WO2021075191A1 - 電池 - Google Patents
電池 Download PDFInfo
- Publication number
- WO2021075191A1 WO2021075191A1 PCT/JP2020/034799 JP2020034799W WO2021075191A1 WO 2021075191 A1 WO2021075191 A1 WO 2021075191A1 JP 2020034799 W JP2020034799 W JP 2020034799W WO 2021075191 A1 WO2021075191 A1 WO 2021075191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- electrolyte material
- battery
- battery according
- positive electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
Definitions
- This disclosure relates to batteries.
- Patent Document 1 discloses a battery including a positive electrode, a first electrolyte layer containing a first solid electrolyte material, a second electrolyte layer containing a second solid electrolyte material, and a negative electrode in this order.
- the reduction potential of the second solid electrolyte material is lower than the reduction potential of the first solid electrolyte material.
- An object of the present disclosure is to provide a battery having high cycle characteristics.
- the battery according to the present disclosure is A positive electrode, a first electrolyte layer, a second electrolyte layer, and a negative electrode are provided in this order.
- the first electrolyte layer contains a first solid electrolyte material and a second solid electrolyte material.
- the mass ratio of the second solid electrolyte material to the first solid electrolyte material is greater than 0.05 and less than 1.
- the second electrolyte layer contains the second solid electrolyte material and contains the second solid electrolyte material.
- the first solid electrolyte material comprises Li, M, O, and X.
- M is at least one element selected from the group consisting of metal elements other than Li and metalloid elements, and X is selected from the group consisting of Cl, Br, and I. It is at least one element to be used, and the second solid electrolyte material has a composition different from that of the first solid electrolyte material.
- the present disclosure provides a battery having high cycle characteristics.
- FIG. 1 shows a cross-sectional view of the battery 1000 according to the embodiment.
- FIG. 1 shows a cross-sectional view of the battery 1000 according to the embodiment.
- the battery 1000 includes a positive electrode 101, a first electrolyte layer 102, a second electrolyte layer 103, and a negative electrode 104 in this order.
- the first electrolyte layer 102 contains a first solid electrolyte material and a second solid electrolyte material.
- the mass ratio of the second solid electrolyte material to the first solid electrolyte material is greater than 0.05 and less than 1.
- the second electrolyte layer 103 contains a second solid electrolyte material.
- the second solid electrolyte material has a composition different from that of the first solid electrolyte material.
- the first solid electrolyte material consists of Li, M, O, and X.
- M is at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
- X is at least one element selected from the group consisting of Cl, Br, and I.
- the battery 1000 according to the embodiment has high cycle characteristics.
- a battery having high cycle characteristics is a battery having a high maintenance rate of charge / discharge capacity even after repeating the charge / discharge cycle a plurality of times.
- metaloid element means B, Si, Ge, As, Sb, and Te.
- metal element is used as (I) All elements contained in groups 1 to 12 of the periodic table (excluding hydrogen), and (ii) All elements contained in groups 13 to 16 (however, B, Si, Ge) , As, Sb, Te, C, N, P, O, S, and Se) Means.
- the present inventors refer to a conventional battery as disclosed in Patent Document 1, that is, a positive electrode, an electrolyte layer made of a first solid electrolyte material, an electrolyte layer made of a second solid electrolyte material, and a negative electrode.
- a conventional battery as disclosed in Patent Document 1 that is, a positive electrode, an electrolyte layer made of a first solid electrolyte material, an electrolyte layer made of a second solid electrolyte material, and a negative electrode.
- the present inventors have found that, for example, in a conventional battery as disclosed in Patent Document 1, cracks may occur in the electrolyte layer. This crack occurs, for example, during the manufacture of batteries. Due to the occurrence of this crack, the cycle characteristics of the conventional battery are deteriorated.
- the first electrolyte layer 102 further contains not only the first solid electrolyte material but also the second solid electrolyte material contained in the second electrolyte layer 103. That is, the first electrolyte layer 102 and the second electrolyte layer 103 contain a second solid electrolyte material which is a common material. Further, in the first electrolyte layer 102, the mass ratio of the second solid electrolyte material to the first solid electrolyte material is larger than 0.05 and less than 1. Since the first electrolyte layer 102 and the second electrolyte layer have such a configuration, the battery 1000 according to the embodiment suppresses the occurrence of cracks.
- the mass ratio of the second solid electrolyte material to the first solid electrolyte material exceeds 0.05, the occurrence of cracks can be suppressed. This improves the cycle characteristics of the battery 1000.
- the mass ratio is less than 1, the internal resistance of the battery 1000 decreases. As a result, the discharge capacity of the battery 1000 is improved.
- the first solid electrolyte material has high ionic conductivity. Therefore, the first solid electrolyte material can be used to obtain a battery having high output characteristics.
- the first solid electrolyte material also has excellent thermal stability.
- the first solid electrolyte material is an example of an oxyhalide solid electrolyte.
- examples of other oxyhalide solid electrolytes include materials consisting of Li, O, and X (where X is at least one element selected from the group consisting of Cl, Br, and I).
- the first solid electrolyte material is a material containing M in addition to Li, O, and X.
- the first solid electrolyte material further containing M has a higher ionic conductivity than the material composed of Li, O, and X. Therefore, the discharge capacity of the battery can be improved by using the first solid electrolyte material.
- the mass ratio of the second solid electrolyte material to the first solid electrolyte material in the first electrolyte layer 102 may be more than 0.05 and 0.50 or less. .. In order to further enhance the cycle characteristics of the battery 1000, the mass ratio may be 0.10 or more and 0.50 or less.
- M may contain at least one element selected from the group consisting of Nb and Ta.
- the molar ratio of Li to M may be 0.60 or more and 2.4 or less, and the molar ratio of O to X may be 0.16 or more and 0.35 or less.
- Such a first solid electrolyte material has a high ionic conductivity.
- the first solid electrolyte material may be a material represented by the following chemical formula (1).
- the solid electrolyte material represented by the chemical formula (1) has a high ionic conductivity.
- M may be at least one element selected from the group consisting of Nb and Ta.
- the mathematical formula: ⁇ 5 + ⁇ -2 ⁇ is satisfied.
- Such a first solid electrolyte material has a higher ionic conductivity.
- the first solid electrolyte material may be a material represented by the following chemical formula (3).
- the chemical formula (3) the following formulas 0.1 ⁇ x ⁇ 7.0, and 0.4 ⁇ y ⁇ 1.9, Is satisfied.
- the solid electrolyte material represented by the chemical formula (3) has a high ionic conductivity.
- the second solid electrolyte material has a composition different from that of the first solid electrolyte material.
- the second solid electrolyte material may have a reduction potential lower than the reduction potential of the first solid electrolyte material. Since the second solid electrolyte material has a lower reduction potential than the first solid electrolyte material, the reduction of the first solid electrolyte material is suppressed.
- the first solid electrolyte material has high ionic conductivity. By suppressing the reduction of the first solid electrolyte material, the charge / discharge efficiency of the battery 1000 is improved.
- the electrochemically stable second electrolyte layer 103 prevents contact between the first electrolyte layer 102 and the negative electrode 104, thereby suppressing the reduction of the first solid electrolyte material contained in the first electrolyte layer 102. As a result, the battery 1000 has high charge / discharge efficiency.
- the voltage at which the reduction decomposition of the solid electrolyte occurs (that is, the reduction potential) can be measured by the cyclic voltammetry method described in the non-patent document "Adv. Energy Meter. 2016, 20, 1501590-1501599.”.
- the second solid electrolyte material may be a halide solid electrolyte (however, the oxyhalide solid electrolyte is excluded).
- the halide solid electrolyte has high ionic conductivity and excellent thermal stability, like the first solid electrolyte material. Therefore, the battery 1000 containing the first solid electrolyte material and the second solid electrolyte material has high output characteristics and thermal stability.
- the second solid electrolyte material may consist of Li, M', and X'.
- M' is at least one element selected from the group consisting of metal elements other than Li and metalloid elements
- X' is at least one selected from the group consisting of Cl, Br, and I. It is a seed element.
- Such a second solid electrolyte material has a high ionic conductivity.
- M' may contain Y (ie, yttrium) in order to increase the ionic conductivity of the second solid electrolyte material. Due to the improvement in the ionic conductivity, the battery 1000 has a high discharge capacity.
- Second solid electrolyte material containing Y may be a material represented by Li a Me b Y c X ' 6.
- Me is at least one element selected from the group consisting of metal elements and metalloid elements other than Li and Y.
- m represents the valence of Me.
- Me consists of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb. It may be at least one element selected from the group.
- the second solid electrolyte material may be a material represented by the following chemical formula (2). Li 6-3z Y z X ' 6 ... (2) Here, in the chemical formula (2), the mathematical formula: 0 ⁇ z ⁇ 2 is satisfied.
- the solid electrolyte material represented by the chemical formula (2) has a high ionic conductivity.
- the second solid electrolyte material may be Li 3 YCl 6.
- halides solid electrolyte Li 2 MgX '4, Li 2 FeX' 4, Li (, Al, Ga In) X '4, or Li 3 (Al, Ga, In ) X' is 6.
- (Al, Ga, In) means "at least one element selected from the group consisting of Al, Ga, and In".
- the second solid electrolyte material may be a sulfide solid electrolyte.
- Examples of sulfide solid electrolytes used as the second solid electrolyte material are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li. 3.25 Ge 0.25 P 0.75 S 4 , or Li 10 Ge P 2 S 12 .
- LiX ", Li 2 O, M” O, or Li p M "O q may be added.
- M is P, Si, Ge, B, Al, Ga, In, Fe.
- "X" is at least one element selected from the group consisting of F, Cl, Br, and I.
- the second solid electrolyte material may contain lithium sulfide and phosphorus sulfide.
- the second solid electrolyte material may be Li 2 SP 2 S 5 .
- the total thickness of the first electrolyte layer 102 and the second electrolyte layer 103 may be 1 ⁇ m or more and 300 ⁇ m or less.
