオン化合物を用いてもよい。酸素を含有する原料粉(例えば、酸化物、水酸化物、硫酸塩、または硝酸塩)とハロゲン化物(例えば、ハロゲン化アンモニウム)との混合物を用いてもよい。
 原料粉を、乳鉢および乳棒、ボールミル、またはミキサーを用いてよく混合し、混合粉を得る。次いで、メカノケミカルミリングの方法を用いて混合粉を粉砕する。このようにすることで、原料粉が反応し、固体電解質104が得られる。もしくは、原料粉をよく混合した後、真空中または不活性雰囲気中で混合粉を焼成することで、固体電解質104を得てもよい。
 焼成は、例えば、100℃以上かつ650℃以下の範囲内で、1時間以上行ってもよい。これにより、結晶相を含む上述の固体電解質104が得られる。
 なお、固体電解質104における結晶相の構成(すなわち、結晶構造)は、固体電解質104を構成する元素(例えば、MおよびX)、固体電解質104の構成元素の比、原料粉同士の反応方法、および反応条件の選択により決定されうる。
 (実施の形態2)
 以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
 図2は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、第1電極201、電解質層202、および第2電極203を備える。電解質層202は、第1電極201と第2電極203との間に配置されている。第1電極201および第2電極203からなる群より選ばれる少なくとも1つは、実施の形態1における電極材料1000を含む。図2は、第2電極203が電極材料1000を含む場合を例示している。
 以上の構成によれば、電池2000において充放電効率と放電容量とを両立させることができる。
 第1電極201は正極であってもよい。このとき、第2電極203は負極である。第1電極201は負極であってもよい。このとき、第2電極203は正極である。
 第1電極201および第2電極203のいずれもが、電極材料1000を含んでいてもよい。第1電極201および第2電極203のいずれか一方が、電極材料1000を含んでいてもよい。
 第1電極201が正極であり、第2電極203が負極である場合、第2電極203が、電極材料1000を含んでいてもよい。すなわち、第2電極203が、負極活物質としての活物質103、および固体電解質としての固体電解質104を含んでいてもよい。
 第1電極201が電極材料1000を含む場合、第1電極201に含まれる、活物質103と固体電解質104との体積比率「v1:100-v1」について、30≦v1≦95が満たされてもよい。ここで、v1は、第1電極201に含まれる、活物質103および固体電解質104の合計体積を100としたときの活物質103の体積比率を表す。30≦v1を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v1≦95を満たす場合、電池2000が高出力で動作しうる。
 第2電極203が電極材料1000を含む場合、第2電極203に含まれる、活物質103と固体電解質104との体積比率「v2:100-v2」について、30≦v2≦95が満たされてもよい。ここで、v2は、第2電極203に含まれる、活物質103および固体電解質104の合計体積を100としたときの活物質103の体積比率を表す。30≦v2を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v2≦95を満たす場合、電池2000が高出力で動作しうる。
 第1電極201の厚みは、10μm以上かつ1000μm以下であってもよい。第1電極201の厚みが10μm以上の場合、十分な電池2000のエネルギー密度を確保しうる。第1電極201の厚みが1000μm以下の場合、電池2000が高出力で動作しうる。
 第2電極203の厚みは、10μm以上かつ1000μm以下であってもよい。第2電極203の厚みが10μm以上の場合、十分な電池2000のエネルギー密度を確保しうる。第2電極203の厚みが1000μm以下の場合、電池2000が高出力で動作しうる。
 電解質層202は、電解質を含む層である。電解質は、例えば、固体電解質である。すなわち、電解質層202は、固体電解質層であってもよい。
 電解質層202に含まれる固体電解質として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質を用いてもよい。
 ハロゲン化物固体電解質としては、例えば、実施の形態1において固体電解質104として例示した材料を用いてもよい。すなわち、電解質層202は、固体電解質104の組成と同じ組成を有する固体電解質を含んでいてもよい。以上の構成によれば、電池2000の充放電効率をより向上させることができる。
 電解質層202は、固体電解質104の組成とは異なる組成を有するハロゲン化物固体電解質を含んでいてもよい。
 電解質層202は、固体電解質104として挙げられた材料から選ばれる2つ以上のハロゲン固体電解質を含んでいてもよい。
 電解質層202は、固体電解質104として挙げられた材料から選ばれる1つのハロゲン固体電解質のみを含んでいてもよい。
