WO2015030052A1 - 全固体電池 - Google Patents
全固体電池 Download PDFInfo
- Publication number
- WO2015030052A1 WO2015030052A1 PCT/JP2014/072438 JP2014072438W WO2015030052A1 WO 2015030052 A1 WO2015030052 A1 WO 2015030052A1 JP 2014072438 W JP2014072438 W JP 2014072438W WO 2015030052 A1 WO2015030052 A1 WO 2015030052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- layer
- positive electrode
- electrode layer
- negative electrode
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 182
- 150000004678 hydrides Chemical class 0.000 claims abstract description 82
- 239000002203 sulfidic glass Substances 0.000 claims abstract description 75
- 239000007787 solid Substances 0.000 claims description 50
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 37
- 229910001416 lithium ion Inorganic materials 0.000 claims description 37
- -1 lithium halide Chemical class 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 21
- 229910052744 lithium Inorganic materials 0.000 claims description 16
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 claims description 7
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 claims description 6
- 229910052701 rubidium Inorganic materials 0.000 claims description 6
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical group 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical group [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 150000002641 lithium Chemical group 0.000 claims description 3
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 claims description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical group [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 212
- 239000007774 positive electrode material Substances 0.000 description 44
- 239000007773 negative electrode material Substances 0.000 description 36
- 239000000843 powder Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 17
- 238000006722 reduction reaction Methods 0.000 description 16
- 230000009467 reduction Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000002482 conductive additive Substances 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 229910018091 Li 2 S Inorganic materials 0.000 description 6
- 239000011149 active material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 5
- 239000002388 carbon-based active material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910009293 Li2S-GeS2-Ga2S3 Inorganic materials 0.000 description 4
- 229910009108 Li2S—GeS2—Ga2S3 Inorganic materials 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- OAEGRYMCJYIXQT-UHFFFAOYSA-N dithiooxamide Chemical compound NC(=S)C(N)=S OAEGRYMCJYIXQT-UHFFFAOYSA-N 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Inorganic materials [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000010416 ion conductor Substances 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 238000003701 mechanical milling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 229910019211 La0.51Li0.34TiO2.94 Inorganic materials 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- 229910008029 Li-In Inorganic materials 0.000 description 2
- 229910009178 Li1.3Al0.3Ti1.7(PO4)3 Inorganic materials 0.000 description 2
- 229910010945 LiGe0.25P0.75S4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910012752 LiNi0.5Mn0.5O2 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 2
- 229910006670 Li—In Inorganic materials 0.000 description 2
- 229910003289 NiMn Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- PXLYGWXKAVCTPX-UHFFFAOYSA-N 1,2,3,4,5,6-hexamethylidenecyclohexane Chemical class C=C1C(=C)C(=C)C(=C)C(=C)C1=C PXLYGWXKAVCTPX-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 101100317222 Borrelia hermsii vsp3 gene Proteins 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910010500 Li2.9PO3.3N0.46 Inorganic materials 0.000 description 1
- 229910012316 Li3.6Si0.6P0.4O4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011530 conductive current collector Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Inorganic materials [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 1
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Inorganic materials [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an all solid state battery, and more particularly to an all solid state battery in which lithium ions are responsible for electrical conduction.
- lithium ion secondary batteries In recent years, demand for lithium ion secondary batteries has increased in applications such as portable information terminals, portable electronic devices, electric vehicles, hybrid electric vehicles, and stationary power storage systems.
- the current lithium ion secondary battery uses a flammable organic solvent as an electrolyte, and requires a strong exterior so that the organic solvent does not leak.
- the structure of the device such as the need to take a structure in preparation for the risk that the electrolyte should leak.
- oxides, phosphate compounds, organic polymers, sulfides and the like have been studied.
- oxides and phosphate compounds have low resistance to oxidation and reduction, and it is difficult to stably exist in lithium ion secondary batteries.
- materials, such as metallic lithium, low crystalline carbon, and graphite are used as a negative electrode, it also has the fault that a solid electrolyte and a negative electrode will react (patent document 1).
- oxides and phosphate compounds have the property that their particles are hard. Therefore, in order to form a solid electrolyte layer using these materials, it is generally necessary to sinter at a high temperature of 600 ° C. or more, which is troublesome. Furthermore, when an oxide or a phosphoric acid compound is used as the material for the solid electrolyte layer, there is a disadvantage that the interfacial resistance with the electrode active material is increased.
- the organic polymer has a drawback that the lithium ion conductivity at room temperature is low and the conductivity rapidly decreases as the temperature decreases.
- sulfides have high lithium ion conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm or more (Patent Document 2) and 0.2 ⁇ 10 ⁇ 3 S / cm or more (Patent Document 3) at room temperature. It has been known. Furthermore, since the particles are soft, it is possible to produce a solid electrolyte layer by a cold press and to easily bring the contact interface into a good state. However, when materials containing Ge or Si are used as the sulfide solid electrolyte material (Patent Document 2 and Patent Document 4), these materials have a problem that they are easily reduced.
- Patent Document 5 a method of providing a film on the surface of the negative electrode active material
- Patent Documents 6 to 10 a method of devising the composition of the solid electrolyte
- Patent Documents 6 to 10 a method of devising the composition of the solid electrolyte
- Patent Document 10 a solid electrolyte containing P 2 S 5 is used, but even when such a sulfide solid electrolyte is used, there remains a concern about the reaction with the negative electrode active material (non-patent). Reference 1).
- the stability of the negative electrode is easily changed by a small amount of impurities in the solid electrolyte layer, and its control is not easy. For this reason, a solid electrolyte that has high lithium ion conductivity, does not adversely affect the stability of the electrode active material, and can form a good interface with an adjacent material is desired.
- Non-patent Document 2 the high temperature phase of LiBH 4 has a high lithium ion conductivity
- Patent Document 11 an ion conductor containing a complex hydride such as LiBH 4 is also referred to as a complex hydride solid electrolyte.
- the solid electrolyte containing LiBH 4 has a drawback of reducing an oxide, for example, LiCoO 2, which is a commonly used positive electrode active material.
- a charge / discharge cycle at 120 ° C. can be achieved by coating about 10 nm of Li 3 PO 4 on a 100 nm LiCoO 2 layer formed by pulsed laser deposition (PLD; Pulse Laser Deposition). It has been reported that this is possible (Non-Patent Document 4).
- PLD Pulse Laser Deposition
- Patent Document 12 Although a method for avoiding reduction by complex hydride by using a specific positive electrode active material has been found, usable positive electrode active materials are extremely limited (for example, polycyclic aroma having a polyacene skeleton structure). Group hydrocarbons, perovskite-type fluorides, etc.) (Patent Document 12). Further, these positive electrode active materials are not oxide-type positive electrode active materials generally used for lithium ion secondary batteries currently on the market. Patent Document 12 also states that an oxide-type positive electrode active material coated with a specific ion conductor or carbon is difficult to reduce, but the data shown in the examples shows the reducing action during charging. It does not necessarily describe the effect when charging and discharging are repeated.
- Non-Patent Document 4 shows that reduction of LiCoO 2 by LiBH 4 occurs during charging. 1 clearly shows that the battery resistance increases with repeated charge and discharge cycles. From this, it can be said that there is a demand for an effective means that not only suppresses the reduction of the positive electrode active material by the complex hydride in the short term but also suppresses the increase in battery resistance even after repeated charge and discharge.
- JP 2000-223156 A International Publication No. 2011/118801 JP 2012-43646 A JP 2006-277997 A JP 2011-150942 A Japanese Patent No. 3149524 Japanese Patent No. 3163374 Japanese Patent No. 3343934 Japanese Patent No. 4165536 JP 2003-68361 A Japanese Patent No. 5187703 JP 2012-209106 A JP 2012-209104 A
- An object of the present invention is to provide an all solid state battery having high ion conductivity and excellent stability.
- the present invention is as follows. [1] A positive electrode layer, a negative electrode layer, and a solid electrolyte layer having lithium ion conductivity disposed between the positive electrode layer and the negative electrode layer, Either one or both of the positive electrode layer and the solid electrolyte layer includes a sulfide solid electrolyte, and either one or both of the negative electrode layer and the solid electrolyte layer includes a complex hydride solid electrolyte, An all-solid battery in which at least a part of the sulfide solid electrolyte is in contact with at least a part of the complex hydride solid electrolyte.
- the solid electrolyte layer includes a first solid electrolyte layer on the positive electrode side containing a sulfide solid electrolyte and a second solid electrolyte layer on the negative electrode side containing a complex hydride solid electrolyte. All solid battery.
- the sulfide solid electrolyte includes one or more materials selected from the group consisting of Li 2 S—P 2 S 5 system, Li 2 S—SiS 2 system, and Li 2 S—GeS 2 system [ The all solid state battery according to [1] or [2]. [3-1] The sulfide solid electrolyte includes Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—GeS 2 , LiGe 0.25 P 0.75 S 4 , and Li 10 GeP 2. The all-solid-state battery according to [3], including at least one material selected from the group consisting of S 12 , Li 2 S—GeS 2 —Ga 2 S 3 .
- the complex hydride solid electrolyte is a mixture of LiBH 4 or LiBH 4 and an alkali metal compound represented by the following formula (1); MX (1)
- M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom, X represents a halogen atom or an NH 2 group.
- the all solid state battery according to any one of [1] to [3].
