WO2019146294A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2019146294A1
WO2019146294A1 PCT/JP2018/045586 JP2018045586W WO2019146294A1 WO 2019146294 A1 WO2019146294 A1 WO 2019146294A1 JP 2018045586 W JP2018045586 W JP 2018045586W WO 2019146294 A1 WO2019146294 A1 WO 2019146294A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
electrolyte material
battery
positive electrode
Prior art date
Application number
PCT/JP2018/045586
Other languages
English (en)
French (fr)
Inventor
裕太 杉本
章裕 酒井
出 佐々木
晃暢 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019567904A priority Critical patent/JP7182196B2/ja
Priority to EP18902103.3A priority patent/EP3745518B1/en
Priority to CN201880085783.4A priority patent/CN111566865B/zh
Publication of WO2019146294A1 publication Critical patent/WO2019146294A1/ja
Priority to US16/931,136 priority patent/US11631923B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to batteries.
  • Patent Document 1 discloses an all-solid-state battery using a halide containing indium as a solid electrolyte.
  • a battery according to an aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode,
  • the electrolyte layer includes a first electrolyte layer and a second electrolyte layer,
  • the second electrolyte layer is provided between the first electrolyte layer and the negative electrode,
  • the first electrolyte layer comprises a first solid electrolyte material
  • the second electrolyte layer includes a second solid electrolyte material which is a material different from the first solid electrolyte material
  • the first solid electrolyte material contains Li, M, and X, and does not contain sulfur
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X is at least one selected from the group consisting of Cl, Br, and I
  • the reduction potential of the second solid electrolyte material to lithium is lower than the reduction potential of the first solid electrolyte material to lithium.
  • the charge and discharge efficiency of the battery can be improved.
  • FIG. 1 shows a cross-sectional view of battery 1000 in the first embodiment.
  • FIG. 2 shows a cross-sectional view of battery 1100 in the first embodiment.
  • FIG. 3 is a graph showing the initial charge / discharge characteristics of the batteries in Example 1 and Comparative Example 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of battery 1000 in the first embodiment.
  • Battery 1000 in the first embodiment includes positive electrode 201, negative electrode 202, and electrolyte layer 100.
  • the electrolyte layer 100 is provided between the positive electrode 201 and the negative electrode 202.
  • the electrolyte layer 100 includes a first electrolyte layer 101 and a second electrolyte layer 102.
  • the second electrolyte layer 102 is provided between the first electrolyte layer 101 and the negative electrode 202.
  • the first electrolyte layer 101 contains a first solid electrolyte material.
  • the second electrolyte layer 102 contains a second solid electrolyte material.
  • the second solid electrolyte material is a material different from the first solid electrolyte material.
  • the first solid electrolyte material is a material represented by the following composition formula (1).
  • ⁇ , ⁇ and ⁇ are each independently a value larger than 0.
  • M includes at least one selected from metal elements and metalloid elements other than Li.
  • X is at least one selected from the group consisting of Cl, Br, and I.
  • the reduction potential for lithium of the second solid electrolyte material is lower than the reduction potential for lithium of the first solid electrolyte material.
  • the second solid electrolyte material having a low reduction potential reduction of the first solid electrolyte material formed of a halide solid electrolyte having high ion conductivity is suppressed. Thereby, the charge / discharge efficiency of the battery can be improved.
  • metal element as used herein is at least one selected from the group consisting of B, Si, Ge, As, Sb, and Te.
  • metal element is (I) All elements contained in Groups 1 to 12 of the periodic table (except for hydrogen), and (Ii) All elements contained in Groups 13 to 16 of the periodic table (except B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se) including. That is, it is an element group that can be a cation when forming an inorganic compound with a halogen compound.
  • M may contain Y (that is, yttrium). That is, the first solid electrolyte material may contain Y as the metal element M.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • Me Li , at least one metal element and metalloid elements other than Y
  • the compound may be a compound represented by the composition formula (m) (valence number of Me).
  • At least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the first solid electrolyte material may be Li 2.5 Y 0.5 Zr 0.5 Cl 6 .
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A1). Li 6-3d Y d X 6 Formula (A1) Here, in the composition formula (A1), X is two or more elements selected from the group consisting of Cl, Br, and I.
  • composition formula (A1) 0 ⁇ d ⁇ 2 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A2). Li 3 YX 6 ⁇ Formula (A2)
  • X is two or more elements selected from the group consisting of Cl, Br, and I. That is, in the composition formula (A1), d may be 1.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A3). Li 3-3 ⁇ Y 1 + ⁇ Cl 6 formula (A3) Here, in the composition formula (A3), 0 ⁇ ⁇ 0.15 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A4). Li 3-3 ⁇ Y 1 + ⁇ Br 6 ⁇ Formula (A4) Here, in the composition formula (A4), 0 ⁇ ⁇ 0.25 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A5). Li 3-3 ⁇ + a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y formula (A5)
  • Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • composition formula (A5) -1 ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ + a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A6). Li 3 -3 ⁇ Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A6)
  • Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi.
  • composition formula (A6) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A7). Li 3-3 ⁇ -a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A7)
  • Me is at least one selected from the group consisting of Zr, Hf, and Ti.
  • composition formula (A7) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A8). Li 3-3 ⁇ -2a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A8)
  • Me is at least one selected from the group consisting of Ta and Nb.
  • composition formula (A8) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. , May be used.
  • the first electrolyte layer 101 may contain the first solid electrolyte material as a main component. That is, the first electrolyte layer 101 may contain, for example, 50% or more (50% by weight or more) of the weight ratio of the first solid electrolyte material to the entire first electrolyte layer 101.
  • the charge and discharge characteristics of the battery can be further improved.
  • the first electrolyte layer 101 may contain, for example, 70% or more (70% by weight or more) of the weight ratio of the first solid electrolyte material to the entire first electrolyte layer 101.
  • the charge and discharge characteristics of the battery can be further improved.
  • the first electrolyte layer 101 may further contain unavoidable impurities.
  • the first electrolyte layer 101 can include the starting material used for the synthesis of the solid electrolyte material.
  • the first electrolyte layer 101 may include by-products or decomposition products generated during synthesis of the solid electrolyte material.
  • the weight ratio of the solid electrolyte material contained in the first electrolyte layer 101 to the first electrolyte layer 101 may be substantially one. “The weight ratio is substantially 1” means that the weight ratio calculated without considering the unavoidable impurities that may be contained in the first electrolyte layer 101 is 1. That is, the first electrolyte layer 101 may be made of only a solid electrolyte material.
  • the charge and discharge characteristics of the battery can be further improved.
  • the first electrolyte layer 101 may be made of only the first solid electrolyte material.
  • the first electrolyte layer 101 may be positioned without being in contact with the negative electrode 202.
  • the electrochemically stable second electrolyte layer 102 can be inserted between the first electrolyte layer 101 and the negative electrode 202. For this reason, the contact of the 1st electrolyte layer 101 and negative electrode which are weak to reduction can be suppressed. Thereby, the reduction of the first electrolyte layer 101 can be further suppressed.
  • the second solid electrolyte material for example, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, an organic polymer solid electrolyte, and the like can be used.
  • the second solid electrolyte material may be a material represented by the following composition formula (2).
  • ⁇ ′, ⁇ ′ and ⁇ ′ are each independently a value larger than 0.
  • M ′ contains at least one selected from the group consisting of metal elements and metalloid elements other than Li.
  • X ′ is at least one selected from the group consisting of Cl, Br, and I.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • M ′ may contain Y (ie, yttrium).