 硫化物固体電解質としては、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212などが用いられうる。また、これらに、LiX、Li2O、MOq、LipMOqなどが添加されてもよい。ここで、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つを含む。また、Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選ばれる少なくとも1つを含む。pおよびqは、それぞれ、自然数である。上記の材料から選ばれる1つまたは2つ以上の硫化物固体電解質が使用されうる。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3NおよびそのH置換体、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラス、ガラスセラミックスなどが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物とリチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン伝導度をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などが使用されうる。上記のリチウム塩から選ばれる1つまたは2つ以上のリチウム塩が使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25などが用いられうる。
 電解質層202は、固体電解質を主成分として含んでいてもよい。
 電解質層202は、電解質層202の全体に対する質量比率で固体電解質を70%以上含んでいてもよい。
 電解質層202は、固体電解質のみを含んでいてもよい。
 電解質層202は、上記で固体電解質として挙げられた材料の2つ以上を含んでいてもよい。
 電解質層202に含まれる固体電解質の形状は限定されない。固体電解質の形状は、例えば、針状、球状、楕円球状、および繊維状などであってもよい。固体電解質の形状は、例えば、粒子状であってもよい。固体電解質は、ペレット状または板状を有するように形成されてもよい。
 電解質層202に含まれる固体電解質の形状が粒子状(例えば、球状)の場合、固体電解質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。以上の構成によれば、固体電解質のイオン伝導度を向上させることができる。また、固体電解質と他の材料とが、電解質層202において良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。
 電解質層202に含まれる固体電解質のメジアン径は、0.5μm以上かつ10μm以下であってもよい。以上の構成によれば、固体電解質のイオン伝導度をさらに向上させることができる。
 電解質層202の厚みは、1μm以上かつ1000μm以下であってもよい。電解質層202の厚みが1μm以上の場合、第1電極201と第2電極203とが短絡しにくくなる。電解質層202の厚みが1000μm以下の場合、電池2000が高出力で動作しうる。
 第1電極201は、第1活物質101および第2活物質102以外の活物質をさらに含んでいてもよい。第1電極201は、正極活物質を含んでいてもよい。第1電極201は、活物質として、正極活物質のみを含んでいてもよい。正極活物質は、例えば、リチウムイオンなどの金属イオンを吸蔵かつ放出する特性を有する材料を含む。
 正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、および遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、Li(Ni,Co,Al)O2、Li(Ni,Co,Mn)O2、およびLiCoO2である。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを低減できるとともに、平均放電電圧を高めることができる。電池2000のエネルギー密度を高めるために、正極活物質は、ニッケルコバルトマンガン酸リチウムを含んでいてもよい。正極活物質は、例えば、Li(Ni,Co,Mn)O2であってもよい。
 本開示において、化学式中の表記「(A,B,C)」は、「A、B、およびCからなる群より選ばれる少なくとも1つ」を意味する。例えば、「(Ni,Co,Al)」は、「Ni、Co、およびAlからなる群より選ばれる少なくとも1つ」と同義である。
 第1電極201は、さらに固体電解質を含んでいてもよい。以上の構成によれば、第1電極201においてイオン伝導度を向上させることができる。これにより、電池2000の出力特性を向上させることができる。
 第1電極201に含まれる固体電解質として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質を用いてもよい。
 ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質としては、電解質層202に含まれる固体電解質として例示した材料を用いることができる。
 第2電極203は、第1活物質101および第2活物質102以外の活物質をさらに含んでいてもよい。第2電極203は、負極活物質を含んでいてもよい。第2電極203は、活物質として、負極活物質のみを含んでいてもよい。負極活物質は、例えば、リチウムイオンなどの金属イオンを吸蔵かつ放出する特性を有する材料を含む。