- the first electrolyte layer 102 may have the same thickness as the second electrolyte layer 103.
- the total mass ratio of the first solid electrolyte material and the second solid electrolyte material to the entire first electrolyte layer 102 in the first electrolyte layer 102 may be 70% or more. Or it may be 90% or more.
- the first electrolyte layer 102 may be composed of only the first solid electrolyte material and the second solid electrolyte material.
- the mass ratio of the second solid electrolyte material to the entire second electrolyte layer 103 in the second electrolyte layer 103 may be 70% or more, or 90% or more. May be good.
- the second electrolyte layer 103 may be composed of only the second solid electrolyte material.
- the positive electrode 101 contains a positive electrode active material and an electrolyte material.
- the positive electrode active material is a material that can occlude and release metal ions such as lithium ions.
- positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
- lithium-containing transition metal oxides are Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , or LiCoO 2 .
- the positive electrode active material may be nickel, cobalt, or lithium manganate in order to further increase the discharge capacity and energy density of the battery.
- the positive electrode 101 may contain positive electrode active material particles as the positive electrode active material.
- the positive electrode active material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the positive electrode active material and the electrolyte material can be well dispersed in the positive electrode 101. This improves the charge / discharge characteristics of the battery 1000.
- the positive electrode active material has a median diameter of 100 ⁇ m or less, the lithium diffusion rate in the positive electrode active material is improved. This allows the battery to operate at high output.
- the electrolyte material contained in the positive electrode 101 is, for example, a solid electrolyte.
- the electrolyte material contained in the positive electrode 101 may be the first solid electrolyte material. That is, the positive electrode 101 may contain the first solid electrolyte material. When the positive electrode 101 contains the same material as the first electrolyte layer 102, the charge / discharge capacity and output characteristics of the battery are improved.
- the material different from the first solid electrolyte material and the second solid electrolyte material is referred to as the third solid electrolyte material.
- the positive electrode 101 may contain a second solid electrolyte material or a third solid electrolyte material.
- the third solid electrolyte material may be a sulfide solid electrolyte.
- Examples of sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or It is Li 10 GeP 2 S 12 .
- LiX ", Li 2 O, M” O q , or Li p M "O q may be added to these, where X" is selected from the group consisting of F, Cl, Br, and I. At least one element to be made.
- “M” is at least one element selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn. P and q are all natural numbers.
- the third solid electrolyte material may be an oxide solid electrolyte.
- a solid oxide electrolyte is (I) NASICON type solid electrolytes such as LiTi 2 (PO 4 ) 3 or elemental substituents thereof, (Ii) (LaLi) TiO 3- based perovskite-type solid electrolyte, (Iii) LISION type solid electrolytes such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and its elemental substituents, (Iv) A garnet-type solid electrolyte, such as Li 7 La 3 Zr 2 O 12 or an elemental substituent thereof. Glass or glass with Li 2 SO 4 or Li 2 CO 3 added to (v) Li 3 PO 4 or its N-substituted, or (vi) Li-BO compounds such as Li BO 2 or Li 3 BO 3. It is ceramics.
- the third solid electrolyte material may be a polymer solid electrolyte.
- polymer solid electrolytes examples include polymer compounds and lithium salt compounds.
- the polymer compound may have an ethylene oxide structure. Since the polymer compound having an ethylene oxide structure can contain a large amount of lithium salts, the ionic conductivity can be further increased.
- lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- the third solid electrolyte material may be a complex hydride solid electrolyte.
- Examples of complex hydride solid electrolytes are LiBH 4- LiI or LiBH 4- P 2 S 5 .
- the third solid electrolyte material may be an oxyhalide solid electrolyte different from the first solid electrolyte material.
- oxyhalide solid electrolytes are Li 3 OX "or Li 2 HOX".
- X is at least one element selected from the group consisting of F, Cl, Br, and I.
- the shape of the electrolyte material contained in the positive electrode 101 is not limited. Examples of such shapes are needle-shaped, spherical, or elliptical spherical.
- the shape of the electrolyte material may be particles.
- the median diameter of the electrolyte material may be 100 ⁇ m or less, or 10 ⁇ m or less.
- the positive electrode active material and the electrolyte material can be well dispersed in the positive electrode 101. Due to the good dispersion, the battery has high charge / discharge characteristics.
- the electrolyte material contained in the positive electrode 101 may have a median diameter smaller than that of the positive electrode active material. As a result, the electrolyte material and the positive electrode active material can be better dispersed in the positive electrode 101. Due to the good dispersion, the battery has high charge / discharge efficiency.
- the ratio of the volume of the positive electrode active material to the total volume of the positive electrode active material and the volume of the electrolyte material in the positive electrode 101 is 0.30 or more and 0.95 or less. Good.
- the positive electrode 101 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
- the negative electrode 104 contains a negative electrode active material and an electrolyte material.
- the negative electrode active material is a material that can occlude and release metal ions such as lithium ions.
- Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
- the metal material may be a simple substance metal or an alloy.
- Examples of metallic materials are lithium metals or lithium alloys.
- Examples of carbon materials are natural graphite, coke, developing carbon, carbon fibers, spheroidal carbon, artificial graphite or amorphous carbon. From the point of view of capacitance density, a preferred example of the negative electrode active material is silicon (ie, Si), tin (ie, Sn), a silicon compound, or a tin compound.
- the negative electrode 104 may contain negative electrode active material particles as the negative electrode active material.
- the negative electrode active material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode active material and the electrolyte material can be well dispersed in the negative electrode 104. This improves the charge / discharge characteristics of the battery.
- the negative electrode active material has a median diameter of 100 ⁇ m or less, the lithium diffusion rate in the negative electrode active material is improved. This allows the battery to operate at high output.
- the electrolyte material contained in the negative electrode 104 is, for example, a solid electrolyte.
- the electrolyte material contained in the negative electrode 104 may be a second solid electrolyte material. That is, the negative electrode 104 may contain a second solid electrolyte material.
- the electrolyte material contained in the negative electrode 104 may be the above-mentioned third solid electrolyte material.
- the shape of the electrolyte material contained in the negative electrode 104 is not limited. Examples of such shapes are needle-shaped, spherical, or elliptical spherical.
- the shape of the electrolyte material may be particles.
- the median diameter of the electrolyte material may be 100 ⁇ m or less, or 10 ⁇ m or less.
- the negative electrode active material and the electrolyte material can be well dispersed in the negative electrode 104. Due to the good dispersion, the battery has high charge / discharge characteristics.
- the electrolyte material contained in the negative electrode 104 may have a median diameter smaller than that of the negative electrode active material. As a result, the electrolyte material and the negative electrode active material can be well dispersed in the negative electrode 104. Due to the good dispersion, the battery has high charge / discharge efficiency.
- the ratio of the volume of the negative electrode active material to the total volume of the negative electrode active material and the volume of the electrolyte material may be 0.30 or more and 0.95 or less.
- the negative electrode 104 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
- At least a part of the surface of the positive electrode active material or at least a part of the surface of the negative electrode active material may be coated with a coating material in order to reduce the interfacial resistance.
- the coating material a material having low electron conductivity can be used.
- the coating material are sulfide solid electrolytes, polymer solid electrolytes, complex hydride solid electrolytes, or halide solid electrolytes exemplified as the third solid electrolyte material.
- a preferred example of the coating material is an oxide solid electrolyte. By using the oxide solid electrolyte as the coating material, the battery has higher charge / discharge efficiency.
- oxide solid electrolytes used as coating materials include (I) Li-Nb-O compounds such as LiNbO 3, (Ii) Li-BO compounds such as LiBO 2 or Li 3 BO 3, (Iii) Li—Al—O compounds such as LiAlO 2, (Iv) Li—Si—O compounds such as Li 4 SiO 4, (V) Li—Ti—O compounds such as Li 2 SO 4 or Li 4 Ti 5 O 12, (Vi) Li-Zr-O compounds such as Li 2 ZrO 3, (Vii) Li-Mo-O compounds such as Li 2 MoO 3, It is a Li—V—O compound such as (viii) LiV 2 O 5 or a Li—W—O compound such as (ix) Li 2 WO 4.
- Li—V—O compound such as (viii) LiV 2 O 5 or a Li—W—O compound such as (ix) Li 2 WO 4.
- At least one selected from the group consisting of the first electrolyte layer 102 and the second electrolyte layer 103 may contain the above-mentioned third solid electrolyte material.
- At least one selected from the group consisting of the positive electrode 101, the first electrolyte layer 102, the second electrolyte layer 103, and the negative electrode 104 is non-aqueous in order to facilitate the transfer of lithium ions and improve the output characteristics of the battery. It may contain an electrolyte solution, a gel electrolyte or an ionic liquid.
- the non-aqueous electrolyte solution contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
- non-aqueous solvents examples include cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
- cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
- chain carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
- Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
- chain ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
- An example of a cyclic ester solvent is ⁇ -butyrolactone.
- An example of a chain ester solvent is methyl acetate.
- fluorine solvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
- One kind of non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
- lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- the concentration of the lithium salt is, for example, in the range of 0.5 mol / liter or more and 2 mol / liter or less.
- a polymer material impregnated with a non-aqueous electrolyte solution can be used.
- polymer materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, or polymers with ethylene oxide bonds.
- ionic liquids examples include (I) Aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (Ii) Aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums, or (iii) nitrogen-containing heteros such as pyridiniums or imidazoliums It is a ring aromatic cation.
- Aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium
- Aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums
- nitrogen-containing heteros such as pyridiniums or imida
- anion contained in the ionic liquid PF 6 -, BF 4 - , SbF 6 -, AsF 6 -, SO 3 CF 3 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5 ) 2 -, N (SO 2 CF 3) (SO 2 C 4 F 9) -, or C (SO 2 CF 3) 3 - a.
- the ionic liquid may contain a lithium salt.
- At least one selected from the group consisting of the positive electrode 101, the first electrolyte layer 102, the second electrolyte layer 103, and the negative electrode 104 may contain a binder in order to improve the adhesion between the particles. Good.
