WO2022224505A1 - 正極材料および電池 - Google Patents

正極材料および電池 Download PDF

Info

Publication number
WO2022224505A1
WO2022224505A1 PCT/JP2022/001202 JP2022001202W WO2022224505A1 WO 2022224505 A1 WO2022224505 A1 WO 2022224505A1 JP 2022001202 W JP2022001202 W JP 2022001202W WO 2022224505 A1 WO2022224505 A1 WO 2022224505A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid electrolyte
electrolyte
battery
electrolyte material
Prior art date
Application number
PCT/JP2022/001202
Other languages
English (en)
French (fr)
Inventor
唯未 宮本
好政 名嘉真
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023516041A priority Critical patent/JPWO2022224505A1/ja
Priority to CN202280029170.5A priority patent/CN117203794A/zh
Publication of WO2022224505A1 publication Critical patent/WO2022224505A1/ja
Priority to US18/485,999 priority patent/US20240047680A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to cathode materials and batteries.
  • Patent Document 1 discloses an all-solid battery using a positive electrode material in which at least part of the surface of a positive electrode active material containing nickel, cobalt, and manganese is coated with lithium niobate.
  • the present disclosure provides a positive electrode material that improves the charge/discharge capacity of batteries.
  • the positive electrode material of the present disclosure includes a positive electrode active material, a first solid electrolyte material covering at least part of the surface of the positive electrode active material, and a second electrolyte material, and the positive electrode active material is Li, Ni , Mn, and O, and the first solid electrolyte material comprises Li, Ti, M1, and F, and M1 is selected from the group consisting of Ca, Mg, Al, Y, and Zr. is at least one
  • the present disclosure provides a positive electrode material that improves the charge/discharge capacity of batteries.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of battery 2000 according to Embodiment 2.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of battery 3000 according to the third embodiment.
  • Patent Document 1 discloses an all-solid battery using a positive electrode material including a positive electrode active material containing nickel, cobalt, and manganese, a coating material covering at least part of the surface of the positive electrode active material, and a halide solid electrolyte material. is disclosed.
  • a coating material that coats the surface of the positive electrode active material is a solid electrolyte material, and the solid electrolyte material is lithium niobate.
  • Halide solid electrolytes are materials containing halogen elements such as fluorine (ie, F), chlorine (ie, Cl), bromine (ie, Br), and iodine (ie, I) as anions.
  • the halide solid electrolyte In a battery using a halide solid electrolyte containing at least one element selected from the group consisting of chlorine, bromine, and iodine as a positive electrode material, the halide solid electrolyte is oxidatively decomposed during charging, and the oxidative decomposition product becomes resistant.
  • a problem was discovered in which the internal resistance of the battery increases during charging due to its function as a layer. It was surmised that the cause was the oxidation reaction of one element selected from the group consisting of chlorine, bromine, and iodine contained in the halide solid electrolyte.
  • the oxidation reaction means at least one selected from the group consisting of chlorine, bromine, and iodine in contact with the positive electrode active material, in addition to the normal charging reaction in which lithium and electrons are extracted from the positive electrode active material in the positive electrode material.
  • an oxidative decomposition layer with poor lithium ion conductivity is formed between the positive electrode active material and the halide solid electrolyte, and the oxidative decomposition layer functions as a large interfacial resistance in the electrode reaction of the positive electrode. it is conceivable that.
  • Chlorine, bromine, and iodine are considered to be easily oxidized because they have a relatively large ionic radius and a small interaction force with the cation component constituting the halide solid electrolyte.
  • a positive electrode active material having a potential versus Li of more than 3.9 V is used, this problem is more likely to occur than when a positive electrode active material having a potential versus Li of 3.9 V or less is used. It is known that even if the solid electrolyte is, for example, a sulfide solid electrolyte, it decomposes.
  • Patent Document 1 discloses a battery including a positive electrode layer containing a positive electrode active material coated with lithium niobate and a halide solid electrolyte.
  • a battery including a positive electrode layer containing a positive electrode active material coated with lithium niobate and a halide solid electrolyte.
  • the present inventors diligently studied the configuration of a positive electrode material containing a coated positive electrode active material that can further suppress the decrease in the charge/discharge capacity of the battery.
  • the positive electrode active material contains an oxide consisting of Li, Ni, Mn, and O
  • the surface of the positive electrode active material contains Li, Ti, M1, and F, where M1 is Ca
  • a solid electrolyte material that is at least one selected from the group consisting of Mg, Al, Y, and Zr, it is possible to further suppress the decrease in charge/discharge capacity of the battery.
  • a positive electrode material of the present disclosure includes a positive electrode active material, a first solid electrolyte material, and a second electrolyte material, wherein the positive electrode active material includes an oxide composed of Li, Ni, Mn, and O, and the first The solid electrolyte material covers at least part of the surface of the positive electrode active material and contains Li, Ti, M1, and F, where M1 is selected from the group consisting of Ca, Mg, Al, Y, and Zr. It has a configuration that is at least one kind of With this configuration, the positive electrode material of the present disclosure is improved in oxidation resistance, and the charge/discharge capacity of the battery can be improved.
  • a positive electrode material includes a positive electrode active material, a first solid electrolyte material covering at least part of a surface of the positive electrode active material, and a second electrolyte material, and the positive electrode active material contains an oxide consisting of Li, Ni, Mn, and O, the first solid electrolyte material contains Li, Ti, M1, and F, and the M1 is Ca, Mg, Al, Y, and Zr At least one selected from the group consisting of
  • the positive electrode active material in which at least part of the surface is coated with the first solid electrolyte material has high oxidation resistance. Therefore, it is possible to suppress a decrease in charge/discharge capacity due to oxidative decomposition of the second electrolyte material in the positive electrode material.
  • the positive electrode active material may contain a material represented by the following compositional formula (1).
  • LiNi x Mn 2-x O 4 Formula (1) x satisfies 0 ⁇ x ⁇ 2.
  • the positive electrode material according to the second aspect can improve the charge/discharge capacity of the battery.
  • the composition formula (1) may satisfy 0 ⁇ x ⁇ 1.
  • the positive electrode material according to the third aspect can improve the charge/discharge capacity of the battery.
  • the positive electrode material according to the fourth aspect can improve the charge/discharge capacity of the battery.
  • the first solid electrolyte material may consist of Li, Ti, M1, and F.
  • the first solid electrolyte material exhibits high ionic conductivity. Therefore, in the positive electrode material, low interfacial resistance between the first solid electrolyte material and the positive electrode active material can be achieved. Therefore, the positive electrode material can improve the charge/discharge capacity of the battery.
  • the first solid electrolyte material has a composition represented by the following compositional formula (2B): may Li6-(4- a )b (Ti1 - aM1a ) bF6 ... Formula (2B)
  • a satisfies 0 ⁇ a ⁇ 1
  • b satisfies 0 ⁇ b ⁇ 1.5.
  • the first solid electrolyte material exhibits high ionic conductivity. Therefore, in the positive electrode material, low interfacial resistance between the first solid electrolyte material and the positive electrode active material can be achieved. Therefore, the positive electrode material can improve the charge/discharge capacity of the battery.
  • M1 may be Al.
  • Al is inexpensive and suitable as an element that improves the ionic conductivity of the electrolyte. Therefore, in the positive electrode material according to the seventh aspect, the first solid electrolyte material exhibits higher ion conductivity. Therefore, in the positive electrode material, lower interfacial resistance between the first solid electrolyte material and the positive electrode active material can be achieved. Therefore, the positive electrode material can improve the charge/discharge capacity of the battery.
  • the second electrolyte material is selected from the group consisting of Li, a metal element other than Li, and a metalloid element At least one selected and at least one selected from the group consisting of Cl and Br may be included.
  • the positive electrode material according to the eighth aspect can improve the charge/discharge capacity of the battery.
  • the second electrolyte material may contain a material represented by the following compositional formula (3).
  • Li ⁇ 3 M2 ⁇ 3 X ⁇ 3 O ⁇ 3 Formula (3) here, ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value greater than or equal to 0, M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one element selected from the group consisting of Cl and Br.
  • the ionic conductivity of the second electrolyte material can be further increased.
  • the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
  • M2 may include at least one selected from the group consisting of Y and Ta.
  • the ionic conductivity of the second electrolyte material can be further increased.
  • the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
  • the compositional formula (3) is 1 ⁇ 3 ⁇ 4, 0 ⁇ 3 ⁇ 2, 3 ⁇ 3 ⁇ 7, 0 ⁇ 3 ⁇ 2, may be satisfied.
  • the ionic conductivity of the second electrolyte material can be further increased.
  • the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
  • the second electrolyte material may contain a sulfide solid electrolyte.
  • the ionic conductivity of the second electrolyte material can be further increased.
  • the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
  • the sulfide solid electrolyte may be Li6PS5Cl .
  • the ionic conductivity of the second electrolyte material can be further increased.
  • the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
  • the first solid electrolyte material is provided between the positive electrode active material and the second electrolyte material may have been
  • the first solid electrolyte material having high oxidation resistance is interposed between the positive electrode active material and the second electrolyte material, so that the second electrolyte material is oxidatively decomposed. It is possible to suppress the increase in the internal resistance of the battery during charging.
  • a battery according to a fifteenth aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolyte layer positioned between the positive electrode and the negative electrode, wherein the positive electrode is any one of the first to fourteenth aspects. including cathode materials according to
  • the electrolyte layer includes a first electrolyte layer and a second electrolyte layer,
  • the first electrolyte layer may be in contact with the positive electrode
  • the second electrolyte layer may be in contact with the negative electrode.
  • the first electrolyte layer may contain a material having the same composition as the first solid electrolyte material.
  • the charge/discharge capacity of the battery according to the seventeenth aspect is improved.
  • the first electrolyte layer may contain a material having the same composition as the second electrolyte material.
  • the charge/discharge capacity is improved.
  • the second electrolyte layer may contain a material having a composition different from that of the first solid electrolyte material.
  • the charge/discharge capacity of the battery according to the nineteenth aspect is improved.
  • the electrolyte layer may contain a halide solid electrolyte.
  • the battery according to the twentieth aspect has an improved charge/discharge capacity.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 1.
  • FIG. Positive electrode material 1000 includes positive electrode active material 110 , first solid electrolyte material 111 covering at least part of the surface of positive electrode active material 110 , and second electrolyte material 100 .
  • the cathode active material 110 includes oxides of Li, Ni, Mn, and O.
  • the first solid electrolyte material 111 contains Li, Ti, M1, and F.
  • M1 is at least one selected from the group consisting of Ca, Mg, Al, Y and Zr.
  • the positive electrode material 1000 has high oxidation resistance. Therefore, the positive electrode material 1000 can suppress an increase in the internal resistance of the battery during charging. Also, the first solid electrolyte material 111 has high ionic conductivity. Therefore, in the positive electrode material 1000, low interfacial resistance between the first solid electrolyte material 111 and the positive electrode active material 110 can be achieved. Therefore, the positive electrode material 1000 can improve the charge/discharge capacity of the battery.
  • the first solid electrolyte material 111 may contain elements other than F as anions. Examples of elements included as such anions are Cl, Br, I, O, S, or Se. Also, the first solid electrolyte material 111 may not contain sulfur.
  • the positive electrode active material 110 may contain a material represented by the following compositional formula (1). LiNi x Mn 2-x O 4 Formula (1) Here, x satisfies 0 ⁇ x ⁇ 2.
  • composition formula (1) 0 ⁇ x ⁇ 1 may be satisfied.
  • oxides represented by these chemical formulas are materials obtained by substituting Ni for a portion of Mn in LiMn 2 O 4 having a spinel structure, and are suitable for improving the operating voltage of batteries.
  • Oxides composed of Li, Ni, Mn, and O can also have a spinel structure.
  • Oxides composed of Li, Ni, Mn and O means that elements other than Li, Ni, Mn and O are not intentionally added except for unavoidable impurities.
  • the material represented by the compositional formula (1) is inexpensive because it does not contain Co. According to the above configuration, it is possible to realize the low-cost positive electrode material 1000 that can improve the charging and discharging efficiency of the battery.
  • the positive electrode active material 110 may consist of LiNi 0.5 Mn 1.5 O 4 only.
  • the charge/discharge capacity of the battery is improved.
  • the first solid electrolyte material 111 may consist essentially of Li, Ti, M1, and F. "The first solid electrolyte material 111 consists essentially of Li, Ti, M1, and F" means that Li, Ti, M1, and F have a total molar ratio (that is, molar fraction) of 90% or more. As an example, the molar ratio may be 95% or more.
  • the first solid electrolyte material 111 may consist of Li, Ti, M1, and F.
  • the first solid electrolyte material 111 may contain a material represented by the following compositional formula (2A). where ⁇ 2, ⁇ 2, ⁇ 2, and ⁇ 2 are values greater than zero. Li ⁇ 2 Ti ⁇ 2 M1 ⁇ 2 F ⁇ 2 Formula (2A)
  • ⁇ 2 may be a larger value than ⁇ 2.
  • ⁇ 2 may be a value greater than each of ⁇ 2, ⁇ 2, and ⁇ 2.
  • composition formula (2A) 1.7 ⁇ 2 ⁇ 3.7, 0 ⁇ 2 ⁇ 1.5, 0 ⁇ 2 ⁇ 1.5, and 5 ⁇ 2 ⁇ 7 may be satisfied.
  • the first solid electrolyte material 111 may contain a material represented by the compositional formula (2A) as a main component.
  • the "main component” is the component that is contained most in terms of mass ratio.
  • the molar ratio of F to the sum of Li, Ti, M1, and F may be 0.4 or more and 0.8 or less, or 0.5 or more and 0.7 or less. There may be.
  • the molar ratio of F to the sum of Li, Ti, M1, and F is calculated by (substance amount of F)/(substance amount of Li, Ti, M1, and F).
  • the first solid electrolyte material 111 may contain a material represented by the following compositional formula (2B).
  • a satisfies 0 ⁇ a ⁇ 1, and b satisfies 0 ⁇ b ⁇ 1.5.
  • a may satisfy 0.1 ⁇ a ⁇ 0.9 in formula (2B).
  • b may satisfy 0.8 ⁇ b ⁇ 1.2 in formula (2B).
  • the first solid electrolyte material 111 When having the specific composition represented by formula (2B), the first solid electrolyte material 111 exhibits, for example, the following ionic conductivity.
  • the first solid electrolyte material 111 when M1 is Zr, the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 2.1 ⁇ S/cm.
  • M1 when M1 is Mg, the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 2.3 ⁇ S/cm.
  • M1 is Ca
  • the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 0.02 ⁇ S/cm.
  • M1 is Al
  • the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 5.4 ⁇ S/cm.