 負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物である。金属材料は、単体の金属であってもよい。金属材料は、合金であってもよい。金属材料としては、例えば、リチウム金属、およびリチウム合金などが挙げられる。炭素材料としては、例えば、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、および非晶質炭素などが挙げられる。珪素(Si)、錫(Sn)、珪素化合物、および錫化合物などを用いることで電池2000の容量密度を向上させることができる。
 第2電極203は、さらに固体電解質を含んでいてもよい。以上の構成によれば、第2電極203においてイオン伝導度を向上させることができる。これにより、電池2000の出力特性を向上させることができる。
 第2電極203に含まれる固体電解質として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質を用いてもよい。
 ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質としては、電解質層202に含まれる固体電解質として例示した材料を用いることができる。
 第1電極201および第2電極203に含まれる固体電解質の形状は限定されない。固体電解質の形状は、例えば、針状、球状、楕円球状、および繊維状などであってもよい。固体電解質の形状は、例えば、粒子状であってもよい。固体電解質は、ペレット状または板状を有するように形成されてもよい。
 第1電極201および第2電極203に含まれる固体電解質の形状が粒子状(例えば、球状)の場合、固体電解質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。以上の構成によれば、正極活物質と固体電解質とが、第1電極201において良好な分散状態を形成しうる。また、負極活物質と固体電解質とが、第2電極203において良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。
 第1電極201および第2電極203に含まれる固体電解質のメジアン径は、0.5μm以上かつ10μm以下であってもよい。以上の構成によれば、正極活物質と固体電解質とが、第1電極201においてより良好な分散状態を形成しうる。また、負極活物質と固体電解質とが、第2電極203においてより良好な分散状態を形成しうる。
 正極活物質および負極活物質の形状は限定されない。正極活物質および負極活物質の形状は、例えば、針状、球状、楕円球状などであってもよい。正極活物質および負極活物質の形状は、例えば、粒子状であってもよい。
 正極活物質および負極活物質の形状が粒子状(例えば、球状)の場合、正極活物質および負極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質および負極活物質のメジアン径が0.1μm以上であると、正極活物質と固体電解質とが、第1電極201において良好な分散状態を形成しうる。また、負極活物質と固体電解質とが、第2電極203においてより良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。正極活物質および負極活物質のメジアン径が100μm以下であると、第1電極201および第2電極203においてリチウムの拡散速度が速くなる。これにより、電池が高出力で動作しうる。
 正極活物質および負極活物質のメジアン径は、固体電解質のメジアン径より大きくてもよい。以上の構成によれば、正極活物質と固体電解質とが、第1電極201において良好な分散状態を形成しうる。また、負極活物質と固体電解質とが、第2電極203においてより良好な分散状態を形成しうる。
 第1電極201に含まれる、正極活物質と固体電解質との体積比率「v3:100-v3」について、30≦v3≦95が満たされてもよい。ここで、v3は、第1電極201に含まれる、正極活物質および固体電解質の合計体積を100としたときの正極活物質の体積比率を表す。30≦v3を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v3≦95を満たす場合、電池2000が高出力で動作しうる。
 第2電極203に含まれる、負極活物質と固体電解質との体積比率「v4:100-v4」について、30≦v4≦95が満たされてもよい。ここで、v4は、第2電極203に含まれる、負極活物質および固体電解質の合計体積を100としたときの負極活物質の体積比率を表す。30≦v4を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v4≦95を満たす場合、電池2000が高出力で動作しうる。
 第1電極201、電解質層202、および第2電極203からなる群より選ばれる少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられる。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンからなる群より選ばれる2つ以上の材料の共重合体も結着剤として用いられうる。また、上記の材料から選ばれる2つ以上の混合物を結着剤として使用してもよい。
 第1電極201と第2電極203とのうちの少なくとも一方は、電子伝導度を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛および人造黒鉛のグラファイト類、アセチレンブラックおよびケッチェンブラックなどのカーボンブラック類、炭素繊維および金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛およびチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ならびに、ポリアニリン、ポリピロール、およびポリチオフェンなどの導電性高分子化合物などが用いられうる。導電助剤として炭素導電助剤を用いた場合、低コスト化を図ることができる。