- binders are polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber , Or carboxymethyl cellulose.
- Copolymers can also be used as binders.
- binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid.
- a copolymer of two or more materials selected from the group consisting of hexadiene A mixture of two or more selected from the above materials may be used as a binder.
- At least one selected from the positive electrode 101 and the negative electrode 104 may contain a conductive auxiliary agent in order to enhance electronic conductivity.
- a conductive aid is (I) Graphite, such as natural graphite or artificial graphite, (Ii) Carbon black, such as acetylene black or ketjen black, (Iii) Conductive fibers such as carbon fibers or metal fibers, (Iv) Carbon fluoride, (V) Metal powder such as aluminum, (Vi) Conductive whiskers, such as zinc oxide or potassium titanate, It is a conductive metal oxide such as (vii) titanium oxide, or a conductive polymer compound such as (vii) polyaniline, polypyrrole, or polythiophene. In order to reduce the cost, the conductive auxiliary agent (i) or (ii) described above may be used.
- Examples of the shape of the battery according to the first embodiment are coin type, cylindrical type, square type, sheet type, button type, flat type, or laminated type.
- the first solid electrolyte material is produced, for example, by the following method.
- the raw material powder is mixed so as to have the desired composition.
- Examples of raw material powders are oxides, hydroxides, halides, or acid halides.
- the target composition is LiNbOCl 4
- LiCl and NbOCl 3 are mixed as the raw material powder in a molar ratio of 1: 1.
- the elements of M and X are determined by the selection of the raw material powder. By adjusting the molar ratio of the raw material powder and the synthetic process, the mole fraction of the elements constituting the first solid electrolyte material is determined.
- the raw material powder may be mixed in a molar ratio adjusted in advance so as to offset the compositional change that may occur in the synthetic process.
- the raw material powder is mixed to obtain a mixed powder.
- the mixed powders react with each other mechanochemically (that is, by the method of mechanochemical milling treatment) in a mixing device such as a planetary ball mill to obtain a reactant.
- the reactants may be calcined in vacuum or in an inert gas atmosphere (eg, argon or nitrogen atmosphere).
- the mixed powder may be sintered in vacuum or in an inert atmosphere to give the reactants.
- the composition of the first solid electrolyte material is, for example, inductively coupled plasma emission spectrometry (that is, ICP emission spectroscopy), ion chromatography, inert gas melting-infrared absorption method, or EPMA (Electron Probe Micro Analyzer) method. It can be determined by an analysis method such as. However, since the measurement accuracy of the oxygen amount is low, an error of about 10% may be included.
- the second solid electrolyte material is produced, for example, by the following method.
- the raw material powder is mixed so as to have the desired composition.
- An example of a raw material powder is a halide.
- the target composition is Li 3 YCl 4
- LiCl and YCl 3 are mixed as a raw material powder in a molar ratio of 3: 1.
- the elements that make up the second solid electrolyte material are determined by the selection of the raw material powder. By adjusting the molar ratio of the raw material powder and the synthetic process, the mole fraction of the elements constituting the second solid electrolyte material is determined.
- the raw material powder may be mixed in a molar ratio adjusted in advance so as to offset the compositional change that may occur in the synthetic process.
- the raw material powder is mixed to obtain a mixed powder.
- the mixed powders react with each other mechanochemically (that is, by the method of mechanochemical milling treatment) in a mixing device such as a planetary ball mill to obtain a reactant.
- the reactants may be calcined in vacuum or in an inert gas atmosphere (eg, argon or nitrogen atmosphere).
- the mixed powder may be sintered in vacuum or in an inert atmosphere to give the reactants.
- composition of the second solid electrolyte material can be determined by an analytical method such as ICP emission spectroscopy, ion chromatography, inert gas melting-infrared absorption method, or EPMA method.
- Example 1 [Preparation of first solid electrolyte material]
- a dry atmosphere having a dew point of ⁇ 30 ° C. or lower hereinafter referred to as “dry atmosphere”
- Li 2 O 2 and TaCl 5 as raw material powders have a ratio of 1: 2 Li 2 O 2 : TaCl 5 molars.
- These raw material flours were crushed in a mortar to obtain a mixed flour.
- the obtained mixed powder was treated using a planetary ball mill (manufactured by Fritsch, P-7 type) so as to react mechanochemically at 600 rpm for 24 hours.
- the mixed flour was then baked at 200 ° C. for 6 hours. In this way, the powder of the first solid electrolyte material according to Example 1 was obtained.
- the first solid electrolyte material according to Example 1 had a composition represented by Li 1.2 TaO 1.3 Cl 3.6.
- Second solid electrolyte material In a dry atmosphere, LiCl and YCl 3 were prepared as raw material powders so as to have a LiCl: YCl 3 molar ratio of 3: 1. Except for this, the second solid electrolyte material according to Example 1 was obtained in the same manner as the first solid electrolyte material according to Example 1. The second solid electrolyte material according to Example 1 had a composition represented by Li 3 YCl 6.
- the potential measurement cell was placed in a constant temperature bath at 25 ° C. Cyclic voltammetry measurements scanned the potential at a sweep rate of 5 mV / s from -0.5 V to 6 V at the Li reference potential.
- the first solid electrolyte material according to Example 1 had a reduction potential of 2.3 V.
- the second solid electrolyte material according to Example 1 had a reduction potential of 0.3 V.
- the first solid electrolyte material according to Example 1 and the second solid electrolyte material according to Example 1 were prepared so as to have a mass ratio of 10: 1. These ingredients were mixed in an agate mortar. In this way, the electrolyte mixture according to Example 1 was obtained.
- the positive electrode material (10 mg) according to Example 1, the electrolyte mixture (80 mg) according to Example 1, and the second solid electrolyte material (80 mg) according to Example 1 are used. It was laminated in order to obtain a laminated body. A pressure of 360 MPa was applied to this laminate to form a positive electrode, a first electrolyte layer, and a second electrolyte layer.
- the metal In foil (thickness 200 ⁇ m), the metal Li foil (thickness 300 ⁇ m), and the metal In foil (thickness 200 ⁇ m) were laminated in this order on the second electrolyte layer to obtain a laminated body.
- a pressure of 80 MPa was applied to this laminate to form a negative electrode.
- a current collector made of stainless steel was arranged on the positive electrode current collector and the negative electrode, and a current collector lead was attached to the stainless steel current collector.
- Example 2 [Preparation of first solid electrolyte material]
- LiCl and NbOCl 3 were prepared as raw material powders so as to have a ratio of 1: 1 LiCl: NbOCl in 3 moles. These raw material flours were crushed in a mortar to obtain a mixed flour. The obtained mixed powder was treated using a planetary ball mill so as to react mechanochemically at 600 rpm for 24 hours. In this way, the powder of the first solid electrolyte material according to Example 2 was obtained.
- the first solid electrolyte material according to Example 2 had a composition represented by LiNbOCl 4.
- the reduction potential of the first solid electrolyte material according to Example 2 was measured by the same method as in Example 1.
- the first solid electrolyte material according to Example 2 had a reduction potential of 2.9 V.
- the first solid electrolyte material according to Example 2 and the second solid electrolyte material according to Example 1 were prepared so as to have a mass ratio of 10: 2. These ingredients were mixed in an agate mortar. In this way, the electrolyte mixture according to Example 2 was obtained.
- a battery according to Example 2 was obtained in the same manner as in Example 1 except that the electrolyte mixture according to Example 2 was used instead of the electrolyte mixture according to Example 1.
- Example 3 [Preparation of electrolyte mixture]
- the first solid electrolyte material according to Example 1 and the second solid electrolyte material according to Example 1 were prepared so as to have a mass ratio of 10: 5. These ingredients were mixed in an agate mortar. In this way, the electrolyte mixture according to Example 3 was obtained.
- a battery according to Example 3 was obtained in the same manner as in Example 1 except that the electrolyte mixture according to Example 3 was used instead of the electrolyte mixture according to Example 1.
- Example 4 [Preparation of second solid electrolyte material]
- dry argon atmosphere Li 2 S and P 2 S 5 as raw material powders are 75:25 Li 2 S: P 2 S 5 mol.
- These raw material flours were crushed in a mortar to obtain a mixed flour.
- the mixed powder was then treated using a planetary ball mill to react mechanochemically at 510 rpm for 10 hours. In this way, a glassy solid electrolyte was obtained.
- the obtained glassy solid electrolyte was heat-treated at 270 ° C. for 2 hours in a dry argon atmosphere.
- the second solid electrolyte material according to Example 4 was a glassy solid electrolyte represented by Li 2 SP 2 S 5.
- the first solid electrolyte material according to Example 1 and the second solid electrolyte material according to Example 4 were prepared so as to have a mass ratio of 10: 5. These ingredients were mixed in an agate mortar. In this way, the electrolyte mixture according to Example 4 was obtained.
- Comparative Example 1 [Preparation of electrolyte mixture]
- the first solid electrolyte material according to Example 1 and the second solid electrolyte material according to Example 1 were prepared so as to have a weight ratio of 10:0.5. These ingredients were mixed in an agate mortar. In this way, the electrolyte mixture according to Comparative Example 1 was obtained.
- a battery according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the electrolyte mixture according to Comparative Example 1 was used instead of the electrolyte mixture according to Example 1.
- Comparative Example 2 [Battery production] A battery according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the first solid electrolyte material according to Example 1 was used instead of the electrolyte mixture according to Example 1. That is, the first electrolyte layer according to Comparative Example 2 contained only the first solid electrolyte material of Example 1, and did not contain the second solid electrolyte material.
- the obtained battery was placed in a constant temperature bath at 25 ° C.
- the battery was charged until a voltage of 4.2 V was reached at a current value of 360 ⁇ A at a rate of 0.3 C.
- the battery was discharged until a voltage of 3.1 V was reached at a current value of 360 ⁇ A at a rate of 0.3 C.
- the above charging and discharging were defined as one charge / discharge cycle.
- the charge / discharge cycle was repeated 25 times.