  • the second solid electrolyte material may contain Y as the metal element M '.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second solid electrolyte material may be Li 3 YCl 6 , Li 3 YBr 6 , or Li 3 YBr 2 Cl 2 I 2 .
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second electrolyte layer 102 may contain the second solid electrolyte material as a main component. That is, the second electrolyte layer 102 may contain, for example, 50% or more (50% by weight or more) of the second solid electrolyte material in a weight ratio to the entire second electrolyte layer 102.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 102 may contain, for example, 70% or more (70% by weight or more) of the weight ratio of the second solid electrolyte material to the entire second electrolyte layer 102.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 102 may further contain unavoidable impurities.
  • the second electrolyte layer 102 can include the starting material used for the synthesis of the solid electrolyte material.
  • the electrolyte layer 102 can include by-products or decomposition products generated during synthesis of the solid electrolyte material.
  • the weight ratio of the solid electrolyte material contained in the second electrolyte layer 102 to the second electrolyte layer 102 may be substantially one. “The weight ratio is substantially 1” means that the weight ratio calculated without considering the unavoidable impurities that may be contained in the second electrolyte layer 102 is 1. That is, the first electrolyte layer 102 may be made of only a solid electrolyte material.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 102 may be made of only the second solid electrolyte material.
  • the first electrolyte layer 101 and the second electrolyte layer 102 may contain two or more of the materials listed as the solid electrolyte material.
  • the total thickness of the first electrolyte layer 101 and the second electrolyte layer 102 may be 1 ⁇ m or more and 300 ⁇ m or less. In the case where the total thickness of the first electrolyte layer 101 and the second electrolyte layer 102 is less than 1 ⁇ m, the possibility that the positive electrode 201 and the negative electrode 202 short circuit is increased. When the total thickness of the first electrolyte layer 101 and the second electrolyte layer 102 exceeds 300 ⁇ m, the operation at high output may be difficult.
  • the positive electrode 201 includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • the positive electrode 201 includes, for example, a positive electrode active material (for example, positive electrode active material particles 211).
  • positive electrode active materials include Lithium-containing transition metal oxides (eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.), Transition metal fluoride, Polyanion material, Fluorinated polyanion material, Transition metal sulfide, Transition metal oxysulfide, Transition metal oxynitrides and the like can be used.
  • Lithium-containing transition metal oxides eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • Transition metal fluoride eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • Transition metal fluoride Polyanion material
  • Fluorinated polyanion material Transition metal sulfide
  • Transition metal oxysulfide Transition metal oxynitrides and the like
  • the manufacturing cost can be reduced and the average discharge
  • the positive electrode 201 may include a solid electrolyte material. According to the above configuration, the lithium ion conductivity in the inside of the positive electrode 201 is enhanced, and an operation at high output becomes possible.
  • the solid electrolyte material may include a halide solid electrolyte or a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, and a complex hydride solid electrolyte.
  • halide solid electrolyte for example, materials listed as examples of the first solid electrolyte material used for the first electrolyte layer 101 may be used.
  • Li 2 S—P 2 S 5 Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc.
  • LiX (X: F, Cl, Br, I)
  • Li 2 O Li 2 O
  • MO q Li 2 O
  • MO q Li 2 O
  • MO q Li p MO q
  • Any material may be used, such as (p, q: natural number).
  • oxide solid electrolyte for example, NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product, Perovskite-type solid electrolyte of (LaLi) TiO 3 system, LISICON-type solid electrolyte represented by Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and their element substitution products, Garnet type solid electrolyte represented by Li 7 La 3 Zr 2 O 12 and its element substitution product, Li 3 N and its H-substituted form, Li 3 PO 4 and its N-substituted form, Glass to which Li 2 SO 4 , Li 2 CO 3 and the like are added based on Li-BO compounds such as LiBO 2 and Li 3 BO 3 , Glass ceramics and the like may be used.
  • Li-BO compounds such as LiBO 2 and Li 3 BO 3
  • Glass ceramics and the like may be used.
  • the polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. Since the polymer electrolyte having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further enhanced.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • a lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • the complex hydride solid electrolyte for example, LiBH 4 -LiI, LiBH 4 -P 2 S 5 or the like can be used.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. If the thickness of the positive electrode is less than 10 ⁇ m, it may be difficult to secure a sufficient energy density of the battery. In addition, when the thickness of the positive electrode exceeds 500 ⁇ m, operation at high output may be difficult.
  • the positive electrode active material may be coated.
  • a coating material a material having low electron conductivity can be used.
  • an oxide material, an oxide solid electrolyte, etc. may be used.
  • oxide material for example, SiO 2, Al 2 O 3 , TiO 2, B 2 O 3, Nb 2 O 5, WO 3, ZrO 2 and the like may be used.
  • oxide solid electrolyte for example, Li-Nb-O compounds such as LiNbO 3 Li-BO compounds such as LiBO 2 and Li 3 BO 3 , Li-Al-O compounds such as LiAlO 2 Li-Si-O compounds such as Li 4 SiO 4 Li-Ti-O compounds such as Li 2 SO 4 and Li 4 Ti 5 O 12 ; Li-Zr-O compounds such as Li 2 ZrO 3 , Li-Mo-O compounds, such as Li 2 MoO 3 Li-V-O compounds, such as LiV 2 O 5 Li—W—O compounds such as Li 2 WO 4 can be used.
  • Oxide solid electrolytes have high ion conductivity and high high potential stability. For this reason, charge / discharge efficiency can be further improved by using an oxide solid electrolyte.
  • the negative electrode 202 includes a material having a property of inserting and extracting metal ions (eg, lithium ions).
  • the negative electrode 202 contains, for example, a negative electrode active material.
  • metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. may be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal, lithium alloy, and the like.
  • carbon materials include natural graphite, coke, graphitized carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, and a tin compound can be suitably used.
  • the negative electrode 202 may include a solid electrolyte material. According to the above configuration, the lithium ion conductivity in the negative electrode 202 is enhanced, and an operation at high output becomes possible.
  • a material that can be included in the positive electrode 201 may be used.
  • the median diameter of the negative electrode active material particles may be 0.1 ⁇ m or more and 100 ⁇ m or less. If the median diameter of the negative electrode active material particles is smaller than 0.1 ⁇ m, the negative electrode active material particles and the solid electrolyte material are not well dispersed in the negative electrode, and the charge and discharge characteristics of the battery may be degraded. In addition, when the median diameter of the negative electrode active material particles is larger than 100 ⁇ m, the lithium diffusion rate in the negative electrode active material particles may decrease. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the negative electrode active material particles may be larger than the median diameter of the solid electrolyte material. Thereby, the negative electrode active material particles and the solid electrolyte material can be well dispersed.
  • the volume ratio Vn representing the volume of the negative electrode active material particles relative to the total volume of the negative electrode active material particles and the solid electrolyte material may be 0.3 or more and 0.95 or less. If the volume ratio Vn is less than 0.3, it may be difficult to ensure sufficient energy density of the battery. On the other hand, when the volume ratio Vn exceeds 0.95, the operation of the battery at high output may be difficult.
  • the thickness of the negative electrode 202 may be 10 ⁇ m or more and 500 ⁇ m or less. If the thickness of the negative electrode is less than 10 ⁇ m, it may be difficult to secure a sufficient energy density of the battery. In addition, when the thickness of the negative electrode exceeds 500 ⁇ m, operation at high output may be difficult.
  • the first electrolyte layer 101 and the second electrolyte layer 102 may contain a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, and a complex hydride solid electrolyte for the purpose of enhancing the ion conductivity.
