WO2022259820A1 - 被覆正極活物質、正極材料、および電池 - Google Patents

被覆正極活物質、正極材料、および電池 Download PDF

Info

Publication number
WO2022259820A1
WO2022259820A1 PCT/JP2022/020307 JP2022020307W WO2022259820A1 WO 2022259820 A1 WO2022259820 A1 WO 2022259820A1 JP 2022020307 W JP2022020307 W JP 2022020307W WO 2022259820 A1 WO2022259820 A1 WO 2022259820A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
solid electrolyte
battery
Prior art date
Application number
PCT/JP2022/020307
Other languages
English (en)
French (fr)
Inventor
卓司 辻田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280039620.9A priority Critical patent/CN117413383A/zh
Priority to JP2023527586A priority patent/JPWO2022259820A1/ja
Publication of WO2022259820A1 publication Critical patent/WO2022259820A1/ja
Priority to US18/527,307 priority patent/US20240097120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to coated positive electrode active materials, positive electrode materials, and batteries.
  • Patent Document 1 discloses a battery comprising a halide, an electrode active material, and a coating material located on the surface of the electrode active material.
  • Patent Document 2 discloses a negative electrode active material having a coating portion made of aluminum oxide on its surface.
  • Patent Document 3 discloses an all-solid battery in which a metal layer having an apparent average thickness of 0.05 ⁇ m or more is provided on the surface of active material particles.
  • the present disclosure provides a positive electrode active material that can improve cycle characteristics of batteries.
  • the coated positive electrode active material of the present disclosure is a positive electrode active material; a coating material that coats at least part of the surface of the positive electrode active material; including The coating material comprises Al 2 O x (0 ⁇ x ⁇ 3).
  • the present disclosure provides a positive electrode active material that can improve cycle characteristics of batteries.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 2.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of battery 2000 according to Embodiment 3.
  • FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • FIG. 4 shows peaks attributed to Al2p in the X-ray photoelectron spectra of the surfaces of the coated positive electrode active materials of Example 1 and Comparative Example 2 and Al 2 O 3 measured by X-ray photoelectron spectroscopy.
  • FIG. 5 is a graph showing charge/discharge curves showing initial charge/discharge characteristics of batteries in Examples 1 to 3 and Comparative Examples 1 and 2.
  • the coated positive electrode active material according to the first aspect of the present disclosure is a positive electrode active material; a coating material that coats at least part of the surface of the positive electrode active material; including The coating material comprises Al 2 O x (0 ⁇ x ⁇ 3).
  • the coated positive electrode active material according to the first aspect Since at least part of the surface of the coated positive electrode active material according to the first aspect is coated with a coating material containing Al 2 O x (0 ⁇ x ⁇ 3), the solid electrolyte contacts the positive electrode active material in the battery. Inhibition of lithium ion conduction on the surface of the positive electrode active material can be suppressed while effectively suppressing oxidative decomposition of the solid electrolyte. Therefore, the coated positive electrode active material according to the first aspect can effectively suppress oxidative decomposition of the solid electrolyte and suppress an increase in internal resistance, thereby improving cycle characteristics of the battery.
  • the coating material consists essentially of Al and O, and in the spectrum obtained by X-ray photoelectron spectroscopy of the surface, Al2p
  • the full width at half maximum of the peak assigned may exceed 1.80 eV.
  • the coated positive electrode active material according to the second aspect can improve the cycle characteristics of the battery.
  • the positive electrode active material may have a composition represented by the following compositional formula (2).
  • ⁇ and ⁇ satisfy 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1, and 0 ⁇ 1- ⁇ - ⁇ ⁇ 0.35
  • Me is at least one selected from the group consisting of Al and Mn is one.
  • the coated positive electrode active material according to the third aspect can improve the charge/discharge capacity of the battery.
  • the coated positive electrode active material according to the third aspect may satisfy at least one selected from the group consisting of (A) and (B) below.
  • A) The surface of the coated positive electrode active material has an Al/Ni atomic ratio of 2.9 or less.
  • the coated positive electrode active material according to the fourth aspect can further improve the cycle characteristics of the battery.
  • the positive electrode material according to the fifth aspect of the present disclosure is A coated positive electrode active material according to any one of the first to fourth aspects; a first solid electrolyte material; including the first solid electrolyte material contains Li, M, and X; M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one selected from the group consisting of F, Cl, Br and I;
  • the positive electrode material according to the fifth aspect can improve the cycle characteristics of the battery.
  • the battery according to the sixth aspect of the present disclosure includes a positive electrode; a negative electrode; a solid electrolyte layer provided between the positive electrode and the negative electrode; with The positive electrode includes the positive electrode material according to the fifth aspect.
  • the battery according to the sixth aspect has improved cycle characteristics.
  • the coated positive electrode active material according to Embodiment 1 of the present disclosure includes a positive electrode active material and a coating material that covers at least part of the surface of the positive electrode active material, and the coating material is Al 2 O x (0 ⁇ x ⁇ 3).
  • Al 2 O x (0 ⁇ x ⁇ 3) favors lithium diffusion within the coating material. Furthermore, by covering at least part of the surface of the positive electrode active material with the coating material, it is possible to suppress electron conduction that causes decomposition of the solid electrolyte. Therefore, the cycle characteristics of the battery can be improved.
  • x may satisfy 2 ⁇ x ⁇ 3.
  • Al 2 O x (0 ⁇ x ⁇ 3) is, for example, in the X-ray photoelectron spectrum obtained by X-ray photoelectron spectrometry, attributed to Al2p in the X-ray photoelectron spectrum obtained by X-ray photoelectron spectrometry of Al 2 O 3 It can be confirmed by the fact that the full width at half maximum of the peak attributed to Al2p is wider than the full width at half maximum (1.80 eV) of the peak attributed to Al2p. The reason for this is considered to be that the Al valences are mixed.
  • the coating material may consist essentially of Al and O, and the full width at half maximum of the peak attributed to Al2p may exceed 1.80 eV in the spectrum obtained by X-ray photoelectron spectroscopy of the surface of the coated positive electrode active material.
  • the coating material consists essentially of Al and O means that the ratio (i.e., mole fraction) of the total amount of Al and O to the total amount of all elements constituting the coating material is It means 90% or more. As an example, the ratio may be 95% or greater. The total ratio of Al and O substance amounts may be 98% or more, or may be 99% or more.
  • the coating material may contain elements that are unavoidably mixed.
  • An example of such an element is Li, which diffuses into the coating material upon repeated use of a lithium-ion secondary battery containing the coated cathode active material of the present disclosure.
  • the coating material may consist of Al and O.
  • the coating material may contain Al 2 O x (0 ⁇ x ⁇ 3) as a main component.
  • the "main component” is the component that is contained most in terms of mass ratio.
  • the cycle characteristics of the battery can be further improved.
  • the coating material may consist solely of Al 2 O x (0 ⁇ x ⁇ 3).
  • the coating material may cover 30% or more, 60% or more, or 90% or more of the surface of the positive electrode active material.
  • the coating material may substantially cover the entire surface of the positive electrode active material.
  • the coating material may be in direct contact with the surface of the positive electrode active material.
  • the thickness of the coating material may be, for example, 100 nm or less, or 10 nm or less.
  • the coating material may be formed in an island shape on the surface of the positive electrode active material.
  • the amount of the coating material may be a very small amount close to the detection limit. If the presence of Al 2 O x (0 ⁇ x ⁇ 3) can be confirmed in the positive electrode, it is presumed that Al 2 O x (0 ⁇ x ⁇ 3) is attached to the positive electrode active material to some extent, and the cycle characteristics are improved accordingly. Improvement effect is recognized.
  • the thickness of the coating material is 10 nm or less, the lithium conduction is not inhibited and the capacity deterioration is suppressed.
  • the thickness of the coating material may be 5 nm or less. If the thickness of the coating material is 5 nm or less, capacity deterioration is further suppressed.
  • the thickness of the coating material is 5 nm or less, when the surface of the coated positive electrode active material is analyzed by X-ray photoelectron spectroscopy, peaks of elements derived from the positive electrode active material as well as the coating material are observed.
  • the thickness of the coating material may be 1 nm or more. If the thickness is 1 nm or more, the surface of the positive electrode active material can be sufficiently covered, and the effect of suppressing the decomposition of the solid electrolyte can be obtained.
  • the method for measuring the thickness of the coating material is not particularly limited, it can be obtained, for example, by directly observing the thickness of the coating material using a transmission electron microscope.
  • the coated positive electrode active material according to Embodiment 1 of the present disclosure may satisfy at least one selected from the group consisting of (A) and (B) below.
  • (A) The surface of the coated positive electrode active material has an Al/Ni atomic ratio of 2.9 or less.
  • (B) The surface of the coated positive electrode active material has an Al/Co atomic ratio of 4.6 or less.
  • the Al/Ni atomic ratio and the Al/Co atomic ratio can be calculated, for example, by X-ray photoelectron spectroscopy.
  • the coating material can be formed on the surface of the positive electrode active material by the following method. The following description does not limit the method of making the coated positive electrode active material.
  • the coating material is formed, for example, by forming a film of Al on the surface of the positive electrode active material in an oxygen-containing atmosphere in which the amount of oxygen is controlled, using a vapor phase method such as sputtering or electron beam deposition.
  • the coating material may be formed by forming a film of Al on the surface of the positive electrode active material by the vapor phase method, plating method, or the like, and then heating the film in an oxygen atmosphere.
  • the positive electrode active material may contain a transition metal composite oxide containing lithium.
  • Transition metals contained in transition metal composite oxides containing lithium include nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), copper (Cu), chromium (Cr), titanium (Ti), and niobium. (Nb), zirconium (Zr), vanadium (V), tantalum (Ta) and molybdenum (Mo).
  • a transition metal composite oxide containing lithium can be obtained, for example, by mixing a lithium compound and a compound containing a transition metal obtained by a coprecipitation method or the like and firing the obtained mixture under predetermined conditions.
  • a transition metal composite oxide containing lithium usually forms secondary particles in which a plurality of primary particles are aggregated.
  • the average particle size (D50) of the lithium-containing transition metal composite oxide particles is, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the average particle size (D50) means the particle size (volume average particle size) at which the volume integrated value is 50% in the volume-based particle size distribution measured by the laser diffraction scattering method.
  • a transition metal composite oxide containing lithium may contain metals other than transition metals.
  • Metals other than transition metals may include at least one selected from the group consisting of aluminum (Al), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn) and silicon (Si).
  • the composite oxide may further contain boron (B) or the like in addition to the metal.
  • the transition metal may contain at least one selected from the group consisting of Ni and Co.
  • the transition metal composite oxide containing lithium may contain Ni and at least one selected from the group consisting of Co, Mn, Al, Ti and Fe.
  • the lithium-containing transition metal composite oxide may contain Ni and at least one selected from the group consisting of Co, Mn and Al. Co and at least one selected from the group consisting of Mn and Al may be included.
  • the transition metal composite oxide containing lithium further contains Co in addition to Li and Ni, the phase transition of the composite oxide containing Li and Ni is suppressed during charging and discharging, and the stability of the crystal structure is improved. and the cycle characteristics are easily improved. Thermal stability is improved when the lithium-containing transition metal composite oxide further contains at least one selected from the group consisting of Mn and Al.
