WO2023106128A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2023106128A1
WO2023106128A1 PCT/JP2022/043537 JP2022043537W WO2023106128A1 WO 2023106128 A1 WO2023106128 A1 WO 2023106128A1 JP 2022043537 W JP2022043537 W JP 2022043537W WO 2023106128 A1 WO2023106128 A1 WO 2023106128A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
positive electrode
active material
electrode active
negative electrode
Prior art date
Application number
PCT/JP2022/043537
Other languages
English (en)
French (fr)
Inventor
卓司 辻田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023106128A1 publication Critical patent/WO2023106128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to batteries.
  • Patent Document 1 discloses a battery comprising an electrode material including a halide solid electrolyte, an electrode active material, and a coating material located on the surface of the electrode active material.
  • the present disclosure provides a battery having excellent heat resistance and a wide plateau region in a battery in which generation of combustible gas is reduced and safety is improved by using a halide solid electrolyte.
  • the battery of the present disclosure is a positive electrode layer; a negative electrode layer; a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer; with
  • the positive electrode layer includes a positive electrode active material and a first solid electrolyte material
  • the negative electrode layer includes a negative electrode active material and a second solid electrolyte material
  • the positive electrode active material contains a compound that has a transition metal element and an oxoanion and that electrochemically undergoes a two-phase coexistence reaction with lithium
  • the first solid electrolyte material includes Li, M1, and X1
  • M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X1 is at least one selected from the group consisting of F, Cl, Br and I;
  • the present disclosure provides a battery having excellent heat resistance and a wide plateau region in a battery in which generation of combustible gas is reduced and safety is improved by using a halide solid electrolyte.
  • FIG. 1 shows a cross-sectional view of a battery 1000 according to an embodiment of the disclosure.
  • FIG. 2 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • 3 is a graph showing charge/discharge characteristics of the battery according to Example 1.
  • FIG. 4 is a graph showing the initial charge/discharge characteristics of the battery according to Example 2 and the charge/discharge characteristics after holding the battery in a fully charged state in an atmosphere of 125° C. for 100 hours.
  • FIG. 5 is a graph showing the discharge characteristics of the battery according to Example 2 after being held in an atmosphere of 125° C. for 100 hours in a fully charged state.
  • the battery according to the first aspect of the present disclosure includes a positive electrode layer; a negative electrode layer; a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer; with The positive electrode layer includes a positive electrode active material and a first solid electrolyte material, the negative electrode layer includes a negative electrode active material and a second solid electrolyte material;
  • the positive electrode active material contains a compound that has a transition metal element and an oxoanion and that electrochemically undergoes a two-phase coexistence reaction with lithium, the first solid electrolyte material includes Li, M1, and X1; M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X1 is at least one selected from the group consisting of F, Cl, Br and I;
  • the battery according to the first aspect comprises a positive electrode layer containing a first solid electrolyte material containing Li, M1, and X1, that is, a halide solid electrolyte.
  • Halide solid electrolytes are safe materials that do not generate combustible gases such as hydrogen sulfide, unlike sulfide solid electrolytes. Therefore, in the battery according to the first aspect in which the halide solid electrolyte is used, the generation of combustible gas is reduced and the safety is improved.
  • the positive electrode active material contains a compound that has a transition metal element and an oxoanion and electrochemically undergoes a two-phase coexistence reaction with lithium (Li).
  • the battery according to the first aspect having the above configuration, can reduce the generation of combustible gas to improve safety, improve heat resistance, and achieve a wide plateau region. can do.
  • the positive electrode active material may contain the compound as a main component.
  • the battery according to the second aspect can realize a wider plateau region.
  • the oxoanion may contain B, Si, P, or S.
  • the battery according to the third aspect can realize a wider plateau region.
  • the oxoanion is BO 3 3- , SiO 4 4- , PO 4 3- , P 2 O 7 4- or SO 4 2- good too.
  • the battery according to the fourth aspect can realize a wider plateau region.
  • the compound may have an olivine structure.
  • the battery according to the fifth aspect can achieve a wider plateau region.
  • the transition metal element is at least one selected from the group consisting of Fe, Mn, Co, and Ni. good too.
  • the battery according to the sixth aspect can realize a wider plateau region.
  • the positive electrode active material may contain LiFePO4 .
  • the battery according to the seventh aspect can achieve a wider plateau region.
  • M1 is Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, At least one selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu may be included.
  • the battery according to the eighth aspect can further increase the ionic conductivity of the positive electrode layer.
  • M1 may contain Y in the battery according to the eighth aspect.
  • the battery according to the ninth aspect can further increase the ion conductivity of the positive electrode layer.
  • the first solid electrolyte material is selected from the group consisting of Li 3-3 ⁇ Y 1+ ⁇ Br 2 Cl 4 and Li 3-3 ⁇ Y 1+ ⁇ Cl 6 At least one selected may be included.
  • may satisfy ⁇ 0.2 ⁇ 0.2.
  • the battery according to the tenth aspect can further increase the ionic conductivity of the positive electrode layer.
  • the negative electrode active material may contain Li 4 Ti 5 O 12 .
  • the battery according to the eleventh aspect can achieve a wider plateau region.
  • the second solid electrolyte material contains Li, M2, and X2, and M2 is a metal element other than Li and a semi- It is at least one selected from the group consisting of metal elements, and X2 may be at least one selected from the group consisting of F, Cl, Br, and I.
  • the battery according to the twelfth aspect can further improve safety.
  • a battery according to embodiments of the present disclosure includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the positive electrode layer includes a positive electrode active material and a first solid electrolyte material.
  • the negative electrode layer includes a negative electrode active material and a second solid electrolyte material.
  • the positive electrode active material contains a compound that has a transition metal element and an oxoanion and electrochemically undergoes a two-phase coexistence reaction with lithium.
  • the first solid electrolyte material includes Li, M1, and X1.
  • M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X1 is at least one selected from the group consisting of F, Cl, Br, and I. be.
  • metal elements in this specification are B, Si, Ge, As, Sb and Te.
  • metal element means all elements contained in groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S , and all elements contained in groups 13 to 16 of the periodic table except Se. That is, the term “semimetallic element” or “metallic element” refers to a group of elements that can become cations when an inorganic compound is formed with a halogen element.
  • the battery according to this embodiment includes a positive electrode layer containing a first solid electrolyte material containing Li, M1, and X1, ie, a halide solid electrolyte.
  • Halide solid electrolytes are safe materials that do not generate combustible gases such as hydrogen sulfide, unlike sulfide solid electrolytes. Therefore, in the battery according to the present embodiment in which the halide solid electrolyte is used, the generation of combustible gas is reduced and the safety is improved.
  • the safety of the battery can be improved by using the halide solid electrolyte.
  • the halide solid electrolyte may undergo oxidative decomposition due to contact with the positive electrode active material.
  • the positive electrode active material contains a compound that has a transition metal element and an oxoanion and electrochemically undergoes a two-phase coexistence reaction with lithium (Li).
  • Li lithium
  • oxidative decomposition of the halide solid electrolyte is suppressed, and a battery having excellent heat resistance can be demonstrated.
  • a battery having a wide plateau region with excellent flatness of potential can be realized.
  • the battery according to the present embodiment having the above configuration, can reduce the generation of combustible gas to improve safety, improve heat resistance, and achieve a wide plateau region. be able to.
  • lithium iron phosphate LiFePO4 having an olivine structure is known to undergo a two-phase coexistence reaction between two phases of LiFePO4 and FePO4 when charged and discharged by deinsertion of Li ions (non-patent document 1).
  • Lithium iron borate LiFeBO 3 is known to undergo a two-phase coexistence reaction between two phases of LiFeBO 3 and Li 0.5 FeBO 3 when charged and discharged by deinsertion of Li ions (Non-Patent Document 2). .
  • Lithium iron sulfate Li 2 Fe (SO 4 ) 2 is charged and discharged by deinsertion of Li ions.
  • a two-phase coexistence reaction occurs between the two phases with ( SO4 ) 2 , and when Li2Fe ( SO4 ) 2 is orthorhombic, two phases of Li2Fe ( SO4 ) 2 and Li1.5Fe ( SO4 ) 2 It is known that a two-phase coexistence reaction between phases and a two-phase coexistence reaction between two phases of Li 1.5 Fe(SO 4 ) 2 and LiFe(SO 4 ) 2 occur continuously (Non-Patent Document 3).
  • Lithium manganese silicate Li 2 MnSiO 4 is known to undergo a two-phase coexistence reaction between two phases of Li 2 MnSiO 4 and LiMnSiO 4 when charged and discharged by deinsertion of Li ions (non-patent document 4).
  • the conventionally proposed known compound as described above can be used as a compound having a transition metal element and an oxo anion and electrochemically coexisting in two phases with lithium. is.
  • FIG. 1 shows a cross-sectional view of a battery 1000 according to an embodiment of the present disclosure.
  • a battery 1000 according to this embodiment includes a positive electrode layer 101 , a negative electrode layer 103 , and a solid electrolyte layer 102 arranged between the positive electrode layer 101 and the negative electrode layer 103 .
  • the cathode layer 101 includes a cathode active material 104 and a first solid electrolyte material 105 .