  • the oxidation resistance of the first solid electrolyte material 111 is mainly caused by F. Considering these facts, even if M1 is replaced from a specific element to another element, the
  • M1 may be Al.
  • the first solid electrolyte material 111 may contain the material represented by the compositional formula (2B) as a main component.
  • the "main component” is the component that is contained most in terms of mass ratio.
  • the first solid electrolyte material 111 exhibits higher ionic conductivity. Therefore, in the positive electrode material 1000, low interfacial resistance between the first solid electrolyte material 111 and the positive electrode active material 110 can be achieved.
  • the second electrolyte material 100 may contain Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of Cl and Br. .
  • Simetallic elements are B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, as well as B, Si, Ge, As, Sb, Te, C, N, P, O, S , and all elements contained in groups 13 to 16 except for Se. In other words, it is a group of elements that can become cations when a halogen compound and an inorganic compound are formed.
  • the second electrolyte material 100 may be represented by the following compositional formula (3).
  • ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value of 0 or more, and M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements. and X is at least one element selected from the group consisting of Cl and Br.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • M2 may contain at least one selected from the group consisting of Y and Ta. That is, the second electrolyte material 100 may contain Y as a metal element.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • composition formula (3) 1 ⁇ 3 ⁇ 4, 0 ⁇ 3 ⁇ 2, 3 ⁇ 3 ⁇ 7, and 0 ⁇ 3 ⁇ 2 may be satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 containing Y may be, for example, a compound represented by the composition formula LiaMebYcX6 .
  • Me is at least one element selected from the group consisting of metal elements excluding Li and Y and metalloid elements.
  • m' is the valence of Me.
  • At least one element selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used as Me.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A1). Li 6-3d Y d X 6 Formula (A1) Here, in the composition formula (A1), X is a halogen element and contains Cl. Also, 0 ⁇ d ⁇ 2 is satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A2). Li 3 YX 6 Formula (A2) Here, in the composition formula (A2), X is a halogen element and contains Cl.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A3). Li 3-3 ⁇ Y 1+ ⁇ Cl 6 Formula (A3) Here, 0 ⁇ 0.15 is satisfied in the composition formula (A3).
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A4). Li3-3 ⁇ +a4Y1+ ⁇ - a4Mea4Cl6 - x4Brx4 Formula (A4)
  • Me is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. Also, ⁇ 1 ⁇ 2, 0 ⁇ a4 ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ +a4), 0 ⁇ (1+ ⁇ a4), and 0 ⁇ x4 ⁇ 6 are satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A5).
  • Me is at least one element selected from the group consisting of Al, Sc, Ga, and Bi.
  • ⁇ 1 ⁇ 1, 0 ⁇ a5 ⁇ 2, 0 ⁇ (1+ ⁇ a5), and 0 ⁇ x5 ⁇ 6 are satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A6).
  • Me is at least one element selected from the group consisting of Zr, Hf, and Ti.
  • ⁇ 1 ⁇ 1, 0 ⁇ a6 ⁇ 1.5, 0 ⁇ (3 ⁇ 3 ⁇ a6), 0 ⁇ (1+ ⁇ a6), and 0 ⁇ x6 ⁇ 6 are satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A7).
  • Me is at least one element selected from the group consisting of Ta and Nb.
  • ⁇ 1 ⁇ 1, 0 ⁇ a7 ⁇ 1.2, 0 ⁇ (3 ⁇ 3 ⁇ 2a7), 0 ⁇ (1+ ⁇ a7), and 0 ⁇ x7 ⁇ 6 are satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • Li3YX6 Li2MgX4 , Li2FeX4 , Li ( Al, Ga, In )X4, Li3 (Al, Ga, In ) X6 , etc.
  • X includes Cl.
  • this notation indicates at least one element selected from the parenthesized element group. That is, "(Al, Ga, In)” is synonymous with "at least one selected from the group consisting of Al, Ga and In". The same is true for other elements.
  • a sulfide solid electrolyte may be included as the second electrolyte material 100 .
  • sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, etc. may be used.
  • LiX , Li2O , MOq , LipMOq , etc. may be added to these.
  • X is at least one element selected from the group consisting of F, Cl, Br and I.
  • M is at least one element selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q are each independently a natural number.
  • the sulfide solid electrolyte may contain lithium sulfide and phosphorus sulfide.
  • the sulfide solid electrolyte may be Li6PS5Cl .
  • the second electrolyte material 100 may be a solid electrolyte material.
  • the second electrolyte material 100 may contain an electrolytic solution.
  • the electrolyte contains water or a non-aqueous solvent and a lithium salt dissolved in the solvent.
  • solvents examples include water, cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, fluorine solvents, and the like.
  • cyclic carbonate solvents examples include ethylene carbonate, propylene carbonate, or butylene carbonate.
  • chain carbonate solvents examples include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • chain ether solvents examples include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • cyclic ester solvents examples include ⁇ -butyrolactone.
  • chain ester solvents examples include methyl acetate.
  • fluorosolvents include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • one solvent selected from these may be used alone.
  • a combination of two or more solvents selected from these may be used as the solvent.
  • the electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
  • fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), LiC ( SO2CF3 ) 3 , etc. may be used.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • the lithium salt concentration is, for example, in the range from 0.1 to 15 mol/liter.
  • the positive electrode material 1000 may further contain a positive electrode active material other than oxides composed of Li, N, Mn, and O.
  • a positive electrode active material includes a material that has the property of absorbing and releasing metal ions (eg, lithium ions).
  • positive electrode active materials other than the positive electrode active material 110 include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxysulfides. nitrides, etc. may be used.
  • Examples of lithium-containing transition metal oxides include Li(Ni, Co, Al) O2 , Li ( Ni, Co, Mn) O2 , LiCoO2, and the like. In particular, when a lithium-containing transition metal oxide is used, the manufacturing cost of the positive electrode material 1000 can be reduced, and the average discharge voltage can be increased.
  • a first solid electrolyte material 111 may be provided between the positive electrode active material 110 and the second electrolyte material 100 .
  • the first solid electrolyte material 111 having high oxidation resistance is interposed between the positive electrode active material 110 and the second electrolyte material 100, thereby suppressing oxidative decomposition of the second electrolyte material 100. Therefore, it is possible to suppress a decrease in capacity during charging of a battery using the positive electrode material 1000 .
  • the positive electrode material 1000 may further contain a third electrolyte material, which is a material having a composition different from that of the second electrolyte material 100 .
  • the thickness of the first solid electrolyte material 111 covering at least part of the surface of the positive electrode active material 110 may be 1 nm or more and 500 nm or less.
  • the thickness of the first solid electrolyte material 111 is 1 nm or more, direct contact between the positive electrode active material 110 and the second electrolyte material 100 can be suppressed, and oxidative decomposition of the second electrolyte material 100 can be suppressed. Therefore, the charge/discharge efficiency of the battery using the positive electrode material 1000 can be improved.
  • the thickness of the first solid electrolyte material 111 is 500 nm or less, the thickness of the first solid electrolyte material 111 does not become too thick. Therefore, the internal resistance of the battery using the positive electrode material 1000 can be sufficiently reduced, and the energy density of the battery can be increased.
  • the method for measuring the thickness of the first solid electrolyte material 111 is not particularly limited, it can be obtained, for example, by directly observing the thickness of the first solid electrolyte material 111 using a transmission electron microscope.
  • the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 may be 0.01% or more and 30% or less.
  • the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 is 0.01% or more, direct contact between the positive electrode active material 110 and the second electrolyte material 100 is suppressed, and the second electrolyte material 100 is suppressed. Oxidative decomposition can be suppressed. Therefore, the charge/discharge efficiency of the battery using the positive electrode material 1000 can be improved.
  • the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 is 30% or less, the thickness of the first solid electrolyte material 111 does not become too thick. Therefore, the internal resistance of the battery using the positive electrode material 1000 can be sufficiently reduced, and the energy density of the battery can be increased.
  • the first solid electrolyte material 111 may evenly cover the surface of the positive electrode active material 110 .
  • direct contact between the positive electrode active material 110 and the second electrolyte material 100 can be suppressed, and side reactions of the second electrolyte material 100 can be suppressed. Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 can be further improved, and the decrease in capacity can be suppressed.
  • the first solid electrolyte material 111 may partially cover the surface of the positive electrode active material 110 . Electron conductivity between the plurality of positive electrode active materials 110 is improved by direct contact between the plurality of positive electrode active materials 110 via portions not having the first solid electrolyte material 111 . Therefore, a battery using the positive electrode material 1000 can operate at high power.
  • the first solid electrolyte material 111 may cover 30% or more, 60% or more, or 90% or more of the surface of the positive electrode active material 110 .
  • the first solid electrolyte material 111 may substantially cover the entire surface of the positive electrode active material 110 .
  • the first solid electrolyte material 111 may be in direct contact with the surface of the positive electrode active material 110 .
  • At least part of the surface of the positive electrode active material 110 may be covered with a coating material different from the first solid electrolyte material 111 .
  • Coating materials include sulfide solid electrolytes, oxide solid electrolytes, fluoride solid electrolytes, and the like.
  • sulfide solid electrolyte used for the coating material, the same materials as those exemplified for the second electrolyte material 100 may be used.
  • the oxide solid electrolyte used as the coating material includes Li--Nb--O compounds such as LiNbO 3 , Li--B--O compounds such as LiBO 2 and Li 3 BO 3 , Li--Al--O compounds such as LiAlO 2 , Li—Si—O compounds such as Li 4 SiO 4 , Li—Ti—O compounds such as Li 2 SO 4 and Li 4 Ti 5 O 12 , Li—Zr—O compounds such as Li 2 ZrO 3 , Li 2 MoO 3 Li-Mo-O compounds such as LiV 2 O 5 Li-VO compounds such as Li-WO compounds such as Li 2 WO 4 Li-P-O compounds such as Li 3 PO 4 .
  • the fluoride solid electrolyte used for the coating material contains Li, Ti, M1, and F, and M1 is at least one element selected from the group consisting of Ca, Mg, Al, Y, and Zr. A solid electrolyte is mentioned.
  • the oxidation resistance of the positive electrode material 1000 can be further improved. As a result, it is possible to suppress the decrease in the capacity of the battery during charging.
  • the positive electrode active material 110 and the first solid electrolyte material 111 may be separated by a coating material and may not be in direct contact.
  • the oxidation resistance of the positive electrode material 1000 can be further improved. As a result, it is possible to suppress the decrease in the capacity of the battery during charging.
  • the shape of the second electrolyte material 100 is not particularly limited.
  • its shape may be, for example, acicular, spherical, ellipsoidal, or the like.
  • the shape of the second electrolyte material 100 may be particulate.
  • the median diameter of the second electrolyte material 100 may be 100 ⁇ m or less.
  • the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
  • the median diameter of the second electrolyte material 100 may be 10 ⁇ m or less. According to the above configuration, in the positive electrode material 1000, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersed state.
  • the median diameter of the second electrolyte material 100 may be smaller than the median diameter of the positive electrode active material 110 . According to the above configuration, in the positive electrode, the second electrolyte material 100 and the positive electrode active material 110 can form a better dispersed state.
  • the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
  • the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is improved. Therefore, a battery using the positive electrode material 1000 can operate at high output.
  • the median diameter of the positive electrode active material 110 may be larger than the median diameter of the second electrolyte material 100 . Thereby, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersed state.
  • volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the second electrolyte material 100 and the first solid electrolyte material 111 may be in contact with each other as shown in FIG. At this time, the first solid electrolyte material 111 and the positive electrode active material 110 are in contact with each other.
  • the positive electrode material 1000 may include multiple second electrolyte materials 100 and multiple positive electrode active materials 110 .
  • the content of the second electrolyte material 100 and the content of the positive electrode active material 110 in the positive electrode material 1000 may be the same or different.
  • First solid electrolyte material 111 in Embodiment 1 can be manufactured, for example, by the following method.
  • a raw material powder of a binary halide is prepared so as to achieve a compounding ratio of a desired composition.
  • the compounding ratio may be adjusted in advance so as to offset the changes.
  • the raw material powders After mixing the raw material powders well, the raw material powders are mixed and pulverized using the mechanochemical milling method and allowed to react. After that, it may be fired in vacuum or in an inert atmosphere.
  • the mixture may be fired in a vacuum or in an inert atmosphere.
  • the firing conditions it is preferable to perform firing for one hour or more within the range of 100° C. to 300° C., for example.
  • the raw material powder is sealed in a sealed container such as a quartz tube and then fired.
  • the first solid electrolyte material 111 having the composition as described above is obtained.
  • the positive electrode material 1000 in Embodiment 1 can be manufactured, for example, by the following method.
  • a positive electrode active material 110 and a first solid electrolyte material 111 having a predetermined mass ratio are prepared.
  • LiNi 0.5 Mn 1.5 O 4 is prepared as the positive electrode active material 110 and Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111 .
  • These two materials are put into the same reaction vessel, and a rotating blade is used to apply a shearing force to the two materials, or a jet stream causes the two materials to collide.
  • At least part of the surface of the substance LiNi 0.5 Mn 1.5 O 4 can be covered with Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111 .
  • the cathode active material 110 in which at least part of the surface of the cathode active material LiNi 0.5 Mn 1.5 O 4 is coated with Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111. can.
  • the second electrolyte material 100 can be manufactured by the following method.
  • the second electrolyte material 100 made of Li, Y, Cl, and Br
  • LiCl raw powder, LiBr raw powder, YBr3 raw powder, and YCl3 raw powder are mixed.
  • the raw powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional variations in the synthesis process.
  • the second electrolyte material 100 is obtained.
  • ⁇ Method for producing positive electrode material 1000> By mixing the positive electrode active material 110 whose surface is coated with the first solid electrolyte material 111 and the second electrolyte material 100, the positive electrode material 1000 in Embodiment 1 can be manufactured.
  • Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • the positive electrode 201 includes the positive electrode material 1000 in the first embodiment.
  • Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
  • the volume ratio "v1:100-v1" of the positive electrode material 1000 and the second electrolyte material 100 contained in the positive electrode 201 may satisfy 30 ⁇ v1 ⁇ 98.
