WO2022224505A1 - 正極材料および電池 - Google Patents
正極材料および電池 Download PDFInfo
- Publication number
- WO2022224505A1 WO2022224505A1 PCT/JP2022/001202 JP2022001202W WO2022224505A1 WO 2022224505 A1 WO2022224505 A1 WO 2022224505A1 JP 2022001202 W JP2022001202 W JP 2022001202W WO 2022224505 A1 WO2022224505 A1 WO 2022224505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- solid electrolyte
- electrolyte
- battery
- electrolyte material
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 241
- 239000000463 material Substances 0.000 claims abstract description 204
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 186
- 239000002001 electrolyte material Substances 0.000 claims abstract description 113
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 41
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 19
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- 239000003792 electrolyte Substances 0.000 claims description 84
- 239000000203 mixture Substances 0.000 claims description 42
- 150000004820 halides Chemical class 0.000 claims description 24
- 229910052794 bromium Inorganic materials 0.000 claims description 17
- 229910052801 chlorine Inorganic materials 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002203 sulfidic glass Substances 0.000 claims description 15
- 229910052752 metalloid Inorganic materials 0.000 claims description 10
- 239000010406 cathode material Substances 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910010848 Li6PS5Cl Inorganic materials 0.000 claims description 3
- 229910013716 LiNi Inorganic materials 0.000 claims description 3
- 229910018584 Mn 2-x O 4 Inorganic materials 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 description 33
- 239000010936 titanium Substances 0.000 description 25
- 238000007600 charging Methods 0.000 description 22
- 229910001416 lithium ion Inorganic materials 0.000 description 21
- 239000000843 powder Substances 0.000 description 21
- 239000002134 carbon nanofiber Substances 0.000 description 18
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 17
- -1 fluoroethyl methyl carbonate Chemical compound 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 229910003002 lithium salt Inorganic materials 0.000 description 14
- 159000000002 lithium salts Chemical class 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 239000007773 negative electrode material Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000011572 manganese Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000004570 mortar (masonry) Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000006864 oxidative decomposition reaction Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 229910052740 iodine Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000005303 weighing Methods 0.000 description 6
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910016569 AlF 3 Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000006182 cathode active material Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000003759 ester based solvent Substances 0.000 description 4
- 239000004210 ether based solvent Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910018071 Li 2 O 2 Inorganic materials 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- 229910013184 LiBO Inorganic materials 0.000 description 2
- 229910013375 LiC Inorganic materials 0.000 description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 2
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 2
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 2
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- MHAIQPNJLRLFLO-UHFFFAOYSA-N methyl 2-fluoropropanoate Chemical compound COC(=O)C(C)F MHAIQPNJLRLFLO-UHFFFAOYSA-N 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910003528 Li(Ni,Co,Al)O2 Inorganic materials 0.000 description 1
- 229910003548 Li(Ni,Co,Mn)O2 Inorganic materials 0.000 description 1
- 229910008373 Li-Si-O Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910012631 LiTi2 Inorganic materials 0.000 description 1
- 229910008291 Li—B—O Inorganic materials 0.000 description 1
- 229910006711 Li—P—O Inorganic materials 0.000 description 1
- 229910006757 Li—Si—O Inorganic materials 0.000 description 1
- 229910007052 Li—Ti—O Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910017299 Mo—O Inorganic materials 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910009523 YCl3 Inorganic materials 0.000 description 1
- 229910021601 Yttrium(III) bromide Inorganic materials 0.000 description 1
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229940070721 polyacrylate Drugs 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to cathode materials and batteries.
- Patent Document 1 discloses an all-solid battery using a positive electrode material in which at least part of the surface of a positive electrode active material containing nickel, cobalt, and manganese is coated with lithium niobate.
- the present disclosure provides a positive electrode material that improves the charge/discharge capacity of batteries.
- the positive electrode material of the present disclosure includes a positive electrode active material, a first solid electrolyte material covering at least part of the surface of the positive electrode active material, and a second electrolyte material, and the positive electrode active material is Li, Ni , Mn, and O, and the first solid electrolyte material comprises Li, Ti, M1, and F, and M1 is selected from the group consisting of Ca, Mg, Al, Y, and Zr. is at least one
- the present disclosure provides a positive electrode material that improves the charge/discharge capacity of batteries.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 1.
- FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of battery 2000 according to Embodiment 2.
- FIG. 3 is a cross-sectional view showing a schematic configuration of battery 3000 according to the third embodiment.
- Patent Document 1 discloses an all-solid battery using a positive electrode material including a positive electrode active material containing nickel, cobalt, and manganese, a coating material covering at least part of the surface of the positive electrode active material, and a halide solid electrolyte material. is disclosed.
- a coating material that coats the surface of the positive electrode active material is a solid electrolyte material, and the solid electrolyte material is lithium niobate.
- Halide solid electrolytes are materials containing halogen elements such as fluorine (ie, F), chlorine (ie, Cl), bromine (ie, Br), and iodine (ie, I) as anions.
- the halide solid electrolyte In a battery using a halide solid electrolyte containing at least one element selected from the group consisting of chlorine, bromine, and iodine as a positive electrode material, the halide solid electrolyte is oxidatively decomposed during charging, and the oxidative decomposition product becomes resistant.
- a problem was discovered in which the internal resistance of the battery increases during charging due to its function as a layer. It was surmised that the cause was the oxidation reaction of one element selected from the group consisting of chlorine, bromine, and iodine contained in the halide solid electrolyte.
- the oxidation reaction means at least one selected from the group consisting of chlorine, bromine, and iodine in contact with the positive electrode active material, in addition to the normal charging reaction in which lithium and electrons are extracted from the positive electrode active material in the positive electrode material.
- an oxidative decomposition layer with poor lithium ion conductivity is formed between the positive electrode active material and the halide solid electrolyte, and the oxidative decomposition layer functions as a large interfacial resistance in the electrode reaction of the positive electrode. it is conceivable that.
- Chlorine, bromine, and iodine are considered to be easily oxidized because they have a relatively large ionic radius and a small interaction force with the cation component constituting the halide solid electrolyte.
- a positive electrode active material having a potential versus Li of more than 3.9 V is used, this problem is more likely to occur than when a positive electrode active material having a potential versus Li of 3.9 V or less is used. It is known that even if the solid electrolyte is, for example, a sulfide solid electrolyte, it decomposes.
- Patent Document 1 discloses a battery including a positive electrode layer containing a positive electrode active material coated with lithium niobate and a halide solid electrolyte.
- a battery including a positive electrode layer containing a positive electrode active material coated with lithium niobate and a halide solid electrolyte.
- the present inventors diligently studied the configuration of a positive electrode material containing a coated positive electrode active material that can further suppress the decrease in the charge/discharge capacity of the battery.
- the positive electrode active material contains an oxide consisting of Li, Ni, Mn, and O
- the surface of the positive electrode active material contains Li, Ti, M1, and F, where M1 is Ca
- a solid electrolyte material that is at least one selected from the group consisting of Mg, Al, Y, and Zr, it is possible to further suppress the decrease in charge/discharge capacity of the battery.
- a positive electrode material of the present disclosure includes a positive electrode active material, a first solid electrolyte material, and a second electrolyte material, wherein the positive electrode active material includes an oxide composed of Li, Ni, Mn, and O, and the first The solid electrolyte material covers at least part of the surface of the positive electrode active material and contains Li, Ti, M1, and F, where M1 is selected from the group consisting of Ca, Mg, Al, Y, and Zr. It has a configuration that is at least one kind of With this configuration, the positive electrode material of the present disclosure is improved in oxidation resistance, and the charge/discharge capacity of the battery can be improved.
- a positive electrode material includes a positive electrode active material, a first solid electrolyte material covering at least part of a surface of the positive electrode active material, and a second electrolyte material, and the positive electrode active material contains an oxide consisting of Li, Ni, Mn, and O, the first solid electrolyte material contains Li, Ti, M1, and F, and the M1 is Ca, Mg, Al, Y, and Zr At least one selected from the group consisting of
- the positive electrode active material in which at least part of the surface is coated with the first solid electrolyte material has high oxidation resistance. Therefore, it is possible to suppress a decrease in charge/discharge capacity due to oxidative decomposition of the second electrolyte material in the positive electrode material.
- the positive electrode active material may contain a material represented by the following compositional formula (1).