  • the positive electrode active material 104 contains a compound that has a transition metal element and an oxo anion and electrochemically undergoes a two-phase coexistence reaction with lithium.
  • First solid electrolyte material 105 includes Li, M1, and X1. M1 and X1 are as described above.
  • the negative electrode layer 103 includes a negative electrode active material 106 and a second solid electrolyte material 107 .
  • the battery 1000 may be an all-solid battery.
  • Positive electrode layer 101 contains a material that has the property of absorbing and releasing metal ions (for example, lithium ions).
  • Positive electrode layer 101 includes positive electrode active material 104 and first solid electrolyte material 105 .
  • the volume ratio Vp representing the volume of the positive electrode active material 104 to the total volume of the positive electrode active material 104 and the first solid electrolyte material 105 contained in the positive electrode layer 101 may be 0.3 or more and 0.95 or less. When the volume ratio Vp is 0.3 or more, it is easy to secure a sufficient energy density of the battery 1000 . When the volume ratio Vp is 0.95 or less, it becomes easier for the battery 1000 to operate at high output.
  • the thickness of the positive electrode layer 101 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the positive electrode layer 101 has a thickness of 10 ⁇ m or more, a sufficient energy density of the battery 1000 can be secured. In addition, when the thickness of the positive electrode layer 101 is 500 ⁇ m or less, the operation of the battery 1000 at high output can be realized.
  • the positive electrode layer 101 may contain a binder.
  • a binder is used to improve the binding properties of the material forming the positive electrode layer 101 .
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Hexyl acrylate, polymethacrylic acid, polymethacrylic acid methylester, polymethacrylic acid ethylester, polymethacrylic acid hexylester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, carboxymethyl cellulose, and the like.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. Two or more selected from these may be mixed and used as a binder.
  • the positive electrode layer 101 may contain a conductive material.
  • a conductive material is used for the purpose of enhancing electronic conductivity.
  • Examples of conductive materials include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, and metal powders such as aluminum. , conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, and the like. Cost reduction can be achieved when the carbon conductive material is used.
  • One conductive material may be used alone, or two or more may be used in combination.
  • the positive electrode layer 101 may further include a positive electrode current collector.
  • a metal foil can be used for the positive electrode current collector.
  • metals constituting the positive electrode current collector include aluminum, titanium, alloys containing these metal elements, and stainless steel.
  • the thickness of the positive electrode current collector is not particularly limited, it is, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the metal foil may be coated with carbon or the like.
  • the positive electrode active material 104 of the battery 1000 contains a compound that has a transition metal element and an oxoanion and undergoes an electrochemical two-phase coexistence reaction with lithium.
  • the positive electrode active material 104 may contain the above compound as a main component.
  • the "main component” is the component that is contained most in terms of mass ratio.
  • the oxoanion may contain B, Si, P, or S.
  • the oxoanion may be BO 3 3- , SiO 4 4- , PO 4 3- , P 2 O 7 4- , or SO 4 2- .
  • the transition metal element may be at least one selected from the group consisting of Fe, Mn, Co, and Ni.
  • the transition metal element may be at least one selected from the group consisting of Fe and Mn.
  • the transition metal element may contain Fe or may be Fe.
  • the above compound may have an olivine structure.
  • a wider plateau region can be achieved.
  • the compound may be at least one selected from the group consisting of LiFePO4 , LiFeBO3 , Li2Fe ( SO4 ) 2 , and Li2MnSiO4 .
  • the positive electrode active material 104 may contain LiFePO4 . By including LiFePO 4 in the positive electrode active material 104, a wider plateau region can be achieved.
  • the median diameter of the positive electrode active material 104 may be 0.05 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material 104 is 0.05 ⁇ m or more, the positive electrode active material 104 and the first solid electrolyte material 105 can form a good dispersion state. As a result, the charge/discharge characteristics of the battery 1000 are improved. Moreover, when the median diameter of the positive electrode active material 104 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 104 is improved. Therefore, it is possible to operate the battery 1000 at a high output.
  • the median diameter of the positive electrode active material 104 may be larger than the median diameter of the first solid electrolyte material 105 . Thereby, the positive electrode active material 104 and the first solid electrolyte material 105 can form a good dispersed state.
  • the median diameter means the particle size (volume average particle size) at which the volume integrated value is 50% in the volume-based particle size distribution measured by the laser diffraction scattering method.
  • a coating layer having a thickness of about 1 nm to 100 nm may be provided on the surface of the positive electrode active material 104 .
  • the coating layer By providing the coating layer on the surface of the positive electrode active material 104, heat resistance and oxidation resistance can be further improved.
  • the coating layer include oxides such as Al 2 O x (where x satisfies 0 ⁇ x ⁇ 3) and BaTiO 3 , solid electrolytes such as lithium phosphate, and the like.
  • the method of forming the coating layer is not limited, and can be formed, for example, by the following method.
  • the coating layer may be formed on the surface of the positive electrode active material 104 by a vapor phase method such as a sputtering method or an electron beam deposition method, and a metal layer is formed on the surface of the positive electrode active material 104 by a vapor phase method or a plating method. It can also be formed later by heating in an oxygen atmosphere.
  • the electrode active material 104 is coated using a liquid phase method such as a spray coating method or a dip coating method.
  • a coating layer may be formed on the surface of the
  • the first solid electrolyte material 105 contains Li, M1, and X1, ie a halide solid electrolyte.
  • the first solid electrolyte material 105 may consist essentially of Li, M1 and X1.
  • the first solid electrolyte material 105 consists essentially of Li, M1, and X1" means that in the first solid electrolyte material 105, , Li, M1, and X1 (that is, the molar fraction) is 90% or more. As an example, the ratio (ie, mole fraction) may be 95% or greater.
  • the first solid electrolyte material 105 may consist only of Li, M1, and X1.
  • the first solid electrolyte material 105 may be substantially free of sulfur.
  • the first solid electrolyte material 105 does not substantially contain sulfur
  • the first solid electrolyte material 105 does not contain sulfur as a constituent element except sulfur that is unavoidably mixed as an impurity.
  • sulfur mixed as an impurity in the first solid electrolyte material 105 is, for example, 1 mol % or less.
  • First solid electrolyte material 105 may not contain sulfur.
  • a sulfur-free solid electrolyte material does not generate hydrogen sulfide even when exposed to the atmosphere, and is therefore excellent in safety.
  • M1 may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanoid elements.
  • M1 may also include group 5 elements, group 12 elements, group 13 elements, and group 14 elements.
  • Group 1 elements are Na, K, Rb, or Cs.
  • group 2 elements are Mg, Ca, Sr or Ba.
  • group 3 elements are Sc or Y.
  • group 4 elements are Ti, Zr or Hf.
  • lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
  • Group 5 elements are Nb or Ta.
  • An example of a Group 12 element is Zn.
  • Examples of group 13 elements are Al, Ga, In.
  • An example of a Group 14 element is Sn.
  • M1 may include Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
  • M1 may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf, and may contain Y good.
  • X1 is at least one selected from the group consisting of F, Br, Cl and I.
  • X1 may contain Br, Cl and I to further increase the ionic conductivity.
  • the first solid electrolyte material 105 may be Li3-3 ⁇ Y1 + ⁇ X6 .
  • satisfies ⁇ 0.2 ⁇ 0.2, for example.
  • the first solid electrolyte material 105 may be Li 3-3 ⁇ Y 1+ ⁇ Br 6 or Li 3-3 ⁇ Y 1+ ⁇ Cl 6 .
  • the first solid electrolyte material 105 may be Li 3-3 ⁇ Y 1+ ⁇ Br x1 Cl 6-x1 (0 ⁇ x1 ⁇ 6).
  • the first solid electrolyte material 105 may be Li3-3 ⁇ Y1 + ⁇ Brx2Cly2I6 - x2 -y2 (0 ⁇ x2, 0 ⁇ y2, 0 ⁇ x2+y2 ⁇ 6).
  • the first solid electrolyte material 105 contains Li 3-3 ⁇ Y 1+ ⁇ Br 6 , Li 3-3 ⁇ Y 1+ ⁇ Br x1 Cl 6-x1 , Li 3-3 ⁇ Y 1+ At least one selected from the group consisting of ⁇ Cl6 and Li3-3 ⁇ Y1 + ⁇ Brx2Cly2I6 -x2-y2 may be included.
  • the first solid electrolyte material 105 includes Li3-3 ⁇ Y1 + ⁇ Br6 , Li3-3 ⁇ Y1 + ⁇ Br2Cl4 , Li3-3 ⁇ Y1 + ⁇ Cl 6 and at least one selected from the group consisting of Li 3-3 ⁇ Y 1+ ⁇ Br 2 Cl 2 I 2 .
  • the first solid electrolyte material 105 contains at least one material selected from the group consisting of Li3-3 ⁇ Y1 + ⁇ Br2Cl4 and Li3-3 ⁇ Y1 + ⁇ Cl6 . may contain
  • the first solid electrolyte material 105 may further contain a polymer solid electrolyte.
  • the polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. Since the polymer solid electrolyte having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ) , LiC(SO2CF3 ) 3 , etc. may be used.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • the first solid electrolyte material 105 may further contain a complex hydride solid electrolyte.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 and the like
  • LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 and the like
  • the shape of the first solid electrolyte material 105 is not particularly limited, and may be acicular, spherical, ellipsoidal, or the like, for example.
