WO2021199641A1 - 固体電解質材料およびこれを用いた電池 - Google Patents
固体電解質材料およびこれを用いた電池 Download PDFInfo
- Publication number
- WO2021199641A1 WO2021199641A1 PCT/JP2021/003303 JP2021003303W WO2021199641A1 WO 2021199641 A1 WO2021199641 A1 WO 2021199641A1 JP 2021003303 W JP2021003303 W JP 2021003303W WO 2021199641 A1 WO2021199641 A1 WO 2021199641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- electrolyte material
- material according
- less
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a solid electrolyte material and a battery using the same.
- Patent Document 1 discloses an all-solid-state battery using a sulfide solid electrolyte.
- Patent Document 2 discloses a solid electrolyte material represented by Li 6-3z Y z X 6 (where 0 ⁇ z ⁇ 2 is satisfied and X is Cl or Br).
- An object of the present disclosure is to provide a solid electrolyte material having high lithium ion conductivity.
- the solid electrolyte material of the present disclosure is composed of Li, Ca, Y, Gd, X, and O, where X is at least one selected from the group consisting of F, Cl, Br, and I.
- the molar ratio of O to the sum of Y and Gd is greater than 0 and less than or equal to 0.51.
- the present disclosure provides a solid electrolyte material having high lithium ion conductivity.
- FIG. 1 shows a cross-sectional view of the battery 1000 according to the second embodiment.
- FIG. 2 is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Examples 1 to 5 and Comparative Example 1.
- FIG. 3 shows a schematic view of a pressure forming die 300 used for evaluating the ionic conductivity of a solid electrolyte material.
- FIG. 4 is a graph showing a Core-Cole diagram of the impedance measurement results of the solid electrolyte material according to Example 1.
- FIG. 5 is a graph showing the initial discharge characteristics of the batteries according to Example 1 and Comparative Example 1.
- the solid electrolyte material according to the first embodiment is composed of Li, Ca, Y, Gd, X, and O.
- X is at least one selected from the group consisting of F, Cl, Br, and I.
- the molar ratio of O to the sum of Y and Gd is greater than 0 and less than or equal to 0.51.
- the solid electrolyte material according to the first embodiment has high lithium ion conductivity.
- the high lithium ion conductivity is, for example, 1 ⁇ 10 -5 S / cm or more. That is, the solid electrolyte material according to the first embodiment can have, for example, an ionic conductivity of 1 ⁇ 10 -5 S / cm or more.
- the solid electrolyte material according to the first embodiment can be used to obtain an all-solid-state battery having excellent charge / discharge characteristics.
- the all-solid-state battery may be a primary battery or a secondary battery.
- the solid electrolyte material according to the first embodiment does not contain sulfur.
- the sulfur-free solid electrolyte material is excellent in safety because hydrogen sulfide is not generated even when exposed to the atmosphere.
- the sulfide solid electrolyte disclosed in Patent Document 1 can generate hydrogen sulfide when exposed to the atmosphere.
- the solid electrolyte material according to the first embodiment may substantially consist of Li, Ca, Y, Gd, X, and O.
- the solid electrolyte material according to the first embodiment is substantially composed of Li, Ca, Y, Gd, X, and O
- the solid electrolyte material according to the first embodiment constitutes all the solid electrolyte materials. It means that the molar ratio (that is, mole fraction) of the total amount of substance of Li, Ca, Y, Gd, X, and O to the total amount of substance of the element is 90% or more. As an example, the molar ratio may be 95% or more.
- the solid electrolyte material according to the first embodiment may consist only of Li, Ca, Y, Gd, X, and O.
- X may be Cl and Br in order to increase the ionic conductivity of the solid electrolyte material.
- the solid electrolyte material according to the first embodiment is selected from the group consisting of Sr, Ba, Al, Sc, Ga, Bi, La, Zr, Hf, Ta, and Nb. At least one of these may be further included.
- the transition metal contained in the solid electrolyte material according to the present embodiment may be only Y and Gd, except for the element contained as an unavoidable impurity.
- the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment can be obtained by using Cu—K ⁇ rays.
- the obtained X-ray diffraction pattern 14.9 ° or more and 16.2 ° or less, 16.2 ° or more and 17.5 ° or less, 22.2 ° or more and 23.6 ° or less, 30.0 ° or more and 31.3
- a peak may be present in the range of a diffraction angle of 2 ⁇ of ° or less, 39.2 ° or more and 40.5 ° or less, and 46.3 ° or more and 48.2 ° or less.
- Such a solid electrolyte material has high ionic conductivity.
- x represents the molar ratio of Li to the sum of Y and Gd.
- y represents the molar ratio of Ca to the sum of Y and Gd.
- z represents the molar ratio of Br to the sum of Y and Gd.
- w represents the molar ratio of Cl to the sum of Y and Gd.
- the molar ratio of O to the total of Y and Gd may be greater than 0 and 0.28 or less.
- the molar ratio of O to the sum of Y and Gd may be greater than 0 and less than or equal to 0.21.
- the molar ratio of O to the sum of Y and Gd may be greater than 0 and less than or equal to 0.08.
- the molar ratio of O to the sum of Y and Gd may be greater than 0 and less than or equal to 0.06.
- the shape of the solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are needle-shaped, spherical, or elliptical spherical.
- the solid electrolyte material according to the first embodiment may be particles.
- the solid electrolyte material according to the first embodiment may be formed to have the shape of a pellet or a plate.
- the solid electrolyte material according to the first embodiment may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. ..
- the solid electrolyte material according to the first embodiment may have a smaller median diameter than the active material.
- the median diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
- the volume-based particle size distribution can be measured by a laser diffraction measuring device or an image analyzer.
- the solid electrolyte material according to the first embodiment can be produced by the following method.
- a plurality of halides are mixed as raw material powder.
- LiCl raw material powder, LiBr raw material powder, YCl 3 raw material powder, GdCl 3 raw material powder, and CaBr 2 are mixed. Will be done.
- the obtained mixed powder is fired in an inert gas atmosphere in which the oxygen concentration and the water concentration are adjusted (for example, an argon atmosphere having a dew point of ⁇ 60 ° C. or lower).
- the firing temperature may be, for example, in the range of 200 ° C. or higher and 650 ° C. or lower.
- the obtained fired product is allowed to stand in an atmosphere having a relatively high dew point (for example, a dry atmosphere having a dew point of ⁇ 30 ° C.).
- the solid electrolyte material is fired at a temperature equal to or higher than the melting point (for example, 500 ° C.) in an inert gas atmosphere (for example, an argon atmosphere having a dew point of ⁇ 60 ° C. or lower) in which the oxygen concentration and the water concentration are adjusted.
- an inert gas atmosphere for example, an argon atmosphere having a dew point of ⁇ 60 ° C. or lower
- O can be present throughout the solid electrolyte material.
- the feed flour may be mixed in a pre-adjusted molar ratio to offset any compositional changes that may occur during the synthesis process.
- the amount of oxygen in the solid electrolyte material is determined by the selection of the raw material powder, the oxygen concentration in the atmosphere, the water concentration in the atmosphere, and the reaction time. In this way, the solid electrolyte material according to the first embodiment is obtained.
- the fired product obtained in the first firing may be used as the solid electrolyte material according to the first embodiment.
- the raw material powder to be mixed may be an oxide and a halide.
- Y 2 O 3 , Gd 2 O 3 , NH 4 Cl, NH 4 Br, LiCl, LiBr, and CaBr 2 may be used as the raw material powder.