 電池2000の形状は、例えば、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型などが挙げられる。
 <電池の製造方法>
 電池2000は、例えば、下記の方法によって製造されうる。以下では、第2電極203が実施の形態1における電極材料1000を含む場合を例として、電池2000の製造方法を説明している。
 第1電極201の形成用の材料、電解質層202の形成用の材料、および、第2電極203の形成用の材料としての電極材料1000をそれぞれ準備する。公知の方法で、第1電極201、電解質層202、および第2電極203がこの順に配置された積層体を作製する。これにより、電池2000が得られる。
 なお、第1電極201に含まれる固体電解質、および電解質層202に含まれる固体電解質は、実施の形態1における電極材料1000の製造方法で説明した固体電解質104の製造方法と同様の方法により製造されうる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。以下の実施例は一例であり、本開示は以下の実施例に限定されない。
 ≪実施例1≫
 [固体電解質の作製]
 露点-60℃以下のアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と称する)下で、原料粉であるLiBr、LiCl、LiI、YCl3、およびYBr3をモル比でLi:Y:Br:Cl:I=3:1:2:2:2となるように秤量した。原料粉を乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製,P-7型)を用い、25時間、600rpmの条件で混合物をミリング処理した。これにより、実施例1の固体電解質としてLi3YBr2Cl22の粉末を得た。
 [電極材料の作製]
 第1活物質としてLi4Ti512(豊島製作所社製)を用いた。第2活物質としてMoO2(高純度化学社製)を用いた。導電助剤として気相法炭素繊維(昭和電工社製,VGCF-H)を用いた。乾燥アルゴン雰囲気下で、実施例1の固体電解質、第1活物質、第2活物質、および導電助剤を質量比率で29.7:51.4:17.2:1.7となるように秤量した。これらの材料を乳鉢で混合した。これにより、実施例1の電極材料を得た。実施例1の電極材料において、第1活物質と第2活物質の質量比率は、75:25であった。なお、「VGCF」は、昭和電工株式会社の登録商標である。
 [電池の作製]
 第1電極の形成用の材料として、得られた電極材料を用いた。電解質層の形成用の材料として、固体電解質であるLi6PS5Cl(MSE社製)を用いた。21.0mgの電極材料と80mgのLi6PS5Clとをそれぞれ秤量した。電気的絶縁性の外筒の中に電極材料およびLi6PS5Clをこの順に積層し、720MPaで加圧成形した。これにより、第1電極と電解質層からなる積層体を作製した。次に、積層体の電解質層の上に、厚み200μmの金属In、厚み300μmの金属Li、および厚み200μmの金属Inをこの順に配置した。これを80MPaの圧力で加圧成形することで、第1電極、電解質層、およびIn-Li-In層からなる3層積層体を作製した。次に、3層積層体の両面にステンレス鋼製の集電体を配置し、各集電体に集電リードを付設した。最後に、電気的絶縁性のフェルールを用いて、電気的絶縁性の外筒の内部を外気雰囲気から遮断および密閉することで、実施例1の電池を作製した。
 ≪実施例2≫
 電極材料の作製において、固体電解質、第1活物質、第2活物質、および導電助剤を質量比率で26.9:35.8:35.8:1.5となるように秤量した。これ以外は実施例1と同様の方法により、実施例2の電極材料および電池を作製した。実施例2の電極材料において、第1活物質と第2活物質の質量比率は、50:50であった。
 ≪比較例1≫
 電極材料の作製において、第2活物質(MoO2)は用いなかった。すなわち、比較例1の電極材料において、第1活物質と第2活物質の質量比率は、100:0であった。固体電解質、第1活物質、および導電助剤を質量比率で32.3:65.8:1.9となるように秤量した。これ以外は実施例1と同様の方法により、比較例1の電極材料および電池を作製した。
 ≪比較例2≫
 電極材料の作製において、第1活物質(Li4Ti512)は用いなかった。すなわち、比較例1の電極材料において、第1活物質と第2活物質の質量比率は、0:100であった。固体電解質、第2活物質、および導電助剤を質量比率で20.4:78.4:1.2となるように秤量した。これ以外は実施例1と同様の方法により、比較例2の電極材料および電池を作製した。
 (固体電解質の組成の評価)
 実施例1の固体電解質について、ICP(Inductively coupled Plasma)発光分光分析法を用いて組成の評価を行った。Li/Yの仕込み組成からのずれは3%以内であった。この結果から、遊星型ボールミルによる仕込み組成と、得られた固体電解質の組成とはほとんど同じであったといえる。
 (充放電試験)
 次に、実施例1から2および比較例1から2の電池を用いて、以下の条件で、充放電試験を実施した。