  • the lithium-containing transition metal composite oxide contained in the positive electrode active material has a layered rock salt crystal structure and contains at least one selected from the group consisting of Ni and Co.
  • a transition metal composite oxide having lithium containing one may be included, and a transition metal composite oxide having lithium having a spinel-type crystal structure and containing Mn may be included.
  • the lithium-containing transition metal composite oxide has a layered rock salt crystal structure, contains Ni and a metal other than Ni, and has an atomic ratio of Ni to the metal other than Ni of 0.5.
  • a composite oxide of three or more (hereinafter also referred to as a nickel-based composite oxide) may be used.
  • the positive electrode active material may have a layered rock salt crystal structure and a composition represented by the following compositional formula (1).
  • LiNi ⁇ Me′ 1- ⁇ O 2 Formula (1) LiNi ⁇ Me′ 1- ⁇ O 2 Formula (1)
  • satisfies 0 ⁇ 1
  • Me' is at least one element selected from the group consisting of Co, Mn, Al, Ti and Fe.
  • composition formula (1) when ⁇ is within the above range, the effect of increasing the capacity by Ni and the effect of improving stability by the element Me' can be obtained in a well-balanced manner.
  • may be 0.5 or more, or 0.75 or more.
  • the positive electrode active material may contain a material represented by the following compositional formula (2).
  • ⁇ and ⁇ satisfy 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1, and 0 ⁇ 1- ⁇ - ⁇ ⁇ 0.35
  • Me is at least one selected from the group consisting of Al and Mn is one.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 2.
  • FIG. The positive electrode material 1000 according to Embodiment 2 of the present disclosure includes the coated positive electrode active material 150 according to Embodiment 1 and the first solid electrolyte material 100 .
  • Coated positive electrode active material 150 includes positive electrode active material 110 and coating material 120 that coats at least part of the surface of positive electrode active material 110 .
  • the first solid electrolyte material 100 contains Li, M, and X, M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, and X is F, Cl, Br , and at least one selected from the group consisting of I.
  • the first solid electrolyte material 100 contains a halide solid electrolyte as described above.
  • the first solid electrolyte material 100 may consist essentially of Li, M, and X. "The first solid electrolyte material 100 consists essentially of Li, M, and X" means that in the first solid electrolyte material 100, the total amount of all elements constituting the first solid electrolyte material is It means that the total ratio of Li, M, and X substance amounts (that is, the molar fraction) is 90% or more. As an example, the ratio (ie, mole fraction) may be 95% or greater.
  • the first solid electrolyte material 100 may consist of Li, M, and X only. The first solid electrolyte material 100 may not contain sulfur.
  • M may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanide elements.
  • M may include Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements.
  • Group 1 elements are Na, K, Rb, or Cs.
  • group 2 elements are Mg, Ca, Sr or Ba.
  • group 3 elements are Sc or Y.
  • group 4 elements are Ti, Zr or Hf.
  • lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
  • Group 5 elements are Nb or Ta.
  • An example of a Group 12 element is Zn.
  • Examples of group 13 elements are Al, Ga, In.
  • An example of a Group 14 element is Sn.
  • M may be Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
  • M may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf.
  • X may contain at least one element selected from the group consisting of Br, Cl and I to further increase the ionic conductivity.
  • X may contain at least one element selected from the group consisting of Br, Cl and I.
  • X may contain Br, Cl and I to further increase the ionic conductivity.
  • the first solid electrolyte material 100 may be Li3YX6 .
  • the first solid electrolyte material 100 may be Li3YBr6 .
  • the first solid electrolyte material 100 may be Li 3 YBr x1 Cl 6-x1 (0 ⁇ x1 ⁇ 6).
  • the first solid electrolyte material 100 may be Li3YBrx2Cly2I6 - x2 -y2 ( 0 ⁇ x2, 0 ⁇ y2, 0 ⁇ x2+y2 ⁇ 6).
  • the first solid electrolyte material 100 may be Li3YBr6 , Li3YBr2Cl4 , or Li3YBr2Cl2I2 .
  • the first solid electrolyte material 100 may further include a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li10GeP2S12 , Li6PS5Cl , etc. can be used.
  • LiX', Li2O, MOq , LipM'Oq, etc. may be added to these.
  • X' is at least one selected from the group consisting of F, Cl, Br, and I
  • M' is P, Si, Ge, B, Al, Ga, In, Fe, and Zn. At least one is selected, and p and q are independent natural numbers.
  • oxide solid electrolytes include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and their elemental substitutions, Li 3 N and its H substitutions , Li 3 PO 4 and its N-substituted products, LiBO 2 , Li 3 BO 3 and other Li-B-O compounds as bases, and Li 2 SO 4 , Li 2 CO 3 and the like are added to the glass, glass ceramics, etc. can be used.
  • the polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. Since the polymer solid electrolyte having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), LiC ( SO2CF3 ) 3 , etc. may be used.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 and the like
  • LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 and the like
  • the shape of the first solid electrolyte material 100 is not particularly limited, and may be acicular, spherical, ellipsoidal, or the like, for example.
  • the shape of the first solid electrolyte material 100 may be particles.
  • the median diameter of the first solid electrolyte material 100 may be 100 ⁇ m or less.
  • the coated positive electrode active material 150 and the first solid electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
  • the median diameter of the first solid electrolyte material 100 may be 10 ⁇ m or less. According to this configuration, in the positive electrode material 1000, the coated positive electrode active material 150 and the first solid electrolyte material 100 can form a better dispersed state.
  • the median diameter of the first solid electrolyte material 100 may be smaller than the median diameter of the coated positive electrode active material 150 . According to this configuration, in the positive electrode material 1000, the coated positive electrode active material 150 and the first solid electrolyte material 100 can form a better dispersed state.
  • the median diameter of the coated positive electrode active material 150 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the coated positive electrode active material 150 When the median diameter of the coated positive electrode active material 150 is 0.1 ⁇ m or more, the coated positive electrode active material 150 and the first solid electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . As a result, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved. Moreover, when the median diameter of the coated positive electrode active material 150 is 100 ⁇ m or less, the diffusion rate of lithium in the coated positive electrode active material 150 is improved. Therefore, a battery using the positive electrode material 1000 can operate at high power.
  • the median diameter of the coated positive electrode active material 150 may be larger than the median diameter of the first solid electrolyte material 100 . Thereby, the coated positive electrode active material 150 and the first solid electrolyte material 100 can form a good dispersed state.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 3.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 3.
  • the battery 2000 in Embodiment 3 includes a positive electrode 201 containing the positive electrode material 1000 described in Embodiment 2, a negative electrode 203, a solid electrolyte layer 202 provided between the positive electrode 201 and the negative electrode 203, Prepare.
  • the battery 2000 may be an all-solid battery.
  • the positive electrode 201 includes a material that has the property of absorbing and releasing metal ions (eg, lithium ions).
  • Positive electrode 201 includes coated positive electrode active material 150 and first solid electrolyte material 100 .
  • the volume ratio Vp representing the volume of the positive electrode active material 110 to the total volume of the positive electrode active material 110 and the first solid electrolyte material 100 contained in the positive electrode 201 may be 0.3 or more and 0.95 or less.
  • the volume ratio Vp is 0.3 or more, it is easy to secure a sufficient energy density of the battery 2000 .
  • the volume ratio Vp is 0.95 or less, it becomes easier for the battery 2000 to operate at high output.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. In addition, when the thickness of the positive electrode 201 is 500 ⁇ m or less, the operation of the battery 2000 at high output can be realized.
  • the positive electrode 201 may contain a binder.
  • a binder is used to improve the binding properties of the material that constitutes the positive electrode 201 .
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, carboxymethyl cellulose, and the like.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. Two or more selected from these may be mixed and used as a binder.
  • the positive electrode 201 may contain a conductive aid.
  • Conductive aids are used for the purpose of increasing electronic conductivity. Examples of conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, and metal powder such as aluminum.
  • conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymeric compounds such as polyaniline, polypyrrole, polythiophene, and the like. Cost reduction can be achieved when a carbon conductive aid is used.
  • One conductive aid may be used alone, or two or more may be used in combination.
  • the positive electrode 201 may further include a positive electrode current collector.
  • a metal foil can be used for the positive electrode current collector.
  • metals constituting the positive electrode current collector include aluminum, titanium, alloys containing these metal elements, and stainless steel.
  • the thickness of the positive electrode current collector is not particularly limited, it is, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the metal foil may be coated with carbon or the like.
  • Negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • the negative electrode 203 may include a negative electrode active material 130 and a second solid electrolyte material 140 .
  • the negative electrode active material 130 may contain a carbon material that absorbs and releases lithium ions.
  • Carbon materials that occlude and release lithium ions include graphite (natural graphite, artificial graphite), easily graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), and the like. Among them, graphite is preferable because it has excellent charging/discharging stability and low irreversible capacity.
  • the negative electrode active material 130 may contain an alloy material.
  • An alloy material is a material containing at least one metal capable of forming an alloy with lithium, and examples thereof include silicon, tin, indium, silicon alloys, tin alloys, indium alloys, and silicon compounds.
  • a composite material comprising a lithium ion conducting phase and silicon particles dispersed in the phase may be used as the silicon compound.
  • a silicate phase such as a lithium silicate phase, a silicon oxide phase in which 95 mass % or more is silicon dioxide, a carbon phase, or the like may be used.
  • the negative electrode 203 may not contain the second solid electrolyte material 140 and may be the negative electrode active material 130 alone.
  • the negative electrode active material 130 may include lithium titanium oxide.
  • the lithium titanium oxide may include at least one material selected from Li4Ti5O12 , Li7Ti5O12 and LiTi2O4 .
  • An alloy material and a carbon material, or a lithium titanium oxide and a carbon material may be used together as the negative electrode active material 130 .
  • the content of the second solid electrolyte material 140 in the negative electrode 203 may be the same as or different from the content of the negative electrode active material 130 .
  • the volume ratio Vn representing the volume of the negative electrode active material 130 to the total volume of the negative electrode active material 130 and the second solid electrolyte material 140 may be 0.3 or more and 0.95 or less.
  • the volume ratio Vn is 0.3 or more, it is easy to secure a sufficient energy density of the battery 2000 .
  • the volume ratio Vn is 0.95 or less, it becomes easier for the battery 2000 to operate at high output.
  • the second solid electrolyte material 140 may be a material having the same composition as the first solid electrolyte material 100 described above, or may be a material having a different composition.
  • the second solid electrolyte material 140 may be the material listed as the first solid electrolyte material 100 .
  • Second solid electrolyte material 140 may be a material having the same composition as first solid electrolyte material 100 or a material having a different composition from first solid electrolyte material 100 .
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. In addition, when the thickness of the negative electrode 203 is 500 ⁇ m or less, the operation of the battery 2000 at high output can be realized.