- the positive electrode layer includes a sulfide solid electrolyte
- the negative electrode layer and the solid electrolyte layer include a complex hydride solid electrolyte
- An all-solid battery in which at least a part of the sulfide solid electrolyte is in contact with at least a part of the complex hydride solid electrolyte.
- a positive electrode layer, a negative electrode layer, and a solid electrolyte layer having lithium ion conductivity disposed between the positive electrode layer and the negative electrode layer The positive electrode layer and the solid electrolyte layer include a sulfide solid electrolyte, the negative electrode layer includes a complex hydride solid electrolyte, An all-solid battery in which at least a part of the sulfide solid electrolyte is in contact with at least a part of the complex hydride solid electrolyte.
- Sectional drawing of the all-solid-state battery which concerns on 1st Embodiment of this invention Sectional drawing of the all-solid-state battery which concerns on 2nd Embodiment of this invention. Sectional drawing of the all-solid-state battery which concerns on 3rd Embodiment of this invention. The figure which shows transition of the discharge capacity from the 1st cycle to the 20th cycle.
- FIG. 1 is a cross-sectional view of an all solid state battery according to a first embodiment of the present invention.
- the all solid state battery 10 is, for example, an all solid state lithium ion secondary battery, and can be used in various devices such as a mobile phone, a personal computer, and an automobile.
- the all solid state battery 10 has a structure in which a solid electrolyte layer 2 is disposed between a positive electrode layer 1 and a negative electrode layer 3.
- the solid electrolyte layer 2 includes a first solid electrolyte layer 2a on the positive electrode layer 1 side containing a sulfide solid electrolyte and a second solid electrolyte layer 2b on the negative electrode layer 3 side containing a complex hydride solid electrolyte. Including and touching each other.
- the solid electrolyte layer 2 is a layer having lithium ion conductivity that is disposed between the positive electrode layer 1 and the negative electrode layer 3.
- the first solid electrolyte layer 2a and the second solid electrolyte layer 2b are in contact with each other, at least a part of the sulfide solid electrolyte contained in each layer and at least one of the complex hydride solid electrolyte are included.
- the structure is in contact with the part.
- the positive electrode active material in the positive electrode layer 1 and the sulfide solid electrolyte in the first solid electrolyte layer 2a are located in adjacent layers
- the negative electrode active material in the negative electrode layer 3 and the complex hydride solid electrolyte in the second solid electrolyte layer 2b are located in adjacent layers.
- the lithium ion conductivity of the entire battery can be improved. Furthermore, according to the above configuration, since the complex hydride and the positive electrode active material are not in direct contact with each other, the complex hydride having high lithium ion conductivity is used as a solid electrolyte without concern about the reduction of the positive electrode active material by the complex hydride. Can be used. Since it is possible to prevent an increase in battery resistance due to reduction of the active material and the solid electrolyte, it is possible to provide an all-solid battery that operates stably over a long period of time even when the charge / discharge cycle is repeated.
- the sulfide solid electrolyte contained in the first solid electrolyte layer 2a is not particularly limited as long as it is a material having lithium ion conductivity and containing a sulfur atom.
- the sulfide solid electrolyte generally has high lithium ion conductivity and is soft like the complex hydride solid electrolyte, so that it can be molded by pressing.
- As the sulfide solid electrolyte for example, Li 2 S—P 2 S 5 type, Li 2 S—SiS 2 type and Li 2 S—GeS 2 type materials can be used.
- Li 2 S—P 2 S 5 Li 2 S—SiS 2 , Li 2 S—GeS 2 , LiGe 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , Li 2 S -GeS 2 -Ga 2 S 3 and the like can be mentioned.
- the notation of Li 2 S—P 2 S 5 means a solid electrolyte prepared using Li 2 S and P 2 S 5 as raw materials.
- Li 2 S—SiS 2 , Li 2 S—GeS 2 , and Li 2 S—GeS 2 —Ga 2 S 3 and is not limited to a specific composition ratio.
- the sulfide solid electrolyte may be amorphous or crystalline.
- a crystalline sulfide solid electrolyte can be obtained, for example, by heat-treating an amorphous sulfide solid electrolyte.
- the above sulfide solid electrolyte may be used individually by 1 type, and may be used in combination of 2 or more type.
- the complex hydride solid electrolyte contained in the second solid electrolyte layer 2b is not particularly limited as long as it is a material containing a complex hydride having lithium ion conductivity.
- the complex hydride solid electrolyte is LiBH 4 or a mixture of LiBH 4 and an alkali metal compound represented by the following formula (1): MX (1)
- M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom
- X represents a halogen atom or an NH 2 group.
- the halogen atom as X in the formula (1) may be an iodine atom, a bromine atom, a fluorine atom, a chlorine atom or the like.
- X is preferably an iodine atom, a bromine atom or an NH 2 group, and more preferably an iodine atom or an NH 2 group.
- the alkali metal compound includes lithium halide (eg, LiI, LiBr, LiF or LiCl), rubidium halide (eg, RbI, RbBr, RbF or RbCl), cesium halide (eg, CsI, CsBr, CsF or CsCl) or lithium amide (LiNH 2 ) is preferable, and LiI, RbI, CsI, or LiNH 2 is more preferable.
- An alkali metal compound may be used individually by 1 type, and may be used in combination of 2 or more type.
- a preferred combination includes a combination of LiI and RbI.
- LiBH 4 and the alkali metal compound known compounds can be used respectively. Further, the purity of these compounds is preferably 80% or more, and more preferably 90% or more. This is because a compound having a purity within the above range has high performance as a solid electrolyte.
- the molar ratio of LiBH 4 to the alkali metal compound is preferably 1: 1 to 20: 1, and more preferably 2: 1 to 7: 1.
- the molar ratio within the above range, a sufficient amount of LiBH 4 in the solid electrolyte can be secured, and high ionic conductivity can be obtained.
- the amount of LiBH 4 is too large, the transition temperature of the high-temperature phase (high ion conduction phase) is difficult to decrease, and sufficient ion conductivity cannot be obtained at a temperature lower than the transition temperature (115 ° C.) of the high-temperature phase of LiBH 4. There is a tendency.
- the mixing ratio is not particularly limited.
- the molar ratio between LiI and the other alkali metal compound is preferably 1: 1 to 20: 1. More preferably, the ratio is 1 to 20: 1.
- the diffraction peaks in these five regions correspond to the diffraction peaks of the high temperature phase of LiBH 4 . Even below the transition temperature of the high temperature phase of LiBH 4, the solid electrolyte having a diffraction peak in the five regions as described above tends to exhibit high ionic conductivity even below the transition temperature.
- the method for producing the solid electrolyte contained in the first solid electrolyte layer 2a and the second solid electrolyte layer 2b is not particularly limited, but is preferably produced by mechanical milling or melt mixing described in Japanese Patent No. 5187703.
- the first solid electrolyte layer 2a and the second solid electrolyte layer 2b may contain materials other than those described above as necessary.
- the thickness of the first solid electrolyte layer 2a is preferably thinner. Specifically, it is preferably in the range of 0.01 to 1000 ⁇ m, and more preferably in the range of 0.1 to 500 ⁇ m.
- the second solid electrolyte layer 2b is preferably thin. Specifically, it is preferably in the range of 0.05 to 1000 ⁇ m, more preferably in the range of 0.1 ⁇ m to 200 ⁇ m.
- Positive electrode layer The positive electrode layer 1 is a layer containing at least a positive electrode active material.
- the positive electrode layer 1 may contain a solid electrolyte, a conductive additive, a binder, and the like as necessary.
- any material can be used as long as it can release lithium ions during charging and occlude lithium ions during discharging.
- a metal oxide having a transition metal, a sulfur positive electrode active material, an organic positive electrode active material, and FeF 3 and VF 3 using a conversion reaction can be given.
- metal oxide having a transition metal particles or a thin film of metal oxide containing at least one of transition metals Mn, Co, Ni, Fe, Cr, and V and lithium can be used.
- LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.5 Mn 0.5 O 2 , Li 2 NiMn 3 O 8 , LiFePO 4 , LiCoPO 4 , LiMnPO 4 , LiVOPO 4 , LiNiO 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 are preferred.
- Sulfur-based positive electrode active materials include S, TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 , Li 2 S, MoS 3 , sulfur-modified polyacrylonitrile, rubeanic acid (dithiooxamide), disulfide compound Etc.
- TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , FeS 2 , Li 2 S, MoS 3 , sulfur-modified polyacrylonitrile, and rubeanic acid (dithiooxamide) are preferable.
- organic positive electrode active materials include radical compounds represented by 2,2,6,6-tetramethylpiperidinoxyl-4-yl methacrylate and polytetramethylpiperidinoxyvinyl ether, quinone compounds, radialene compounds, tetra Examples thereof include cyanquinodimethane and phenane dioxide. Among them, radical compounds and quinone compounds are preferable because they have a large theoretical capacity and can maintain a relatively good discharge capacity.
- the solid electrolyte used for the positive electrode layer 1 is not particularly limited as long as it has lithium ion conductivity and is stable with the positive electrode active material.
- an oxide solid electrolyte or a phosphoric acid compound solid electrolyte is used.
- a sulfide solid electrolyte is preferable.
- the same sulfide solid electrolyte is preferably contained in the positive electrode layer 1 and the first solid electrolyte layer 2a.
- the positive electrode layer 1 is preferably a bulk type containing both a positive electrode active material and a solid electrolyte.
- the sulfide solid electrolyte those described in the first solid electrolyte layer 2a can be used.