- the oxygen constituting the solid electrolyte material according to the first embodiment is taken in from the above-mentioned atmosphere having a relatively high dew point.
- the battery according to the second embodiment includes a positive electrode, a negative electrode, and an electrolyte layer.
- the electrolyte layer is arranged between the positive electrode and the negative electrode.
- At least one selected from the group consisting of a positive electrode, an electrolyte layer, and a negative electrode contains the solid electrolyte material according to the first embodiment. Since the battery according to the second embodiment contains the solid electrolyte material according to the first embodiment, it has excellent charge / discharge characteristics.
- the battery may be an all-solid-state battery.
- FIG. 1 shows a cross-sectional view of the battery 1000 according to the second embodiment.
- the battery 1000 includes a positive electrode 201, an electrolyte layer 202, and a negative electrode 203.
- the electrolyte layer 202 is arranged between the positive electrode 201 and the negative electrode 203.
- the positive electrode 201 contains the positive electrode active material particles 204 and the solid electrolyte particles 100.
- the electrolyte layer 202 contains an electrolyte material (for example, a solid electrolyte material).
- the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100.
- the solid electrolyte particle 100 is a particle made of the solid electrolyte material according to the first embodiment or a particle containing the solid electrolyte material according to the first embodiment as a main component.
- the particles containing the solid electrolyte material according to the first embodiment as the main component mean the particles in which the component contained most in the mass ratio is the solid electrolyte material according to the first embodiment.
- the positive electrode 201 contains a material capable of occluding and releasing metal ions (for example, lithium ions).
- the material is, for example, a positive electrode active material (for example, positive electrode active material particles 204).
- positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanionic materials, fluorinated polyanionic materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metal oxynitrides.
- lithium-containing transition metal oxide LiNi 1-df Co d Al f O 2 (where, 0 ⁇ d, 0 ⁇ f , and 0 ⁇ (d + f) ⁇ 1) or LiCoO 2.
- the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more. The good dispersion improves the charge / discharge characteristics of the battery 1000. In order to rapidly diffuse lithium in the positive electrode active material particles 204, the positive electrode active material particles 204 may have a median diameter of 100 ⁇ m or less. Due to the rapid diffusion of lithium, the battery 1000 can operate at high output. As described above, the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the positive electrode active material particles 204 may have a median diameter larger than that of the solid electrolyte particles 100.
- the ratio of the volume of the positive electrode active material particle 204 to the total volume of the positive electrode active material particle 204 and the volume of the solid electrolyte particle 100 in the positive electrode 201 is 0.30 or more and 0. It may be .95 or less.
- the positive electrode 201 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
- the electrolyte layer 202 contains an electrolyte material.
- the electrolyte material may be the solid electrolyte material according to the first embodiment.
- the electrolyte layer 202 may be a solid electrolyte layer.
- the electrolyte layer 202 may be composed of only the solid electrolyte material according to the first embodiment. Alternatively, the electrolyte layer 202 may be composed only of a solid electrolyte material different from the solid electrolyte material according to the first embodiment.
- X' is at least one selected from the group consisting of F, Cl, Br, and I.
- (A, B, C) means "at least one selected from the group consisting of A, B, and C”.
- the solid electrolyte material according to the first embodiment is referred to as the first solid electrolyte material.
- a solid electrolyte material different from the solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
- the electrolyte layer 202 may contain not only the first solid electrolyte material but also the second solid electrolyte material.
- the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed.
- the layer made of the first solid electrolyte material and the layer made of the second solid electrolyte material may be laminated along the stacking direction of the battery 1000.
- the electrolyte layer 202 may have a thickness of 1 ⁇ m or more and 100 ⁇ m or less in order to suppress a short circuit between the positive electrode 201 and the negative electrode 203 and increase the output of the battery 1000.
- the negative electrode 203 contains a material capable of occluding and releasing metal ions (for example, lithium ions).
- the material is, for example, a negative electrode active material (for example, negative electrode active material particles 205).
- Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
- the metal material may be a simple substance metal or an alloy.
- Examples of metallic materials are lithium metals or lithium alloys.
- Examples of carbon materials are natural graphite, coke, developing carbon, carbon fibers, spheroidal carbon, artificial graphite, or amorphous carbon. From the point of view of capacitance density, suitable examples of the negative electrode active material are silicon (ie, Si), tin (ie, Sn), a silicon compound, or a tin compound.
- the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more. The good dispersion improves the charge / discharge characteristics of the battery. In order to rapidly diffuse lithium in the negative electrode active material particles 205, the negative electrode active material particles 205 may have a median diameter of 100 ⁇ m or less. Due to the rapid diffusion of lithium, the battery can operate at high power. As described above, the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode active material particles 205 may have a median diameter larger than that of the solid electrolyte particles 100.
- the ratio of the volume of the negative electrode active material particles 205 to the total volume of the negative electrode active material particles 205 and the volume of the solid electrolyte particles 100 is 0.30 or more and 0. It may be .95 or less.
- the negative electrode 203 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
- At least one selected from the group consisting of a positive electrode 201, an electrolyte layer 202, and a negative electrode 203 contains a second solid electrolyte material to enhance ionic conductivity, chemical stability, and electrochemical stability. May be.
- the second solid electrolyte material may be a halide solid electrolyte.
- halide solid electrolyte Li 2 MgX '4, Li 2 FeX' 4, Li (Al, Ga, In) X '4, Li 3 (Al, Ga, In) X' 6, or LiI.
- X' is at least one selected from the group consisting of F, Cl, Br, and I.
- the second solid electrolyte material may be a sulfide solid electrolyte.
- Examples of sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or It is Li 10 GeP 2 S 12 .
- the second solid electrolyte material may be an oxide solid electrolyte.
- a solid oxide electrolyte is (I) NASICON type solid electrolytes such as LiTi 2 (PO 4 ) 3 or elemental substituents thereof, (Ii) Perovskite-type solid electrolytes such as (LaLi) TiO 3, (Iii) Lithium-type solid electrolytes such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4, or elemental substituents thereof, (Iv) A garnet-type solid electrolyte, such as Li 7 La 3 Zr 2 O 12 or an elemental substituent thereof. Or (v) Li 3 PO 4 or its N-substituted product.
- NASICON type solid electrolytes such as LiTi 2 (PO 4 ) 3 or elemental substituents thereof
- Perovskite-type solid electrolytes such as (LaLi) TiO 3
- Lithium-type solid electrolytes such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO
- the second solid electrolyte material may be an organic polymer solid electrolyte.
- organic polymer solid electrolytes examples include polymer compounds and lithium salt compounds.
- the polymer compound may have an ethylene oxide structure. Since the polymer compound having an ethylene oxide structure can contain a large amount of lithium salts, the ionic conductivity can be further increased.
- lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 is a non-aqueous electrolyte solution, a gel electrolyte, or a gel electrolyte for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery 1000. It may contain an ionic liquid.
- the non-aqueous electrolyte solution contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
- non-aqueous solvents examples include cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
- cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
- chain carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
- Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
- chain ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
- An example of a cyclic ester solvent is ⁇ -butyrolactone.
- An example of a chain ester solvent is methyl acetate.
- fluorine solvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
- One non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
- lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- the concentration of the lithium salt is, for example, in the range of 0.5 mol / liter or more and 2 mol / liter or less.