  • the shape of the first solid electrolyte material 105 may be particles.
  • the median diameter of the first solid electrolyte material 105 may be 100 ⁇ m or less.
  • positive electrode active material 104 and first solid electrolyte material 105 can form a good dispersion state. Therefore, the charge/discharge characteristics of the battery 1000 are improved.
  • the median diameter of the first solid electrolyte material 105 may be 10 ⁇ m or less. According to this configuration, the positive electrode active material 104 and the first solid electrolyte material 105 can form a better dispersed state.
  • the median diameter of the first solid electrolyte material 105 may be smaller than the median diameter of the positive electrode active material 104 . According to this configuration, the positive electrode active material 104 and the first solid electrolyte material 105 can form a better dispersed state.
  • the negative electrode layer 103 contains a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions). Negative electrode layer 103 includes negative electrode active material 106 and second solid electrolyte material 107 .
  • the content of the second solid electrolyte material 107 in the negative electrode layer 103 may be the same as or different from the content of the negative electrode active material 106 .
  • the volume ratio Vn representing the volume of the negative electrode active material 106 to the total volume of the negative electrode active material 106 and the second solid electrolyte material 107 may be 0.3 or more and 0.95 or less.
  • the volume ratio Vn is 0.3 or more, it is easy to secure a sufficient energy density of the battery 1000 .
  • the volume ratio Vn is 0.95 or less, it becomes easier for the battery 1000 to operate at high output.
  • the thickness of the negative electrode layer 103 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the negative electrode layer 103 is 10 ⁇ m or more, a sufficient energy density of the battery 1000 can be secured.
  • the thickness of the negative electrode 203 is 500 ⁇ m or less, the operation of the battery 1000 at high power can be realized.
  • the negative electrode layer 103 may further include a negative electrode current collector.
  • a negative electrode current collector the same material as that used in the positive electrode current collector can be used.
  • the thickness of the negative electrode current collector is not particularly limited, it is, for example, 3 ⁇ m to 50 ⁇ m.
  • the lithium-absorbing alloy can be used both as the negative electrode active material and as the negative electrode current collector.
  • the negative electrode layer 103 may include a negative electrode current collector and a negative electrode mixture layer carried on the surface of the negative electrode current collector.
  • the negative electrode mixture layer is formed, for example, by coating the surface of the negative electrode current collector with a negative electrode slurry in which a negative electrode mixture obtained by mixing the negative electrode active material 106 and the second solid electrolyte material 107 is dispersed in a dispersion medium, followed by drying. can be formed by The dried coating film may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture may further contain a binder, a conductive material, a thickener, and the like.
  • a binder As the binder and the conductive material, the same materials as those used for the positive electrode layer 101 can be used.
  • the negative electrode active material 106 may contain a carbon material that absorbs and releases lithium ions.
  • Carbon materials that occlude and release lithium ions include graphite (natural graphite, artificial graphite), easily graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), and the like. Among them, graphite is preferable because it has excellent charging/discharging stability and low irreversible capacity.
  • the negative electrode active material 106 may contain an alloy material.
  • An alloy material is a material containing at least one metal capable of forming an alloy with lithium, and examples thereof include silicon, tin, indium, silicon alloys, tin alloys, indium alloys, and silicon compounds.
  • a composite material comprising a lithium ion conducting phase and silicon particles dispersed in the phase may be used as the silicon compound.
  • a silicate phase such as a lithium silicate phase, a silicon oxide phase in which 95 mass % or more is silicon dioxide, a carbon phase, or the like may be used.
  • the negative electrode active material 106 may contain lithium titanium oxide.
  • the lithium titanium oxide may comprise at least one material selected from Li4Ti5O12 , Li7Ti5O12 and LiTi2O4 .
  • the negative electrode active material 106 may contain Li 4 Ti 5 O 12 .
  • An alloy material and a carbon material, or a lithium titanium oxide and a carbon material may be used together as the negative electrode active material 106 .
  • the second solid electrolyte material 107 is not particularly limited, but may be a halide solid electrolyte like the first solid electrolyte material 105 described above.
  • the second solid electrolyte material may contain Li, M2, and X2.
  • M2 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X2 is at least one selected from the group consisting of F, Cl, Br, and I. be.
  • the second solid electrolyte material 107 may be a material having the same composition as the first solid electrolyte material 105, or may be a material having a different composition.
  • the polymer solid electrolyte mentioned as the first solid electrolyte material 105 may be used, or the complex hydride solid electrolyte may be used.
  • a sulfide solid electrolyte or an oxide solid electrolyte may be used as the second solid electrolyte material 107 .
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li10GeP2S12 , Li6PS5Cl , etc. may be used .
  • LiX (X: F, Cl, Br, I), Li 2 O, MOq, LipMOq (M: any of P, Si, Ge, B, Al, Ga, In, Fe, Zn) ( p, q: natural numbers) and the like may be added.
  • oxide solid electrolytes include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and their elemental substitutions, Li 3 N and its H substitutions , Li 3 PO 4 and its N-substituted products, LiBO 2 , Li 3 BO 3 and other Li-B-O compounds as bases, and Li 2 SO 4 , Li 2 CO 3 and the like added thereto, glass, glass ceramics, etc. can be used.
  • NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof
  • Solid electrolyte layer 102 Solid electrolyte layer 102 is arranged between positive electrode layer 101 and negative electrode layer 103 .
  • the solid electrolyte layer 102 is a layer containing a solid electrolyte material.
  • Solid electrolyte layer 102 may contain a solid electrolyte material having the same composition as first solid electrolyte material 105 or may contain a solid electrolyte material having the same composition as second solid electrolyte material 107 .
  • Solid electrolyte layer 102 may use a material different from first solid electrolyte material 105 and second solid electrolyte material 107 .
  • the solid electrolyte layer 102 may contain two or more of the materials listed as solid electrolyte materials.
  • the solid electrolyte layer may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the solid electrolyte layer 102 may include a first electrolyte layer and a second electrolyte layer, the first electrolyte layer being located between the positive electrode layer 101 and the negative electrode layer 103, and the second electrolyte layer being the first electrolyte layer. and the negative electrode layer 103 .
  • the first electrolyte layer may contain a material having the same composition as the first solid electrolyte material 105 .
  • the second electrolyte layer may contain a material having a different composition than the first solid electrolyte material 105 .
  • the second electrolyte layer may contain a material having the same composition as the second solid electrolyte material 107 .
  • the solid electrolyte layer 102 may contain a binder as appropriate.
  • the binder the same one as that for the positive electrode layer 101 can be used.
  • the solid electrolyte layer 102 may be made of the materials exemplified as the first solid electrolyte material 105 and the second solid electrolyte material 107 .
  • the solid electrolyte layer 102 can be formed, for example, by drying a solid electrolyte slurry in which a solid electrolyte material is dispersed in a dispersion medium, forming a sheet, and transferring it to the surface of the positive electrode layer 101 or negative electrode layer 103 .
  • solid electrolyte slurry can be directly applied to the surface of the positive electrode layer 101 or the negative electrode layer 103 and dried.
  • the manufacturing method of the battery 1000 is not limited to coating.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may also be manufactured by making laminated laminates.
  • a positive electrode layer containing the positive electrode active material 104, the first solid electrolyte material 105, and a conductive material, a solid electrolyte layer, and a negative electrode layer containing the negative electrode active material 106, the second solid electrolyte material 107, and a conductive material are pressed.
  • the battery 1000 can also be formed by forming powders and bonding them together.
  • Example 1 Preparation of first solid electrolyte material and second solid electrolyte material
  • the powder of the halide solid electrolyte material containing Li, Y, Br, and Cl, which is the first solid electrolyte material and the second solid electrolyte material of Example 1 was obtained.
  • the materials produced as the first solid electrolyte material and the second solid electrolyte material in Example 1 are hereinafter referred to as solid electrolyte materials produced in Example 1.
  • Example 2 Evaluation of crystal structure and crystallinity
  • the powder of the solid electrolyte material prepared in Example 1 was subjected to X-ray diffraction measurement in a dry atmosphere having a dew point of -40°C or lower, and an X-ray diffraction pattern was obtained.
  • An X-ray diffractometer (MiniFlex 600, manufactured by RIGAKU) was used to analyze the crystal structure.
  • Cu-K ⁇ radiation was used as the X-ray source.
  • XRD X-ray diffraction method
  • the term “monoclinic” as used in this disclosure has a crystal structure similar to and unique to Li 3 ErBr 6 disclosed in ICSD (Inorganic Crystal Structure Database) #01-087-0159. It means a crystalline phase with an X-ray diffraction pattern. Therefore, the presence of monoclinic crystals contained in the solid electrolyte material is determined based on the X-ray diffraction pattern. At this time, the diffraction angle and/or peak intensity ratio of the diffraction pattern may change from that of Li 3 ErBr 6 depending on the type of elements contained in the solid electrolyte material.
  • FIG. 2 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 . Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
  • the frame mold 302 was made of insulating polycarbonate.
  • Example 1 Using the pressure molding die 300 shown in FIG. 2, the ionic conductivity of the solid electrolyte material produced in Example 1 was measured by the following method.