 電池を25℃の恒温槽に配置した。電流値115μAで、電池を定電流充電した。Liに対する電位が1.0Vに達したとき、充電を終了した。次に、電流値115μAで定電流放電し、Liに対する電位が2.5Vに達したとき、放電を終了した。以上の充放電結果に基づいて、115μA放電時の放電容量を得るとともに、115μA充放電時の充放電効率を算出した。結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ≪考察≫
 表1に示されるように、活物質として第1活物質および第2活物質を含む実施例1および2では、放電容量および充放電効率のいずれもが高い数値を示していた。このように、実施例1および2では、充放電効率と放電容量とを両立できた。
 表1に示されるように、第1活物質および第2活物質の合計の質量に対する第2活物質の質量の比率の増加に伴い、放電容量は増加した。第1活物質および第2活物質の合計の質量に対する第2活物質の質量の比率の増加に伴い、充放電効率は低下した。
 これは、下記の通り説明される。第2活物質であるMoO2は、第1活物質であるLi4Ti512と同じ電位領域でリチウムと可逆的に反応する。MoO2の密度および質量あたりの容量は、6.47g/cm3および209mAh/gである。したがって、MoO2は、Li4Ti512と比較して体積あたりのエネルギー密度が高い。そのため、Li4Ti512の一部をMoO2に代替することにより、電池の体積あたりのエネルギー密度を高めることができた。これにより、電池の質量あたりの放電容量を向上させることができた。一方で、MoO2は、Li4Ti512と比較して充放電効率が低い。そのため、第2活物質の質量比率の増加に伴い、電池の充放電効率は低下した。
 以上の結果より、特に、第1活物質および第2活物質の合計の質量に対する第1活物質の質量の比率を適切に調節することで、電池の質量あたりの放電容量を向上させつつ、充放電効率を向上させることができることがわかった。
 第1活物質であるLi4Ti512は、第2活物質であるMoO2と比較してリチウムイオンの挿入および脱離に伴う膨張および収縮が小さい。そのため、第1活物質および第2活物質の合計の質量に対する第1活物質の質量の比率が75%である実施例1では、電池の充放電効率と放電容量とを両立させつつ、実施例2に比べて電池の安全性をさらに向上させることができた。
 ≪実施例4≫
 [固体電解質の作製]
 乾燥アルゴン雰囲気下で、原料粉であるLiBr、YBr3、LiCl、およびYCl3をモル比でLi:Y:Br:Cl=3:1:2:4となるように秤量した。原料粉を乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製,P-7型)を用い、25時間、600rpmの条件で混合物をミリング処理した。これにより、実施例4の固体電解質としてLi3YBr2Cl4の粉末を得た。
 [正極材料の作製]
 正極活物質として、Li(Ni,Co,Mn)O2を用いた。導電助剤として気相法炭素繊維(昭和電工社製,VGCF-H)を用いた。乾燥アルゴン雰囲気下で、正極活物質、実施例4の固体電解質、および導電助剤を質量比率で83:16:1となるように秤量した。これらの材料を乳鉢で混合した。これにより、実施例4の正極材料を得た。
 [電池の作製]
 負極材料として、実施例1の電極材料を用いた。14.0mgの負極材料と、80mgの実施例4の固体電解質と、8.5mgの正極材料とをそれぞれ秤量した。電気的絶縁性の外筒の中に負極材料、実施例4の固体電解質、および正極材料をこの順に積層し、720MPaで加圧成形した。これにより、正極、電解質層および負極からなる積層体を作製した。次に、積層体の両面にステンレス鋼製の集電体を配置し、各集電体に集電リードを付設した。最後に、電気的絶縁性のフェルールを用いて、電気的絶縁性の外筒の内部を外気雰囲気から遮断および密閉することで、実施例4の電池を作製した。
 (充放電試験)
 次に、実施例4の電池を用いて、以下の条件で、充放電試験を実施した。
 電池を25℃の恒温槽に配置した。電流値64μAで、電池を定電流充電した。Liに対する電位が2.75Vに達したとき、充電を終了した。次に、電流値64μAで定電流放電し、Liに対する電位が0.95Vに達したとき、放電を終了した。結果を、図3に示す。
 ≪考察≫
 図3は、実施例4における電池の初期の充放電試験の結果を示すグラフである。図3において、縦軸は電圧(V)を示し、横軸は質量あたりの容量(任意単位)を示す。実施例4では、正極材料に含まれる固体電解質、および電解質層用の固体電解質として、Li3YBr2Cl4を用いた。負極材料に含まれる固体電解質として、Li3YBr2Cl22を用いた。このように、実施例4における電池では、固体電解質として、Li、M、およびXを含む固体電解質が用いられた。なお、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。図3に示された結果から、固体電解質としてこのような材料のみが使用された電池は、安定動作が可能であることが確認された。また、実施例4による電池では、固体電解質に硫黄が含まれていなかった。したがって、実施例4による電池では、硫化水素ガスの発生を抑制でき、電池の安全性が向上した。
 本開示の電池は、例えば、全固体リチウム二次電池などとして利用されうる。
 1000 電極材料
 101 第1活物質
 102 第2活物質
 103 活物質
 104 固体電解質
 2000 電池
 201 第1電極
 202 電解質層
 203 第2電極