- LiNi x Mn 2-x O 4 Formula (1) x satisfies 0 ⁇ x ⁇ 2.
- the positive electrode material according to the second aspect can improve the charge/discharge capacity of the battery.
- the composition formula (1) may satisfy 0 ⁇ x ⁇ 1.
- the positive electrode material according to the third aspect can improve the charge/discharge capacity of the battery.
- the positive electrode material according to the fourth aspect can improve the charge/discharge capacity of the battery.
- the first solid electrolyte material may consist of Li, Ti, M1, and F.
- the first solid electrolyte material exhibits high ionic conductivity. Therefore, in the positive electrode material, low interfacial resistance between the first solid electrolyte material and the positive electrode active material can be achieved. Therefore, the positive electrode material can improve the charge/discharge capacity of the battery.
- the first solid electrolyte material has a composition represented by the following compositional formula (2B): may Li6-(4- a )b (Ti1 - aM1a ) bF6 ... Formula (2B)
- a satisfies 0 ⁇ a ⁇ 1
- b satisfies 0 ⁇ b ⁇ 1.5.
- the first solid electrolyte material exhibits high ionic conductivity. Therefore, in the positive electrode material, low interfacial resistance between the first solid electrolyte material and the positive electrode active material can be achieved. Therefore, the positive electrode material can improve the charge/discharge capacity of the battery.
- M1 may be Al.
- Al is inexpensive and suitable as an element that improves the ionic conductivity of the electrolyte. Therefore, in the positive electrode material according to the seventh aspect, the first solid electrolyte material exhibits higher ion conductivity. Therefore, in the positive electrode material, lower interfacial resistance between the first solid electrolyte material and the positive electrode active material can be achieved. Therefore, the positive electrode material can improve the charge/discharge capacity of the battery.
- the second electrolyte material is selected from the group consisting of Li, a metal element other than Li, and a metalloid element At least one selected and at least one selected from the group consisting of Cl and Br may be included.
- the positive electrode material according to the eighth aspect can improve the charge/discharge capacity of the battery.
- the second electrolyte material may contain a material represented by the following compositional formula (3).
- Li ⁇ 3 M2 ⁇ 3 X ⁇ 3 O ⁇ 3 Formula (3) here, ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value greater than or equal to 0, M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one element selected from the group consisting of Cl and Br.
- the ionic conductivity of the second electrolyte material can be further increased.
- the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
- M2 may include at least one selected from the group consisting of Y and Ta.
- the ionic conductivity of the second electrolyte material can be further increased.
- the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
- the compositional formula (3) is 1 ⁇ 3 ⁇ 4, 0 ⁇ 3 ⁇ 2, 3 ⁇ 3 ⁇ 7, 0 ⁇ 3 ⁇ 2, may be satisfied.
- the ionic conductivity of the second electrolyte material can be further increased.
- the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
- the second electrolyte material may contain a sulfide solid electrolyte.
- the ionic conductivity of the second electrolyte material can be further increased.
- the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
- the sulfide solid electrolyte may be Li6PS5Cl .
- the ionic conductivity of the second electrolyte material can be further increased.
- the resistance resulting from the movement of Li ions in the positive electrode material can be further reduced, and an increase in the internal resistance of the battery during charging can be more effectively suppressed.
- the first solid electrolyte material is provided between the positive electrode active material and the second electrolyte material may have been
- the first solid electrolyte material having high oxidation resistance is interposed between the positive electrode active material and the second electrolyte material, so that the second electrolyte material is oxidatively decomposed. It is possible to suppress the increase in the internal resistance of the battery during charging.
- a battery according to a fifteenth aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolyte layer positioned between the positive electrode and the negative electrode, wherein the positive electrode is any one of the first to fourteenth aspects. including cathode materials according to
- the electrolyte layer includes a first electrolyte layer and a second electrolyte layer,
- the first electrolyte layer may be in contact with the positive electrode
- the second electrolyte layer may be in contact with the negative electrode.
- the first electrolyte layer may contain a material having the same composition as the first solid electrolyte material.
- the charge/discharge capacity of the battery according to the seventeenth aspect is improved.
- the first electrolyte layer may contain a material having the same composition as the second electrolyte material.
- the charge/discharge capacity is improved.
- the second electrolyte layer may contain a material having a composition different from that of the first solid electrolyte material.
- the charge/discharge capacity of the battery according to the nineteenth aspect is improved.
- the electrolyte layer may contain a halide solid electrolyte.
- the battery according to the twentieth aspect has an improved charge/discharge capacity.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 1.
- FIG. Positive electrode material 1000 includes positive electrode active material 110 , first solid electrolyte material 111 covering at least part of the surface of positive electrode active material 110 , and second electrolyte material 100 .
- the cathode active material 110 includes oxides of Li, Ni, Mn, and O.
- the first solid electrolyte material 111 contains Li, Ti, M1, and F.
- M1 is at least one selected from the group consisting of Ca, Mg, Al, Y and Zr.
- the positive electrode material 1000 has high oxidation resistance. Therefore, the positive electrode material 1000 can suppress an increase in the internal resistance of the battery during charging. Also, the first solid electrolyte material 111 has high ionic conductivity. Therefore, in the positive electrode material 1000, low interfacial resistance between the first solid electrolyte material 111 and the positive electrode active material 110 can be achieved. Therefore, the positive electrode material 1000 can improve the charge/discharge capacity of the battery.
- the first solid electrolyte material 111 may contain elements other than F as anions. Examples of elements included as such anions are Cl, Br, I, O, S, or Se. Also, the first solid electrolyte material 111 may not contain sulfur.
- the positive electrode active material 110 may contain a material represented by the following compositional formula (1). LiNi x Mn 2-x O 4 Formula (1) Here, x satisfies 0 ⁇ x ⁇ 2.
- composition formula (1) 0 ⁇ x ⁇ 1 may be satisfied.
- oxides represented by these chemical formulas are materials obtained by substituting Ni for a portion of Mn in LiMn 2 O 4 having a spinel structure, and are suitable for improving the operating voltage of batteries.
- Oxides composed of Li, Ni, Mn, and O can also have a spinel structure.
- Oxides composed of Li, Ni, Mn and O means that elements other than Li, Ni, Mn and O are not intentionally added except for unavoidable impurities.
- the material represented by the compositional formula (1) is inexpensive because it does not contain Co. According to the above configuration, it is possible to realize the low-cost positive electrode material 1000 that can improve the charging and discharging efficiency of the battery.
- the positive electrode active material 110 may consist of LiNi 0.5 Mn 1.5 O 4 only.
- the charge/discharge capacity of the battery is improved.
- the first solid electrolyte material 111 may consist essentially of Li, Ti, M1, and F. "The first solid electrolyte material 111 consists essentially of Li, Ti, M1, and F" means that Li, Ti, M1, and F have a total molar ratio (that is, molar fraction) of 90% or more. As an example, the molar ratio may be 95% or more.
- the first solid electrolyte material 111 may consist of Li, Ti, M1, and F.
- the first solid electrolyte material 111 may contain a material represented by the following compositional formula (2A). where ⁇ 2, ⁇ 2, ⁇ 2, and ⁇ 2 are values greater than zero. Li ⁇ 2 Ti ⁇ 2 M1 ⁇ 2 F ⁇ 2 Formula (2A)
- ⁇ 2 may be a larger value than ⁇ 2.
- ⁇ 2 may be a value greater than each of ⁇ 2, ⁇ 2, and ⁇ 2.
- composition formula (2A) 1.7 ⁇ 2 ⁇ 3.7, 0 ⁇ 2 ⁇ 1.5, 0 ⁇ 2 ⁇ 1.5, and 5 ⁇ 2 ⁇ 7 may be satisfied.
- the first solid electrolyte material 111 may contain a material represented by the compositional formula (2A) as a main component.
- the "main component” is the component that is contained most in terms of mass ratio.
- the molar ratio of F to the sum of Li, Ti, M1, and F may be 0.4 or more and 0.8 or less, or 0.5 or more and 0.7 or less. There may be.
- the molar ratio of F to the sum of Li, Ti, M1, and F is calculated by (substance amount of F)/(substance amount of Li, Ti, M1, and F).
- the first solid electrolyte material 111 may contain a material represented by the following compositional formula (2B).