  • the solid electrolyte material produced in Example 1 (that is, solid electrolyte material powder 401 in FIG. 2) was filled inside a pressure-forming die. Inside the pressure molding die, a pressure of 300 MPa was applied to the solid electrolyte material produced in Example 1 using the upper punch portion 301 and the lower punch portion 303 .
  • the upper punch 301 and lower punch 303 were connected to a potentiostat (Princeton Applied Research, VersaSTAT4) equipped with a frequency response analyzer.
  • the punch upper part 301 was connected to the working electrode and the terminal for potential measurement.
  • the punch bottom 303 was connected to the counter and reference electrodes.
  • the impedance of the solid electrolyte material produced in Example 1 was measured by electrochemical impedance measurement at room temperature by measuring ion conductivity.
  • the ionic conductivity of the solid electrolyte material produced in Example 1 measured at 22° C. was 1.5 ⁇ 10 ⁇ 3 S/cm. Similar solid electrolyte materials were used in Examples 2, 3, Comparative Examples 1, and 2 as well.
  • Lithium iron phosphate LiFePO 4 (manufactured by Hitachi Zosen Corporation) was used as the positive electrode active material.
  • VGCF Vapor-grown carbon fiber
  • Lithium titanate Li 4 Ti 5 O 12 (manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the negative electrode active material.
  • Example 2 In a dry argon atmosphere, the solid electrolyte material prepared in Example 1 and the negative electrode active material were weighed at a volume ratio of 40:60. VGCF as a conductor was weighed at 5.7% by mass with respect to the total mass of the solid electrolyte material and the negative electrode active material. A negative electrode mixture was produced by mixing these in an agate mortar.
  • the battery was placed in a constant temperature bath at 25°C.
  • Constant current charging was performed at a current value of 130 ⁇ A, charging was performed to a potential of 3.6 V relative to Li, and then low voltage charging was performed at 26 ⁇ A to complete charging.
  • the battery was discharged at a current value of 130 ⁇ A to a potential of 2.5 V relative to Li, and the discharge was terminated.
  • FIG. 3 is a graph showing charge/discharge characteristics of the battery according to Example 1.
  • FIG. 3 From this graph, it can be seen that in Example 1, a battery with a wide plateau region can be realized.
  • Example 2 Preparation of first solid electrolyte material and second solid electrolyte material
  • the composition ratio, crystal structure, crystallinity, and ionic conductivity of the first solid electrolyte material produced in Example 2 were evaluated in the same manner as in Example 1.
  • the deviation of Li/Y from the starting composition was within 3%. That is, it can be said that the composition charged by the planetary ball mill and the composition of the first solid electrolyte material produced in Example 2 were almost the same.
  • An X-ray diffraction pattern attributed to monoclinic crystal as the main crystal phase of the first solid electrolyte material produced in Example 2 was observed.
  • the ionic conductivity of the first solid electrolyte material produced in Example 2 was 3.0 ⁇ 10 ⁇ 4 S/cm.
  • Example 1 the solid electrolyte material produced in Example 1 was used as the second solid electrolyte material.
  • the positive electrode mixture and negative electrode mixture were produced in the same manner as in Example 1, except that the first solid electrolyte material used in producing the positive electrode mixture was changed to that produced in Example 2.
  • the positive electrode mixture was weighed so that the amount of the positive electrode active material was the same as in Example 1, and the positive electrode mixture and the second positive electrode mixture were weighed in the insulating outer cylinder having an inner diameter of 9.4 mm.
  • 50 mg of the first solid electrolyte material, 50 mg of the second solid electrolyte material, and 67.4 mg of the negative electrode mixture were laminated in this order. This was pressure-molded at a pressure of 720 MPa to produce a laminate comprising a positive electrode layer, an electrolyte layer, and a negative electrode layer.
  • stainless steel collectors were placed above and below the laminate, and collector leads were attached to the collectors.
  • an insulating ferrule was used to isolate the inside of the insulating outer cylinder from the outside atmosphere and to seal it, thereby producing a battery according to Example 2.
  • the battery was placed in a constant temperature bath at 125°C.
  • Constant current charging was performed at a current value of 130 ⁇ A, charging was performed to a potential of 3.6 V relative to Li, and then low voltage charging was performed at 26 ⁇ A to complete charging.
  • the battery was discharged at a current value of 130 ⁇ A to a potential of 2.5 V relative to Li, and the discharge was terminated.
  • FIG. 4 is a graph showing the initial charge/discharge characteristics of the battery according to Example 2.
  • FIG. 5 is a graph showing the discharge characteristics of the battery according to Example 2 after being held in an atmosphere of 125° C. for 100 hours in a fully charged state. These graphs show that the battery of Example 2 has a wide plateau region and can operate stably even when held in an atmosphere of 125°C.
  • LiFePO 4 lithium iron phosphate
  • Li 4 Ti 5 O 12 lithium titanate Li 4 Ti 5 O 12
  • the negative electrode active material is not limited to lithium titanate, and may include carbon materials and alloy materials that occlude and release lithium ions.