- a polymer material impregnated with a non-aqueous electrolyte solution can be used.
- polymer materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, or polymers with ethylene oxide bonds.
- cations contained in ionic liquids are (I) Aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (Ii) Aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums, or (iii) nitrogen-containing heteros such as pyridiniums or imidazoliums. It is a ring aromatic cation.
- anion contained in the ionic liquid PF 6 -, BF 4 - , SbF 6 -, AsF 6 -, SO 3 CF 3 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5 ) 2 -, N (SO 2 CF 3) (SO 2 C 4 F 9) -, or C (SO 2 CF 3) 3 - a.
- the ionic liquid may contain a lithium salt.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving the adhesion between the particles.
- binders are polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinylidene acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber , Or carboxymethyl cellulose.
- Copolymers can also be used as binders.
- binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid.
- a copolymer of two or more materials selected from the group consisting of hexadiene A mixture of two or more selected from these may be used as a binder.
- At least one selected from the positive electrode 201 and the negative electrode 203 may contain a conductive auxiliary agent in order to enhance electron conductivity.
- a conductive aid is (I) Graphites such as natural graphite or artificial graphite, (Ii) Carbon blacks such as acetylene black or ketjen black, (Iii) Conductive fibers such as carbon fibers or metal fibers, (Iv) Carbon fluoride, (V) Metal powders such as aluminum, (Vi) Conductive whiskers, such as zinc oxide or potassium titanate, It is a conductive metal oxide such as (vii) titanium oxide, or a conductive polymer compound such as (vii) polyaniline, polypyrrole, or polythiophene. In order to reduce the cost, the conductive auxiliary agent (i) or (ii) described above may be used.
- Examples of the shape of the battery according to the second embodiment are coin type, cylindrical type, square type, sheet type, button type, flat type, or laminated type.
- a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may be manufactured by producing the laminated body.
- composition analysis of solid electrolyte material The content of Li, Ca, Y, and Gd per unit weight of the solid electrolyte material according to Example 1 was determined by high frequency inductively coupled plasma emission spectroscopy (iCAP7400, manufactured by Thermo Fisher Scientific). It was measured by spectroscopic analysis. The Cl and Br contents of the solid electrolyte material according to Example 1 were measured by an ion chromatography method using an ion chromatograph device (manufactured by Dionex, ICS-2000). The Li: Ca: Y: Gd: Br: Cl molar ratio was calculated based on the contents of Li, Ca, Y, Gd, Br, and Cl obtained from these measurements. As a result, the solid electrolyte material according to Example 1 had a Li: Ca: Y: Gd: Br: Cl molar ratio of 2.86: 0.07: 0.50: 0.50: 1.81: 4.20. Had had.
- the mass ratio of O to the entire solid electrolyte material according to Example 1 was measured by a non-dispersive infrared absorption method using an oxygen / nitrogen / hydrogen analyzer (manufactured by HORIBA, Ltd., EMGA-930). As a result, the mass ratio of O was 0.21%. Based on this, the (Y + Gd): O molar ratio was calculated. As a result, the solid electrolyte material according to Example 1 had a (Y + Gd): O molar ratio of 1.00: 0.06.
- FIG. 2 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Example 1.
- FIG. 3 shows a schematic view of the pressure forming die 300 used to evaluate the ionic conductivity of the solid electrolyte material.
- the pressure forming die 300 included a punch upper part 301, a frame type 302, and a punch lower part 303.
- the frame 302 was made of insulating polycarbonate.
- Both the upper punch 301 and the lower punch 303 were made of electron-conducting stainless steel.
- the ionic conductivity of the solid electrolyte material according to Example 1 was measured by the following method.
- the powder 101 of the solid electrolyte material according to Example 1 was filled inside the pressure forming die 300. Inside the pressure forming die 300, a pressure of 400 MPa was applied to the solid electrolyte material according to Example 1 using the upper punch 301 and the lower punch 303.
- the upper punch 301 and the lower punch 303 were connected to the potentiostat (Princeton Applied Research, VersaSTAT4).
- the upper part 301 of the punch was connected to the working electrode and the terminal for measuring the potential.
- the lower part of the punch 303 was connected to the counter electrode and the reference electrode.
- the impedance of the solid electrolyte material according to Example 1 was measured at room temperature by an electrochemical impedance measurement method.
- FIG. 4 is a graph showing a Core-Cole diagram of the impedance measurement results of the solid electrolyte material according to Example 1.
- the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance is the smallest was regarded as the resistance value of the solid electrolyte material to ionic conduction. See the arrow R SE shown in FIG. 4 for the real value.
- the ionic conductivity was calculated based on the following mathematical formula (1).
- ⁇ (R SE ⁇ S / t) -1 ...
- ⁇ is the ionic conductivity.
- S is the contact area of the solid electrolyte material with the punch upper portion 303 (in FIG. 3, it is equal to the cross-sectional area of the hollow portion of the frame mold 301).
- R SE is the resistance value of the solid electrolyte material in impedance measurement.
- t is the thickness of the solid electrolyte material to which the pressure is applied (in FIG. 3, equal to the thickness of the layer formed from the powder 101 of the solid electrolyte material).
- the ionic conductivity of the solid electrolyte material according to Example 1 measured at 25 ° C. was 3.5 ⁇ 10 -3 S / cm.
- the solid electrolyte layer had a thickness of 500 ⁇ m.
- a metal In foil was laminated on the solid electrolyte layer.
- the solid electrolyte layer was sandwiched between the metal In foil and the first electrode.
- the metal In foil had a thickness of 200 ⁇ m.
- a pressure of 80 MPa was applied to the metal In foil to form a second electrode.
- a current collector made of stainless steel was attached to the first and second electrodes, and then a current collector lead was attached to the current collector. Finally, an insulating ferrule was used to shield the inside of the insulating cylinder from the outside air atmosphere and seal the inside of the cylinder. In this way, the battery according to Example 1 was obtained.
- FIG. 5 is a graph showing the initial discharge characteristics of the battery according to the first embodiment. The results shown in FIG. 5 were measured by the following methods.
- the battery according to Example 1 was placed in a constant temperature bath at 25 ° C.
- the batteries according to Example 1 were charged until a voltage of 3.7 V was reached at a current density of 87 ⁇ A / cm 2.
- the current density corresponds to a 0.05 C rate.
- the battery according to Example 1 was discharged until a voltage of 1.9 V was reached at a current density of 87 ⁇ A / cm 2.
- the battery according to Example 1 had an initial discharge capacity of 601 ⁇ Ah.
- Example 2 (Examples 2 to 5)
- the solid electrolyte material according to Example 1 was allowed to stand for about 30 minutes in a dry atmosphere having a dew point of ⁇ 30 ° C. and an oxygen concentration of 20.9% by volume or less. Further, it was calcined at 500 ° C. for 1 hour in a dry argon atmosphere and then pulverized in a mortar. In this way, the solid electrolyte according to Example 2 was obtained.
- Example 3 the time of standing in a dry atmosphere having a dew point of ⁇ 30 ° C. and an oxygen concentration of 20.9% by volume or less was set to 6 hours instead of about 30 minutes. Similarly, the solid electrolyte material according to Example 3 was obtained.
- Example 4 the time of standing in a dry atmosphere having a dew point of ⁇ 30 ° C. and an oxygen concentration of 20.9% by volume or less was set to 15 hours instead of about 30 minutes. Similarly, the solid electrolyte material according to Example 4 was obtained.