  • v1 represents the volume ratio of the positive electrode material 1000 when the total volume of the positive electrode material 1000 and the second electrolyte material 100 contained in the positive electrode 201 is 100.
  • 30 ⁇ v1 is satisfied, a sufficient battery energy density can be ensured.
  • v1 ⁇ 98 battery 2000 can operate at high output.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of positive electrode 201 is 500 ⁇ m or less, battery 2000 can operate at high output.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material may be, for example, a solid electrolyte material. That is, electrolyte layer 202 may be a solid electrolyte layer.
  • electrolyte layer 202 As the solid electrolyte material contained in electrolyte layer 202, the same material as first solid electrolyte material 111 or second electrolyte material 100 in Embodiment 1 may be used. That is, electrolyte layer 202 may contain the same material as first solid electrolyte material 111 or second electrolyte material 100 in the first embodiment.
  • the output density and charge/discharge characteristics of the battery 2000 can be further improved.
  • electrolyte layer 202 As the solid electrolyte material contained in the electrolyte layer 202, the same material as the first solid electrolyte material 111 in the first embodiment may be used. That is, electrolyte layer 202 may contain the same material as first solid electrolyte material 111 in the first embodiment.
  • an increase in the internal resistance of the battery 2000 due to oxidation of the electrolyte layer 202 can be suppressed, and the output density and charge/discharge characteristics of the battery 2000 can be further improved.
  • a halide solid electrolyte As the solid electrolyte material contained in the electrolyte layer 202, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • oxide solid electrolyte of the solid electrolyte material contained in the electrolyte layer 202 for example, a NASICON solid electrolyte typified by LiTi2 (PO4) 3 and its elemental substitutes, and a ( LaLi ) TiO3 based perovskite solid electrolyte.
  • Electrolytes Lisicon-type solid electrolytes represented by Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and element-substituted products thereof, Garnet-type solid electrolytes represented by Li 7 La 3 Zr 2 O 12 and element-substituted products thereof Glass or glasses based on electrolytes, Li 3 PO 4 and its N-substituted products, and Li—B—O compounds such as LiBO 2 and Li 3 BO 3 to which Li 2 SO 4 , Li 2 CO 3 etc. are added ceramics, etc. may be used.
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), and LiC ( SO2CF3 ) 3 , etc. may be used.
  • One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 , etc.
  • LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 , etc.
  • the solid electrolyte material contained in the electrolyte layer 202 may be a halide solid electrolyte. That is, the electrolyte layer 202 may contain a halide solid electrolyte.
  • the halide solid electrolyte contained in the electrolyte layer 202 is selected from the group consisting of Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and F, Cl, Br, and I. and at least one of
  • the halide solid electrolyte contained in the electrolyte layer 202 is at least one selected from the group consisting of Li, metal elements other than Li and metalloid elements, and at least one selected from the group consisting of Cl and Br. and may include
  • the halide solid electrolyte contained in the electrolyte layer 202 the halide solid electrolyte exemplified as the second electrolyte material may be used.
  • a halide solid electrolyte represented by the above compositional formula (3) may be used.
  • ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value of 0 or more, and M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements. and X is at least one element selected from the group consisting of Cl and Br.
  • ⁇ 3 may satisfy 1 ⁇ 3 ⁇ 4, ⁇ 3 may satisfy 0 ⁇ 3 ⁇ 2, ⁇ 3 may satisfy 3 ⁇ 3 ⁇ 7, and ⁇ 3 may satisfy 0 ⁇ 3 ⁇ 2. good.
  • the electrolyte layer 202 may contain a solid electrolyte material as a main component. That is, the electrolyte layer 202 may contain a solid electrolyte material, for example, at a mass ratio of 50% or more (that is, 50% by mass or more) with respect to the entire electrolyte layer 202 .
  • the charge/discharge characteristics of the battery can be further improved.
  • the electrolyte layer 202 may contain a solid electrolyte material, for example, at a mass ratio of 70% or more (that is, 70% by mass or more) with respect to the entire electrolyte layer 202 .
  • the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 contains a solid electrolyte material as a main component, and may further contain unavoidable impurities, starting materials, by-products, decomposition products, etc. used when synthesizing the solid electrolyte material. good.
  • the electrolyte layer 202 may contain a solid electrolyte material, for example, 100% by mass (ie, 100% by mass) of the entire electrolyte layer 202, excluding impurities that are unavoidably mixed.
  • the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 may be composed only of a solid electrolyte material.
  • the electrolyte layer 202 may contain two or more of the materials listed as solid electrolyte materials.
  • electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 300 ⁇ m or less, battery 2000 can operate at high output.
  • the negative electrode 203 contains a material that has the property of absorbing and releasing metal ions (for example, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, or the like can be used as the negative electrode active material.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include lithium metal or lithium alloys.
  • Examples of carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, or amorphous carbon. From the point of view of capacity density, silicon, tin, silicon compounds, or tin compounds can be used.
  • the negative electrode 203 may contain a solid electrolyte material.
  • the solid electrolyte material the solid electrolyte material exemplified as the material forming the electrolyte layer 202 may be used. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and the battery 2000 can operate at high output.
  • the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte material can form a good dispersion state in the negative electrode. Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the negative electrode active material is 100 ⁇ m or less, diffusion of lithium in the negative electrode active material becomes faster. Therefore, battery 2000 can operate at high power.
  • the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte material contained in the negative electrode 203 . Thereby, a good dispersion state of the negative electrode active material and the solid electrolyte material can be formed.
  • the volume ratio "v2:100-v2" between the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 may satisfy 30 ⁇ v2 ⁇ 95.
  • v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 is taken as 100.
  • 30 ⁇ v2 is satisfied, a sufficient battery energy density can be ensured.
  • v2 ⁇ 95 battery 2000 can operate at high output.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of negative electrode 203 is 500 ⁇ m or less, battery 2000 can operate at high output.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, and carboxymethyl cellulose, and the like.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. A mixture of two or more selected from these may also be used.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fibers and metal fibers, carbon fluoride, metals such as aluminum Powders, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymeric compounds such as polyaniline, polypyrrole, and polythiophene, and the like can be used. Cost reduction can be achieved when a carbon conductive aid is used as the conductive aid.
  • Shapes of the battery 2000 in Embodiment 2 include, for example, coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • a positive electrode material 1000, an electrolyte layer forming material, and a negative electrode forming material are prepared, and a laminate in which the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order is produced by a known method. may be manufactured by
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 3000 according to Embodiment 3.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 3000 according to Embodiment 3.
  • a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • the positive electrode 201 includes the positive electrode material 1000 in the first embodiment.
  • Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
  • the electrolyte layer 202 includes a first electrolyte layer 301 and a second electrolyte layer 302 , the first electrolyte layer 301 contacts the positive electrode 201 and the second electrolyte layer 302 contacts the negative electrode 203 .
  • the first electrolyte layer 301 may contain a material having the same composition as the first solid electrolyte material 111 .
  • the same material as the first solid electrolyte material 111 having excellent oxidation resistance in the first electrolyte layer 301 in contact with the positive electrode 201 By including the same material as the first solid electrolyte material 111 having excellent oxidation resistance in the first electrolyte layer 301 in contact with the positive electrode 201, oxidative decomposition of the first electrolyte layer 301 is suppressed, and the internal resistance of the battery 3000 during charging is reduced. It can suppress the rise.
  • the first electrolyte layer 301 may contain a material having the same composition as the second electrolyte material 100 .
  • the second electrolyte layer 302 may contain a material having a composition different from that of the first solid electrolyte material 111 .
  • the second electrolyte layer 302 may contain a material having the same composition as the second electrolyte material 100 .
  • the reduction potential of the solid electrolyte material included in the first electrolyte layer 301 may be lower than the reduction potential of the solid electrolyte material included in the second electrolyte layer 302 . According to the above configuration, the solid electrolyte material contained in the first electrolyte layer 301 can be used without being reduced. Thereby, the charge/discharge efficiency of the battery 3000 can be improved.
  • the second electrolyte layer 302 may contain a sulfide solid electrolyte.
  • the reduction potential of the sulfide solid electrolyte contained in the second electrolyte layer 302 is lower than the reduction potential of the solid electrolyte material contained in the first electrolyte layer 301 .
  • the solid electrolyte material contained in the first electrolyte layer 301 can be used without being reduced. Thereby, the charge/discharge efficiency of the battery 3000 can be improved.
  • the thickness of the first electrolyte layer 301 and the second electrolyte layer 302 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of first electrolyte layer 301 and second electrolyte layer 302 is 1 ⁇ m or more, short circuit between positive electrode 201 and negative electrode 203 is less likely to occur. When the thickness of first electrolyte layer 301 and second electrolyte layer 302 is 300 ⁇ m or less, battery 3000 can operate at high output.
  • a planetary ball mill manufactured by Fritsch, model P-7
  • the positive electrode active material whose surface was coated with the first solid electrolyte material of Example 1, the second electrolyte material, and vapor-grown carbon fiber (VGCF (manufactured by Showa Denko KK)) were mixed at 73.4:25.
  • the positive electrode material of Example 1 was produced by weighing and mixing in a mortar so as to have a mass ratio of 6:1.0.
  • Example 2 [Preparation of Positive Electrode Active Material Surface Covered with First Solid Electrolyte Material]
  • a first solid electrolyte material was produced in the same manner as in Example 1. Also, in the same manner as in Example 1, a positive electrode active material whose surface was coated with the first solid electrolyte material was produced.
  • a positive electrode active material having a surface coated with a first solid electrolyte material, Li 2.7 Y 1.1 Cl 6 as a second electrolyte material, and a conduction aid VGCF coated positive electrode active material: second electrolyte material: VGCF 73.4:25.6:1.0, and mixed in a mortar to prepare the positive electrode material of Example 2.
  • Example 3 [Preparation of Positive Electrode Active Material Surface Covered with First Solid Electrolyte Material]
  • a first solid electrolyte material was produced in the same manner as in Example 1. Also, in the same manner as in Example 1, a positive electrode active material whose surface was coated with the first solid electrolyte material was produced.
  • a positive electrode active material having a surface coated with a first solid electrolyte material, Li 3 YBr 2 Cl 4 as a second electrolyte material, and a conduction aid VGCF coated positive electrode active material: second electrolyte material: VGCF 73.4:25.6:1.0, and mixed in a mortar to prepare the positive electrode material of Example 3.
  • Example 4 [Preparation of Positive Electrode Active Material Surface Covered with First Solid Electrolyte Material]
  • a first solid electrolyte material was produced in the same manner as in Example 1. Also, in the same manner as in Example 1, a positive electrode active material whose surface was coated with the first solid electrolyte material was produced.
  • a positive electrode active material coated with a positive electrode active material having a surface coated with a first solid electrolyte material, Li 6 PS 5 Cl as a second electrolyte material, and a conductive agent VGCF: Li 6 PS 5 Cl: VGCF 73.4:25.6:1.0, and mixed in a mortar to prepare the positive electrode material of Example 4.
  • Batteries using the positive electrode materials of Examples 1 to 4 and Reference Examples 1 to 5 were produced by the following steps.
  • Example 1 First, 80 mg of Li 6 PS 5 Cl was put into an insulating outer cylinder and pressure-molded at a pressure of 2 MPa. Next, 20 mg of the second electrolyte material used for the positive electrode material of Example 1 was added and pressure-molded at a pressure of 2 MPa. Furthermore, 9.8 mg of the positive electrode material was put therein and pressure-molded at a pressure of 720 MPa. As a result, a laminate composed of the positive electrode and the solid electrolyte layer was obtained.
  • metal Li was laminated on the side of the solid electrolyte layer opposite to the side in contact with the positive electrode.
  • Metal Li having a thickness of 200 ⁇ m was used.
  • pressure-molding this at a pressure of 2 MPa a laminate composed of the positive electrode, the solid electrolyte layer, and the negative electrode was produced.
  • Example 1 was produced by using an insulating ferrule to shield the inside of the insulating outer cylinder from the atmosphere and to seal it.
  • Examples 2 to 4 and Reference Examples 1 to 5 80 mg of Li 6 PS 5 Cl was put into an insulating outer cylinder and pressure-molded at a pressure of 2 MPa. Next, 20 mg of the second electrolyte material used for each of the positive electrode materials of Examples 2 to 4 or Reference Examples 1 to 5 was added and pressure-molded at a pressure of 2 MPa. Furthermore, 9.8 mg of the positive electrode material in Examples 2 to 4 and 9.6 mg of the positive electrode material in Reference Examples 1 to 5 were added thereto, and pressure-molded at a pressure of 720 MPa. As a result, a laminate composed of the positive electrode and the solid electrolyte layer was obtained. Batteries of Examples 2 to 4 and Reference Examples 1 to 5 were produced in the same manner as in Example 1 except for the above.
  • the battery was placed in a constant temperature bath at 25°C.
  • Constant current charging was performed at a current value of 42 ⁇ A, which is 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the battery.
  • the final charging voltage was 5.0 V (vs. Li/Li + ).
  • constant current discharge was performed with a final discharge voltage of 3.5 V (vs. Li/Li + ).
  • Table 1 shows the results of the charge/discharge test of the batteries of Examples 1 to 4 and Reference Examples 1 to 5.
  • the coated/uncoated capacity ratio of Example 1 in Table 1 is the ratio of the discharge capacity of Example 1 to the discharge capacity of Reference Example 1.
  • the coated/uncoated capacity ratio of Example 2 is the ratio of the discharge capacity of Example 2 to the discharge capacity of Reference Example 2.
  • the coated/uncoated capacity ratio of Example 3 is the ratio of the discharge capacity of Example 3 to the discharge capacity of Reference Example 3.
  • the coated/uncoated capacity ratio of Example 4 is the ratio of the discharge capacity of Example 4 to the discharge capacity of Reference Example 5.
  • the charge/discharge capacity is improved by covering the surface of the positive electrode active material with the first solid electrolyte material.
  • the charge/discharge capacity of the battery is improved.
  • the battery of the present disclosure can be used, for example, as an all-solid lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示の正極材料1000は、正極活物質110と、正極活物質110の表面の少なくとも一部を被覆する第1固体電解質材料111と、第2電解質材料100と、を含み、正極活物質110は、Li、Ni、Mn、およびOからなる酸化物を含み、第1固体電解質材料111は、Li、Ti、M1、およびFを含み、M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である。

Description

正極材料および電池
 本開示は、正極材料および電池に関する。
 特許文献1は、ニッケル、コバルト、およびマンガンを含む正極活物質の表面の少なくとも一部をニオブ酸リチウムが被覆する正極材料を用いた全固体電池を開示している。
国際公開第2019/146216号
 本開示は、電池の充放電容量を向上させる、正極材料を提供する。
 本開示の正極材料は、正極活物質と、前記正極活物質の表面の少なくとも一部を被覆する第1固体電解質材料と、第2電解質材料と、を含み、前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、前記第1固体電解質材料は、Li、Ti、M1、およびFを含み、前記M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である。
 本開示は、電池の充放電容量を向上させる、正極材料を提供する。
図1は、実施の形態1における正極材料1000の概略構成を示す断面図である。 図2は、実施の形態2における電池2000の概略構成を示す断面図である。 図3は、実施の形態3における電池3000の概略構成を示す断面図である。
 (本開示の基礎となった知見)
 特許文献1は、ニッケル、コバルト、およびマンガンを含む正極活物質と、正極活物質の表面の少なくとも一部を被覆する被覆材料と、ハロゲン化物固体電解質材料とを含む正極材料を用いた全固体電池を開示している。正極活物質の表面を被覆する被覆材料は固体電解質材料であり、当該固体電解質材料は、ニオブ酸リチウムである。
 従来、ハロゲン化物固体電解質を含む正極材料について、ハロゲン化物固体電解質の酸化分解に対する耐性が検討されている。ハロゲン化物固体電解質は、フッ素(すなわち、F)、塩素(すなわち、Cl)、臭素(すなわち、Br)、およびヨウ素(すなわち、I)などのハロゲン元素をアニオンとして含む材料である。
 正極材料に塩素、臭素、およびヨウ素からなる群より選択される少なくとも1種の元素を含むハロゲン化物固体電解質を用いた電池では、充電中にハロゲン化物固体電解質が酸化分解し、酸化分解物が抵抗層として機能することにより、充電時に電池の内部抵抗が上昇する課題を発見した。その原因がハロゲン化物固体電解質に含まれる塩素、臭素、およびヨウ素からなる群より選択される1種の元素の酸化反応にあると推察した。ここで、酸化反応とは、正極材料中の正極活物質からリチウムと電子が引き抜かれる通常の充電反応に加え、正極活物質と接する塩素、臭素、およびヨウ素からなる群より選択される少なくとも1種の元素を含むハロゲン化物固体電解質からも電子が引き抜かれる副反応のことを意味する。この酸化反応に伴い、正極活物質とハロゲン化物固体電解質との間に、リチウムイオン伝導性に乏しい酸化分解層が形成され、当該酸化分解層が正極の電極反応において大きな界面抵抗として機能していると考えられる。塩素、臭素、およびヨウ素は、比較的イオン半径が大きく、ハロゲン化物固体電解質を構成するカチオン成分との相互作用力が小さいため、酸化されやすいと考えられる。なお、対Li電位が3.9V超の正極活物質を用いた場合、対Li電位が3.9V以下の正極活物質を用いた場合よりも、この問題は生じやすく、ハロゲン化物固体電解質だけでなく、例えば固体電解質が硫化物固体電解質であっても分解することが知られている。
 特許文献1に、ニオブ酸リチウムで被覆された正極活物質と、ハロゲン化物固体電解質とを含む正極層を備えた電池が開示されている。このように正極活物質を被覆材料で被覆することで、ハロゲン化物固体電解質による酸化分解層の形成を抑制して、内部抵抗の上昇を抑えて、電池の充放電容量の低下を抑制できる。
 本発明者らは、被覆された正極活物質を含む正極材料について、電池の充放電容量の低下をさらに抑制できる構成について鋭意検討した。その結果、本発明者らは、正極活物質がLi、Ni、Mn、およびOからなる酸化物を含み、当該正極活物質の表面がLi、Ti、M1、およびFを含み、M1はCa、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である固体電解質材料によって被覆される場合、さらに電池の充放電容量の低下を抑制できることを明らかにした。
 以上の知見により、本発明者らは、以下の本開示の正極材料に到達した。
 本開示の正極材料は、正極活物質と、第1固体電解質材料と、第2電解質材料とを含み、前記正極活物質はLi、Ni、Mn、およびOからなる酸化物を含み、前記第1固体電解質材料は、前記正極活物質の表面の少なくとも一部を被覆し、かつ、Li、Ti、M1、およびFを含み、M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である構成を有する。この構成により、本開示の正極材料は酸化耐性が向上し、電池の充放電容量を向上できる。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る正極材料は、正極活物質と、前記正極活物質の表面の少なくとも一部を被覆する第1固体電解質材料と、第2電解質材料と、を含み、前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、前記第1固体電解質材料は、Li、Ti、M1、およびFを含み、前記M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である。
 第1態様に係る正極材料は、表面の少なくとも一部が第1固体電解質材料で被覆された正極活物質が高い酸化耐性を有する。そのため、正極材料において第2電解質材料が酸化分解することによる充放電容量低下を抑制することができる。
 本開示の第2態様において、例えば、第1態様に係る正極材料では、前記正極活物質は、下記の組成式(1)で表される材料を含んでもよい。
 LiNixMn2-x4・・・式(1)
 ここで、xは0<x<2を満たす。
 第2態様に係る正極材料は、電池の充放電容量を向上できる。
 本開示の第3態様において、例えば、第2態様に係る正極材料では、前記組成式(1)は、0<x<1を満たしてもよい。
 第3態様に係る正極材料は、電池の充放電容量を向上できる。
 本開示の第4態様において、例えば、第3態様に係る正極材料では、前記組成式(1)は、x=0.5を満たしてもよい。
 第4態様に係る正極材料は、電池の充放電容量を向上できる。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る正極材料では、前記第1固体電解質材料は、Li、Ti、M1、およびFからなっていてもよい。
 第5態様に係る正極材料では、前記第1固体電解質材料が高いイオン伝導度を発現する。そのため、前記正極材料において、前記第1固体電解質材料と前記正極活物質との低い界面抵抗を実現できる。したがって、前記正極材料は、電池の充放電容量を向上できる。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る正極材料では、前記第1固体電解質材料は、下記の組成式(2B)で表される組成を有してもよい。
 Li6-(4-a)b(Ti1-aM1ab6・・・式(2B)
 ここで、aは0<a<1を満たし、bは0<b≦1.5を満たす。
 第6態様に係る正極材料では、前記第1固体電解質材料が高いイオン伝導度を発現する。そのため、前記正極材料において、前記第1固体電解質材料と前記正極活物質との低い界面抵抗を実現できる。したがって、前記正極材料は、電池の充放電容量を向上できる。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る正極材料では、前記M1は、Alであってもよい。
 Alは、安価であるとともに、電解質のイオン伝導度を向上させる元素として適している。したがって第7態様に係る正極材料では、前記第1固体電解質材料がより高いイオン伝導度を発現する。そのため、前記正極材料において、前記第1固体電解質材料と前記正極活物質とのより低い界面抵抗を実現できる。したがって、前記正極材料は、電池の充放電容量を向上できる。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る正極材料では、前記第2電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、ClおよびBrからなる群より選択される少なくとも1種と、を含んでもよい。
 第8態様に係る正極材料は、電池の充放電容量を向上できる。
 本開示の第9態様において、例えば、第8態様に係る正極材料では、前記第2電解質材料は、下記の組成式(3)により表される材料を含んでもよい。
 Liα3M2β3γ3δ3 ・・・式(3)
 ここで、
 α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、
 M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
 Xは、Cl、およびBrからなる群より選択される少なくとも1種の元素である。
 第9態様に係る正極材料では、前記第2電解質材料のイオン伝導度をより高めることができる。これにより、前記正極材料のLiイオンの移動に由来する抵抗をより低減することができ、より効果的に充電時の電池の内部抵抗上昇を抑制することができる。
 本開示の第10態様において、例えば、第9態様に係る正極材料では、前記M2は、YおよびTaからなる群より選択される少なくとも1種を含んでもよい。
 第10態様に係る正極材料では、前記第2電解質材料のイオン伝導度をより高めることができる。これにより、前記正極材料のLiイオンの移動に由来する抵抗をより低減することができ、より効果的に充電時の電池の内部抵抗上昇を抑制することができる。
 本開示の第11態様において、例えば、第9または第10態様に係る正極材料では、組成式(3)は、
 1≦α3≦4、
 0<β3≦2、
 3≦γ3<7、
 0≦δ3≦2、
 を満たしてもよい。
 第11態様に係る正極材料では、前記第2電解質材料のイオン伝導度をより高めることができる。これにより、前記正極材料のLiイオンの移動に由来する抵抗をより低減することができ、より効果的に充電時の電池の内部抵抗上昇を抑制することができる。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る正極材料では、前記第2電解質材料は、硫化物固体電解質を含んでもよい。
 第12態様に係る正極材料では、前記第2電解質材料のイオン伝導度をより高めることができる。これにより、前記正極材料のLiイオンの移動に由来する抵抗をより低減することができ、より効果的に充電時の電池の内部抵抗上昇を抑制することができる。
 本開示の第13態様において、例えば、第12態様に係る正極材料では、前記硫化物固体電解質は、Li6PS5Clであってもよい。
 第13態様に係る正極材料では、前記第2電解質材料のイオン伝導度をより高めることができる。これにより、前記正極材料のLiイオンの移動に由来する抵抗をより低減することができ、より効果的に充電時の電池の内部抵抗上昇を抑制することができる。
 本開示の第14態様において、例えば、第1から第13態様のいずれか1つに係る正極材料では、前記正極活物質と前記第2電解質材料との間に、前記第1固体電解質材料が設けられていてもよい。
 第14態様に係る正極材料では、高い酸化耐性を有する前記第1固体電解質材料が、前記正極活物質と前記第2電解質材料との間に介在することで、前記第2電解質材料の酸化分解を抑制し、充電時の電池の内部抵抗上昇を抑制することができる。
 本開示の第15態様に係る電池は、正極と、負極と、前記正極と前記負極との間に位置する電解質層と、を備え、前記正極は、第1から第14態様のいずれか1つに係る正極材料を含む。
 第15態様に係る電池では、充電時の電池の内部抵抗の上昇が抑制され、充放電容量が向上する。
 本開示の第16態様において、例えば、第15態様に係る電池では、前記電解質層は、第1電解質層および第2電解質層を含み、
 前記第1電解質層は、前記正極に接し、前記第2電解質層は、前記負極に接してもよい。
 第16態様に係る電池では、充電時の電池の内部抵抗の上昇が抑制され、充放電容量が向上する。
 本開示の第17態様において、例えば、第16態様に係る電池では、前記第1電解質層は、前記第1固体電解質材料と同じ組成を有する材料を含んでもよい。
 第17態様に係る電池では、充放電容量が向上する。
 本開示の第18態様において、例えば、第16態様に係る電池では、前記第1電解質層は、前記第2電解質材料と同じ組成を有する材料を含んでもよい。
 第18態様に係る電池では、充放電容量が向上する。
 本開示の第19態様において、例えば、第16態様に係る電池では、前記第2電解質層は、前記第1固体電解質材料と異なる組成を有する材料を含んでもよい。
 第19態様に係る電池では、充放電容量が向上する。
 本開示の第20態様において、例えば、第15態様に係る電池では、前記電解質層は、ハロゲン化物固体電解質を含んでもよい。
 第20態様に係る電池では、充放電容量が向上する。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1における正極材料1000の概略構成を示す断面図である。正極材料1000は、正極活物質110と、正極活物質110の表面の少なくとも一部を被覆する第1固体電解質材料111と、第2電解質材料100とを含む。正極活物質110はLi、Ni、Mn、およびOからなる酸化物を含む。第1固体電解質材料111は、Li、Ti、M1、およびFを含む。M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である。
 以上の構成によれば、正極材料1000が高い酸化耐性を有する。そのため、正極材料1000は、充電時の電池の内部抵抗上昇を抑制することができる。また、第1固体電解質材料111が高いイオン伝導度を有する。そのため、正極材料1000において、第1固体電解質材料111と正極活物質110との低い界面抵抗を実現できる。したがって、正極材料1000は、電池の充放電容量を向上できる。
 第1固体電解質材料111のイオン伝導度をさらに高めるために、第1固体電解質材料111は、F以外の元素をアニオンとして含んでもよい。当該アニオンとして含まれる元素の例は、Cl、Br、I、O、S、またはSeである。また、第1固体電解質材料111は、硫黄を含んでいなくてもよい。
 正極活物質110は、下記の組成式(1)で表される材料を含んでもよい。
 LiNixMn2-x4・・・式(1)
 ここで、xは0<x<2を満たす。
 組成式(1)において、0<x<1が満たされてもよい。
 組成式(1)において、x=0.5が満たされてもよい。すなわち、正極活物質110は、LiNi0.5Mn1.54を含んでもよい。
 これらの化学式で表される酸化物は、スピネル構造を持つLiMn24のMnの一部をNiで置換することによって得られる材料であり、電池の動作電圧を向上させるのに適している。Li、Ni、Mn、およびOからなる酸化物もスピネル構造を有しうる。「Li、Ni、Mn、およびOからなる酸化物」とは、不可避的な不純物を除き、Li、Ni、Mn、およびO以外の元素が意図的に加えられていないことを意味する。
 また、組成式(1)で表される材料は、Coを含まないため、安価である。以上の構成によれば、電池の充放電効率を高めることができる低コストな正極材料1000を実現できる。
 正極活物質110は、LiNi0.5Mn1.54のみからなっていてもよい。
 以上の構成によれば、電池の充放電容量が向上する。
 第1固体電解質材料111は、実質的に、Li、Ti、M1、およびFからなっていてもよい。「第1固体電解質材料111は、実質的に、Li、Ti、M1、およびFからなる」とは、第1固体電解質材料を構成する全元素の物質量の合計に対する、Li、Ti、M1、およびFの物質量の合計のモル比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該モル比は、95%以上であってもよい。
 第1固体電解質材料111は、Li、Ti、M1、およびFからなっていてもよい。
 第1固体電解質材料111は、下記の組成式(2A)により表される材料を含んでいてもよい。ここで、α2、β2、γ2、およびδ2は、0より大きい値である。
 Liα2Tiβ2M1γ2δ2・・・式(2A)
 組成式(2A)において、δ2は、α2よりも大きい値であってもよい。δ2は、α2、β2、およびγ2それぞれよりも大きい値であってもよい。
 組成式(2A)において、1.7≦α2≦3.7、0<β2<1.5、0<γ2<1.5を、および5≦δ2≦7が満たされてもよい。
 組成式(2A)において、2.5≦α2≦3、0.1≦β2≦0.6、0.4≦γ2≦0.9、およびδ2=6が満たされてもよい。
 第1固体電解質材料111は、組成式(2A)により表される材料を主成分として含んでいてもよい。ここで、「主成分」とは、質量比で最も多く含まれる成分のことである。
 第1固体電解質材料111において、Li、Ti、M1、およびFの合計に対するFのモル比は、0.4以上かつ0.8以下であってもよく、0.5以上かつ0.7以下であってもよい。Li、Ti、M1、およびFの合計に対するFのモル比は、(Fの物質量)/(Li、Ti、M1、およびFの物質量の合計)によって算出される。
 第1固体電解質材料111は、下記の組成式(2B)により表される材料を含んでいてもよい。式(2B)において、aは0<a<1を満たし、bは0<b≦1.5を満たす。
 Li6-(4-a)b(Ti1-aM1ab6・・・式(2B)
 第1固体電解質材料111のイオン伝導度を高めるために、式(2B)において、aは0.1≦a≦0.9を満たしてもよい。
 第1固体電解質材料111のイオン伝導度を高めるために、式(2B)において、bは0.8≦b≦1.2を満たしてもよい。
 式(2B)で表される特定の組成を有するとき、第1固体電解質材料111は、例えば、次のようなイオン伝導度を示す。例えば、M1がZrのとき、第1固体電解質材料111は、2.1μS/cm程度のイオン伝導度を示す。M1がMgのとき、第1固体電解質材料111は、2.3μS/cm程度のイオン伝導度を示す。M1がCaのとき、第1固体電解質材料111は、0.02μS/cm程度のイオン伝導度を示す。M1がAlのとき、第1固体電解質材料111は、5.4μS/cm程度のイオン伝導度を示す。一方、第1固体電解質材料111の酸化耐性は主にFに起因する。これらの事実を考慮すると、M1が特定の元素から別の元素に置き換わったとしても、電池の充放電容量が向上することに変わりはない。
 M1は、Alであってもよい。
 第1固体電解質材料111は、組成式(2B)により表される材料を主成分として含んでいてもよい。ここで、「主成分」とは、質量比で最も多く含まれる成分のことである。
 以上の構成によれば、第1固体電解質材料111がより高いイオン伝導度を発現する。そのため、正極材料1000において、第1固体電解質材料111と正極活物質110との低い界面抵抗を実現できる。
 第2電解質材料100は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、ClおよびBrからなる群より選択される少なくとも1種と、を含んでもよい。
 「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」とは、水素を除く周期表第1族から第12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての第13族から第16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 第2電解質材料100は、下記の組成式(3)により表されてもよい。
 Liα3M2β3γ3δ3 ・・・式(3)
 ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、Xは、ClおよびBrからなる群より選択される少なくとも1種の元素である。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 組成式(3)において、M2は、YおよびTaからなる群より選択される少なくとも1種を含んでいてもよい。すなわち、第2電解質材料100は、金属元素としてYを含んでいてもよい。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 組成式(3)において、1≦α3≦4、0<β3≦2、3≦γ3<7、および0≦δ3≦2が満たされてもよい。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 組成式(3)において、2.5≦α3≦3、1≦β3≦1.1、γ3=6、およびδ3=0が満たされてもよい。
 Yを含む第2電解質材料100は、例えば、LiaMebc6の組成式で表される化合物であってもよい。ここで、a+m’b+3c=6、かつ、c>0が満たされる。Meは、LiおよびYを除く金属元素と半金属元素とからなる群より選択される少なくとも1つの元素である。また、m’は、Meの価数である。
 Meとして、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つの元素を用いてもよい。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3dd6・・・式(A1)
 ここで、組成式(A1)において、Xは、ハロゲン元素であり、かつ、Clを含む。また、0<d<2、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A2)により表される材料であってもよい。
 Li3YX6・・・式(A2)
 ここで、組成式(A2)において、Xは、ハロゲン元素であり、かつ、Clを含む。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl6・・・式(A3)
 ここで、組成式(A3)において、0<δ≦0.15、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ+a41+δ-a4Mea4Cl6-x4Brx4・・・式(A4)
 ここで、組成式(A4)において、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1つの元素である。また、-1<δ<2、0<a4<3、0<(3-3δ+a4)、0<(1+δ-a4)、および0≦x4<6、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ1+δ-a5Mea5Cl6-x5Brx5・・・式(A5)
 ここで、組成式(A5)において、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a5<2、0<(1+δ-a5)、および0≦x5<6、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ-a61+δ-a6Mea6Cl6-x6Brx6・・・式(A6)
 ここで、組成式(A6)において、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a6<1.5、0<(3-3δ-a6)、0<(1+δ-a6)、および0≦x6<6、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-2a71+δ-a7Mea7Cl6-x7Brx7・・・式(A7)
 ここで、組成式(A7)において、Meは、Ta、およびNbからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a7<1.2、0<(3-3δ-2a7)、0<(1+δ-a7)、および0≦x7<6、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン伝導度をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100として、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al、Ga、In)X4、Li3(Al、Ga、In)X6、などが用いられうる。ここで、Xは、Clを含む。なお、本開示において、式中の元素を「(Al、Ga、In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al、Ga、In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 第2電解質材料100として、硫化物固体電解質が含まれてもよい。硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212、Li6PS5Cl、などが用いられうる。また、これらに、LiX、Li2O、MOq、LipMOq、などが添加されてもよい。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つの元素である。Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1つの元素である。pおよびqは、それぞれ独立に、自然数である。
 硫化物固体電解質は、硫化リチウムと硫化リンとを含んでもよい。
 硫化物固体電解質は、Li6PS5Clであってもよい。
 第2電解質材料100は、固体電解質材料であってもよい。
 第2電解質材料100は、電解液を含んでもよい。
 電解液は、水、もしくは非水の溶媒と、溶媒に溶けたリチウム塩と、を含む。
 溶媒の例は、水、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒、などである。
 環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートなどである。
 鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートなどである。
 環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソラン、などである。
 鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタン、などである。
 環状エステル溶媒の例は、γ-ブチロラクトン、などである。
 鎖状エステル溶媒の例は、酢酸メチル、などである。
 フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネート、などである。
 溶媒として、これらから選択される1種の溶媒が、単独で、使用されうる。もしくは、溶媒として、これらから選択される2種以上の溶媒の組み合わせが、使用されうる。
 電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、およびフルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。
 リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、などが使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.1から15mol/リットルの範囲にある。
 正極材料1000は、Li、N、Mn、およびOからなる酸化物以外の他の正極活物質をさらに含んでいてもよい。
 正極活物質は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。正極活物質110以外の他の正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物、などが用いられうる。リチウム含有遷移金属酸化物の例としては、Li(Ni、Co、Al)O2、Li(Ni、Co、Mn)O2、LiCoO2、などが挙げられる。特に、リチウム含有遷移金属酸化物を用いた場合には、正極材料1000の製造コストを安くでき、平均放電電圧を高めることができる。
 正極活物質110と第2電解質材料100との間に、第1固体電解質材料111が設けられていてもよい。
 以上の構成によれば、高い酸化耐性を有する第1固体電解質材料111が、正極活物質110および第2電解質材料100の間に介在することで、第2電解質材料100の酸化分解を抑制できる。このため、正極材料1000が用いられた電池の充電時の容量低下を抑制することができる。
 正極材料1000は、第2電解質材料100とは異なる組成を有する材料である第3電解質材料をさらに含んでもよい。
 正極活物質110の表面の少なくとも一部を覆う第1固体電解質材料111の厚みは、1nm以上かつ500nm以下であってもよい。
 第1固体電解質材料111の厚みが1nm以上である場合、正極活物質110および第2電解質材料100の直接接触を抑制し、第2電解質材料100の酸化分解を抑制できる。このため、正極材料1000が用いられた電池の充放電効率を向上することができる。第1固体電解質材料111の厚みが500nm以下である場合、第1固体電解質材料111の厚みが厚くなり過ぎない。このため、正極材料1000が用いられた電池の内部抵抗を十分に小さくすることができ、電池のエネルギー密度を高めることができる。
 なお、第1固体電解質材料111の厚みを測定する手法は特に限定されないが、例えば、透過型電子顕微鏡を用い、第1固体電解質材料111の厚みを直接観察することで、求めることができる。
 正極活物質110に対する第1固体電解質材料111の質量比率は、0.01%以上かつ30%以下であっても良い。
 正極活物質110に対する第1固体電解質材料111の質量比率が0.01%以上である場合、正極活物質110と、第2電解質材料100との、直接接触を抑制し、第2電解質材料100の酸化分解を抑制できる。このため、正極材料1000が用いられた電池の充放電効率を向上することができる。正極活物質110に対する第1固体電解質材料111の質量比率が30%以下である場合、第1固体電解質材料111の厚みが厚くなり過ぎない。このため、正極材料1000が用いられた電池の内部抵抗を十分に小さくすることができ、電池のエネルギー密度を高めることができる。
 第1固体電解質材料111は、正極活物質110の表面を一様に被覆してもよい。これにより、正極活物質110と、第2電解質材料100との、直接接触を抑制し、第2電解質材料100の副反応を抑制できる。このため、正極材料1000が用いられた電池の充放電特性をより高め、かつ、容量低下を抑制することができる。
 第1固体電解質材料111は、正極活物質110の表面の一部を被覆してもよい。第1固体電解質材料111を有しない部分を介して、複数の正極活物質110同士が直接接触することで、複数の正極活物質110間での電子伝導性が向上する。このため、正極材料1000が用いられた電池の高出力での動作が可能となる。
 第1固体電解質材料111は、正極活物質110表面の30%以上を覆ってもよく、60%以上を覆ってもよく、90%以上を覆ってもよい。第1固体電解質材料111は、実質的に正極活物質110表面すべてを覆ってもよい。
 第1固体電解質材料111は、正極活物質110の表面に直接接していてもよい。
 正極活物質110は、第1固体電解質材料111とは異なる被覆材料によって、表面の少なくとも一部を覆われていてもよい。
 被覆材料は、硫化物固体電解質、および酸化物固体電解質、およびフッ化物固体電解質、などが挙げられる。被覆材料に用いられる硫化物固体電解質として、第2電解質材料100に例示されたものと同じ材料を用いてもよい。被覆材料に用いられる酸化物固体電解質としては、LiNbO3などのLi-Nb-O化合物、LiBO2、Li3BO3などのLi-B-O化合物、LiAlO2などのLi-Al-O化合物、Li4SiO4などのLi-Si-O化合物、Li2SO4、Li4Ti512などのLi-Ti-O化合物、Li2ZrO3などのLi-Zr-O化合物、Li2MoO3などのLi-Mo-O化合物、LiV25などのLi-V-O化合物、Li2WO4などのLi-W-O化合物、Li3PO4などのLi-P-O化合物が挙げられる。被覆材料に用いられるフッ化物固体電解質としては、Li、Ti、M1、およびFを含み、M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種の元素である固体電解質が挙げられる。
 以上の構成によれば、正極材料1000の耐酸化性をより向上できる。これにより、充電時の電池の容量低下を抑制できる。
 正極活物質110と第1固体電解質材料111とは、被覆材料により隔てられ直接接しなくてもよい。
 以上の構成によれば、正極材料1000の耐酸化性をより向上できる。これにより、充電時の電池の容量低下を抑制できる。
 第2電解質材料100の形状は、特に限定されない。第2電解質材料100が粉体材料である場合、その形状は、例えば、針状、球状、楕円球状、などであってもよい。例えば、第2電解質材料100の形状は、粒子状であってもよい。
 例えば、第2電解質材料100の形状が、粒子状(例えば、球状)である場合、第2電解質材料100のメジアン径は、100μm以下であってもよい。第2電解質材料100のメジアン径が100μm以下である場合、正極活物質110と第2電解質材料100とが、正極材料1000において、良好な分散状態を形成し得る。このため、正極材料1000が用いられた電池の充放電特性が向上する。
 第2電解質材料100のメジアン径は、10μm以下であってもよい。以上の構成によれば、正極材料1000において、正極活物質110と第2電解質材料100とが、良好な分散状態を形成できる。
 実施の形態1においては、第2電解質材料100のメジアン径は、正極活物質110のメジアン径より小さくてもよい。以上の構成によれば、正極において、第2電解質材料100と正極活物質110とが、より良好な分散状態を形成できる。
 正極活物質110のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 正極活物質110のメジアン径が0.1μm以上である場合、正極材料1000において、正極活物質110と第2電解質材料100とが、良好な分散状態を形成し得る。このため、正極材料1000が用いられた電池の充放電特性が向上する。正極活物質110のメジアン径が100μm以下である場合、正極活物質110内のリチウム拡散速度が向上する。このため、正極材料1000が用いられた電池が高出力で動作し得る。
 正極活物質110のメジアン径は、第2電解質材料100のメジアン径より大きくてもよい。これにより、正極活物質110と第2電解質材料100とが、良好な分散状態を形成できる。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 正極材料1000においては、第2電解質材料100と第1固体電解質材料111とは、図1に示されるように、互いに、接触していてもよい。このとき、第1固体電解質材料111と正極活物質110とは、互いに、接触する。
 正極材料1000は、複数の第2電解質材料100と、複数の正極活物質110と、を含んでもよい。
 正極材料1000における、第2電解質材料100の含有量と正極活物質110の含有量とは、互いに、同じであってもよいし、異なってもよい。
 <第1固体電解質材料111の製造方法>
 実施の形態1における第1固体電解質材料111は、例えば、下記の方法により、製造されうる。
 目的とする組成の配合比となるような二元系ハロゲン化物の原料粉を用意する。例えば、Li2.7Ti0.3Al0.76を作製する場合には、LiFとTiF4とAlF3とを、LiF:TiF4:AlF3=2.7:0.3:0.7程度のモル比となるように用意する。合成プロセスにおける組成の変化を考慮して、変化分を相殺するようにあらかじめ配合比を調整しても良い。
 原料粉をよく混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合および粉砕し、反応させる。その後、真空中や不活性雰囲気中で焼成してもよい。
 もしくは、原料粉をよく混合した後、真空中や不活性雰囲気中で焼成してもよい。焼成条件は、例えば、100℃から300℃の範囲内で、1時間以上の焼成を行うことが好ましい。また、焼成過程における組成の変化を抑えるべく、石英管等の密閉容器に原料粉を封入させて焼成をおこなうことが好ましい。
 これにより、前述したような組成を含む第1固体電解質材料111が得られる。
 <第1固体電解質材料111に表面が被覆された正極活物質110の製造方法>
 実施の形態1における正極材料1000は、例えば、下記の方法により、製造されうる。
 所定の質量比率の正極活物質110と第1固体電解質材料111とを用意する。例えば、正極活物質110としてLiNi0.5Mn1.54、第1固体電解質材料111としてLi2.7Ti0.3Al0.76を用意する。これら2種の材料を同一の反応容器に投入し、回転するブレードを利用し2種の材料にせん断力を加える、もしくは、ジェット気流により2種の材料を衝突させる、などの手法により、正極活物質LiNi0.5Mn1.54の表面の少なくとも一部に第1固体電解質材料111であるLi2.7Ti0.3Al0.76を被覆することができる。例えば、乾式粒子複合化装置ノビルタ(ホソカワミクロン製)、高速気流中衝撃装置(奈良機械製作所製)、およびジェットミルなどの装置を用いることができる。このようにして、正極活物質LiNi0.5Mn1.54の表面の少なくとも一部を第1固体電解質材料111であるLi2.7Ti0.3Al0.76が被覆した、正極活物質110を製造することができる。
 <第2電解質材料100の製造方法>
 第2電解質材料100は、下記の方法により製造され得る。
 一例として、Li、Y、Cl、およびBrからなる第2電解質材料100を合成する場合、LiCl原料粉、LiBr原料粉、YBr3原料粉、およびYCl3原料粉が混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉は混合されてもよい。このようにして、第2電解質材料100が得られる。
 <正極材料1000の製造方法>
 第1固体電解質材料111によって表面が被覆された正極活物質110と、第2電解質材料100とを混合することによって、実施の形態1における正極材料1000を製造することができる。
 (実施の形態2)
 以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
 図2は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、正極201と、電解質層202と、負極203と、を備える。正極201は、実施の形態1における正極材料1000を含む。電解質層202は、正極201と負極203との間に配置される。
 以上の構成によれば、電池2000の充電時の内部抵抗上昇を抑制することができる。
 正極201に含まれる、正極材料1000と第2電解質材料100の体積比率「v1:100-v1」について、30≦v1≦98が満たされてもよい。ここで、v1は、正極201に含まれる、正極材料1000および第2電解質材料100の合計体積を100としたときの正極材料1000の体積比率を表す。30≦v1を満たす場合、十分な電池のエネルギー密度を確保し得る。v1≦98を満たす場合、電池2000が高出力で動作し得る。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。正極201の厚みが10μm以上である場合、十分な電池のエネルギー密度を確保し得る。正極201の厚みが500μm以下である場合、電池2000が高出力で動作し得る。
 電解質層202は、電解質材料を含む。当該電解質材料は、例えば、固体電解質材料であってもよい。すなわち、電解質層202は、固体電解質層であってもよい。
 電解質層202に含まれる固体電解質材料として、実施の形態1における第1固体電解質材料111、または、第2電解質材料100と同じ材料を用いてもよい。すなわち、電解質層202は、実施の形態1における第1固体電解質材料111、または、第2電解質材料100と同じ材料を含んでもよい。
 以上の構成によれば、電池2000の出力密度および充放電特性を、より向上させることができる。
 電解質層202に含まれる固体電解質材料として、実施の形態1における第1固体電解質材料111と同じ材料を用いてもよい。すなわち、電解質層202は、実施の形態1における第1固体電解質材料111と同じ材料を含んでもよい。
 以上の構成によれば、電解質層202の酸化に伴う電池2000の内部抵抗上昇を抑制し、電池2000の出力密度および充放電特性を、より向上させることができる。
 電解質層202に含まれる固体電解質材料として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質が用いられてもよい。
 電解質層202に含まれる固体電解質材料の酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、ならびに、LiBO2およびLi3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス、などが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン伝導度をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、などが使用されうる。例示されたリチウム塩から選択される1種のリチウム塩が、単独で使用されうる。もしくは、例示されたリチウム塩から選択される2種以上のリチウム塩の混合物が使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25、などが用いられうる。
 電解質層202に含まれる固体電解質材料は、ハロゲン化物固体電解質であってもよい。すなわち、電解質層202は、ハロゲン化物固体電解質を含んでいてもよい。
 電解質層202に含まれるハロゲン化物固体電解質は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、Br、およびIからなる群より選択される少なくとも1種と、を含んでいてもよい。
 電解質層202に含まれるハロゲン化物固体電解質は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、Cl、およびBrからなる群より選択される少なくとも1種と、を含んでいてもよい。
 電解質層202に含まれるハロゲン化物固体電解質には、第2電解質材料として例示したハロゲン化物固体電解質が使用されてもよい。例えば、上記の組成式(3)により表されるハロゲン化物固体電解質が用いられてもよい。ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、Xは、Cl、およびBrからなる群より選択される少なくとも1種の元素である。
 α3は1≦α3≦4を満たしてもよく、β3は0<β3≦2を満たしてもよく、γ3は3≦γ3<7を満たしてもよく、δ3は0≦δ3≦2を満たしてもよい。
 電解質層202は、固体電解質材料を、主成分として含んでもよい。すなわち、電解質層202は、固体電解質材料を、例えば、電解質層202の全体に対する質量割合で50%以上(すなわち、50質量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 電解質層202は、固体電解質材料を、例えば、電解質層202の全体に対する質量割合で70%以上(すなわち、70質量%以上)、含んでもよい。
 以上の構成によれば、電池2000の充放電特性を、より向上させることができる。
 電解質層202は、固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物などを含んでいてもよい。
 電解質層202は、固体電解質材料を、例えば、混入が不可避的な不純物を除いて、電解質層202の全体に対する質量割合で100%(すなわち、100質量%)、含んでもよい。
 以上の構成によれば、電池2000の充放電特性を、より向上させることができる。
 電解質層202は、固体電解質材料のみから構成されていてもよい。
 電解質層202は、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでもよい。
 電解質層202の厚みは、1μm以上かつ300μm以下であってもよい。電解質層202の厚みが1μm以上である場合、正極201と負極203とが短絡しにくくなる。電解質層202の厚みが300μm以下である場合、電池2000が高出力で動作し得る。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属またはリチウム合金などが挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素などが挙げられる。容量密度の観点から、珪素、錫、珪素化合物、または錫化合物が使用され得る。
 負極203は、固体電解質材料を含んでもよい。固体電解質材料としては、電解質層202を構成する材料として例示された固体電解質材料を用いてもよい。以上の構成によれば、負極203内部のリチウムイオン伝導度を高め、電池2000が高出力で動作し得る。