  • the battery of the present disclosure is suitably used, for example, as a power source for mobile devices such as smartphones, a power source for vehicles such as electric vehicles, a power source for various in-vehicle devices, and a storage device for natural energy such as sunlight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示の電池1000は、正極層101と、負極層103と、正極層101と負極層103との間に配置された固体電解質層102と備える。正極層101は、正極活物質104および第1固体電解質材料105を含む。負極層103は、負極活物質106および第2固体電解質材料107を含む。正極活物質104は、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含む。第1固体電解質材料105は、Li、M1、およびX1を含み、M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。

Description

電池
 本開示は、電池に関する。
 特許文献1には、ハロゲン化物固体電解質と、電極活物質と、電極活物質の表面に位置する被覆材料とを含む電極材料を備えた電池が開示されている。
国際公開第2019/146308号
A. K. Padhi, K. S. Nanjundaswamy, and J. B.Goodenough, "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries", J. Electrochem. Soc., 144, 1188 (1997). Shou-Hang Bo, Kyung-Wan Nam,Olaf J. Borkiewicz,Yan-Yan Hu,Xiao-Qing Yang, Peter J. Chupas, Karena W. Chapman, Lijun Wu, Lihua Zhang, Feng Wang, Clare P. Grey, and Peter G. Khalifah, "Structures of Delithiated and Degraded LiFeBO3, and Their Distinct Changes upon Electrochemical Cycling", Inorg. Chem. 53, 13, 6585-6595(2014) Laura Lander, Marine Reynaud, Javier Carrasco, Nebil A Katcho, Christophe Bellin, Alain Polian, Benoit Baptiste, Gwenaelle Rousse, Jean-Marie Tarascon, "Unveiling the electrochemical mechanisms of Li2Fe(SO4)2 polymorphs by neutron diffraction and density functional theory calculations", Phys Chem Chem Phys.18(21),14509-19(2016) R. Dominko, M. Bele, A. Kokalj, M. Gaberscek, J. Jamnik, "Li2MnSiO4 as a potential Li-battery cathode material", Journal of Power Sources.Volume174, Issue2, Pages 457-461
 本開示は、ハロゲン化物固体電解質が用いられることによって可燃性ガスの発生が低減されて安全性が向上した電池において、優れた耐熱性を有し、かつ広いプラトー領域を有する電池を提供する。
 本開示の電池は、
 正極層と、
 負極層と、
 前記正極層と前記負極層との間に配置された固体電解質層と、
を備え、
 前記正極層は、正極活物質および第1固体電解質材料を含み、
 前記負極層は、負極活物質および第2固体電解質材料を含み、
 前記正極活物質は、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含み、
 前記第1固体電解質材料は、Li、M1、およびX1を含み、
 M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 本開示は、ハロゲン化物固体電解質が用いられることによって可燃性ガスの発生が低減されて安全性が向上した電池において、優れた耐熱性を有し、かつ広いプラトー領域を有する電池を提供する。
図1は、本開示の実施形態による電池1000の断面図を示す。 図2は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図3は、実施例1による電池の充放電特性を示すグラフである。 図4は、実施例2による電池の初回の充放電特性と、満充電状態で125℃雰囲気に100時間保持した後の充放電特性とを示すグラフである。 図5は、実施例2による電池の、満充電状態で125℃雰囲気に100時間保持した後の放電特性を示すグラフである。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、
 正極層と、
 負極層と、
 前記正極層と前記負極層との間に配置された固体電解質層と、
を備え、
 前記正極層は、正極活物質および第1固体電解質材料を含み、
 前記負極層は、負極活物質および第2固体電解質材料を含み、
 前記正極活物質は、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含み、
 前記第1固体電解質材料は、Li、M1、およびX1を含み、
 M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 第1態様に係る電池は、Li、M1、およびX1を含む第1固体電解質材料、すなわちハロゲン化物固体電解質を含む正極層を備えている。ハロゲン化物固体電解質は、例えば硫化物固体電解質のように硫化水素のような可燃性ガスを発生させることのない、安全性に優れた材料である。したがって、ハロゲン化物固体電解質が用いられている第1態様に係る電池では、可燃性ガスの発生が低減されて安全性が向上する。さらに、第1態様に係る電池では、正極活物質が、遷移金属元素とオキソアニオンと有し、かつリチウム(Li)と電気化学的に二相共存反応をする化合物を含む。このような化合物が、正極活物質としてハロゲン化物固体電解質と組み合わされて用いられることにより、ハロゲン化物固体電解質の酸化分解が抑制されて、電池の耐熱性が向上する。さらに、このような化合物が正極活物質として用いられることにより、電位の平坦性に優れた広いプラトー領域を有する電池を実現できる。以上のとおり、第1態様に係る電池は、上記の構成を有することにより、可燃性ガスの発生を低減して安全性を向上させることができ、耐熱性を向上させ、かつ広いプラトー領域を実現することができる。
 第2態様において、例えば、第1態様に係る電池では、前記正極活物質は、前記化合物を主成分として含んでいてもよい。
 第2態様に係る電池は、より広いプラトー領域を実現することができる。
 第3態様において、例えば、第1または第2態様に係る電池では、前記オキソアニオンが、B、Si、P、またはSを含んでいてもよい。
 第3態様に係る電池は、より広いプラトー領域を実現することができる。
 第4態様において、例えば、第3態様に係る電池では、前記オキソアニオンは、BO3 3-、SiO4 4-、PO4 3-、P27 4-、またはSO4 2-であってもよい。
 第4態様に係る電池は、より広いプラトー領域を実現することができる。
 第5態様において、例えば、第1から第4態様のいずれか1つに係る電池では、前記化合物は、オリビン構造を有していてもよい。
 第5態様に係る電池は、より広いプラトー領域を実現することができる。
 第6態様において、例えば、第1から第5態様のいずれか1つに係る電池では、前記遷移金属元素は、Fe、Mn、Co、およびNiからなる群より選択される少なくとも1つであってもよい。
 第6態様に係る電池は、より広いプラトー領域を実現することができる。
 第7態様において、例えば、第1から第6態様のいずれか1つに係る電池では、前記正極活物質は、LiFePO4を含んでいてもよい。
 第7態様に係る電池は、より広いプラトー領域を実現することができる。
 第8態様において、例えば、第1から第7態様のいずれか1つに係る電池では、M1は、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも1つを含んでいてもよい。
 第8態様に係る電池は、正極層のイオン伝導度をさらに高めることができる。
 第9態様において、例えば、第8態様に係る電池では、M1はYを含んでいてもよい。
 第9態様に係る電池は、正極層のイオン伝導度をさらに高めることができる。
 第10態様において、例えば、第9態様に係る電池では、前記第1固体電解質材料は、Li3-3α1+αBr2Cl4およびLi3-3α1+αCl6からなる群より選択される少なくとも1つを含んでいてもよい。ここで、αは、-0.2≦α≦0.2を充足してもよい。
 第10態様に係る電池は、正極層のイオン伝導度をさらに高めることができる。
 第11態様において、例えば、第1から第10態様のいずれか1つに係る電池では、前記負極活物質は、Li4Ti512を含んでいてもよい。
 第11態様に係る電池は、より広いプラトー領域を実現することができる。
 第12態様において、例えば、第1から第11態様のいずれか1つに係る電池では、前記第2固体電解質材料は、Li、M2、およびX2を含み、M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、X2は、F、Cl、Br、およびIからなる群より選択される少なくとも1つであってもよい。
 第12態様に係る電池は、より安全性を向上させることができる。
 (本開示の実施形態)
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
 本開示の実施形態による電池は、正極層と、負極層と、正極層と負極層との間に配置された固体電解質層と、を備える。正極層は、正極活物質および第1固体電解質材料を含む。負極層は、負極活物質および第2固体電解質材料を含む。正極活物質は、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含む。第1固体電解質材料は、Li、M1、およびX1を含む。ここで、M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 ここで、本明細書において「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。また、「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く周期表13族から16族中に含まれるすべての元素である。すなわち、「半金属元素」または「金属元素」とは、ハロゲン元素と無機化合物を形成した際に、カチオンとなり得る元素群である。
 本実施形態による電池は、Li、M1、およびX1を含む第1固体電解質材料、すなわちハロゲン化物固体電解質を含む正極層を備えている。ハロゲン化物固体電解質は、例えば硫化物固体電解質のように硫化水素のような可燃性ガスを発生させることのない、安全性に優れた材料である。したがって、ハロゲン化物固体電解質が用いられている本実施形態による電池では、可燃性ガスの発生が低減されて安全性が向上する。
 上述のとおり、ハロゲン化物固体電解質を用いることによって、電池の安全性を向上させることができる。しかし、ハロゲン化物固体電解質は、正極活物質との接触によって酸化分解が生じることがある。このような問題に対し、本実施形態による電池では、正極活物質が、遷移金属元素とオキソアニオンと有し、かつリチウム(Li)と電気化学的に二相共存反応をする化合物を含む。このような化合物が、正極活物質としてハロゲン化物固体電解質と組み合わされて用いられることにより、ハロゲン化物固体電解質の酸化分解が抑制され、優れた耐熱性を有する電池を実演することができる。さらに、このような化合物が正極活物質として用いられることにより、電位の平坦性に優れた広いプラトー領域を有する電池を実現できる。
 以上のとおり、本実施形態による電池は、上記の構成を有することにより、可燃性ガスの発生を低減して安全性を向上させることができ、耐熱性を向上させ、かつ広いプラトー領域を実現することができる。
 なお、リチウムと電気化学的に二相共存反応をする化合物がリチウム二次電池の正極活物質として使用できることは、従来知られている。