  • the negative electrode 203 may further include a negative electrode current collector.
  • a negative electrode current collector the same material as that used in the positive electrode current collector can be used.
  • the thickness of the negative electrode current collector is not particularly limited, it is, for example, 3 to 50 ⁇ m.
  • the lithium-absorbing alloy can be used as the negative electrode active material and also as the negative electrode current collector.
  • the negative electrode 203 may include a negative electrode current collector and a negative electrode mixture layer carried on the surface of the negative electrode current collector.
  • the negative electrode mixture layer is formed, for example, by coating the surface of the negative electrode current collector with a negative electrode slurry in which a negative electrode mixture obtained by mixing the negative electrode active material 130 and the second solid electrolyte material 140 is dispersed in a dispersion medium, followed by drying. can be formed by The dried coating film may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture may further contain a binder, a conductive aid, a thickener, and the like.
  • a binder As the binder and conductive aid, the same materials as those used for the positive electrode 201 can be used.
  • Solid electrolyte layer 202 Solid electrolyte layer 202 is arranged between positive electrode 201 and negative electrode 203 .
  • the solid electrolyte layer 202 is a layer containing a solid electrolyte material.
  • Solid electrolyte layer 202 may contain a solid electrolyte material having the same composition as first solid electrolyte material 100 or may contain a solid electrolyte material having the same composition as second solid electrolyte material 140 .
  • a material different from the first solid electrolyte material 100 and the second solid electrolyte material 140 may be used for the solid electrolyte layer 202 .
  • the solid electrolyte layer 202 may contain two or more of the materials listed as solid electrolyte materials.
  • the solid electrolyte layer may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the solid electrolyte layer 202 may include a first electrolyte layer and a second electrolyte layer, wherein the first electrolyte layer is located between the positive electrode 201 and the negative electrode 203, and the second electrolyte layer is located between the first electrolyte layer and the negative electrode. 203.
  • the first electrolyte layer may contain a material having the same composition as the first solid electrolyte material 100 .
  • the second electrolyte layer may contain a material having a composition different from that of the first solid electrolyte material 100 .
  • the second electrolyte layer may contain a material having the same composition as the second solid electrolyte material 140 .
  • the solid electrolyte layer 202 may contain a binder as appropriate.
  • the binder the same one as that for the positive electrode 201 can be used.
  • the solid electrolyte layer 202 may be made of the materials exemplified as the first solid electrolyte material 100 and the second solid electrolyte material 140 .
  • the solid electrolyte layer 202 can be formed, for example, by drying a solid electrolyte slurry in which a solid electrolyte material is dispersed in a dispersion medium, forming it into a sheet, and transferring it to the surface of the positive electrode 201 or the negative electrode 203 . It can also be formed by directly applying a solid electrolyte slurry on the surface of the positive electrode 201 or the negative electrode 203 and drying it.
  • the manufacturing method of the battery 2000 is not limited to coating.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are formed in this order by a known method. It may be manufactured by creating an arranged laminate.
  • a positive electrode containing the positive electrode active material 110, the first solid electrolyte material 100, and a conductive material, a solid electrolyte layer, and a negative electrode containing the negative electrode active material 130, the second solid electrolyte material 140, and a conductive material are compacted.
  • the battery 2000 can also be formed by forming and bonding.
  • Example 1 Preparation of first solid electrolyte material
  • dry argon atmosphere having a dew point of ⁇ 80° C. and an oxygen concentration of about 10 ppm
  • the composition of the first solid electrolyte material of Example 1 was evaluated by ICP emission spectrometry using an inductive coupled plasma (ICP) emission spectrometer (iCAP7400 manufactured by ThermoFisher Scientific). As a result, the deviation of the Li/Y molar ratio from the starting composition was within 3%. That is, it can be said that the composition of the raw material powder prepared by the planetary ball mill and the composition of the obtained first solid electrolyte material of Example 1 were almost the same.
  • ICP emission spectrometry using an inductive coupled plasma (ICP) emission spectrometer (iCAP7400 manufactured by ThermoFisher Scientific).
  • FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of the first solid electrolyte material.
  • the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 .
  • the frame form 302 was made of insulating polycarbonate. Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
  • the frame mold 302 was made of insulating polycarbonate.
  • the ionic conductivity of the first solid electrolyte material according to Example 1 was measured by the following method.
  • the first solid electrolyte material powder according to Example 1 (the solid electrolyte material powder 101 in FIG. 3) was filled inside the pressure molding die 300 . Inside the pressing die 300, a pressure of 300 MPa was applied to the solid electrolyte material according to Example 1 using the upper punch 301 and the lower punch 303. As shown in FIG.
  • the upper punch 301 and lower punch 303 were connected to a potentiostat (Princeton Applied Research, VersaSTAT4) equipped with a frequency response analyzer.
  • the punch upper part 301 was connected to the working electrode and the terminal for potential measurement.
  • the punch bottom 303 was connected to the counter and reference electrodes.
  • the impedance of the first solid electrolyte material ion conductivity was measured at room temperature by an electrochemical impedance measurement method.
  • NCM LiNi 0.5 Co 0.3 Mn 0.2 O 2
  • a method for coating the surface of the positive electrode active material with Al 2 O x (0 ⁇ x ⁇ 3) as a coating material will be described below, but the method is not limited to the following.
  • a film of the coating material was formed on the positive electrode active material by sputtering, using Al as a target, setting the target film thickness to 5 nm, and adjusting the oxygen flow rate.
  • the positive electrode active material was enclosed in a gauge covered with a metal mesh, and the gauge was rotated so that the coating material was formed while the positive electrode active material was constantly being stirred.
  • FIG. 4 shows the surface of the coated positive electrode active material of Example 1 measured by X-ray photoelectron spectroscopy and the peak attributed to Al2p in the X-ray photoelectron spectrum of Al 2 O 3 powder.
  • the full width at half maximum of the peak attributed to Al2p in Example 1 is wider than the peak attributed to Al2p in the spectrum obtained by measuring the Al 2 O 3 powder. From this, it can be seen that the valence of Al is changed. As described above, it was confirmed that a film containing Al 2 O x (0 ⁇ x ⁇ 3) was formed on the surface of the positive electrode active material.
  • the Al/Ni atomic ratio on the surface of the coated positive electrode active material of Example 1 was 2.89, and the Al/Co atomic ratio was 4.56. . These atomic ratios were calculated from the peak intensity and sensitivity coefficient of each element.
  • an X-ray photoelectron spectrometer Quantum, manufactured by ULVAC-PHI was used.
  • VGCF vapor-grown carbon fiber
  • the battery was placed in a constant temperature bath at 25°C.
  • Constant current charging was performed at a current value of 130 ⁇ A to a potential of 3.68 V with respect to Li/In, and then constant voltage charging was performed with the current at the end of constant voltage charging set to 26 ⁇ A.
  • constant current discharge was performed at a current value of 130 ⁇ A to a potential of 1.88 V with respect to Li/In, and then constant voltage discharge was performed with the current at the end of constant voltage discharge set to 26 ⁇ A.
  • Table 1 shows the discharge capacity at the 1st cycle and the discharge retention rate at the 50th cycle of the battery of Example 1.
  • the 50th cycle discharge maintenance rate is the ratio of the 50th cycle discharge capacity to the 1st cycle discharge capacity.
  • the reason why the discharge retention rate at the 50th cycle exceeds 100% is that the resistance decreases and the capacity increases in the first several cycles.
  • FIG. 5 shows charge-discharge curves showing the initial charge-discharge characteristics of the battery of Example 1.
  • Example 2 A battery of Example 2 was produced in the same manner as the battery of Example 1, except that the target film thickness was set to 1 nm in the production of the positive electrode active material whose surface was coated with the coating material.
  • Example 1 A charge/discharge test was performed in the same manner as in Example 1.
  • Table 1 shows the discharge capacity at the 1st cycle and the discharge retention rate at the 50th cycle of the battery of Example 2.
  • FIG. 5 shows charge-discharge curves showing the initial charge-discharge characteristics of the battery of Example 2. As shown in FIG.
  • Example 3 A battery of Example 3 was produced in the same manner as the battery of Example 1, except that the target film thickness was set to 3 nm in the preparation of the positive electrode active material whose surface was coated with the coating material.
  • FIG. 5 shows charge/discharge curves showing the initial charge/discharge characteristics of the battery of Example 3. As shown in FIG.
  • Comparative example 1 The positive electrode mixture of Comparative Example 1 was obtained by weighing NCM, which is a positive electrode active material, the first solid electrolyte material, and the conductive agent VGCF so as to have a mass ratio of 34:64:2 and mixing them in a mortar. agent was made. That is, the positive electrode active material used in Comparative Example 1 was not coated with a coating material.
  • a battery of Comparative Example 1 was produced in the same manner as the battery of Example 1 except for the above.
  • FIG. 5 shows charge-discharge curves showing the initial charge-discharge characteristics of the battery of Comparative Example 1. As shown in FIG.
  • the battery of Comparative Example 1 has a lower discharge retention rate at the 50th cycle than the batteries of Examples 1 to 3. This is because the positive electrode material does not contain a coating material, and the oxidative decomposition of the solid electrolyte increases the resistance and decreases the discharge capacity. As shown in FIG. 5, the battery of Comparative Example 1 has a larger initial charge capacity than the batteries of Examples 1-3. This is because the solid electrolyte undergoes oxidative decomposition during the initial charging of the battery of Comparative Example 1, and this oxidation reaction increases the apparent charge capacity.
  • the target film thickness was set to 2 nm, and the coating material was formed on the positive electrode active material NCM while adjusting the oxygen flow rate.
  • FIG. 4 shows the peak attributed to Al2p in the X-ray photoelectron spectra of the surface of the coated positive electrode active material of Comparative Example 2 and the Al 2 O 3 powder measured by X-ray photoelectron spectroscopy.
  • the full width at half maximum of the peak attributed to Al2p was almost the same as the full width at half maximum of the peak attributed to Al2p in the spectrum obtained by measuring the Al 2 O 3 powder.
  • a battery of Comparative Example 2 was produced in the same manner as the battery of Example 1.
  • Example 1 A charge/discharge test was performed in the same manner as in Example 1.
  • Table 1 shows the discharge capacity at the 1st cycle and the discharge retention rate at the 50th cycle of Comparative Example 2.
  • FIG. 5 shows charge-discharge curves showing the initial charge-discharge characteristics of the battery of Comparative Example 2. As shown in FIG.
  • the battery of Comparative Example 2 has a lower discharge capacity at the 1st cycle and a lower discharge retention rate at the 50th cycle. Moreover, it can be seen from FIG. 5 that the battery of Comparative Example 2 has a lower charge capacity and discharge voltage than the battery of Comparative Example 1. Compared with Comparative Example 1, these results indicate that the coating can suppress the oxidative decomposition of the solid electrolyte during charging, but the resistance is increased due to the Al 2 O 3 coating.
  • Example 1 has a higher discharge maintenance rate at the 50th cycle than Example 2. It is believed that this is because the surface of the positive electrode active material was sufficiently covered and the oxidative decomposition of the solid electrolyte was sufficiently suppressed.
  • the all-solid-state battery according to the present disclosure is suitably used, for example, as a power source for mobile devices such as smartphones, a power source for vehicles such as electric vehicles, a power source for various in-vehicle devices, and a storage device for natural energy such as sunlight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