- the alloy composed of metal In and metal Li used for the negative electrode of the battery has a potential of 0.6 V against lithium.
- the discharge capacity retention rate represents the ratio of the discharge capacity after 25 cycles to the initial discharge capacity.
- the values of the discharge capacity retention rate are shown in Table 1.
- Table 1 the mass ratio of the second solid electrolyte material to the first solid electrolyte material in the first electrolyte layer is expressed as the mass ratio of the electrolyte mixture.
- the batteries according to Examples 1 to 4 have a high discharge capacity retention rate. That is, the batteries according to Examples 1 to 4 have high cycle characteristics.
- the mass ratio of the second solid electrolyte material to the first solid electrolyte material in the first electrolyte layer is 0.05 or less.
- the second solid electrolyte material is a sulfide solid electrolyte or a halide solid electrolyte, a battery having a high discharge capacity retention rate can be obtained.
- the battery of the present disclosure can be used, for example, as an all-solid-state lithium-ion secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本開示による電池1000は、正極101、第1電解質層102、第2電解質層103、および負極104を、この順で備える。第1電解質層102は、第1固体電解質材料および第2固体電解質材料を含有する。第1電解質層102において、第1固体電解質材料に対する第2固体電解質材料の質量比は、0.05よりも大きく、かつ1未満である。第2電解質層103は、第2固体電解質材料を含有する。第1固体電解質材料は、Li、M、O、およびXからなる。第1固体電解質材料において、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素であり、かつXは、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。第2固体電解質材料は、第1固体電解質材料とは異なる組成を有する。
Description
本開示は、電池に関する。
特許文献1は、正極、第1固体電解質材料を含有する第1電解質層、第2固体電解質材料を含有する第2電解質層、および負極をこの順で備える電池を開示している。ここで、第2固体電解質材料の還元電位は、第1固体電解質材料の還元電位よりも低い。
本開示の目的は、高いサイクル特性を有する電池を提供することにある。
本開示による電池は、
正極、第1電解質層、第2電解質層、および負極を、この順で備え、
ここで、
前記第1電解質層は、第1固体電解質材料および第2固体電解質材料を含有し、
前記第1電解質層において、前記第1固体電解質材料に対する前記第2固体電解質材料の質量比は、0.05よりも大きく、かつ1未満であり、
前記第2電解質層は、前記第2固体電解質材料を含有し、
前記第1固体電解質材料は、Li、M、O、およびXからなり、
前記第1固体電解質材料において、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素であり、かつXは、Cl、Br、およびIからなる群より選択される少なくとも1種の元素であり、および
前記第2固体電解質材料は、前記第1固体電解質材料とは異なる組成を有する。
正極、第1電解質層、第2電解質層、および負極を、この順で備え、
ここで、
前記第1電解質層は、第1固体電解質材料および第2固体電解質材料を含有し、
前記第1電解質層において、前記第1固体電解質材料に対する前記第2固体電解質材料の質量比は、0.05よりも大きく、かつ1未満であり、
前記第2電解質層は、前記第2固体電解質材料を含有し、
前記第1固体電解質材料は、Li、M、O、およびXからなり、
前記第1固体電解質材料において、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素であり、かつXは、Cl、Br、およびIからなる群より選択される少なくとも1種の元素であり、および
前記第2固体電解質材料は、前記第1固体電解質材料とは異なる組成を有する。
本開示は、高いサイクル特性を有する電池を提供する。
以下、本開示の実施形態が、図面を参照しながら説明される。
図1は、実施形態による電池1000の断面図を示す。
図1に示されるように、実施形態による電池1000は、正極101、第1電解質層102、第2電解質層103、および負極104を、この順で備える。
第1電解質層102は、第1固体電解質材料および第2固体電解質材料を含有する。第1電解質層102において、第1固体電解質材料に対する第2固体電解質材料の質量比は、0.05よりも大きく、かつ1未満である。
第2電解質層103は、第2固体電解質材料を含有する。
第2固体電解質材料は、第1固体電解質材料とは異なる組成を有する。
第1固体電解質材料は、Li、M、O、およびXからなる。ここで、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素である。Xは、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。
実施形態による電池1000は、高いサイクル特性を有する。
高いサイクル特性を有する電池とは、充放電サイクルを複数回繰り返した後でも、充放電容量の維持率が高い電池である。
本開示において、「半金属元素」は、B、Si、Ge、As、Sb、およびTeを意味する。
本開示において、「金属元素」は、
(i)周期表第1族から第12族に含まれるすべての元素(ただし、水素を除く)、および
(ii)第13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)
を意味する。
(i)周期表第1族から第12族に含まれるすべての元素(ただし、水素を除く)、および
(ii)第13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)
を意味する。
ここで、本発明者らは、特許文献1に開示されているような従来の電池、すなわち正極、第1固体電解質材料からなる電解質層、第2固体電解質材料からなる電解質層、および負極をこの順で備える電池を検討した。本発明者らは、特許文献1に開示されているような従来の電池において、たとえば電解質層にクラックが生じ得ることを見出した。このクラックは、たとえば電池の製造時に生じる。このクラックの発生により、従来の電池では、サイクル特性が低下する。一方、実施形態による電池1000では、上記のように、第1電解質層102が、第1固体電解質材料だけでなく、第2電解質層103に含有されている第2固体電解質材料もさらに含有する。すなわち、第1電解質層102および第2電解質層103が、共通の材料である第2固体電解質材料を含有する。さらに、第1電解質層102において、第1固体電解質材料に対する第2固体電解質材料の質量比が、0.05よりも大きく、かつ1未満である。第1電解質層102および第2電解質層がこのような構成を有することにより、実施形態による電池1000は、クラックの発生を抑制する。
第1電解質層102において、第1固体電解質材料に対する第2固体電解質材料の質量比が0.05を超える場合、クラックの発生を抑制できる。これにより、電池1000のサイクル特性が向上する。上記質量比が、1未満である場合、電池1000の内部抵抗が低下する。これにより、電池1000の放電容量が向上する。
第1固体電解質材料は、高いイオン導電率を有する。したがって、第1固体電解質材料は、高い出力特性を有する電池を得るために用いられ得る。第1固体電解質材料は、優れた熱安定性も有する。
第1固体電解質材料は、オキシハロゲン化物固体電解質の一例である。他のオキシハロゲン化物固体電解質の例として、Li、O、およびX(Xは、Cl、Br、およびIからなる群より選択される少なくとも1種の元素)からなる材料が挙げられる。第1固体電解質材料は、Li、O、およびXに加えてMを含有する材料である。Mをさらに含有する第1固体電解質材料は、Li、O、およびXからなる材料よりも、イオン導電率が高い。このため、第1固体電解質材料を用いることにより、電池の放電容量を向上させることができる。
電池1000のサイクル特性をさらに高めるために、第1電解質層102において、第1固体電解質材料に対する第2固体電解質材料の質量比は、0.05を超え、かつ0.50以下であってもよい。電池1000のサイクル特性をさらに高めるために、当該質量比は、0.10以上0.50以下であってもよい。
第1固体電解質材料のイオン導電性を高めるために、Mは、NbおよびTaからなる群より選択される少なくとも1種の元素を含んでもよい。Mに対するLiのモル比は、0.60以上2.4以下であり、かつ、Xに対するOのモル比は、0.16以上0.35以下であってもよい。このような第1固体電解質材料は、高いイオン導電率を有する。
第1固体電解質材料は、以下の化学式(1)により表される材料であってもよい。
LiαMOβXγ ・・・(1)
ここで、化学式(1)において、以下の数式
1.0≦α≦1.2、
1.0≦β≦1.3、および
3.6≦γ≦4.0、
が充足される。化学式(1)により表される固体電解質材料は、高いイオン導電率を有する。
LiαMOβXγ ・・・(1)
ここで、化学式(1)において、以下の数式
1.0≦α≦1.2、
1.0≦β≦1.3、および
3.6≦γ≦4.0、
が充足される。化学式(1)により表される固体電解質材料は、高いイオン導電率を有する。
化学式(1)において、Mは、NbおよびTaからなる群より選択される少なくとも1種の元素であってもよい。この場合、化学式(1)において、数式:γ=5+α-2β、が充足される。このような第1固体電解質材料は、より高いイオン導電率を有する。
第1固体電解質材料は、以下の化学式(3)により表される材料であってもよい。
LixMOyX(5+x-2y) ・・・(3)
ここで、化学式(3)において、以下の数式
0.1<x<7.0、および、
0.4<y<1.9、
が充足される。化学式(3)により表される固体電解質材料は、高いイオン導電率を有する。
LixMOyX(5+x-2y) ・・・(3)
ここで、化学式(3)において、以下の数式
0.1<x<7.0、および、
0.4<y<1.9、
が充足される。化学式(3)により表される固体電解質材料は、高いイオン導電率を有する。
上述のとおり、第2固体電解質材料は、第1固体電解質材料とは異なる組成を有する。第2固体電解質材料は、第1固体電解質材料の還元電位よりも低い還元電位を有していてもよい。第2固体電解質材料が第1固体電解質材料よりも低い還元電位を有することにより、第1固体電解質材料の還元が抑制される。上述のとおり、第1固体電解質材料は、高いイオン導電性を有する。第1固体電解質材料の還元が抑制されることにより、電池1000の充放電効率が向上する。
第1電解質層102は、負極104に接触しないことが望ましい。電気化学的に安定な第2電解質層103が、第1電解質層102および負極104の接触を妨げることにより、第1電解質層102に含まれる第1固体電解質材料の還元が抑制される。その結果、電池1000が高い充放電効率を有する。
固体電解質の還元分解が起こる電圧(すなわち、還元電位)は、非特許文献「Adv. EnergyMater. 2016, 20, 1501590-1501599.」に記載のサイクリックボルタンメトリー法により測定できる。
第2固体電解質材料は、ハロゲン化物固体電解質(ただし、オキシハロゲン化物固体電解質は除く)であってもよい。
ハロゲン化物固体電解質は、第1固体電解質材料と同様に、イオン導電率が高く、熱安定性にも優れる。したがって、第1固体電解質材料および第2固体電解質材料を含有する電池1000は、高い出力特性および熱的安定性を有する。
第2固体電解質材料は、Li、M’、およびX’からなっていてもよい。ここで、M’は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素であり、X’は、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。このような第2固体電解質材料は、高いイオン導電率を有する。