 例えば、オリビン構造を有するリン酸鉄リチウムLiFePO4は、Liイオンの脱挿入で充放電する時、LiFePO4とFePO4との二相間で二相共存反応することが知られている(非特許文献1)。
 また、ホウ酸鉄リチウムLiFeBO3は、Liイオンの脱挿入で充放電する時、LiFeBO3とLi0.5FeBO3との二相間で二相共存反応することが知られている(非特許文献2)。
 また、硫酸鉄リチウムLi2Fe(SO42は、Liイオンの脱挿入で充放電する時、Li2Fe(SO42が単斜晶の時にはLi2Fe(SO42とLiFe(SO42との二相間で二相共存反応し、Li2Fe(SO42が斜方晶の時にはLi2Fe(SO42とLi1.5Fe(SO42との二相間での二相共存反応と、Li1.5Fe(SO42とLiFe(SO42との二相間での二相共存反応とが連続的に起こることが知られている(非特許文献3)。
 また、ケイ酸マンガンリチウムLi2MnSiO4は、Liイオンの脱挿入で充放電する時、Li2MnSiO4とLiMnSiO4との二相間で二相共存反応することが知られている(非特許文献4)。
 したがって、本実施形態による電池において、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物として、上記のような従来提案されている公知の化合物が使用可能である。
 図1は、本開示の実施形態による電池1000の断面図を示す。
 本実施形態による電池1000は、正極層101と、負極層103と、正極層101と負極層103との間に配置された固体電解質層102とを備える。
 正極層101は、正極活物質104および第1固体電解質材料105を含む。正極活物質104は、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含む。第1固体電解質材料105は、Li、M1、およびX1を含む。M1およびX1は、上記のとおりである。
 負極層103は、負極活物質106および第2固体電解質材料107を含む。
 電池1000は、全固体電池であってもよい。
 以下、本実施形態による電池1000の各構成について、より詳しく説明する。
 (正極層101)
 正極層101は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。正極層101は、正極活物質104および第1固体電解質材料105を含む。
 正極層101に含まれる、正極活物質104および第1固体電解質材料105の合計体積に対する正極活物質104の体積を表す体積比Vpは、0.3以上0.95以下であってもよい。体積比Vpが0.3以上である場合、十分な電池1000のエネルギー密度を確保しやすい。体積比Vpが0.95以下である場合、電池1000の高出力での動作がより容易となる。
 正極層101の厚さは、10μm以上かつ500μm以下であってもよい。
 正極層101の厚さが10μm以上の場合には、十分な電池1000のエネルギー密度を確保し得る。なお、正極層101の厚さが500μm以下の場合には、電池1000の高出力での動作を実現し得る。
 正極層101には、結着剤が含まれてもよい。結着剤は、正極層101を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極層101には、導電材が含まれてもよい。導電材は、電子導電性を高める目的で、用いられる。導電材としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が用いられうる。炭素導電材を用いた場合、低コスト化を図ることができる。導電材は、1つを単独で用いてもよく、2つ以上を組み合わせて用いてもよい。
 正極層101は、さらに正極集電体を備えてもよい。
 正極集電体には、例えば、金属箔を用い得る。正極集電体を構成する金属としては、例えば、アルミニウム、チタン、これらの金属元素を含む合金、ステンレス鋼が挙げられる。正極集電体の厚さは、特に限定されないが、例えば、3μm以上かつ50μm以下である。金属箔に、カーボン等がコートされていてもよい。
 (正極活物質104)
 本実施形態による電池1000の正極活物質104は、上述のとおり、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含む。正極活物質104は、上記化合物を主成分として含んでいてもよい。ここで、「主成分」とは、質量比で最も多く含まれる成分のことである。
 上記化合物において、オキソアニオンが、B、Si、P、またはSを含んでいてもよい。このような化合物が正極活物質104として用いられることにより、より広いプラトー領域を実現することができる。
 上記化合物において、オキソアニオンは、BO3 3-、SiO4 4-、PO4 3-、P27 4-、またはSO4 2-であってもよい。このような化合物が正極活物質104として用いられることにより、より広いプラトー領域を実現することができる。
 上記化合物において、遷移金属元素は、Fe、Mn、Co、およびNiからなる群より選択される少なくとも1つであってもよい。このような化合物が正極活物質104として用いられることにより、より広いプラトー領域を実現することができる。
 上記化合物において、遷移金属元素は、FeおよびMnからなる群より選択される少なくとも1つであってもよい。遷移金属元素は、Feを含んでいてもよく、Feであってもよい。このような化合物が正極活物質104として用いられることにより、より広いプラトー領域を実現することができる。
 上記化合物は、オリビン構造を有していてもよい。このような化合物が正極活物質104として用いられることにより、より広いプラトー領域を実現することができる。
 上記化合物は、LiFePO4、LiFeBO3、Li2Fe(SO42、およびLi2MnSiO4からなる群より選択される少なくとも1つであってもよい。このような化合物が正極活物質104として用いられることにより、より広いプラトー領域を実現することができる。
 正極活物質104は、LiFePO4を含んでいてもよい。正極活物質104がLiFePO4を含むことにより、より広いプラトー領域を実現することができる。
 正極活物質104のメジアン径は、0.05μm以上かつ100μm以下であってもよい。
 正極活物質104のメジアン径が0.05μm以上であると、正極活物質104と第1固体電解質材料105とが、良好な分散状態を形成できる。この結果、電池1000の充放電特性が向上する。また、正極活物質104のメジアン径が100μm以下であると、正極活物質104内のリチウム拡散速度が向上する。このため、電池1000の高出力での動作が可能となる。
 正極活物質104のメジアン径は、第1固体電解質材料105のメジアン径よりも、大きくてもよい。これにより、正極活物質104と第1固体電解質材料105とが、良好な分散状態を形成できる。
 本明細書において、メジアン径は、レーザー回折散乱法で測定される体積基準の粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。
 正極活物質104の表面に、厚さ1nmから100nm程度の被覆層が設けられていてもよい。正極活物質104の表面に被覆層が設けられることにより、耐熱性および耐酸化性をさらに向上させることができる。被覆層としては、例えば、Al2x(xは、例えば0<x<3を充足する)およびBaTiO3などの酸化物、リン酸リチウムなどの固体電解質などが考えられる。
 被覆層の形成方法は限定されるものではなく、例えば、以下の方法で形成することができる。被覆層は、スパッタ法および電子線蒸着法等の気相法で正極活物質104の表面に形成されてもよく、気相法またはメッキ法などにより正極活物質104の表面に金属層を形成した後に酸素雰囲気で加熱することでも形成できる。例えば、正極集電体上に正極活物質104および第1固体電解質材料105を含む合材層を形成したのちに、スプレーコーティング法、ディップコーティング法等の液相法を用いて、極活物質104の表面に被覆層を形成してもよい。
 (第1固体電解質材料105)
 第1固体電解質材料105は、Li、M1、およびX1を含んでおり、すなわちハロゲン化物固体電解質を含む。第1固体電解質材料105は、実質的に、Li、M1、およびX1からなっていてもよい。「第1固体電解質材料105が、実質的に、Li、M1、およびX1からなる」とは、第1固体電解質材料105において、第1固体電解質材料105を構成する全元素の物質量の合計に対する、Li、M1、およびX1の物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比(すなわち、モル分率)は95%以上であってもよい。第1固体電解質材料105は、Li、M1、およびX1のみからなっていてもよい。第1固体電解質材料105は、実質的に硫黄を含まなくてもよい。「第1固体電解質材料105が、実質的に硫黄を含まない」とは、第1固体電解質材料105が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、第1固体電解質材料105に不純物として混入される硫黄は、例えば1モル%以下である。第1固体電解質材料105は、硫黄を含有しなくてもよい。硫黄を含有しない固体電解質材料は、大気に曝露されても硫化水素が発生しないので、安全性に優れる。
 イオン伝導度を高めるために、M1は、第1族元素、第2族元素、第3族元素、第4族元素、およびランタノイド元素からなる群より選択される少なくとも1つの元素を含んでもよい。
 また、M1は、第5族元素、第12族元素、第13族元素、第14族元素を含んでもよい。
 第1族元素の例は、Na、K、Rb、またはCsである。第2族元素の例は、Mg、Ca、Sr、またはBaである。第3族元素の例は、ScまたはYである。第4族元素の例は、Ti、ZrまたはHfである。ランタノイド元素の例は、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、またはLuである。
 第5族元素の例は、NbまたはTaである。第12族元素の例は、Znである。第13族元素の例は、Al、Ga、Inである。第14族元素の例は、Snである。
 イオン伝導度をさらに高めるために、M1は、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも1つの元素を含んでもよい。
 イオン伝導度をさらに高めるために、M1は、Mg、Ca、Sr、Y、Sm、Gd、Dy、およびHfからなる群より選択される少なくとも1つの元素を含んでもよく、Yを含んでいてもよい。
 上述のとおり、X1は、F、Br、ClおよびIからなる群より選択される少なくとも1つである。
 イオン伝導度をさらに高めるために、X1は、Br、ClおよびIを含んでもよい。
 第1固体電解質材料105は、Li3-3α1+α6であってもよい。ここで、αは、例えば-0.2≦α≦0.2を充足する。第1固体電解質材料105は、Li3-3α1+αBr6であってもよく、Li3-3α1+αCl6であってもよい。第1固体電解質材料105は、Li3-3α1+αBrx1Cl6-x1(0≦x1<6)、であってもよい。第1固体電解質材料105は、Li3-3α1+αBrx2Cly26-x2-y2(0≦x2、0≦y2、0≦x2+y2≦6)であってもよい。
 イオン伝導度をさらに高めるために、第1固体電解質材料105は、Li3-3α1+αBr6、Li3-3α1+αBrx1Cl6-x1、Li3-3α1+αCl6およびLi3-3α1+αBrx2Cly26-x2-y2からなる群より選択される少なくとも1つを含んでいてもよい。
 上記組成式において、x1=2が充足されてもよい。また、上記組成式において、x2=2およびy2=2が充足されてもよい。
 イオン伝導度をさらに高めるために、第1固体電解質材料105は、Li3-3α1+αBr6、Li3-3α1+αBr2Cl4、Li3-3α1+αCl6およびLi3-3α1+αBr2Cl22からなる群より選択される少なくとも1つを含んでいてもよい。
 イオン伝導度をさらに高めるために、第1固体電解質材料105は、Li3-3α1+αBr2Cl4およびLi3-3α1+αCl6からなる群より選択される少なくとも1つを含んでいてもよい。
 上記組成式において、α=0が充足されてもよい。
 第1固体電解質材料105は、さらに高分子固体電解質を含んでもよい。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子固体電解質はリチウム塩を多く含有することができるので、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、など、が使用されうる。リチウム塩として、これらから選択される1つのリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 第1固体電解質材料105は、さらに錯体水素化物固体電解質を含んでもよい。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25など、が用いられうる。