- Example 5 the time of standing in a dry atmosphere having a dew point of ⁇ 30 ° C. and an oxygen concentration of 20.9% by volume or less was set to 40 hours instead of about 30 minutes. Similarly, the solid electrolyte material according to Example 5 was obtained.
- Example 2 In the same manner as in Example 1, the element ratio (molar ratio), X-ray diffraction, and ionic conductivity of the solid electrolyte material according to Examples 2 to 5 were measured. The measurement results are shown in Tables 1 and 2. Further, FIG. 2 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Examples 2 to 5.
- the mass ratios of O to the total solid electrolyte material according to Examples 2 to 5 were 0.29%, 0.82%, 1.11%, and 2.17%, respectively.
- a charge / discharge test was carried out in the same manner as in Example 1 using the batteries according to Examples 2 to 5.
- the batteries according to Examples 2 to 5 were well charged and discharged, as were the batteries according to Example 1.
- Comparative Example 1 In Comparative Example 1, the time of standing in a dry atmosphere having a dew point of ⁇ 30 ° C. and an oxygen concentration of 20.9% by volume or less was set to 80 hours instead of about 30 minutes. Similarly, the solid electrolyte material according to Comparative Example 1 was obtained.
- FIG. 2 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Comparative Example 1.
- the mass ratio of O to the whole solid electrolyte material according to Comparative Example 1 was 2.20%.
- Example 1 Using the solid electrolyte material according to Comparative Example 1, the battery according to Comparative Example 1 was obtained in the same manner as in Example 1.
- FIG. 5 is a graph showing the initial discharge characteristics of the battery according to Comparative Example 1.
- the solid electrolyte materials according to Examples 1 to 5 have a high ionic conductivity of 1 ⁇ 10 -5 S / cm or more in the vicinity of room temperature.
- the solid electrolyte material is 1 ⁇ 10 -5 S / cm or more. Has high ionic conductivity.
- the solid electrolyte material is 1 ⁇ 10 -4 S / cm. It has the above higher ionic conductivity.
- Examples 1 to 3 are compared with Example 4, if the above molar ratio is larger than 0 and 0.21 or less, the solid electrolyte material is 1 ⁇ 10 -3 S / cm or more. It has even higher ionic conductivity.
- the batteries according to Examples 1 to 5 were charged and discharged at 25 ° C.
- the solid electrolyte material according to the present disclosure is suitable for providing a battery having high lithium ion conductivity and being able to be charged and discharged well.
- the solid electrolyte material of the present disclosure is used, for example, in an all-solid-state lithium ion secondary battery.
- Solid electrolyte particles 101 Solid electrolyte material powder 201 Positive electrode 202 Electrode layer 203 Negative electrode 204 Positive electrode active material particles 205 Negative electrode active material particles 300 Pressurized die 301 Punch upper 302 Frame type 303 Punch lower 1000 Battery
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
本開示の固体電解質材料は、Li、Ca、Y、Gd、X、およびOから構成され、ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.51以下である。
Description
本開示は、固体電解質材料およびこれを用いた電池に関する。
特許文献1は、硫化物固体電解質を用いた全固体電池を開示している。特許文献2は、Li6-3zYzX6(0<z<2が充足され、かつ、Xは、ClまたはBrである)により表される固体電解質材料を開示している。
本開示の目的は、高いリチウムイオン伝導度を有する固体電解質材料を提供することにある。
本開示の固体電解質材料は、Li、Ca、Y、Gd、X、およびOから構成され、ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.51以下である。
本開示は、高いリチウムイオン伝導度を有する固体電解質材料を提供する。
以下、本開示の実施形態が、図面を参照しながら説明される。
(第1実施形態)
第1実施形態による固体電解質材料は、Li、Ca、Y、Gd、X、およびOから構成される。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.51以下である。第1実施形態による固体電解質材料は、高いリチウムイオン伝導度を有する。ここで、高いリチウムイオン伝導度とは、例えば1×10-5S/cm以上である。すなわち、第1実施形態による固体電解質材料は、例えば1×10-5S/cm以上のイオン伝導度を有し得る。
第1実施形態による固体電解質材料は、Li、Ca、Y、Gd、X、およびOから構成される。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.51以下である。第1実施形態による固体電解質材料は、高いリチウムイオン伝導度を有する。ここで、高いリチウムイオン伝導度とは、例えば1×10-5S/cm以上である。すなわち、第1実施形態による固体電解質材料は、例えば1×10-5S/cm以上のイオン伝導度を有し得る。
第1実施形態による固体電解質材料は、充放電特性に優れた全固体電池を得るために用いられ得る。全固体電池は、一次電池でもよく、あるいは二次電池でもよい。
第1実施形態による固体電解質材料は、硫黄を含有しないことが望ましい。硫黄を含有しない固体電解質材料は、大気に曝露されても硫化水素が発生しないので、安全性に優れる。特許文献1に開示された硫化物固体電解質は、大気中に曝露されると、硫化水素が発生し得る。
第1実施形態による固体電解質材料は、実質的に、Li、Ca、Y、Gd、X、およびOからなっていてもよい。「第1実施形態による固体電解質材料が、実質的に、Li、Ca、Y、Gd、X、およびOからなる」とは、第1実施形態による固体電解質材料において、固体電解質材料を構成する全元素の物質量の合計に対する、Li、Ca、Y、Gd、X、およびOの物質量の合計のモル比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該モル比は95%以上であってもよい。第1実施形態による固体電解質材料は、Li、Ca、Y、Gd、X、およびOのみからなっていてもよい。
固体電解質材料のイオン伝導度を高めるために、Xは、ClおよびBrであってもよい。
固体電解質材料のイオン伝導度を高めるために、第1実施形態による固体電解質材料は、Sr、Ba、Al、Sc、Ga、Bi、La、Zr、Hf、Ta、およびNbからなる群より選択される少なくとも1つをさらに含んでいてもよい。
本実施形態による固体電解質材料に含まれる遷移金属は、不可避不純物として含まれる元素を除き、YおよびGdのみであってもよい。
第1実施形態による固体電解質材料のX線回折パターンは、Cu-Kα線を用いて取得され得る。得られたX線回折パターンにおいて、14.9°以上16.2°以下、16.2°以上17.5°以下、22.2°以上23.6°以下、30.0°以上31.3°以下、39.2°以上40.5°以下、および46.3°以上48.2°以下の回折角2θの範囲にピークが存在してもよい。このような固体電解質材料は、高いイオン伝導度を有する。