Claims (12)

  1.  Li、Ti、およびOを含む第1活物質と、
     MoおよびOを含む第2活物質と、
     固体電解質と、
     を含む、
     電極材料。
  2.  前記第1活物質および前記第2活物質の合計の質量に対する前記第1活物質の質量の比率は、50%以上かつ99%以下である、
     請求項1に記載の電極材料。
  3.  前記比率は、70%以上かつ95%以下である、
     請求項2に記載の電極材料。
  4.  前記第1活物質は、リチウムチタン酸化物を含む、
     請求項1から3のいずれか一項に記載の電極材料。
  5.  前記リチウムチタン酸化物は、Li4Ti512を含む、
     請求項4に記載の電極材料。
  6.  前記第2活物質は、モリブデン酸化物を含む、
     請求項1から5のいずれか一項に記載の電極材料。
  7.  前記モリブデン酸化物は、MoO2を含む、
     請求項6に記載の電極材料。
  8.  前記固体電解質は、Li、M、およびXを含み、
     Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、
     Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである、
     請求項1から7のいずれか一項に記載の電極材料。
  9.  前記固体電解質は、下記の組成式(1)により表され、
     Liαβγ ・・・式(1)
     ここで、α、β、およびγは、それぞれ独立して0より大きい値である、
     請求項8に記載の電極材料。
  10.  前記固体電解質は、Li3YBr2Cl22を含む、
     請求項9に記載の電極材料。
  11.  前記固体電解質は、硫黄を含まない、
     請求項8から10のいずれか一項に記載の電極材料。
  12.  第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された電解質層を備え、
     前記第1電極および前記第2電極からなる群より選ばれる少なくとも1つは、請求項1から11のいずれか一項に記載の電極材料を含む、
     電池。
PCT/JP2022/004783 2021-05-31 2022-02-08 電極材料および電池 WO2022254796A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023525381A JPWO2022254796A1 (ja) 2021-05-31 2022-02-08
CN202280034725.5A CN117296165A (zh) 2021-05-31 2022-02-08 电极材料及电池
US18/500,514 US20240063378A1 (en) 2021-05-31 2023-11-02 Electrode material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091878 2021-05-31
JP2021-091878 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/500,514 Continuation US20240063378A1 (en) 2021-05-31 2023-11-02 Electrode material and battery