被覆正極活物質は、正極活物質と、前記正極活物質の表面の少なくとも一部を被覆する被覆材料と、を含み、前記被覆材料は、Al2x(0<x<3)を含む。正極材料1000は、被覆正極活物質150と、第1固体電解質材料100と、を含む。第1固体電解質材料100は、Li、M、およびXを含み、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。

Description

被覆正極活物質、正極材料、および電池
 本開示は、被覆正極活物質、正極材料、および電池に関する。
 特許文献1には、ハロゲン化物と、電極活物質と、電極活物質の表面に位置する被覆材料とを備える電池が開示されている。
 特許文献2には、表面にアルミニウム酸化物から構成された被覆部を有する負極活物質が開示されている。
 特許文献3には、活物質粒子の表面に、みかけの平均厚さが0.05μm以上である金属層が設けられている全固体電池が開示されている。
国際公開第2019/146216号 特開2017-054614号公報 特開2015―185290号公報
 本開示は、電池のサイクル特性を改善できる正極活物質を提供する。
 本開示の被覆正極活物質は、
 正極活物質と、
 前記正極活物質の表面の少なくとも一部を被覆する被覆材料と、
を含み、
 前記被覆材料は、Al2x(0<x<3)を含む。
 本開示は、電池のサイクル特性を改善できる正極活物質を提供する。
図1は、実施の形態2における正極材料1000の概略構成を示す断面図である。 図2は、実施の形態3における電池2000の概略構成を示す断面図である。 図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図4は、X線光電子分光法で測定された実施例1および比較例2の被覆正極活物質の表面およびAl23のX線光電子スペクトルにおいてAl2pに帰属されるピークを示す。 図5は、実施例1から3および比較例1から2における電池の初期充放電特性を示す充放電曲線を示すグラフである。
 (本開示の基礎となった知見)
 従来の全固体リチウムイオン二次電池において、固体電解質が酸化分解するため、サイクル特性に課題があった。上記の課題を抑制するために正極活物質表面に酸化物を被覆する方法が報告されている。しかし、正極活物質表面を被覆する酸化物は、リチウムイオンおよび電子の伝導を阻害し、容量劣化等を引き起こす場合がある。このため、表面が被覆材料によって被覆された正極活物質を備えた電池は、サイクル特性のような電池特性を維持することが難しい。また、活物質表面に金属を被覆する方法も報告されているが、固体電解質の酸化分解を十分には抑制できない。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る被覆正極活物質は、
 正極活物質と、
 前記正極活物質の表面の少なくとも一部を被覆する被覆材料と、
を含み、
 前記被覆材料は、Al2x(0<x<3)を含む。
 第1態様に係る被覆正極活物質は、表面の少なくとも一部がAl2x(0<x<3)を含む被覆材料により被覆されているため、電池内で固体電解質が正極活物質と接触することによる固体電解質の酸化分解を効果的に抑制しつつ、正極活物質の表面におけるリチウムイオン伝導の阻害を抑制できる。したがって、第1態様に係る被覆正極活物質は、固体電解質の酸化分解を効果的に抑制しつつ、かつ内部抵抗の上昇を抑えることができるので、電池のサイクル特性を改善できる。
 本開示の第2態様において、例えば、第1態様に係る被覆正極活物質では、前記被覆材料は、実質的にAlおよびOからなり、表面のX線光電子分光測定で得られるスペクトルにおいて、Al2pに帰属されるピークの半値全幅が1.80eVを超えてもよい。
 第2態様に係る被覆正極活物質は、電池のサイクル特性を改善できる。
 本開示の第3態様において、例えば、第1または第2態様に係る被覆正極活物質では、前記正極活物質は、以下の組成式(2)で表される組成を有してもよい。
 LiNiαCoβMe1-α-β2・・・式(2)
 ここで、αおよびβは、0≦α<1、0≦β≦1、および0≦1-α-β≦0.35を満たし、Meは、AlおよびMnからなる群より選択される少なくとも1つである。
 第3態様に係る被覆正極活物質は、電池の充放電容量を向上することができる。
 本開示の第4態様において、例えば、第3態様に係る被覆正極活物質では、以下の(A)および(B)からなる群より選択される少なくとも1つを満たしてもよい。
 (A)前記被覆正極活物質の表面において、Al/Ni原子比率が2.9以下である。
 (B)前記被覆正極活物質の表面において、Al/Co原子比率が4.6以下である。
 第4態様に係る被覆正極活物質は、電池のサイクル特性をより改善できる。
 本開示の第5態様に係る正極材料は、
 第1から第4態様のいずれか一つに係る被覆正極活物質と、
 第1固体電解質材料と、
を含み、
 前記第1固体電解質材料は、Li、M、およびXを含み、
 Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 第5態様に係る正極材料は、電池のサイクル特性を改善できる。
 本開示の第6態様に係る電池は、
 正極と、
 負極と、
 前記正極と前記負極との間に設けられた固体電解質層と、
を備え、
 前記正極は、第5態様に係る正極材料を含む。
 第6態様に係る電池は、改善したサイクル特性を有する。
 (実施の形態1)
 本開示の実施の形態1に係る被覆正極活物質は、正極活物質と、正極活物質の表面の少なくとも一部を覆う被覆材料と、を含み、被覆材料は、Al2x(0<x<3)を含む。
 Al2x(0<x<3)は、被覆材料内のリチウム拡散が起こりやすい。さらに、被覆材料が正極活物質の表面の少なくとも一部を覆うことにより、固体電解質の分解要因となる電子伝導を抑制することができる。したがって、電池のサイクル特性を改善することができる。
 xは、2≦x<3を満たしてもよい。このようにすることで、被覆材料内のリチウム拡散が起こりやすく、さらに、固体電解質の酸化分解の要因となる電子伝導を抑制することができる。したがって、電池のサイクル特性を改善することができる。
 Al2x(0<x<3)は、例えば、X線光電子分光測定によって得られるX線光電子スペクトルにおいて、Al23のX線光電子分光測定によって得られるX線光電子スペクトルにおけるAl2pに帰属されるピークの半値全幅(1.80eV)に比べ、Al2pに帰属されるピークの半値全幅が広くなることで、確認することが可能である。これは、Alの価数が混在することが要因と考えられる。
 被覆材料が、実質的にAlおよびOからなり、被覆正極活物質表面のX線光電子分光測定で得られるスペクトルにおいて、Al2pに帰属されるピークの半値全幅が1.80eVを超えていてもよい。
 「被覆材料が、実質的にAlおよびOからなる」とは、被覆材料を構成する全元素の物質量の合計に対する、AlおよびOの物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比は、95%以上であってもよい。AlおよびOの物質量の合計の比は98%以上であってもよく、99%以上であってもよい。
 被覆材料は、不可避的に混入される元素を含有していてもよい。当該元素の例は、本開示の被覆正極活物質を含むリチウムイオン二次電池の繰り返しの使用により、被覆材料内に拡散するLiである。
 被覆材料は、AlおよびOからなっていてもよい。
 被覆材料は、Al2x(0<x<3)を、主成分として含んでもよい。ここで、「主成分」とは、質量比で最も多く含まれる成分のことである。
 以上の構成によれば、電池のサイクル特性を、より改善できる。
 被覆材料は、Al2x(0<x<3)のみから構成されていてもよい。
 被覆材料は、正極活物質の表面の30%以上を覆ってもよく、60%以上を覆ってもよく、90%以上を覆ってもよい。被覆材料は、実質的に正極活物質の表面全体を覆ってもよい。
 被覆材料は、正極活物質の表面に直接接していてもよい。
 被覆材料の厚みは、例えば100nm以下であっても良く、10nm以下であってもよい。被覆材料は、正極活物質の表面に島状に形成されていてもよい。なお、被覆材料は、検出限界に近い微量であってもよい。正極にAl2x(0<x<3)の存在が確認できれば、Al2x(0<x<3)が正極活物質にある程度付着していると推定され、それに応じたサイクル特性の改善効果が認められる。特に、被覆材料の厚みが10nm以下の場合、リチウム伝導を阻害せず、容量劣化が抑制される。被覆材料の厚みは5nm以下でもよい。被覆材料の厚みが5nm以下であれば、より容量劣化が抑制される。
 被覆材料の厚みが5nm以下であれば、被覆正極活物質の表面をX線光電子分光で分析した際に、被覆材料だけでなく、正極活物質由来の元素のピークも観測される。
 被覆材料の厚みは1nm以上であってもよい。厚みが1nm以上であれば、正極活物質の表面を十分に被覆でき、固体電解質の分解抑制効果が得られる。
 被覆材料の厚みを測定する方法は特に限定されないが、例えば、透過型電子顕微鏡を用い、被覆材料の厚みを直接観察することで、求めることができる。
 本開示の実施の形態1に係る被覆正極活物質は、以下の(A)および(B)からなる群より選択される少なくとも1つを満たしてもよい。
(A)被覆正極活物質の表面において、Al/Ni原子比率が2.9以下である。
(B)被覆正極活物質の表面において、Al/Co原子比率が4.6以下である。
 Al/Ni原子比率およびAl/Co原子比率は、例えば、X線光電子分光分析により算出することができる。
 (正極活物質の表面の被覆方法)
 被覆材料は、以下の方法で正極活物質の表面に形成されることができる。以下の記載は、被覆正極活物質の作製方法を限定するものではない。
 被覆材料は、例えば、酸素量を制御した酸素含有雰囲気中で、スパッタ法や電子線蒸着法等の気相法でAlを正極活物質表面に成膜することで形成される。被覆材料は、前述の気相法、またはメッキ法などによりAlを正極活物質の表面に成膜した後に、酸素雰囲気で加熱することで形成されてもよい。