固体電解質材料のイオン伝導度を高めるために、以下の4つの数式が充足されてもよい。
2.4≦x≦3.2、
0.06≦y≦0.08、
1.0≦z≦2.0、および
2.3≦w≦4.7、
ここで、
xは、YおよびGdの合計に対するLiのモル比を表し、
yは、YおよびGdの合計に対するCaのモル比を表し、
zは、YおよびGdの合計に対するBrのモル比を表し、
wは、YおよびGdの合計に対するClのモル比を表す。
2.4≦x≦3.2、
0.06≦y≦0.08、
1.0≦z≦2.0、および
2.3≦w≦4.7、
ここで、
xは、YおよびGdの合計に対するLiのモル比を表し、
yは、YおよびGdの合計に対するCaのモル比を表し、
zは、YおよびGdの合計に対するBrのモル比を表し、
wは、YおよびGdの合計に対するClのモル比を表す。
固体電解質材料のイオン伝導度をさらに高めるために、以下の4つの数式が充足されてもよい。
2.8≦x≦2.9、
0.06≦y≦0.08、
1.1≦z≦1.9、および
2.5≦w≦4.2
2.8≦x≦2.9、
0.06≦y≦0.08、
1.1≦z≦1.9、および
2.5≦w≦4.2
固体電解質材料のイオン伝導度を高めるために、YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.28以下であってもよい。YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.21以下であってもよい。YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.08以下であってもよい。YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.06以下であってもよい。
第1実施形態による固体電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。第1実施形態による固体電解質材料は、粒子であってもよい。第1実施形態による固体電解質材料は、ペレットまたは板の形状を有するように形成されてもよい。
第1実施形態による固体電解質材料の形状が、粒子状(例えば、球状)である場合、第1実施形態による固体電解質材料は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。
第1実施形態による固体電解質材料のイオン伝導性を高め、かつ、第1実施形態による固体電解質材料および活物質を良好に分散させるために、メジアン径は0.5μm以上かつ10μm以下であってもよい。第1実施形態による固体電解質材料および活物質をさらに良好に分散させるために、第1実施形態による固体電解質材料は、活物質よりも小さいメジアン径を有していてもよい。メジアン径は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、レーザー回折式測定装置または画像解析装置により測定され得る。
<固体電解質材料の製造方法>
第1実施形態による固体電解質材料は、下記の方法により製造され得る。
第1実施形態による固体電解質材料は、下記の方法により製造され得る。
まず、原料粉として複数のハロゲン化物が混合される。
一例として、Li、Ca、Y、Gd、Br、Cl、およびOからなる固体電解質材料を作製する場合、LiCl原料粉、LiBr原料粉、YCl3原料粉、GdCl3原料粉、およびCaBr2が混合される。得られた混合粉は、酸素濃度および水分濃度が調整された不活性ガス雰囲気(例えば、-60℃以下の露点を有するアルゴン雰囲気)中で焼成される。焼成温度は、たとえば200℃以上650℃以下の範囲内であってもよい。得られた焼成物は、比較的高い露点を有する雰囲気(例えば、-30℃の露点を有するドライ雰囲気)中で静置される。
次いで、例えば、酸素濃度および水分濃度が調整された不活性ガス雰囲気(例えば、-60℃以下の露点を有するアルゴン雰囲気)中で、融点以上の温度(例えば、500℃)で焼成される。融点以上の温度で焼成することにより、Oが固体電解質材料全体に存在することができる。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉は混合されてもよい。原料粉、雰囲気中の酸素濃度、雰囲気中の水分濃度、および反応時間の選択により、固体電解質材料中の酸素量が決定される。このようにして、第1実施形態による固体電解質材料が得られる。
1回目の焼成で得られた焼成物を第1実施形態による固体電解質材料としてもよい。
混合される原料粉は、酸化物およびハロゲン化物であってもよい。例えば、原料粉として、Y2O3、Gd2O3、NH4Cl、NH4Br、LiCl、LiBr、およびCaBr2が使用されてもよい。
第1実施形態による固体電解質材料を構成する酸素は、上記の比較的高い露点を有する雰囲気から取り込まれると考えられる。
(第2実施形態)
以下、第2実施形態が説明される。第1実施形態において説明された事項は、省略され得る。
以下、第2実施形態が説明される。第1実施形態において説明された事項は、省略され得る。
第2実施形態による電池は、正極、負極、および電解質層を備える。電解質層は、正極および負極の間に配置されている。正極、電解質層、および負極からなる群より選択される少なくとも1つは、第1実施形態による固体電解質材料を含有する。第2実施形態による電池は、第1実施形態による固体電解質材料を含有するため、優れた充放電特性を有する。当該電池は、全固体電池であってもよい。
図1は、第2実施形態による電池1000の断面図を示す。
電池1000は、正極201、電解質層202、および負極203を備える。電解質層202は、正極201および負極203の間に配置されている。
正極201は、正極活物質粒子204および固体電解質粒子100を含有する。
電解質層202は、電解質材料(例えば、固体電解質材料)を含有する。
負極203は、負極活物質粒子205および固体電解質粒子100を含有する。
固体電解質粒子100は、第1実施形態による固体電解質材料からなる粒子、または、第1実施形態による固体電解質材料を主たる成分として含有する粒子である。ここで、第1実施形態による固体電解質材料を主たる成分として含有する粒子とは、質量比で最も多く含まれる成分が第1実施形態による固体電解質材料である粒子を意味する。
正極201は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質(例えば、正極活物質粒子204)である。
正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、LiNi1-d-fCodAlfO2(ここで、0<d、0<f、かつ0<(d+f)<1)またはLiCoO2である。
正極201において、正極活物質粒子204および固体電解質粒子100を良好に分散させるために、正極活物質粒子204は、0.1μm以上のメジアン径を有していてもよい。当該良好な分散により、電池1000の充放電特性が向上する。正極活物質粒子204内でリチウムを速やかに拡散させるために、正極活物質粒子204は、100μm以下のメジアン径を有していてもよい。リチウムの速やかな拡散のため、電池1000は、高い出力で動作できる。上記の通り、正極活物質粒子204は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。
正極201において、正極活物質粒子204および固体電解質粒子100を良好に分散させるために、正極活物質粒子204は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。
電池1000のエネルギー密度および出力を高めるために、正極201において、正極活物質粒子204の体積および固体電解質粒子100の体積の合計に対する正極活物質粒子204の体積の比は、0.30以上かつ0.95以下あってもよい。
電池1000のエネルギー密度および出力を高めるために、正極201は、10μm以上かつ500μm以下の厚みを有していてもよい。
電解質層202は、電解質材料を含有する。当該電解質材料は、第1実施形態による固体電解質材料であってもよい。電解質層202は、固体電解質層であってもよい。
電解質層202は、第1実施形態による固体電解質材料のみから構成されていてもよい。もしくは、電解質層202は、第1実施形態による固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。
第1実施形態による固体電解質材料とは異なる固体電解質材料の例は、Li2MgX’4、Li2FeX’4、Li(Al,Ga,In)X’4、Li3(Al,Ga,In)X’6、またはLiIである。ここで、X’は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
本開示において、「(A,B,C)」は、「A、B、およびCからなる群より選択される少なくとも1つ」を意味する。
以下、第1実施形態による固体電解質材料は、第1固体電解質材料と呼ばれる。第1実施形態による固体電解質材料とは異なる固体電解質材料は、第2固体電解質材料と呼ばれる。
電解質層202は、第1固体電解質材料だけでなく、第2固体電解質材料も含有していてもよい。第1固体電解質材料および第2固体電解質材料は、均一に分散していてもよい。第1固体電解質材料からなる層および第2固体電解質材料からなる層が、電池1000の積層方向に沿って積層されていてもよい。
正極201および負極203の間の短絡を抑制し、かつ、電池1000の出力を高めるために、電解質層202は、1μm以上かつ100μm以下の厚みを有していてもよい。
負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。当該材料は、例えば、負極活物質(例えば、負極活物質粒子205)である。
負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよく、合金であってもよい。金属材料の例は、リチウム金属またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物である。
負極203において、負極活物質粒子205および固体電解質粒子100を良好に分散させるために、負極活物質粒子205は、0.1μm以上のメジアン径を有していてもよい。当該良好な分散により、電池の充放電特性が向上する。負極活物質粒子205内でリチウムを速やかに拡散させるために、負極活物質粒子205は、100μm以下のメジアン径を有していてもよい。リチウムの速やかな拡散のため、電池は高い出力で動作できる。上記の通り、負極活物質粒子205は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。
負極203において、負極活物質粒子205および固体電解質粒子100を良好に分散させるために、負極活物質粒子205は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。