 第1固体電解質材料105の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、第1固体電解質材料105の形状は、粒子であってもよい。
 例えば、第1固体電解質材料105の形状が粒子状(例えば、球状)の場合、第1固体電解質材料105のメジアン径は、100μm以下であってもよい。第1固体電解質材料105のメジアン径が100μm以下である場合、正極活物質104と第1固体電解質材料105とが良好な分散状態を形成できる。このため、電池1000の充放電特性が向上する。
 第1固体電解質材料105のメジアン径は、10μm以下であってもよい。この構成によれば、正極活物質104と第1固体電解質材料105とが、より良好な分散状態を形成できる。
 第1固体電解質材料105のメジアン径は、正極活物質104のメジアン径より小さくてもよい。この構成によれば、正極活物質104と第1固体電解質材料105とが、より良好な分散状態を形成できる。
 (負極層103)
 負極層103は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。負極層103は、負極活物質106および第2固体電解質材料107を含む。
 負極層103において、第2固体電解質材料107の含有量は、負極活物質106の含有量と同じであってもよいし、異なっていてもよい。
 負極層103において、負極活物質106および第2固体電解質材料107の合計体積に対する負極活物質106の体積を表す体積比Vnは、0.3以上0.95以下であってもよい。体積比Vnが0.3以上である場合、十分な電池1000のエネルギー密度を確保しやすい。体積比Vnが0.95以下である場合、電池1000の高出力での動作がより容易となる。
 負極層103の厚さは、10μm以上かつ500μm以下であってもよい。
 負極層103の厚さが10μm以上の場合には、十分な電池1000のエネルギー密度を確保し得る。なお、負極203の厚さが500μm以下の場合には、電池1000の高出力での動作を実現し得る。
 負極層103は、さらに負極集電体を備えてもよい。負極集電体として、正極集電体で用いられる材料と同じ材料が使用され得る。負極集電体の厚さは、特に限定されないが、例えば、3μmから50μmである。また、負極活物質106としてリチウム合金やリチウム吸蔵金属を用いる場合は、リチウム吸蔵合金を負極活物質、兼、負極集電体として用いることもできる。
 負極層103は、負極集電体と、負極集電体の表面に担持された負極合剤層と、を備えてもよい。負極合剤層は、例えば、負極活物質106と第2固体電解質材料107とを混ぜた負極合剤を分散媒に分散させた負極スラリを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、さらに結着剤、導電材、および増粘剤等を含み得る。結着剤および導電材としては、正極層101と同様のものを用いることができる。
 (負極活物質106)
 負極活物質106は、リチウムイオンを吸蔵および放出する炭素材料を含んでもよい。リチウムイオンを吸蔵および放出する炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等が挙げられる。中でも充放電の安定性に優れ、不可逆容量も少ない黒鉛が望ましい。
 負極活物質106は、合金系材料を含んでもよい。合金系材料とは、リチウムと合金形成可能な金属を少なくとも1つ含む材料であり、例えば、ケイ素、スズ、インジウム、ケイ素合金、スズ合金、インジウム合金、ケイ素化合物等が挙げられる。ケイ素化合物として、リチウムイオン伝導相と、その相に分散したケイ素粒子とを備える複合材料を用いてもよい。リチウムイオン伝導相として、リチウムシリケート相等のシリケート相、95質量%以上が二酸化ケイ素であるケイ素酸化物相、炭素相等を用いてもよい。
 負極活物質106は、リチウムチタン酸化物を含んでもよい。リチウムチタン酸化物は、Li4Ti512、Li7Ti512およびLiTi24より選択される少なくとも一つの材料を含んでもよい。
 耐熱性を向上させ、かつより広いプラトー領域を実現するために、負極活物質106は、Li4Ti512を含んでいてもよい。
 負極活物質106として合金系材料と炭素材料、もしくはリチウムチタン酸化物と炭素材料を併用してもよい。
 (第2固体電解質材料107)
 第2固体電解質材料107は、特に限定されないが、上述の第1固体電解質材料105と同様に、ハロゲン化物固体電解質であってもよい。例えば、第2固体電解質材料は、Li、M2、およびX2を含んでいてもよい。ここで、M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、X2は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 第2固体電解質材料107は、第1固体電解質材料105と同じ組成を有する材料であってもよいし、異なる組成を有する材料であってもよい。
 第2固体電解質材料107には、第1固体電解質材料105として挙げられた高分子固体電解質が用いられてもよいし、錯体水素化物固体電解質が用いられてもよい。
 第2固体電解質材料107には、硫化物固体電解質が用いられてもよいし、酸化物固体電解質が用いられてもよい。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212、Li6PS5Clなど、が用いられうる。また、これらに、LiX(X:F、Cl、Br、I)、Li2O、MOq、LipMOq(M:P、Si、Ge、B、Al、Ga、In、Fe、Znのいずれか)(p、q:自然数)などが、添加されてもよい。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3NおよびそのH置換体、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラス、ガラスセラミックスなど、が用いられうる。
 (固体電解質層102)
 固体電解質層102は、正極層101と負極層103との間に配置される。
 固体電解質層102は、固体電解質材料を含む層である。
 固体電解質層102に含まれる固体電解質材料として、第1固体電解質材料105および第2固体電解質材料107として例示した材料を用いてもよい。固体電解質層102は、第1固体電解質材料105と同じ組成の固体電解質材料を含んでいてもよいし、第2固体電解質材料107と同じ組成の固体電解質材料を含んでいてもよい。固体電解質層102は、第1固体電解質材料105、および第2固体電解質材料107とは異なる材料を用いてもよい。
 固体電解質層102は、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、固体電解質層は、ハロゲン化物固体電解質および硫化物固体電解質を含んでもよい。
 固体電解質層102は、第1電解質層および第2電解質層を含んでもよく、第1電解質層は、正極層101と負極層103との間に位置し、第2電解質層は、第1電解質層と負極層103との間に位置してもよい。第1電解質層は第1固体電解質材料105と同じ組成を有する材料を含んでもよい。第2電解質層は、第1固体電解質材料105とは異なる組成を有する材料を含んでもよい。第2電解質層は、第2固体電解質材料107と同じ組成を有する材料を含んでもよい。
 固体電解質層102は、適宜結着剤を含有してもよい。結着剤としては、正極層101と同様のものを用いることができる。
 固体電解質層102は、第1固体電解質材料105および第2固体電解質材料107として例示した材料で形成されていてもよい。
 固体電解質層102は、例えば、固体電解質材料を分散媒に分散させた固体電解質スラリを乾燥させシート状に形成し、正極層101あるいは、負極層103表面に転写することにより形成できる。また、正極層101あるいは、負極層103表面に固体電解質スラリを直接塗布し、乾燥させることでも形成が可能である。
 スラリを用いた正極層101、負極層103、および固体電解質層102の形成方法を記載したが、電池1000の製造方法は塗工に限定されない。本実施形態による電池1000は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。例えば、正極活物質104、第1固体電解質材料105、および導電材を含む正極層と、固体電解質層と、負極活物質106、第2固体電解質材料107および導電材を含む負極層と、を圧粉により形成し、貼り合わせることでも電池1000を形成することができる。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 (第1固体電解質材料および第2固体電解質材料の作製)
 乾燥アルゴン雰囲気下で、原料粉LiBr、YBr3、LiCl、YCl3を、モル比でLi:Y:Br:Cl=3:1:2:4となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。以上により、実施例1の第1固体電解質材料および第2固体電解質材料であるLi、Y、Br、およびClを含むハロゲン化物固体電解質材料の粉末を得た。以下、実施例1で第1固体電解質材料および第2固体電解質材料として作製された材料を、実施例1で作製された固体電解質材料と記載する。
 (組成の評価)
 実施例1で作製された固体電解質材料について、ICP(Inductive coupled Plasma)発光分光分析法を用いて組成の評価を行った。その結果、Li/Yが仕込み組成からのずれが3%以内であった。すなわち、遊星型ボールミルによる仕込み組成と、実施例1で作製された固体電解質材料の組成とは、ほとんど同様であったと言える。
 (結晶構造および結晶性の評価)
 実施例1で作製された固体電解質材料の粉末は、-40℃以下の露点を有するドライ雰囲気中で、X線回析測定に供され、X線回折パターンが得られた。結晶構造の解析には、X線回折装置(RIGAKU社、MiniFlex600)が用いられた。X線源として、Cu-Kα線が用いられた。X線回折法(X-ray Diffraction:XRD)を用いて評価した結果、主な結晶相として単斜晶に帰属されるX線回折パターンが観測された。
 本開示において用いられる用語「単斜晶」とは、ICSD(無機結晶構造データベース)#01-087-0159に開示されるLi3ErBr6と類似の結晶構造を有し、かつこの結晶構造特有のX線回折パターンを有する結晶相を意味する。そのため、固体電解質材料中に含まれる単斜晶の存在は、X線回折パターンに基づいて判断される。このとき、固体電解質材料に含まれる元素の種類により、回折パターンの回折角度および/またはピーク強度比は、Li3ErBr6のものから変化しうる。
 (イオン伝導度の評価)
 図2は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。パンチ上部301およびパンチ下部303は、いずれも、電子伝導性のステンレスから形成されていた。枠型302は、絶縁性のポリカーボネートから形成されていた。
 図2に示される加圧成形ダイス300を用いて、下記の方法により、実施例1で作製された固体電解質材料のイオン伝導度が測定された。
 -30℃以下の露点を有するドライ雰囲気中で、実施例1で作製された固体電解質材料(すなわち、図2において固体電解質材料の粉末401)が加圧成形ダイスの内部に充填された。加圧成形ダイスの内部で、実施例1で作製された固体電解質材料に、パンチ上部301およびパンチ下部303を用いて、300MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303が、周波数応答アナライザが搭載されたポテンショスタット(Princeton Applied Research社、VersaSTAT4)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。実施例1で作製された固体電解質材料のインピーダンスは、室温において、電気化学インピーダンス測定法により、イオン伝導度の測定を行なった。
 22℃で測定された、実施例1で作製された固体電解質材料のイオン伝導度は、1.5×10-3S/cmであった。実施例2、実施例3、比較例1、および比較例2でも同様の固体電解質材料が用いられた。
 (正極合材の作製)
 正極活物質として、リン酸鉄リチウムLiFePO4(株式会社日立造船製)を用いた。
 乾燥アルゴン雰囲気下で、実施例1で作製された固体電解質材料と、上記の正極活物質とを、50:50の体積比率で秤量した。導電体としての気相法炭素繊維(VGCF(昭和電工株式会社製))を、固体電解質材料と正極活物質との合計質量に対し、5質量%で秤量した。これらをメノウ乳鉢で混合することで、正極合材を作製した。なお、VGCFは、昭和電工株式会社の登録商標である。
 (負極合材の作製)
 負極活物質として、チタン酸リチウムLi4Ti512(株式会社豊島製作所製)を用いた。