- the same sulfide solid electrolyte is preferably contained in the positive electrode layer 1 and the first solid electrolyte layer 2a. This is because, when layers containing solid electrolytes having different compositions come into contact with each other, diffusion of constituent elements of the solid electrolyte is likely to occur between the layers, which may reduce lithium ion conductivity.
- the ratio of the positive electrode active material and the solid electrolyte in the positive electrode layer 1 should be higher if the shape of the positive electrode can be maintained and the necessary ionic conductivity can be secured.
- the weight ratio of positive electrode active material: solid electrolyte is preferably in the range of 9: 1 to 2: 8, more preferably 8: 2 to 4: 6.
- the conductive aid used for the positive electrode layer 1 is not particularly limited as long as it has desired conductivity, and examples thereof include a conductive aid made of a carbon material. Specific examples include carbon black, acetylene black, ketjen black, and carbon fiber.
- the content of the conductive additive in the positive electrode layer 1 is preferably smaller as long as desired electronic conductivity can be secured.
- the ratio of the conductive additive to the positive electrode layer forming material is, for example, 0.1% by mass to 40% by mass, and preferably 3% by mass to 30% by mass.
- any binder generally used for the positive electrode of a lithium secondary battery can be used.
- polysiloxane, polyalkylene glycol, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer (EVOH) and the like can be used.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- EVOH ethylene-vinyl alcohol copolymer
- a thickener such as carboxymethylcellulose (CMC) can also be used.
- a coating layer can be provided on the particles or thin film of the positive electrode active material.
- Specific methods include those described in the following patent documents.
- JP 2012-054151 uses LiNbO 3 for controlling a depletion layer generated at the interface between different types of ionic conductors.
- Japanese Patent Application Laid-Open No. 2011-159639 discloses that the interface resistance is reduced by providing a coating layer of LiNbO 3 or Li 4 Ti 5 O 12 on the positive electrode active material.
- 2008-103280 discloses that rate characteristics are improved by coating the positive electrode.
- the coating material include titanate spinel, tantalum oxide, niobium oxide, and the like. Specifically, Li 4 Ti 5 O 12 , LiTaO 3 , LiNbO 3 , LiAlO 2 , Li 2 ZrO. 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 and LiBO 2 .
- the active material when using an active material having an olivine type structure typified by LiFePO 4 or LiCoPO 4 having a low electron conductivity, the active material is coated with carbon in order to facilitate a charge transfer reaction.
- this technique is also effective in the present invention.
- the thickness of the positive electrode layer 1 is not particularly limited as long as it functions as a positive electrode layer, but is preferably 0.05 ⁇ m to 1000 ⁇ m, and more preferably 0.1 ⁇ m to 200 ⁇ m.
- Negative electrode layer 3 is a layer containing at least a negative electrode active material, and may contain a solid electrolyte, a conductive additive, a binder or the like, if necessary.
- the negative electrode active material for example, a metal active material, a carbon active material, or the like can be used.
- the metal active material include Li, In, Al, Si, and Sn.
- examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
- a negative electrode active material having a lower electrode potential it is preferable to use a negative electrode active material having a lower electrode potential. This is because using such an active material improves the energy density of the battery and increases the operating voltage of the battery.
- a negative electrode active material whose electrode potential is equal to or lower than the electrode potential of Li—In alloy (about 0.62 V; Li electrode standard).
- the electrode potential (Li electrode reference) of the negative electrode active material is more preferably 0 to 0.6V, even more preferably 0 to 0.5V, and particularly preferably 0 to 0.3V.
- Examples of such a negative electrode active material include Li, a carbon active material, and Si.
- a negative electrode active material having an electrode potential of around 0 V Li electrode standard
- the negative electrode active material and the sulfide solid electrolyte are not in contact with each other, the reduction reaction of the sulfide solid electrolyte by the negative electrode active material does not occur. Therefore, the negative electrode active material having an electrode potential of about 0 V can be used without any problem, and the battery can be stably operated over a long period of time.
- the solid electrolyte used for the negative electrode layer 3 is not particularly limited as long as it has lithium ion conductivity and is stable with the negative electrode active material.
- a complex hydride solid electrolyte may be used. it can. Since the complex hydride solid electrolyte is relatively soft, a good interface can be formed with a negative electrode active material such as graphite.
- the negative electrode layer 3 is preferably a bulk type containing both the negative electrode active material and the solid electrolyte.
- the complex hydride solid electrolyte contained in the negative electrode layer 3 those described in the second solid electrolyte layer 2b can be used.
- the negative electrode layer 3 and the second solid electrolyte layer 2b preferably contain the same complex hydride solid electrolyte. This is because, when layers containing solid electrolytes having different compositions come into contact with each other, diffusion of constituent elements of the solid electrolyte is likely to occur between the layers, which may reduce lithium ion conductivity.
- the ratio of the negative electrode active material to the solid electrolyte is preferably higher as long as the shape of the negative electrode can be maintained and the necessary ion conductivity can be ensured.
- the weight ratio of negative electrode active material: solid electrolyte is preferably within a range of 9: 1 to 2: 8, and more preferably 8: 2 to 4: 6.
- the same conductive additive as the positive electrode layer 1 can be used.
- the ratio of the conductive additive to the negative electrode layer forming material is, for example, 0.1% by mass to 20% by mass, and preferably 3% by mass to 15% by mass.
- any binder generally used for the negative electrode of a lithium secondary battery can be used.
- examples thereof include polysiloxane, polyalkylene glycol, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and polyacrylic acid.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- SBR styrene-butadiene rubber
- a thickener such as carboxymethylcellulose (CMC) can also be used.
- the thickness of the negative electrode layer 3 is not limited as long as it functions as a negative electrode layer, but is preferably 0.05 ⁇ m to 1000 ⁇ m, and more preferably 0.1 ⁇ m to 200 ⁇ m.
- FIG. 2 is a cross-sectional view of an all solid state battery according to a second embodiment of the present invention.
- the all solid state battery 10 according to the second embodiment has a structure in which a second solid electrolyte layer 2b including a complex hydride solid electrolyte is disposed between the positive electrode layer 1 and the negative electrode layer 3. That is, the all solid state battery 10 according to the second embodiment does not include the first solid electrolyte layer 2a in the first embodiment.
- the positive electrode layer 1 includes at least a positive electrode active material and a sulfide solid electrolyte.
- the positive electrode active material and the sulfide solid electrolyte contained in the positive electrode layer 1 are as described in the first embodiment.
- the second solid electrolyte layer 2b and the negative electrode layer 3 are also as described in the first embodiment.
- the positive electrode active material and the sulfide solid electrolyte are in contact with each other in the positive electrode layer 1, and the negative electrode active material in the negative electrode layer 3 and the complex hydride solid electrolyte in the second solid electrolyte layer 2b are located in adjacent layers. Therefore, as in the first embodiment, in the all solid state battery of the second embodiment, a large interface resistance is not generated between the layers, so that the lithium ion conductivity of the entire battery can be improved.
- the negative electrode active material and the sulfide solid electrolyte are not in contact with each other, reduction of the sulfide solid electrolyte by the negative electrode active material can be prevented, and the effect thereof is the same as that of the first embodiment.
- the complex hydride solid electrolyte contained in the second solid electrolyte layer 2b and a part of the positive electrode active material contained in the positive electrode layer 1 are in contact with each other. Increase is unlikely to occur. The reason is not clear, but the complex hydride solid electrolyte and the sulfide solid electrolyte contained in the cathode layer 1 reacted and reacted before the complex hydride solid electrolyte and the positive electrode active material reacted. It is considered that the reactivity of the portion with the positive electrode active material decreases.
- the positive electrode active material and the complex hydride solid electrolyte react with each other, it is considered that the battery resistance is hardly increased and the battery capacity is hardly reduced.
- the complex hydride solid electrolyte is in contact with the positive electrode active material, the complex hydride having high lithium ion conductivity is used as the solid electrolyte without concern about the reduction of the positive electrode active material by the complex hydride. be able to.
- an all-solid battery that operates stably over a long period of time can be provided even if the charge / discharge cycle is repeated.
- FIG. 3 is a cross-sectional view of an all solid state battery according to a third embodiment of the present invention.
- the all solid state battery 10 according to the third embodiment has a structure in which a first solid electrolyte layer 2 a containing a sulfide solid electrolyte is disposed between a positive electrode layer 1 and a negative electrode layer 3. That is, the all solid state battery 10 according to the third embodiment does not include the second solid electrolyte layer 2b in the first embodiment.
- the negative electrode layer 3 includes at least a negative electrode active material and a complex hydride solid electrolyte.
- the negative electrode active material and the complex hydride solid electrolyte contained in the negative electrode layer 3 are as described in the first embodiment.
- the first solid electrolyte layer 2a and the positive electrode layer 1 are also as described in the first embodiment.
- the complex hydride solid electrolyte contained in the negative electrode layer 3 and at least a part of the sulfide solid electrolyte contained in the first solid electrolyte layer 2a are in contact with each other. Furthermore, the negative electrode active material and the complex hydride solid electrolyte are in contact with each other in the negative electrode layer 3, and the positive electrode active material in the positive electrode layer 1 and the sulfide solid electrolyte in the first solid electrolyte layer 2a are located in adjacent layers. Therefore, similarly to the first embodiment, in the all solid state battery of the third embodiment, a large interface resistance is not generated between the layers, so that the lithium ion conductivity of the entire battery can be improved. Further, since the complex hydride solid electrolyte and the positive electrode active material are not in direct contact with each other, the reduction of the positive electrode active material by the complex hydride can be prevented, and the effect thereof is the same as that of the first embodiment.
- the sulfide solid electrolyte contained in the first solid electrolyte layer 2a and a part of the negative electrode active material contained in the negative electrode layer 3 are in contact with each other, but the battery resistance increases due to the reduction of the negative electrode active material. Is unlikely to occur.
- the sulfide solid electrolyte reacts with the complex hydride solid electrolyte contained in the anode layer 3 before the sulfide solid electrolyte reacts with the negative electrode active material, and the reacted part Is considered to decrease the reactivity with the negative electrode active material.
- the sulfide solid electrolyte and the negative electrode active material react with each other, it is considered that the battery resistance is hardly increased and the battery capacity is hardly reduced.
- each layer described above is formed and laminated to produce an all-solid battery, but the formation method and lamination method of each layer are not particularly limited.
- a method in which a solid electrolyte or electrode active material is dispersed in a solvent to form a slurry, and is applied by a doctor blade, spin coating, etc., and rolled to form a film a vacuum deposition method, an ion plating method,
- a vapor phase method in which a film is formed and laminated using a sputtering method, a laser ablation method, etc .
- a press method in which powder is formed by hot pressing or cold pressing without applying temperature, and then laminated. Since both the sulfide solid electrolyte and the complex hydride solid electrolyte are soft, it is particularly preferable to form a battery by pressing and to produce a battery.
- the positive electrode layer can also be formed using a sol
- Example 1 Preparation of complex hydride solid electrolyte
- LiBH 4 manufactured by Aldrich, purity 90%
- LiI manufactured by Aldrich, purity 99.999%
- This pot was attached to a planetary ball mill (P7 made by Fritche), and mechanical milling was performed at a rotational speed of 400 rpm for 5 hours to obtain a complex hydride solid electrolyte (3LiBH 4 -LiI).
- the mixture was mixed in an agate mortar so that the molar ratio was.
- the mixed starting material was put into a 45 mL zirconia pot, and further zirconia balls ( ⁇ 5 mm, 160 pieces) were put in, and the pot was completely sealed.
- This pot was attached to a planetary ball mill (P7 made by Fritche) and mechanical milling was performed at a rotation speed of 510 rpm for 12 hours to obtain a sulfide solid electrolyte (80Li 2 S-20P 2 S 5 ).
- Lithium ethoxide (LiOC 2 H 5 ) and niobium pentaethoxide [Nb (OC 2 H 5 ) 5 ] were dissolved in dehydrated ethanol to obtain a solution having a solute concentration of 5% by weight.
- This solution was spray-coated onto LiCoO 2 (Cell Seed C-5H, manufactured by Nippon Chemical Industry Co., Ltd.) using a tumbling fluidizer (MP-01, manufactured by Paulec Co., Ltd.). This was fired at 350 ° C. for 3 hours in the presence of air to form a LiNbO 3 film on the surface of LiCoO 2 with a thickness of about 10 nm, which was used as a positive electrode active material.
- the powder of the complex hydride solid electrolyte prepared above was put into a powder tablet molding machine having a diameter of 10 mm and pressed into a disk shape at a pressure of 28 MPa (formation of the second solid electrolyte layer; hereinafter referred to as complex hydride solid electrolyte layer) Called).
- the sulfide solid electrolyte powder prepared above was put into a tablet molding machine and press-molded again at a pressure of 28 MPa (formation of the first solid electrolyte layer; hereinafter referred to as sulfide solid electrolyte layer). Also called).
- the positive electrode layer powder prepared above was put and integrally molded at a pressure of 240 MPa. In this way, a disk-shaped pellet was obtained in which the positive electrode layer (75 ⁇ m), the sulfide solid electrolyte layer (400 ⁇ m), and the complex hydride solid electrolyte layer (400 ⁇ m) were sequentially laminated.
- a metal lithium foil having a thickness of 200 ⁇ m and ⁇ 10 mm was pasted on the surface of the pellet opposite to the positive electrode layer, and placed in a battery test cell made of SUS304 to obtain an all-solid secondary battery.
- Example 2 An all-solid battery was prepared in the same manner as in Example 1 except that the sulfide hydride solid electrolyte layer was not provided and the thickness of the complex hydride solid electrolyte layer was 800 ⁇ m. The charge / discharge test was performed in the same manner as in Example 1.
- Example 3 The same materials as in Example 1 were used for the complex hydride solid electrolyte layer, the sulfide solid electrolyte layer, and the positive electrode layer.
- the powder of complex hydride solid electrolyte was put into a powder tablet molding machine having a diameter of 10 mm and pressed into a disk shape at a pressure of 28 MPa (formation of complex hydride solid electrolyte layer). Without taking out the molded product, the powder of the sulfide solid electrolyte was continuously put into a tablet molding machine and press-molded again at a pressure of 28 MPa (formation of a sulfide solid electrolyte layer).
- Example 4 An all-solid battery was produced in the same manner as in Example 3 except that the thickness of the complex hydride solid electrolyte layer was changed to 800 ⁇ m without providing the sulfide solid electrolyte layer. The charge / discharge test was performed in the same manner as in Example 1.
- Example 5 The same materials as in Example 1 were used for the complex hydride solid electrolyte layer, the sulfide solid electrolyte layer, and the positive electrode layer.
- the negative electrode layer powder prepared above was put into a powder tablet molding machine having a diameter of 10 mm, and press-molded into a disc shape at a pressure of 28 MPa (formation of a negative electrode layer). Without taking out the molded product, the complex hydride solid electrolyte was continuously put into a tablet molding machine, and press molded again at a pressure of 28 MPa (formation of complex hydride solid electrolyte layer). Next, the sulfide solid electrolyte was put into a tablet molding machine and press-molded at a pressure of 28 MPa (formation of a sulfide solid electrolyte layer). Further, the positive electrode layer powder was put and integrally molded at a pressure of 240 MPa.
- Example 6 An all-solid battery was fabricated in the same manner as in Example 5 except that the complex hydride solid electrolyte layer was not provided and the thickness of the sulfide solid electrolyte layer was 800 ⁇ m. The charge / discharge test was performed in the same manner as in Example 1.
- the positive electrode active material was LiCoO 2 (manufactured by Nippon Chemical Industry Co., Ltd., cell seed C-5H, without LiNbO 3 coating), and the solid electrolyte used for the “positive electrode layer powder” was a complex hydride (3LiBH 4 -LiI).
- An all solid state battery was produced in the same manner as in Example 2.
- the charge / discharge test was performed in the same manner as in Example 1.
- FIG. 4 shows the transition of the discharge capacity from the first cycle to the 20th cycle.
- Table 2 shows the discharge capacity, battery resistance, and coulomb efficiency in the first cycle and the 20th cycle.
- the discharge capacity was expressed as the discharge capacity obtained with the tested battery per 1 g of the positive electrode active material.
- the battery resistance was calculated from the IR drop after 10 seconds of charging suspension.
- Coulomb efficiency was calculated from discharge capacity / charge capacity.