Publications (1)

Publication Number Publication Date
WO2022254796A1 true WO2022254796A1 (ja) 2022-12-08

Family

ID=84324124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004783 WO2022254796A1 (ja) 2021-05-31 2022-02-08 電極材料および電池

Country Status (4)

Country Link
US (1) US20240063378A1 (ja)
JP (1) JPWO2022254796A1 (ja)
CN (1) CN117296165A (ja)
WO (1) WO2022254796A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227358A (ja) * 2006-01-24 2007-09-06 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009099522A (ja) * 2007-09-25 2009-05-07 Sanyo Electric Co Ltd 非水電解質二次電池用活物質及びそれを用いた非水電解質二次電池
JP2010086896A (ja) * 2008-10-02 2010-04-15 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用活物質
WO2019146295A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 負極材料およびそれを用いた電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227358A (ja) * 2006-01-24 2007-09-06 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009099522A (ja) * 2007-09-25 2009-05-07 Sanyo Electric Co Ltd 非水電解質二次電池用活物質及びそれを用いた非水電解質二次電池
JP2010086896A (ja) * 2008-10-02 2010-04-15 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用活物質
WO2019146295A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 負極材料およびそれを用いた電池

Also Published As

Publication number Publication date
US20240063378A1 (en) 2024-02-22
JPWO2022254796A1 (ja) 2022-12-08
CN117296165A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
JP7182196B2 (ja) 電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7182114B2 (ja) 固体電解質材料、および、電池
JP7349645B2 (ja) 電極材料、および、電池
JP7316564B2 (ja) 電池
JP7145439B2 (ja) 電池
JP7249562B2 (ja) 電池
WO2019135346A1 (ja) 正極材料、および、電池
WO2019135322A1 (ja) 正極材料、および、電池
JP7217432B2 (ja) 正極材料およびそれを用いた電池
WO2019146296A1 (ja) 正極材料およびそれを用いた電池
WO2022224505A1 (ja) 正極材料および電池
WO2023021836A1 (ja) 電極および電池
WO2021157361A1 (ja) 正極材料および電池
WO2020174868A1 (ja) 正極材料、および、電池
WO2023286614A1 (ja) 正極材料および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
US20240097123A1 (en) Electrode material and battery
WO2023032473A1 (ja) 正極材料および電池
WO2022254796A1 (ja) 電極材料および電池
WO2022264554A1 (ja) 複合活物質、電極材料、電池、および複合活物質の製造方法
WO2022219842A1 (ja) 負極材料およびそれを用いた電池
WO2022219843A1 (ja) 電池
WO2022264555A1 (ja) 電極材料および電池
WO2023132304A1 (ja) 正極材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525381

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280034725.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815555

Country of ref document: EP

Kind code of ref document: A1