  • a material that can be included in the positive electrode 201 may be used as the solid electrolyte material.
  • At least one of the positive electrode 201, the first electrolyte layer 101, the second electrolyte layer 102, and the negative electrode 202 may contain a binder for the purpose of improving the adhesion between the particles.
  • the binding agent is used to improve the binding properties of the material constituting the electrode.
  • polyvinylidene fluoride polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber, Carboxymethylcellulose, etc.
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadienes can be used. Moreover, 2 or more types selected from these may be mixed and it may be used as a binding agent.
  • At least one of the positive electrode 201 and the negative electrode 202 may contain a conductive aid for the purpose of enhancing the electronic conductivity.
  • a conductive support agent for example, Graphites of natural graphite or artificial graphite, Carbon blacks such as acetylene black and ketjen black Conductive fibers such as carbon fiber or metal fiber Carbon fluoride, Metal powders such as aluminum, Conductive whiskers such as zinc oxide or potassium titanate, Conductive metal oxides such as titanium oxide Conductive polymer compounds such as polyaniline, polypyrrole and polythiophene, Etc. may be used.
  • a carbon conductive aid is used, cost reduction can be achieved.
  • the positive electrode 201 may contain the first solid electrolyte material.
  • the ion conductivity between the positive electrode 201 and the negative electrode 202 can be further improved.
  • FIG. 2 shows a cross-sectional view of battery 1100 in the first embodiment.
  • positive electrode 201 includes a mixed material of first solid electrolyte particles 111 and positive electrode active material particles 211.
  • the first solid electrolyte particles 111 may be particles composed of the first solid electrolyte material or the first solid electrolyte material as a main component (for example, 50% or more (50% by weight based on the total weight of the first solid electrolyte particles 111). Or more)) containing particles.
  • the shape of the first solid electrolyte particle 111 is not limited, and may be, for example, needle-like, spherical, oval-spherical, or the like.
  • the shape of the first solid electrolyte particles 111 may be particulate.
  • the median diameter may be 100 ⁇ m or less.
  • the median diameter is larger than 100 ⁇ m, the positive electrode active material particles 211 and the first solid electrolyte particles 111 are not well dispersed in the positive electrode, and the charge and discharge characteristics of the battery may be degraded.
  • the median diameter of the first solid electrolyte particles 111 may be 10 ⁇ m or less.
  • the positive electrode active material particles 211 and the first solid electrolyte particles 111 can be well dispersed.
  • the median diameter of the first solid electrolyte particles 111 may be smaller than the median diameter of the positive electrode active material particles 211.
  • the first solid electrolyte particles 111 and the positive electrode active material particles 211 can be dispersed better in the electrode.
  • the median diameter of the positive electrode active material particles 211 may be 0.1 ⁇ m or more and 100 ⁇ m or less. If the median diameter of the positive electrode active material particles 211 is smaller than 0.1 ⁇ m, the positive electrode active material particles 211 and the first solid electrolyte particles 111 are not well dispersed in the positive electrode 201, and the charge / discharge characteristics of the battery may be degraded. In addition, when the median diameter of the positive electrode active material particles 211 is larger than 100 ⁇ m, lithium diffusion in the positive electrode active material particles 211 is delayed. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the positive electrode active material particles 211 may be larger than the median diameter of the first solid electrolyte particles 111. Thereby, the positive electrode active material particles 211 and the first solid electrolyte particles 111 can be well dispersed.
  • the positive electrode 201 may also include a plurality of first solid electrolyte particles 111 and a plurality of positive electrode active material particles 211.
  • the content of the first solid electrolyte particles 111 may be the same as or different from the content of the positive electrode active material particles 211.
  • the volume ratio Vp representing the volume of the positive electrode active material particles 211 with respect to the total volume of the positive electrode active material particles 211 and the first solid electrolyte particles 111 may be 0.3 or more and 0.95 or less. If the volume ratio Vp is less than 0.3, it may be difficult to ensure sufficient energy density of the battery. On the other hand, when the volume ratio Vp exceeds 0.95, the operation of the battery at high output may be difficult.
  • the battery in Embodiment 1 can be configured as a battery of various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • the first solid electrolyte material in Embodiment 1 can be produced, for example, by the following method.
  • the raw material powder of binary halide is prepared in consideration of the composition ratio of the product.
  • LiCl and YCl 3 are provided in a molar ratio of 3: 1.
  • the elements of “M”, “Me”, and “X” in the above-mentioned composition formula can be determined by selecting the type of the raw material powder.
  • “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “d”, “ ⁇ ”, “a”, “x”, and “y” can be obtained. The value is determined.
  • Raw material powder is mixed well.
  • the raw material powder is pulverized using a method of mechanochemical milling.
  • the raw material powder reacts to obtain the first solid electrolyte material.
  • they may be sintered in vacuum to obtain the first solid electrolyte material.
  • composition (that is, the crystal structure) of the crystal phase in the solid electrolyte material can be determined by the selection of the reaction method and reaction conditions of the raw material powders.
  • Example 1 Preparation of Second Solid Electrolyte Material
  • a planetary ball mill Fritsch make, P-7 type
  • the positive electrode material of Example 1 was produced by mixing these with an agate mortar.
  • the sulfide solid electrolyte material Li 2 S—P 2 S 5 and the negative electrode active material graphite were prepared at a weight ratio of 60:40.
  • the negative electrode material of Example 1 was produced by mixing these with an agate mortar.
  • the battery according to Example 1 was manufactured by shielding and sealing the inside of the insulating outer cylinder from the open air atmosphere using the insulating ferrule.
  • Example 2 [Preparation of Second Solid Electrolyte Material]
  • F-7 planetary ball mill
  • a secondary battery was produced in the same manner as in Example 1 except that the second solid electrolyte material of Example 2 was used for the second electrolyte layer.
  • Example 3 [Preparation of Second Solid Electrolyte Material]
  • Raw material powders LiBr, LiCl, LiI, YCl 3 and YBr 3 in molar ratio of LiBr: LiCl: LiI: YCl 3 : YBr 3 1: 1: 4: 1 in an argon glove box having a dew point of ⁇ 60 ° C. or less. : Prepared to be 1: Thereafter, milling was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7) to obtain a powder of a second solid electrolyte material Li 3 YBr 2 Cl 2 I 2 .
  • a secondary battery was produced in the same manner as in Example 1 except that the second solid electrolyte material of Example 3 was used for the second electrolyte layer.
  • the negative electrode material (12 mg) of Example 1 In the insulating outer cylinder, the negative electrode material (12 mg) of Example 1, the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 Cl 6 (80 mg) of Example 1, and the Example 1 It laminated
  • the battery according to Comparative Example 1 was manufactured by shielding and sealing the inside of the insulating outer cylinder from the outside air atmosphere using the insulating ferrule.
  • the battery was placed in a 25 ° C. thermostat.
  • Constant current charging was performed at a current value of 70 ⁇ A at which a 0.05 C rate (20-hour rate) was obtained with respect to the theoretical capacity of the battery, and charging was terminated at a voltage of 3.6 V.
  • the battery was discharged at a current value of 70 ⁇ A at the same rate of 0.05 C, and the discharge was finished at a voltage of 1.9 V.
  • a SUS foil, a halide solid electrolyte material (100 mg) shown in Table 2 and a Li foil were laminated in this order.
  • the laminate was produced by pressure-molding this at a pressure of 360 MPa.
  • stainless steel current collectors were disposed above and below the laminate, and current collection leads were attached to the current collectors.
  • the inside of the insulating outer cylinder was shut off from the atmosphere and sealed from the outside air atmosphere using the insulating ferrule, to prepare a reduction potential measuring cell.
  • FIG. 3 is a graph showing the initial charge / discharge characteristics of the batteries in Example 1 and Comparative Example 1.
  • the battery of the present disclosure can be utilized, for example, as an all solid lithium secondary battery.