 乾燥アルゴン雰囲気下で、実施例1で作製された固体電解質材料と、上記の負極活物質とを、40:60の体積比率で秤量した。導電体としてのVGCFを固体電解質材料と負極活物質の合計質量に対し、5.7質量%で秤量した。これらをメノウ乳鉢で混合することで、負極合材を作製した。
 (電池の作製)
 9.4mmの内径を有する絶縁性外筒の中で、正極合材28.3mg、実施例1で作製した固体電解質材料を100mg、負極合材67.4mgの順に積層した。これを720MPaの圧力で加圧成形し、正極層、電解質層、および負極層からなる積層体を作製した。次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断し、密閉することで、実施例1による電池を作製した。
 (充放電試験)
 上述の実施例1の電池を用いて、以下のように充放電試験を行った。
 電池を25℃の恒温槽に配置した。
 電流値130μAで定電流充電し、Liに対する電位3.6Vまで充電し、その後26μAで低電圧充電して充電を終了した。
 次に、電流値130μAで放電し、Liに対する電位2.5Vまで放電して放電を終了した。
 図3は、実施例1による電池の充放電特性を示すグラフである。このグラフから、実施例1では、プラトー領域の広い電池を実現できていることが分かる。
 (実施例2)
 (第1固体電解質材料および第2固体電解質材料の作製)
 第1固体電解質材料を作製するため、乾燥アルゴン雰囲気下で、原料粉LiCl、YCl3を、モル比でLi:Y:Cl=3:1:6となるように秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。以上により、実施例2の第1固体電解質材料であるLi、Y、およびClを含むハロゲン化物固体電解質材料の粉末を得た。
 なお、実施例2で作製された第1固体電解質材料の組成比、結晶構造、結晶性、およびイオン伝導度に関する評価は、実施例1と同様の方法で実施した。実施例2で作製された第1固体電解質材料の組成比を評価したところ、実施例1と同様に、Li/Yが仕込み組成からのずれが3%以内であった。すなわち、遊星型ボールミルによる仕込み組成と、実施例2で作製された第1固体電解質材料の組成とは、ほとんど同様であったと言える。実施例2で作製された第1固体電解質材料の主な結晶相として単斜晶に帰属されるX線回折パターンが観測された。実施例2で作製された第1固体電解質材料のイオン伝導度は、3.0×10-4S/cmであった。
 また、第2固体電解質材料には、実施例1で作製された固体電解質材料が用いられた。
 正極合材および負極合材については、正極合材の作製に用いた第1固体電解質材料を実施例2で作製したものに変更した点を除き、実施例1と同様の方法で作製された。
 (電池の作製)
 絶縁性外筒の中で、正極合材を実施例1と正極活物質の量が同じになるように秤量し、9.4mmの内径を有する絶縁性外筒の中で、正極合材、第1固体電解質材料50mg、第2固体電解質材料50mg、負極合材67.4mgの順に積層した。これを720MPaの圧力で加圧成形し、正極層、電解質層、および負極層からなる積層体を作製した。次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断し、密閉することで、実施例2による電池を作製した。
 (充放電試験)
 上述の実施例2の電池を用いて、以下のように充放電試験を行った。
 電池を125℃の恒温槽に配置した。
 電流値130μAで定電流充電し、Liに対する電位3.6Vまで充電し、その後26μAで低電圧充電して充電を終了した。
 次に、電流値130μAで放電し、Liに対する電位2.5Vまで放電して放電を終了した。
 図4は、実施例2による電池の初回の充放電特性を示すグラフである。図5は、実施例2による電池の、満充電状態で125℃雰囲気に100時間保持した後の放電特性を示すグラフである。これらのグラフから、実施例2の電池は、プラトー領域が広く、さらに125℃雰囲気での保持においても安定に動作できていることが分かる。
 以上より、正極活物質としてリン酸鉄リチウム(LiFePO4)を用い、負極活物質としてチタン酸リチウムLi4Ti512を用いることにより、プラトー領域の広い電池を提供できることが確認された。
 また、リン酸鉄リチウム(LiFePO4)の代わりに、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含む正極活物質を用いた場合でも、プラトー領域の広い電池を提供することができる。
 なお、負極活物質はチタン酸リチウムに限定されるものでなく、リチウムイオンを吸蔵および放出する炭素材料や合金系材料を含んでもよい。
 本開示の電池は、例えば、スマートフォン等のモバイル機器の電源、電気自動車等の車両の動力源、各種車載機器用の電源、太陽光等の自然エネルギーの貯蔵装置として好適に用いられる。

Claims (12)

  1.  正極層と、
     負極層と、
     前記正極層と前記負極層との間に配置された固体電解質層と、
    を備え、
     前記正極層は、正極活物質および第1固体電解質材料を含み、
     前記負極層は、負極活物質および第2固体電解質材料を含み、
     前記正極活物質は、遷移金属元素とオキソアニオンと有し、かつリチウムと電気化学的に二相共存反応をする化合物を含み、
     前記第1固体電解質材料は、Li、M1、およびX1を含み、
     M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである、電池。
  2.  前記正極活物質は、前記化合物を主成分として含む、
    請求項1に記載の電池。
  3.  前記オキソアニオンが、B、Si、P、またはSを含む、
    請求項1または2に記載の電池。
  4.  前記オキソアニオンは、BO3 3-、SiO4 4-、PO4 3-、P27 4-、またはSO4 2-である、
    請求項3に記載の電池。
  5.  前記化合物は、オリビン構造を有する、
    請求項1から4のいずれか一項に記載の電池。
  6.  前記遷移金属元素は、Fe、Mn、Ni、およびCoからなる群より選択される少なくとも1つである、
    請求項1から5のいずれか一項に記載の電池。
  7.  前記正極活物質は、LiFePO4を含む、
    請求項1から6のいずれか一項に記載の電池。
  8.  M1は、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも1つを含む、
    請求項1から7のいずれか一項に記載の電池。
  9.  M1は、Yを含む、
    請求項8に記載の電池。
  10.  前記第1固体電解質材料は、Li3-3α1+αBr2Cl4およびLi3-3α1+αCl6からなる群より選択される少なくとも1つを含み、
     ここで、αは、-0.2≦α≦0.2を充足する、
    請求項9に記載の電池。
  11.  前記負極活物質は、Li4Ti512を含む、
    請求項1から10のいずれか一項に記載の電池。
  12.  前記第2固体電解質材料は、Li、M2、およびX2を含み、
     M2は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     X2は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである、請求項1から11のいずれか一項に記載の電池。
PCT/JP2022/043537 2021-12-07 2022-11-25 電池 WO2023106128A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021198903 2021-12-07
JP2021-198903 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023106128A1 true WO2023106128A1 (ja) 2023-06-15

Family

ID=86730200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043537 WO2023106128A1 (ja) 2021-12-07 2022-11-25 電池

Country Status (1)

Country Link
WO (1) WO2023106128A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101967A (ja) * 2005-04-15 2013-05-23 Bathium Canada Inc Li4Ti5O12ベースのアノードに対して余剰のLiFePO4ベースのカソードを有するリチウム可充電電池
WO2019146292A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
CN111725561A (zh) * 2020-07-31 2020-09-29 南方科技大学 一种固态电解质及其制备方法、全固态电池
JP2021077544A (ja) * 2019-11-11 2021-05-20 トヨタ自動車株式会社 電極および全固体電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101967A (ja) * 2005-04-15 2013-05-23 Bathium Canada Inc Li4Ti5O12ベースのアノードに対して余剰のLiFePO4ベースのカソードを有するリチウム可充電電池
WO2019146292A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
JP2021077544A (ja) * 2019-11-11 2021-05-20 トヨタ自動車株式会社 電極および全固体電池
CN111725561A (zh) * 2020-07-31 2020-09-29 南方科技大学 一种固态电解质及其制备方法、全固态电池

Similar Documents

Publication Publication Date Title
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
CN108336328B (zh) 正极活性物质和电池
JP5657702B2 (ja) リチウムイオン二次電池用の電極
JP2020184407A (ja) 全固体電池
WO2021157361A1 (ja) 正極材料および電池
WO2020110480A1 (ja) 負極材料、電池、および電池の製造方法
WO2020110479A1 (ja) 負極材料、および、電池
CN111668484A (zh) 负极活性物质材料和蓄电装置
Van Nghia et al. Synthesis and electrochemical performances of layered NaLi0. 2Ni0. 2Mn0. 6O2 cathode for sodium-ion batteries
WO2023037776A1 (ja) 被覆活物質、被覆活物質の製造方法、正極材料、および電池
JP2013518376A (ja) 導電剤が添加されていないリチウムイオン二次電池用の電極
WO2021220927A1 (ja) 正極材料、および、電池
EP4131489A1 (en) Coated positive electrode active material and battery using same
JP7067858B2 (ja) リチウムイオン二次電池および該リチウムイオン二次電池用の正極活物質
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2021177382A1 (ja) 正極材料および電池
WO2023106128A1 (ja) 電池
Nanda et al. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects
JP2021077445A (ja) 非水電解質電池
WO2022259820A1 (ja) 被覆正極活物質、正極材料、および電池
WO2022259797A1 (ja) 被覆正極活物質、正極材料、および電池
WO2023132304A1 (ja) 正極材料および電池
Sarode Development of LMR-NMC Based Cathodes and Si-Based Anodes for High Energy Density Lithium-Ion Batteries
JP7074027B2 (ja) 負極
WO2022254796A1 (ja) 電極材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904059

Country of ref document: EP

Kind code of ref document: A1