 正極活物質は、リチウムを有する遷移金属複合酸化物を含んでもよい。リチウムを有する遷移金属複合酸化物が含む遷移金属は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)、鉄(Fe)、銅(Cu)、クロム(Cr)、チタン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)、バナジウム(V)、タンタル(Ta)およびモリブデン(Mo)からなる群より選択される少なくとも1つであってもよい。
 リチウムを有する遷移金属複合酸化物は、例えば、リチウム化合物と、共沈法等により得られた遷移金属を含む化合物とを混合し、得られた混合物を所定の条件で焼成することで得られる。リチウムを有する遷移金属複合酸化物は、通常、複数の一次粒子が凝集した二次粒子を形成している。リチウムを有する遷移金属複合酸化物粒子の平均粒径(D50)は、例えば、1μm以上、20μm以下である。なお、平均粒径(D50)とは、レーザー回折散乱法で測定される体積基準の粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。
 リチウムを有する遷移金属複合酸化物は、遷移金属以外の金属を含んでもよい。遷移金属以外の金属は、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)およびシリコン(Si)からなる群より選択される少なくとも1つを含んでもよい。また、上記複合酸化物は、金属以外に、ホウ素(B)等を更に含んでもよい。
 高容量化の観点から、遷移金属は、NiおよびCoのからなる群より選択される少なくとも1つを含んでいてもよい。リチウムを有する遷移金属複合酸化物は、Niと、Co、Mn、Al、TiおよびFeからなる群より選択される少なくとも1つと、を含んでもよい。高容量化および高出力化の観点から、中でも、リチウムを有する遷移金属複合酸化物は、Niと、Co、MnおよびAlからなる群より選択される少なくとも1つと、を含んでもよく、Niと、Coと、MnおよびAlからなる群より選択される少なくとも1つと、を含んでもよい。リチウムを有する遷移金属複合酸化物が、LiとNiとに加えてさらにCoを含む場合、充放電時において、LiとNiとを含む複合酸化物の相転移が抑制され、結晶構造の安定性が向上し、サイクル特性が改善し易い。リチウムを有する遷移金属複合酸化物がさらにMnおよびAlからなる群より選択される少なくとも1つを含む場合、熱安定性が向上する。
 サイクル特性の改善および高出力化の観点から、正極活物質が含むリチウムを有する遷移金属複合酸化物は、層状岩塩型の結晶構造を有し、かつ、NiおよびCoからなる群より選択される少なくとも1つを含有するリチウムを有する遷移金属複合酸化物を含んでもよく、スピネル型の結晶構造を有し、かつ、Mnを含有するリチウムを有する遷移金属複合酸化物を含んでもよい。高容量化の観点から、リチウムを有する遷移金属複合酸化物は、層状岩塩型の結晶構造を有し、NiとNi以外の金属とを含有し、Ni以外の金属に対するNiの原子比が0.3以上の複合酸化物(以下、ニッケル系複合酸化物とも言う。)であってもよい。
 正極活物質は、層状岩塩型の結晶構造を有し、かつ、以下の組成式(1)で表される組成を有してもよい。
 LiNiαMe’1-α2・・・式(1)
 ここで、αは、0≦α<1を満たし、Me’は、Co、Mn、Al、TiおよびFeからなる群より選択される少なくとも1つの元素である。
 組成式(1)において、αが上記範囲である場合、Niによる高容量化の効果と、元素Me’による安定性向上の効果とが、バランス良く得られる。
 組成式(1)において、αは、0.5以上であってもよく、0.75以上であってもよい。
 正極活物質は、以下の組成式(2)で表される材料を含んでもよい。
 LiNiαCoβMe1-α-β2・・・式(2)
 ここで、αおよびβは、0≦α<1、0≦β≦1、および0≦1-α-β≦0.35を満たし、Meは、AlおよびMnからなる群より選択される少なくとも1つである。
 (実施の形態2)
 図1は、実施の形態2における正極材料1000の概略構成を示す断面図である。本開示の実施の形態2に係る正極材料1000は、実施の形態1における被覆正極活物質150と、第1固体電解質材料100と、を含む。被覆正極活物質150は、正極活物質110と、正極活物質110の表面の少なくとも一部を被覆する被覆材料120と、を含む。第1固体電解質材料100は、Li、M、およびXを含み、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 第1固体電解質材料100は、上記の通り、ハロゲン化物固体電解質を含む。第1固体電解質材料100は、実質的に、Li、M、およびXからなっていてもよい。「第1固体電解質材料100が、実質的に、Li、M、およびXからなる」とは、第1固体電解質材料100において、第1固体電解質材料を構成する全元素の物質量の合計に対する、Li、M、およびXの物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比(すなわち、モル分率)は95%以上であってもよい。第1固体電解質材料100は、Li、M、およびXのみからなっていてもよい。第1固体電解質材料100は、硫黄を含まなくてもよい。
 イオン伝導度を高めるために、Mは、第1族元素、第2族元素、第3族元素、第4族元素、およびランタノイド元素からなる群より選択される少なくとも一種の元素を含んでもよい。
 また、Mは、第5族元素、第12族元素、第13族元素、第14族元素を含んでもよい。
 第1族元素の例は、Na、K、Rb、またはCsである。第2族元素の例は、Mg、Ca、Sr、またはBaである。第3族元素の例は、ScまたはYである。第4族元素の例は、Ti、ZrまたはHfである。ランタノイド元素の例は、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、またはLuである。
 第5族元素の例は、NbまたはTaである。第12族元素の例は、Znである。第13族元素の例は、Al、Ga、Inである。第14族元素の例は、Snである。
 イオン伝導度をさらに高めるために、Mは、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、Mは、Mg、Ca、Sr、Y、Sm、Gd、Dy、およびHfからなる群より選択される少なくとも一種の元素を含んでもよい。イオン伝導度をさらに高めるために、Xは、Br、ClおよびIからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、Xは、Br、ClおよびIからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、Xは、Br、ClおよびIを含んでもよい。
 第1固体電解質材料100は、Li3YX6であってもよい。第1固体電解質材料100は、Li3YBr6であってもよい。第1固体電解質材料100は、Li3YBrx1Cl6-x1(0≦x1<6)、であってもよい。第1固体電解質材料100は、Li3YBrx2Cly26-x2-y2(0≦x2、0≦y2、0≦x2+y2≦6)であってもよい。
 第1固体電解質材料100は、Li3YBr6、Li3YBr2Cl4、またはLi3YBr2Cl22であってもよい。
 第1固体電解質材料100は、さらに硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質を含んでもよい。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212、Li6PS5Clなど、が用いられうる。また、これらに、LiX´、Li2O、MOq、LipM´Oqなどが、添加されてもよい。ここで、X´は、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、M´はP、Si、Ge、B、Al、Ga、In、Fe、およびZnから選択される少なくとも1つであり、pおよびqはそれぞれ独立した自然数である。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3NおよびそのH置換体、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラス、ガラスセラミックスなど、が用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子固体電解質はリチウム塩を多く含有することができるので、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、など、が使用されうる。リチウム塩として、これらから選択される1つのリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25など、が用いられうる。
 また、第1固体電解質材料100の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、第1固体電解質材料100の形状は、粒子であってもよい。
 例えば、第1固体電解質材料100の形状が粒子状(例えば、球状)の場合、第1固体電解質材料100のメジアン径は、100μm以下であってもよい。第1固体電解質材料100のメジアン径が100μm以下である場合、被覆正極活物質150と第1固体電解質材料100とが、正極材料1000において良好な分散状態を形成できる。このため、正極材料1000が用いられた電池の充放電特性が向上する。
 第1固体電解質材料100のメジアン径は、10μm以下であってもよい。この構成によれば、正極材料1000において、被覆正極活物質150と第1固体電解質材料100とが、より良好な分散状態を形成できる。
 第1固体電解質材料100のメジアン径は、被覆正極活物質150のメジアン径より小さくてもよい。この構成によれば、正極材料1000において、被覆正極活物質150と第1固体電解質材料100とが、より良好な分散状態を形成できる。