- the all solid state battery according to the embodiment of the present invention can use a complex hydride having high lithium ion conductivity as a solid electrolyte without concern about reduction of the positive electrode active material by the complex hydride. it can. Moreover, since a large interface resistance is not generated between the layers constituting the all solid state battery, the lithium ion conductivity of the whole battery can be improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
- Conductive Materials (AREA)
Abstract
Description
[1] 正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
前記正極層および前記固体電解質層のいずれか一方または両方は、硫化物固体電解質を含み、前記負極層および前記固体電解質層のいずれか一方または両方は、錯体水素化物固体電解質を含み、
前記硫化物固体電解質の少なくとも一部と前記錯体水素化物固体電解質の少なくとも一部とが接している
全固体電池。
[2] 前記固体電解質層は、硫化物固体電解質を含む正極側の第1固体電解質層と、錯体水素化物固体電解質を含む負極側の第2固体電解質層とを具備する[1]に記載の全固体電池。
[2-1] 前記正極層と前記第1固体電解質層とが同一の硫化物固体電解質を含む、[2]に記載の全固体電池。
[2-2] 前記負極層と前記第2固体電解質層とが同一の錯体水素化物固体電解質を含む、[2]または[2-1]に記載の全固体電池。
[3] 前記硫化物固体電解質は、Li2S-P2S5系、Li2S-SiS2系およびLi2S-GeS2系からなる群より選択される1種以上の材料を含む[1]または[2]に記載の全固体電池。
[3-1] 前記硫化物固体電解質は、Li2S-P2S5、Li2S-SiS2、Li2S-GeS2、LiGe0.25P0.75S4、Li10GeP2S12、Li2S-GeS2-Ga2S3からなる群より選択される1種以上の材料を含む[3]に記載の全固体電池。
[4] 前記錯体水素化物固体電解質は、LiBH4またはLiBH4と下記式(1)で表されるアルカリ金属化合物との混合物である;
MX (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH2基を表す。]
[1]~[3]のいずれかに記載の全固体電池。
[4-1] 前記錯体水素化物固体電解質は、115℃未満でのX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=24.0±1.0deg、25.6±1.2deg、27.3±1.2deg、35.4±1.5degおよび42.2±2.0degに回折ピークを有する、[4]に記載の全固体電池。
[5] 前記アルカリ金属化合物は、ハロゲン化リチウム、ハロゲン化ルビジウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される[4]または[4-1]に記載の全固体電池。
[6]前記負極活物質は、電極電位が0~0.6V(Li電極基準)である[1]~[5]のいずれかに記載の全固体電池。
[7] 正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
前記正極層は硫化物固体電解質を含み、前記負極層および前記固体電解質層は錯体水素化物固体電解質を含み、
前記硫化物固体電解質の少なくとも一部と前記錯体水素化物固体電解質の少なくとも一部とが接している
全固体電池。
[8] 正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
前記正極層および前記固体電解質層は硫化物固体電解質を含み、前記負極層は錯体水素化物固体電解質を含み、
前記硫化物固体電解質の少なくとも一部と前記錯体水素化物固体電解質の少なくとも一部とが接している
全固体電池。
図1は、本発明の第1実施形態に係る全固体電池の断面図である。
全固体電池10は、例えば、全固体リチウムイオン二次電池であり、携帯電話、パソコン、自動車等をはじめとする各種機器において使用することができる。全固体電池10は、正極層1と負極層3との間に固体電解質層2が配置された構造を有する。第1実施形態において、固体電解質層2は、硫化物固体電解質を含む正極層1側の第1固体電解質層2aと錯体水素化物固体電解質を含む負極層3側の第2固体電解質層2bとを含み、これらは相互に接している。
1.固体電解質層
固体電解質層2は、正極層1と負極層3との間に配置されるリチウムイオン伝導性を有する層である。第1実施形態においては、第1固体電解質層2aと第2固体電解質層2bとが接しているため、各々の層に含まれる硫化物固体電解質の少なくとも一部と錯体水素化物固体電解質の少なくとも一部とが接する構造となる。また、正極層1における正極活物質と第1固体電解質層2aにおける硫化物固体電解質とが隣接する層に位置し、負極層3における負極活物質と第2固体電解質層2bにおける錯体水素化物固体電解質とが隣接する層に位置する。
MX (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH2基を表す。]。
上記式(1)におけるXとしてのハロゲン原子は、ヨウ素原子、臭素原子、フッ素原子、塩素原子等であってよい。Xは、ヨウ素原子、臭素原子またはNH2基であることが好ましく、ヨウ素原子またはNH2基であることがより好ましい。
正極層1は、少なくとも正極活物質を含有する層である。正極層1は、必要に応じて、固体電解質、導電助剤、結着材等を含有していてもよい。
負極層3は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質、導電助剤、結着材等を含有していてもよい。
図2は、本発明の第2実施形態に係る全固体電池の断面図である。
第2実施形態に係る全固体電池10は、正極層1と負極層3との間に、錯体水素化物固体電解質を含む第2固体電解質層2bが配置された構造を有する。すなわち、第2実施形態に係る全固体電池10は、第1実施形態における第1固体電解質層2aを含まない。第2実施形態において、正極層1は、正極活物質および硫化物固体電解質を少なくとも含む。正極層1に含まれる正極活物質および硫化物固体電解質については第1実施形態で述べた通りである。第2固体電解質層2bおよび負極層3についても、第1実施形態で述べた通りである。
図3は、本発明の第3実施形態に係る全固体電池の断面図である。
第3実施形態に係る全固体電池10は、正極層1と負極層3との間に、硫化物固体電解質を含む第1固体電解質層2aが配置された構造を有する。すなわち、第3実施形態に係る全固体電池10は、第1実施形態における第2固体電解質層2bを含まない。第3実施形態において、負極層3は、負極活物質および錯体水素化物固体電解質を少なくとも含む。負極層3に含まれる負極活物質および錯体水素化物固体電解質については、第1実施形態で述べた通りである。第1固体電解質層2aおよび正極層1についても、第1実施形態で述べた通りである。
正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
前記正極層および前記固体電解質層のいずれか一方または両方は、硫化物固体電解質を含み、前記負極層および前記固体電解質層のいずれか一方または両方は、錯体水素化物固体電解質を含み、
前記硫化物固体電解質の少なくとも一部と前記錯体水素化物固体電解質の少なくとも一部とが接している
全固体電池が提供される。
続いて、上述した全固体電池の製造方法について説明する。
上述した各層を形成して積層し、全固体電池を製造するが、各層の形成方法および積層方法については、特に限定されるものではない。例えば、固体電解質や電極活物質を溶媒に分散させてスラリー状としたものをドクターブレード、スピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて成膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していくプレス法等がある。硫化物固体電解質および錯体水素化物固体電解質はどちらもやわらかいことから、プレスによって成形および積層して電池を作製することが特に好ましい。また、正極層は、ゾルゲル法を用いて成膜することもできる。
<実施例1>
(錯体水素化物固体電解質の調製)
アルゴン雰囲気下のグローブボックス内で、LiBH4(アルドリッチ社製、純度90%)とLiI(アルドリッチ社製、純度99.999%)とを、LiBH4:LiI=3:1のモル比になるようにメノウ乳鉢にて混合した。次に、混合した出発原料を45mLのSUJ-2製ポットに投入し、さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで5時間メカニカルミリングを行い、錯体水素化物固体電解質(3LiBH4-LiI)を得た。
アルゴン雰囲気下のグローブボックス内で、Li2S(アルドリッチ社製、純度99%)とP2S5(アルドリッチ社製、純度99%)とを、Li2S:P2S5=8:2のモル比になるようにメノウ乳鉢にて混合した。次に、混合した出発原料を45mLのジルコニアポットに投入し、さらにジルコニアボール(φ5mm、160個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数510rpmで12時間メカニカルミリングを行い、硫化物固体電解質(80Li2S-20P2S5)を得た。
リチウムエトキシド(LiOC2H5)とニオブペンタエトキシド[Nb(OC2H5)5]を脱水したエタノールに溶かし、溶質濃度5重量%の溶液とした。この溶液を、転動流動装置(株式会社パウレック社製MP-01)にてLiCoO2(日本化学工業製セルシードC-5H)へスプレーコートした。それを空気存在下、350℃で3時間焼成して、LiCoO2の表面にLiNbO3膜を約10nm形成させ、正極活物質とした。次に、重量比で、正極活物質:硫化物固体電解質(80Li2S-20P2S5):ケッチェンブラック(導電助剤)=40:60:9とした粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
上記で調製した錯体水素化物固体電解質の粉末を直径10mmの粉末錠剤成形機に入れ、圧力28MPaにて円盤状にプレス成形した(第2固体電解質層の形成;以下、錯体水素化物固体電解質層とも称する)。成形物を取り出すことなく、続けて上記で調製した硫化物固体電解質の粉末を錠剤成形機に入れ、再び圧力28MPaにてプレス成形した(第1固体電解質層の形成;以下、硫化物固体電解質層とも称する)。更に、上記で調製した正極層粉末を入れ、圧力240MPaにて一体成型した。このようにして、正極層(75μm)、硫化物固体電解質層(400μm)および錯体水素化物固体電解質層(400μm)が順次積層された円盤状のペレットを得た。このペレットの正極層と反対の面に、厚さ200μm、φ10mmの金属リチウム箔を貼り付け、SUS304製の電池試験セルに入れて全固体二次電池とした。
(充放電試験)
上記のように作製した全固体電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、測定温度25℃、カットオフ電圧3.2~4.2V、電流密度0.064mA/cm2(50.3μA)の条件の下で定電流にて充放電を行った。なお、充電後と放電後にはそれぞれ3分間の休止を設けた。
硫化物固体電解質層を設けずに錯体水素化物固体電解質層の厚みを800μmとした以外は、実施例1と同様に全固体電池を作製した。充放電試験についても、実施例1と同様に行った。
錯体水素化物固体電解質層、硫化物固体電解質層および正極層については、実施例1と同様の材料を使用した。
(全固体電池の作製)
錯体水素化物固体電解質の粉末を直径10mmの粉末錠剤成形機に入れ、圧力28MPaにて円盤状にプレス成形した(錯体水素化物固体電解質層の形成)。成形物を取り出すことなく、続けて硫化物固体電解質の粉末を錠剤成形機に入れ、再び圧力28MPaにてプレス成形した(硫化物固体電解質層の形成)。このペレットの錯体水素化物固体電解質層側に、厚さ100μm、φ8mmのインジウム箔を貼り付け、その反対面には正極層粉末を入れ、圧力240MPaにて一体成型した。このようにして、正極層(75μm)、硫化物固体電解質層400μm、錯体水素化物固体電解質層400μmおよび負極層70μm(インジウム箔はφ9mmに広がっていた)が順次積層された円盤状のペレットを得た。これをSUS304製の電池試験セルに入れて、全固体二次電池とした。なお、電池の充電を開始すると、インジウム箔からLi-In合金が瞬時に形成される。
充放電試験は、カットオフ電圧を2.0~3.6V(Li電極基準で2.62~4.22V)とした以外は実施例1と同様に行った。
硫化物固体電解質層を設けずに錯体水素化物固体電解質層の厚みを800μmとした以外は、実施例3と同様に全固体電池を作製した。充放電試験については、実施例1と同様に行った。
錯体水素化物固体電解質層、硫化物固体電解質層および正極層については、実施例1と同様の材料を使用した。
(負極層粉末の調製)
重量比で、グラファイト(日本黒鉛製CGB-10):錯体水素化物固体電解質(3LiBH4-LiI):ケッチェンブラック(導電助剤)=27:64:9とした粉末をグローブボックス内で計り取り、乳鉢にて混合して負極層粉末とした。