第2固体電解質材料のイオン導電率を高めるために、M’は、Y(すなわち、イットリウム)を含んでもよい。当該イオン導電率の向上により、電池1000が高い放電容量を有する。
Yを含む第2固体電解質材料は、例えば、LiaMebYcX’6により表される材料であってもよい。ここで、数式:a+mb+3c=6、および、c>0が充足される。Meは、LiおよびY以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素である。mは、Meの価数を表す。
第2固体電解質材料のイオン伝導率をさらに高めるために、Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1種の元素であってもよい。
第2固体電解質材料は、以下の化学式(2)により表される材料であってもよい。
Li6-3zYzX’6 ・・・(2)
ここで、化学式(2)において、数式:0<z<2が充足される。化学式(2)により表される固体電解質材料は、高いイオン導電率を有する。第2固体電解質材料は、Li3YCl6であってもよい。
Li6-3zYzX’6 ・・・(2)
ここで、化学式(2)において、数式:0<z<2が充足される。化学式(2)により表される固体電解質材料は、高いイオン導電率を有する。第2固体電解質材料は、Li3YCl6であってもよい。
ハロゲン化物固体電解質の他の例は、Li2MgX’4、Li2FeX’4、Li(Al、Ga、In)X’4、またはLi3(Al、Ga、In)X’6である。「(Al、Ga、In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種の元素」を意味する。
電池1000の放電容量を高めるために、第2固体電解質材料は、硫化物固体電解質であってもよい。
第2固体電解質材料として使用される硫化物固体電解質の例は、Li2S-P2S5、Li2S-SiS2、Li2S-B2S3、Li2S-GeS2、Li3.25Ge0.25P0.75S4、またはLi10GeP2S12である。さらに、LiX”、Li2O、M”O、またはLipM”Oqが添加されていてもよい。ここで、M”は、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1種の元素である。pおよびqは、いずれも自然数である。X”は、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。
電池1000の放電容量を高めるために、第2固体電解質材料は、硫化リチウムおよび硫化リンを含んでもよい。第2固体電解質材料は、Li2S-P2S5であってもよい。
正極101および負極104の短絡を抑制しつつ、電池1000の出力を高めるために、第1電解質層102および第2電解質層103の合計の厚みは、1μm以上300μm以下であってもよい。
第1電解質層102は、第2電解質層103と同じ厚みを有していてもよい。
電池1000の放電容量を高めるために、第1電解質層102において、第1電解質層102全体に対する第1固体電解質材料および第2固体電解質材料の合計の質量比は、70%以上であってもよいし、あるいは90%以上であってもよい。電池1000の放電容量を高めるために、第1電解質層102は、第1固体電解質材料および第2固体電解質材料のみからなっていてもよい。
電池1000の放電容量を高めるために、第2電解質層103において、第2固体電解質材料の第2電解質層103全体に対する質量比は、70%以上であってもよいし、90%以上であってもよい。電池1000の放電容量を高めるために、第2電解質層103は、第2固体電解質材料のみからなっていてもよい。
正極101は、正極活物質および電解質材料を含有する。
正極活物質は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料である。
正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、Li(NiCoAl)O2、Li(NiCoMn)O2、またはLiCoO2である。正極活物質として、リチウム含有遷移金属酸化物が用いられることにより、製造コストが抑えられ、かつ電池1000の平均放電電圧を高めることができる。
電池の放電容量およびエネルギー密度をより高めるために、正極活物質は、ニッケル・コバルト・マンガン酸リチウムであってもよい。
正極101は、正極活物質として、正極活物質粒子を含んでいてもよい。この場合、正極活物質は、0.1μm以上100μm以下のメジアン径を有していてもよい。正極活物質が0.1μm以上のメジアン径を有する場合、正極101において、正極活物質および電解質材料が、良好に分散し得る。これにより、電池1000の充放電特性が向上する。正極活物質が100μm以下のメジアン径を有する場合、正極活物質内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
正極101に含まれる電解質材料は、例えば、固体電解質である。
正極101に含まれる電解質材料は、第1固体電解質材料であってもよい。すなわち、正極101は、第1固体電解質材料を含有していてもよい。正極101が第1電解質層102と同一の材料を含有することにより、電池の充放電容量および出力特性が向上する。
以下、第1固体電解質材料および第2固体電解質材料とは異なる材料は、第3固体電解質材料と呼ばれる。
正極101は、第2固体電解質材料または第3固体電解質材料を含有していてもよい。
第3固体電解質材料は、硫化物固体電解質であってもよい。
硫化物固体電解質の例は、Li2S-P2S5、Li2S-SiS2、Li2S-B2S3、Li2S-GeS2、Li3.25Ge0.25P0.75S4、またはLi10GeP2S12である。これらに、LiX”、Li2O、M”Oq、またはLipM”Oqが添加されていてもよい。ここで、X”は、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。M”は、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1種の元素である。pおよびqは、いずれも自然数である。
第3固体電解質材料は、酸化物固体電解質であってもよい。
酸化物固体電解質の例は、
(i)LiTi2(PO4)3またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3系のペロブスカイト型固体電解質、
(iii)Li14ZnGe4O16、Li4SiO4、LiGeO4またその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr2O12またはその元素置換体のようなガーネット型固体電解質、
(v)Li3PO4またはそのN置換体、または
(vi)LiBO2またはLi3BO3のようなLi-B-O化合物にLi2SO4またはLi2CO3が添加されたガラスまたはガラスセラミックス
である。
(i)LiTi2(PO4)3またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3系のペロブスカイト型固体電解質、
(iii)Li14ZnGe4O16、Li4SiO4、LiGeO4またその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr2O12またはその元素置換体のようなガーネット型固体電解質、
(v)Li3PO4またはそのN置換体、または
(vi)LiBO2またはLi3BO3のようなLi-B-O化合物にLi2SO4またはLi2CO3が添加されたガラスまたはガラスセラミックス
である。
第3固体電解質材料は、高分子固体電解質であってもよい。
高分子固体電解質の例は、高分子化合物およびリチウム塩の化合物である。高分子化合物は、エチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができるため、イオン導電率をより高めることができる。
リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、またはLiC(SO2CF3)3である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
第3固体電解質材料は、錯体水素化物固体電解質であってもよい。
錯体水素化物固体電解質の例は、LiBH4-LiIまたはLiBH4-P2S5である。
第3固体電解質材料は、第1固体電解質材料とは異なるオキシハロゲン化物固体電解質であってもよい。オキシハロゲン化物固体電解質の例は、Li3OX”またはLi2HOX”である。ここで、X”は、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。
正極101に含まれる電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。例えば、電解質材料の形状は、粒子であってもよい。
正極101に含まれる電解質材料の形状が粒子状(例えば、球状)である場合、当該電解質材料のメジアン径は、100μm以下であってもよく、10μm以下であってもよい。これにより、正極101において、正極活物質および電解質材料が良好に分散し得る。当該良好な分散により、電池が高い充放電特性を有する。
正極101に含まれる電解質材料は、正極活物質よりも小さいメジアン径を有していてもよい。これにより、正極101において、電解質材料および正極活物質が、より良好に分散し得る。当該良好な分散により、電池が高い充放電効率を有する。
電池1000のエネルギー密度および出力を高めるために、正極101において、正極活物質の体積および電解質材料の体積の合計に対する正極活物質の体積の比は、0.30以上0.95以下であってもよい。
電池1000のエネルギー密度および出力を高めるために、正極101は、10μm以上500μm以下の厚みを有していてもよい。
負極104は、負極活物質および電解質材料を含有する。
負極活物質は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料である。
負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよく、合金であってもよい。金属材料の例は、リチウム金属またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物である。
負極104は、負極活物質として、負極活物質粒子を含んでいてもよい。この場合、負極活物質は、0.1μm以上100μm以下のメジアン径を有していてもよい。負極活物質が、0.1μm以上のメジアン径を有する場合、負極104において、負極活物質および電解質材料が、良好に分散し得る。これにより、電池の充放電特性が向上する。負極活物質が100μm以下のメジアン径を有する場合、負極活物質内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
負極104に含まれる電解質材料は、例えば、固体電解質である。
負極104に含まれる電解質材料は、第2固体電解質材料であってもよい。すなわち、負極104は、第2固体電解質材料を含有していてもよい。
負極104に含まれる電解質材料は、上記の第3固体電解質材料であってもよい。
負極104に含まれる電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。例えば、電解質材料の形状は、粒子であってもよい。
負極104に含まれる電解質材料の形状が粒子状(例えば、球状)である場合、当該電解質材料のメジアン径は、100μm以下であってもよく、10μm以下であってもよい。これにより、負極104において、負極活物質および電解質材料が良好に分散し得る。当該良好な分散により、電池が高い充放電特性を有する。
負極104に含まれる電解質材料は、負極活物質よりも小さいメジアン径を有していてもよい。これにより、負極104において、電解質材料および負極活物質が良好に分散し得る。当該良好な分散により、電池が高い充放電効率を有する。
電池のエネルギー密度および出力の観点から、負極104において、負極活物質の体積および電解質材料の体積の合計に対する負極活物質の体積の比は、0.30以上0.95以下であってもよい。
電池のエネルギー密度および出力を高めるために、負極104は、10μm以上500μm以下の厚みを有していてもよい。
正極活物質の表面の少なくとも一部または負極活物質の表面の少なくとも一部は、界面抵抗を低減するために、被覆材料により被覆されていてもよい。
当該被覆材料として、電子伝導性が低い材料が使用され得る。被覆材料の例は、第3固体電解質材料として例示された、硫化物固体電解質、高分子固体電解質、錯体水素化物固体電解質、またはハロゲン化物固体電解質である。電位安定性の観点から、被覆材料の好適な例は、酸化物固体電解質である。被覆材料として酸化物固体電解質を用いることにより、電池がより高い充放電効率を有する。
被覆材料として用いられる酸化物固体電解質の他の例は、
(i)LiNbO3のようなLi-Nb-O化合物、
(ii)LiBO2またはLi3BO3のようなLi-B-O化合物、
(iii)LiAlO2のようなLi-Al-O化合物、
(iv)Li4SiO4のようなLi-Si-O化合物、
(v)Li2SO4またはLi4Ti5O12のようなLi-Ti-O化合物、
(vi)Li2ZrO3のようなLi-Zr-O化合物、
(vii)Li2MoO3のようなLi-Mo-O化合物、
(viii)LiV2O5のようなLi-V-O化合物、または
(ix)Li2WO4のようなLi-W-O化合物
である。
(i)LiNbO3のようなLi-Nb-O化合物、
(ii)LiBO2またはLi3BO3のようなLi-B-O化合物、
(iii)LiAlO2のようなLi-Al-O化合物、
(iv)Li4SiO4のようなLi-Si-O化合物、
(v)Li2SO4またはLi4Ti5O12のようなLi-Ti-O化合物、
(vi)Li2ZrO3のようなLi-Zr-O化合物、
(vii)Li2MoO3のようなLi-Mo-O化合物、
(viii)LiV2O5のようなLi-V-O化合物、または
(ix)Li2WO4のようなLi-W-O化合物
である。
電池の出力を高めるために、第1電解質層102および第2電解質層103からなる群より選択される少なくとも1つは、上記の第3固体電解質材料を含有していてもよい。
正極101、第1電解質層102、第2電解質層103、および負極104からなる群より選択される少なくとも1つは、リチウムイオンの授受を容易にし、電池の出力特性を向上するために、非水電解質液、ゲル電解質またはイオン液体を含有していてもよい。
非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含有する。
非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタンまたは1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、またはLiC(SO2CF3)3である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
リチウム塩の濃度は、例えば、0.5mol/リットル以上かつ2mol/リットル以下の範囲にある。
ゲル電解質として、非水電解液を含侵させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオンである。
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオンである。
イオン液体に含まれるアニオンの例は、PF6
-、BF4
-、SbF6
-、AsF6
-、SO3CF3
-、N(SO2CF3)2
-、N(SO2C2F5)2
-、N(SO2CF3)(SO2C4F9)-、またはC(SO2CF3)3
-である。イオン液体はリチウム塩を含有していてもよい。
正極101、第1電解質層102、第2電解質層103、および負極104からなる群より選択される少なくとも1つは、粒子同士の密着性を向上するために、結着剤を含有していてもよい。
結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。
共重合体もまた、結着剤として用いられ得る。このような結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上の材料の共重合体である。上記の材料から選択される2種以上の混合物を結着剤として使用してもよい。
正極101および負極104から選択される少なくとも1つは、電子導電性を高めるために、導電助剤を含有していてもよい。
導電助剤の例は、
(i)天然黒鉛または人造黒鉛のようなグラファイト、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック、
(iii)炭素繊維または金属繊維のような導電性繊維、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
(i)天然黒鉛または人造黒鉛のようなグラファイト、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック、
(iii)炭素繊維または金属繊維のような導電性繊維、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
第1実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
<第1固体電解質材料の製造方法>
第1固体電解質材料は、例えば、下記の方法により製造される。
第1固体電解質材料は、例えば、下記の方法により製造される。
目的の組成を有するように、原料粉が混合される。原料粉の例は、酸化物、水酸化物、ハロゲン化物、または酸ハロゲン化物である。
一例として、目的とされる組成がLiNbOCl4である場合、原料粉としてLiClおよびNbOCl3が、1:1のモル比となるように混合される。
原料粉の選択により、MおよびXの元素が決定される。原料粉のモル比および合成プロセスを調整することで、第1固体電解質材料を構成する元素のモル分率が決定される。
合成プロセスにおいて生じ得る組成変化を相殺するようにあらかじめ調整されたモル比で、原料粉が混合されてもよい。
原料粉が混合されて、混合粉が得られる。混合粉は、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリング処理の方法により)互いに反応させ、反応物が得られる。反応物は、真空中または不活性ガス雰囲気(例えば、アルゴン雰囲気または窒素雰囲気)中で焼成されてもよい。あるいは、混合粉が、真空中または不活性雰囲気中で焼結されて、反応物を得てもよい。これらの方法により、第1固体電解質材料が得られる。
第1固体電解質材料の組成は、例えば、誘導結合プラズマ発光分析法(すなわち、ICP発光分光分析法)、イオンクロマトグラフィー法、不活性ガス溶融-赤外線吸収法、またはEPMA(Electron Probe Micro Analyzer)法のような分析法により決定できる。ただし、酸素量は、測定精度が低いため、10%程度の誤差が含まれ得る。
<第2固体電解質材料の製造方法>
第2固体電解質材料は、例えば、下記の方法により製造される。
第2固体電解質材料は、例えば、下記の方法により製造される。
目的の組成を有するように、原料粉が混合される。原料粉の例は、ハロゲン化物である。
一例として、目的とされる組成がLi3YCl4である場合、原料粉としてLiClおよびYCl3が、3:1のモル比となるように混合される。
原料粉の選択により、第2固体電解質材料を構成する元素が決定される。原料粉のモル比および合成プロセスを調整することで、第2固体電解質材料を構成する元素のモル分率が決定される。
合成プロセスにおいて生じ得る組成変化を相殺するようにあらかじめ調整されたモル比で、原料粉が混合されてもよい。
原料粉が混合されて、混合粉が得られる。混合粉は、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリング処理の方法により)互いに反応させ、反応物が得られる。反応物は、真空中または不活性ガス雰囲気(例えば、アルゴン雰囲気または窒素雰囲気)中で焼成されてもよい。あるいは、混合粉が、真空中または不活性雰囲気中で焼結されて、反応物を得てもよい。これらの方法により、第2固体電解質材料が得られる。
第2固体電解質材料の組成は、例えば、ICP発光分光分析法、イオンクロマトグラフィー法、不活性ガス溶融-赤外線吸収法、またはEPMA法のような分析法により決定できる。
以下の実施例を参照しながら、本開示がより詳細に説明される。
≪実施例1≫
[第1固体電解質材料の作製]
-30℃以下の露点を有するドライ雰囲気(以下、「ドライ雰囲気」という)中で、原料粉としてLi2O2およびTaCl5が、1:2のLi2O2:TaCl5モル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合粉が得られた。得られた混合粉は、遊星型ボールミル(フリッチュ社製、P-7型)を用い、24時間、600rpmでメカノケミカル的に反応するように処理された。次いで、混合粉は、200℃で6時間、焼成された。このようにして、実施例1による第1固体電解質材料の粉末が得られた。実施例1による第1固体電解質材料は、Li1.2TaO1.3Cl3.6により表される組成を有していた。
[第1固体電解質材料の作製]
-30℃以下の露点を有するドライ雰囲気(以下、「ドライ雰囲気」という)中で、原料粉としてLi2O2およびTaCl5が、1:2のLi2O2:TaCl5モル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合粉が得られた。得られた混合粉は、遊星型ボールミル(フリッチュ社製、P-7型)を用い、24時間、600rpmでメカノケミカル的に反応するように処理された。次いで、混合粉は、200℃で6時間、焼成された。このようにして、実施例1による第1固体電解質材料の粉末が得られた。実施例1による第1固体電解質材料は、Li1.2TaO1.3Cl3.6により表される組成を有していた。
[第2固体電解質材料の作製]
ドライ雰囲気中で、原料粉としてLiClおよびYCl3が、3:1のLiCl:YCl3モル比となるように用意された。これ以外は、実施例1による第1固体電解質材料と同様にして、実施例1による第2固体電解質材料が得られた。実施例1による第2固体電解質材料は、Li3YCl6により表される組成を有していた。
ドライ雰囲気中で、原料粉としてLiClおよびYCl3が、3:1のLiCl:YCl3モル比となるように用意された。これ以外は、実施例1による第1固体電解質材料と同様にして、実施例1による第2固体電解質材料が得られた。実施例1による第2固体電解質材料は、Li3YCl6により表される組成を有していた。
[第1固体電解質材料および第2固体電解質材料の還元電位の測定]
実施例1による第1固体電解質材料および第2固体電解質材料の還元電位は、サイクリックボルタンメトリー法により測定された。具体的には、以下の方法で還元電位が測定された。
実施例1による第1固体電解質材料および第2固体電解質材料の還元電位は、サイクリックボルタンメトリー法により測定された。具体的には、以下の方法で還元電位が測定された。
9.5mmの内径を有する絶縁性の筒の中で、SUS箔、固体電解質材料(100mg)、およびLi箔が、この順に積層された。この積層体に360MPaの圧力が印加された。次いで、積層体の上下にステンレス鋼から形成された集電体が取り付けられ、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、密閉された。このようにして、電位測定用セルが得られた。
電位測定用セルは、25℃の恒温槽に配置された。サイクリックボルタンメトリー測定により、Li基準電位で-0.5Vから6Vに達するまで、5mV/sの掃引速度で電位が走査された。
その結果、実施例1による第1固体電解質材料は、2.3Vの還元電位を有していた。実施例1による第2固体電解質材料は、0.3Vの還元電位を有していた。
[電解質混合物の調製]
実施例1による第1固体電解質材料および実施例1による第2固体電解質材料が、10:1の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例1による電解質混合物が得られた。
実施例1による第1固体電解質材料および実施例1による第2固体電解質材料が、10:1の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例1による電解質混合物が得られた。
[正極材料の作製]
ドライ雰囲気中で、実施例1による第1固体電解質材料およびLiCoO2(以下、「LCO」と呼ばれる)が、30:70の体積比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例1による正極材料が得られた。
ドライ雰囲気中で、実施例1による第1固体電解質材料およびLiCoO2(以下、「LCO」と呼ばれる)が、30:70の体積比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例1による正極材料が得られた。
[電池の作製]
9.5mmの内径を有する絶縁性の筒の中で、実施例1による正極材料(10mg)、実施例1による電解質混合物(80mg)、および実施例1による第2固体電解質材料(80mg)がこの順に積層され、積層体が得られた。この積層体に360MPaの圧力が印加され、正極、第1電解質層、および第2電解質層が形成された。
9.5mmの内径を有する絶縁性の筒の中で、実施例1による正極材料(10mg)、実施例1による電解質混合物(80mg)、および実施例1による第2固体電解質材料(80mg)がこの順に積層され、積層体が得られた。この積層体に360MPaの圧力が印加され、正極、第1電解質層、および第2電解質層が形成された。
次に、正極に、アルミニウム粉末(20mg)が積層された。この積層体に360MPaの圧力が印加され、正極集電体が形成された。
次に、第2電解質層に、金属In箔(厚さ200μm)、金属Li箔(厚さ300μm)、および金属In箔(厚さ200μm)が順に積層され、積層体が得られた。この積層体に80MPaの圧力が印加され、負極が形成された。正極集電体および負極にステンレス鋼からなる集電体が配置され、ステンレス鋼からなる集電体に、集電リードが取り付けられた。
最後に、絶縁性フェルールを用いて、絶縁性の筒の内部を外気雰囲気から遮断し、筒の内部を密閉した。このようにして、実施例1による電池が得られた。
≪実施例2≫
[第1固体電解質材料の作製]
ドライ雰囲気中で、原料粉としてLiClおよびNbOCl3が、1:1のLiCl:NbOCl3モル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合粉が得られた。得られた混合粉は、遊星型ボールミルを用い、24時間、600rpmでメカノケミカル的に反応するように処理された。このようにして、実施例2による第1固体電解質材料の粉末が得られた。実施例2による第1固体電解質材料はLiNbOCl4により表される組成を有していた。
[第1固体電解質材料の作製]
ドライ雰囲気中で、原料粉としてLiClおよびNbOCl3が、1:1のLiCl:NbOCl3モル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合粉が得られた。得られた混合粉は、遊星型ボールミルを用い、24時間、600rpmでメカノケミカル的に反応するように処理された。このようにして、実施例2による第1固体電解質材料の粉末が得られた。実施例2による第1固体電解質材料はLiNbOCl4により表される組成を有していた。
[第1固体電解質材料の還元電位の測定]
実施例2による第1固体電解質材料の還元電位は、実施例1と同様の方法で測定された。実施例2による第1固体電解質材料は、2.9Vの還元電位を有していた。
実施例2による第1固体電解質材料の還元電位は、実施例1と同様の方法で測定された。実施例2による第1固体電解質材料は、2.9Vの還元電位を有していた。
[電解質混合物の調製]
実施例2による第1固体電解質材料および実施例1による第2固体電解質材料が、10:2の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例2による電解質混合物が得られた。
実施例2による第1固体電解質材料および実施例1による第2固体電解質材料が、10:2の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例2による電解質混合物が得られた。
[正極材料の作製]
ドライ雰囲気中で、実施例2による第1固体電解質材料およびLCOが、30:70の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例2による正極材料が得られた。
ドライ雰囲気中で、実施例2による第1固体電解質材料およびLCOが、30:70の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例2による正極材料が得られた。
[電池の作製]
実施例1による電解質混合物の代わりに、実施例2による電解質混合物を用いたこと以外は、実施例1と同様にして、実施例2による電池が得られた。
実施例1による電解質混合物の代わりに、実施例2による電解質混合物を用いたこと以外は、実施例1と同様にして、実施例2による電池が得られた。
≪実施例3≫
[電解質混合物の調製]
実施例1による第1固体電解質材料および実施例1による第2固体電解質材料が、10:5の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例3による電解質混合物が得られた。
[電解質混合物の調製]
実施例1による第1固体電解質材料および実施例1による第2固体電解質材料が、10:5の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例3による電解質混合物が得られた。
[電池の作製]
実施例1による電解質混合物の代わりに、実施例3による電解質混合物を用いたこと以外は、実施例1と同様にして、実施例3による電池が得られた。
実施例1による電解質混合物の代わりに、実施例3による電解質混合物を用いたこと以外は、実施例1と同様にして、実施例3による電池が得られた。
≪実施例4≫
[第2固体電解質材料の作製]
-60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と呼ばれる)中で、原料粉としてLi2SおよびP2S5が、75:25のLi2S:P2S5モル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合粉が得られた。次いで、混合粉は、遊星型ボールミルを用い、10時間、510rpmでメカノケミカル的に反応するように処理された。このようにして、ガラス状の固体電解質が得られた。得られたガラス状の固体電解質は、乾燥アルゴン雰囲気中で、270℃、2時間で熱処理された。このようにして、ガラスセラミックス状の固体電解質である実施例4による第2固体電解質材料の粉末が得られた。実施例4による第2固体電解質材料は、Li2S-P2S5により表されるガラス状の固体電解質であった。
[第2固体電解質材料の作製]
-60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と呼ばれる)中で、原料粉としてLi2SおよびP2S5が、75:25のLi2S:P2S5モル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合粉が得られた。次いで、混合粉は、遊星型ボールミルを用い、10時間、510rpmでメカノケミカル的に反応するように処理された。このようにして、ガラス状の固体電解質が得られた。得られたガラス状の固体電解質は、乾燥アルゴン雰囲気中で、270℃、2時間で熱処理された。このようにして、ガラスセラミックス状の固体電解質である実施例4による第2固体電解質材料の粉末が得られた。実施例4による第2固体電解質材料は、Li2S-P2S5により表されるガラス状の固体電解質であった。
[第2固体電解質材料の還元電位の測定]
実施例4による第2固体電解質材料の還元電位は、実施例1と同様の方法で測定された。実施例4による第2固体電解質材料は、リチウムに対して安定であった。
実施例4による第2固体電解質材料の還元電位は、実施例1と同様の方法で測定された。実施例4による第2固体電解質材料は、リチウムに対して安定であった。
[電解質混合物の調製]
実施例1による第1固体電解質材料および実施例4による第2固体電解質材料が、10:5の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例4による電解質混合物が得られた。
実施例1による第1固体電解質材料および実施例4による第2固体電解質材料が、10:5の質量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、実施例4による電解質混合物が得られた。
[電池の作製]
実施例1による電解質混合物および実施例1による第2固体電解質材料の代わりに、実施例4による電解質混合物および実施例4による第2固体電解質材料を用いたこと以外は、実施例1と同様にして、実施例4による電池が得られた。
実施例1による電解質混合物および実施例1による第2固体電解質材料の代わりに、実施例4による電解質混合物および実施例4による第2固体電解質材料を用いたこと以外は、実施例1と同様にして、実施例4による電池が得られた。
≪比較例1≫
[電解質混合物の調製]
実施例1による第1固体電解質材料および実施例1による第2固体電解質材料が、10:0.5の重量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、比較例1による電解質混合物が得られた。
[電解質混合物の調製]
実施例1による第1固体電解質材料および実施例1による第2固体電解質材料が、10:0.5の重量比となるように用意された。これらの材料は、メノウ乳鉢中で混合された。このようにして、比較例1による電解質混合物が得られた。
[電池の作製]
実施例1による電解質混合物の代わりに、比較例1による電解質混合物を用いたこと以外は、実施例1と同様にして、比較例1による電池が得られた。
実施例1による電解質混合物の代わりに、比較例1による電解質混合物を用いたこと以外は、実施例1と同様にして、比較例1による電池が得られた。
≪比較例2≫
[電池の作製]
実施例1による電解質混合物の代わりに、実施例1による第1固体電解質材料を用いたこと以外は、実施例1と同様にして、比較例2による電池が得られた。すなわち、比較例2による第1電解質層は、実施例1の第1固体電解質材料のみを含有しており、第2固体電解質材料を含有していなかった。
[電池の作製]
実施例1による電解質混合物の代わりに、実施例1による第1固体電解質材料を用いたこと以外は、実施例1と同様にして、比較例2による電池が得られた。すなわち、比較例2による第1電解質層は、実施例1の第1固体電解質材料のみを含有しており、第2固体電解質材料を含有していなかった。
[充放電試験]
実施例1から4、比較例1、および比較例2により得られた電池の充放電試験が、以下の条件で行われた。
実施例1から4、比較例1、および比較例2により得られた電池の充放電試験が、以下の条件で行われた。
得られた電池は、25℃の恒温槽に配置された。
0.3Cレートとなる電流値360μAで、4.2Vの電圧に達するまで電池を充電した。次に、0.3Cレートとなる電流値360μAで、3.1Vの電圧に達するまで電池を放電した。
上記の充電および放電を1回の充放電サイクルとした。充放電サイクルは、25回繰り返された。
電池の負極に使用された金属Inおよび金属Liからなる合金は、0.6Vの対リチウム電位を有する。
以上の充放電試験により、実施例1から4、比較例1、および比較例2による電池の放電容量維持率が算出された。放電容量維持率は、初回放電容量に対する25サイクル後の放電容量の割合を表す。放電容量維持率の値は、表1に示される。表1において、第1電解質層における第1固体電解質材料に対する第2固体電解質材料の質量比は、電解質混合物の質量比と表記された。
≪考察≫
表1から明らかなように、実施例1から4による電池は、高い放電容量維持率を有する。すなわち、実施例1から4による電池は、高いサイクル特性を有する。
表1から明らかなように、実施例1から4による電池は、高い放電容量維持率を有する。すなわち、実施例1から4による電池は、高いサイクル特性を有する。
実施例1および3による電池を、比較例1および2による電池と比較すると明らかなように、第1電解質層において、第1固体電解質材料に対する第2固体電解質材料の質量比が0.05以下である電池は、放電容量維持率が低い。
実施例3および実施例4による電池を互いに比較すると明らかなように、第2固体電解質材料が硫化物固体電解質またはハロゲン化物固体電解質であれば、高い放電容量維持率を有する電池が得られる。
本開示の電池は、例えば、全固体リチウムイオン二次電池として利用されうる。
1000 電池
101 正極
102 第1電解質層
103 第2電解質層
104 負極
101 正極
102 第1電解質層
103 第2電解質層
104 負極
Claims (15)
- 正極、第1電解質層、第2電解質層、および負極を、この順で備え、
ここで、
前記第1電解質層は、第1固体電解質材料および第2固体電解質材料を含有し、
前記第1電解質層において、前記第1固体電解質材料に対する前記第2固体電解質材料の質量比は、0.05よりも大きく、かつ1未満であり、
前記第2電解質層は、前記第2固体電解質材料を含有し、
前記第1固体電解質材料は、Li、M、O、およびXからなり、
前記第1固体電解質材料において、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素であり、かつXは、Cl、Br、およびIからなる群より選択される少なくとも1種の元素であり、および
前記第2固体電解質材料は、前記第1固体電解質材料とは異なる組成を有する、
電池。 - 前記第2固体電解質材料の還元電位は、前記第1固体電解質材料の還元電位よりも低い、
請求項1に記載の電池。 - 前記質量比は、0.05よりも大きく、かつ0.50以下である、
請求項1または2に記載の電池。 - 前記質量比は、0.10以上0.50以下である、
請求項3に記載の電池。 - Mは、NbおよびTaからなる群より選択される少なくとも1種の元素を含む、
請求項1から4のいずれか一項に記載の電池。 - 前記第1固体電解質材料は、以下の化学式(1)により表され、
LiαMOβXγ ・・・(1)
ここで、以下の数式 1.0≦α≦1.2、
1.0≦β≦1.3、および
3.6≦γ≦4.0、
が充足される、
請求項1から5のいずれか一項に記載の電池。 - Mは、NbおよびTaからなる群より選択される少なくとも1種の元素であり、
数式:γ=5+α-2β、が充足される、
請求項6に記載の電池。 - 前記第2固体電解質材料は、Li、M’、およびX’からなり、
ここで、
M’は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種の元素であり、
X’は、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である、
請求項1から7のいずれか一項に記載の電池。 - M’は、イットリウムを含む、
請求項8に記載の電池。 - 前記第2固体電解質材料は、以下の化学式(2)により表され、
Li6-3zYzX’6 ・・・(2)
ここで、数式:0<z<2が充足される、
請求項9に記載の電池。 - 前記第2固体電解質材料は、Li3YCl6である、
請求項10に記載の電池。 - 前記第2固体電解質材料は、硫化物固体電解質である、
請求項1から7のいずれか一項に記載の電池。 - 前記硫化物固体電解質は、硫化リチウムおよび硫化リンを含む、
請求項12に記載の電池。 - 前記硫化物固体電解質は、Li2S-P2S5である、
請求項12または13に記載の電池。 - 前記正極は、前記第1固体電解質材料を含有する、
請求項1から14のいずれか一項に記載の電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20876375.5A EP4047694A4 (en) | 2019-10-17 | 2020-09-15 | BATTERY |
JP2021552274A JPWO2021075191A1 (ja) | 2019-10-17 | 2020-09-15 | |
CN202080071776.6A CN114556654A (zh) | 2019-10-17 | 2020-09-15 | 电池 |
US17/696,964 US20220209287A1 (en) | 2019-10-17 | 2022-03-17 | Battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019190368 | 2019-10-17 | ||
JP2019-190368 | 2019-10-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/696,964 Continuation US20220209287A1 (en) | 2019-10-17 | 2022-03-17 | Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075191A1 true WO2021075191A1 (ja) | 2021-04-22 |
Family
ID=75537564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034799 WO2021075191A1 (ja) | 2019-10-17 | 2020-09-15 | 電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220209287A1 (ja) |
EP (1) | EP4047694A4 (ja) |
JP (1) | JPWO2021075191A1 (ja) |
CN (1) | CN114556654A (ja) |
WO (1) | WO2021075191A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021002064A1 (ja) * | 2019-07-04 | 2021-01-07 | パナソニックIpマネジメント株式会社 | 電池 |
CN115360320B (zh) * | 2022-10-19 | 2023-02-07 | 中国科学院精密测量科学与技术创新研究院 | 一种低界面电阻高锂金属稳定性全固态电池及其制备方法 |
CN115911532A (zh) * | 2023-01-17 | 2023-04-04 | 天祥安氢(上海)科技有限公司 | 一种全固态电池及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016219291A (ja) * | 2015-05-22 | 2016-12-22 | アルプス電気株式会社 | 二次電池および二次電池の製造方法 |
JP2017199668A (ja) * | 2016-04-25 | 2017-11-02 | パナソニックIpマネジメント株式会社 | 電池、および、電池製造方法 |
WO2019135323A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
WO2019146294A1 (ja) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 電池 |
WO2019146217A1 (ja) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 電池 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10497970B2 (en) * | 2013-03-14 | 2019-12-03 | Arizona Board Of Regents On Behalf Of Arizona State University | Alkali ion conducting plastic crystals |
JP6997943B2 (ja) * | 2017-09-22 | 2022-01-18 | トヨタ自動車株式会社 | 正極材料とこれを用いたリチウム二次電池 |
JP7249562B2 (ja) * | 2018-01-26 | 2023-03-31 | パナソニックIpマネジメント株式会社 | 電池 |
US11424512B2 (en) * | 2018-11-02 | 2022-08-23 | Samsung Electronics Co., Ltd. | All-solid secondary battery and method of manufacturing the same |
WO2021002064A1 (ja) * | 2019-07-04 | 2021-01-07 | パナソニックIpマネジメント株式会社 | 電池 |
WO2021024785A1 (ja) * | 2019-08-07 | 2021-02-11 | Tdk株式会社 | 固体電解質、固体電解質層および固体電解質電池 |
KR20210128580A (ko) * | 2020-04-17 | 2021-10-27 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
EP4145559A4 (en) * | 2020-04-28 | 2023-10-25 | Panasonic Intellectual Property Management Co., Ltd. | POSITIVE ELECTRODE MATERIAL AND BATTERY |
EP4174022A4 (en) * | 2020-06-29 | 2023-12-27 | Panasonic Intellectual Property Management Co., Ltd. | POSITIVE ELECTRODE MATERIAL AND BATTERY |
JPWO2022091566A1 (ja) * | 2020-10-28 | 2022-05-05 | ||
EP4238938A4 (en) * | 2020-10-30 | 2024-05-15 | Panasonic Intellectual Property Management Co., Ltd. | SOLID ELECTROLYTE MATERIAL AND BATTERY IN WHICH IT IS USED |
WO2022224505A1 (ja) * | 2021-04-20 | 2022-10-27 | パナソニックIpマネジメント株式会社 | 正極材料および電池 |
JPWO2023286614A1 (ja) * | 2021-07-16 | 2023-01-19 | ||
WO2023021836A1 (ja) * | 2021-08-19 | 2023-02-23 | パナソニックIpマネジメント株式会社 | 電極および電池 |
CN116845344B (zh) * | 2023-08-30 | 2023-12-01 | 苏州清陶新能源科技有限公司 | 复合固态电解质膜及锂离子电池 |
-
2020
- 2020-09-15 JP JP2021552274A patent/JPWO2021075191A1/ja active Pending
- 2020-09-15 CN CN202080071776.6A patent/CN114556654A/zh active Pending
- 2020-09-15 EP EP20876375.5A patent/EP4047694A4/en not_active Withdrawn
- 2020-09-15 WO PCT/JP2020/034799 patent/WO2021075191A1/ja unknown
-
2022
- 2022-03-17 US US17/696,964 patent/US20220209287A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016219291A (ja) * | 2015-05-22 | 2016-12-22 | アルプス電気株式会社 | 二次電池および二次電池の製造方法 |
JP2017199668A (ja) * | 2016-04-25 | 2017-11-02 | パナソニックIpマネジメント株式会社 | 電池、および、電池製造方法 |
WO2019135323A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
WO2019146294A1 (ja) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 電池 |
WO2019146217A1 (ja) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 電池 |
Non-Patent Citations (1)
Title |
---|
NPL ''ADV. ENERGY MATER, vol. 20, 2016, pages 1501590 - 1501599 |
Also Published As
Publication number | Publication date |
---|---|
EP4047694A4 (en) | 2022-11-23 |
CN114556654A (zh) | 2022-05-27 |
JPWO2021075191A1 (ja) | 2021-04-22 |
US20220209287A1 (en) | 2022-06-30 |
EP4047694A1 (en) | 2022-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019135321A1 (ja) | 固体電解質材料、および、電池 | |
WO2019135344A1 (ja) | 固体電解質材料、および、電池 | |
EP3863026B1 (en) | Halide solid electrolyte material and battery using same | |
WO2019135320A1 (ja) | 固体電解質材料、および、電池 | |
JPWO2020070955A1 (ja) | ハロゲン化物固体電解質材料およびこれを用いた電池 | |
WO2021070595A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021002064A1 (ja) | 電池 | |
WO2019135336A1 (ja) | 固体電解質材料、および、電池 | |
EP3863025B1 (en) | Halide solid electrolyte material and battery using this | |
JPWO2020137153A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021161604A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2020137392A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021186809A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021075191A1 (ja) | 電池 | |
WO2020188914A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
EP3863027B1 (en) | Halide solid electrolyte material and battery using this | |
JPWO2020175171A1 (ja) | 電解質材料およびそれを用いた電池 | |
EP4046971A1 (en) | Solid electrolyte material and battery using same | |
WO2021186833A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
US20230103996A1 (en) | Solid electrolyte material, and battery in which same is used | |
JPWO2020137156A1 (ja) | 固体電解質およびそれを用いた電池 | |
JP7417951B2 (ja) | リチウムイオン伝導性固体電解質材料、およびこれを用いた電池 | |
WO2020188915A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199641A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2020137042A1 (ja) | 固体電解質材料、およびこれを用いた電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20876375 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021552274 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020876375 Country of ref document: EP Effective date: 20220517 |