 被覆正極活物質150のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 被覆正極活物質150のメジアン径が0.1μm以上であると、正極材料1000において、被覆正極活物質150と第1固体電解質材料100とが、良好な分散状態を形成できる。この結果、正極材料1000が用いられた電池の充放電特性が向上する。また、被覆正極活物質150のメジアン径が100μm以下であると、被覆正極活物質150内のリチウム拡散速度が向上する。このため、正極材料1000が用いられた電池の高出力での動作が可能となる。
 被覆正極活物質150のメジアン径は、第1固体電解質材料100のメジアン径よりも、大きくてもよい。これにより、被覆正極活物質150と第1固体電解質材料100とが、良好な分散状態を形成できる。
 (実施の形態3)
 以下、実施の形態3が説明される。上述の実施の形態1および実施の形態2と重複する説明は、適宜、省略される。
 図2は、実施の形態3における電池2000の概略構成を示す断面図である。
 実施の形態3における電池2000は、上述の実施の形態2で説明された正極材料1000を含む正極201と、負極203と、正極201と負極203との間に設けられた固体電解質層202と、を備える。
 電池2000は、全固体電池であってもよい。
 (正極201)
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。正極201は、被覆正極活物質150および第1固体電解質材料100を含む。
 正極201に含まれる、正極活物質110および第1固体電解質材料100の合計体積に対する正極活物質110の体積を表す体積比Vpは、0.3以上0.95以下であってもよい。体積比Vpが0.3以上である場合、十分な電池2000のエネルギー密度を確保しやすい。体積比Vpが0.95以下である場合、電池2000の高出力での動作がより容易となる。
 正極201の厚さは、10μm以上かつ500μm以下であってもよい。
 正極201の厚さが10μm以上の場合には、十分な電池2000のエネルギー密度を確保し得る。なお、正極201の厚さが500μm以下の場合には、電池2000の高出力での動作を実現し得る。
 正極201には、結着剤が含まれてもよい。結着剤は、正極201を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極201には、導電助剤が含まれてもよい。導電助剤は、電子導電性を高める目的で、用いられる。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。導電助剤は、1つを単独で用いてもよく、2つ以上を組み合わせて用いてもよい。
 正極201は、さらに正極集電体を備えてもよい。
 正極集電体には、例えば、金属箔を用い得る。正極集電体を構成する金属としては、例えば、アルミニウム、チタン、これらの金属元素を含む合金、ステンレス鋼が挙げられる。正極集電体の厚さは、特に限定されないが、例えば、3μm以上かつ50μm以下である。金属箔に、カーボン等がコートされていてもよい。
 (負極203)
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。負極203は、負極活物質130と、第2固体電解質材料140とを含んでもよい。
 負極活物質130は、リチウムイオンを吸蔵および放出する炭素材料を含んでもよい。リチウムイオンを吸蔵および放出する炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等が挙げられる。中でも充放電の安定性に優れ、不可逆容量も少ない黒鉛が望ましい。
 負極活物質130は、合金系材料を含んでもよい。合金系材料とは、リチウムと合金形成可能な金属を少なくとも1つ含む材料であり、例えば、ケイ素、スズ、インジウム、ケイ素合金、スズ合金、インジウム合金、ケイ素化合物等が挙げられる。ケイ素化合物として、リチウムイオン伝導相と、その相に分散したケイ素粒子とを備える複合材料を用いてもよい。リチウムイオン伝導相として、リチウムシリケート相等のシリケート相、95質量%以上が二酸化ケイ素であるケイ素酸化物相、炭素相等を用いてもよい。
 なお、リチウム合金またはリチウム吸蔵金属を負極活物質130として用いる場合、負極203は第2固体電解質材料140を含まず、負極活物質130単体であってもよい。
 負極活物質130は、リチウムチタン酸化物を含んでもよい。前記リチウムチタン酸化物は、Li4Ti512、Li7Ti512およびLiTi24より選択される少なくとも一つの材料を含んでもよい。
 負極活物質130として合金系材料と炭素材料、もしくはリチウムチタン酸化物と炭素材料を併用してもよい。
 負極203において、第2固体電解質材料140の含有量は、負極活物質130の含有量と同じであってもよいし、異なっていてもよい。
 負極203において、負極活物質130および第2固体電解質材料140の合計体積に対する負極活物質130の体積を表す体積比Vnは、0.3以上0.95以下であってもよい。体積比Vnが0.3以上である場合、十分な電池2000のエネルギー密度を確保しやすい。体積比Vnが0.95以下である場合、電池2000の高出力での動作がより容易となる。
 第2固体電解質材料140は、上述の第1固体電解質材料100と同じ組成を有する材料であってもよいし、異なる組成を有する材料であってもよい。
 第2固体電解質材料140は、第1固体電解質材料100として挙げられた材料であってもよい。第2固体電解質材料140は、第1固体電解質材料100と同じ組成を有する材料であってもよいし、第1固体電解質材料100と異なる組成を有する材料であってもよい。
 負極203の厚さは、10μm以上かつ500μm以下であってもよい。
 負極203の厚さが10μm以上の場合には、十分な電池2000のエネルギー密度を確保し得る。なお、負極203の厚さが500μm以下の場合には、電池2000の高出力での動作を実現し得る。
 負極203は、さらに負極集電体を備えてもよい。負極集電体として、正極集電体で用いられる材料と同じ材料が使用され得る。負極集電体の厚さは、特に限定されないが、例えば、3~50μmである。また、負極活物質130としてリチウム合金やリチウム吸蔵金属を用いる場合は、リチウム吸蔵合金を負極活物質、兼、負極集電体として用いることもできる。
 負極203は、負極集電体と、負極集電体の表面に担持された負極合剤層と、を備えてもよい。負極合剤層は、例えば、負極活物質130と第2固体電解質材料140とを混ぜた負極合剤を分散媒に分散させた負極スラリを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、さらに結着剤、導電助剤、および増粘剤等を含み得る。結着剤および導電助剤としては、正極201と同様のものを用いることができる。
 (固体電解質層202)
 固体電解質層202は、正極201と負極203との間に配置される。
 固体電解質層202は、固体電解質材料を含む層である。
 固体電解質層202に含まれる固体電解質材料として、第1固体電解質材料100および第2固体電解質材料140として例示した材料を用いてもよい。固体電解質層202は、第1固体電解質材料100と同じ組成の固体電解質材料を含んでいてもよいし、第2固体電解質材料140と同じ組成の固体電解質材料を含んでいてもよい。固体電解質層202は、第1固体電解質材料100、および第2固体電解質材料140とは異なる材料を用いてもよい。
 固体電解質層202は、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、固体電解質層は、ハロゲン化物固体電解質および硫化物固体電解質を含んでもよい。
 固体電解質層202は、第1電解質層および第2電解質層を含んでもよく、第1電解質層は、正極201と負極203との間に位置し、第2電解質層は、第1電解質層と負極203との間に位置してもよい。第1電解質層は第1固体電解質材料100と同じ組成を有する材料を含んでもよい。第2電解質層は、第1固体電解質材料100とは異なる組成を有する材料を含んでもよい。第2電解質層は、第2固体電解質材料140と同じ組成を有する材料を含んでもよい。
 固体電解質層202は、適宜結着剤を含有してもよい。結着剤としては、正極201と同様のものを用いることができる。
 固体電解質層202は、第1固体電解質材料100および第2固体電解質材料140として例示した材料で形成されていてもよい。
 固体電解質層202は、例えば、固体電解質材料を分散媒に分散させた固体電解質スラリを乾燥させシート状に形成し、正極201あるいは、負極203表面に転写することにより形成できる。また、正極201あるいは、負極203表面に固体電解質スラリを直接塗布し、乾燥させることでも形成が可能である。
 スラリを用いた正極201、負極203、および固体電解質層202の形成方法を記載したが、電池2000の製造方法は塗工に限定されない。実施の形態3による電池2000は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。例えば、正極活物質110、第1固体電解質材料100、および導電材を含む正極と、固体電解質層と、負極活物質130、第2固体電解質材料140および導電材を含む負極と、を圧粉により形成し、貼り合わせることでも電池2000を形成することができる。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
 (実施例1)
 (第1固体電解質材料の作製)
 -80℃の露点および10ppm程度の酸素濃度を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と記載する。)下で、原料粉LiBr、YBr3、LiCl、およびYCl3を、モル比でLi:Y:Br:Cl=3:1:2:4となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミルを用い、25時間、600rpmでミリング処理した。以上により、実施例1の第1固体電解質材料であるLi3YBr2Cl4の粉末を得た。
 (第1固体電解質材料の組成の評価)