上記で調製した負極層粉末を直径10mmの粉末錠剤成形機に入れ、圧力28MPaにて円盤状にプレス成形した(負極層の形成)。成形物を取り出すことなく、続けて錯体水素化物固体電解質を錠剤成形機に入れ、再び圧力28MPaにてプレス成形した(錯体水素化物固体電解質層の形成)。次に、硫化物固体電解質を錠剤成形機に入れ、圧力28MPaにてプレス成形した(硫化物固体電解質層の形成)。更に、正極層粉末を入れ、圧力240MPaにて一体成型した。このようにして、正極層(75μm)、硫化物固体電解質層(400μm)、錯体水素化物固体電解質層(400μm)および負極層(75μm)が順次積層された円盤状のペレットを得た。これをSUS304製の電池試験セルに入れて、全固体二次電池とした。
充放電試験については、カットオフ電圧を3.1~4.1V(Li基準で3.2~4.2V)とした以外は実施例1と同様に行った。
錯体水素化物固体電解質層を設けずに硫化物固体電解質層の厚みを800μmとした以外は、実施例5と同様に全固体電池を作製した。充放電試験については、実施例1と同様に行った。
錯体水素化物固体電解質層を設けずに硫化物固体電解質層の厚みを800μmとした以外は、実施例1と同様に全固体電池を作製した。充放電試験についても、実施例1と同様に行った。
正極活物質をLiCoO2(日本化学工業製日本化学工業製セルシードC-5H、LiNbO3コート無し)とし、「正極層粉末」に用いる固体電解質を錯体水素化物(3LiBH4-LiI)とした以外は、実施例2と同様に全固体電池を作製した。充放電試験については、実施例1と同様に行った。
正極層に含まれる固体電解質および固体電解質層に含まれる錯体水素化物固体電解質をLiBH4とした以外は、実施例2と同様に全固体電池を作製した。充放電試験については、試験温度を120℃とした以外は実施例1と同様に行った。
正極活物質をカーボンコートされたLiFePO4(SLFP-ES01)とし、正極層に含まれる固体電解質を錯体水素化物(3LiBH4-LiI)とした以外は、実施例2と同様に全固体電池を作製した。充放電試験については、カットオフ電圧を2.5~3.8Vとした以外は実施例1と同様に行った。
さらに、上述したように、本発明の実施形態に係る全固体電池は、錯体水素化物による正極活物質の還元を懸念することなくリチウムイオン伝導性の高い錯体水素化物を固体電解質として使用することができる。また、全固体電池を構成する各層の間で大きな界面抵抗を生じることがないため、電池全体のリチウムイオン伝導性を向上させることもできる。
Claims (5)
- 正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
前記正極層および前記固体電解質層のいずれか一方または両方は、硫化物固体電解質を含み、前記負極層および前記固体電解質層のいずれか一方または両方は、錯体水素化物固体電解質を含み、
前記硫化物固体電解質の少なくとも一部と前記錯体水素化物固体電解質の少なくとも一部とが接している
全固体電池。 - 前記固体電解質層は、硫化物固体電解質を含む正極側の第1固体電解質層と、錯体水素化物固体電解質を含む負極側の第2固体電解質層とを具備する請求項1に記載の全固体電池。
- 前記硫化物固体電解質は、Li2S-P2S5系、Li2S-SiS2系およびLi2S-GeS2系からなる群より選択される1種以上の材料を含む請求項1または2に記載の全固体電池。
- 前記錯体水素化物固体電解質は、LiBH4またはLiBH4と下記式(1)で表されるアルカリ金属化合物との混合物である;
MX (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH2基を表す。]
請求項1~3のいずれか1項に記載の全固体電池。 - 前記アルカリ金属化合物は、ハロゲン化リチウム、ハロゲン化ルビジウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される請求項4に記載の全固体電池。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14839205T PL3043411T3 (pl) | 2013-09-02 | 2014-08-27 | Akumulator ze stałym elektrolitem |
KR1020167008005A KR102272556B1 (ko) | 2013-09-02 | 2014-08-27 | 전고체 전지 |
US14/913,172 US10038192B2 (en) | 2013-09-02 | 2014-08-27 | Solid-state battery |
JP2015534258A JP6246816B2 (ja) | 2013-09-02 | 2014-08-27 | 全固体電池 |
CN201480047821.9A CN105556731B (zh) | 2013-09-02 | 2014-08-27 | 全固体电池 |
BR112016004279-4A BR112016004279B1 (pt) | 2013-09-02 | 2014-08-27 | Bateria de estado sólido |
EP14839205.3A EP3043411B1 (en) | 2013-09-02 | 2014-08-27 | Solid-state battery |
RU2016103787A RU2665046C2 (ru) | 2013-09-02 | 2014-08-27 | Твердотельная батарея |
CA2922382A CA2922382C (en) | 2013-09-02 | 2014-08-27 | Solid-state battery in which lithium ions are responsible for electrical conduction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013181577 | 2013-09-02 | ||
JP2013-181577 | 2013-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015030052A1 true WO2015030052A1 (ja) | 2015-03-05 |
Family
ID=52586602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072438 WO2015030052A1 (ja) | 2013-09-02 | 2014-08-27 | 全固体電池 |
Country Status (12)
Country | Link |
---|---|
US (1) | US10038192B2 (ja) |
EP (1) | EP3043411B1 (ja) |
JP (1) | JP6246816B2 (ja) |
KR (1) | KR102272556B1 (ja) |
CN (1) | CN105556731B (ja) |
BR (1) | BR112016004279B1 (ja) |
CA (1) | CA2922382C (ja) |
HU (1) | HUE043279T2 (ja) |
PL (1) | PL3043411T3 (ja) |
RU (1) | RU2665046C2 (ja) |
TW (1) | TWI628826B (ja) |
WO (1) | WO2015030052A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105489931A (zh) * | 2015-12-24 | 2016-04-13 | 国联汽车动力电池研究院有限责任公司 | 硫化物电解质在制备全固态电池中的应用 |
WO2017126416A1 (ja) | 2016-01-18 | 2017-07-27 | 三菱瓦斯化学株式会社 | イオン伝導体の製造方法 |
KR20170107227A (ko) * | 2016-03-15 | 2017-09-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
JP2018077992A (ja) * | 2016-11-08 | 2018-05-17 | トヨタ自動車株式会社 | 固体電解質材料、固体電解質層、フッ化物イオン電池およびフッ化物イオン電池の製造方法 |
KR20180084236A (ko) * | 2017-01-16 | 2018-07-25 | 한국생산기술연구원 | Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법 |
JP2018170072A (ja) * | 2017-03-29 | 2018-11-01 | マクセルホールディングス株式会社 | 複合固体電解質、その製造方法、および全固体電池 |
WO2019135323A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
RU2721746C1 (ru) * | 2017-04-10 | 2020-05-21 | Артуро Солис Эррера | Твердотельная меланиновая батарея |
WO2020137390A1 (ja) | 2018-12-27 | 2020-07-02 | パナソニックIpマネジメント株式会社 | 電池 |
WO2020137389A1 (ja) | 2018-12-27 | 2020-07-02 | パナソニックIpマネジメント株式会社 | 電池 |
JP6780140B1 (ja) * | 2020-01-17 | 2020-11-04 | 住友化学株式会社 | 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池 |
JP2020534245A (ja) * | 2017-09-22 | 2020-11-26 | サフトSaft | リチウムイオン電気化学セル用の固体電解質 |
JPWO2019146217A1 (ja) * | 2018-01-26 | 2021-01-28 | パナソニックIpマネジメント株式会社 | 電池 |
JPWO2019146294A1 (ja) * | 2018-01-26 | 2021-02-04 | パナソニックIpマネジメント株式会社 | 電池 |
JP2021515353A (ja) * | 2019-04-24 | 2021-06-17 | 上海理工大学University Of Shanghai For Science And Technology | 全固体リチウム電池及びその製造方法 |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3040241A1 (fr) * | 2016-01-27 | 2017-02-24 | Commissariat Energie Atomique | Batterie electrochimique au lithium comprenant un electrolyte solide specifique |
EP3509139A4 (en) * | 2016-08-30 | 2019-08-28 | FUJIFILM Corporation | FESTELECTROLYTE COMPOSITION, FESTELECTROLYTIC LAYER, FIRM PARTICULAR BATTERY, METHOD FOR THE PRODUCTION OF A FESTELECTROLYTIC LAYER AND METHOD FOR THE PRODUCTION OF A SOLID BODY CERTAIN BATTERY |
KR20180071438A (ko) * | 2016-12-19 | 2018-06-28 | 현대자동차주식회사 | 양극 활물질 및 이의 제조방법과 이를 이용한 전고체 전지 |
JP6934727B2 (ja) * | 2017-01-31 | 2021-09-15 | 日立造船株式会社 | 全固体電池およびその製造方法 |
KR102359583B1 (ko) * | 2017-05-08 | 2022-02-07 | 현대자동차주식회사 | 고체전해질 및 이를 포함하는 전고체 전지의 제조방법 |
CN107394272A (zh) * | 2017-06-20 | 2017-11-24 | 哈尔滨工业大学无锡新材料研究院 | 一种固态锂离子电池及其制备方法 |
CN108063278A (zh) * | 2017-11-27 | 2018-05-22 | 浙江衡远新能源科技有限公司 | 一种全固态锂离子电池及其制备方法 |
JP6996414B2 (ja) * | 2017-12-08 | 2022-01-17 | トヨタ自動車株式会社 | 硫化物固体電池の製造方法 |
WO2019146236A1 (ja) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | 正極材料、および、電池 |
EP3745519B1 (en) * | 2018-01-26 | 2022-11-02 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
WO2019167813A1 (ja) | 2018-02-28 | 2019-09-06 | 三菱瓦斯化学株式会社 | Li2B12H12およびLiBH4を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 |
JP7085124B2 (ja) * | 2018-04-27 | 2022-06-16 | トヨタ自動車株式会社 | 硫化物固体電池とこれを備えた硫化物固体電池システム |
JP6735425B2 (ja) * | 2018-05-01 | 2020-08-05 | 日本特殊陶業株式会社 | イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス |
KR20210044851A (ko) | 2018-08-23 | 2021-04-23 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | LiCB9H10의 고온상을 포함하는 이온 전도체 및 그의 제조 방법, 및 해당 이온 전도체를 포함하는 전고체 전지용 고체 전해질 |
DE102018215803A1 (de) * | 2018-09-18 | 2020-03-19 | Bayerische Motoren Werke Aktiengesellschaft | Schutzschicht für Elektrode |
CN112909239B (zh) | 2018-11-06 | 2023-03-24 | Sk新能源株式会社 | 用于锂二次电池的正极活性材料及其制造方法 |
TWI676316B (zh) * | 2018-11-06 | 2019-11-01 | 輝能科技股份有限公司 | 極層複合材料改良結構 |
CN109585913B (zh) * | 2018-11-29 | 2021-08-24 | 东南大学 | 硼氢化锂与二硫化钼复合体系固态电解质材料及其制备方法和应用 |
WO2020166166A1 (ja) * | 2019-02-15 | 2020-08-20 | パナソニックIpマネジメント株式会社 | 電池 |
KR20190038776A (ko) | 2019-04-01 | 2019-04-09 | 창원대학교 산학협력단 | 카본 함량이 감소된 황 복합 전극을 포함하는 전고체전지 |
CN110120510B (zh) * | 2019-05-23 | 2021-07-13 | 桑德新能源技术开发有限公司 | 一种全固态电池及其制备方法 |
TWI725589B (zh) * | 2019-10-25 | 2021-04-21 | 輝能科技股份有限公司 | 氧化物固態電解質的原相回收方法、鋰電池製造方法及其綠色環保電池 |
RU2720349C1 (ru) * | 2019-11-11 | 2020-04-29 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения твердого электролита |
AU2021224331A1 (en) | 2020-02-17 | 2022-09-01 | Mitsubishi Gas Chemical Company, Inc. | Ion conductor containing high-temperature phase of LiCB9H10 and method for producing same |
US11928472B2 (en) | 2020-09-26 | 2024-03-12 | Intel Corporation | Branch prefetch mechanisms for mitigating frontend branch resteers |
JP2022128083A (ja) * | 2021-02-22 | 2022-09-01 | セイコーエプソン株式会社 | 前駆体溶液、前駆体粉末、電極の製造方法および電極 |
CN114203992B (zh) * | 2021-12-07 | 2024-01-30 | 远景动力技术(江苏)有限公司 | 正极活性材料、电化学装置和电子设备 |
CN117996218A (zh) * | 2024-03-07 | 2024-05-07 | 蜂巢能源科技股份有限公司 | 一种多层全固态电池及其制备方法与应用 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223156A (ja) | 1999-01-28 | 2000-08-11 | Sony Corp | 固体電解質電池 |
JP3149524B2 (ja) | 1992-05-07 | 2001-03-26 | 松下電器産業株式会社 | 非晶質リチウムイオン導電性固体電解質およびその製造方法 |
JP3163741B2 (ja) | 1992-05-08 | 2001-05-08 | 松下電器産業株式会社 | 非晶質リチウムイオン導電性固体電解質およびその製造方法 |
JP3343934B2 (ja) | 1992-05-07 | 2002-11-11 | 松下電器産業株式会社 | 非晶質リチウムイオン伝導性固体電解質並びにその合成法 |
JP2003068361A (ja) | 2001-08-23 | 2003-03-07 | Japan Storage Battery Co Ltd | 全固体リチウム二次電池 |
JP2006277997A (ja) | 2005-03-28 | 2006-10-12 | Idemitsu Kosan Co Ltd | 高性能全固体リチウム電池 |
JP2008103280A (ja) | 2006-10-20 | 2008-05-01 | Idemitsu Kosan Co Ltd | 正極合材及びそれを用いた全固体二次電池 |
JP4165536B2 (ja) | 2005-06-28 | 2008-10-15 | 住友電気工業株式会社 | リチウム二次電池負極部材およびその製造方法 |
WO2009139382A1 (ja) * | 2008-05-13 | 2009-11-19 | 国立大学法人東北大学 | 固体電解質、その製造方法、および固体電解質を備える二次電池 |
JP2011150942A (ja) | 2010-01-22 | 2011-08-04 | Toyota Motor Corp | 負極活物質及びその製造方法、並びに全固体リチウム二次電池及びその製造方法 |
JP2011159639A (ja) | 2011-05-23 | 2011-08-18 | Toyota Motor Corp | 電極体及びその製造方法、並びに、リチウムイオン二次電池 |
WO2011118801A1 (ja) | 2010-03-26 | 2011-09-29 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
JP2012043646A (ja) | 2010-08-19 | 2012-03-01 | Idemitsu Kosan Co Ltd | 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池 |
JP2012054151A (ja) | 2010-09-02 | 2012-03-15 | Sumitomo Electric Ind Ltd | 固体電解質電池 |
JP2012209104A (ja) | 2011-03-29 | 2012-10-25 | Denso Corp | 全固体電池 |
JP2012209106A (ja) | 2011-03-29 | 2012-10-25 | Denso Corp | 全固体電池 |
JP2014120432A (ja) * | 2012-12-19 | 2014-06-30 | Nagase Chemtex Corp | 正極合材及び全固体型リチウム硫黄電池 |
JP2014160572A (ja) * | 2013-02-20 | 2014-09-04 | Nagase Chemtex Corp | 正極合材及び全固体型リチウム硫黄電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523179A (en) * | 1994-11-23 | 1996-06-04 | Polyplus Battery Company | Rechargeable positive electrode |
KR20120118511A (ko) * | 2002-10-15 | 2012-10-26 | 폴리플러스 배터리 컴퍼니 | 활성 금속 애노드를 보호하기 위한 이온 전도성 합성물 |
KR101422311B1 (ko) * | 2006-12-04 | 2014-07-22 | 시온 파워 코퍼레이션 | 전해질의 분리 |
TWM352659U (en) | 2008-02-05 | 2009-03-11 | Oplus Design Internat Co Ltd | Thermostat device |
JP5333184B2 (ja) * | 2009-03-16 | 2013-11-06 | トヨタ自動車株式会社 | 全固体二次電池 |
JP3163741U (ja) | 2010-08-19 | 2010-10-28 | 株式会社大京 | 集合住宅の間取り構造 |
JP5865268B2 (ja) * | 2011-01-27 | 2016-02-17 | 出光興産株式会社 | アルカリ金属硫化物と導電剤の複合材料 |
US20120301778A1 (en) * | 2011-03-17 | 2012-11-29 | James Trevey | Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same |
US20120251871A1 (en) | 2011-03-29 | 2012-10-04 | Tohoku University | All-solid-state battery |
CN103814472B (zh) * | 2011-09-30 | 2016-05-04 | 丰田自动车株式会社 | 全固体电池及其制造方法 |
-
2014
- 2014-08-27 CN CN201480047821.9A patent/CN105556731B/zh active Active
- 2014-08-27 BR BR112016004279-4A patent/BR112016004279B1/pt active IP Right Grant
- 2014-08-27 PL PL14839205T patent/PL3043411T3/pl unknown
- 2014-08-27 WO PCT/JP2014/072438 patent/WO2015030052A1/ja active Application Filing
- 2014-08-27 US US14/913,172 patent/US10038192B2/en active Active
- 2014-08-27 CA CA2922382A patent/CA2922382C/en active Active
- 2014-08-27 KR KR1020167008005A patent/KR102272556B1/ko active IP Right Grant
- 2014-08-27 JP JP2015534258A patent/JP6246816B2/ja active Active
- 2014-08-27 RU RU2016103787A patent/RU2665046C2/ru active
- 2014-08-27 HU HUE14839205A patent/HUE043279T2/hu unknown
- 2014-08-27 EP EP14839205.3A patent/EP3043411B1/en active Active
- 2014-09-01 TW TW103130131A patent/TWI628826B/zh active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3149524B2 (ja) | 1992-05-07 | 2001-03-26 | 松下電器産業株式会社 | 非晶質リチウムイオン導電性固体電解質およびその製造方法 |
JP3343934B2 (ja) | 1992-05-07 | 2002-11-11 | 松下電器産業株式会社 | 非晶質リチウムイオン伝導性固体電解質並びにその合成法 |
JP3163741B2 (ja) | 1992-05-08 | 2001-05-08 | 松下電器産業株式会社 | 非晶質リチウムイオン導電性固体電解質およびその製造方法 |
JP2000223156A (ja) | 1999-01-28 | 2000-08-11 | Sony Corp | 固体電解質電池 |
JP2003068361A (ja) | 2001-08-23 | 2003-03-07 | Japan Storage Battery Co Ltd | 全固体リチウム二次電池 |
JP2006277997A (ja) | 2005-03-28 | 2006-10-12 | Idemitsu Kosan Co Ltd | 高性能全固体リチウム電池 |
JP4165536B2 (ja) | 2005-06-28 | 2008-10-15 | 住友電気工業株式会社 | リチウム二次電池負極部材およびその製造方法 |
JP2008103280A (ja) | 2006-10-20 | 2008-05-01 | Idemitsu Kosan Co Ltd | 正極合材及びそれを用いた全固体二次電池 |
WO2009139382A1 (ja) * | 2008-05-13 | 2009-11-19 | 国立大学法人東北大学 | 固体電解質、その製造方法、および固体電解質を備える二次電池 |
JP5187703B2 (ja) | 2008-05-13 | 2013-04-24 | 国立大学法人東北大学 | 固体電解質、その製造方法、および固体電解質を備える二次電池 |
JP2011150942A (ja) | 2010-01-22 | 2011-08-04 | Toyota Motor Corp | 負極活物質及びその製造方法、並びに全固体リチウム二次電池及びその製造方法 |
WO2011118801A1 (ja) | 2010-03-26 | 2011-09-29 | 国立大学法人東京工業大学 | 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 |
JP2012043646A (ja) | 2010-08-19 | 2012-03-01 | Idemitsu Kosan Co Ltd | 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池 |
JP2012054151A (ja) | 2010-09-02 | 2012-03-15 | Sumitomo Electric Ind Ltd | 固体電解質電池 |
JP2012209104A (ja) | 2011-03-29 | 2012-10-25 | Denso Corp | 全固体電池 |
JP2012209106A (ja) | 2011-03-29 | 2012-10-25 | Denso Corp | 全固体電池 |
JP2011159639A (ja) | 2011-05-23 | 2011-08-18 | Toyota Motor Corp | 電極体及びその製造方法、並びに、リチウムイオン二次電池 |
JP2014120432A (ja) * | 2012-12-19 | 2014-06-30 | Nagase Chemtex Corp | 正極合材及び全固体型リチウム硫黄電池 |
JP2014160572A (ja) * | 2013-02-20 | 2014-09-04 | Nagase Chemtex Corp | 正極合材及び全固体型リチウム硫黄電池 |
Non-Patent Citations (6)
Title |
---|
AKIHIRO YAMAUCHI ET AL.: "Ko Lithium Ion Dendosei Li2S-P2S5- LiBH4-kei Glass Ceramics no Sakusei to Hyoka", THE SYMPOSIUM ON SOLID STATE IONICS SOCIETY IN JAPAN KOEN YOKOSHU, vol. 38TH, 2012, pages 190 - 191, XP008182934 * |
APPLIED PHYSICS LETTERS, vol. 91, 2007, pages 224103 |
JOURNAL OF POWER SOURCES, vol. 226, 2013, pages 61 - 64 |
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 894 - 895 |
See also references of EP3043411A4 |
SEI TECHNICAL REVIEW, vol. 167, September 2005 (2005-09-01), pages 54 - 60 |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105489931A (zh) * | 2015-12-24 | 2016-04-13 | 国联汽车动力电池研究院有限责任公司 | 硫化物电解质在制备全固态电池中的应用 |
WO2017126416A1 (ja) | 2016-01-18 | 2017-07-27 | 三菱瓦斯化学株式会社 | イオン伝導体の製造方法 |
US10825574B2 (en) | 2016-01-18 | 2020-11-03 | Mitsubishi Gas Chemical Company, Inc. | Method for manufacturing ionic conductor |
KR102670558B1 (ko) * | 2016-03-15 | 2024-05-28 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
KR20170107227A (ko) * | 2016-03-15 | 2017-09-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
JP2018077992A (ja) * | 2016-11-08 | 2018-05-17 | トヨタ自動車株式会社 | 固体電解質材料、固体電解質層、フッ化物イオン電池およびフッ化物イオン電池の製造方法 |
KR101886358B1 (ko) * | 2017-01-16 | 2018-08-09 | 한국생산기술연구원 | Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법 |
KR20180084236A (ko) * | 2017-01-16 | 2018-07-25 | 한국생산기술연구원 | Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법 |
JP2018170072A (ja) * | 2017-03-29 | 2018-11-01 | マクセルホールディングス株式会社 | 複合固体電解質、その製造方法、および全固体電池 |
JP7008420B2 (ja) | 2017-03-29 | 2022-01-25 | マクセル株式会社 | 複合固体電解質、その製造方法、および全固体電池 |
RU2721746C1 (ru) * | 2017-04-10 | 2020-05-21 | Артуро Солис Эррера | Твердотельная меланиновая батарея |
US11101511B2 (en) | 2017-04-10 | 2021-08-24 | Arturo Solis Herrera | Solid-state melanin battery |
JP7182633B2 (ja) | 2017-09-22 | 2022-12-02 | サフト | リチウムイオン電気化学セル用の固体電解質 |
JP2020534245A (ja) * | 2017-09-22 | 2020-11-26 | サフトSaft | リチウムイオン電気化学セル用の固体電解質 |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
JP7281672B2 (ja) | 2018-01-05 | 2023-05-26 | パナソニックIpマネジメント株式会社 | 電池 |
JPWO2019135323A1 (ja) * | 2018-01-05 | 2021-02-18 | パナソニックIpマネジメント株式会社 | 電池 |
WO2019135323A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 電池 |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11515565B2 (en) | 2018-01-05 | 2022-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
JPWO2019146217A1 (ja) * | 2018-01-26 | 2021-01-28 | パナソニックIpマネジメント株式会社 | 電池 |
JP7316564B2 (ja) | 2018-01-26 | 2023-07-28 | パナソニックIpマネジメント株式会社 | 電池 |
JP7316564B6 (ja) | 2018-01-26 | 2024-02-19 | パナソニックIpマネジメント株式会社 | 電池 |
JPWO2019146294A1 (ja) * | 2018-01-26 | 2021-02-04 | パナソニックIpマネジメント株式会社 | 電池 |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
JP7182196B2 (ja) | 2018-01-26 | 2022-12-02 | パナソニックIpマネジメント株式会社 | 電池 |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
WO2020137390A1 (ja) | 2018-12-27 | 2020-07-02 | パナソニックIpマネジメント株式会社 | 電池 |
WO2020137389A1 (ja) | 2018-12-27 | 2020-07-02 | パナソニックIpマネジメント株式会社 | 電池 |
JP2021515353A (ja) * | 2019-04-24 | 2021-06-17 | 上海理工大学University Of Shanghai For Science And Technology | 全固体リチウム電池及びその製造方法 |
JP2021114407A (ja) * | 2020-01-17 | 2021-08-05 | 住友化学株式会社 | 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池 |
JP6780140B1 (ja) * | 2020-01-17 | 2020-11-04 | 住友化学株式会社 | 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池 |
Also Published As
Publication number | Publication date |
---|---|
KR20160048892A (ko) | 2016-05-04 |
JPWO2015030052A1 (ja) | 2017-03-02 |
EP3043411A4 (en) | 2017-05-03 |
EP3043411B1 (en) | 2019-03-13 |
CA2922382C (en) | 2022-04-05 |
CA2922382A1 (en) | 2015-03-05 |
PL3043411T3 (pl) | 2019-08-30 |
CN105556731A (zh) | 2016-05-04 |
TWI628826B (zh) | 2018-07-01 |
BR112016004279B1 (pt) | 2021-12-14 |
RU2016103787A (ru) | 2017-10-09 |
BR112016004279A2 (pt) | 2017-08-01 |
EP3043411A1 (en) | 2016-07-13 |
JP6246816B2 (ja) | 2017-12-13 |
KR102272556B1 (ko) | 2021-07-02 |
US20160204467A1 (en) | 2016-07-14 |
CN105556731B (zh) | 2018-10-02 |
TW201526341A (zh) | 2015-07-01 |
US10038192B2 (en) | 2018-07-31 |
HUE043279T2 (hu) | 2019-08-28 |
RU2665046C2 (ru) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6246816B2 (ja) | 全固体電池 | |
JP6868959B2 (ja) | 全固体電池および電極活物質の製造方法 | |
JP6085370B2 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
JP6431707B2 (ja) | 全固体電池用電極層および全固体電池 | |
JP6259704B2 (ja) | 全固体電池用電極の製造方法及び全固体電池の製造方法 | |
JP6738121B2 (ja) | リチウムイオン(lithiumion)二次電池 | |
JP7164939B2 (ja) | 全固体型二次電池 | |
JP2017157473A (ja) | リチウムイオン二次電池 | |
JP2017188301A (ja) | 電極活物質ならびにそれを含む電極層および全固体電池 | |
WO2015159331A1 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
WO2024181285A1 (ja) | 全固体電池および全固体電池の製造方法 | |
JP2017111891A (ja) | 全固体電池用電極、全固体電池、及びそれらの製造方法 | |
JP2016207477A (ja) | イオン伝導性材料とそれを用いた全固体電池及びその製造方法 | |
JP2022119107A (ja) | 全固体二次電池 | |
JP2018116853A (ja) | 全固体電池用電極材料、及びそれを用いた全固体電池 | |
JP2017059417A (ja) | 全固体電池用イオン伝導性材料、全固体電池用イオン伝導性材料を用いた全固体電池及びそれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480047821.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839205 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015534258 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14913172 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2922382 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2014839205 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014839205 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016004279 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167008005 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201602146 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2016103787 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016004279 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160226 |