- a satisfies 0 ⁇ a ⁇ 1, and b satisfies 0 ⁇ b ⁇ 1.5.
- a may satisfy 0.1 ⁇ a ⁇ 0.9 in formula (2B).
- b may satisfy 0.8 ⁇ b ⁇ 1.2 in formula (2B).
- the first solid electrolyte material 111 When having the specific composition represented by formula (2B), the first solid electrolyte material 111 exhibits, for example, the following ionic conductivity.
- the first solid electrolyte material 111 when M1 is Zr, the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 2.1 ⁇ S/cm.
- M1 when M1 is Mg, the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 2.3 ⁇ S/cm.
- M1 is Ca
- the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 0.02 ⁇ S/cm.
- M1 is Al
- the first solid electrolyte material 111 exhibits an ionic conductivity of approximately 5.4 ⁇ S/cm.
- the oxidation resistance of the first solid electrolyte material 111 is mainly caused by F. Considering these facts, even if M1 is replaced from a specific element to another element, the
- M1 may be Al.
- the first solid electrolyte material 111 may contain the material represented by the compositional formula (2B) as a main component.
- the "main component” is the component that is contained most in terms of mass ratio.
- the first solid electrolyte material 111 exhibits higher ionic conductivity. Therefore, in the positive electrode material 1000, low interfacial resistance between the first solid electrolyte material 111 and the positive electrode active material 110 can be achieved.
- the second electrolyte material 100 may contain Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of Cl and Br. .
- Simetallic elements are B, Si, Ge, As, Sb, and Te.
- Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, as well as B, Si, Ge, As, Sb, Te, C, N, P, O, S , and all elements contained in groups 13 to 16 except for Se. In other words, it is a group of elements that can become cations when a halogen compound and an inorganic compound are formed.
- the second electrolyte material 100 may be represented by the following compositional formula (3).
- ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value of 0 or more, and M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements. and X is at least one element selected from the group consisting of Cl and Br.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- M2 may contain at least one selected from the group consisting of Y and Ta. That is, the second electrolyte material 100 may contain Y as a metal element.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- composition formula (3) 1 ⁇ 3 ⁇ 4, 0 ⁇ 3 ⁇ 2, 3 ⁇ 3 ⁇ 7, and 0 ⁇ 3 ⁇ 2 may be satisfied.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 containing Y may be, for example, a compound represented by the composition formula LiaMebYcX6 .
- Me is at least one element selected from the group consisting of metal elements excluding Li and Y and metalloid elements.
- m' is the valence of Me.
- At least one element selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used as Me.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A1). Li 6-3d Y d X 6 Formula (A1) Here, in the composition formula (A1), X is a halogen element and contains Cl. Also, 0 ⁇ d ⁇ 2 is satisfied.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A2). Li 3 YX 6 Formula (A2) Here, in the composition formula (A2), X is a halogen element and contains Cl.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A3). Li 3-3 ⁇ Y 1+ ⁇ Cl 6 Formula (A3) Here, 0 ⁇ 0.15 is satisfied in the composition formula (A3).
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A4). Li3-3 ⁇ +a4Y1+ ⁇ - a4Mea4Cl6 - x4Brx4 Formula (A4)
- Me is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. Also, ⁇ 1 ⁇ 2, 0 ⁇ a4 ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ +a4), 0 ⁇ (1+ ⁇ a4), and 0 ⁇ x4 ⁇ 6 are satisfied.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A5).
- Me is at least one element selected from the group consisting of Al, Sc, Ga, and Bi.
- ⁇ 1 ⁇ 1, 0 ⁇ a5 ⁇ 2, 0 ⁇ (1+ ⁇ a5), and 0 ⁇ x5 ⁇ 6 are satisfied.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A6).
- Me is at least one element selected from the group consisting of Zr, Hf, and Ti.
- ⁇ 1 ⁇ 1, 0 ⁇ a6 ⁇ 1.5, 0 ⁇ (3 ⁇ 3 ⁇ a6), 0 ⁇ (1+ ⁇ a6), and 0 ⁇ x6 ⁇ 6 are satisfied.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- the second electrolyte material 100 may be a material represented by the following compositional formula (A7).
- Me is at least one element selected from the group consisting of Ta and Nb.
- ⁇ 1 ⁇ 1, 0 ⁇ a7 ⁇ 1.2, 0 ⁇ (3 ⁇ 3 ⁇ 2a7), 0 ⁇ (1+ ⁇ a7), and 0 ⁇ x7 ⁇ 6 are satisfied.
- the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
- Li3YX6 Li2MgX4 , Li2FeX4 , Li ( Al, Ga, In )X4, Li3 (Al, Ga, In ) X6 , etc.
- X includes Cl.
- this notation indicates at least one element selected from the parenthesized element group. That is, "(Al, Ga, In)” is synonymous with "at least one selected from the group consisting of Al, Ga and In". The same is true for other elements.
- a sulfide solid electrolyte may be included as the second electrolyte material 100 .
- sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, etc. may be used.
- LiX , Li2O , MOq , LipMOq , etc. may be added to these.
- X is at least one element selected from the group consisting of F, Cl, Br and I.
- M is at least one element selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
- p and q are each independently a natural number.
- the sulfide solid electrolyte may contain lithium sulfide and phosphorus sulfide.
- the sulfide solid electrolyte may be Li6PS5Cl .
- the second electrolyte material 100 may be a solid electrolyte material.
- the second electrolyte material 100 may contain an electrolytic solution.
- the electrolyte contains water or a non-aqueous solvent and a lithium salt dissolved in the solvent.
- solvents examples include water, cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, fluorine solvents, and the like.
- cyclic carbonate solvents examples include ethylene carbonate, propylene carbonate, or butylene carbonate.
- chain carbonate solvents examples include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
- cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
- chain ether solvents examples include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
- cyclic ester solvents examples include ⁇ -butyrolactone.
- chain ester solvents examples include methyl acetate.
- fluorosolvents include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
- one solvent selected from these may be used alone.
- a combination of two or more solvents selected from these may be used as the solvent.
- the electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
- fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
- Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), LiC ( SO2CF3 ) 3 , etc. may be used.
- the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
- the lithium salt concentration is, for example, in the range from 0.1 to 15 mol/liter.
- the positive electrode material 1000 may further contain a positive electrode active material other than oxides composed of Li, N, Mn, and O.
- a positive electrode active material includes a material that has the property of absorbing and releasing metal ions (eg, lithium ions).
- positive electrode active materials other than the positive electrode active material 110 include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxysulfides. nitrides, etc. may be used.
- Examples of lithium-containing transition metal oxides include Li(Ni, Co, Al) O2 , Li ( Ni, Co, Mn) O2 , LiCoO2, and the like. In particular, when a lithium-containing transition metal oxide is used, the manufacturing cost of the positive electrode material 1000 can be reduced, and the average discharge voltage can be increased.
- a first solid electrolyte material 111 may be provided between the positive electrode active material 110 and the second electrolyte material 100 .
- the first solid electrolyte material 111 having high oxidation resistance is interposed between the positive electrode active material 110 and the second electrolyte material 100, thereby suppressing oxidative decomposition of the second electrolyte material 100. Therefore, it is possible to suppress a decrease in capacity during charging of a battery using the positive electrode material 1000 .
- the positive electrode material 1000 may further contain a third electrolyte material, which is a material having a composition different from that of the second electrolyte material 100 .
- the thickness of the first solid electrolyte material 111 covering at least part of the surface of the positive electrode active material 110 may be 1 nm or more and 500 nm or less.
- the thickness of the first solid electrolyte material 111 is 1 nm or more, direct contact between the positive electrode active material 110 and the second electrolyte material 100 can be suppressed, and oxidative decomposition of the second electrolyte material 100 can be suppressed. Therefore, the charge/discharge efficiency of the battery using the positive electrode material 1000 can be improved.
- the thickness of the first solid electrolyte material 111 is 500 nm or less, the thickness of the first solid electrolyte material 111 does not become too thick. Therefore, the internal resistance of the battery using the positive electrode material 1000 can be sufficiently reduced, and the energy density of the battery can be increased.
- the method for measuring the thickness of the first solid electrolyte material 111 is not particularly limited, it can be obtained, for example, by directly observing the thickness of the first solid electrolyte material 111 using a transmission electron microscope.