Abstract

本開示は、充放電効率をさらに向上させた電池を提供する。本開示による電池は、正極と、負極と、前記正極と前記負極との間に設けられる電解質層と、を備える。前記電解質層は、第1電解質層と第2電解質層とを含む。前記第2電解質層は、前記第1電解質層と前記負極との間に設けられている。前記第1電解質層は、第1固体電解質材料を含む。前記第2電解質層は、前記第1固体電解質材料とは異なる材料である第2固体電解質材料を含む。前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まない。Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つを含む。Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1種である。前記第2固体電解質材料のリチウムに対する還元電位は、前記第1固体電解質材料のリチウムに対する還元電位よりも、低い。

Description

電池
 本開示は、電池に関する。
 特許文献1には、インジウムを含むハロゲン化物を固体電解質として用いた全固体電池が開示されている。
特開2006-244734号公報
 従来技術においては、電池の充放電効率のさらなる向上が望まれる。
 本開示の一様態における電池は、正極と、負極と、前記正極と前記負極との間に設けられる電解質層と、を備え、
 前記電解質層は、第1電解質層と第2電解質層とを含み、
 前記第2電解質層は、前記第1電解質層と前記負極との間に設けられ、
 前記第1電解質層は、第1固体電解質材料を含み、
 前記第2電解質層は、前記第1固体電解質材料とは異なる材料である第2固体電解質材
料を含み、
 前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まず、
 Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、
 Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つであり、
 前記第2固体電解質材料のリチウムに対する還元電位は、前記第1固体電解質材料のリチウムに対する還元電位よりも、低い。
 本開示によれば、電池の充放電効率を向上させることができる。
図1は、実施の形態1における電池1000の断面図を示す。 図2は、実施の形態1における電池1100の断面図を示す。 図3は、実施例1および比較例1における電池の初期充放電特性を示すグラフである。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1における電池1000の概略構成を示す断面図である。
 実施の形態1における電池1000は、正極201、負極202、および電解質層100を備える。
 電解質層100は、正極201および負極202の間に設けられる。
 電解質層100は、第1電解質層101および第2電解質層102を含む。
 第2電解質層102は、第1電解質層101および負極202の間に設けられる。
 第1電解質層101は、第1固体電解質材料を含む。
 第2電解質層102は、第2固体電解質材料を含む。第2固体電解質材料は、第1固体電解質材料とは異なる材料である。
 第1固体電解質材料は、下記の組成式(1)により表される材料である。
 Liαβγ ・・・式(1)
 ここで、α、β、およびγは、それぞれ独立して、0より大きい値である。
 Mは、Li以外の金属元素および半金属元素から選択される少なくとも1つを含む。
 Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 第2固体電解質材料のリチウムに対する還元電位は、第1固体電解質材料のリチウムに対する還元電位よりも、低い。
 還元電位の低い第2固体電解質材料を用いることにより、高いイオン伝導性を有するハロゲン化物固体電解質から形成される第1固体電解質材料の還元が抑制される。これにより、電池の充放電効率を向上させることができる。
 本明細書において用いられる用語「半金属元素」とは、B、Si、Ge、As、Sb、およびTeからなる群から選択される少なくとも1つである。
 本明細書において用いられる「金属元素」は、 
(i)周期表1族から12族中に含まれるすべての元素(ただし、水素を除く)、および 
(ii)周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く) 
を含む。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 なお、組成式(1)においては、Mは、Y(すなわち、イットリウム)を含んでもよい。すなわち、第1固体電解質材料は、金属元素MとしてYを含んでもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 Yを含む第1固体電解質材料として、例えば、LiMe(a+mb+3c=6、かつ、c>0を満たす)(Me:Li、Y以外の金属元素と半金属元素の少なくとも1つ)(m:Meの価数)の組成式で表される化合物であってもよい。
 Meとしては、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つを用いてもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上することができる。
 なお、第1固体電解質材料は、Li2.50.5Zr0.5Cl、であってもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3d・・・式(A1)
 ここで、組成式(A1)においては、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。
 また、組成式(A1)においては、0<d<2を満たす。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A2)により表される材料であってもよい。
 LiYX・・・式(A2)
 ここで、組成式(A2)においては、Xは、Cl、Br、およびIからなる群より選択される二種以上の元素である。すなわち、組成式(A1)において、d=1であってもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl・・・式(A3)
 ここで、組成式(A3)においては、0<δ≦0.15が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr・・・式(A4)
 ここで、組成式(A4)においては、0<δ≦0.25が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeCl6-x-yBr ・・・式(A5)
 ここで、組成式(A5)においては、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1つである。
 また、組成式(A5)においては、
-1<δ<2、
0<a<3、
0<(3-3δ+a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeCl6-x-yBr ・・・式(A6)
 ここで、組成式(A6)においては、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1つである。
 また、組成式(A6)においては、
-1<δ<1、
0<a<2、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeCl6-x-yBr ・・・式(A7)
 ここで、組成式(A7)においては、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも1つである。
 また、組成式(A7)においては、
-1<δ<1、
0<a<1.5、
0<(3-3δ-a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeCl6-x-yBr ・・・式(A8)
 ここで、組成式(A8)においては、Meは、TaおよびNbからなる群より選択される少なくとも1つである。
 また、組成式(A8)においては、
-1<δ<1、
0<a<1.2、
0<(3-3δ-2a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料として、例えば、LiYX、LiMgX、LiFeX、Li(Al、Ga、In)X、Li(Al、Ga、In)X、など、が用いられうる。
 なお、第1電解質層101は、第1固体電解質材料を、主成分として、含んでもよい。すなわち、第1電解質層101は、第1固体電解質材料を、例えば、第1電解質層101の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第1電解質層101は、第1固体電解質材料を、例えば、第1電解質層101の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 第1電解質層101は、さらに、不可避的な不純物を含み得る。第1電解質層101は、固体電解質材料の合成のために用いられた出発原料を含み得る。第1電解質層101は、固体電解質材料を合成する際に生成した副生成物または分解生成物を含み得る。
 第1電解質層101に含まれる固体電解質材料の第1電解質層101に対する重量比は、実質的に1であり得る。「重量比が実質的に1である」とは、第1電解質層101に含まれ得る不可避不純物を考慮せずに算出された重量比が1であるという意味である。すなわち、第1電解質層101は、固体電解質材料のみから構成されていてもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第1電解質層101は、第1固体電解質材料のみから構成されていてもよい。
 なお、第1電解質層101は、負極202とは接触せずに位置してもよい。
 以上の構成によれば、電気化学的に安定な第2電解質層102を第1電解質層101および負極202の間に挿入できる。このため、還元に弱い第1電解質層101と負極の接触を抑制できる。これにより、第1電解質層101の還元を、より抑制することができる。
 第2固体電解質材料としては、例えば、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、有機ポリマー固体電解質、など、が用いられうる。
 なお、第2固体電解質材料は、下記の組成式(2)により表される材料であってもよい。
 Liα’M’β’X’γ’ ・・・式(2)
 ここで、α’、β’、およびγ’は、それぞれ独立して、0より大きい値である。