 実施例1の第1固体電解質材料について、Inductive coupled Plasma(ICP)発光分光分析装置(ThermoFisher Scientific製、iCAP7400)を用いて、ICP発光分光分析法により組成の評価を行った。その結果、Li/Yのモル比が仕込み組成からのずれが3%以内であった。すなわち、遊星型ボールミルによる原料粉の仕込み組成と、得られた実施例1の第1固体電解質材料の組成とは、ほとんど同様であったと言える。
 (第1固体電解質材料のイオン伝導度の評価)
 図3は、第1固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。枠型302は、絶縁性ポリカーボネートから形成されていた。パンチ上部301およびパンチ下部303は、いずれも電子伝導性のステンレスから形成されていた。枠型302は、絶縁性のポリカーボネートから形成されていた。
 図3に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による第1固体電解質材料のイオン伝導度が測定された。
 -30℃以下の露点を有するドライ雰囲気中で、実施例1による第1固体電解質材料の粉末(図3における固体電解質材料の粉末101)が加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による固体電解質材料に、パンチ上部301およびパンチ下部303を用いて、300MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303が、周波数応答アナライザが搭載されたポテンショスタット(PrincetonApplied Research社、VersaSTAT4)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。第1固体電解質材料のインピーダンスは、室温において、電気化学インピーダンス測定法により、イオン伝導度の測定を行なった。
 22℃で測定された、実施例1による第1固体電解質材料のイオン伝導度は、1.5×10-3S/cmであった。実施例2から3および比較例1から2でも同様の第1固体電解質材料が用いられた。
 (被覆正極活物質の作製)
 正極活物質として、層状岩塩型の、LiNi0.5Co0.3Mn0.22の組成を有する複合酸化物粒子(平均粒径(D50)4.4μm)(以下、NCMと記載する)が用いられた。
 以下に正極活物質表面に被覆材料としてAl2x(0<x<3)を被覆する方法について示すが、方法は以下に限定されない。
 スパッタによって、ターゲットとしてAlを用い、目標膜厚を5nmに設定して、酸素流量を調整しながら、正極活物質上に被覆材料が成膜された。正極活物質を、金属メッシュで覆われたゲージ内に封入し、ゲージを回転させることで、正極活物質が常にかき混ぜられながら被覆材料が成膜されるようにした。
 X線光電子分光法を用いて、表面分析を行った。図4は、X線光電子分光法で測定された実施例1の被覆正極活物質の表面、およびAl23粉末のX線光電子スペクトルにおいてAl2pに帰属されるピークを示す。Al23粉末を測定したスペクトルのAl2pに帰属されるピークに比べ、実施例1のAl2pに帰属されるピークの半値全幅が広くなっている。このことから、Alの価数が変化していることが分かる。以上のようにして、正極活物質表面にAl2x(0<x<3)を含む被膜が形成されていることが確認された。
 また、X線光電子分光法を用いた表面分析の結果、実施例1の被覆正極活物質の表面におけるAl/Ni原子比率は2.89であり、Al/Co原子比率は4.56であった。これらの原子比率は、それぞれの元素のピーク強度および感度係数から算出した。表面分析は、X線光電子分光分析装置(アルバック・ファイ社製、Quantera)を使用した。
 (正極合材の作製)
 乾燥アルゴン雰囲気下で、第1固体電解質材料と、被覆を施した正極活物質と、導電助剤としての気相法炭素繊維(VGCF(昭和電工株式会社製))とを、34:64:2の重量比率で秤量した。これらをメノウ乳鉢で混合することで、正極合材を作製した。なお、VGCFは、昭和電工株式会社の登録商標である。
 (電池の作製)
 絶縁性外筒の中で、正極合材13.1mg、第1固体電解質材料80mg、および固体電解質材料Li6PS5Cl(MSE社製)80mgを、順に積層した。これを720MPaの圧力で加圧成形し、正極と固体電解質層とからなる積層体を作製した。次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、および金属In(厚さ200μm)を順に積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、負極からなる積層体を作製した。次に、積層体の上下、すなわち正極および負極にステンレス鋼集電体を配置し、集電体に集電リードを付設した。最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断し、密閉することで、実施例1による電池を作製した。
 (充放電試験)
 上述の実施例1の電池を用いて、以下のように充放電試験を行った。
 電池を25℃の恒温槽に配置した。
 電流値130μAで、Li/Inに対する電位3.68Vまで定電流充電し、その後、定電圧充電の終了時の電流を26μAに設定して定電圧充電を行った。
 次に、電流値130μAで、Li/Inに対する電位1.88Vまで定電流放電し、その後、定電圧放電の終了時の電流を26μAに設定して定電圧放電を行った。
 上記の充電と放電とを1サイクルとし、サイクル試験を行った。実施例1の電池の1サイクル目の放電容量および50サイクル目の放電維持率を表1に示す。
 50サイクル目の放電維持率とは、1サイクル目の放電容量に対する50サイクル目の放電容量の比率である。50サイクル目の放電維持率が100%を超えているのは、最初の数サイクルで抵抗が下がり、容量が上昇するためである。
 図5に、実施例1の電池の初期充放電特性を示す充放電曲線を示す。
 (実施例2)
 被覆材料によって表面が被覆された正極活物質の作製において、目標膜厚を1nmに設定したこと以外、実施例1の電池と同様の方法により、実施例2の電池が作製された。
 実施例1と同様にして充放電試験が実施された。実施例2の電池の1サイクル目の放電容量と50サイクル目の放電維持率とを表1に示す。図5に、実施例2の電池の初期充放電特性を示す充放電曲線を示す。
 (実施例3)
 被覆材料によって表面が被覆された正極活物質の作製において、目標膜厚を3nmに設定したこと以外、実施例1の電池と同様の方法により、実施例3の電池が作製された。
 実施例1と同様にして充放電試験が実施された。実施例3の電池の1サイクル目の放電容量と50サイクル目の放電維持率とを表1に示す。図5に、実施例3の電池の初期充放電特性を示す充放電曲線を示す。
 (比較例1)
 正極活物質であるNCMと、第1固体電解質材料と、導電助剤VGCFとを、34:64:2の質量比率となるように秤量し、乳鉢で混合することで、比較例1の正極合剤が作製された。すなわち、比較例1で用いられた正極活物質は、被覆材料によって被覆されていなかった。上記以外、実施例1の電池と同様の方法により、比較例1の電池を作製した。
 実施例1と同様にして充放電試験が実施された。比較例1の電池の1サイクル目の放電容量と50サイクル目の放電維持率とを表1に示す。図5に、比較例1の電池の初期充放電特性を示す充放電曲線を示す。
 比較例1の電池では、実施例1から3の電池に比べ、50サイクル目の放電維持率が低くなっている。これは、正極材料が被覆材料を含まないために、固体電解質の酸化分解によって抵抗が上昇し、放電容量が減少することによるものである。なお、図5に示されているように、比較例1の電池では、実施例1から3の電池に比べ、初期充電容量が大きくなっている。これは、比較例1の電池の初期充電時に、固体電解質の酸化分解が起こり、この酸化反応により、見た目の充電容量が増加しているためである。
 (比較例2)
 スパッタによって、ターゲットとしてAlを用い、目標膜厚を2nmに設定して、酸素流量を調整しながら、正極活物質NCM上に被覆材料が成膜された。
 X線光電子分光法を用いて、比較例2の被覆正極活物質の表面分析を行った。図4は、X線光電子分光法で測定された比較例2の被覆正極活物質の表面およびAl23粉末のX線光電子スペクトルにおいてAl2pに帰属されるピークを示す。Al2pに帰属されるピークの半値全幅が、Al23粉末を測定したスペクトルのAl2pに帰属されるピークの半値全幅とほぼ同じであった。以上のようにして、比較例2の正極活物質表面にAl23の被膜が形成されていることが確認された。
 実施例1の電池と同様の方法により、比較例2の電池を作製した。
 実施例1と同様にして充放電試験が実施された。比較例2の1サイクル目の放電容量と50サイクル目の放電維持率とを表1に示す。図5に、比較例2の電池の初期充放電特性を示す充放電曲線を示す。
 比較例2の電池では、実施例1から3の電池に比べ、1サイクル目の放電容量および50サイクル目の放電維持率が低くなっている。また、図5から、比較例2の電池では比較例1の電池に比べ、充電容量および放電電圧が減少していることが分かる。これらは、比較例1と比較し、被覆によって充電時の固体電解質の酸化分解は抑制できているものの、Al23被覆に起因する抵抗上昇が生じていることを示している。
Figure JPOXMLDOC01-appb-T000001
 実施例1は、実施例2よりも50サイクル目の放電維持率が高くなっている。これは、正極活物質の表面が十分に被覆されて、固体電解質が酸化分解することを十分に抑制できたからであると思われる。
 本開示に係る全固体電池は、例えば、スマートフォン等のモバイル機器の電源、電気自動車等の車両の動力源、各種車載機器用の電源、太陽光等の自然エネルギーの貯蔵装置として好適に用いられる。
 1000 正極材料
 110  正極活物質
 100  第1固体電解質材料
 120  被覆材料
 130  負極活物質
 140  第2固体電解質材料
 150  被覆正極活物質
 2000 電池
 201  正極
 202  固体電解質層
 203  負極
 300  加圧成形ダイス
 301  パンチ上部
 302  枠型
 303  パンチ下部
 101  固体電解質材料の粉末