 負極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質のメジアン径が0.1μm以上である場合、負極において、負極活物質と固体電解質材料とが、良好な分散状態を形成し得る。これにより、電池2000の充放電特性が向上する。負極活物質のメジアン径が100μm以下である場合、負極活物質内のリチウム拡散が速くなる。このため、電池2000が高出力で動作し得る。
 負極活物質のメジアン径は、負極203に含まれる固体電解質材料のメジアン径より大きくてもよい。これにより、負極活物質と固体電解質材料との良好な分散状態を形成できる。
 負極203に含まれる、負極活物質と固体電解質材料との体積比率「v2:100-v2」について、30≦v2≦95が満たされてもよい。ここで、v2は、負極203に含まれる、負極活物質および固体電解質材料の合計体積を100としたときの負極活物質の体積比率を表す。30≦v2を満たす場合、十分な電池のエネルギー密度を確保し得る。v2≦95を満たす場合、電池2000が高出力で動作し得る。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極203の厚みが10μm以上である場合、十分な電池2000のエネルギー密度を確保し得る。負極203の厚みが500μm以下である場合、電池2000が高出力で動作し得る。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、およびカルボキシメチルセルロース、などが挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上の混合物が用いられてもよい。
 正極201および負極203の少なくとも一方は、電子伝導性を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛などのグラファイト類、アセチレンブラックおよびケッチェンブラックなどのカーボンブラック類、炭素繊維および金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛およびチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ならびに、ポリアニリン、ポリピロール、およびポリチオフェンなどの導電性高分子化合物、などが用いられ得る。導電助剤として炭素導電助剤を用いた場合、低コスト化を図ることができる。
 実施の形態2における電池2000の形状は、例えば、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型、などが挙げられる。
 電池2000は、例えば、正極材料1000、電解質層形成用の材料、負極形成用の材料をそれぞれ準備し、公知の方法で、正極、電解質層、および負極がこの順に配置された積層体を作製することによって製造されてもよい。
 (実施の形態3)
 以下、実施の形態3が説明される。実施の形態1と重複する説明は、適宜、省略される。
 図3は、実施の形態3における電池3000の概略構成を示す断面図である。
 実施の形態2における電池2000は、正極201と、電解質層202と、負極203と、を備える。正極201は、実施の形態1における正極材料1000を含む。電解質層202は、正極201と負極203との間に配置される。電解質層202は、第1電解質層301および第2電解質層302を含み、第1電解質層301は、正極201に接し、第2電解質層302は、負極203に接する。
 以上の構成によれば、充電時の電池3000の内部抵抗上昇を抑制することができる。
 第1電解質層301は、第1固体電解質材料111と同じ組成を有する材料を含んでもよい。
 正極201に接する第1電解質層301に、耐酸化性に優れる第1固体電解質材料111と同じ材料を含むことで、第1電解質層301の酸化分解を抑制し、充電時の電池3000の内部抵抗上昇を抑制することができる。
 第1電解質層301は、第2電解質材料100と同じ組成を有する材料を含んでもよい。
 なお、第2電解質層302は、第1固体電解質材料111と異なる組成を有する材料を含んでもよい。
 第2電解質層302は、第2電解質材料100と同じ組成を有する材料を含んでもよい。
 固体電解質材料の還元耐性の観点から、第1電解質層301に含まれる固体電解質材料の還元電位は、第2電解質層302に含まれる固体電解質材料の還元電位より低くてもよい。以上の構成によれば、第1電解質層301に含まれる固体電解質材料を還元させずに用いることができる。これにより、電池3000の充放電効率を向上させることができる。
 例えば、第2電解質層302は硫化物固体電解質を含んでもよい。ここで、第2電解質層302に含まれる硫化物固体電解質の還元電位は、第1電解質層301に含まれる固体電解質材料の還元電位よりも、卑である。以上の構成によれば、第1電解質層301に含まれる固体電解質材料を還元させずに用いることができる。これにより、電池3000の充放電効率を向上させることができる。
 第1電解質層301、および第2電解質層302の厚みは、1μm以上かつ300μm以下であってもよい。第1電解質層301、および第2電解質層302の厚みが1μm以上である場合、正極201と負極203とが短絡しにくくなる。第1電解質層301、および第2電解質層302の厚みが300μm以下である場合、電池3000が高出力で動作し得る。
 以下、実施例を参照しながら、本開示がより詳細に説明される。
 <実施例1>
 [第1固体電解質材料の作製]
 アルゴン雰囲気中で、原料粉としてLiF、TiF4、およびAlF3を、LiF:TiF4:AlF3=2.7:0.3:0.7のモル比となるように、秤量した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、12時間、500rpmでミリング処理することで、実施例1の第1固体電解質材料としてLi2.7Ti0.3Al0.76の粉末を得た。
 [第1固体電解質材料によって表面が被覆された正極活物質の作製]
 アルゴン雰囲気中で、正極活物質であるLiNi0.5Mn1.54と、実施例1の第1固体電解質材料とを、LiNi0.5Mn1.54:第1固体電解質材料=100:3の質量比率となるように秤量した。これら材料を乾式粒子複合化装置ノビルタ(ホソカワミクロン製)に投入し、6000rpm、30分の条件で複合化処理を実施することで、実施例1の第1固体電解質材料によって表面が被覆された正極活物質を得た。
 [第2電解質材料の作製]
 -30℃以下の露点を有するドライ雰囲気(以下、「ドライ雰囲気」と呼ばれる)中で、原料粉としてLi22およびTaCl5が、Li22:TaCl5=1.2:2のモル比となるように用意された。これらの原料粉が乳鉢中で粉砕して混合され、混合粉が得られた。得られた混合粉は、遊星型ボールミルを用い、24時間、600rpmでミリング処理された。次いで、200℃で6時間、混合粉は焼成された。このようにして、実施例1の第2電解質材料の粉末が得られた。
 [正極材料の作製]
 実施例1の第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料と、気相法炭素繊維(VGCF(昭和電工株式会社製))とを、73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例1の正極材料が作製された。
 <実施例2>
 [第1固体電解質材料によって表面が被覆された正極活物質の作製]
 実施例1と同様にして、第1固体電解質材料が作製された。また、実施例1と同様にして、第1固体電解質材料によって表面が被覆された正極活物質が作製された。
 [第2電解質材料の作製]
 -60℃以下の露点を有するアルゴングローブボックス内で、原料粉としてLiClおよびYCl3が、LiCl:YCl3=2.7:1.1のモル比となるように用意された。その後、遊星型ボールミル(フリッチュ製、P-5型)を用い、25時間、600rpmでミリング処理することで、第2電解質材料としてLi2.71.1Cl6の粉末を得た。
 [正極材料の作製]
 第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料としてのLi2.71.1Cl6と、導電助剤VGCFとを、被覆された正極活物質:第2電解質材料:VGCF=73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例2の正極材料が作製された。
 <実施例3>
 [第1固体電解質材料によって表面が被覆された正極活物質の作製]
 実施例1と同様にして、第1固体電解質材料が作製された。また、実施例1と同様にして、第1固体電解質材料によって表面が被覆された正極活物質が作製された。
 [第2電解質材料の作製]
 アルゴン雰囲気中で、原料粉LiBr、YBr3、LiCl、およびYCl3を、LiBr:YBr3:LiCl:YCl3=1:1:5:1のモル比となるように、秤量した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、25時間、600rpmでミリング処理することで、第2電解質材料としてLi3YBr2Cl4の粉末を得た。
 [正極材料の作製]
 第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料としてのLi3YBr2Cl4と、導電助剤VGCFとを、被覆された正極活物質:第2電解質材料:VGCF=73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例3の正極材料が作製された。
 <実施例4>
 [第1固体電解質材料によって表面が被覆された正極活物質の作製]
 実施例1と同様にして、第1固体電解質材料が作製された。また、実施例1と同様にして、第1固体電解質材料によって表面が被覆された正極活物質が作製された。
 [正極材料の作製]
 第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料としてのLi6PS5Clと、導電助剤VGCFとを、被覆された正極活物質:Li6PS5Cl:VGCF=73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例4の正極材料が作製された。
 <参考例1>
 [正極材料の作製]
 正極活物質であるLiNi0.5Mn1.54と、実施例1の第2電解質材料と、導電助剤VGCFとを、LiNi0.5Mn1.54:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例1の正極材料が作製された。
 <参考例2>
 [正極材料の作製]
 正極活物質であるLiNi0.5Mn1.54と、実施例2の第2電解質材料Li2.71.1Cl6と、導電助剤VGCFとを、LiNi0.5Mn1.54:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例2の正極材料が作製された。
 <参考例3>
 [正極材料の作製]
 正極活物質であるLiNi0.5Mn1.54と、実施例3の第2電解質材料Li3YBr2Cl4と、導電助剤VGCFとを、LiNi0.5Mn1.54:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例3の正極材料が作製された。
 <参考例4>
 [正極材料の作製]
 正極活物質であるLiNi0.5Mn1.54と、Li2.7Ti0.3Al0.76と、導電助剤VGCFとを、LiNi0.5Mn1.54:Li2.7Ti0.3Al0.76:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例4の正極材料が作製された。
 <参考例5>
 [正極材料の作製]
 正極活物質であるLiNi0.5Mn1.54と、Li6PS5Clと、導電助剤VGCFとを、LiNi0.5Mn1.54:Li6PS5Cl:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例5の正極材料が作製された。
 [電池の作製]
 上述の実施例1から4および参考例1から5の正極材料をそれぞれ用いた電池が、下記の工程により作製された。
 (実施例1)
 まず、絶縁性外筒の中に、Li6PS5Clを80mg投入し、これを2MPaの圧力で加圧成型した。次に、実施例1の正極材料に使用した第2電解質材料20mgを投入し、2MPaの圧力で加圧成型した。さらに、そこに正極材料を9.8mg投入し、これを720MPaの圧力で加圧成型した。これにより、正極および固体電解質層からなる積層体を得た。
 次に、固体電解質層の正極と接する側とは反対側に、金属Liが積層された。金属Liは厚さ200μmのものを用いた。これを2MPaの圧力で加圧成型することで、正極、固体電解質層、負極からなる積層体が作製された。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードが付設された。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断し、かつ密閉することで、実施例1の電池を作製した。
 (実施例2から4および参考例1から5)
 絶縁性外筒の中に、Li6PS5Clを80mg投入し、これを2MPaの圧力で加圧成型した。次に、実施例2から4または参考例1から5のそれぞれの正極材料に使用した第2電解質材料20mgを投入し、2MPaの圧力で加圧成型した。さらに、そこに実施例2から4では正極材料を9.8mg、参考例1から5では正極材料を9.6mg投入し、これを720MPaの圧力で加圧成型した。これにより、正極および固体電解質層からなる積層体を得た。上記以外は、実施例1と同様にして、実施例2から4および参考例1から5の電池をそれぞれ作製した。
 以上により、上述の実施例1から4および参考例1から5の電池がそれぞれ作製された。
 [充放電試験]
 上述の実施例1から4、および参考例1から5の電池をそれぞれ用いて、以下の条件で、充放電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値42μAで定電流充電した。充電終止電圧は5.0V(vs.Li/Li+)とした。次に、放電終止電圧は3.5V(vs.Li/Li+)とし、定電流放電した。
 実施例1から4および参考例1から5の電池の充放電試験の結果は表1に示される。
Figure JPOXMLDOC01-appb-T000001
 表1における実施例1のコート/未コート容量比は、参考例1の放電容量に対する実施例1の放電容量の比である。実施例2のコート/未コート容量比は、参考例2の放電容量に対する実施例2の放電容量の比である。実施例3のコート/未コート容量比は、参考例3の放電容量に対する実施例3の放電容量の比である。実施例4のコート/未コート容量比は、参考例5の放電容量に対する実施例4の放電容量の比である。
 表1に示す通り、正極活物質の表面が第1固体電解質材料に被覆されることにより、充放電容量が向上する。
 本開示によれば、電池の充放電容量が向上する。
 本開示の電池は、例えば、全固体リチウムイオン二次電池などとして、利用されうる。
 