 M’は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つを含む。
 X’は、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、組成式(2)においては、M’は、Y(すなわち、イットリウム)を含んでもよい。
 すなわち、第2固体電解質材料は、金属元素M’としてYを含んでもよい。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料は、LiYCl、LiYBr、またはLiYBrClであってもよい。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2電解質層102は、第2固体電解質材料を、主成分として、含んでもよい。すなわち、第2電解質層102は、第2固体電解質材料を、例えば、第2電解質層102の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2電解質層102は、第2固体電解質材料を、例えば、第2電解質層102の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 第2電解質層102は、さらに、不可避的な不純物を含み得る。第2電解質層102は、固体電解質材料の合成のために用いられた出発原料を含み得る。電解質層102は、固体電解質材料を合成する際に生成した副生成物または分解生成物を含み得る。
 第2電解質層102に含まれる固体電解質材料の第2電解質層102に対する重量比は、実質的に1であり得る。「重量比が実質的に1である」とは、第2電解質層102に含まれ得る不可避不純物を考慮せずに算出された重量比が1であるという意味である。すなわち、第1電解質層102は、固体電解質材料のみから構成されていてもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2電解質層102は、第2固体電解質材料のみから構成されていてもよい。
 なお、第1電解質層101と第2電解質層102とは、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。
 第1電解質層101と第2電解質層102の合計厚みは1μm以上かつ300μm以下であってもよい。第1電解質層101と第2電解質層102の合計厚みが1μm未満である場合には、正極201および負極202が短絡する可能性が高まる。また、第1電解質層101と第2電解質層102の合計厚みが300μmを超える場合には、高出力での動作が困難となる可能性がある。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。正極201は、例えば、正極活物質(例えば、正極活物質粒子211)を含む。
 正極活物質には、例えば、
 リチウム含有遷移金属酸化物(例えば、Li(NiCoAl)O、Li(NiCoMn)O、LiCoO、など)、
 遷移金属フッ化物、
 ポリアニオン材料、
 フッ素化ポリアニオン材料、
 遷移金属硫化物、
 遷移金属オキシ硫化物、
 遷移金属オキシ窒化物、など
が用いられうる。
 特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを安くでき、平均放電電圧を高めることができる。
 正極201は、固体電解質材料を含んでもよい。以上の構成によれば、正極201の内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。
 固体電解質材料としては、ハロゲン化物固体電解質または硫化物固体電解質、酸化物固体電解質、高分子固体電解質、錯体水素化物固体電解質が含まれてもよい。
 ハロゲン化物固体電解質としては、例えば、第1電解質層101に用いられる第1固体電解質材料の例示としてあげる材料などが用いられうる。
 硫化物固体電解質としては、例えば、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。また、これらに、LiX(X:F、Cl、Br、I)、LiO、MO、LiMO(M:P、Si、Ge、B、Al、Ga、In、Fe、Znのいずれか)(p、q:自然数)などの、材料が用いられうる。
 酸化物固体電解質としては、例えば、
 LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、
 (LaLi)TiO系のペロブスカイト型固体電解質、
 Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、
 LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、
 LiNおよびそのH置換体、
 LiPOおよびそのN置換体、
 LiBO、LiBOなどのLi-B-O化合物をベースとして、LiSO、LiCOなどが添加されたガラス、
 ガラスセラミックス
など、が用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子電解質は、リチウム塩を多く含有することができるので、イオン導電率をより高めることができる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH-LiI、LiBH-Pなど、が用いられうる。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。正極の厚みが10μm未満である場合には、十分な電池のエネルギー密度を確保することが困難となる可能性がある。また、正極の厚みが500μmを超える場合には、高出力での動作が困難となる可能性がある。
 正極活物質は被覆してもよい。被覆材料としては、電子伝導性が低い材料が用いられうる。被覆材料として、酸化物材料、酸化物固体電解質などが用いられうる。
 酸化物材料としては、例えば、SiO、Al、TiO、B、Nb、WO、ZrOなどが用いられうる。酸化物固体電解質としては、例えば、
 LiNbOなどのLi-Nb-O化合物、
 LiBO、LiBOなどのLi-B-O化合物、
 LiAlOなどのLi-Al-O化合物、
 LiSiOなどのLi-Si-O化合物、
 LiSO、LiTi12などのLi-Ti-O化合物、
 LiZrOなどのLi-Zr-O化合物、
 LiMoOなどのLi-Mo-O化合物、
 LiVなどのLi-V-O化合物、
 LiWOなどのLi-W-O化合物
などが用いられうる。
 酸化物固体電解質は、イオン導電率が高く、高電位安定性が高い。このため、酸化物固体電解質を用いることで、充放電効率をより向上することができる。
 負極202は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。負極202は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、錫化合物、を好適に使用できる。
 負極202は、固体電解質材料を含んでもよい。以上の構成によれば、負極202内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。固体電解質材料としては、正極201に含まれうる材料を用いてもよい。
 負極活物質粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質粒子のメジアン径が0.1μmより小さいと、負極において、負極活物質粒子および固体電解質材料が、良好に分散しないため、電池の充放電特性が低下し得る。また、負極活物質粒子のメジアン径が100μmより大きいと、負極活物質粒子内のリチウム拡散速度が低下し得る。このため、電池の高出力での動作が困難となる場合がある。
 負極活物質粒子のメジアン径は、固体電解質材料のメジアン径よりも、大きくてもよい。これにより、負極活物質粒子および固体電解質材料が良好に分散し得る。
 負極202において、負極活物質粒子および固体電解質材料の合計体積に対する負極活物質粒子の体積を表す体積比Vnは、0.3以上0.95以下であってもよい。体積比Vnが0.3未満である場合には、電池のエネルギー密度を十分に確保することが困難となり得る。一方、体積比Vnが0.95を超える場合には、高出力での電池の動作が困難となり得る。
 負極202の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みが10μm未満である場合には、十分な電池のエネルギー密度を確保することが困難となる可能性がある。また、負極の厚みが500μmを超える場合には、高出力での動作が困難となる可能性がある。
 第1電解質層101および第2電解質層102には、イオン伝導性を高める目的で、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、錯体水素化物固体電解質が含まれてもよい。これらの固体電解質材料としては正極201に含まれうる材料を用いてもよい。
 正極201と、第1電解質層101と、第2電解質層102と、負極202とのうちの少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。
 また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極201と負極202との少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、
 天然黒鉛または人造黒鉛のグラファイト類、
 アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、
 炭素繊維または金属繊維などの導電性繊維類、
 フッ化カーボン、
 アルミニウムなどの金属粉末類、
 酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、
 酸化チタンなどの導電性金属酸化物、
 ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、
など、が用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 なお、正極201は、第1固体電解質材料を含んでもよい。
 以上の構成によれば、正極201と負極202との間のイオン導電率を、より向上することができる。
 図2は、実施の形態1における電池1100の断面図を示す。
 実施の形態1における電池1100においては、正極201は、第1固体電解質粒子111と正極活物質粒子211との混合材料を含む。
 第1固体電解質粒子111は、第1固体電解質材料からなる粒子、または、第1固体電解質材料を主たる成分として(例えば、第1固体電解質粒子111の全体に対する重量割合で50%以上(50重量%以上))含む粒子である。