- the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 may be 0.01% or more and 30% or less.
- the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 is 0.01% or more, direct contact between the positive electrode active material 110 and the second electrolyte material 100 is suppressed, and the second electrolyte material 100 is suppressed. Oxidative decomposition can be suppressed. Therefore, the charge/discharge efficiency of the battery using the positive electrode material 1000 can be improved.
- the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 is 30% or less, the thickness of the first solid electrolyte material 111 does not become too thick. Therefore, the internal resistance of the battery using the positive electrode material 1000 can be sufficiently reduced, and the energy density of the battery can be increased.
- the first solid electrolyte material 111 may evenly cover the surface of the positive electrode active material 110 .
- direct contact between the positive electrode active material 110 and the second electrolyte material 100 can be suppressed, and side reactions of the second electrolyte material 100 can be suppressed. Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 can be further improved, and the decrease in capacity can be suppressed.
- the first solid electrolyte material 111 may partially cover the surface of the positive electrode active material 110 . Electron conductivity between the plurality of positive electrode active materials 110 is improved by direct contact between the plurality of positive electrode active materials 110 via portions not having the first solid electrolyte material 111 . Therefore, a battery using the positive electrode material 1000 can operate at high power.
- the first solid electrolyte material 111 may cover 30% or more, 60% or more, or 90% or more of the surface of the positive electrode active material 110 .
- the first solid electrolyte material 111 may substantially cover the entire surface of the positive electrode active material 110 .
- the first solid electrolyte material 111 may be in direct contact with the surface of the positive electrode active material 110 .
- At least part of the surface of the positive electrode active material 110 may be covered with a coating material different from the first solid electrolyte material 111 .
- Coating materials include sulfide solid electrolytes, oxide solid electrolytes, fluoride solid electrolytes, and the like.
- sulfide solid electrolyte used for the coating material, the same materials as those exemplified for the second electrolyte material 100 may be used.
- the oxide solid electrolyte used as the coating material includes Li--Nb--O compounds such as LiNbO 3 , Li--B--O compounds such as LiBO 2 and Li 3 BO 3 , Li--Al--O compounds such as LiAlO 2 , Li—Si—O compounds such as Li 4 SiO 4 , Li—Ti—O compounds such as Li 2 SO 4 and Li 4 Ti 5 O 12 , Li—Zr—O compounds such as Li 2 ZrO 3 , Li 2 MoO 3 Li-Mo-O compounds such as LiV 2 O 5 Li-VO compounds such as Li-WO compounds such as Li 2 WO 4 Li-P-O compounds such as Li 3 PO 4 .
- the fluoride solid electrolyte used for the coating material contains Li, Ti, M1, and F, and M1 is at least one element selected from the group consisting of Ca, Mg, Al, Y, and Zr. A solid electrolyte is mentioned.
- the oxidation resistance of the positive electrode material 1000 can be further improved. As a result, it is possible to suppress the decrease in the capacity of the battery during charging.
- the positive electrode active material 110 and the first solid electrolyte material 111 may be separated by a coating material and may not be in direct contact.
- the oxidation resistance of the positive electrode material 1000 can be further improved. As a result, it is possible to suppress the decrease in the capacity of the battery during charging.
- the shape of the second electrolyte material 100 is not particularly limited.
- its shape may be, for example, acicular, spherical, ellipsoidal, or the like.
- the shape of the second electrolyte material 100 may be particulate.
- the median diameter of the second electrolyte material 100 may be 100 ⁇ m or less.
- the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
- the median diameter of the second electrolyte material 100 may be 10 ⁇ m or less. According to the above configuration, in the positive electrode material 1000, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersed state.
- the median diameter of the second electrolyte material 100 may be smaller than the median diameter of the positive electrode active material 110 . According to the above configuration, in the positive electrode, the second electrolyte material 100 and the positive electrode active material 110 can form a better dispersed state.
- the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
- the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
- the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is improved. Therefore, a battery using the positive electrode material 1000 can operate at high output.
- the median diameter of the positive electrode active material 110 may be larger than the median diameter of the second electrolyte material 100 . Thereby, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersed state.
- volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
- the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
- the second electrolyte material 100 and the first solid electrolyte material 111 may be in contact with each other as shown in FIG. At this time, the first solid electrolyte material 111 and the positive electrode active material 110 are in contact with each other.
- the positive electrode material 1000 may include multiple second electrolyte materials 100 and multiple positive electrode active materials 110 .
- the content of the second electrolyte material 100 and the content of the positive electrode active material 110 in the positive electrode material 1000 may be the same or different.
- First solid electrolyte material 111 in Embodiment 1 can be manufactured, for example, by the following method.
- a raw material powder of a binary halide is prepared so as to achieve a compounding ratio of a desired composition.
- the compounding ratio may be adjusted in advance so as to offset the changes.
- the raw material powders After mixing the raw material powders well, the raw material powders are mixed and pulverized using the mechanochemical milling method and allowed to react. After that, it may be fired in vacuum or in an inert atmosphere.
- the mixture may be fired in a vacuum or in an inert atmosphere.
- the firing conditions it is preferable to perform firing for one hour or more within the range of 100° C. to 300° C., for example.
- the raw material powder is sealed in a sealed container such as a quartz tube and then fired.
- the first solid electrolyte material 111 having the composition as described above is obtained.
- the positive electrode material 1000 in Embodiment 1 can be manufactured, for example, by the following method.
- a positive electrode active material 110 and a first solid electrolyte material 111 having a predetermined mass ratio are prepared.
- LiNi 0.5 Mn 1.5 O 4 is prepared as the positive electrode active material 110 and Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111 .
- These two materials are put into the same reaction vessel, and a rotating blade is used to apply a shearing force to the two materials, or a jet stream causes the two materials to collide.
- At least part of the surface of the substance LiNi 0.5 Mn 1.5 O 4 can be covered with Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111 .
- the cathode active material 110 in which at least part of the surface of the cathode active material LiNi 0.5 Mn 1.5 O 4 is coated with Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111. can.
- the second electrolyte material 100 can be manufactured by the following method.
- the second electrolyte material 100 made of Li, Y, Cl, and Br
- LiCl raw powder, LiBr raw powder, YBr3 raw powder, and YCl3 raw powder are mixed.
- the raw powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional variations in the synthesis process.
- the second electrolyte material 100 is obtained.
- ⁇ Method for producing positive electrode material 1000> By mixing the positive electrode active material 110 whose surface is coated with the first solid electrolyte material 111 and the second electrolyte material 100, the positive electrode material 1000 in Embodiment 1 can be manufactured.
- Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
- a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
- the positive electrode 201 includes the positive electrode material 1000 in the first embodiment.
- Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
- the volume ratio "v1:100-v1" of the positive electrode material 1000 and the second electrolyte material 100 contained in the positive electrode 201 may satisfy 30 ⁇ v1 ⁇ 98.
- v1 represents the volume ratio of the positive electrode material 1000 when the total volume of the positive electrode material 1000 and the second electrolyte material 100 contained in the positive electrode 201 is 100.
- 30 ⁇ v1 is satisfied, a sufficient battery energy density can be ensured.
- v1 ⁇ 98 battery 2000 can operate at high output.
- the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of positive electrode 201 is 500 ⁇ m or less, battery 2000 can operate at high output.
- the electrolyte layer 202 contains an electrolyte material.
- the electrolyte material may be, for example, a solid electrolyte material. That is, electrolyte layer 202 may be a solid electrolyte layer.
- electrolyte layer 202 As the solid electrolyte material contained in electrolyte layer 202, the same material as first solid electrolyte material 111 or second electrolyte material 100 in Embodiment 1 may be used. That is, electrolyte layer 202 may contain the same material as first solid electrolyte material 111 or second electrolyte material 100 in the first embodiment.
- the output density and charge/discharge characteristics of the battery 2000 can be further improved.
- electrolyte layer 202 As the solid electrolyte material contained in the electrolyte layer 202, the same material as the first solid electrolyte material 111 in the first embodiment may be used. That is, electrolyte layer 202 may contain the same material as first solid electrolyte material 111 in the first embodiment.
- an increase in the internal resistance of the battery 2000 due to oxidation of the electrolyte layer 202 can be suppressed, and the output density and charge/discharge characteristics of the battery 2000 can be further improved.
- a halide solid electrolyte As the solid electrolyte material contained in the electrolyte layer 202, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
- oxide solid electrolyte of the solid electrolyte material contained in the electrolyte layer 202 for example, a NASICON solid electrolyte typified by LiTi2 (PO4) 3 and its elemental substitutes, and a ( LaLi ) TiO3 based perovskite solid electrolyte.
- Electrolytes Lisicon-type solid electrolytes represented by Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and element-substituted products thereof, Garnet-type solid electrolytes represented by Li 7 La 3 Zr 2 O 12 and element-substituted products thereof Glass or glasses based on electrolytes, Li 3 PO 4 and its N-substituted products, and Li—B—O compounds such as LiBO 2 and Li 3 BO 3 to which Li 2 SO 4 , Li 2 CO 3 etc. are added ceramics, etc. may be used.
- a compound of a polymer compound and a lithium salt can be used.
- the polymer compound may have an ethylene oxide structure.
- a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
- Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), and LiC ( SO2CF3 ) 3 , etc. may be used.
- One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
- LiBH 4 --LiI LiBH 4 --P 2 S 5 , etc.
- LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 , etc.
- the solid electrolyte material contained in the electrolyte layer 202 may be a halide solid electrolyte. That is, the electrolyte layer 202 may contain a halide solid electrolyte.
- the halide solid electrolyte contained in the electrolyte layer 202 is selected from the group consisting of Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and F, Cl, Br, and I. and at least one of
- the halide solid electrolyte contained in the electrolyte layer 202 is at least one selected from the group consisting of Li, metal elements other than Li and metalloid elements, and at least one selected from the group consisting of Cl and Br. and may include
- the halide solid electrolyte contained in the electrolyte layer 202 the halide solid electrolyte exemplified as the second electrolyte material may be used.
- a halide solid electrolyte represented by the above compositional formula (3) may be used.
- ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value of 0 or more, and M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements. and X is at least one element selected from the group consisting of Cl and Br.
- ⁇ 3 may satisfy 1 ⁇ 3 ⁇ 4, ⁇ 3 may satisfy 0 ⁇ 3 ⁇ 2, ⁇ 3 may satisfy 3 ⁇ 3 ⁇ 7, and ⁇ 3 may satisfy 0 ⁇ 3 ⁇ 2. good.
- the electrolyte layer 202 may contain a solid electrolyte material as a main component. That is, the electrolyte layer 202 may contain a solid electrolyte material, for example, at a mass ratio of 50% or more (that is, 50% by mass or more) with respect to the entire electrolyte layer 202 .
- the charge/discharge characteristics of the battery can be further improved.
- the electrolyte layer 202 may contain a solid electrolyte material, for example, at a mass ratio of 70% or more (that is, 70% by mass or more) with respect to the entire electrolyte layer 202 .
- the charge/discharge characteristics of the battery 2000 can be further improved.
- the electrolyte layer 202 contains a solid electrolyte material as a main component, and may further contain unavoidable impurities, starting materials, by-products, decomposition products, etc. used when synthesizing the solid electrolyte material. good.
- the electrolyte layer 202 may contain a solid electrolyte material, for example, 100% by mass (ie, 100% by mass) of the entire electrolyte layer 202, excluding impurities that are unavoidably mixed.
- the charge/discharge characteristics of the battery 2000 can be further improved.
- the electrolyte layer 202 may be composed only of a solid electrolyte material.
- the electrolyte layer 202 may contain two or more of the materials listed as solid electrolyte materials.
- electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
- the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 300 ⁇ m or less, battery 2000 can operate at high output.
- the negative electrode 203 contains a material that has the property of absorbing and releasing metal ions (for example, lithium ions).
- the negative electrode 203 contains, for example, a negative electrode active material.
- a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, or the like can be used as the negative electrode active material.
- the metal material may be a single metal.
- the metal material may be an alloy.
- metallic materials include lithium metal or lithium alloys.
- Examples of carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, or amorphous carbon. From the point of view of capacity density, silicon, tin, silicon compounds, or tin compounds can be used.
- the negative electrode 203 may contain a solid electrolyte material.
- the solid electrolyte material the solid electrolyte material exemplified as the material forming the electrolyte layer 202 may be used. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and the battery 2000 can operate at high output.
- the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
- the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte material can form a good dispersion state in the negative electrode. Thereby, the charge/discharge characteristics of the battery 2000 are improved.
- the median diameter of the negative electrode active material is 100 ⁇ m or less, diffusion of lithium in the negative electrode active material becomes faster. Therefore, battery 2000 can operate at high power.
- the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte material contained in the negative electrode 203 . Thereby, a good dispersion state of the negative electrode active material and the solid electrolyte material can be formed.
- the volume ratio "v2:100-v2" between the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 may satisfy 30 ⁇ v2 ⁇ 95.
- v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 is taken as 100.
- 30 ⁇ v2 is satisfied, a sufficient battery energy density can be ensured.
- v2 ⁇ 95 battery 2000 can operate at high output.
- the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of negative electrode 203 is 500 ⁇ m or less, battery 2000 can operate at high output.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
- a binder is used to improve the binding properties of the material that constitutes the electrode.
- Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, and carboxymethyl cellulose, and the like.
- Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. A mixture of two or more selected from these may also be used.
- At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
- conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fibers and metal fibers, carbon fluoride, metals such as aluminum Powders, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymeric compounds such as polyaniline, polypyrrole, and polythiophene, and the like can be used. Cost reduction can be achieved when a carbon conductive aid is used as the conductive aid.
- Shapes of the battery 2000 in Embodiment 2 include, for example, coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
- a positive electrode material 1000, an electrolyte layer forming material, and a negative electrode forming material are prepared, and a laminate in which the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order is produced by a known method. may be manufactured by
- FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 3000 according to Embodiment 3.
- FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 3000 according to Embodiment 3.
- a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
- the positive electrode 201 includes the positive electrode material 1000 in the first embodiment.
- Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
- the electrolyte layer 202 includes a first electrolyte layer 301 and a second electrolyte layer 302 , the first electrolyte layer 301 contacts the positive electrode 201 and the second electrolyte layer 302 contacts the negative electrode 203 .
- the first electrolyte layer 301 may contain a material having the same composition as the first solid electrolyte material 111 .
- the same material as the first solid electrolyte material 111 having excellent oxidation resistance in the first electrolyte layer 301 in contact with the positive electrode 201 By including the same material as the first solid electrolyte material 111 having excellent oxidation resistance in the first electrolyte layer 301 in contact with the positive electrode 201, oxidative decomposition of the first electrolyte layer 301 is suppressed, and the internal resistance of the battery 3000 during charging is reduced. It can suppress the rise.
- the first electrolyte layer 301 may contain a material having the same composition as the second electrolyte material 100 .
- the second electrolyte layer 302 may contain a material having a composition different from that of the first solid electrolyte material 111 .
- the second electrolyte layer 302 may contain a material having the same composition as the second electrolyte material 100 .
- the reduction potential of the solid electrolyte material included in the first electrolyte layer 301 may be lower than the reduction potential of the solid electrolyte material included in the second electrolyte layer 302 . According to the above configuration, the solid electrolyte material contained in the first electrolyte layer 301 can be used without being reduced. Thereby, the charge/discharge efficiency of the battery 3000 can be improved.
- the second electrolyte layer 302 may contain a sulfide solid electrolyte.
- the reduction potential of the sulfide solid electrolyte contained in the second electrolyte layer 302 is lower than the reduction potential of the solid electrolyte material contained in the first electrolyte layer 301 .
- the solid electrolyte material contained in the first electrolyte layer 301 can be used without being reduced. Thereby, the charge/discharge efficiency of the battery 3000 can be improved.
- the thickness of the first electrolyte layer 301 and the second electrolyte layer 302 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of first electrolyte layer 301 and second electrolyte layer 302 is 1 ⁇ m or more, short circuit between positive electrode 201 and negative electrode 203 is less likely to occur. When the thickness of first electrolyte layer 301 and second electrolyte layer 302 is 300 ⁇ m or less, battery 3000 can operate at high output.
- a planetary ball mill manufactured by Fritsch, model P-7
- the positive electrode active material whose surface was coated with the first solid electrolyte material of Example 1, the second electrolyte material, and vapor-grown carbon fiber (VGCF (manufactured by Showa Denko KK)) were mixed at 73.4:25.
- the positive electrode material of Example 1 was produced by weighing and mixing in a mortar so as to have a mass ratio of 6:1.0.
- Example 2 [Preparation of Positive Electrode Active Material Surface Covered with First Solid Electrolyte Material]
- a first solid electrolyte material was produced in the same manner as in Example 1. Also, in the same manner as in Example 1, a positive electrode active material whose surface was coated with the first solid electrolyte material was produced.
- a positive electrode active material having a surface coated with a first solid electrolyte material, Li 2.7 Y 1.1 Cl 6 as a second electrolyte material, and a conduction aid VGCF coated positive electrode active material: second electrolyte material: VGCF 73.4:25.6:1.0, and mixed in a mortar to prepare the positive electrode material of Example 2.
- Example 3 [Preparation of Positive Electrode Active Material Surface Covered with First Solid Electrolyte Material]
- a first solid electrolyte material was produced in the same manner as in Example 1. Also, in the same manner as in Example 1, a positive electrode active material whose surface was coated with the first solid electrolyte material was produced.
- a positive electrode active material having a surface coated with a first solid electrolyte material, Li 3 YBr 2 Cl 4 as a second electrolyte material, and a conduction aid VGCF coated positive electrode active material: second electrolyte material: VGCF 73.4:25.6:1.0, and mixed in a mortar to prepare the positive electrode material of Example 3.
- Example 4 [Preparation of Positive Electrode Active Material Surface Covered with First Solid Electrolyte Material]
- a first solid electrolyte material was produced in the same manner as in Example 1. Also, in the same manner as in Example 1, a positive electrode active material whose surface was coated with the first solid electrolyte material was produced.
- a positive electrode active material coated with a positive electrode active material having a surface coated with a first solid electrolyte material, Li 6 PS 5 Cl as a second electrolyte material, and a conductive agent VGCF: Li 6 PS 5 Cl: VGCF 73.4:25.6:1.0, and mixed in a mortar to prepare the positive electrode material of Example 4.
- Batteries using the positive electrode materials of Examples 1 to 4 and Reference Examples 1 to 5 were produced by the following steps.
- Example 1 First, 80 mg of Li 6 PS 5 Cl was put into an insulating outer cylinder and pressure-molded at a pressure of 2 MPa. Next, 20 mg of the second electrolyte material used for the positive electrode material of Example 1 was added and pressure-molded at a pressure of 2 MPa. Furthermore, 9.8 mg of the positive electrode material was put therein and pressure-molded at a pressure of 720 MPa. As a result, a laminate composed of the positive electrode and the solid electrolyte layer was obtained.
- metal Li was laminated on the side of the solid electrolyte layer opposite to the side in contact with the positive electrode.
- Metal Li having a thickness of 200 ⁇ m was used.
- pressure-molding this at a pressure of 2 MPa a laminate composed of the positive electrode, the solid electrolyte layer, and the negative electrode was produced.
- Example 1 was produced by using an insulating ferrule to shield the inside of the insulating outer cylinder from the atmosphere and to seal it.
- Examples 2 to 4 and Reference Examples 1 to 5 80 mg of Li 6 PS 5 Cl was put into an insulating outer cylinder and pressure-molded at a pressure of 2 MPa. Next, 20 mg of the second electrolyte material used for each of the positive electrode materials of Examples 2 to 4 or Reference Examples 1 to 5 was added and pressure-molded at a pressure of 2 MPa. Furthermore, 9.8 mg of the positive electrode material in Examples 2 to 4 and 9.6 mg of the positive electrode material in Reference Examples 1 to 5 were added thereto, and pressure-molded at a pressure of 720 MPa. As a result, a laminate composed of the positive electrode and the solid electrolyte layer was obtained. Batteries of Examples 2 to 4 and Reference Examples 1 to 5 were produced in the same manner as in Example 1 except for the above.
- the battery was placed in a constant temperature bath at 25°C.
- Constant current charging was performed at a current value of 42 ⁇ A, which is 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the battery.
- the final charging voltage was 5.0 V (vs. Li/Li + ).
- constant current discharge was performed with a final discharge voltage of 3.5 V (vs. Li/Li + ).
- Table 1 shows the results of the charge/discharge test of the batteries of Examples 1 to 4 and Reference Examples 1 to 5.
- the coated/uncoated capacity ratio of Example 1 in Table 1 is the ratio of the discharge capacity of Example 1 to the discharge capacity of Reference Example 1.
- the coated/uncoated capacity ratio of Example 2 is the ratio of the discharge capacity of Example 2 to the discharge capacity of Reference Example 2.
- the coated/uncoated capacity ratio of Example 3 is the ratio of the discharge capacity of Example 3 to the discharge capacity of Reference Example 3.
- the coated/uncoated capacity ratio of Example 4 is the ratio of the discharge capacity of Example 4 to the discharge capacity of Reference Example 5.
- the charge/discharge capacity is improved by covering the surface of the positive electrode active material with the first solid electrolyte material.
- the charge/discharge capacity of the battery is improved.
- the battery of the present disclosure can be used, for example, as an all-solid lithium ion secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
特許文献1は、ニッケル、コバルト、およびマンガンを含む正極活物質と、正極活物質の表面の少なくとも一部を被覆する被覆材料と、ハロゲン化物固体電解質材料とを含む正極材料を用いた全固体電池を開示している。正極活物質の表面を被覆する被覆材料は固体電解質材料であり、当該固体電解質材料は、ニオブ酸リチウムである。
本開示の第1態様に係る正極材料は、正極活物質と、前記正極活物質の表面の少なくとも一部を被覆する第1固体電解質材料と、第2電解質材料と、を含み、前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、前記第1固体電解質材料は、Li、Ti、M1、およびFを含み、前記M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である。
LiNixMn2-xO4・・・式(1)
ここで、xは0<x<2を満たす。
Li6-(4-a)b(Ti1-aM1a)bF6・・・式(2B)
ここで、aは0<a<1を満たし、bは0<b≦1.5を満たす。
Liα3M2β3Xγ3Oδ3 ・・・式(3)
ここで、
α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、
M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
Xは、Cl、およびBrからなる群より選択される少なくとも1種の元素である。
1≦α3≦4、
0<β3≦2、
3≦γ3<7、
0≦δ3≦2、
を満たしてもよい。
前記第1電解質層は、前記正極に接し、前記第2電解質層は、前記負極に接してもよい。
図1は、実施の形態1における正極材料1000の概略構成を示す断面図である。正極材料1000は、正極活物質110と、正極活物質110の表面の少なくとも一部を被覆する第1固体電解質材料111と、第2電解質材料100とを含む。正極活物質110はLi、Ni、Mn、およびOからなる酸化物を含む。第1固体電解質材料111は、Li、Ti、M1、およびFを含む。M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である。
LiNixMn2-xO4・・・式(1)
ここで、xは0<x<2を満たす。
Liα2Tiβ2M1γ2Fδ2・・・式(2A)
Li6-(4-a)b(Ti1-aM1a)bF6・・・式(2B)
Liα3M2β3Xγ3Oδ3 ・・・式(3)
ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、Xは、ClおよびBrからなる群より選択される少なくとも1種の元素である。
Li6-3dYdX6・・・式(A1)
ここで、組成式(A1)において、Xは、ハロゲン元素であり、かつ、Clを含む。また、0<d<2、が満たされる。
Li3YX6・・・式(A2)
ここで、組成式(A2)において、Xは、ハロゲン元素であり、かつ、Clを含む。
Li3-3δY1+δCl6・・・式(A3)
ここで、組成式(A3)において、0<δ≦0.15、が満たされる。
Li3-3δ+a4Y1+δ-a4Mea4Cl6-x4Brx4・・・式(A4)
ここで、組成式(A4)において、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1つの元素である。また、-1<δ<2、0<a4<3、0<(3-3δ+a4)、0<(1+δ-a4)、および0≦x4<6、が満たされる。
Li3-3δY1+δ-a5Mea5Cl6-x5Brx5・・・式(A5)
ここで、組成式(A5)において、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a5<2、0<(1+δ-a5)、および0≦x5<6、が満たされる。
Li3-3δ-a6Y1+δ-a6Mea6Cl6-x6Brx6・・・式(A6)
ここで、組成式(A6)において、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a6<1.5、0<(3-3δ-a6)、0<(1+δ-a6)、および0≦x6<6、が満たされる。
Li3-3δ-2a7Y1+δ-a7Mea7Cl6-x7Brx7・・・式(A7)
ここで、組成式(A7)において、Meは、Ta、およびNbからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a7<1.2、0<(3-3δ-2a7)、0<(1+δ-a7)、および0≦x7<6、が満たされる。
実施の形態1における第1固体電解質材料111は、例えば、下記の方法により、製造されうる。
実施の形態1における正極材料1000は、例えば、下記の方法により、製造されうる。
第2電解質材料100は、下記の方法により製造され得る。
第1固体電解質材料111によって表面が被覆された正極活物質110と、第2電解質材料100とを混合することによって、実施の形態1における正極材料1000を製造することができる。
以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
以下、実施の形態3が説明される。実施の形態1と重複する説明は、適宜、省略される。
[第1固体電解質材料の作製]
アルゴン雰囲気中で、原料粉としてLiF、TiF4、およびAlF3を、LiF:TiF4:AlF3=2.7:0.3:0.7のモル比となるように、秤量した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、12時間、500rpmでミリング処理することで、実施例1の第1固体電解質材料としてLi2.7Ti0.3Al0.7F6の粉末を得た。
アルゴン雰囲気中で、正極活物質であるLiNi0.5Mn1.5O4と、実施例1の第1固体電解質材料とを、LiNi0.5Mn1.5O4:第1固体電解質材料=100:3の質量比率となるように秤量した。これら材料を乾式粒子複合化装置ノビルタ(ホソカワミクロン製)に投入し、6000rpm、30分の条件で複合化処理を実施することで、実施例1の第1固体電解質材料によって表面が被覆された正極活物質を得た。
-30℃以下の露点を有するドライ雰囲気(以下、「ドライ雰囲気」と呼ばれる)中で、原料粉としてLi2O2およびTaCl5が、Li2O2:TaCl5=1.2:2のモル比となるように用意された。これらの原料粉が乳鉢中で粉砕して混合され、混合粉が得られた。得られた混合粉は、遊星型ボールミルを用い、24時間、600rpmでミリング処理された。次いで、200℃で6時間、混合粉は焼成された。このようにして、実施例1の第2電解質材料の粉末が得られた。
実施例1の第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料と、気相法炭素繊維(VGCF(昭和電工株式会社製))とを、73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例1の正極材料が作製された。
[第1固体電解質材料によって表面が被覆された正極活物質の作製]
実施例1と同様にして、第1固体電解質材料が作製された。また、実施例1と同様にして、第1固体電解質材料によって表面が被覆された正極活物質が作製された。
-60℃以下の露点を有するアルゴングローブボックス内で、原料粉としてLiClおよびYCl3が、LiCl:YCl3=2.7:1.1のモル比となるように用意された。その後、遊星型ボールミル(フリッチュ製、P-5型)を用い、25時間、600rpmでミリング処理することで、第2電解質材料としてLi2.7Y1.1Cl6の粉末を得た。
第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料としてのLi2.7Y1.1Cl6と、導電助剤VGCFとを、被覆された正極活物質:第2電解質材料:VGCF=73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例2の正極材料が作製された。
[第1固体電解質材料によって表面が被覆された正極活物質の作製]
実施例1と同様にして、第1固体電解質材料が作製された。また、実施例1と同様にして、第1固体電解質材料によって表面が被覆された正極活物質が作製された。
アルゴン雰囲気中で、原料粉LiBr、YBr3、LiCl、およびYCl3を、LiBr:YBr3:LiCl:YCl3=1:1:5:1のモル比となるように、秤量した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、25時間、600rpmでミリング処理することで、第2電解質材料としてLi3YBr2Cl4の粉末を得た。
第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料としてのLi3YBr2Cl4と、導電助剤VGCFとを、被覆された正極活物質:第2電解質材料:VGCF=73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例3の正極材料が作製された。
[第1固体電解質材料によって表面が被覆された正極活物質の作製]
実施例1と同様にして、第1固体電解質材料が作製された。また、実施例1と同様にして、第1固体電解質材料によって表面が被覆された正極活物質が作製された。
第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料としてのLi6PS5Clと、導電助剤VGCFとを、被覆された正極活物質:Li6PS5Cl:VGCF=73.4:25.6:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例4の正極材料が作製された。
[正極材料の作製]
正極活物質であるLiNi0.5Mn1.5O4と、実施例1の第2電解質材料と、導電助剤VGCFとを、LiNi0.5Mn1.5O4:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例1の正極材料が作製された。
[正極材料の作製]
正極活物質であるLiNi0.5Mn1.5O4と、実施例2の第2電解質材料Li2.7Y1.1Cl6と、導電助剤VGCFとを、LiNi0.5Mn1.5O4:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例2の正極材料が作製された。
[正極材料の作製]
正極活物質であるLiNi0.5Mn1.5O4と、実施例3の第2電解質材料Li3YBr2Cl4と、導電助剤VGCFとを、LiNi0.5Mn1.5O4:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例3の正極材料が作製された。
[正極材料の作製]
正極活物質であるLiNi0.5Mn1.5O4と、Li2.7Ti0.3Al0.7F6と、導電助剤VGCFとを、LiNi0.5Mn1.5O4:Li2.7Ti0.3Al0.7F6:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例4の正極材料が作製された。
[正極材料の作製]
正極活物質であるLiNi0.5Mn1.5O4と、Li6PS5Clと、導電助剤VGCFとを、LiNi0.5Mn1.5O4:Li6PS5Cl:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、参考例5の正極材料が作製された。
上述の実施例1から4および参考例1から5の正極材料をそれぞれ用いた電池が、下記の工程により作製された。
まず、絶縁性外筒の中に、Li6PS5Clを80mg投入し、これを2MPaの圧力で加圧成型した。次に、実施例1の正極材料に使用した第2電解質材料20mgを投入し、2MPaの圧力で加圧成型した。さらに、そこに正極材料を9.8mg投入し、これを720MPaの圧力で加圧成型した。これにより、正極および固体電解質層からなる積層体を得た。
絶縁性外筒の中に、Li6PS5Clを80mg投入し、これを2MPaの圧力で加圧成型した。次に、実施例2から4または参考例1から5のそれぞれの正極材料に使用した第2電解質材料20mgを投入し、2MPaの圧力で加圧成型した。さらに、そこに実施例2から4では正極材料を9.8mg、参考例1から5では正極材料を9.6mg投入し、これを720MPaの圧力で加圧成型した。これにより、正極および固体電解質層からなる積層体を得た。上記以外は、実施例1と同様にして、実施例2から4および参考例1から5の電池をそれぞれ作製した。
上述の実施例1から4、および参考例1から5の電池をそれぞれ用いて、以下の条件で、充放電試験が実施された。
Claims (20)
- 正極活物質と、
前記正極活物質の表面の少なくとも一部を被覆する第1固体電解質材料と、
第2電解質材料と、
を含み、
前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、
前記第1固体電解質材料は、Li、Ti、M1、およびFを含み、
前記M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種である、
正極材料。 - 前記正極活物質は、下記の組成式(1)で表される材料を含む、
請求項1に記載の正極材料。
LiNixMn2-xO4・・・式(1)
ここで、xは0<x<2を満たす。 - 前記組成式(1)は、0<x<1を満たす、
請求項2に記載の正極材料。 - 前記組成式(1)は、x=0.5を満たす、
請求項3に記載の正極材料。 - 前記第1固体電解質材料は、Li、Ti、M1、およびFからなる、
請求項1から4のいずれか一項に記載の正極材料。 - 前記第1固体電解質材料は、下記の組成式(2B)で表される材料を含む、
請求項1から5のいずれか一項に記載の正極材料。
Li6-(4-a)b(Ti1-aM1a)bF6・・・式(2B)
ここで、aは0<a<1を満たし、bは0<b≦1.5を満たす。 - 前記M1が、Alである、
請求項1から6のいずれか一項に記載の正極材料。 - 前記第2電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、ClおよびBrからなる群より選択される少なくとも1種と、を含む、
請求項1から7のいずれか一項に記載の正極材料。 - 前記第2電解質材料は、下記の組成式(3)により表される材料を含む、
請求項8に記載の正極材料。
Liα3M2β3Xγ3Oδ3・・・式(3)
ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、
M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
Xは、Cl、およびBrからなる群より選択される少なくとも1種の元素である。 - 前記M2は、YおよびTaからなる群より選択される少なくとも1種を含む、
請求項9に記載の正極材料。 - 前記組成式(3)は、
1≦α3≦4、
0<β3≦2、
3≦γ3<7、
0≦δ3≦2
を満たす、
請求項9または10に記載の正極材料。 - 前記第2電解質材料は、硫化物固体電解質を含む、
請求項1から11のいずれか一項に記載の正極材料。 - 前記硫化物固体電解質は、Li6PS5Clである、
請求項12に記載の正極材料。 - 前記正極活物質と前記第2電解質材料との間に、前記第1固体電解質材料が設けられている、
請求項1から13のいずれか一項に記載の正極材料。 - 正極と、
負極と、
前記正極と前記負極との間に位置する電解質層と、
を備え、
前記正極は、請求項1から14のいずれか一項に記載の正極材料を含む、
電池。 - 前記電解質層は、第1電解質層および第2電解質層を含み、
前記第1電解質層は、前記正極に接し、前記第2電解質層は、前記負極に接する、
請求項15に記載の電池。 - 前記第1電解質層は、前記第1固体電解質材料と同じ組成を有する材料を含む、
請求項16に記載の電池。 - 前記第1電解質層は、前記第2電解質材料と同じ組成を有する材料を含む、
請求項16に記載の電池。 - 前記第2電解質層は、前記第1固体電解質材料と異なる組成を有する材料を含む、
請求項16に記載の電池。 - 前記電解質層は、ハロゲン化物固体電解質を含む、
請求項15に記載の電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023516041A JPWO2022224505A1 (ja) | 2021-04-20 | 2022-01-14 | |
CN202280029170.5A CN117203794A (zh) | 2021-04-20 | 2022-01-14 | 正极材料及电池 |
US18/485,999 US20240047680A1 (en) | 2021-04-20 | 2023-10-12 | Positive electrode material and battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021071447 | 2021-04-20 | ||
JP2021-071447 | 2021-04-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/485,999 Continuation US20240047680A1 (en) | 2021-04-20 | 2023-10-12 | Positive electrode material and battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022224505A1 true WO2022224505A1 (ja) | 2022-10-27 |
Family
ID=83722297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/001202 WO2022224505A1 (ja) | 2021-04-20 | 2022-01-14 | 正極材料および電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240047680A1 (ja) |
JP (1) | JPWO2022224505A1 (ja) |
CN (1) | CN117203794A (ja) |
WO (1) | WO2022224505A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023139897A1 (ja) * | 2022-01-21 | 2023-07-27 | トヨタ自動車株式会社 | 電池 |
EP4411864A1 (en) * | 2023-02-03 | 2024-08-07 | Saint-Gobain Ceramics & Plastics Inc. | Low pressure all-solid-state battery |
WO2024176982A1 (ja) * | 2023-02-24 | 2024-08-29 | パナソニックIpマネジメント株式会社 | 正極及びそれを用いた電池 |
WO2024185316A1 (ja) * | 2023-03-07 | 2024-09-12 | パナソニックホールディングス株式会社 | 正極材料、正極および電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113892206A (zh) * | 2019-07-04 | 2022-01-04 | 松下知识产权经营株式会社 | 电池 |
WO2021075191A1 (ja) * | 2019-10-17 | 2021-04-22 | パナソニックIpマネジメント株式会社 | 電池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155059A1 (ja) * | 2017-02-22 | 2018-08-30 | Necエナジーデバイス株式会社 | 二次電池および二次電池の使用方法 |
WO2019135323A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
WO2020100465A1 (ja) * | 2018-11-16 | 2020-05-22 | パナソニックIpマネジメント株式会社 | 固体電解質およびそれを用いた電池 |
JP2021509522A (ja) * | 2017-12-29 | 2021-03-25 | セイケム インコーポレイテッド | オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成 |
WO2021187391A1 (ja) * | 2020-03-18 | 2021-09-23 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
-
2022
- 2022-01-14 JP JP2023516041A patent/JPWO2022224505A1/ja active Pending
- 2022-01-14 CN CN202280029170.5A patent/CN117203794A/zh active Pending
- 2022-01-14 WO PCT/JP2022/001202 patent/WO2022224505A1/ja active Application Filing
-
2023
- 2023-10-12 US US18/485,999 patent/US20240047680A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155059A1 (ja) * | 2017-02-22 | 2018-08-30 | Necエナジーデバイス株式会社 | 二次電池および二次電池の使用方法 |
JP2021509522A (ja) * | 2017-12-29 | 2021-03-25 | セイケム インコーポレイテッド | オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成 |
WO2019135323A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
WO2020100465A1 (ja) * | 2018-11-16 | 2020-05-22 | パナソニックIpマネジメント株式会社 | 固体電解質およびそれを用いた電池 |
WO2021187391A1 (ja) * | 2020-03-18 | 2021-09-23 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
Non-Patent Citations (1)
Title |
---|
TAKAO ESAKA, RYOICHI OKUYAMA, HIROYASU IWAHARA.: "IONIC CONDUCTION IN SINTERED FLUOROCOMPLEXES LIMMF6, M=AL, TI.", SOLID STATE IONICS, vol. 34., no. 3, 1 May 1989 (1989-05-01), NL , pages 201 - 205., XP000113275, ISSN: 0167-2738, DOI: 10.1016/0167-2738(89)90040-4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023139897A1 (ja) * | 2022-01-21 | 2023-07-27 | トヨタ自動車株式会社 | 電池 |
EP4411864A1 (en) * | 2023-02-03 | 2024-08-07 | Saint-Gobain Ceramics & Plastics Inc. | Low pressure all-solid-state battery |
WO2024160428A1 (en) * | 2023-02-03 | 2024-08-08 | Saint-Gobain Ceramics & Plastics Inc. | Low pressure all-solid-state batteries |
WO2024176982A1 (ja) * | 2023-02-24 | 2024-08-29 | パナソニックIpマネジメント株式会社 | 正極及びそれを用いた電池 |
WO2024185316A1 (ja) * | 2023-03-07 | 2024-09-12 | パナソニックホールディングス株式会社 | 正極材料、正極および電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022224505A1 (ja) | 2022-10-27 |
CN117203794A (zh) | 2023-12-08 |
US20240047680A1 (en) | 2024-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7182196B2 (ja) | 電池 | |
JP7199038B2 (ja) | 負極材料およびそれを用いた電池 | |
JP7316564B2 (ja) | 電池 | |
JP7349645B2 (ja) | 電極材料、および、電池 | |
JP7145439B2 (ja) | 電池 | |
JP7281771B2 (ja) | 正極材料、および、電池 | |
JP7281672B2 (ja) | 電池 | |
JP7249562B2 (ja) | 電池 | |
WO2022224505A1 (ja) | 正極材料および電池 | |
US20220416296A1 (en) | Positive electrode material, and battery | |
JP7217432B2 (ja) | 正極材料およびそれを用いた電池 | |
WO2019146296A1 (ja) | 正極材料およびそれを用いた電池 | |
JP7486092B2 (ja) | 正極材料、および、電池 | |
WO2021157361A1 (ja) | 正極材料および電池 | |
WO2023286614A1 (ja) | 正極材料および電池 | |
WO2023037776A1 (ja) | 被覆活物質、被覆活物質の製造方法、正極材料、および電池 | |
WO2022244445A1 (ja) | 被覆正極活物質、正極材料および電池 | |
US20240136521A1 (en) | Battery | |
US20240097133A1 (en) | Battery | |
US20240097123A1 (en) | Electrode material and battery | |
WO2022224506A1 (ja) | 電池 | |
WO2022244416A1 (ja) | 複合正極活物質、正極材料、および電池 | |
JP7507385B2 (ja) | 正極材料、および、電池 | |
WO2022224611A1 (ja) | 正極材料および電池 | |
WO2023106127A1 (ja) | 電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22791292 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023516041 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280029170.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22791292 Country of ref document: EP Kind code of ref document: A1 |