電池1000のエネルギー密度および出力を高めるために、負極203において、負極活物質粒子205の体積および固体電解質粒子100の体積の合計に対する負極活物質粒子205の体積の比は、0.30以上かつ0.95以下であってもよい。
電池1000のエネルギー密度および出力を高めるために、負極203は、10μm以上かつ500μm以下の厚みを有していてもよい。
イオン伝導性、化学的安定性、および電気化学的安定性を高めるために、正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、第2固体電解質材料を含有していてもよい。
上述されたように、第2固体電解質材料は、ハロゲン化物固体電解質であってもよい。ハロゲン化物固体電解質の例は、Li2MgX’4、Li2FeX’4、Li(Al,Ga,In)X’4、Li3(Al,Ga,In)X’6、またはLiIである。ここで、X’は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
第2固体電解質材料は、硫化物固体電解質であってもよい。
硫化物固体電解質の例は、Li2S-P2S5、Li2S-SiS2、Li2S-B2S3、Li2S-GeS2、Li3.25Ge0.25P0.75S4、またはLi10GeP2S12である。
第2固体電解質材料は、酸化物固体電解質であってもよい。
酸化物固体電解質の例は、
(i)LiTi2(PO4)3またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe4O16、Li4SiO4、LiGeO4、またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr2O12またはその元素置換体のようなガーネット型固体電解質、
または
(v)Li3PO4またはそのN置換体
である。
(i)LiTi2(PO4)3またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe4O16、Li4SiO4、LiGeO4、またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr2O12またはその元素置換体のようなガーネット型固体電解質、
または
(v)Li3PO4またはそのN置換体
である。
第2固体電解質材料は、有機ポリマー固体電解質であってもよい。
有機ポリマー固体電解質の例は、高分子化合物およびリチウム塩の化合物である。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有できるため、イオン導電率をより高めることができる。
リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、またはLiC(SO2CF3)3である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、リチウムイオンの授受を容易にし、電池1000の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含有する。
非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタンまたは1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が、単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、またはLiC(SO2CF3)3である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
リチウム塩の濃度は、例えば、0.5mol/リットル以上かつ2mol/リットル以下の範囲にある。
ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオンである。
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオンである。
イオン液体に含まれるアニオンの例は、PF6
-、BF4
-、SbF6
-、AsF6
-、SO3CF3
-、N(SO2CF3)2
-、N(SO2C2F5)2
-、N(SO2CF3)(SO2C4F9)-、またはC(SO2CF3)3
-である。
イオン液体はリチウム塩を含有していてもよい。
正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、粒子同士の密着性を向上する目的で、結着剤を含有していてもよい。
結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。
共重合体もまた、結着剤として用いられ得る。このような結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体である。これらのうちから選択された2種以上の混合物を結着剤として使用してもよい。
正極201および負極203から選択される少なくとも1つは、電子導電性を高めるために、導電助剤を含有していてもよい。
導電助剤の例は、
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
第2実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
第2実施形態による電池は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。
以下、実施例を参照しながら、本開示がより詳細に説明される。
(実施例1)
[固体電解質材料の作製]
-60℃以下の露点および0.0001体積%以下の酸素濃度を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」という)中で、原料粉としてLiCl、LiBr、YCl3、GdCl3、およびCaBr2が、LiCl:LiBr:YCl3:GdCl3:CaBr2=1:1.85:0.5:0.5:0.075のモル比となるように用意された。これらの原料粉が、乳鉢中で粉砕され、混合された。得られた混合物は、アルミナ製るつぼ中で、500℃で1時間焼成された後、乳鉢中で粉砕された。このようにして、実施例1による固体電解質材料が得られた。
[固体電解質材料の作製]
-60℃以下の露点および0.0001体積%以下の酸素濃度を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」という)中で、原料粉としてLiCl、LiBr、YCl3、GdCl3、およびCaBr2が、LiCl:LiBr:YCl3:GdCl3:CaBr2=1:1.85:0.5:0.5:0.075のモル比となるように用意された。これらの原料粉が、乳鉢中で粉砕され、混合された。得られた混合物は、アルミナ製るつぼ中で、500℃で1時間焼成された後、乳鉢中で粉砕された。このようにして、実施例1による固体電解質材料が得られた。
[固体電解質材料の組成分析]
実施例1による固体電解質材料の単位重量あたりのLi、Ca、Y、およびGdの含有量は、高周波誘導結合プラズマ発光分光分析装置(Thermo Fisher Scientific製、iCAP7400)を用いて、高周波誘導結合プラズマ発光分光分析法により測定された。実施例1による固体電解質材料のClおよびBrの含有量は、イオンクロマトグラフ装置(Dionex製、ICS-2000)を用いて、イオンクロマトグラフィー法により測定された。これらの測定から得られたLi、Ca、Y、Gd、Br、およびClの含有量をもとに、Li:Ca:Y:Gd:Br:Clモル比が算出された。その結果、実施例1による固体電解質材料は、2.86:0.07:0.50:0.50:1.81:4.20のLi:Ca:Y:Gd:Br:Clモル比を有していた。
実施例1による固体電解質材料の単位重量あたりのLi、Ca、Y、およびGdの含有量は、高周波誘導結合プラズマ発光分光分析装置(Thermo Fisher Scientific製、iCAP7400)を用いて、高周波誘導結合プラズマ発光分光分析法により測定された。実施例1による固体電解質材料のClおよびBrの含有量は、イオンクロマトグラフ装置(Dionex製、ICS-2000)を用いて、イオンクロマトグラフィー法により測定された。これらの測定から得られたLi、Ca、Y、Gd、Br、およびClの含有量をもとに、Li:Ca:Y:Gd:Br:Clモル比が算出された。その結果、実施例1による固体電解質材料は、2.86:0.07:0.50:0.50:1.81:4.20のLi:Ca:Y:Gd:Br:Clモル比を有していた。
実施例1による固体電解質材料全体に対するOの質量比は、酸素・窒素・水素分析装置(堀場製作所製、EMGA-930)を用いて、非分散型赤外線吸収法により測定された。その結果、Oの質量比は0.21%であった。これをもとに、(Y+Gd):Oモル比が算出された。その結果、実施例1による固体電解質材料は、1.00:0.06の(Y+Gd):Oモル比を有していた。
組成分析において、YおよびGdの合計に対して0.01%以下のモル分率である元素は、不純物として見なされた。
[X線回折]
固体電解質材料の結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。-45℃以下の露点を有するドライ環境で、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Åおよび1.5444Å)が使用された。
固体電解質材料の結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。-45℃以下の露点を有するドライ環境で、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Åおよび1.5444Å)が使用された。
X線回折測定の結果、15.49°、16.84°、22.95°、27.80°、28.80°、30.60°、32.79°、39.80°、および47.59°にピークが存在していた。図2は、実施例1による固体電解質材料のX線回折パターンを示すグラフである。
[イオン伝導度の評価]
図3は、固体電解質材料のイオン伝導度を評価するために用いられた加圧成形ダイス300の模式図を示す。
図3は、固体電解質材料のイオン伝導度を評価するために用いられた加圧成形ダイス300の模式図を示す。
加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。枠型302は、絶縁性ポリカーボネートから形成されていた。パンチ上部301およびパンチ下部303は、いずれも電子伝導性のステンレスから形成されていた。
図3に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による固体電解質材料のイオン伝導度が測定された。
乾燥アルゴン雰囲気中で、実施例1による固体電解質材料の粉末101が加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による固体電解質材料に、パンチ上部301およびパンチ下部303を用いて400MPaの圧力が印加された。