 また、第1固体電解質粒子111の形状は、限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、第1固体電解質粒子111の形状は、粒子状であってもよい。
 例えば、実施の形態1における第1固体電解質粒子111の形状が粒子状(例えば、球状)の場合、メジアン径は、100μm以下であってもよい。メジアン径が100μmより大きいと、正極活物質粒子211および第1固体電解質粒子111が、正極において良好に分散しないため、電池の充放電特性が低下し得る。また、実施の形態1においては、第1固体電解質粒子111のメジアン径は10μm以下であってもよい。
 以上の構成によれば、正極201において、正極活物質粒子211および第1固体電解質粒子111が、良好に分散し得る。
 また、実施の形態1においては、第1固体電解質粒子111のメジアン径は、正極活物質粒子211のメジアン径より小さくてもよい。
 以上の構成によれば、電極において第1固体電解質粒子111および正極活物質粒子211が、より良好に分散し得る。
 正極活物質粒子211のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質粒子211のメジアン径が0.1μmより小さいと、正極201において、正極活物質粒子211および第1固体電解質粒子111が、良好に分散しないため、電池の充放電特性が低下し得る。また、正極活物質粒子211のメジアン径が100μmより大きいと、正極活物質粒子211内のリチウム拡散が遅くなる。このため、電池の高出力での動作が困難となる場合がある。
 正極活物質粒子211のメジアン径は、第1固体電解質粒子111のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子211および第1固体電解質粒子111が、良好に分散し得る。
 また、正極201は、複数の第1固体電解質粒子111および複数の正極活物質粒子211を含んでもよい。
 また、正極201において、第1固体電解質粒子111の含有量は、正極活物質粒子211の含有量と同じであってもよいし、異なっていてもよい。
 正極201において、正極活物質粒子211および第1固体電解質粒子111の合計体積に対する正極活物質粒子211の体積を表す体積比Vpは、0.3以上0.95以下であってもよい。体積比Vpが0.3未満である場合には、電池のエネルギー密度を十分に確保することが困難となり得る。一方、体積比Vpが0.95を超える場合には、高出力での電池の動作が困難となり得る。
 なお、実施の形態1における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 <第1固体電解質材料の製造方法>
 実施の形態1における第1固体電解質材料は、例えば、下記の方法により、製造されうる。
 生成物の組成比を考慮して二元系ハロゲン化物の原料粉を用意する。例えば、LiYClの合成のためには、LiClおよびYClを、3:1のモル比で用意する。
 このとき、原料粉の種類を選択することで、上述の組成式における「M」、「Me」、および「X」の元素を決定することができる。また、原料粉、配合比、および合成プロセスを調整することで、「α」、「β」、「γ」、「d」、「δ」、「a」、「x」、および「y」の値が決定される。
 原料粉がよく混合される。次いで、メカノケミカルミリングの方法を用いて原料粉は粉砕される。このようにして、原料粉は反応し、第1固体電解質材料を得る。もしくは、原料粉がよく混合された後、真空中で焼結され、第1固体電解質材料を得てもよい。
 これにより、結晶相を含む前述の固体電解質材料が得られる。
 なお、固体電解質材料における結晶相の構成(すなわち、結晶構造)は、原料粉どうしの反応方法および反応条件の選択により、決定され得る。
 (実施例)
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 ≪実施例1≫
 [第2固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとを、モル比でLiCl:YCl=3:2となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでこれらの原料粉をミリング処理することで、実施例1による第2固体電解質材料LiYClの粉末を得た。
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとZrClとを、モル比でLiCl:YCl3:ZrCl=2.5:0.5:0.5となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでこれらの原料粉をミリング処理することで、実施例1による第1固体電解質材料Li2.50.5Zr0.5Clの粉末を得た。
 [硫化物固体電解質材料の作製]
 Arガスで満たされた露点-60℃以下のアルゴングローブボックス内で、LiSとPとを、モル比でLiS:P=75:25となるように、用意した。これらを乳鉢で粉砕して混合して、混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmで混合物をミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質を、不活性雰囲気中で、270度で、2時間熱処理した。これにより、ガラスセラミックス状の固体電解質LiS-Pを得た。
 [正極材料の作製]
 アルゴングローブボックス内で、実施例1による第1固体電解質材料Li2.50.5Zr0.5Clと、正極活物質であるLiCoO(以下、LCOと表記する)を、30:70の重量比で用意した。これらをメノウ乳鉢で混合することで、実施例1の正極材料を作製した。
 [負極材料の作製]
 アルゴングローブボックス内で、硫化物固体電解質材料LiS-Pと、負極活物質のグラファイトを、60:40の重量比率で用意した。これらをメノウ乳鉢で混合することで、実施例1の負極材料を作製した。
 [二次電池の作製]
 絶縁性外筒の中で、実施例1による負極材料(12mg)、実施例1による第2固体電解質材料LiYCl(40mg)、実施例1による第1固体電解質材料Li2.50.5Zr0.5Cl(40mg)、および実施例1による正極材料(10mg)の順に積層した。これを360MPaの圧力で加圧成形することで、正極、第1電解質層、第2電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、実施例1による電池を作製した。
 ≪実施例2≫
 [第2固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBrとYBrとを、モル比でLiBr:YBr=3:2となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、実施例2による第2固体電解質材料LiYBrの粉末を得た。
 第2電解質層に実施例2の第2固体電解質材料を用いたこと以外は実施例1と同様の方法で二次電池を作製した。
 ≪実施例3≫
 [第2固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBrとLiClとLiIとYClとYBrとを、モル比でLiBr:LiCl:LiI:YCl:YBr=1:1:4:1:1となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第2固体電解質材料LiYBrClの粉末を得た。
 第2電解質層に実施例3の第2固体電解質材料を用いたこと以外は実施例1と同様の方法で二次電池を作製した。
 ≪比較例1≫
 [二次電池の作製]
 実施例1の第1固体電解質材料Li2.50.5Zr0.5Cl、実施例1による正極材料、および実施例1による負極材料とを用いて、比較例1による電池を以下のように作製した。
 絶縁性外筒の中で、実施例1の負極材料(12mg)、実施例1の第1固体電解質材料Li2.50.5Zr0.5Cl(80mg)、および実施例1の正極材料(10mg)の順に積層した。これを360MPaの圧力で加圧成形することで、正極、電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、比較例1による電池を作製した。
 [充放電試験]
 上述の実施例1~3および比較例1の電池をそれぞれ用いて、以下の条件で、充放電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値70μAで、定電流充電し、電圧3.6Vで充電を終了した。
 次に、同じく0.05Cレートとなる電流値70μAで、放電し、電圧1.9Vで放電を終了した。
 以上により、上述の実施例1~3および比較例1の電池のそれぞれの初回充放電効率(=初回放電容量/初回充電容量)を得た。この結果は、下記の表1に示される。
Figure JPOXMLDOC01-appb-T000001
 [還元電位]
 代表的なハロゲン化物の還元電位は、下記の表2に示される。
Figure JPOXMLDOC01-appb-T000002
 なお、表2に示される還元電位は、次の方法で測定された。
 すなわち、絶縁性外筒の中で、SUS箔、表2に示されるハロゲン化物固体電解質材料(100mg)、およびLi箔を、この順に積層した。これを360MPaの圧力で加圧成形することで、積層体を作製した。次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、還元電位測定用セルを作製した。
 [還元電位測定]
 表2に記載の固体電解質材料をそれぞれ用いて、以下の条件で、還元電位の測定が実施された。還元電位測定用セルを25℃の恒温槽に配置した。サイクリックボルタンメトリー測定により、Li基準電位で-0.5V~6Vまでを5mV/sの速度で電位走査することで還元電位を測定した。
 ≪考察≫
 図3は、実施例1および比較例1における電池の初期充放電特性を示すグラフである。
 図3と表1と表2とに示される結果から、負極側にLiに対する還元電位が低い固体電解質を配置することで、第1電解質層の還元を抑制し、充放電効率が向上することが確認された。
 表1に示される実施例1~3および比較例1の結果から、LiYCl以外のハロゲン化物固体電解質においても同様の効果が確認された。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
 100 電解質層
 101 第1電解質層
 102 第2電解質層
 111 第1固体電解質粒子
 201 正極
 202 負極
 211 正極活物質粒子
 1000、1100 電池

Claims (9)

  1.  正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、
    を備え、
     前記電解質層は、第1電解質層と第2電解質層とを含み、
     前記第2電解質層は、前記第1電解質層と前記負極との間に設けられ、
     前記第1電解質層は、第1固体電解質材料を含み、
     前記第2電解質層は、前記第1固体電解質材料とは異なる第2固体電解質材料を含み、
     前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まず、
     Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、
     Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つであり、
     前記第2固体電解質材料のリチウムに対する還元電位は、前記第1固体電解質材料のリチウムに対する還元電位よりも、低い、
     電池。
  2.  前記第1固体電解質材料は、下記の組成式(1)により表され、
     Liαβγ ・・・式(1)
     ここで、α、β、およびγは、いずれも0より大きい値である、
     請求項1に記載の電池。
  3.  前記Mは、Yを含む、
     請求項1または2に記載の電池。
  4.  前記第1固体電解質材料は、Li2.50.5Zr0.5Clである、
     請求項3に記載の電池。
  5.  前記第1電解質層は、前記負極とは接触せずに位置する、
     請求項1から4のいずれかに記載の電池。
  6.  前記正極は、前記第1固体電解質材料を含む、
     請求項1から5のいずれかに記載の電池。
  7.  前記第2固体電解質材料は、下記の組成式(2)により表され、
     Liα’M’β’X’γ’ ・・・式(2)
     ここで、α’、β’、およびγ’は、いずれも0より大きい値であり、
     M’は、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つを含み、
     X’は、Cl、Br、およびIからなる群より選ばれる少なくとも1つである、
     請求項1から6のいずれかに記載の電池。
  8.  前記M’は、イットリウムを含む、
    請求項7に記載の電池。
  9.  前記第2固体電解質材料は、
    LiYCl
    LiYBr、または、
    LiYBrClである、
    請求項8に記載の電池。
PCT/JP2018/045586 2018-01-26 2018-12-12 電池 WO2019146294A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019567904A JP7182196B2 (ja) 2018-01-26 2018-12-12 電池
EP18902103.3A EP3745518B1 (en) 2018-01-26 2018-12-12 Battery
CN201880085783.4A CN111566865B (zh) 2018-01-26 2018-12-12 电池
US16/931,136 US11631923B2 (en) 2018-01-26 2020-07-16 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-011528 2018-01-26
JP2018011528 2018-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/931,136 Continuation US11631923B2 (en) 2018-01-26 2020-07-16 Battery

Publications (1)

Publication Number Publication Date
WO2019146294A1 true WO2019146294A1 (ja) 2019-08-01

Family

ID=67395316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045586 WO2019146294A1 (ja) 2018-01-26 2018-12-12 電池

Country Status (5)

Country Link
US (1) US11631923B2 (ja)
EP (1) EP3745518B1 (ja)
JP (1) JP7182196B2 (ja)
CN (1) CN111566865B (ja)
WO (1) WO2019146294A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002064A1 (ja) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 電池
WO2021075191A1 (ja) 2019-10-17 2021-04-22 パナソニックIpマネジメント株式会社 電池
WO2021186845A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
WO2021215215A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 電池
WO2021250985A1 (ja) * 2020-06-08 2021-12-16 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
WO2022209193A1 (ja) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 電池
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
EP4084122A4 (en) * 2019-12-27 2024-02-28 Panasonic Ip Man Co Ltd BATTERY
KR102657469B1 (ko) * 2021-08-17 2024-04-16 한국전자기술연구원 염화물계 고체전해질, 전고체전지 및 그의 제조 방법

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019135347A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736833A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
JP7417927B2 (ja) * 2018-01-05 2024-01-19 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JP7253707B2 (ja) 2018-01-05 2023-04-07 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111295789A (zh) 2018-01-05 2020-06-16 松下知识产权经营株式会社 固体电解质材料和电池
EP3736826A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
JP7281672B2 (ja) 2018-01-05 2023-05-26 パナソニックIpマネジメント株式会社 電池
EP3736822A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
JP7417925B2 (ja) 2018-01-05 2024-01-19 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111344811B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
JP7228816B2 (ja) 2018-01-05 2023-02-27 パナソニックIpマネジメント株式会社 正極材料、および、電池
JP7217433B2 (ja) 2018-01-26 2023-02-03 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
JP7217432B2 (ja) 2018-01-26 2023-02-03 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
JP7316564B6 (ja) 2018-01-26 2024-02-19 パナソニックIpマネジメント株式会社 電池
CN112368863A (zh) 2018-11-29 2021-02-12 松下知识产权经营株式会社 负极材料、电池以及电池的制造方法
JP7429869B2 (ja) 2018-11-29 2024-02-09 パナソニックIpマネジメント株式会社 負極材料、および、電池
US20220231325A1 (en) * 2021-01-15 2022-07-21 Samsung Electronics Co., Ltd. Composite solid electrolyte, method of preparing the same, and electrochemical device including the same
JP2023009988A (ja) * 2021-07-08 2023-01-20 トヨタ自動車株式会社 全固体電池及び全固体電池の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222235A (ja) * 1995-02-16 1996-08-30 Sony Corp 固体型電池
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9102128A (es) * 1990-11-23 1992-07-08 Rhone Poulenc Rorer Sa Derivados de taxano,procedimiento para su preparacion y composicion farmaceutica que los contiene
US20160351878A1 (en) * 2002-10-15 2016-12-01 Polyplus Battery Company Advanced lithium ion batteries based on solid state protected lithium electrodes
GB0614486D0 (en) * 2006-07-21 2006-08-30 Add Power Technologies Ltd Electrolytes and Capacitors
JP2009193940A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
JP5287739B2 (ja) * 2009-05-01 2013-09-11 トヨタ自動車株式会社 固体電解質材料
CN102612782B (zh) * 2009-11-27 2014-12-03 株式会社村田制作所 固体电池
ITTV20110104A1 (it) * 2011-07-21 2013-01-22 Breton Spa Elettroliti di stato solido a base di ossidi di metalli drogati con fluoro
WO2013137224A1 (ja) * 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
JP5905076B2 (ja) 2012-03-23 2016-04-20 株式会社東芝 電池及び電池パック
JP5817657B2 (ja) * 2012-06-20 2015-11-18 トヨタ自動車株式会社 電池システム、電池システムの製造方法、電池の制御装置
JP6127528B2 (ja) * 2013-01-16 2017-05-17 トヨタ自動車株式会社 電極、全固体電池、およびそれらの製造方法
JP6262432B2 (ja) * 2013-01-25 2018-01-17 旭化成株式会社 リチウムイオンキャパシタの製造方法
CN105027345A (zh) * 2013-03-15 2015-11-04 株式会社日立制作所 固体电解质和使用其的全固体型离子二次电池
PL3043411T3 (pl) * 2013-09-02 2019-08-30 Mitsubishi Gas Chemical Company, Inc. Akumulator ze stałym elektrolitem
WO2015151144A1 (ja) * 2014-03-31 2015-10-08 株式会社日立製作所 全固体リチウム二次電池
JP2016219130A (ja) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
CN105428069B (zh) * 2015-08-19 2018-02-16 中国科学院福建物质结构研究所 一种具有复合固体电解质的固体电解电容器及其制备方法
JP6233372B2 (ja) * 2015-09-14 2017-11-22 トヨタ自動車株式会社 全固体電池の製造方法
JP6861399B2 (ja) * 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 電池
JP2017112044A (ja) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 全固体電池
CN107104231A (zh) * 2016-02-19 2017-08-29 松下知识产权经营株式会社 正极活性物质以及电池
JP6748344B2 (ja) * 2016-02-26 2020-09-02 富士通株式会社 全固体電池
CN107305960B (zh) * 2016-04-25 2022-03-29 松下知识产权经营株式会社 电池、电池制造方法和电池制造装置
CN107305959B (zh) * 2016-04-25 2022-05-13 松下知识产权经营株式会社 电池和电池制造方法以及电池制造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222235A (ja) * 1995-02-16 1996-08-30 Sony Corp 固体型電池
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745518A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002064A1 (ja) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 電池
WO2021075191A1 (ja) 2019-10-17 2021-04-22 パナソニックIpマネジメント株式会社 電池
EP4084122A4 (en) * 2019-12-27 2024-02-28 Panasonic Ip Man Co Ltd BATTERY
WO2021186845A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
WO2021215215A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 電池
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
WO2021250985A1 (ja) * 2020-06-08 2021-12-16 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022209193A1 (ja) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 電池
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
KR102657469B1 (ko) * 2021-08-17 2024-04-16 한국전자기술연구원 염화물계 고체전해질, 전고체전지 및 그의 제조 방법
US11973186B2 (en) 2023-04-05 2024-04-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including halide material, electrolyte including the same, and methods of forming the same

Also Published As

Publication number Publication date
JP7182196B2 (ja) 2022-12-02
EP3745518A1 (en) 2020-12-02
US20200350627A1 (en) 2020-11-05
EP3745518A4 (en) 2021-03-10
CN111566865B (zh) 2024-03-22
EP3745518B1 (en) 2022-04-13
US11631923B2 (en) 2023-04-18
JPWO2019146294A1 (ja) 2021-02-04
CN111566865A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2019146294A1 (ja) 電池
US11777088B2 (en) Anode material and battery using same
US11777092B2 (en) Electrode material and battery
JP7316564B2 (ja) 電池
WO2019135346A1 (ja) 正極材料、および、電池
WO2019135322A1 (ja) 正極材料、および、電池
WO2019135320A1 (ja) 固体電解質材料、および、電池
WO2019146236A1 (ja) 正極材料、および、電池
WO2019135321A1 (ja) 固体電解質材料、および、電池
WO2019135344A1 (ja) 固体電解質材料、および、電池
WO2019135315A1 (ja) 固体電解質材料、および、電池
US11637287B2 (en) Positive electrode material and battery using same
WO2019146216A1 (ja) 電池
US11631853B2 (en) Battery
WO2019146292A1 (ja) 正極材料およびそれを用いた電池
US11600854B2 (en) Positive electrode material including positive electrode active material and solid electrolyte and battery containing the same
CN115088096A (zh) 正极材料及电池
WO2023074143A1 (ja) 固体電解質材料および電池
WO2023286512A1 (ja) 電池
WO2022224506A1 (ja) 電池
US20240063378A1 (en) Electrode material and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018902103

Country of ref document: EP

Effective date: 20200826