Claims (20)

  1.  正極活物質と、
     前記正極活物質の表面の少なくとも一部を被覆する第1固体電解質材料と、
     第2電解質材料と、
    を含み、
     前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、
     前記第1固体電解質材料は、Li、Ti、M1、およびFを含み、
     前記M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である、
     正極材料。
  2.  前記正極活物質は、下記の組成式(1)で表される材料を含む、
    請求項1に記載の正極材料。
     LiNixMn2-x4・・・式(1)
     ここで、xは0<x<2を満たす。
  3.  前記組成式(1)は、0<x<1を満たす、
    請求項2に記載の正極材料。
  4.  前記組成式(1)は、x=0.5を満たす、
    請求項3に記載の正極材料。
  5.  前記第1固体電解質材料は、Li、Ti、M1、およびFからなる、
    請求項1から4のいずれか一項に記載の正極材料。
  6.  前記第1固体電解質材料は、下記の組成式(2B)で表される材料を含む、
    請求項1から5のいずれか一項に記載の正極材料。
     Li6-(4-a)b(Ti1-aM1ab6・・・式(2B)
     ここで、aは0<a<1を満たし、bは0<b≦1.5を満たす。
  7.  前記M1が、Alである、
    請求項1から6のいずれか一項に記載の正極材料。
  8.  前記第2電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、ClおよびBrからなる群より選択される少なくとも1種と、を含む、
    請求項1から7のいずれか一項に記載の正極材料。
  9.  前記第2電解質材料は、下記の組成式(3)により表される材料を含む、
    請求項8に記載の正極材料。
     Liα3M2β3γ3δ3・・・式(3)
     ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、
     M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
     Xは、Cl、およびBrからなる群より選択される少なくとも1種の元素である。
  10.  前記M2は、YおよびTaからなる群より選択される少なくとも1種を含む、
    請求項9に記載の正極材料。
  11.  前記組成式(3)は、
     1≦α3≦4、
     0<β3≦2、
     3≦γ3<7、
     0≦δ3≦2
     を満たす、
    請求項9または10に記載の正極材料。
  12.  前記第2電解質材料は、硫化物固体電解質を含む、
    請求項1から11のいずれか一項に記載の正極材料。
  13.  前記硫化物固体電解質は、Li6PS5Clである、
    請求項12に記載の正極材料。
  14.  前記正極活物質と前記第2電解質材料との間に、前記第1固体電解質材料が設けられている、
    請求項1から13のいずれか一項に記載の正極材料。
  15.  正極と、
     負極と、
     前記正極と前記負極との間に位置する電解質層と、
    を備え、
     前記正極は、請求項1から14のいずれか一項に記載の正極材料を含む、
    電池。
  16.  前記電解質層は、第1電解質層および第2電解質層を含み、
     前記第1電解質層は、前記正極に接し、前記第2電解質層は、前記負極に接する、
    請求項15に記載の電池。
  17.  前記第1電解質層は、前記第1固体電解質材料と同じ組成を有する材料を含む、
    請求項16に記載の電池。
  18.  前記第1電解質層は、前記第2電解質材料と同じ組成を有する材料を含む、
    請求項16に記載の電池。
  19.  前記第2電解質層は、前記第1固体電解質材料と異なる組成を有する材料を含む、
    請求項16に記載の電池。
  20.  前記電解質層は、ハロゲン化物固体電解質を含む、
    請求項15に記載の電池。
PCT/JP2022/001202 2021-04-20 2022-01-14 正極材料および電池 WO2022224505A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023516041A JPWO2022224505A1 (ja) 2021-04-20 2022-01-14
CN202280029170.5A CN117203794A (zh) 2021-04-20 2022-01-14 正极材料及电池
US18/485,999 US20240047680A1 (en) 2021-04-20 2023-10-12 Positive electrode material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071447 2021-04-20
JP2021-071447 2021-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/485,999 Continuation US20240047680A1 (en) 2021-04-20 2023-10-12 Positive electrode material and battery

Publications (1)

Publication Number Publication Date
WO2022224505A1 true WO2022224505A1 (ja) 2022-10-27

Family

ID=83722297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001202 WO2022224505A1 (ja) 2021-04-20 2022-01-14 正極材料および電池

Country Status (4)

Country Link
US (1) US20240047680A1 (ja)
JP (1) JPWO2022224505A1 (ja)
CN (1) CN117203794A (ja)
WO (1) WO2022224505A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139897A1 (ja) * 2022-01-21 2023-07-27 トヨタ自動車株式会社 電池
EP4411864A1 (en) * 2023-02-03 2024-08-07 Saint-Gobain Ceramics & Plastics Inc. Low pressure all-solid-state battery
WO2024176982A1 (ja) * 2023-02-24 2024-08-29 パナソニックIpマネジメント株式会社 正極及びそれを用いた電池
WO2024185316A1 (ja) * 2023-03-07 2024-09-12 パナソニックホールディングス株式会社 正極材料、正極および電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113892206A (zh) * 2019-07-04 2022-01-04 松下知识产权经营株式会社 电池
WO2021075191A1 (ja) * 2019-10-17 2021-04-22 パナソニックIpマネジメント株式会社 電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155059A1 (ja) * 2017-02-22 2018-08-30 Necエナジーデバイス株式会社 二次電池および二次電池の使用方法
WO2019135323A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 電池
WO2020100465A1 (ja) * 2018-11-16 2020-05-22 パナソニックIpマネジメント株式会社 固体電解質およびそれを用いた電池
JP2021509522A (ja) * 2017-12-29 2021-03-25 セイケム インコーポレイテッド オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成
WO2021187391A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 正極材料、および、電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155059A1 (ja) * 2017-02-22 2018-08-30 Necエナジーデバイス株式会社 二次電池および二次電池の使用方法
JP2021509522A (ja) * 2017-12-29 2021-03-25 セイケム インコーポレイテッド オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成
WO2019135323A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 電池
WO2020100465A1 (ja) * 2018-11-16 2020-05-22 パナソニックIpマネジメント株式会社 固体電解質およびそれを用いた電池
WO2021187391A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 正極材料、および、電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAO ESAKA, RYOICHI OKUYAMA, HIROYASU IWAHARA.: "IONIC CONDUCTION IN SINTERED FLUOROCOMPLEXES LIMMF6, M=AL, TI.", SOLID STATE IONICS, vol. 34., no. 3, 1 May 1989 (1989-05-01), NL , pages 201 - 205., XP000113275, ISSN: 0167-2738, DOI: 10.1016/0167-2738(89)90040-4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139897A1 (ja) * 2022-01-21 2023-07-27 トヨタ自動車株式会社 電池
EP4411864A1 (en) * 2023-02-03 2024-08-07 Saint-Gobain Ceramics & Plastics Inc. Low pressure all-solid-state battery
WO2024160428A1 (en) * 2023-02-03 2024-08-08 Saint-Gobain Ceramics & Plastics Inc. Low pressure all-solid-state batteries
WO2024176982A1 (ja) * 2023-02-24 2024-08-29 パナソニックIpマネジメント株式会社 正極及びそれを用いた電池
WO2024185316A1 (ja) * 2023-03-07 2024-09-12 パナソニックホールディングス株式会社 正極材料、正極および電池

Also Published As

Publication number Publication date
JPWO2022224505A1 (ja) 2022-10-27
CN117203794A (zh) 2023-12-08
US20240047680A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP7182196B2 (ja) 電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7316564B2 (ja) 電池
JP7349645B2 (ja) 電極材料、および、電池
JP7145439B2 (ja) 電池
JP7281771B2 (ja) 正極材料、および、電池
JP7281672B2 (ja) 電池
JP7249562B2 (ja) 電池
WO2022224505A1 (ja) 正極材料および電池
US20220416296A1 (en) Positive electrode material, and battery
JP7217432B2 (ja) 正極材料およびそれを用いた電池
WO2019146296A1 (ja) 正極材料およびそれを用いた電池
JP7486092B2 (ja) 正極材料、および、電池
WO2021157361A1 (ja) 正極材料および電池
WO2023286614A1 (ja) 正極材料および電池
WO2023037776A1 (ja) 被覆活物質、被覆活物質の製造方法、正極材料、および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
US20240136521A1 (en) Battery
US20240097133A1 (en) Battery
US20240097123A1 (en) Electrode material and battery
WO2022224506A1 (ja) 電池
WO2022244416A1 (ja) 複合正極活物質、正極材料、および電池
JP7507385B2 (ja) 正極材料、および、電池
WO2022224611A1 (ja) 正極材料および電池
WO2023106127A1 (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516041

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280029170.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791292

Country of ref document: EP

Kind code of ref document: A1