圧力が印加されたまま、パンチ上部301およびパンチ下部303が、ポテンショスタット(Princeton Applied Research社、VersaSTAT4)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。実施例1による固体電解質材料のインピーダンスは、電気化学的インピーダンス測定法により、室温において、測定された。
図4は、実施例1による固体電解質材料のインピーダンス測定結果のCole-Cole線図を示すグラフである。
図4において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値が、固体電解質材料のイオン伝導に対する抵抗値と見なされた。当該実数値については、図4において示される矢印RSEを参照せよ。当該抵抗値を用いて、以下の数式(1)に基づいて、イオン伝導度が算出された。
σ=(RSE×S/t)-1 ・・・(1)
ここで、σは、イオン伝導度である。Sは、固体電解質材料のパンチ上部303との接触面積(図3において、枠型301の中空部の断面積に等しい)である。RSEは、インピーダンス測定における固体電解質材料の抵抗値である。tは、圧力が印加された固体電解質材料の厚み(図3において、固体電解質材料の粉末101から形成される層の厚みに等しい)である。
σ=(RSE×S/t)-1 ・・・(1)
ここで、σは、イオン伝導度である。Sは、固体電解質材料のパンチ上部303との接触面積(図3において、枠型301の中空部の断面積に等しい)である。RSEは、インピーダンス測定における固体電解質材料の抵抗値である。tは、圧力が印加された固体電解質材料の厚み(図3において、固体電解質材料の粉末101から形成される層の厚みに等しい)である。
25℃で測定された、実施例1による固体電解質材料のイオン伝導度は、3.5×10-3S/cmであった。
[電池の作製]
乾燥アルゴン雰囲気中で、実施例1による固体電解質材料および活物質であるLiCoO2が、70:30の体積比率となるように用意された。これらの材料がメノウ乳鉢中で混合された。このようにして、混合物が得られた。
乾燥アルゴン雰囲気中で、実施例1による固体電解質材料および活物質であるLiCoO2が、70:30の体積比率となるように用意された。これらの材料がメノウ乳鉢中で混合された。このようにして、混合物が得られた。
9.5mmの内径を有する絶縁性の筒の中で、実施例1による固体電解質材料(100mg)、上述の混合物(10.0mg)、およびアルミニウム粉末(14.7mg)が、順に積層された。この積層体に300MPaの圧力が印加され、第1電極および固体電解質層が形成された。固体電解質層は、500μmの厚みを有していた。
次に、固体電解質層に、金属In箔を積層した。固体電解質層は、金属In箔および第1電極の間に挟まれていた。金属In箔は、200μmの厚みを有していた。次に、金属In箔に80MPaの圧力が印加され、第2電極が形成された。
ステンレス鋼から形成された集電体が第1電極および第2電極に取り付けられ、次いで、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部を外気雰囲気から遮断し、筒の内部が密閉された。このようにして、実施例1による電池が得られた。
[充放電試験]
図5は、実施例1による電池の初期放電特性を示すグラフである。図5に示される結果は、下記の方法により、測定された。
図5は、実施例1による電池の初期放電特性を示すグラフである。図5に示される結果は、下記の方法により、測定された。
実施例1による電池は、25℃の恒温槽に配置された。87μA/cm2の電流密度で、3.7Vの電圧に達するまで、実施例1による電池を充電した。当該電流密度は、0.05Cレートに相当する。次に、同じく87μA/cm2の電流密度で、1.9Vの電圧に達するまで、実施例1による電池を放電した。
充放電試験の結果、実施例1による電池は、601μAhの初期放電容量を有していた。
(実施例2から5)
実施例2では、実施例1による固体電解質材料が-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で約30分間静置された。さらに、乾燥アルゴン雰囲気中で、500℃で1時間焼成された後、乳鉢中で粉砕された。このようにして、実施例2による固体電解質が得られた。
実施例2では、実施例1による固体電解質材料が-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で約30分間静置された。さらに、乾燥アルゴン雰囲気中で、500℃で1時間焼成された後、乳鉢中で粉砕された。このようにして、実施例2による固体電解質が得られた。
実施例3では、-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で静置された時間を、約30分間ではなく6時間としたこと以外は、実施例2と同様にして、実施例3による固体電解質材料が得られた。
実施例4では、-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で静置された時間を、約30分間ではなく15時間としたこと以外は、実施例2と同様にして、実施例4による固体電解質材料が得られた。
実施例5では、-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で静置された時間を、約30分間ではなく40時間としたこと以外は、実施例2と同様にして、実施例5による固体電解質材料が得られた。
実施例1と同様にして、実施例2から5による固体電解質材料の元素比(モル比)、X線回折、およびイオン伝導度が測定された。測定結果は、表1および表2に示される。また、図2は、実施例2から5による固体電解質材料のX線回折パターンを示すグラフである。
実施例2から5による固体電解質材料全体に対するOの質量比は、それぞれ、0.29%、0.82%、1.11%、および2.17%であった。
実施例2から5による固体電解質材料を用いて、実施例1と同様にして、実施例2から5による電池が得られた。
実施例2から5による電池を用いて、実施例1と同様にして、充放電試験が実施された。実施例2から5による電池は、実施例1による電池と同様に、良好に充電および放電された。
(比較例1)
比較例1では、-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で静置された時間を、約30分間ではなく80時間としたこと以外は、実施例2と同様にして、比較例1による固体電解質材料が得られた。
比較例1では、-30℃の露点および20.9体積%以下の酸素濃度を有するドライ雰囲気中で静置された時間を、約30分間ではなく80時間としたこと以外は、実施例2と同様にして、比較例1による固体電解質材料が得られた。
実施例1と同様にして、比較例1による固体電解質材料の元素比(モル比)、X線回折、およびイオン伝導度が測定された。測定結果は、表1に示される。図2は、比較例1による固体電解質材料のX線回折パターンを示すグラフである。
比較例1による固体電解質材料のX線回折パターンにおいては、29.54°、32.68°、33.64°、34.38°、49.2°、および58.34°にピークが存在していた。
比較例1による固体電解質材料全体に対するOの質量比は、2.20%であった。
比較例1による固体電解質材料を用いて、実施例1と同様にして、比較例1による電池が得られた。
比較例1による電池を用いて、実施例1と同様にして、充放電試験が実施された。比較例1による電池は、1μAh以下の初期放電容量しか有していなかった。すなわち、比較例1による電池は充電も放電もされなかった。図5は、比較例1による電池の初期放電特性を示すグラフである。
≪考察≫
表1から明らかなように、実施例1から5による固体電解質材料は、室温近傍において、1×10-5S/cm以上の高いイオン伝導性を有する。
表1から明らかなように、実施例1から5による固体電解質材料は、室温近傍において、1×10-5S/cm以上の高いイオン伝導性を有する。
実施例1から5から明らかなように、YとGdの合計に対するOのモル比が、0より大きく、かつ、0.51以下であれば、固体電解質材料は1×10-5S/cm以上の高いイオン伝導度を有する。実施例1から4と実施例5とを比較すると明らかなように、上記のモル比が、0より大きく、かつ、0.28以下であれば、固体電解質材料は1×10-4S/cm以上のさらに高いイオン伝導度を有する。実施例1から3を実施例4と比較すると明らかなように、上記のモル比が0より大きく、かつ、0.21以下であれば、固体電解質材料が1×10-3S/cm以上のさらに高いイオン伝導度を有する。
図2に示されるX線回折パターンおよび表2から明らかなように、Oの含有量によって、固体電解質材料の結晶構造が変化している。
表1から明らかなように、Oの含有量が増加するにつれて、BrおよびClの含有量が減少している。これは、固体電解質材料の作製における2回目の焼成の際に、OがBrおよびClと置き換わったと考えられる。すなわち、Oが固体電解質材料内の金属原子と結合し、結晶構造中に組み込まれたと考えられる。
実施例1から5による電池は、25℃において充電および放電された。
実施例1から5による固体電解質材料は、硫黄を含有しないため、硫化水素が発生しない。
以上のように、本開示による固体電解質材料は、高いリチウムイオン伝導度を有し、良好に充電および放電可能な電池を提供するために適切である。
本開示の固体電解質材料は、例えば、全固体リチウムイオン二次電池において利用される。
100 固体電解質粒子
101 固体電解質材料の粉末
201 正極
202 電解質層
203 負極
204 正極活物質粒子
205 負極活物質粒子
300 加圧成形ダイス
301 パンチ上部
302 枠型
303 パンチ下部
1000 電池
101 固体電解質材料の粉末
201 正極
202 電解質層
203 負極
204 正極活物質粒子
205 負極活物質粒子
300 加圧成形ダイス
301 パンチ上部
302 枠型
303 パンチ下部
1000 電池
Claims (6)
- Li、Ca、Y、Gd、X、およびOから構成され、
ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、
YおよびGdの合計に対するOのモル比は、0より大きく、かつ、0.51以下である、
固体電解質材料。 - Xは、ClおよびBrである、
請求項1に記載の固体電解質材料。 - Sr、Ba、Al、Sc、Ga、Bi、La、Zr、Hf、Ta、およびNbからなる群より選択される少なくとも1つをさらに含む、
請求項1または2に記載の固体電解質材料。 - Cu-Kα線を用いたX線回折測定によって得られるX線回折パターンにおいて、14.9°以上16.2°以下、16.2°以上17.5°以下、22.2°以上23.6°以下、30.0°以上31.3°以下、および39.2°以上40.5°以下、および46.3°以上48.2°以下の回折角2θの範囲にピークが存在する、
請求項1から3のいずれか一項に記載の固体電解質材料。 - 以下の4つの数式が充足される:
2.4≦x≦3.2、
0.06≦y≦0.08、
1.0≦z≦2.0、および
2.3≦w≦4.7、
ここで、
xは、YおよびGdの合計に対するLiのモル比を表し、
yは、YおよびGdの合計に対するCaのモル比を表し、
zは、YおよびGdの合計に対するBrのモル比を表し、
wは、YおよびGdの合計に対するClのモル比を表す、
請求項1から4のいずれか一項に記載の固体電解質材料。 - 正極、
負極、および
前記正極および前記負極の間に配置されている電解質層、
を備え、
前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から5のいずれか一項に記載の固体電解質材料を含有する、
電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180021492.0A CN115315756A (zh) | 2020-03-31 | 2021-01-29 | 固体电解质材料及使用了该固体电解质材料的电池 |
EP21781134.8A EP4131505A4 (en) | 2020-03-31 | 2021-01-29 | SOLID ELECTROLYTE MATERIAL AND BATTERY THEREOF |
JP2022511582A JPWO2021199641A1 (ja) | 2020-03-31 | 2021-01-29 | |
US17/933,100 US20230023022A1 (en) | 2020-03-31 | 2022-09-17 | Solid electrolyte material and battery using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064792 | 2020-03-31 | ||
JP2020-064792 | 2020-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/933,100 Continuation US20230023022A1 (en) | 2020-03-31 | 2022-09-17 | Solid electrolyte material and battery using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021199641A1 true WO2021199641A1 (ja) | 2021-10-07 |
Family
ID=77928965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/003303 WO2021199641A1 (ja) | 2020-03-31 | 2021-01-29 | 固体電解質材料およびこれを用いた電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230023022A1 (ja) |
EP (1) | EP4131505A4 (ja) |
JP (1) | JPWO2021199641A1 (ja) |
CN (1) | CN115315756A (ja) |
WO (1) | WO2021199641A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021199642A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
CN115279697A (zh) * | 2020-03-31 | 2022-11-01 | 松下知识产权经营株式会社 | 卤化物的制造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129312A (ja) | 2009-12-16 | 2011-06-30 | Toyota Motor Corp | 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池 |
WO2018025582A1 (ja) | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019135343A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109804496A (zh) * | 2016-09-28 | 2019-05-24 | 赛鹏科技有限公司 | 多孔隔板提供离子隔离的电化学电池 |
WO2020049794A1 (ja) * | 2018-09-05 | 2020-03-12 | パナソニックIpマネジメント株式会社 | 正極活物質およびそれを備えた電池 |
CN114402471A (zh) * | 2019-10-10 | 2022-04-26 | 松下知识产权经营株式会社 | 固体电解质材料及使用了它的电池 |
JPWO2021131716A1 (ja) * | 2019-12-27 | 2021-07-01 |
-
2021
- 2021-01-29 EP EP21781134.8A patent/EP4131505A4/en not_active Withdrawn
- 2021-01-29 WO PCT/JP2021/003303 patent/WO2021199641A1/ja unknown
- 2021-01-29 JP JP2022511582A patent/JPWO2021199641A1/ja active Pending
- 2021-01-29 CN CN202180021492.0A patent/CN115315756A/zh active Pending
-
2022
- 2022-09-17 US US17/933,100 patent/US20230023022A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129312A (ja) | 2009-12-16 | 2011-06-30 | Toyota Motor Corp | 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池 |
WO2018025582A1 (ja) | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2019135343A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
Also Published As
Publication number | Publication date |
---|---|
EP4131505A4 (en) | 2023-09-27 |
EP4131505A1 (en) | 2023-02-08 |
US20230023022A1 (en) | 2023-01-26 |
JPWO2021199641A1 (ja) | 2021-10-07 |
CN115315756A (zh) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7418014B2 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021070595A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
JPWO2020070958A1 (ja) | ハロゲン化物固体電解質材料およびこれを用いた電池 | |
WO2020137155A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021161604A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2020188914A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021186809A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021002053A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
JPWO2020175171A1 (ja) | 電解質材料およびそれを用いた電池 | |
WO2022018946A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2021186833A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
US20230023022A1 (en) | Solid electrolyte material and battery using same | |
JPWO2020137156A1 (ja) | 固体電解質およびそれを用いた電池 | |
WO2020188915A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199550A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2020137043A1 (ja) | リチウムイオン伝導性固体電解質材料、およびこれを用いた電池 | |
WO2021199549A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021250985A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2020188913A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2020137042A1 (ja) | 固体電解質材料、およびこれを用いた電池 | |
WO2021199640A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199619A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021153018A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021152979A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021002052A1 (ja) | 固体電解質材料およびこれを用いた電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21781134 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022511582 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021781134 Country of ref document: EP Effective date: 20221031 |