Claims (6)

  1.  正極活物質と、
     前記正極活物質の表面の少なくとも一部を被覆する被覆材料と、
    を含み、
     前記被覆材料は、Al2x(0<x<3)を含む、
    被覆正極活物質。
  2.  前記被覆材料は、実質的にAlおよびOからなり、かつ、前記被覆正極活物質の表面のX線光電子分光測定で得られるスペクトルにおいて、Al2pに帰属されるピークの半値全幅が1.80eVを超える、
    請求項1に記載の被覆正極活物質。
  3.  前記正極活物質は、以下の組成式(2)で表される材料を含む、
    請求項1または2に記載の被覆正極活物質。
     LiNiαCoβMe1-α-β2・・・式(2)
     ここで、αおよびβは、0≦α<1、0≦β≦1、および0≦1-α-β≦0.35を満たし、Meは、AlおよびMnからなる群より選択される少なくとも1つである。
  4.  以下の(A)および(B)からなる群より選択される少なくとも1つを満たす、
    請求項3に記載の被覆正極活物質。
    (A)前記被覆正極活物質の表面において、Al/Ni原子比率が2.9以下である。
    (B)前記被覆正極活物質の表面において、Al/Co原子比率が4.6以下である。
  5.  請求項1から4のいずれか一項に記載の被覆正極活物質と、
     第1固体電解質材料と、
    を含み、
     前記第1固体電解質材料は、Li、M、およびXを含み、
     Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである、
    正極材料。
  6.  正極と、
     負極と、
     前記正極と前記負極との間に設けられた固体電解質層と、
    を備え、
     前記正極は、請求項5に記載の正極材料を含む、
     電池。
PCT/JP2022/020307 2021-06-11 2022-05-16 被覆正極活物質、正極材料、および電池 WO2022259820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280039620.9A CN117413383A (zh) 2021-06-11 2022-05-16 被覆正极活性物质、正极材料和电池
JP2023527586A JPWO2022259820A1 (ja) 2021-06-11 2022-05-16
US18/527,307 US20240097120A1 (en) 2021-06-11 2023-12-03 Coated positive electrode active material, positive electrode material, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-098357 2021-06-11
JP2021098357 2021-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/527,307 Continuation US20240097120A1 (en) 2021-06-11 2023-12-03 Coated positive electrode active material, positive electrode material, and battery

Publications (1)

Publication Number Publication Date
WO2022259820A1 true WO2022259820A1 (ja) 2022-12-15

Family

ID=84424825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020307 WO2022259820A1 (ja) 2021-06-11 2022-05-16 被覆正極活物質、正極材料、および電池

Country Status (4)

Country Link
US (1) US20240097120A1 (ja)
JP (1) JPWO2022259820A1 (ja)
CN (1) CN117413383A (ja)
WO (1) WO2022259820A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155979A (ja) * 2004-11-26 2006-06-15 Central Res Inst Of Electric Power Ind 全固体型電池
US20200075943A1 (en) * 2018-08-28 2020-03-05 Ningde Amperex Technology Limited Electrode and electrochemical device
JP2021073665A (ja) * 2015-09-16 2021-05-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155979A (ja) * 2004-11-26 2006-06-15 Central Res Inst Of Electric Power Ind 全固体型電池
JP2021073665A (ja) * 2015-09-16 2021-05-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池
US20200075943A1 (en) * 2018-08-28 2020-03-05 Ningde Amperex Technology Limited Electrode and electrochemical device

Also Published As

Publication number Publication date
US20240097120A1 (en) 2024-03-21
JPWO2022259820A1 (ja) 2022-12-15
CN117413383A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7217433B2 (ja) 正極材料およびそれを用いた電池
JP7217432B2 (ja) 正極材料およびそれを用いた電池
JP6738121B2 (ja) リチウムイオン(lithiumion)二次電池
JP2023080348A (ja) 全固体電池
US20230197960A1 (en) Positive-electrode material and battery
WO2021157361A1 (ja) 正極材料および電池
WO2020174868A1 (ja) 正極材料、および、電池
US20230042911A1 (en) Positive electrode material and battery
WO2020110480A1 (ja) 負極材料、電池、および電池の製造方法
WO2020110479A1 (ja) 負極材料、および、電池
WO2021220927A1 (ja) 正極材料、および、電池
WO2023021836A1 (ja) 電極および電池
JP2021106075A (ja) 固体電池及びその製造方法
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2022113499A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2022259820A1 (ja) 被覆正極活物質、正極材料、および電池
WO2022259797A1 (ja) 被覆正極活物質、正極材料、および電池
CN113614948A (zh) 正极材料和电池
JP2020173906A (ja) 全固体電池用の正極活物質
WO2022264554A1 (ja) 複合活物質、電極材料、電池、および複合活物質の製造方法
WO2023106128A1 (ja) 電池
WO2022254796A1 (ja) 電極材料および電池
WO2023286614A1 (ja) 正極材料および電池
WO2023002827A1 (ja) 正極材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527586

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039620.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE